

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in E's Research and Development efforts to business, industry, the academic community, and federal, state and local governments..

Although portions of this report are not reproducible, it is being made available in microfiche to facilitate the availability of those parts of the document which are reproducible.

CONF 870142--6

LA-UR-87-309

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

LA-UR-87-309

DE87 006073

TITLE: LOW-TEMPERATURE SPECIFIC HEAT OF UBe₁₃

AUTHOR(S): R. A. Fisher, S. E. Lacy, C. Marcenat, J. A. Olsen,
N. E. Phillips; Lawrence Berkeley Laboratory, Berkeley, CA
Z. Fisk, P-10; A. L. Giorgi, MST-5; J. L. Smith, CMS
G. R. Stewart, University of Florida, Gainesville, FL

SUBMITTED TO: Fifth International Conference on Valence Fluctuations
January 5-9, 1987, Bangalore, India

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

MASTER

Los Alamos

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

LOW-TEMPERATURE SPECIFIC HEAT OF UBe₁₃

R. A. Fisher¹, S. E. Lacy¹, C. Marcenat¹, J. A. Olsen¹,
 N. E. Phillips¹, Z. Fisk², A. L. Giorgi², J. L. Smith² and
 G.R. Stewart^{2,3}

¹MRD, Lawrence Berkeley Laboratory, University of California,
 Berkeley, CA 94720 USA

²MST, Los Alamos National Laboratory, Los Alamos, NM 87545 USA

³Present address: Department of Physics, University of
 Florida, Gainesville FL 32611 USA

The specific heats (C) of the heavy-fermion superconductors, CeCu₂Si₂, UPt₃ and UBe₁₃, show significant sample-to-sample variations in both the normal and superconducting states (C_n and C_s, respectively). For some samples, C_s/T ≠ 0 at T=0. This has been interpreted as evidence for gapless superconductivity [1-3], and, in the case of UPt₃, as evidence of a gap over part of the Fermi surface [4], but could also indicate simply that some of the material remains normal. Measurements of C are reported here for four polycrystalline samples of UBe₁₃ of differing quality, gauged by transition temperature (T_c) and width (ΔT_c). There is a strong correlation of C_s/T at T=0 with T_c and ΔT_c. The data also give some information on extrapolation of C_n to T=0.

Fig. 1 shows C/T below 1K in magnetic fields (H) of 0 and 7.5T. Cubic

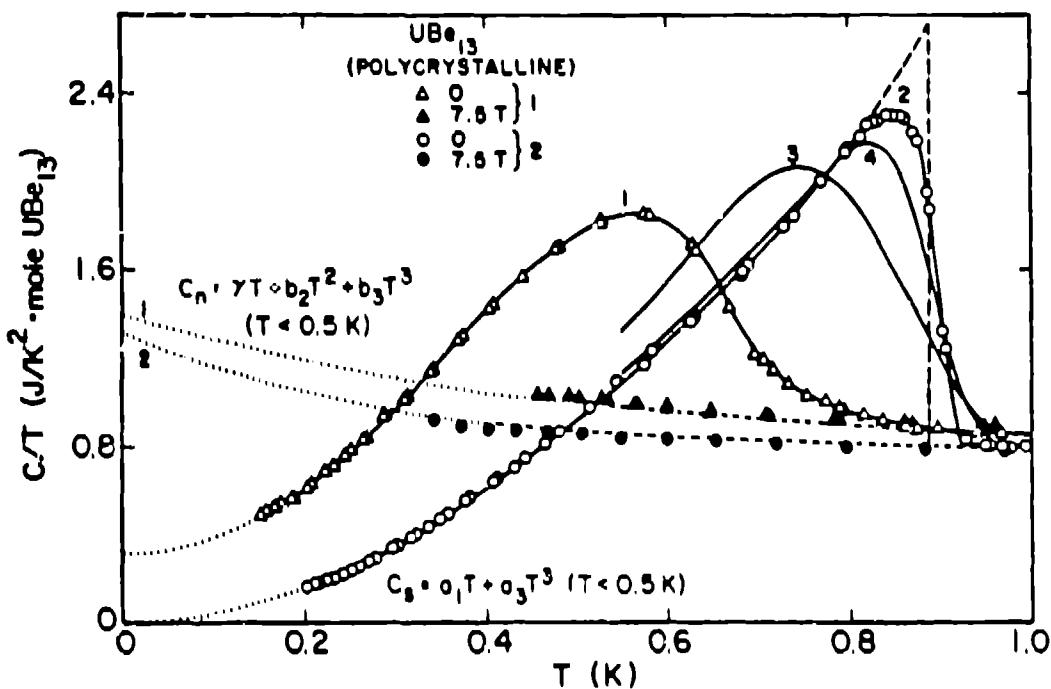


Fig. 1. C for four samples of UBe₁₃ below 1K.

spline fits of the $H=0$ data for samples 3 and 4 are displayed near and below T_c . Above T_c , 7.5T has only a small effect on C ; below T_c it suppresses the transition at the lowest T investigated, 0.35K. The light dashed curves represent probable values of C_n/T at $H=0$. They are parallel to C/T at 7.5T, but shifted by the small (barely perceptible) amount necessary to coincide with C/T at $H=0$ just above T_c . The dotted extrapolations to $T=0$ are by the 3-term polynomials indicated in Fig. 1, with two coefficients chosen to force a match to the dashed curves and the third chosen to give the same high- T entropy as that derived from C_g . Values of γ derived by this process are given in Table 1 for all four samples. Just above T_c , C_n/T is nearly constant but increases slowly with decreasing T . The experimental data display a more rapid increase below T_c , and a still more rapid increase is required below 0.35K (in the region of the extrapolation) to conserve entropy.

The heavy dashed vertical line for sample 2 is the idealized, entropy-conserving construction for a sharp transition at T_c . (Similar constructions for the other samples are omitted for clarity.) Table 1 lists values of T_c and δT_c , the difference between T_c and T at the onset of superconductivity.

C_g data at $H=0$ for the four samples are plotted in Fig. 2. From least-squares fits, the straight lines in the insert, it is evident that C_g for all samples is well represented by $C_g = a_1 T + a_3 T^3$. (Table 1 lists a_1 and a_3 .) The positive deviation from this form at low- T for sample 4 has a T^{-2} dependence and may reflect a contribution from impurities. A small upturn of C/T at low- T for sample 2 is perhaps also due to impurities, but the effect is too small to permit analysis of the T dependence. The solid curves in Fig. 2 represent $a_1 T + a_3 T^3$ plus the additional T^2 term for sample 4. The strongly sample dependent a_1 correlates with T_c and δT_c : For samples 2 and 4, with the higher T_c and lower δT_c , $a_1 = 0$. We conclude that the linear term is not an intrinsic property of UBe_{13} . The T^2 dependence of C_g , which contrasts with

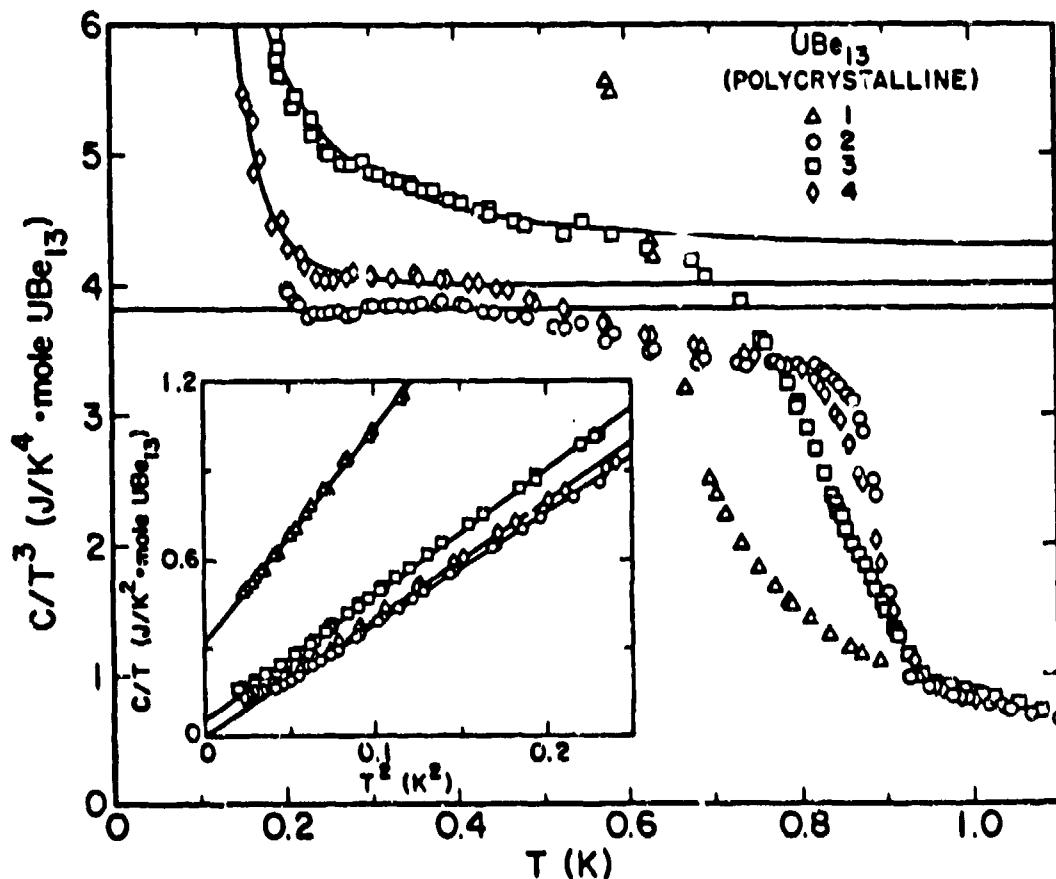


Fig. 2. Limiting low temperature behavior of C for UBe_{13} .

Table 1. Properties Characterizing Four UBe_{13} Samples below T_c . Units: a_1 and γ in $\text{J/K}^2\cdot\text{mole}$; a_3 in $\text{J/K}^4\cdot\text{mole}$; $C(1\text{K})$ and $S(1\text{K})$ in $\text{J/K}\cdot\text{mole}$.

3

Samples	$\delta T_c(\text{K})$	$T_c(\text{K})$	γ	a_1	a_3	f_s	r	$C(1\text{K})$	$S(1\text{K})$
2	0.03	0.89	1.31	0	3.82	1	2.4	0.789	0.904
4	0.07	0.89	1.40	0	4.00	1	2.1	0.790	0.891
3	0.11	0.84	1.34	0.06	4.25	0.96	2.0	0.861	0.971
1	0.15	0.68	1.39	0.31	7.32	0.78	2.0	0.855	1.058

the BCS exponential dependence on T , has been observed previously for UBe_{13} , and has been interpreted in terms of p-wave pairing [5]. Power laws in T for C_g have also been found for CeCu_2Si_2 and UPt_3 and have been interpreted as arising from points or lines on the Fermi surface with zero gap [1-3]. In addition to the power law for C_g , there is a new feature for samples 2 and 4 -- a small but significant departure from T^3 behavior near 0.5K, corresponding approximately, especially for sample 2, to a change in the value of a_3 . This effect is also present for a sample studied by the Darmstadt group [2] (Fig. 7b). The fact that the same effect is seen in three samples from two separate sources, and in two laboratories with independent measuring techniques, demonstrates that it is a real, intrinsic property of UBe_{13} . (Samples 1 and 3 do not show this "transition" region, perhaps because of a lowered quality.) An intriguing possibility is that this feature is related to the second transition [6] in $(\text{U, Th})\text{Be}_{13}$ that persists for UBe_{13} .

BCS theory gives $r \approx [(C_g - C_n)/C_n(T_c)] = 1.43$. Taking "ideal" values of $C_g - C_n$ (derived from constructions like that for sample 2 in Fig. 1), $r = 2.4$ for sample 2, close to reported values [2,5] and typical for strong coupling superconductors. For sample 4, $r = 2.1$. For samples 1 and 3, $r < 2$, but, assuming the $a_1 T$ term in C_g is due to material remaining normal, r would be corrected to 2.0 for both. The superconducting fraction of the sample at $T=0$, $f_s \approx 1-a_1/\gamma$, and corrected values of r are given in Table 1.

Fig. 3 shows C_g/T vs. T from 1 to 20K for samples 1 and 2 at $T=0$, and sample 2 at 7.5K. In the region of the broad maximum in C_g (1-5K) the samples differ somewhat, while above 5K, C_g is nearly the same for each. Between 5

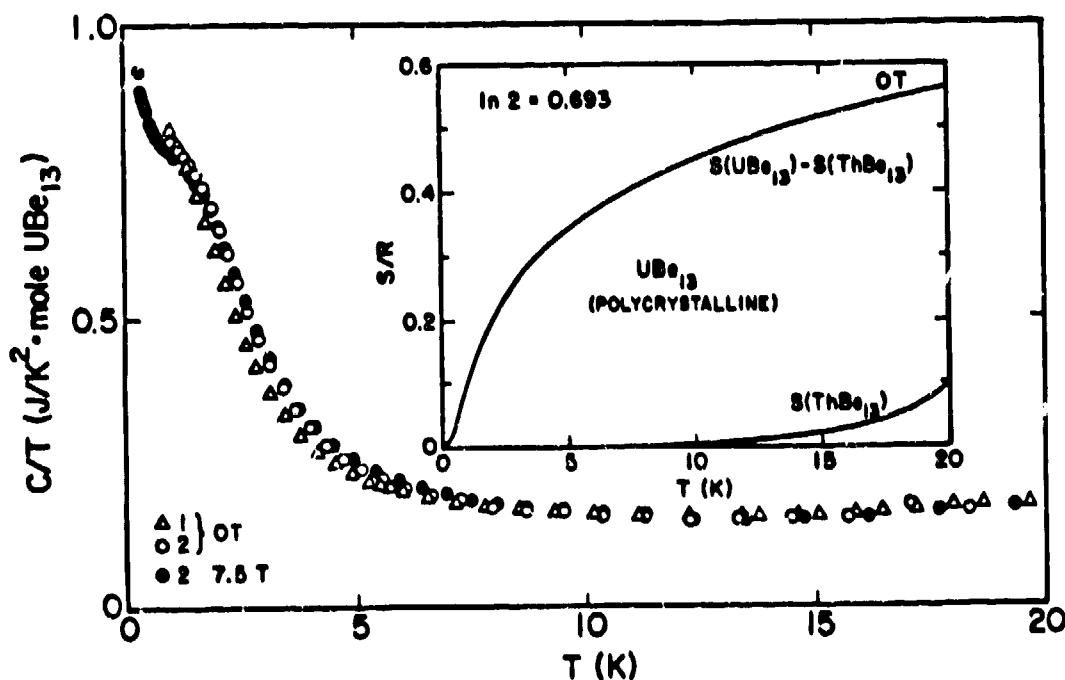


Fig. 3. C and S for UBe_{13} at 0 and 7.5T to 20K.

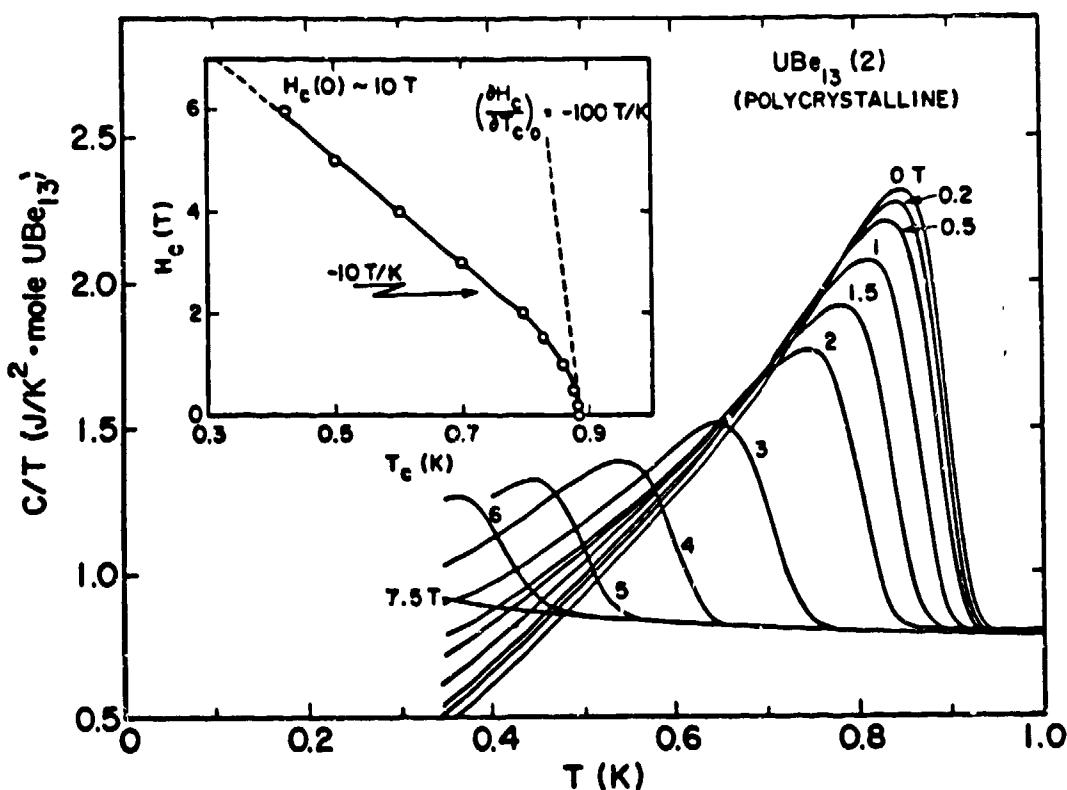


Fig. 4. H_c vs. T_c for UBe_{13} as measured by C in fields to 7.5T.

and 20K, C_n/T has a weak T dependence with a minimum near 12K. Stewart [1] has reviewed measurements of C in this T-range. The insert shows the electronic entropy calculated by subtracting the entropy for $TlBe_{13}$ [7].

Fig. 4 shows cubic spline fits of C/T vs. T for sample 2 in fields to 7.5T. (Precision of the data is similar to that in Fig. 1.) T_c vs. H_c is shown in the insert -- T_c was taken as T at the midpoint of the transition, and these values of T_c are not equal to those in Table 1. Initially $(\partial H_c / \partial T_c)$ is $-100T/K$ (at least) and for higher H is linear at $-10T/K$. At T=0, H_c extrapolates to 10T. Similar calorimetric results have been reported [8].

Work at Berkeley was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract DE-AC03-76SF00098. Work at Los Alamos was supported by the U.S. Department of Energy.

REFERENCES

1. G. R. Stewart, Rev. Mod. Phys. 56: 755 (1984).
2. F. Steglich, "Theory of Heavy Fermions and Valence Fluctuations", ed. T. Kasuya and T. Saso, Springer Series in Solid State Sciences 62: 23 (1985).
3. Z. Fisk, H. R. Ott, T. M. Rice and J. L. Smith, Nature 320: 6057 (1986).
4. T. Oguchi, A.J. Freeman and G.W. Crabtree (preprint).
5. H. R. Ott, H. Rudigier, T. M. Rice, K. Ueda, Z. Fisk and J. L. Smith, Phys. Rev. Lett. 52: 1915 (1984).
6. H. R. Ott, H. Rudigier, Z. Fisk and J. L. Smith, Phys. Rev. B31: 1651 (1985).
7. E. Bucher, J. P. Maita, G. W. Hull, R. C. Fulton and A. S. Cooper, Phys. Rev. B11: 440 (1975).
8. U. Rauchschwalde, U. Ahlheim, F. Steglich, D. Rainer and J. J. M. Franse, Z. Phys. B60: 379 (1985). H. R. Ott, H. Rudigier, E. Felder, Z. Fisk and J. L. Smith, Phys. Rev. B33: 126 (1986).