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Abstract

In an extension of previous work (R. B. Walker, J. C. Light and A. Altenberger-
Siczek, J. Chem. Phys. 64, 1166(1976)), equations for the accurate quantum
mechanical treatment of three body rearrangement collisions are presented in the
R-matrix language. These equations describe how the solutions to Schrodinger's
equation in three separate regions of configuration space (each containing one
agymptotic atom + diatom a-rangement) are matched smoothly to each other. The
symmetry of the matching equations is disussed in detail. Within the R-matrix
formalism, we may construct unitary S-matrices for arbitrary atom-diatom mass
combinations and for small target wavefunction basis expansions. Applications
of this method to the three dimensional H+H2 (labelled nuclei) exchange reaction

are reported, and comparison is made to prior work.



I. INTRODUCTION

In o recent paper (1) (hereafter called 1) we presented o general theoretical approach
to the problem of atom-diatom reactive and inelastic scattering, deriving the close coupled
equations to be solved for each channel, the coordinate transformations required between
channels, and detemining the surfaces on which solutions in various channels should be
matched. Although the approach given in (l) has been followed, by and large, in implement-
ing the actual computation, we have developed a number of significant imgrovements in the
method. We have applied these methods to the three dimensional reactive scattering of
H+ HH on the Porter-Karplus surface. In this paper we shall briefly describe our approach to
the problem, and some of the improvements in the methods, in particular, accurate techniques
for matching which automatically preserve the unitarity of the S matrix.

The coupled equations of (1) are solved by the R-matrix propagation method (2), a fost,
stoble and accurate technique for integration of coupled linear second order differential equa-
tions that we recently developed. The speed of calculation is enhanced by using u "pre=-
contracted" vibrational basis enabling us to achieve convergence with fewer vibrational states.
The vibrational basis is chosen by diagonalizing an appropriate collinear or spherically
averaged interaction matrix using o convenient manifold of primitive vibrationa! functions
(such as hamonic oscillators), enabling all integrals to be obtained analytically. Heoving
realistic vibrational states after diagonalization, each carries its own independent rotational
manifold. Thus we carry fewer rotations for the higher vibrations, again reducing the number
of channels necessary for convergence of the full calculation, Further time-savings come
from optimizing the basis ot one energy, diagonalizing the full interaction matrix and using
this diagonal basis at additional energies (2). Thus all integrals are evaluated only ot the first

energy.
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Other advantoges lie in the utilization of the symmetry properties of the R matrix,
Since the channel R matrices are symmetric independent of completeness in the basis set, the
S matrix for an inelastic problem is always unitary. It has been shown that matching between
two channels in the collinear reactive scattering (2) also preserves the symmetry of the R
matrix and hence the unitarity of the S matrix. Properties of the operators involved in the
matching os opposed to properties of the finite blocks of the matrix representation of the
operators are utilized and thus in both the R=matrix propagation and in the subsequent match-
ing procedures, no orthogonalization and no symmetrization of the basis is necessary. There-
fore very small basis sets can be used to achieve semiquantitative results (2).

Thus the portion of the problem involving integration of coupled equations correspond-
ing to each chemical channel is well understood, and efficient and accurate techniques for
solving this portion of the problem are available. In a general reaction, the solution of the
Schroedinger equation in each of the three separate regions of configuration space correspond=-
ing to the three separate chemicol arrangements ( A= &, B ¥ ) results in three symmetric
R matrices, ’\37. , relating wavefunctions and derivatives ot U520 to those at Wy =0,
where W a is the channel propagation coordinate,

The problems remaining, the resolution of which we present here, are to propagate
from the Wa=0 surfaces to the true matching surfaces thot we have chosen, to show how
the wavefunctions ond derivatives are then matched on these surfaces by a least squares pro-
cedure, and to demonstrate that the symmetry of the globa! R matrix, ’B‘% , can be assured
in this process even with incomplete basis sets. This assures the unitarity of the global S
matrix.

We intend i the following to outline the solution to the matching region (between

Wy O surfaces and the true matching surfaces) ond will leave further details of this to a
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future publication. We then discuss the method of matching on the true surface and the
method of generating a linear system of equations for the globa! R matrix (that matrix relating
osymptotic functions to asymptotic derivatives). This procedure produces more equations than
unknowns and in general forms an over determined set. The method of generclized inverse
(or least squares) is then used to solve for the R matrix in a straightforward manner which does
not guarantee o symmetric R matrix solution except in the limit of complete sets, We then
propose a modified least squares solution to the same set of equations which guarantees in o
notural manner (as opposed to ad hoc symmetrization) a symmetric R matrix independent of the
size of the basis. In the limit of complete sets both methods converge to the same result.

Based on this result and convergence pronarties in our collinear reactive scattering
studies we assert that the calculations for H+H2 reactive scattering reported here are accurate
even for the "smali" number of internal states used at large J. We note that for large J
the rotational degeneracy makes the number of coupled states large even when the "internal "

vibrational and rotational basis is small. We present here some results, mostly J = 0 calculo~

tions which are most easily converged and can be compared to prior work (3,4).
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Il. PROPAGATIO!* ON THE MATCHING REGION

Since the method of solution described in paper | requires solving Schroedinger's
equation separately in each of three regions of configuration space, the result is three
arrangement channel R matrices, each relating wavefun~tions and derivatives at W52 0
and W=  for )\'col.ja,'d . The coordinate system of choice (\i .V, X ) transforms
smoothly between arrangement channels only for collinear geometries, i.e. the surface in
configuration space defined by \Aa =0 istangentto \Lg=©O  only when Xa=0O and
Xp=W ondistangentto Lg=O only when Xa=T aond Xx=0O (see Fig. 1).
In order to match the wavefunctions and derivatives smoothly we defined in paper | appropriate
real physical matching surfaces which are tangent to the \W\5 =0  surfaces for collinear
geometries and which define physical baundaries between the 1egions of space associated with
the coordinate system and expansion used in each channel. This is shown schematically in
Fig. 1. Since this region between the u = 0 surface and the matching surface is small, away
frem collineor geometries, ond a region of high potential for many reactions of interest, it was
originally thought that the approximation of "matching" the wavefunctions and derivatives at
u =0 instead of the true matching surfaces would be satistactory (ot least for reactions domi~
noted by neor collinear transition states). However, this approximation lowers the threshold
for reaction and it raises the reactivity across the energy spectrum for the H+H2 reaction.
We have tried other approximations to describe the dynamics in this region and have found
that o fairly accurate treatment is necessary if we are to obtain the proper threshold and re-
activity,

To obtain uccurate results, the propagation must be continued from u = 0 through the
matching region to the true matching surfoce, Therefore, in this section we discuss o method

of propagation through this troublesome region of coordinate spoce.
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During any propagation scheme we single out one coordinate as the "translation”
coordinate which describes a continuous set of surfaces of dimension n = 1, one less than the
dimension of the physical problem. We then wish to define a matrix problem in one coordi-
nate by integrating the kinetic energy operator plus the potentiol in a basis on these surfaces,
to yield the "interaction" matrix. If the translation coordinate is nommal to these surfaces,
then the kinetic energy operator separates nicely into one operator that we can associate
with translation and another operator which we can associate with dynamics on the surface.
This separation is obtained by having one coordinate which follows the progress of the
reaction and which is orthogonal to all other coordinates. Such a coordinate system, however,
may not be conveniently obtainable for any arbitrary region of space. The region between
the v = 0 surface and the matching surface is an example where this is the case. Before now
we have always ollowed the single propagation coordinate which is orthogonal to all remain-
ing coordinates to define the propagation surfaces. However, in this region of space we are
forced first to define the surfaces ond then let them define the propagation varicble.

To *his end, we define o continuous set of surfaces, beginning with the u = 0 surface,
which distorts until the matching surface is reached (see Fig. 1). Then we choose as the
translation coordinate, s, just that coordinate which is normal to these surfaces and such thot
each value of s defines one of these surfaces. With this definition of s, there is an associated
metric coefficient X (o function of all the coordinates) such ti.at M AsS s the metric dis-
tance along the normal between surface s and surface s + ds. To describe the dynamics we
note that the momentum at a point must be expressible as a sum of two components, one which

3
lies entirely in the surface, 55 , and another nomal to the surface, Pn . We use this
to then express the kinetic energy as

T = '%}?3 = f;ti?vﬁn ¢ §s°.§s] 0
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We further define a convenient set of curvilinear coordinates on the surface zu“} , and
the first fundamental form }Qp on the surface which describes the metric properties of
the surface. With L= det Qap and V&  equal to the Jacobian on the surface and

&“’(&‘pz qu (sum on ¥ ), the Laoplucian on the surface is

V: N r‘ ORCEY B2 aup Lsum on o, @)

Then the kinetic energy operator looks like

+ 2
T = z).x n \.as “ as u““ra‘ au“] 3)

where YO s the total Jacobian {( YW as defined earlier), and the %s symbolizes
the derivative nomal to the s = constant surface.
In order to obtain the coupled equations for propagation in this region we expand the

wavefunction in a small sector i ( S;-“‘./’-\ €3& S « \““/a, ) in a basis as

Y (1w, ) = 2:‘)\:’“%3}(1&"&35;) 4:(9) 4)

The “‘/a % (@ will be defined below) factorization is necessary to make the resulting
interaction matrix, in the i S’k basis, hermitian, where \S_g} form an
orthonormal basis on the surface with weighting factor Oy ( S'g can be a function of
any of the coordinates other than s), We do not allow i SJ\S to have any explicit
dependence on s; however, we are free to change the basis from sector to sector with appro-

priate matching procedures between sectors (1). Thus we have

J S5 (s S, s mad - dw « §

I (5)
$:5,

and g in Eq. (4) is defined by the weighting function G . %7- - G's’/rd



The resulting coupled equations in a sector are

kS

d 4 =W ¢ (©)
\/\Ix\«"\'\/:s ) S\g S_: W S\« G, A+l @)
3 - & 3P0 B+ 20 -Vt Ve

where Vegg comes from the simplification of the operators in Eq. (3).

This method as described is not exact since 'b/as is the normal derivative to the
surface s = constant. Referring to Fig. 3, the arrow shows schematically the nomal coordinate
curve between surface §, ond S, . The lines symbolize constant W (one of the inter-
nol coordinates). From the figure it can be seen that the derivative along the normal does
not necessarily hold all the i \qu constant, thererore a/';)s S (‘.\.\.q }) #£0 .
This non-zero derivative has bzen ignored to obtain Eq. (6). The exact equation is of the

form:
o .Ddyg o
P TEY =S

Although this could be handled exactly, satisfactory results are obtained within the approxi-
mation thot _.E =0,

ir this manner we are able to propagate from the u = 0 surface to the true matching
surface as required before combining the channel R matrices with matching conditions to
generate a global Rmatrix for the entire interaction region. In the next section we discuss

the matching on the matching surfaces.
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. MATCHING AND THE GLOBAL R MATRIX
After propagotion to the matching surfaces, the complete channel R matrices relate
solution vectors and derivatives on the matching surfaces to an asymptotic surface in each

chemical channel
[ ] [~ )
i:\ B ' Rz -4 ;\ (e)

. P
» ] E?» R % (9b)

’
for A '=0(\J3,3 . In Eq. (9), ia and g; _ are translation functions and derivatives
definec in Eq. (4) on the matching surfaces and * nd QX totic trans-
efined in Eq. on the ing su s Qa O %3 are asymptotic trans
o ~
lation functions and derivatives. We now wish to impose continuity of the wavefunction and
its derivative on the matching surfaces between all three channels in order to eliminate the
)
-g $ ond gﬂs and obtain o global R matrix relating the asymptotic %“ 's to
~ ~

b d

asymptotic %‘" g in the three charinels. Thus we have (see Fig. 2)

™M I™
Yo = Yoo on Mr (0&€XaeXd ;W2 A2 ¥E)  (100)
S™

-V Yo = _“n.v\yp‘,’,“

™ IN .
Wor = Wy on Mg (T2 A7 XX, 0eXgexgd) (00
A 3™
Op-VYI® = - Ox- T Vo
I ot
where Ycﬂ" and ‘\ﬁrpw are the wavefunctionson My ondngg s the
nomal to the matching surfoce Myp . The partitioning angles ‘x,'.; were defined in

paper | (also see Fig. 1) and are YV /2 for a symmetric reaction like H+H2. The nomal
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derivative to the surface is n T Y
Since the wavefunction in each channel is defined in terms of its own appropriate
body fixed coordinates, we must match the full wavefunctions (Euler angles for each channel
as well as internal body fixed coordinates) and derivatities on the matching surfaces. The

wave function is expanded os in Eq. (4) with

™ 5 ¥
S,: = DHK(@a ¢a.");«\/8': ('X;h\j;w“ (Va) (1)

where asymbolizes the collective index nik. J is the total angular momentum and M is its
space~fixed z~projection. Both are conserved during the course of the reaction.

3
Dﬁ\‘ (©a N ®a .\)av are rotation functions of the three Euler angles @5 5, Va .

A
The rotor function AQK(X)D is the partitioned rotor defined in paper | such that
A
(A% A% , N
5 8) L8y () simdxadxa = @ 8y (2

In Eq. (11), OO?;‘ is defined such that

2AX
AK io €'3 7 .5 13)

™ e’.;‘ (.5

I
and identifies the vibrational basis appropriate to the localization of ‘\\;A , i.e. the

end of the molecule which is reacting.

Since each channel matches onto both of the other channels and the partitioning of
the rotors is not perfect, the matching conditions of Eq. (10) are expressed in sets of equations
which are not all linearly independent.

The overlap matrices on the five~dimensional surfaces reduce to the product of two

one-dimensional integrals over the vibrational coordinate v and the internal rotational
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coordinate X, The vibrational overlap is obtained analytically and the rotational overlap
is evaluated by numerical integration. The matching matrices are denoted “:‘; ' “;\: ;
A= 0(1/3,3 , and K= 1, 3,4 denotes the function and derivative matching shown beiow.
“:\ ond “:. denote cyclic and anti-cyclic ordering, respectively, where, for example,
'I:\p relates G-functions to ¥ = functiors ond is o matrix of the form {ot \ P \¥ )
where \&>, \¥> are internal & and intemol ¥ = functions, respectively.
Similarly, “;\’b relates ¥ to O . (Note: ‘Ba does not equol the in-
verse of mb . See Appendix.) All operators in the matching matrices can be derived
from Egs. (10a) and (10b), the orthogonality conditions of Eq. (5) and Euler angle relations
between channels. The Euler angle relations describe the rotation between body fixed systems,

which for K and /b channels are

.D::\K(ed ’¢°“ ‘)‘*\ = %’ dz“' (G'K\ ‘D::'.‘\K' (eﬁld}b)vp)

The angle € 3 is not to be contused with the matrix gx defined in Eq. (12). The
A A
ongle &y s a function of 'qu or Xﬁ, alone. Once the \S‘K and (:\ w

matrices ( )\‘d.ﬂ,x ; K=1,3,4) are evaluated we have systems of equations of the follow=-

ing form
r D - N
3
c* {« - NN O %a (14a)
o of ¥ L] /
- E Si.‘ N-\Ns “'-!“q - L iﬁ - (]45)
[ ) ISY 7T [
G| _ ™M 9 $o (140)
B 6 ® !
(€98 s W) L3 (14d)

and cyclic in QJB,Y where g“ (not to be confused with the angle €a ) is a



diagonal matrix such that its nik diagonal element is
We note that the cyclic pemutation of (14) implies that we have twice as many

. A L of
equations as unknowns ( -? s 1§ ')
£ ~

12

ok
€

linear dependence by means of the generalized inverse below.

Simply adding (14a) and (14¢), and {14b) and (14d) eliminates

equations and we have

!
§«
~

[,
{«

end cyclic.

h)
‘Qe

31 ) o
F.'%o(

3

L

¢

2

LB

/ 4 [
Thus we wish to use (15a) and (15b) and (9a) to eliminate %u , %p , 35 in favor of

e

~

—

—

¥

N,

-«

N3

e

1 r

~
JL™

LR

o ||
M o

Equations (9b) for each channel can be combined to give

and OA{,
r'\3°(q
R‘a
By

1) 18
|-
.

JL+~

0 0 %

from (16) so that we can obtain

B

(7]
R

¥
Rq

Xy
By
(Y]
By
vy
R

(defined in Eq. (12)).

éﬁ

%

[

¥
LY

Here we retain all ecuations, later eliminating the

(15a)

(15b)

(16a)

(16b)

(16¢)

(17a)

(17b)

(17¢)

where ‘31 is the desired global R matrix for the reactive system from which we can ecsily

obtain the S matrix.
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The matching equations (15a) and (15b) together with the R-matrix equations (%a) and
(9b) form a set of 12N equations, not all linearly independent. We note that we have 6N
unknowns -g;% and %'z 's which we wish to eliminate and we have 3N relations
(Eq. (17)) which we wish to solve for. (For simplicity in the notation, we take the total
number of independent states to be 3N, assuming N in each channel.) With perfect parti-
tioning ( E’g‘ 0 or 1, only achievable with complete basis sets) half of the equations (14a)-
(14d) would express 0 = 0 which has been folded into Eq. (15). Thus Egs. (15a) and (15b)
form an overdetermined se’ of 6N equations. By performing o least squares procedure we can
solve these equations for the "best" possible solution, We have 6N unknowns '¥°“ gf\ , %3
and -Q-: R 9"; ) %‘:r which we wish to eliminate using 9N Egs. (15a), (15b), and
(9a). Equations (15a) and (9a) can be directly equated to eliminate -%01; $5. $¥ from the
equations leaving 6N relations between derivatives -?o'z -?é , %; on the matching sur-
foces and asymptotic derivatives %& %Ig , %’( . We obtain a solution of the form:

r n [~ n 3

gi 0O r%& (18a)

QO

B
8
7 o ln| - Qlo® oy
=
N x 3N %{‘J ON®IN Q Q ;"l Jugé (18c)

)
where Z and Q are known 6N x 3N matrices formed from the channel B\ matrices and the
matching matrices. Z and Qare derived in the Appendix.

We now define a 3N x 3N matrix X by

2X=Q 09

We could solve this equation directly using a generalized inverse giving

Zx : (i}-' 2‘)“ Z;T Q\- (20)
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Then from Eq. (16) the global R matrix, ‘\38 , s
Rp= Ru- WX @
with B% defined in (17) and Bz , ‘33 , and B‘\ block diagonal matrices com-
posed of the channel B:

We know that the global R matrix, 133 , will be symmetric if and only if 2( is
symmetric since ?3 e ‘3: and B"‘ = B: . However, it can be shown that Z(
defined in Eq. (20) will be symmetric only in the limit of complete sets.

As found in our earlier ccllinear studies (2), very satisfactory semiquantitaiive results
were obtained with very small basis sets and with large step sizes (which amplifies the non-
orthogonality in the basis set transformations from one sector to the next). This feature is not
present in other methods of solution to the close-coupled equations. It is a result, in these
calculations, of the symmetry preserved by the R=matrix method of solution. It is highly de=
sirable to retain this feature in these 3-dimensional calculations. This requires a method of
solution for the global R matrix which preserves its symmetry with finite basis sets. We pro-
pose here one such method of solution.

Multiplying Eq. (19) on the righthond side by Z:' , we have

22X = Q¥ 22)
= s =
It is clear that Q? should be symmetric to assure that }5 is symmetric and con-

sequently assure the symmetry of ?‘5 . However, it is shown in the Appendix that

1
g%. is a symmetric matrix product only in the limit of complete sets, However, the
* 1 - . . v .
symmetry of ‘Q\'_l can be and is preserved in our calculations by evaluating the motrix

of the product of operators as opposed to the product of matrices. We show how this is done
in the Appendix. We then perform a right os well as a left generalized inverse to Eq. (22)

to solve for a symmetric 5 .
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R (TR (QE) B (T2

Note that this is not an a posteriori symmetrization of the R matrix. Rather a symmetric R
matrix results when the appropriate operator products are evaluated in the incomplete basis.
Using % defined in Eq. (23) and Eq. (21), we build a symmetric global R matrix,
ond obtain, finally, o unitary S matrix which is superior to the non-unitary S matrix ob-
tained from the direct matrix inversion of Eq. (19). The results presented in the following

section are obtained by this procedure and, as expected, the S matrices are unitary.

IV, RESULTS FOR H+H2

In this section we present some preliminary results for the H+ H2 reactive scattering.
Although quantum reactive scattering calculations for this system have been reported by
Schatz et al (3) (SK) and by Elkowitz and Wyatt (4), we consider this system here for several
reasons. First, because of the low masses and high symmetry, it is the most economical
realistic system on which to do accurate calculations. Second, we desired to compare our
results with published results using independent mathematical techniques, algorithms, and
computer codes. Finally accurate calculations have been reported only in the low (£ .7 eV)
range, well below the energy range (~ .97 eV) at which o resonance has been reported (5).
We hove, therefore, determined accurotely the energy ond depth of this resonance. In oddi-
tion the convergence of the results with respect to bosis, i.e. vibrational and rotational
functions, and with respect to step size has been determined.

We tonsider first the low energy convergence properties. In the following we denote
a basisby 0, N My .. where Y\, is the maximum rotational angular

momentum of free rotor states used in the i'h vibrational state of the diatomic, The vibro-
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tional stotes themselves are determined by diagonalizing the collinear Hamiltonian in a har-
monic oscillator basis consisting of é to 8 functions. From 3 to 6 of the resulting eigenfunc-
tions were used as the contracted vibrational basis. The total number of coupled equations,
remaining after total angular momentum, J; parity, P; and the even and odd rotational
manifolds have been separated ranged up to 44 in our calculations. When the solutions of
the coupled equations are joined to yield the S matrix for a given J, SJ, up to 120 states
are coupled in the reactive scattering problem, for some values of J and parity.

We first did o series of calculations for J = 0 varying the step size and basis size.
A sample of the convergence of these calculations is shown in Fig. 4 which shows the proba-
bility of reaction from (O,O,O)o to (0,:3 , R )o [We denote the states by ( ¢ , 3 , X ) where
i is the vibrutional state, 3 the rotational state, -Q the orbital angular momentum, and
p =0 (1) refers to even (odd) parity. When indices rather than numbers appear, we imply
averaging over initial state and summing over final state.]. From these (and other calcula-
tions not shown) we determined that 60 steps (from u=0to u = VEINAL =8.4 oo) ond a four
vibratien, 11,9,7,3 basis was sufficient for about 2% occuracy in the reactive tronsition
probabilities. For J =0, both the 13,11,9,5,3,3 and 11,9,7,3 results agree with the
published SK result to within 2%,

The reactive cross sections were determined at E = ,65 eV, Shown in Figs. 5and 6

Q

are the contributions to the reactive cross sections from each value of J for c‘°°“.‘°(°5‘uo

« . H H
and U(Oino‘ﬁ (04R),, . As con easily be seen, the cross sections converge
easily by J =10, and the contribution to the reactive scattering peaks for values of J = 3,
The computed cross sections at E = .45 eV ogree satisfactorily with those of Schatz et al os
shown in Table 1. At this energy increasing the basis size reduces the cross section. Thus

we believe that our cross sections are an upper bound to the true cross sections ond are

accurate to 5%.
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Table |
Cross Sections (002) This work SK
: R : .843 933
T Ton), = (040),
.527 .648

R .
T (042),, = (0 4R),,

The basis sets used in our calculations ot this energy were

J 0 1+2 3+4 ~5-12

NorMyr oo 11973 9753 7553 7,5,3

and 60 steps were taken in the integrotion. Note on the graphs the points off the line are for
different basis sets: 7 5, 3 for both J =0 and J = 4. As can easily be seen, the difference
appenrs small, These results confirm the adequacy of both our calculations and those of
Schatz et al in this energy regime, and provide an important validation of both methods and
programs.

We note also that at this energy the negative parity scottering contributes very little
to the reactive cross sections (& 5% of the total). This is an orientation effect since the
collinear configuration can only occur when the projection of the rotational angular momentum
on the body fixed axis, K, is zero. Since the K =0 manifold is of even parity, this parity
dominates the reactive scattering ot low energy. At higher energy the contribution of odd
parity scattering is more important,

Of more interest * the behavior of the system in the vicinity of the resonance at
0.97 eV. In this energy range both the ground and first excited vibrational states of the

reactants and products are energetically open and convergence with respect to both vibra-
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tional and rotational basis sets is more difficult to obtain. As noted for collinear scattering (2)
the behavior at the resonance is significantly more sensitive to basis set size than in other
energy regions. In Fig. 7 the J =0, even parity reaction probability (0,0,0)6-? o, 5 , 8 )o
is shown from E=0.7to 1.12 eV for calculations with three different basis sets, 7,5,3;
7,5,3,1;and 13,11,7,5,1. As can easily be seen, the position of the resonance is very
sensitive to the vibrational basis (4 vibrational states are required) ard the depth of the
resonance is sensitive to the number of rotational states as well. It appears that the reso-
nance, when fully converged with respect to rotational states (the 13,11,7,5,1 is converged)
is less deep than indicuted in Ref. 5. The dip in the reaction probability to the ground
vibrational state at .97 eV is accompanied by an increase in the reaction probability to the
first excited vibrational state (also shown on Fig. 7). The total 1eaction probability, there-
fore, is almost constant across the resonance region, i.e. the probability missing inn =0
goes inton = 1,

For J =1, shown in Fig. 8, it can be seen that the position of the resonance is essen-
tially unchanged, but the depth is slightly reduced. The basis used wos 11,7,3,3,1. Up to
J = 3 preliminary results indicate a slight shift in the position of the resonance. It seems
likely that the total cross saction from ©004) to (O&-Q ) will show, ot most, a small (& 15%)
dip ocross the resonance energy range.

Finally, in Fig. 9 we show for J = 0 the probability of a particular transition
(OOO);‘) (OH)O. This varies somewhat more across the resonance. Also shown on the graph
are the results of SK up to E = .7 eV. Except for the last (E = .7 eV) point the agreement is
excellent indicating their smaller basis was adequate in that energy range.

In conclusion we hove presented accurate but not complete results for the 3-D H"'H2

reactive scottering in the energy ronge up to 1.12 eV, At the low energies (€ .7 eV) they
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confirm earlier work (3) and, in the resonance region (~ .97 eV) indicate that the resonance

is not as deep as earlier work indicated (5).
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APPENDIX
The full derivation of the global R matrix from the matching equations and the arranye~-
ment channel R matrices is lengthy and involves specific properties of the matching matrices.
It is not presented in detail in this poper. However, we outline the steps of the derivation.
The relevant equations for the derivation of Eq. (18) are (9a), (15a), and (15b). These
9N equations are relations among the
I\9N quantities 4;, %'a , %':\ (A= o p.¥ ). The equations relating 3% to %’; " ond
the boundary conditions determine the S matrix. Thus the 6N -8; R %';‘s must eventually
be eliminated from the equations. To this end we first use (90), (15a), and {15b) to eliminate

the 9.5 , leaving the 6N Eqgs. (18). Thus substituting (90) into (15a) yields the 3N rela-

tions between 4?; and %; st.own below in Eq. (240)
. A
i:\ < Bz %?\ - S\ 2 (%)

fo = M4+ MK (1%

(@ g - RE4%) = W (R55-R0) N (Risp-Bigp) o

ond cyclic. Rearranging we get the first 3N equations of Eqs. (18), shown explicitly in

Eq. (250) below:

r Al NE OO r N N\ [

4 WM e of[F] | Wi o aﬂ

. ~ ¥ «

s oo o offts|= s wWio st ofgs]
s <A llo o RE[|eel N BT -A o o RE|][q:

lN\ ’\ -J._Q = .\J hi‘J L‘\ -\ - La- --zJ.\b-‘

where the M‘s ond N\S are matching matrices over the oppropriate matching surfaces de-

fined earlier (Eq. (14)). Although this equation is of the form
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1\ ’\3\ 3 % R"-% (26a)

we note that %‘ has no inverse and, therefore,
k]

%' : Rz%

Similarly, subsmuhng (9a) into (15b) yields another 3N relations between g;\ and %2

shown below in Eq. (24b)

&; : E‘g for &‘f\ &F: * \E\% g+ \V:\i %‘;s (15b)
! [ ' 8 .y
$u = ,2{823\}‘8?% *‘2\2%*@%[@% ‘\3‘\ %ﬂ* \F_‘\«-\ % (24b)

ond cyclic. Rearranging (24b) we get the second 3N equahons of Eqs (18)
N r

Lowet e (5 fo i us|[Ro o %
‘l\‘%@“;\i 1 OMeR-N | |48 4!_\5 O Noffo R O 3}‘, 25b)
Mgt wAR-vh 3 | S5 | W ws offo o] g

J : o L‘ = S.J '-- = -.‘L

9
which is of the form

. , ,
{ R, - % %' = (24b)
%.3 AL 4 1 islgz 2
Combining the two sets of equations (24a) and (24b), we have the 6N Eqgs. (18)

Q. - YIA‘\ (27b)
‘Ss

with

uns
o o
uj) ";D
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and
Ax Nk AR
‘i\« = W\k Ax ﬂ.\\\? K:4,34 (28)
NK MK /é“.l

with /P\K= -3 \i(=i)‘-\ ’ Ax=0 WK=13,
= ®) = =
As shown in the body of the paper Q_E;T must be symmetric if the global R matrix

- to be symmetric. We have explizitly,

-
Q%T - [$® %; 3 8 33 %\ %‘4 (29a)
< g'b R\ i\ %3ﬂ %3
Since 8\ R N1 , it is easily seen that Q’t, will be symmefric if and only if
& ‘L“ = (29b)
Pega - 2‘*%3

We now show that the conditions (29b) are satisfied for complete sets and that
0-’6?%,_\1 when computed as a matrix of the operator product in a finite basis is sym-
T
metric. Three elements of the 3x3 matrix product %\. %3 are sufficient to study

the symmetry properties,

-

-
R
R
of
e X
“

(&c ‘_{(;;;)q}S C AL i Ay M? (N"iT (300)

ALIMEINRA N =
G A+ AR WM

All other elements can be generated by cyclic permutation of the indices, O(\jB,U . For

convenience we define four odditional matrices:
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) = NN Y= pein,
(i R 1 S G R Nl

To proceed, we write the product temns out explicitly. Then we show thot the sym-
metry properties follow from eliminotion of intermediate complete sets (that is, using the
closure property of complete, orthonormal sets). The form of the matching matrices is

explicitly shown below

xe ,
UN‘?t )@( e 5dw,. V) O, ey W) Sdasovt § : (X‘Od-:w(ea) §; (%p) Ba)

I

(B, TR TATIR A Sms\mf“ adu S ) B1h)

where Vp-'t\//s(\let) ,'x-/b"x/s('x«) ,and €x=E€x(Xx) oand Tﬂf ,

oY

f\(“ are functions of Va . Consider now (P, \

) defined in cq. (30b):

(32a)

(9 §§<mcm UaCRNT () W (NS (v8) 0 (v Uy ()

n«n"n

Sﬁﬁd&mm\m S, (mdwu(ea\g th (%p\&w(es)g (xq)

’
Summing the n' sum, integrating over Na  ond using the closure property of the set

Par (VY
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e B s ’
%;\ \Vﬂu (NA v (VB) = S (Vp-Ve )
the matrix element in (32a) reduces to

P K 5 AN UIELATNN Y

® L,S Ahdwmsqus m\d“»(eas (xpﬁ .u,f, oV u(Q)S @)

K\\oo

’
Summing the j' sum, integrating over Xa  and using the closure property of the set

i SJ" (14/534& for ecch value of K":
G Kn B Nt ’
the matrix element in (32b) reduces to
5'5 o X X ¥ L
F ) SonSe ol v i i)
xL
o T §ancsinne S5 G (@8 IS (20

w0

Summing the final sum, ", and using the unitarity of the dJ-rotofion matrices:
J 3
% d 'y CG:K) d W R Ceﬂ = SKK’

the ma'rix element further reduces to

P e S § v U () (R (V)

;

® §am\c\xq§“ () Sy %)

h&K HSR

(330)

(32b)

(33b)

(32¢)

(33¢)

(32d)
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Usgin Eq. (12) the matrix element is reduced ‘o its final form:

\oRd oK S a < $ « e
(P )n";\(,t\‘gx‘ < S&' Sm‘l €,° © AV*\S(\(,VO(\L(\IJ““VQ\S“ (Vq) (32e)

We note that

s
@0) nROYR" T @\3) '\«,nlk - (Pst)::k.wyw (34)

and thus t‘s )

is o symmetric matrix when evoluated in complete basis sets or when

evaluated as a matrix of the product of the operators.

iy \RA2
Similarly, ¢ " ) can be reduced:

i eu?
(Pb‘““ “\5 'y = S&t SK\( [1 e Kl&) SAVQ\S(\ (VQ)N (VGAMSLVQ)\S\W (Vu\ (35

where t\) )qqz,

is again a symmetric matrix.

.t q
Consider next E) ) P and consider only the rototional integral:

%
KP‘) ):: " 2 Sb. &&tb SW\'XtQ\“x;gu,(\d K%(eps " m)§“(x“d“”w ‘]S (Xp ) (36a)
ML
= 0O

¢
Summing the {" sum and integroting of 7(.; reduced the integral to zero since the

ranges of integration do not overlop. Similarly:

(P,‘s)b - ® (3¢b)

Thus, we hove, from (30a), using (32e), (35), and (34a) and (34b)
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f
- .
« D
(> d

~
1

ABy @) @D
@) - Ay - WA

5Yv
MEAL - ALY

37)

&
5
%

with /e\\ , /_A) diagonal matrices defined in Eq. (28).

2 Y
At this point we state without derivation properties of the M\ and 0N\
functions involved in the matching matrices, from which it can easily be shown that condi-
tions (29b) are satisfied

A BN P =\
ay = -(04) m, = = (ng
(38)
A
(\\a = —mf\ 02 = M~

From the matrix elements which are explicitly shown in Eqs. (31a) and (31b), and from the

relations expressed in (38a), it follows that

2T
Ny = -} (390)
- =
AT 2
My = -0 (39)
2T >
\Sg - W__:\g, (39¢)

From Egs. (37), (32e), and (35)

B z:a,ngw GGt JvSncel ook (- €M Y0 () oo
=0
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1
since 0O} Ny = oy mf\ = -4 and

]

<
ﬂ)‘: - \TJ\f =0 (40b)

\y_«i . \\}f =0 (40c)

G
g9

Thus ( %\%: ) =0 and it is only left to show that %3%: is symmetric., Since
T
( %..'%T )010( is symmetric for all i and |, we need only show (%3%"“ )qP = (%3%"‘; e,
With @3‘0 , Eq. (37) reduces to

) = W o
ch(;.)w = \\:\: (41b)

From (39¢) it is quickly established that %3%: is symmetric.

For the purposes of calculation, %3%;' in Eq. (29a) is evaluated such that
k%’%: i;,w_\mf SB'S“K' gi\lq\g(: (“«\iq“ a3ng « (- G.? IO l\S:, (%) (420)
e
G

M; (42b)

\\«‘{, (42¢)

All other elements are obtained by cyclic permutation of the indices. %\%:\ is simply

set to zero.
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In calculations presented in this paper the global R motrix is constructed via the
1
prescription in Eq. (21) with X defined by Eq. (23) ond with G‘Z constructed sym=
metrically os obove. The R matrix so constructed is symmetric ond consequently the S-

matrix is unitary,
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FIGURE CAPTIONS

Fig. 1 Representation of non-collinear matching surfaces in relation to the u = 0 surface

and intermediate s = constant surfoce.

Fig. 2 Schematic representation of the three arrangement channel tubes and the matching
surfaces.
Fig. 3 Schematic representation of the coordinate system in the matching region ond the

directions of the derivatives with respect to the propagn*'on coordinates and the

internal coordinates,

Fig. 4 Probability of reaction, P(0,0,0)o—) (0, 0 ,R )o vs. E. J=0, () Basis 11,9,7,3,

60 steps; (8) Basis 13,11,9,5,3,3, 73 steps; (o) 7,5,3, 50 steps; x SK.

Fig. 5 Contributions to reactive cross section (2J + 1) at E= .65 eV

P(ooo>0—-> ©38)

vs. total angular momentum, J. (wmems) Bosis shown in Table Il (o) Basis 7,5, 3.

Fig. 6 As above for P Odd parity x 20,

019)= (04

©18)-50§4)

Fig. 7 Convergence with respect to basis of P(OOO)—>(0 '& 2) for J=0ws. E,
) )

(—e~ ) Basis 13,11,7,5,1, 60 steps; (—k—%—) Basis 7,5,3,1, 60 steps;

(-~0~~=-0==) Basis 7,5,3, 50 steps; (s—o—e) P basis 13,11,7,5,3,1.

000) (4,4 ,8)_
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Fig. 8  (—e—) P(OOI)O—-P(O AR y J=1 (—0—) P(OOI);’ ( 5"‘)0 J =1, multiplied

by two.

Fig. 9 State-to-state transition probability P(OOO) -~ (01R8) vs. E, J=0. (—3¢—g—)
o o
Basis 13,11,9,5,3,3, 73 steps; (—— L —-) Basis 7,5,3, 50 steps; X SK.
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