
ES/ER/TM--35

DE93 002873

An Introductory Guide to Uncertainty Analysis
in Environmental and Health Risk Assessment

F. O. Hoffman
J. S. Hammonds

_:_.

-_ _ i Date Issued--October 1992

_ _ Prepared by

__ I Environmental Sciences Division
Oak Ridge National Laboratory

l '_z ESD Publication 3920

_ i__'_ Prepared for

_ _'_ i'_ U.S. Department of Energy!l _ Office of Environmental Restoration and Waste Management
under budget and reporting code EW 20

MARTIN MARIETI'A ENERGY SYSTEMS, INC.
managing the

Oak Ridge K-25 Site Paducah Gaseous Diffusion Plant
Oak Ridge Y-12 Plant Portsmouth Gaseous Diffusion Plant

Oak Ridge National Laboratory under contract DE-AC05-76OR00001
under contract DE-AC05-84OR21400

for the

U'S" DEPARTMENT OF ENERGY M,_ST E R _,,.,_

IIISTBIBUTIDNoF THISDOCUMENTIS UNLI.MJTED

• ,, ,b_-, ,. ,_A. --_w,• ,.,.,.. .,, .
_l_,_,i_,*,_.,.,.,:_,_l.._..._,_.,_*, ¢_* • • .... .. ..............



CONTENTS

EXECUTIVE SUMMARY .......................................... v

1. INTRODUCTION ............................................... 1
1.1 BACKGROUND ON EPA METHODS FOR RISK ASSESSMENT ....... 1
1.2 AN OVERVIEW OF QUANTITATIVE UNCERTAINTY ANALYSIS ... 3

2. METHODS FOR UNCERTAINTY ANALYSIS ........................ 4
2.1 LIMITING THE SCOPE THROUGH SCREENING ................. 4
2.2 GENERAL APPROACH TO UNCERTAINTY ANALYSIS ........... 6
2.3 GUIDANCE ON THE SELECTION OF SUBJECTIVE PROBABILITY

DISTRIBUTIONS FOR UNCERTAIN MODEL PARAMETERS ....... 7
2.4 ANALYTICAL METHODS FOR UNCERTAINTY ANALYSIS ........ 8
2.5 NUMERICAL METHODS FOR UNCERTAINTY ANALYSIS ........ 11
2.6 ADVANTAGES OF AN UNCERTAINTY ANALYSIS ............... 17
2.7 BRIEF INTRODUCTION TO UNCERTAINTY ANALYSIS FOR AN

ASSESSMENT ENDPOINT THAT IS A STOCHASTIC VARIABLE .... 19

3. SUMMARY ................................................... 20

REFERENCES ................................................... 22

APPENDIX ...................................................... A-1

ioo

IU



EXECUTIVE SUMMARY

To compensate for the potential for overly conservative estimates of risk using
standard U.S. Environmental Protection Agency methods, an uncertainty analysis should
be performed as an integral part of each risk assessment. Uncertainty analyses allow one
to obtain quantitative results in the form of confidence intervals that will aid in decision
making and will provide guidance for the acquisition of additional data. To perform an
uncertainty analysis, one must frequently rely on subjective judgment in the absence of
data to estimate the range and a probability distribution describing the extent of
uncertainty about a true but unknown value for each parameter of interest. This
information is formulated from professional judgment based on an extensive review of
literature, analysis of the data, and interviews with experts. Various analytical and
numerical techniques are available to allow statistical propagation of the uncertainty in
the model parameters to a statement of uncertainty in the risk to a potentially exposed
individual. Although analytical methods may be straightforward for relatively simple
models, they rapidly become complicated for more involved risk assessments. Because of
the tedious efforts required to mathematically derive analytical approaches to propagate
uncertainty in complicated risk assessments, numerical methods such as Monte Carlo
simulation should be employed. The primary objective of this report is to provide an
introductory guide for performing uncertainty analysis in risk assessments being performed
for Superfund sites.



1. INTRODUCI'ION

When hazardous substances are inadvertently or purposefully introduced into the
environment, the primary concern is what the effect will be on the environment and on
human health. To provide some sort of answer to this question, a risk assessment is
performed to quantify the potential detriment to exposed individuals and to evaluate the
effectiveness of proposed remediation measures. The U. S. Environmental Protection
Agency (EPA), in its current risk assessment guidance document for Superfund sites
(EPA 1989), recommends that either a qualitative or quantitative uncertainty analysis
accompany risk assessments so that the confidence in the results can be expressed. A
discussion of uncertainty is critical to the full characterization of risk, because it provides
a better understanding of the implications and limitations of the risk assessment (EPA
1991a). Uncertainty analysis is a valuable tool for prioritizing the contaminants and
exposure pathways of concern to guide the acquisition of additional data to reduce
uncertainty in risk predictions. An uncertainty analysis is especially necessary when
balancing the cost against the benefits of remedial action options. The primary objective
of this report is to address the issue of uncertainty in quantitative risk assessments and
to present methods that can be used to perform an uncertainty analysis on risk estimates.

1.1 BACKGROUND ON EPA METHODS FOR RISK ASSESSMENT

The generic equations used in EPA methods for baseline risk assessment differ
depending on whether the chemical is a noncarcinogen or a carcinogen. For noncarcin-
ogens, a quantity called the Hazard Index (H/) is calculated using the following formula.

H1 = C x l x El) x EF (1.1)BM x AT x RfD '

where

C = concentration of the chemical in the contaminated medium,
I = estimated intake rate of the contaminant,
ED = exposure duration,
EF = exposure frequency,
BM = body mass,
AT = averaging time,
RfD = reference dose for the chemical of interest.

If the H1 is below 1, it is highly unlikely that exposure to the chemical would lead to an
adverse health effect. If the HI is greater than unity (1.0), remediation may be warranted.
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For carcinogenic substances, a lifetime cancer risk (CR) is calculated from the
following formula.

CR = C x l x E1) x EF x SF, (1.2)
BM x AT

where

C = concentration in the contaminated medium,
I = estimated intake of the contaminated medium,
EL) = exposure duration (30 years),
EF = exposure frequency (days per year divided by 365 days),
SF = slope factor (or cancer potency factor) for the chemical of interest,
BM = body mass,
AT = averaging time (70 years).

A primary difference in evaluating risk from noncarcinogens and evaluating risk from
carcinogens is that there is always some risk associated with a carcinogen. For
carcinogens, it is assumed that there is no threshold below which a risk is assumed to be
zero; any exposure to a carcinogen results in some excess risk.

Performing a baseline risk assessment using EPA methods yields point estimates for
the risk. These point estimates obscure the inherent uncertainty in the calculations. To
better demonstrate the EPA methods, a brief example is provided.

Example 1

Situation. An inadvertent release of methyl mercury has contaminated a nearby lake.
After further testing, a 95% upper confidence limit of the mean concentration of
1.57 x 10"1mg/kg was obtained for the concentration in the fish. What would be the HI
for adverse noncancer health effects to a maximally exposed individual? This is deter-
mined by asking: What is the Hl for this concentration, and what is its interpretation?

Solution. A value of 70 kg (reference man) will be used for body mass. Assuming
2 fish meals per week, 50 weeks a year, and 230 grams per fish meal averaged over 1 year,
one obtains a value of 0.065 kg/d for the daily ingestion rate. Finally, the RfD value of
3.00 × 10"4mg/kg/d is obtained from the Health Effects Assessment Summary Tables
(EPA 1991b). Using Eq. 1.1, one obtains an H1 of 0.49. From this value, one would
conclude that it is highly unlikely that exposure to methyl mercury in this case would
warrant remedial action.

From this example, one can see that the EPA baseline risk assessment methods do
not incorporate explicit estimates of uncertainty. This can lead to incorrect decisions
based on risks that are either grossly overestimated or are associated with high and
disproportionate amounts of uncertainty. Therefore, an uncertainty analysis should be
performed in any risk assessment to quantify the degree of confidence about the estimate
of risk.



It should be noted that, primarily, the type of uncertainty analysis presented in this
report is for a true but unknown value [referred to in IAEA (1989) as a Type B
uncertainty analysis]. In most EPA Superfund risk assessments, the objective is to obtain
a reasonable estimate of the risk to a maximally exposed individual. In more advanced
problems, one may be interested in the uncertainty about a true but unknown distribution
of values such as the distribution of risk per individual within an exposed population
[referred to in IAEA (1989) as a Type A uncertainty analysis]. This problem requires that
confidence intervals (CIs) be obtained for the predicted distribution. A brief discussion
of the procedure for including a Type A uncertainty analysis is presented at the end of
Chap. 2.

1.2 AN OVERVIEW OF QUANTITATIVE UNCERTAINTY ANALYSIS

A quantitative uncertainty analysis requires knowledge about the potential range of
values likely to encompass the true but unknown value for each parameter used in the
equations employed for a reasonable estimate of the risk to a maximally exposed
individual. These parameters include quantification of the source term, environmental
transport of the contaminant in various environmental media, the factors used for the
estimate of exposure, and the factors used to convert exposure to risk. In addition,
knowledge about the potential for uncertainty resulting from use of the wrong model or
equation is required.

To evaluate the magnitude of uncertainty about a risk estimate, statistical error
propagation procedures should be utilized. The objective is to use these methods to
obtain a CI about the risk estimate. This CI (usually described by a 90% or 95% CI)
provides a quantitative region in which there is high confidence of bounding the true but
unknown risk. Statistical error propagation procedures also provide the most appropriate
means for prioritizing and ranking the assumptions and model subcomponents that
dominate the uncertainty in the risk estimate. Such prioritization is crucial in guiding the
needs for additional sampling and focused research.

The estimation of likely ranges and estimates of statistical distributions for each
uncertain parameter requires a high level of expertise, because professional judgment
must often be employed in the absence of data. One cannot simply look up the statistical
information required for quantifying the uncertain parameters of interest in a reference
manual of generic parameter values. Furthermore, the uncritical adoption of published
statistical distributions of data for use in the uncertainty analysis is not recommended;
these data may not apply to the conditions under consideration for risk assessment. Under
no circumstance should a risk assessor treat an uncertain assumption or parameter as a
constant simply because data are unavailable to define a range and distribution. In the
absence of data, it may be necessary to contact experts outside Martin Marietta Energy
Systems, Inc./Department of Energy (DOE) organizations to obtain the essential data
and/or for assistance in judgmentally deriving uncertainty estimates. Where judgment is
used to derive estimates of uncertainty, the assumptions and sources of information used
must be documented in the analysis.



2. METHODS FOR UNCERTAINTY ANALYSIS

This section provides a description of methods and examples for performing statistical
error propagation to quantify uncertainty in environmental and human-health-risk
assessment. The methods involve analytical equations for simple models and numerical
Monte Carlo approaches, which involve the use of computer technology to select values
at random from a prescribed distribution, for more complex models. Other approaches to
uncertainty analyses are referenced as weil. The distributions describing uncertain
parameters in the examples are provided for illustrative purposes only and should not be
taken as a referenceable estimate of uncertainty for actual risk assessments.

2.1 LIMITING THE SCOPE THROUGH SCREENING

When taking into account the various exposure pathways for every hazardous
substance found at a contaminated site, the risk assessment can become extremely lengthy
and complicated. An uncertainty analysis on every parameter involved in a scenario such
as this is impractical if not infeasible. Therefore, the first step in any risk assessment
should be to narrow the scope of the problem.

To limit the risk assessment problem, one must clearly define the objective(s) of the
assessment and use a screening procedure to identify the contaminants and exposure
pathways warranting a more detailed analysis (NCRP 1989, Hoffman et al. 1991, and
Hoffman and Gardner 1983). Screening can be considered a first step in the approach to
uncertainty analysis. Conservative assumptions used to produce a result that is not likely
to underestimate the risk to a maximally exposed individual can be used to represent an
upper bound estimate. Removing the conservatism in these assumptions to produce a
result that is unlikely to overestimate the risk to a maximally exposed individual can be
used to represent a lower bound estimate. The current EPA baseline risk assessment
methods may be used as the conservative upper bound estimate of risk as long as the
parameters are selected in a manner such that the actual risk will not be underestimated.
This method is useful for rapidly identifying pathways and contaminants that may be given
low priority for further investigation. A nonconservative (lower bound) screening
calculation, on the other hand, is useful for rapidly identifying contaminants that warrant
immediate consideration for remedial action. Examples of assumptions used in the general
approaches for performing conservative and nonconservative screening are provided in
Table 2.1.

To distinguish between low priority, potentially high priority, and high priority
contaminants and pathways, one must establish baseline screening indexes. These should
be chosen based on a distinction between risk levels that are clearly acceptable versus
those that are clearly unacceptable. In most cases, this distinction may be influenced by
risk _vels associated with current regulatory standards. An example of previously chosen
scree,aing indexes for carcinogens is provided in Fig. 2.1, and a list for noncarcinogens is
presented in Fig. 2.2 (Blaylock et al. 1991). Two primary sources of equations and
parameter values used in screening calculations are NCRP (1989 In Press) for metals and
radionuclides and Lyman et al. (1982) for organic chemicals. A brief example of the use
of the described screening procedure is provided.



Conservative Estimate of Nonconservative Estimate of
Exposure Exposure

SI

10-2 10-2

10-3 10-3

10-4 10-4

10-5 10-5

10-6 10-6
iiiiiSI not used as criterion iiliii
ii!!iiltot.bUshlowpno,tyilili  ili
!iiiii!ii for further l!iiii_
i!liiii consideration.. _i!.ii

10-7

Screening index (SI) -- exposure multiplied by a lifetime cancer slope factor.

Fig. 2.1 Criteriafor conservativeand nonconservativescreening of carcinogens (Blaylock
et al. 1991).



Screening index (SI) = exposure divided by reference dose factor (RfD).

Fig.2.2 C_iteriafor conservativeandnonconservativescreeningof noncarcinogens(Blaylock
et al. 1991).
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Table 2.1. An example of assumptions used for conservative
and nonconservative screening (Hoffman et al. 1991)

Conservative screening Nonconservative screening

Maximum concentration reported for a defined Average of detected values reported for a
location defined location

Models used to estimate concentrations in Only measured concentrations in
media that are not sampled or detected sediment, water, or fish are considered

Reasonable estimate of maximum diet and Estimates of diet and occupancy times are
occupancy times assumed generally a factor of lO less than assumed

for reasonable maximum

Human receptor exposed for 70 years Probability of exposure period being less
" than 70 years considered in estimates of

diet and occupancy times

Multiple pathway exposure considered Multiple pathway exposure not considered

Exposure to dredged sediment considered Dredging of sediment not considered;
separately from the consumption of water, fish, use of water for irrigation not considered
and irrigated agricultural produce

Calculated exposure should not underestimate Calculated exposure should net
actual maximum exposures overestimate potential maximum exposures

Screening approach most useful for identifying Screening approach most useful for
definitely low-priority contaminants identifying definitely and potentially high-

priority contaminants

Example 2

Situation. Suppose that you have been contracted to perform a risk assessment for
a contaminated site. When the results are received from the initial samples, you find that
there are -100 contaminants present at the site "_nfour different environmental media,
each giving rise to five to ten different exposure pathways. Because of time and money
constraints, it would be questionable to perform an uncertainty analysis for each contami-
nant and exposure pathway represented at this site. What should you do?

Solution. Before embarking on a formal quantitative uncertainty analysis, you should
narrow the scope of this problem. This is best accomplished by performing conservative
and nonconservative screening calculations to aid in prioritizing pathways and contami-
nants warranting further investigation. Conservative screening will typically show that ali
but a few situations are of low priority with respect to potential health risk. These
situations are contamination of sediment and fish with 137Cs,As, Hg, and polychlorinated
biphenyls (PCB_). Nonconservative screening may indicate that no situation warrants
immediate action, but mercury and PCBs in fish are found to have potentially high priority
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for further investigation because limits of concern are approached. Therefore, 137Cs,As,
Hg, and PCBs in sediment and fish are considered further within a formal quantitative
uncertainty analysis. This analysis is carried out to first guide the acquisition of additional
data and then to guide decisions for the need for remedial action.

2.2 GENERAL APPROACH TO UNCERTAINTY ANALYSIS

Once the scope of the problem has been refined to a smaller listing of contaminants
and pathways, uncertainty analysis can be used to assess the extent of confidence in the
estimate of health risk. In this report, it is assumed that uncertainty in the estimate of risk
can be derived from an estimate of uncertainty in each of the parameters used in the risk-
assessment equations. This approach is referred to as a "parameter uncertainty analysis"
(IAEA 1989). Aay additional uncertainty resulting from model structure should be
represented either by alternative equations or by additional parameters added to the risk
assessment model.

To perform parameter uncertainty analysis, one should use the following steps
(IAEA1989).
1, List ali uncertain parameters (include additional parameters to represent uncertainty

in model structure).

2. Specify the maximum conceivable range of potential values relevant for unknown
parameters with respect to the endpoint.

3. Specify a subjective probability distribution (pdf) for values occurring within this
range.

4. Account for dependencies and/or correlations among parameters.

5. Using either analytical or numerical procedures, propagate the joint probability
density function of the uncertain model parameters to generate a subjective
probability distribution of model predictions.

6. Derive quantitative statements of uncertainty in terms of a subjective CI interval for
the true but unknown value [representing the prediction endpoint (i.e., excess cancer
risk or H/)].

7. Rank the parameters contributing most to uncertainty in the model prediction.

8. Present and interpret the results of the analysis.

Steps 2 and 3 are usually obtained by using professional judgment based on an extensive
review of available literature, collected data, and interviews with experts on the parameter
of interest. In addition, one can incorporate correlations among the parameters by either
specifying a correlation coefficient or changing the model structure to include the
additional parameters that determine interdependencies among the original parameters
of interest.

After the subjective probability distributions are analyzed, one obtains a subjective
probability distribution for the risk, using one of the methods described in the next two
sections. From this qualitative expression, one can formulate a quantitative description
of the risk in the form of a subjective CI in which the true but unknown risk should lie.
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The term "subjective CI" is used to denote that the probability distribution specified for
the uncertain model pa,'ameters have been derived using subjective judgment in the
absence of perfect data.

2.3 GUIDANCE ON THE SELECTION OF SUBJECTIVE PROBABILITY
DISTRIBUTIONS FOR U]_,CERTAIi_ MODEL PARAMETERS

To perform an uncertainty analysis, one must assign subjective probability
distributions for each of the uncertain parameters. The distributions reflect the degree of
belief that the true but unknown value for a parameter lies within a specified range of
values for the parameter. Where data are limited but uncertainty is relatively low (less
than a factor of 10), a range may be used to specify a uniform distribution. If there is
knowledge about a most likely value or midpoint, in addition to a range, a triangular
distribution may be assigned. When the range of uncertainty exceeds a factor of 10, it is

• often prudent to assume either a log-uniform or log-triangular distribution. The
assumption of normal, lognormal, or empirical distributions is usually dependent on the
availability of relevant data. Many other distribution types are suitable for Monte Carlo
analysis. A few of these other types are gamma, beta, Poisson, and Weibul and a variety
of discrete distributions (Decisioneering 1991, Palisade Corporation 1991). In general, we
have found that as long as the mean and variance of a distribution are held constant, the
exact shape of the distribution of a parameter in a risk-assessment equation has minimal
effect on the mean, variance, and general shape of the distribution of the model
prediction (Gardner 1988). When dealing with several different distributions, it is more
efficient to use Monte Carlo analysis than to use various analytical methods (algebraic
equations). Analytical methods are options, however, when one has similar distributions
for ali of the parameters or when one has access to the formulas for the various
distributions representing the uncertainties about the parameters.

2.4 ANALYTICAL METHODS FOR UNCERTAINTY ANALYSIS

For relatively simple equations, uncertainty analysis can be performed using analytical
methods for statistical error propagation. Two types of analytical approaches frequently
used for uncertainty analysis are variance propagation and moment matching (IAEA
1989). This section will discuss in more detail the technique of variance propagation for
simple equations.

To best demonstrate an example of variance propagation, a simple additive model is
desired. In the case of an additive model, the mean of the result is equal to the sum of
the means of the parameters, and the variance of the result is equal to the sum of the
variances of the parameters (IAEA 1989, Hoffman and Gardner 1983).

and
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0_,- _ o+2 ' (2.2)
i-I

where p is the number of parameters in the model.

In a series of summations of uncertain parameters, the result will tend tC, conformto a
normal distribution even if the shapes of the distributions assigned to the model
parameters are other than normal.

Note, however, that the basic form of EPA risk assessment models is a multiplicative
chain of parameter+ for each contaminant and exposure pathway. Multiplicative models
can be reduced to additive form by logarithmically transforming the variables. This is
shown in equati,_n form below.

Y-a×b xc. (2.3)

In(Y) = In(a) + In(b) + In(c). (2.4)

Therefore, the distribution of Y will tend to be approximately lognormal even when the
parameters a, b, and c are assigned distribution shapes other than lognormal (Hoffman
and Gardner 1983). For multiplicative calculations, one can find the median value (or
geometric mean) for the risk simply by summing the means of the logarithms for the
various parameters and exponentiating the sum. This relationship is presented in equation
form by

Xi_ _ e+st , (2.5)

where XgR is the geometric mean of the result.

In addition, the standard deviation of the risk is found by taking the square root of the
sum of the parameter variances obtained from the above equations and exponentiating
(IAEA 1989, Hoffman and Gardner 1983). This formula is represented in the equation

Sg R = • _ , (2.6)

where S_R - the geometric standard deviation of the result.
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The upper confidence limit is determined by multiplying the median value by the square
(or some other power) of SgR, the exponentiated standard deviation of logarithms. The
lower confidence limit is obtained by dividing the median by the square (or some other
power) of the exponentiated standard deviation of the logarithms. The exponential
standard deviation of logarithms is often referred to as the geometric standard deviation
(GSD). The use of the square of the GSD will lead to a 95% CI assuming that the
distribution of the model prediction will be lognormal. Taking the GSD to a power of 1.65
will lead to a 90% CI for a Iognormal distribution. The formula used to estimate mean
and variance of logarithms for each uncertain parameter depends on the type of subjective
probability distribution chosen to represent the uncertain parameter. Formulas for the
mean and variance of logarithms of lognormal, log-uniform, and log-triangular
distributions are provided in the Appendix.

Example 3

Situation. Let us assume, as in Example 1, that there has been an accidental spill of
methyl mercury in a nearby lake. Using the technique of variance propagation, obtain a
90% CI on the HI to a maximally exposed individual. After reviewing the literature and
available data and consulting with other experts, the subjective proba_ility distributions
shown in Table 2.2 are obtained for this problem.

Table2.2. Informationfor Example 3
Standard

Parameter Distribution Minimum Maximum Mean deviation

Fish concentration Lognormal 7.10E-2 3.43E-2
(FC), mg/kg
Intake (/), kg/d Log-uniform 2.00E-2 1.30E-1 6.50E-2

Body mass (BM), kg Log-triangle 4.50E+ 1 1.20E+2 7.00E+1
RfD, mg/kg/d Log-triangle 1.50E--4 3.00E-3 3.00E.-4

Note: Themeangivenforthe intake,bodymass,andRfD is themostlikelyvalue(mode).The
distributionsrepresentsubjectiveconfidenceabouttheuncertaintyassociatedwithestimatinga true
butunknownvalueforeachparameter.

Solution. The form of the equation used for this problem is:

HI -- FC × I × (BM)-I × (RID)-I . (2.7)

By log-transforming, this equation becomes:

In(H/) = In(FC) + In(/) - In(BM) - In(RID). (2.8)

Therefore, the logarithmic mean and variance of the HI is found by using Eqs. 2.1 and 2.2.
The mean equations given in the Appendix must be used to find the mean and variance
of logarithms for each of the model parameters. Using Eqs. A.1 and A.2, one obtains a
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mean of the logarithms for the fish concentration of -2.75 and finds that the variance of
the logarithms for the fish concentration is 0.21.

Equations A.3 and A.4, given for the log-uniform distribution, will be used to find p
(the mean of logarithms) and o (the variance of logarithms) for the intake. These values
are calculated below.

lh(0.02) + In(0.13) = -2.98.

It1 - 2 (2.9)

[ln(0"13/] 2 (2.10)

o_ = [ tO--_}J = 0.29.12

Equations A.5 and A.6, given for the log-triangular distribution, are the ones that are
used for the body mass and RfD. To demonstrate, the lt and o for the body mass is
calculated below.

ffi1[In(70) + in(120) + 1n(45)] = 4.28. (2.11)Itau 3

1 {[1n(45)]2+ [ln(120)]z. [ln(45)][ln(120)] + [In(70)]2
(2.12)

- [ln(70)][ln(45) + ]n(120)]l ffi0.04.

This same process is performed for the RfD, from which one obtains a mean value of
-7.58 and a variance of 0.41. One is now able to find the mean of logarithms and, thus,
the geometric mean of the Hl.

Pm = -2.75 - 2.98 -4.28 + 7.58 = -2.43. (2.13)

X&,m= cpm = e2.43 = 0.09 . (2.14)

The variance of the H1 and, consequentially, the geometric standard deviation of the H1
is found.
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o_t = 0.21 + 0.29 + 0.04 + 0.41 = 0.95 . (2.15)

-- • v/'_m- • vI6-_ ---2.65 (2.16)o#.H/

The upper and lower confidence limits for a 90% subjective CI are calculated.

ml.es

- ×s, - (0.09)(2.65)- 0.45.

X5m _ X_ _ 0.09) = 0.02. (2.18)

S_!TM (2.65) 1.es

Therefore, there is high confidence (at a subjective level of 90%) that the HI should lie
between 0.02 and 0.45.

As one can see, variance propagation is a straightforward process for simple additive
and multiplicative models. For more complex calculations, variance propagation
techniques are more difficult to derive analytically, and in some cases their derivation may
not be practical. For current Superfund risk assessment, both variance propagation
methods and numerical methods for propagating the uncertainty may be appropriate.

2.5 NUMERICAL METHODS FOR UNCERTAIIq'I_ ANALYSIS

To overcome problems encountered with variance propagation equations, various
numerical methods are useful in performing an uncertainty analysis with the aid of a
computer. Two such numerical techniques are Monte Carlo simulation (Hoffman and
Gardner 1983, IAEA 1989) and deterministic uncertainty analysis (Worley 1987). Monte
Carlo analysis usually employs two random selection processes: Simple Random Sampling
(SRS) and Latin Hypercube Sampling (LHS) (IAEA 1989).

The random selection process known as SRS is conceptually straightforward. For each
iteration a random number is chosen from within each distribution specified for an
uncertain parameter. Even though this technique does work relatively weil, it is less
efficient than its counterpart, LHS. With LHS, fewer samples are required to obtain the
same result achieved with SRS (IAEA 1989). In LHS, the distribution for each parameter
is divided into sections. The number of sections depends on how many samples (or
iterations) the assessor wants the simulation to take. Another feature of these divisions
is that they each have the same area. During the simulation run, the numbers are selected
at random within a section with only one random number being chosen from a specific
section. In other words, once a random number has been selected from a section, that
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section is disregarded from the rest of the analysis. In this manner the distributions are
represented more efficiently; therefore, it takes less time to reach a stable mean and
variance of the prediction endpoint.

Monte Carlo analysis may be performed in many ways. One may write one's own
numerical code or use one of several currently available software packages. Several
available Monte Carlo simulation programs are listed below.

MOUSE Klee (1986)
TAM3 Kanyar and Nielsen (1989) and Gardner (1988)
PRISM Gardner and Trabalka (1985) and Gardp,er et al. (1983)
Crystal Ball Decisioneering, Inc. (1991)
@RISK Palisade Corporation (1991)
ORMONTE Williams and Hudson (1989)

The following example provides a more detailed description of a Monte Carlo
simulation.

Example 4

Situation. Use the scenario presented i_ Example 3 to demonstrate the use of Monte
Carlo simulation. With 90% subjective confidence, what is the risk to the maximally
exposed individual? Please note that this example does not account for dependencies
among parameters; this will be demonstrated in Example 6.

Solution. To begin an uncertainty analysis, one must describe the uncertainty about
each variable with a subjective probability distribution. This is done through judgment
after extensive review of ali relevant data. The information presented in Table 2.2 is used
as input for a Monte Carlo simulation for this problem.

When running a Monte Carlo technique, values are selected at random from each
uncertain variable to produce a prediction. This procedure is repeated for a specified
number of iterations and forms a distribution of predicted values. A sample of randomly
selected values obtained by running 500 iterations of LHS for this problem is provided
in Table 2.3.

This process yields a subjective probability distribution for the H1 from which a
quantitative representation of the HI can be formed. Figure 2.3 contains the result for the
risk after 500 iterations using LHS.

From this Monte Carlo simulation, a 90% CI of [1.70E-2, 4.17E-1] is obtained. This
' implies that after taking into account the uncertainties on the parameters, one is highly

confident (at a subjective level of 90%) that the true H1 should lie between 1.70E-2 and
4.17E-1.

Once familiarization with the Monte Carlo simulation software package has taken
place, this technique becomes extremely quick to use. Even if a risk analysis becomes
more complicated, the Monte Carlo technique does not. One reason that Monte Carlo
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Table 2.3. A sample of random values obtained f_om 500 iterations of LHS for Example 4.

Sample Fish concentration Intake Body mass Reference dose Hazard index
number (mg/kg) (kg/d) (kg) (mg/kg/d) (unitless)

1 1.0lE-01 3.40E-02 4.71E+01 5.25E-04 1.38E-01

2 1.14E-01 1.19E-01 7.68E+01 5.64E-04 3.15E-01

3 8.1 lE-02 1.05E-01 6.78E + 01 1.76E-04 7.10E.-01

4 6.51E--02 3.63E-02 7.50E+01 3.00E--04 1.05E.-01

499 9.40E--02 9.21E-02 7.04E+01 2.71E-03 4.53E-02

500 8.60E-02 2.66E--02 8.15E+01 8.96E--04 3.13E--02

Forecast: Hazard

Cell D8 Frequency Distribution 491 Trials
.05 26

_ 04_--m 20 _",-,
.03 13

° hlll[gnlUlOnL .Pl 6 tc:

.00 0

O.OOe+O 1.37e-1 2.75e-1 4.12e-1 5.50e-1
Unitless

Fig. 2.3 Subjective probability distn'bution of the hazard index for Example 4.
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calculations _.:e more useful than other approaches to uncertainty analysis is that the
variance propagation techniques can become complicated and time consuming for more
involved risk analyses. Setting up simulations to run on the computer is much more
efficient and accurate than performing hand calculations. The inputs required for Monte
Carlo simulations are the subjective probability distributions and uncertainty bounds for
each parameter. To come up with these subjective probability distributions and
uncertainty bounds, one must use professional judgment after extensively reviewing the
available literature and data. With the various input distributions, the Monte Carlo
simulation program then provides a forecast of the risk in terms of a subjective probability
distribution about which CIs for the risk can be obtained. A demonstration of this

technique for a more complicated risk analysis situation is presented in Example 5.

Example 5

Situation. Let us assume that as the result of waste management practices, a mixture
of contaminants is released inadvertently to the environment. Eventually, through various
pathways, this contamination is trarsported to aquatic systems such as rivers and lakes
where various fish and biota are exposed. After further inve:_tigation, it is discovered that
the contaminants released were Aroclor-1254, Aroclor-1260, chlordane, and methyl
mercury. Suppose that a fisherman catches some contaminated fish and eventually eats
them. The assessment problem is as follows: What is the risk to the maximally exposed
individual?

To perform this risk assessment, Eqs. 1.1 and 1.2 will be used. To quantify the
uncertainty associated with each of the parameters introduced in these equations, one
must derive (with the use of a considerable amount of judgment) subjective probability
distributions from very limited sets of data and other relevant facts in the published
literature. Once these distributions have been specified, one can utilize Monte Carlo
techniques to obtain a probability distribution of the Hl. From this propagated
distribution, a subjective CI (90%) can be obtained for use in setting limits that are useful
for decision making.

Table 2.4 contains values for the estimates of uncertainty on each of the parameters
that would be used in an environmental risk assessment of Aroclor-1254, Aroclor-1260,
chlordane, and methyl mercury in the fish potentially harvested from a contaminated
fresh-water system.

Solution..The values given in Table 2.4 were used to find the median, the lower 5%
subjective confidence limit, and the upper 95% subjective confidence limit for the
noncarcinogen H1 for chlordane and methyl mercury and for the cancer risk involved with
the given concentrations of Aroclor-1254, Aroclor-1260, and chlordane in fish. These
values (presented in Table 2.5) were obtained by using 500 iterations of the LHS Monte
Carlo technique.
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Table 2.5. Results obtained from Monte Carlo simulation using values from Table 2.4

5% subjective 95% subjective
Chemical Type of result Median confidence confidence

Aroclor-1254 Cancer risk 3.4E-4)4 6.0E-05 7.5E--03

Aroclor-1260 Cancer risk 2.5E-03 5.7E-04 8.5E-03

Chlordane Cancer risk 1.0E--04 2.0E-05 4.4E-04

Total cancer risk 3.4E--03 &4E-04 1.4E-O2

Chlordane Noncarcinogen H1 5.3E--01 6.7E-02 3.2E+00

Methyl mercury Noncarcinogen H1 8.6E--02 1.7E-02 3.9E-01

Total HI 6.3E--01 1.3E.4)1 3.8E+00

As one can see from Table 2.5, the primary chemical contributing to the total cancer
risk is Aroclor-1260, and the chemical contributing the majority of the total Hl is
chlordane. By performing a sensitivity analysis, one can determine which parameter has
the most effect on the total result. This is done by simply holding a potentially sensitive
parameter constant while varying the others. After this process is repeated for ali of the
parameters of interest, the different results obtained for each parar_,leter are compared
and ranked according to the parameters creating the biggest difference. These parameter._
are said to be the most sensitive parameters. Descriptions of alternative statistical
approaches to sensitivity analysis using regressions of the randomly selected values of the
uncertain parameters on the values produced for the model predictions can be found in
IAEA Safety Series No. 100 (IAEA 1989).

For the total cancer risk, performing a sensitivity analysis shows that the amount of
fish ingestion has the most effect, followed by the concentration of Aroclor-1254 in the
fish. One might not expect the latter result, but the uncertainty involved with the
Aroclor-1254 fish concentration is much greater than with the fish concentration for
Aroclor-1260. For the total II/, a sensitivity analysis would show that the two parameters
that are the most significant contributors to the total uncertainty are the amount of fish
ingestion and the RfD for chlordane.

Example 6

Situation. The purpose of this example is to study the effect of the correlation
between body mass and intake on the total cancer risk and the total H1 for the situation
given in Example 5. First, assume that a minimum correlation of 0.3 has been determined
to exist between body mass and intake, and second, compare the results with those
obtained with a correlation of 0.5 and 0.7.

Solution. In this case, rank correlations are used (Decisioneering, Inc. 1991) to
account for interdependencies between body mass and intake. As can be seen from
Table 2.6, where the results are produced from 500 iterations using LHS, the correlation
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coefficients do not have a dramatic effect on the total risk. The values for the total cancer
risk are virtually the same.

A slight difference is detected in the 95% upper confidence limits for the total HI.
The values obtained with a correlation coefficient applied to the analysis are slightly lower
than the value calculated without the correlation applied. One reason that the correlation
does not have an obvious effect on the results is that the body mass is not a sensitive
parameter.

Table 2.6. Results obtained for correlation.,=between body mass andintake
for the situation describedin Example6

Rank correlationcoefficient

0.3 0.5 0.7

Total cancer risk

5% 8.9E-4 9.1E--4 9.6E--4

50% 3.4E-3 3.4E-3 3.4E-3

95% 1.3E-2 1.3E-2 1.3E-2

Total hazardindex

5% 1.2E-1 1.3E-1 1.2E-1

50% 6.8E-1 7.0E-1 7.0E-1

95% 3.4E+0 3.3E+0 3.3E+0

2.6 ADVANTAGES OF AN UNCERTAINTY ANALYSIS

One of the steps in a risk assessment is to rank the importance of the pathways and
chemicals in terms of their potential contribution to the total risk. The first attempt at
this is performed in the screening process. B3_screening, one obtains those pathways and
chemicals that could be of potential concern. However, if the risk assessor attempts to
rank the pathways and chemicals at this stage, the wrong conclusions may be reached,
because the uncertainty involved is not necessarily equal among contaminants and
exposure pathways. This is best demonstrated in the following example.

Example 7

Situation. Upon investigation of a potentially contaminated site, it was discovered that
a nearby lake and the surrounding sediment were contaminated with methyl mercury and
inorganic mercury, respectively. The 95% upper confidence limit value for the inorganic
mercury in soil is found to be 700 mg/kg, and the 95% upper confidence limit for the
concentration of methyl mercury in fish is 3.05 x 10"1mg/kg. Which is the most hazardous
pathway to the maximally exposed individual?
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Solution. A summary of the values obtained for this example is provided in Table 2.7.

Table 2.7. Information for Example 7

Standard
Parameter Distribution Minimum Maximum Mean deviation

Fish concentration Lognormal 2.06E-1 4.22E-2
(FC), mg/kg

Intake of fish (IF), Log-uniform 2.00E-2 1.30E-_ 6.50E-2
kg/d

Soil concentration Lognormal 3.11E+2 1.50E+2
(SC), mg/kg

Intake of soil (Is), Log-uniform 5.00E-5 2.00E--4 1.00E--4
kg/d

Exposure frequency Log-uniform 2.70E-1 7.00E-1 7.00E-1
(E D

Body mass (BM), kg Log-triangle 4.50E+ 1 1.20E+2 7.00E+ 1

Inorganic mercury Log-uniform 3.00E-.4 3.00E-2 3.00E.-4
RID (RID_M),mg/kg/d

Methyl mercury RID Log-triangle 1.50E-.4 3.00E-3 3.00E-.4
(RfDMM), mg/kg/d

Note: The mean given for the intake,bodymass, and RfD is the most likelyvalue (mode).

The values for the His for the two pathways will be compared with each other for two

situations: (1) by using EPA's generic equations and (2) by incorporating uncertainty
analysis. The Hls for the fish and soil pathways follow.

SC x Is x EF (700)(1.00x 10"4)(0.7)= 2.33. (2.19)His= =
BM x Rfl)n_ (70)(3.00x 10"4)

FC x IF = (3.05 x 10"1)(6.50 x 10-2) = 0.94. (2.20)
ttlF = BM × RfDuu (70)(3.00x 10.4)

From these calculations, one would conclude that the risk to the maximally exposed
individual results from the soil-ingestion pathway. However, by incorporating the
uncertainties for the parameters and using Monte Carlo simulation, one obtains different
results. After a Monte Carlo simulation run of 500 iterations of LHS, the 95% upper
confidence limit of the H1 for the soil ingestion pathway is 0.72, and the 95% upper
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confidence limit of the H1 for the fish ingestion pathway is 1.20. This implies that the fish
ingestion pathway is the source of most of the risk to the maximally exposed individual.
The reversal of the ranking from that of the EPA calculations is primarily because of the
large uncertainty in the RfD for inorganic mercury. If the uncertainty of this parameter
had not been taken into account, an inaccurate conclusion and, possibly, an inappropriate
course of action would have resulted.

The incorporation of uncertainty analysis portrays more confidence in the outcome
of a risk assessment. An uncertainty analysis through a quantitative description provides
better direction for further investigation. If uncertainty analysis is used in every risk
assessment, money that would be more wisely spent on specific areas that need further
study may be saved by preventing unwarranted remedial action.

2.7 BRIEF INTRODUCTION TO UNCERTAINTY ANALYSIS FOR AN
ASSESSMENT ENDPOINT THAT IS A STOCHASTIC VARIABLE

Ali of the examples and the general subject of this report to this poi_t have coincided
with uncertainty about a true but unknown value [referred to in IAEA Safety Series No.
100 (1989_ as "Type B" uncertainty]. However, some risk assessments may have an
endpoint defined as a stochastic variable.. An uncertainty analysis dealing only with
stochastic variability is referred to as "Type A" uncertainty in IAEA Safety Series No. 100
(1989). An example that must include both types of uncertainty would be the estimation
of the distribution of individual doses or risks within an exposed population group. The
goal of this section, therefore, is to briefly describe the process of uncertainty analysis
,,'hen the assessment endpoint is a stochastic variable andwhen there is lack of knowledge
about the true distribution that describes this variable.

To perform this type of uncertainty analysis, one must first generate numerous
alternative values for each of the uncertain deterministic quantities in the risk assessment
equation. Deterministic quantities are those for which the true value is fixed with respect
to the assessment endpoint. The true mean, variance, and shape of a stochastic variable
are fixed with respect to the assessment endpoint and therefore are also considered as
deterministic quantities. Alternative values for each deterministic quantity are achieved
through Monte Carlo simulation as is illustrated in Fig. 2.4. In this figure, P1 represents
a true but unknown deterministic value, and P2 reflects a stochastic variable for which
there is lack of knowledge about the true but unknown mean and variance. An example
would be for an assessment of the distribution of individual risks in a defined population
of exposed persons in which P1 is the true but unknown amount of released material and
P2 is the parameter that translates the amount released into the estimate of individual
risk. After each alternative set of deterministic values have been simulated, the next step
is to generate a realization of the stochastic endpoint for ali sets of values. This will
produce a probability distribution of the stochastic endpoint for each set of deterministic
values.

In Fig. 2.5, one can see that "n" sets of values were obtained for P_ and P2. The
various values for the mean and standard deviation are used to simulate the corresponding
normal distribution for P2. Next, the value of P_ and the normal distribution of P2 are
combined to provide a simulation of the stochastic endpoint. This is repeated for each set
of alternative values of P1 and alternative distributions of P2.
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Finally, to obtain confidence limits for the result, ali of the alternative realizations
of the stochastic endpoint must be plotted. To be computationally efficient, one may use
Simple Random Sampling (SRS) with 59 samples for the deterministic uncertain
quantities; it should be noted that the sampling procedure for the analysis of the
stochastic variability may be different from the one used for the deterministic uncertain
quantities. The 59 samples for the deterministic uncertain quantities will be sufficient to
provide a 90% confidence interval or a 95% upper confidence limit at which the true
value will not be underestimated (IAEA 1989). Figure 2.6 represents a cumulative
probability plot of various alternative realizations of a stochastic endpoint which were
obtained from 59 simple random samples. For the example presented in Fig. 2.6, one
could say that with 90% confidence, the dose for the 95th percentile of the population
is between 8 and 37, or one could say that the dose to the 95th percentile of the
population will be less than or equal to 37 with 95% confidence.

When performing an uncertainty analysis where there is both stochastic variability and
lack-of-knowledge uncertainty, correct interpretation of the results requires that these two
sources of uncertainty be analyzed separately. One obtains various distributions
representing the endpoint that is analogous to the various values obtained for the result
in an uncertainty analysis where only true but unknown values are considered. The
combination of these types of uncertainty analyses is facilitated using Monte Carlo
simulation.
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3. SUMMARY

The methods used to determine risk to an individual from ingestion of contaminated
fish are straightforward. However, the methods currently recommended by EPA do not
explicitly account for uncertainty and may tend to produce overly conservative estimates
of risk by combining, through multiplication, several conservatively biased parameters. To
compensate, an uncertainty analysis should be explicitly incorporated in risk assessments.
As an alternative, the EPA's baseline methods should be more appropriately viewed as
an initial screening tool. One may choose to perform the uncertainty analysis by using
either analytical approaches (i.e., variance propagation techniques) or by using a Monte
Carlo simulation package. Because variance propagation techniques can become compli-
cated and time consuming, it is usually most efficient to use Monte Carlo methods.

You could say this report deals primarily with uncertainty about a true but unknown
value. In more advanced problems, one may be interested in the uncertainty about a true
but unknown distribution of values (i.e., the case for a distribution of risks per individual
in a specified population of exposed individuals). This problem requires that CIs be
obtained for the predicted distribution.

Incorporating uncertainty analysis into the risk assessment utilizes a major tool
necessary in decision making. An uncertainty analysis will allow the risk assessor to rank
the contaminants and pathways more accurately. In this manner, uncertainty analysis
allows the assessor to see where further study is needed or where remediation must take
place. Not only does uncertainty analysis allow one to rank p_thways and contaminants,
but it also provides a subjective probability distribution about which CIs can be formed
to represent the risk.

This information can be used to guide decision analysis. For example, if a 5% lower
confidence limit is above a regulatory standard of concern, then remediation is probably
needed. If the 95% upper confidence limit is below the standard, remediation is probably
not required. If the 95% upper confidence limit is above the standard but the 50th
percentile is below the standard, further study should be recommended on those
parameters that dominate the overall uncertainty. However, if the 50th percentile is above
the standard, further study may still be recommended, but under some circumstances one
may opt to proceed with remediation depending on the cost-effectiveness of measures for
risk reduction.

Recognizing uncertainty provides more credibility to the risk assessment and is the
first step in gaining more knowledge. We recognize that the most difficult task in
quantitative uncertainty analysis is not associated with analytical or numerical methods for
statistical error propagation in risk assessment equations; it is associated with the
subjective judgment required to obtain subjective probability distributions for the
uncertain model parameters. The extent of knowledge required to exercise this judgment
often exceeds the capacity of any one individual. Thus, the judgment of several experts
must often be solicited to estimate parameter uncertainty. Nevertheless, prior to
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performing an uncertainty analysis for risk assessment, it may be useful to consider an
ancient Arabic proverb that is cited in Finkel (1990).

"He who knows and knows he knows,
He is wise--follow him;

He who knows not and knows he knows not,
He is a child--teach him;

He who knows and knows not he knows,
He is asleep-wake him;

He who knows not and knows not he knows not,
He is a fool-shun him."



29

REFERENCES

Beauchamp, John J. 1991. Personal Communication. Oak Ridge National Laboratory, Oak
Ridge, Tennessee.

Blaylock, B. G., M. L. Frank, L. A. Hook, F. O. Hoffman, and C. J. Ford. 1992. White
Oak Creek Embayment Site Characterization and Contaminant Screening Report.
ORNL/ER-81. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Decisioneering, Inc. 1991. Crystal Ball: User's Guide. Denver, Colorado.

EPA (U.S. Environmental Protection Agency). 1989. Interim Final: Risk Assessment
Guidance for Superfund. Vol. I: Human Health Evaluation Manual. OSWER
Directive 9285.7-01a. EPA Office of Emergency and Remedial Response,
Washington, D.C.

EPA (U.S. Environmental Protection Agency). 1991a. Guidance for Risk Assessment. Risk
Assessment Council.

EPA (U.S. Environmental Protection Agency). 1991b. Health Effects Assessment Summary
Tables (HEAST). OERR 9200.6-303 (91-1). EPA Office of Emergency and Remedial
Response, Washington, D.C.

Finkel, Adam M. 1990. Confronting Uncertainty in Risk Management: A Guide for
Decision-Makers. Center for Risk Management, Resources for the Future,
Washington, D.C.

Gardner, R. H., B. Rojder, and U. Bergstrom. 1983. PRISM: A systematic method for
determining the effect of parameter uncertainties on model predictions. Studsvik
Energiteknik AB report/NW-83/555, Nykoping Sweden.

Gardner, R. H. and J. R. Trabalka. 1985. Methods of Uncertainty Analysis for a Global
Carbon Dioxide ModeL DOE/OR/21400-4. Department of Energy Oak Ridge
Operations.

Gardner, R. H. 1988. TAM3: A Program Demonstrating Monte Carlo Sensitivity and
Uncertainty Analysis. Document prepared for the workshops of Biospheric Model
Validation Study, BIOMOVS. Oak Ridge National Laboratory, Oak Ridge,
Tennessee.

Hoffman, F. O. and R. H. Gardner. 1983. "Evaluation of Uncertainties in Radiological
Assessment Models." Chapter 11 of Radiological Assessment: A textbook on
Environmental Dose Analysis. J. E. Till and H. R. Meyer (eds.), NRC Office of
Nuclear Reactor Regulation, Washington, D.C.



3O

Hoffman, F. O., B. G. Blaylock, M. L. Frank, L. A. Hook, E. L. Etnier, and
S. S. Talmage. 1991. Preliminary Screening of Contaminants in the Off-Site Surface
Water Environment Downstream of the U.S. Department of Energy Oak Ridge
Reservation. ORNL/ER-9. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

I_EA (International Atomic Energy Agency). 1989. Evaluating the Reliability of
Predictions Made Using Environmental Transfer Models. IAEA Safety Series 100.
Vienna, Austria.

Johnson, N. L., and S. Kotz. 1970. Continuous Univariate Distributions. Vol. 2. Houghton
Mifflin Company, Boston, Massachusetts. p. 64-65.

Kanyar, Bela, and Sven P. Nielsen. 1989. Users Guide for the Program TAMDYN.
Document prepared for the workshops of Biospheric Model Validation Study,
BIOMOVS. Swedish National Institute for Radiation Protection, Stockholm, Sweden.
Technical Report 4.

Klee, Albert J. 1986. The MOUSE Manual. U.S. Environmental Protection Agency,
Cincinnati, Ohio.

Lyman, W. J., W. F. Reehl, and D. H. Rosenblatt (eds.). 1982. Handbook of Chemical
Property Estimation Methods: Environmental Behavior of Organic Compounds. Mcgraw
Hill, New York.

NCRP (National Council on Radiation Protection and Measurements). 1989. Screening
Techniques for Determining Compliance with Environmental Standards, Releases of
Radionuclides to the Atmosphere. NCRP Commentary 3. Bethesda, Maryland.

NCRP (National Council on Radiation Protection and Measurements). In Press. Task
Group 6. NCRP Scientific Committee 64.

Palisade Corporation. 1991. @RISK: Risk Analysis and Simulation Add-In for Microsoft
Excel; User's Guide. Newfield, New York.

Williams, IC A. and C. R. Hudson II. 1989. ORMONTE: An Uncertainty Analysis Code
for Use with User-Developed Systems Models on Mainframe or Personal Computers; A
User's Guide. ORNLfFM-10714. Oak Ridge National Laboratory, Oak Ridge,
Tennessee.

Worley, Brain A. 1987. Deterministic Uncertainty Analysis. ORNL-6428. Oak Ridge
National Laboratory, Oak Ridge, Tennessee.



Appendix
FORMULAS FOR THE MEAN AND VARIANCE OF LOGARITHMS

OF LOGNORMAL, LOG-UNIFORM, AND LOG-TRIANGULAR
DISTRIBUTIONS

The following distributions are suggested for subjective probability distributions in
analysis of multiplieative models.

Lognormal distribution (Hoffman and Gardner 1983):

= In x J ' (A.1)
1+

and

o2=la I+

where x is the arithmetic mean of the distribution and S is the standard deviation of the
distribution.

Log-uniform distribution (Hoffman and Gardner 1983):

2

and

0 2 = .
12
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Asymmetrical log-triangular distribution (Beauchamp 1991, Johnson and Kotz 1970):

tt

and

o'- _C_a)l _+t_(b)]_-_,0]+_Cb)]+[h_n')]_
[6 (A.6)

where

H" = the mode of the triangular distribution,
b = the maximum of the triangular distribution,
a = the minimum of the triangular distribution.

The following distributions are suggested for use as subjective probability distributions
in analysis of additive models.

Normal distribution:

The mean value of the normal distribution is simply the value at the 50th percentile.
With a normal distribution the median, mode, and mean are ali the same. The variance
of the normal distribution is the second central moment of the variable or the square of
the standard deviation.

Uniform distribution:

and

s 2 _ . (_8)
12
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Asymmetrical triangular distribution (Beauchamp 1991, Johnson and Kotz 1970):

x- 1 ali= -lH*+ b + (_9)9

3

and

s2 = ---t[(a)2+ (b)2 - (a)(b). (H')2 - (U')(a+ b)] (A.lo)18

In addition to these suggested distributions, a few more distributions that one may
use are Poisson, Weibul, gamma and beta distributions, custom designed, and any number
of discrete distributions (Decisioneering 1991, Palisade Corporation 1991).
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