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Abstract

In an extension of previous work (R. B. Walker, J. C. Light and A. Altenberger-

Siczek, J. Chem. Phys. 64, 1166(1976)), equations for the accurate quantum—

mechanical treatment of three body rearrangement collisions are presented in the

R-matrix language. These equations describe how the solutions to Schrodinber’s

equation in three separate regions of configuration space (each containing one

asymptotic atom + diatom arrangement) are matched smoothly to each other. The.

symmetry of the matching equations is disussed in detail. Within the R-matrix

formalism, we may construct unitary S-matrices for arbitrary atom-diatom mass

combinations and for small target wavefunction basis expansions. Applications

of this method to the three dimensional H+H2 (labelled nuclei) exchange reaction

are reported, and comparison is made to prior work.
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1. INTRODUCTION

Ina recent poper(l )(hereofter called I)wepresented a general theoretical approach

to the problem of atom-diatom reactive and inelastic scattering, deriving the close coupled

equations to be solved for each channel, the coordinate tronsfornotions required between

channels, and determining the surfaces on which solutions in various

matched. Although the approach given in (1) has been followed, by

channels should be

and large, in implement-

ing the actual computation, we have developed a number of significant improvements in the

method. We have applied these methods to the three dimensional reactive scattering of

H + HH on the Porter- Karplus surface. In this paper we shall briefly describe our approach to

the problem, and some of the improvements in the methods, in particular, accurate techniques

for matching which automatically preserve the unitarity of the S matrix.

The coupled equations of (1) are solved by the R-matrix propagation method (2), a fast,

stable and accurate technique for integration of coupled I inear second order differential equa-

tions thot we recently developed. The speed of calculation is enhanced by using u “rec-

ontracted” vibrational basis enabling us to achieve convergence with fewer vibrational states,

The vibrational basis is chosen by diagonol izing an appropriate COI linear or spherical I y

avemged interactionmatrix using a convenient manifold of primitive vibrational functions

(such as harmonic oscillators), enabling all integrals to be obtained analytically. Having

real istic vibrational states after diagonal ization, eac h carries its own independent rotational

manifold. Thus we carry

of channels necessary for

from optimizing the basis

fewer rotations for the higher vibrations, again reducing the number

convergence of the full calculation. Further time-savings come

at one energy, diagonal izing

this diogonal basis at additional energies (2). Thus al I

energy.

the full interaction matrix and using

integrals are evaluated only at the first
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Other advantages I ie in the util izat ion of the symmetry properties of the R matrix.

Since the channel R matrices ore symmetric independent of completeness in the basis set, the

S matrix for an inelastic problem is alwoys unitary. It has been shown that matching between

two channels in the COI I inear reactive scattering (2) also preserves the symmetry of the R

matrix and hence the unitarity of the s matrix. Properties of the operatom involved in the

matching as opposed to properties of the finite blocks of the matrix representation of the

operators are utilized and thus in bath the R-matrix propagation and in the subsequent match-

ing procedures, no orthogonolization and no symmetrization of the basis is necessary. There-

fore very smal I basis sets can be used to achieve semiquantitative results (2).

Thus the portion of the problem involving integration of coupled equotions correspond-

ing to each chemical channel is wel I understood, and efficient and accurate techniques for

solving this portion of the problem are available. In o general reaction, the solution of the

Schroedinger equation in each of the three separate regions of configuration space correspcmd-

ing to the three sepor~te chemical arrangements ( ~ = Q ,~ F ) results in three symmetric

~> , relating wavefunctions and derivatives at al= 0 to those at ti~ = 00,R matrices, ~

where Ux is the channel propagation coordinate.

The problems remaining, the resolution of which we present here, are to propagate

from the U>SO surfoces to the true matching surfaces that we have chosen, to show how

the wavefunctions and derivatives are then matched on these surfaces by a least squares pro-

cedure, and to demonstrate that the symmetry of the global R matrix, %-% , can be assured

in this process even with incomplete basis sets. This assures the unitarity of the global S

matrix.

We intend in the following to outline the solution to the matching region (between

~hsQ surfaces and the true matching surfaces) and will leave further details of this to a
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future publication. Wethendiscuss themethocl ofmatching on the true surfoce and the

method of generating a linear system of equations for the global R matrix (that matrix relating

asymptotic functions to asymptotic derivatives). This procedure produces more equations than

unknowns and in general forms an over determined set. The method of generalized inverse

(or least squares) is then used to solve for the R matrix in a straightforward manner which does

not guarantee a symmetric R matrix solution except in the limit of complete sets. We then

propose a modified least squares solution to the same set of equations which guarantees in a

no tura I

size of

studies

manner (as opposed to ad hoc symmetrization) a symmetric R matrix independent of the

the basis. In the limit of complete sets both methods converge to the same result.

Based on this result and convergence pro~crties in our COII inear reactive scattering

we assert that the calculations for H + Ho reactive scattering reported here are accurate
L

even for the “smal :“ number of internal states used at large J. We note that for large J

the rotational degeneracy makes the number of coupled states large even when the “internal”

vibrational and rotational basis is smal 1. We present here some results, mostly J = O calcula-

t ions which are most easily converged and can be compared to prior work (3, 4).
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Il. PROPAGATION * ON THE MATCHING REGION

Since themethod ofsolution described in paper I requires solving Schroedinger’s

equation separately in eoch of three regions of

armngement channel R matrices, each reloting

con figurot ion space, the result is three

wovefunctions and derivatives at u>= o

and u>=- for >=~l~)ti . The coordinate sy~tem of choice ( ~ .V, Z ) transforms

smoothly between arrangement channels only for COII inear geometries, i.e. the surface in

configuration space defined by Ma = 0 is tangent to up = 0 only when Xm=O and

zp=v and is tangent to ti~ z Q only when %*=T and %K=O (see Fig. 1).

In order to match the wavefunctions and derivatives smoothly we defined in pcrper I appropriate

real physical matching surfaces which are tangent to the ~2 = O surfaces for cot I inear

geometries and which define physical bwndaries between the legions of space associated with

the coordinate system and expansion used in each channel. This is shown schematical I y in

Fig, 1. Since this region between the u = O surface and the matching surface is small, away

from collinear geometries, and a region of high potential for many reactions of interest, it was

originally thought that the approximation of “matching” the wavefunctions and derivatives ot

u = O instead of the true matching surfaces would be satisfactory (at least for reactions domi-

nated by near COII inear transition states). Hcwever, this approximation lowers the threshold

for reaction and it mises the reactivity across the energy spectn.tm for the H + H2 rtaction.

We have tried other approximations to describe the dynamics in this region and have found

that a fairly accurate treatment is necessary if we are to obtain the proper threshold and re-

activity,

To obtain accurate results, the propagation must be continued from u = O through the

matching region to the true matching surface. Therefore, in this section we discuss a method

of propagation through this troublesome region of coordinate space,

..
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During any propagation scheme we single out onecoordinoteos the “translation”

coordinate which describes a continuous set of surfaces of dimension n - 1, one less tharl the

dimension of the physical problem. We then wish todefine o matrix problem inonecoordi-

nate by integrating the kinetic energy operator plus the potential in a basis on these surfaces,

to yield the “interaction” matrix. If the translation coordinate is normal to these surfaces,

then the kinetic energy operotor separates nicely into one operator that we can associate

with translation and another operator which we can associate with dynamics on the surface.

This separation is obtained by having one coordinate which follows the progress of the

reaction and which is orthogonal to al I other coordinates. Such a coordinate system, however,

may not be conveniently obtainable for any arbitrary region of space. The region between

the u = O surface and the matching surface is an example where this is the case. &fore now

we have always allowed the single propagation coordinate which is orthogonal to al I remain-

ing coordinates to define the propagation surfaces. However, in this region of space we are

forced first tc define the surfaces and then let them define the propagation variable.

To ?his end, we define a continuous set of surfaces, beginning with the u = O surface,

which distorts until the matching surface is reached (see Fig. 1). Then we choose as the

translation coordinate, s, iust that coordinate which is normal to these surfaces and such that

each value ofs defines one of these surfaces. With this definition of s, there is an associated

metric coefficient x (a function of all the coordinates) such t!!at XdS h the metric dis-

tance along the normal between surface s and surface s + ds. To describe the dynamics we

note that the momentum at a point must be expressible as a sum of two components, one which

Flies entirely in the surface, ~ , and another normal to the surface, ?. . We use this

to then express the kinetic energy as

o)
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further define a convenient set of curvil ineor coordinates on the surface ~tAq> , and

first fundamental form ~~~ on the surfoce which describes the metric properties of

surface. With CA= dei &p and ~- equol to the Jacobian on the surface and

&YfL%p=S\ b on $ ), the Laplucian on the surface is

Then the kinetic energy opemtor looks like

(2)

(3)

where w-T66 is the total Jacobian ( K as defined earlier), and the ~)s symbolizes

the derivative normal to the s = constant surface.

In order to obtain the coupled equations for propagation in this region we expand the

wavefunction in a small sector i ( ‘5 ~ - ~“/Q 5s6 s: *~~/& ) in a basis as

(4)

The ~’t’ ~ (g will be defined below) factorization is necessary to moke the resulting

interactiotl matrix, in the ~s,] basis, hermitian, where \ ~~ ] form an

orthonormal basis on the surface with weighting factor U$ ( 6S can be a function of

any of the coordinates other than s). We do not allow \ S4 \ to have any explicit

dependence on s; however, we are free to change the basis from sector to sector with appro-
.

priate matching procedures between sectors (1). Thus we have

(5)

a
and g in Eq. (4) is defined by the weighting function 6$ \

a
c’ lrQ ●= #
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The resulting coupled equations in a sector are

(6;

(7)

(8)

where v%$ comes from the sirnplificotion of the operators in Eq. (3).

This method as described is not exact since %s is the normal derivative to the

surface s = constant. Referring to Fig. 3, the arrow shows schematically the normal coordinate

curve between surface S ~ and S2 . The I ines symbol ize constant @ (one of the inter-

nal coordinates). From the figure it can be seen that the derivative along the normal does

a/a~S({Ua3)#O .not necessarily hold al I ihe ~ Wq \ constant, thereiore

This non-zero derivative has been ignored to obtain Eq. (6). The exact equation is of the

foml:

Although this could be handled exactly, satisfactory results ore obtained

motion that ~ = O.

In this manner we are able to propagate from the u = O surface to

within the approxi-

the true matching

surface as required before combining the channel R matrices with matching conditions to

generate a global R matrix for the ent;re intemction region. In the next section we discuss

the matching on the matching s(lrfaces.
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Ill. MATCHING AND THE GLOBAL R MATRIX

After propagation to the matching surfaces, the complete chonnel R matrices relate

solution vectors and derivatives on the matching surfaces to an asymptotic surface in each

chemical

(9a)

(9b)

i
for > SO(,~,ti . In Eq. (9), a

$
ond ~ - are translation functions and derivatives

defined in Eq. (4) on the matching surfaces and ~
y ?j

and ~‘ are asymptotic trans-

lation functions and derivatives. We now wish to impose continuity of the wavefunction and

its derivative on the matching surfaces between all three channels in order to eliminate the

$ ‘s and
~

“S and obtain a global R matrix relating the asymptotic
J

= ‘s to

(100)

(lOb)

Y
3M

h
IYt%

w e re da and ~pw are the wavefunctions on M ~ and n ~ is the

normal to the matching surfoce M= . The partitioning angles X+A were defined in

paper I (also see Fig. 1) and are W/2 for a symmetric reaction I ike H + H2. The normal
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derivative to the surface is n = 9 v .

Since the wavefunction ineochchonnel is defined intemnsof itsownappropriote

body fixed coordinates,

as well as internol body

we must match the full wove functions (Euler angles for each channel

fixed coordinates) and derivati’ies on the matching surfaces. The

wave function is

s

Am

J

expanded as in Eq. (4) with

(11)

1where symbolizes the COIIective index nik. J is the total angular momentum and M is its

space-fixed z-projection. Both are conserved during the course of the reaction.

~:@~ , b ,%) are rotation functions of the three Euler angles QA ,$a ,$A.

The rotor function ~~(~~ is the partitioned rotor defined in paper I such that

)Azl$lx.l>;: (X2) SWAXA = q’ $~$

In Eq. (11),
~T

is defined such that

(12)

(13)

SK
and identifies the vibrational basis appropriate to the localization of Y a , i.e. the

end of the molecule which is reacting.

Since each channel matches onto both of the other channels and the partitioning of

the rotors is not perfect, the matching conditions of Eq. (10) are expressed in sets of equations

which are not all linearly independent.

The overlap matrices on the five-dimensional surfaces reduce to the product of two

one-dimensional integrals over the vibrational coordinate v and the internal rotational
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coordinate ~ . Thevibrotionol overlap isobtoined analytical ly and the rotational overlop

is evaluoted by numerical integration. The matching motrices ore denoted ~~, &~ ;

~ = =,/3,~ , and k= 1,3,4 denotes the function and der;votive motching shown below.

~ and INa

Mp relates

w~ere \@>,

denote cyclic and anti-cyclic ordeiing, respectively, where, for example,

d-functions to ~ - functions and is o matrix of the form <ti \ me \ W >

\%> are internal W ond intemol ~ - functions, respectively.

@
Similarly, ~ relates ~ to W . (Note: 6 does not equol the in-W

verse of VP . See Appendix. ) All operators in the matching matrices can be derived

from Eqs. (1OO) ond (lOb), the orthogonality conditions of Eq. (5) and Euler angle relations

between channels. The Euler angle relations describe the rotation between body fixed systems,

which for OL and
P Channets are

The angle ~ ~ is not to be contused with the matrix 5X defined in Eq. (12). The

angle G% is a function of %R or ~p alone. Once the ~~~ and ~;

matrices ( A=d ,},% ; K= 1,3,4) are evaluated we have systems of equations of the follow-

ing form

(140)

(14t)

(14C)

(14d)

and cyclic in Q,~,% where # (not to be confused with the angle Ed ) is a
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diagonal matrix such that its nik diagonal element i~ E j (defined in Eq. (]2)).

We note that the cyclic pemwtation of (14) implies that we have twice as many

equations as unknowns ( $’s ? 3”s ). Here we retain all eq,mtions, later eliminating the
4 *

linear dependence by means of the generalized inverse below.

4a) and (14c), and (14b) and (14d) eliminates ~ aSimply adding (’

equations and we have

from the

(150)

(15b)

+.

and cyclic. Equations (9b) for each channel can be combined to give

(16a)

(16b)

(16c)

.

Thus we wish to use (15a) and (15b) and (9a) to eliminate % 1%% in favor of
A’- -G

aand ~ from (16) so that we can obtain

(170)

(17b)

(17C)

.
.

where ‘R-q is the de ‘sired global R matrix for the reoctiv~ system from which we can easily

obtain the S matrix,
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The matching equations (150) and (15b) together with the R-matrix equations (9a) and

(9b) form a set of 12N equations, not all I inearly independent. We note that we have 6N

unknowns 4A’ S and ~~ ‘S which we wish to eliminate and we have 3N relations

(Eq. (17)) which we wish to solve for. (For simplicity in the notation, we take the total

number of independent states to be 3N, assuming N in each channel . ) With perfect parti-

tioning ( C?’i O or 1, only achievable with complete basis sets) half of the equations (14a)-

(14d) would express O = O which has been folded into Eq. (15). Thus Eqs. (15a) and (15b)

form an overdetermined se’ of 6N equations. By performing a least squares procedure we can

solve these equations for the “best” possible solution. We have 6N unknowns +Q’?@~

and ~~ , ~~ , ~~ which we wish to eliminate using 9N Eqs. (15a), (15b), and

(9a). Equotions (15a) and (9a) can be directly equated to eliminate ~~ ~P ~if from the

equations leaving 6N relations between derivatives +; {; q: on the matc$ing sur-

faces and asymptotic derivatives $ @&

. Q

we obtain a solution ef the form:

where ~ and Q are known 6N x 3N matrices formed from the

matching matrices, ~ and Qare derived in the Appendix.

We now define a 3Nx3N matrix ~ by

●

(18a)

(’

(’

8b)

8c)

channel ~~ matrices and the

We could solve this equation directly using a generalized inveme giving

(19)

(20)
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RThen from Eq. (16) the global R matrix, = $ , ;s

(21)

with ~% defined in (17) and ~2 , ~3 , and ~q block diagonal matrices com-
=

posed of the channel ~~ .

We know that the global R matrix, ~% , will be symmetric if and only if ~ is

Q y;symmetric since . ~ = and ~~ z ~~ . However, it con be shown thot ~
s * m

defined in Eq. (20) will be symmetric only in the Ilmit of complete sets.

As found in our eorlier collinear studies (2), very satisfactory semiquantitciive results

were obtained with very smal I basis sets and with large step sizes (which ompl ifies the non-

orthogonal; ty in the basis set transformations from one sector to the next). This feature is not

present in other methods of solution to the close-coupled equations. It is a result, in these

cal culations, of the symmetry preserved by the R-matrix method of solution. It is highly de-

sirable to retain this feature in these 3-dimensional calculations. This requires a method of

solution for the global R matrix which prese~es its symmetry with finite basis sets. We pro-

pose here one such method of solution.

Multiplying Eq. (19) on the righthond side by 17

Zxr=cls’* *-
It is clear that

T

9+ should be symmetric to assure

sequently assure the symmetry of ?% , However, it

Qz
T

is a symmetric matrix product only irl the limit of complete sets, However, the
9

, we hove

(22)

that ~ is symmetric and con-

is shown in the Appendix that

symmetry of ~~% con be and is preserved in our calculations by evaluating the matrix

of the product of operatom as opposed to the product of matrices, We show how this is done

in the kpendix. We then perform a right as well as a left generalized invene to Eq, (22)

&to solve for o symmetric .
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(23)

Note that this is not on ~ posterior symmetrization of the R matrix. Rather a symmetric R

matrix results when the appropriate opemtor products are evaluated in the incomplete basis.

Using $ defined in Eq. (23) and Eq. (21), we build a symmetric global R matrix,

and obtain, finally, o unitary S matrix which is superior to the non-unitary S matrix ob-

tained from the direct matrix inversion of Eq. (19). The results presented in the fol lowing

section are obtained by this procedure and, as expected, the S matrices are unitary.

IV. RESULTS FOR H+ H2

In this section we present some preliminary results for the H + H2 reactive scattering.

Although quantum reactive scattering calculations for this system have been reported by

Schatz et al (3) (SK) and by Elkowitz and Wyatt (4), we consider this system here for several

reasons. First, because of the low masses and high symmetry, it is the most economical

realistic system on which to do accurate calculations. Second, we desired to compare our

results with published results using independent mathematical techniques, algorithms, and

computer codes. Finally accurate calculations have been reported only in the IOW (~ .7 eV)

range, well below the energy range (~ .97 eV) at which a resonance has been reported (5).

We have, therefore, determined accumtel y the energy and depth of this resonance, In addi-

tion the convergence of the results with respect to basis, i.e. vibrational and rotational

functions, and w;th respect to step size has been determined,

We Gonsider first the low energy convergence properties. In the following we denote

a basis by tl, , ~t , m, . . . where ~~ is the maximum rotational angular

th
momentum of free rotor states used in the 1 vibrational state of the diatomic. The vibm-
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ves ore determined by diagonal izing the collinear Homiltonian in a hor-

monic oscillator basis consisting of 6 to 8 functions. From 3 to 6 of the resulting eigenfunc-

tions were used os the contracted vibrational basis. The totol number of coupled equations,

remoining after total ongulor momentum, J; pority, P; ond the even ond odd rotational

manifolds hove been separated ronged up to 44 in our colculotions. When the solutions of

the coupled equotions are ioined to yield the S matrix for a given J, SJ, up to 120 states

are coupled in the reactive scattering problem, for some values of J and parity.

We firsf did a series of calculations for J = O varying the step size and basis size.

A sample of the convergence of these calculations is shown in Fig, 4 which shows the proba-

bility of reaction from (0,0,0)0 to (O, j , ~ )0 [We denote the states by ( ~ , j , ~ ) where

.
i is the vibrational state, ~ the rotational stote, ~ the orbital angular momentum, and

p = O (1) refers to even (odd) parity. When indices rather than numbem appear, we imply

averaging over initial state and summing over final state. ]. From these (end other calcula-

tions not shown) we determined that 60 steps (from u = O to u = UFINAL = 8.4 ao) and a four

vibration, 11 ,9,7,3 basis was sufficient for about 2°A accuracy in the reactive tmnsition

probabilities. For J = O, both the 13,11 ,9,5,3,3 and 11,9,7,3 results agree with the

published SK result to within 2°/0.

The reactive cross sections were determined at E = .65 eV. Shown in Figs. 5 and 6

are the contributions to the reoctive cross sections from each value of J for ~ :09 ).+(Ofl)o

and U~044>O~ to~~>o,~ “ As can easily be seen, the cross sections converge
,

easily by J = 10, ond the contribution to the reactive scattering peaks for values of J x 3.

The computed cross sections at E = .65 eV agree satisfactorily with those of Schatz et al as

shown in Table 1. At

we believe that our

accumte to 5?0.

this energy increasing the bosis size reduces the crass section.

cross sections are an upper bound to the true cross sections and

Thus

are
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Table I

Cross Sections (ooz) This work SK ~

●
●

dttofl)0
.843 ● 933

* (O.jl)e

.527 .648

The basis sets used in our calculations at this energy were

‘o’nl’ ● *”
11973 9753 7553 7,5,3

and 60 steps were token in the integration. Note on the grophs the points off the line ore for

different basis sets: ~ 5, 3 for both J = O and J = 4. As can eosily be seen, the difference

opp~mm smal I. These results confirm the odequacy of both our calculations and those of

Schotz et al in this energy regime, and provide on importont validation of both methods and

programs.

We note also that a this energy the nega

to the reactive cross sections ( < 50/0 of the total

ive parity scattering contributes very ittle

● This is an orientation effect since the

COII inear con figumtion con only occur when the projection of the rotational angular momentum

on the body fixed axis, K, is zero. Since the K = O manifold is of even parity, this parity

dominates the reactive scattering at low energy. At higher energy the contribution of odd

parity scattering is more important.

Of more interest ‘ the behavior of the system in the vicinity of the resonance at

0.97 eV. In this energy range both the ground and first excited vibrational states of the

reactants and products are energetically open and convergence with respect to both vibra-
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tional and rotational basis sets is more difficult to obtain. & noted for collinear scattering (2)

the behavior ot

energy regions.

is shown from E

the resonance is significantly more sensitive to basis set size than in other

In Fig. 7 the J = O, even parity reaction probobil ity (O, O,O)o~ (0, ~ , ~ )0

= 0.7 to 1.12 eV for calculations with three different basis sets, 7,5,3;

7,5,3, 1; and 13,11,7,5,1. A can easily be seen, the position of the resonance is very

sensitive to the vibrational basis (4 vibrational states ore required) a~d the depth of the

resonance is sensitive to the number of rotational states as well. It oppears that the reso-

nonce, when ful Iy converged with respect to rototionol states (the 13, 11,7,5,1 is converged)

is less deep than indicuted in Ref. 5. The dip in the reaction probability to the ground

vibrational state at .97 eV is accompanied by an increose in the reaction probability to the

first excited vibrational state (OISO shown on Fig, 7). The total Ieoction probobil ity, there-

fore, is almost constant across the resonance region, i.e. the probability missing in n = O

goes into n = 1,

For J = 1, shown in Fig. 8, it can be seen that the position of the resonance is essen-

tial y unchanged, but the depth is SI ightl y reduced. The basis used was 11,7,3,3,1, Up to

J = 3 preliminary results indicate o slight shift in the position of the resonance. It se~ms

likely that the total cross s~ction from (00~ ) to (0~1 ) will show, at most, a small (z 15%)

dip across the resonance energy range.

Finally, in Fig. 9 we show for J = O the probability of a particular tmnsition

(OOO).’+ (01 1).. This varies somewhat more across

ore the results of SK up to E = .7 eV. Except for

the resonance, Also shcwn on the groph

he last (E = ,7 eV) point the agreement is

excellent indicating their smaller bosis was adequate in that energy ronge,

In conclusion we have presented accurate but not complete results for the 3-D H + H2

reactive scattering in the energy range up to 1.12 eV, At the low energies (~ .7 eV) they



19

confirm earl ier work (3) end, in the resonance region (- .97 eV) indicate that the resonance

is not as deep as earlier work indicated (5).



APPENDIX

The ful I derivation of the global R matrix from tke matching equations and the crrrange-

ment channel R matrices is lengthy and involves specific properties of the matching matrices.

It is not presented in detail in this paper. However, we outline the steps of the derivation.

The relevant equations for the derivation of Eq. (18) ore (9a), (15al, and (15b). These

9N equations are relati~ns a~ong the

~9N quantities 4x, ~a , %> ( 2= wt~>lf ). The equotions relating ~~ to ~f> and

the boundary conditions determine the S matrix. Thus the 6N $>, ~$j’s must eventually

be eliminated from the equations. To this end we first use (90), (15a), and (15b) to elim;nate

the ?~S , leaving the 6N Eqs. (18). Thus substituting (9a) into (15a) yields the 3N rela-

4tions between ‘ ~ and
%

~ stown below in Eq. (240)

and cyclic. Rearranging we get the first 3N equations of Eqs. (18), shown explicitly in

Eq, (25a) below:

P
.

9 (250)

where the ~’% and ~\5 are motching matrices over the appropriate matching surfaces de-

fined earlier (Eq. (14)). Although this equation is of the form



.

(26a)

we note that
%

, has no inveme and, therefore,

3; # ~:’y. $

Similarly, su~tituting (9a) into (15b) yields another 3N relations between ~~ ond ~~

shown below in Eq. (24b)

and cyclic. Rearranging (24b) we get the second 3N equations of Eas. (18)

which is of the form

t

o 0%.J
s*-.

Combining the two sets of equations (24a) and (24b), we have the 6N Eqs. (18)

~i

1

= ~Q.%’
=

with

x

\\

~R
=\:

= ~e ~3=\- q

CL

H

I \=
m

\
3

(15b)

(24b)

(25b)

(26b)

(18)

(27a)

(27b)
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and

(28)

/% shown in the body of the paper

~- to be symmetric. We have explicitly,

r

We now show that the conditions (29b) are satisfied for ccmplete sek and that

t%
3 qT when computed as a matrix of the operator product in a finite basis is sym-

metric. Three elements of the 3x3 matrix product ~“. ~: are sufficient tc study

the symmetry properties.

(300)

All other elements can be generated by cyclic permutation of the indices, ~, ,%P . For

convenience we define four additional matrices:



b
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To proceed, we write theproduct terms out explicitly. Then weshowthotthesym-

metry properties follow from elimination of intermediate complete sets (that is, using the

closure property of complete, orthononnal sets). The form of the matching matrices is

explicitly shown below

(31a)

(31b)

where VpsN’pblct),%p● %/3(%<3 ,and C8S ~~(’h. and TOf ,

fit%
N* L

are functions of % . Consider now (P{ j ) defined in cq. (30b):

Summing the n’ sum, integrating over V< and using the closure property of the set

~u:~ (wp)~ :



(330)

the matrix element in (32a) reduces to

Summing the i’ sum, integrating over ~& and using the closure property of the set

\ $:: c%pl~ for etch value of K“:

Summing the final sum
J

, R“, and using the unitarity of the d -rotation matrices:

the matrix element further reduces to

(33C)

(32d)



<
.
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Usgin Eq. (12) the matrix element is reduced to its finol form:

,j *i

f’) $( WC(A

dp’,(y(--(’y) fl~wj’bv (34)

is o symmetric motrix when evoluoted in complete bosis sets or when

of the product of the operotom.

Similorly, @ ‘i J**2 con be reduced:

~J **L
where ~) is ogoin o symmetric motrix.

Consider next
ij Up

~) and consider only the rototionol integrol:

Summing the i“ sum ond integrating of z; reduced the integrol to zero since the

mnges of integration do not overlop. Similarly:

P)

ii ~~
= o7

Thus, we hove, fromw(300), using (32e), (35), ond (340) ond (34b)

(36b)

.,



(37)

with 6;, /’~ diagonal matrices defined in Eq. (28).

At this point we state without derivation properties of the ‘YI: and ~ ~>

functions involved in the matching matrices, from which it can easily be shown that condi-

tions (29b) are satisfied

From the matrix elements which are explicitly shown in Eqs. (310) and (31 b), and from the

relations expressed in (38a), it follows that

From Eqs. (37), (32e), and (35)

(39a)

(39b)

(39C)



(41b)

Al I other elements are obtained by cyclic permutation of the indices.

set to zero.

(42b)

..

(42c)

7

\t
t~ is simply

.
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Incolculations presented inthispaper the global Rmotrix is constructed via the

prescription in Eq. (21) with ~ defined by Eq. (23) and with ~~~q constructed sym-

metrically as obove. The R motrix so constructed is symmetric and consequently the S-

matrix is unitary.
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FIGURE CAPTIONS

Fig . 1 Representation of non-coil inear matching surfaces in relotion to the u = O surface

and intermediate s = constant surfoce.

Fig .2 Schemotic representotlon of the three orrongement chonnel tubes ond the motching

surfoces.

Fig. 3 Schemotic representation of the cmrdinote system in the matching region ond the

directions of the derivatives with respect to the propagn’”on coordinates ond the

internol coordinates.

Fig. 4 Probability of reaction, P(O, O,O)O+ (O, ~ ,~ )0 vs. E. J = O. (e) ~sis 11,9,7, ~,

60 steps; (A) Basis 13,11,9,5,3,3, 73 steps; (o) 7,5,3, 50 steps; x SK.

Fig, 5 Contributions to reactive cross section (2J + 1) P
(OOO).+(O ~ ~ )0 at E = ●65 ‘v

vs. total ongulor momentum, J. (~) Bosis shown in Toble Il. (e) Basis 7,5,3.

Fig. 6 & obove for P(0 ~ * )P+ (() j~)p. odd PoritY x 20*

Fig, 7 Convergence with respect to basis of P
(000).4(0 ~ Q). ‘or J ‘ovs” “

(-,) Basis 13,11,7,5,1, 60 steps; (~) Basis 7,5,3,1, 60 steps;

(--O---O--) Basis 7,5,3, 50 steps; (~) P
(OOO)O=+(L; ,JI )Obosis 13,11,7,5,3,1,
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Fig. 8 (~) P(ool ).+@ i ~ L
‘ J = ‘; ‘-) ‘(OO1).+ (i @o J = 1’ ‘U’+ip’ied

by two.

Fig.9 State-to-state transition probability P(ow) ~ ~ ~ ~ ~ ~ vs. E, 3 = O. (~)

Bosis 13,11,9,5,3,3, 73 steps; (-- = -~) Bosis 7,5,:, 50 steps; X SK.
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