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ELECTROSTATIC CONTROL OF ACID MIST EMISSIONS

ABSTRACT

This paper describes a two-phased study of the control o f acid mist emissions 

using a compact, wet e le c tro s ta tic  p rec ip ita to r (WESP). The goal o f the study 

was to determine the degree o f acid mist control that could be achieved when a 

compact WESP is  used to replace or augment the mist elim inators in a flu e  gas 

desulfurization  (FGD) system. Phase I of the study examined the e le c tric a l 
operation of a lab-scale WESP co llecting  an acid mist from a coal combustion 
p ilo t  plant equipped with a spray chamber. The results of th is  study were 

used to develop and va lid ate  a computer model o f the WESP. In Phase I I ,  

measurements were made at two u t i l i t y  scrubber in s ta lla tio n s  to determine the 

loadings of acid m ist, f ly  ash, and scrubber carryover. These measurements 

were used as input to the model to project the performance of a re tro f it te d  

WESP.

The Phase I resu lts showed th a t excellent e le c tric a l operating conditions 

could be achieved, but very high loadings of acid mist or fin e  f ly  ash tended 

to degrade e le c tr ic a l operation because of space charge suppression of the 

corona current. Measurements made at the u t i l i t y  s ites  under Phase I I  showed 

that 87 to 91% of the to ta l particu la te  mass ex itin g  the existing mist 
elim inators was submicron in s ize . Acid mist accounted for 27 to 45% of th is  

particu la te  mass; while f ly  ash accounted for 53 to 6 8 % and scrubber solids 

for 1.9 to 3.4%. Projections of WESP performance suggest that a compact WESP 

having a specific  co llecting  area (SCA) of 50 ft^kacfm  could co lle c t 85 to 

90% of th is  submicron material and maintain stack opacity below 20%.



ELECTROSTATIC CONTROL OF ACID MIST EMISSIONS

INTRODUCTION

Acid mists can be a major source of corrosion problems and v is ib le  emissions 

at power plants that burn high-sulfur coals and are equipped with wet flu e  gas 

desulfurization (FGD) systems. When flu e  gas is  rap id ly  cooled in an FGD 

system, the SO3  is condensed along with water vapor to form an u ltra fin e  mist 
of s u lfu ric  acid. The mist droplets are so small that they escape co llection  

in the scrubber and the mist elim inators (MEs) (1 ) .  When discharged into the 

atmosphere, these fin e  droplets scatter and absorb lig h t very e ffe c tiv e ly ,  
sometimes resu lting  in excessive v is ib le  emissions. The presence of the acid 

mist in the flu e  gas can also be a contributing factor in excessive corrosion 

of the ducting and the stack lin e r  downstream from the MEs. I f  a wet e le c tro ­
s ta tic  p rec ip ita to r (WESP) is used to replace or augment the MEs, the acid 

mist loading can be substantia lly  reduced, along with the associated corrosion 

problems.

Under contract to the Department o f Energy/Pittsburgh Energy Technology Center 
(DOE/PETC), Southern Research In s titu te  investigated the use o f a compact WESP 

to  control acid mist emissions. The project was prim arily  directed toward 

acid mist emissions from wet FGD systems, although other sources o f acid mist 
could be controlled by th is  approach. The goal o f th is  investigation was to  

assess the improvement in acid mist control that was possible by using a WESP 

to replace or augment the existing MEs in an FGD system. The project was 

organized in two Phases. Phase I was in it ia te d  in August 1988 and completed 

in November 1989. I t  involved laboratory and p ilo t-s c a le  studies o f the WESP 

concept, along with the development of a WESP computer model. Phase I I  was 

completed in April 1991 and involved f ie ld  measurements at u t i l i t y  FGD 

in s ta lla tio n s , projections o f WESP performance, and development of a WESP 

demonstration plan.



PHASE I OBJECTIVES

The primary objectives o f the Phase I e f fo r t  were to (1) determine the 

a b il i ty  o f a compact WESP to c o lle c t the fin e  acid m ist, (2) determine the 

e ffe c t o f f ly  ash loading on mist co llection  e ffic ie n c y , and (3) develop and 

valid ate  a computer model o f the WESP to help in terp re t te s t results and 

extrapolate resu lts  to fu ll-s c a le  applications. The second objective was 

included because the f ly  ash loading leaving the scrubber can vary widely, 
depending upon the performance of the upstream particu la te  control device. 
Also, a very high loading of submicron f ly  ash could adversely a ffe c t WESP 
performance by space charge suppression of the corona current.

PHASE I APPROACH

The approach used in Phase I o f th is  project was to f i r s t  fabricate  a 

laboratory-scale WESP that could be used to  determine the expected WESP 

fractiona l co llection  e ffic ie n cy  and provide data fo r va lid ating  a computer 
model o f the WESP. Since i t  was anticipated that the v o la t ile  acid mist could 

present sampling d if f ic u lt ie s ,  in i t ia l  testing was done with a nonvolatile  

simulant o i l ,  d i-2-ethylhexyl sebacate (DES). A sketch o f the WESP setup used 

fo r these tests  is  shown in Figure 1. A fter successful completion of these 

tes ts , the WESP was modified and connected to a p ilo t-s c a le  combustion system 

to allow testing  on an actual acid m ist. The acid vapor was generated by 

f ir in g  e ith e r S0 2 -doped natural gas or a combination o f SOj-doped natural gas 

with coal. This was done to allow testing o f the WESP on the mist alone and 

the mist in combination with a f ly  ash loading ty p ic a lly  encountered down­
stream from a scrubber. The acid mist was formed by passing the flu e  gas 

through a spray hum idification chamber to simulate condensation in the 

scrubber system. A sketch o f the modified WESP setup used in the p ilo t  

combustor tests is shown in Figure 2.

The data obtained from the tests with the DES and the actual acid mist were 

used to va lid ate  the computer model a fte r  each series o f tes ts . The validated  

computer model was then used to make projections of WESP performance in a 

u t i l i t y  r e t r o f i t  s itu a tio n .



LABORATORY TESTS WITH SIMULANT OIL
The WESP setup used 1n these tests consisted o f a tubular WESP made from a 

1 / 8 - inch diameter wire suspended along the axis o f a 8 - inch diameter galva­

nized metal tube. The energized length of wire was 3 .5  fe e t. For the 

laboratory te s ts , a ir  was drawn through the WESP system at a nominal flowrate  

of 100 cfm, resu lting  in a WESP specific  co llecting  area (SCA) o f about 74 

ftVkacfm . This may be compared to a typical f ly  ash p rec ip ita to r having an 

SCA of 250 to  350 ftVkacfm . Thus, these tests  were designed to simulate a 

very compact WESP design.

The DES o il was atomized using a Sonic Development ST-47 nozzle operated at an 

a ir  pressure o f 8 8  psig and an o il pressure of 12 psig. This ty p ic a lly  pro­
duced an aerosol with a mass mean diameter o f about 4 jum. Although th is  is
somewhat coarse for an acid m ist, i t  provided an adequate concentration of
submicron p artic les  fo r re lia b le  size-resolved e ffic ien cy  measurements.

Collection e ffic ie n c y  as a function of p a rtic le  size was determined from 

cascade impactor measurements made at the in le t  and o u tle t o f the WESP.
Typical resu lts obtained from these measurements are compared with the results  

of two a lte rn ate  computer models, a curren t-specific  model ( 2 ) and a current- 

seeking model (3 ) ,  in  Figure 3 . For the p a rtic le  size range resolved in these 

tes ts , the co llection  e ffic ien cy  varied from about 97% for submicron partic les  

to 99.8% for 10 im p a rtic le s . These results were extremely encouraging and 

showed good agreement with one of the two models in i t i a l l y  considered.

The curren t-spec ific  model was found to give better agreement with the WESP 

performance data, because i t  allowed input o f both the applied voltage and the 

operating current. The current-seeking model predicts the current based on
the applied voltage and the p articu la te  space charge. The equation that is
used for th is  is  va lid  only in the region near corona onset ( i . e . ,  a t re la ­
t iv e ly  low voltage and curren t). The current-seeking model does not do a good 

job o f predicting performance in th is  case since the actual voltage and 

current (60 kV and 270 /iA /ft^) are fa r from the region of corona onset (about 
30 kV and near-zero curren t).



PILOT COMBUSTOR TESTS WITH ACTUAL ACID MIST
For these te s ts , the WESP was connected to a p ilo t-s c a le  coal combustion 

f a c i l i t y  equipped with a spray hum idification chamber to serve as a source for 

the condensed acid m ist. The acid mist was generated by f ir in g  S0 2 -doped 

natural gas in the combustor and condensing the resu lting  acid vapor in to a 

fin e  mist in the spray hum idification chamber. Since th is  resulted in a 

saturated flu e  gas entering the WESP, i t  was necessary to  make extensive 

modifications to the WESP setup to avoid e le c tric a l tracking along the high- 
voltage in su la to r. As shown in Figure 2, a h o t-a ir  purge system was in s ta lled  

to keep the high-voltage insulator dry, and a mist elim inator was added to  

prevent the carryover of large unevaporated droplets in to  the WESP. The hot 
purge a ir  ty p ic a lly  accounted for about h a lf of the to ta l gas flow through the 

WESP. Since the mist e lim inator would co lle c t mostly large p a rtic le s , i t  had 

l i t t l e  e ffe c t on the acid mist frac tio n .

As in the laboratory tes ts , the size-dependent e ffic ien cy  o f the WESP was 

determined by cascade impactor measurements at the in le t  and o u tle t of the 

WESP. Since the hot purge a ir  was added downstream from the in le t  sampling 

location , the in le t  loadings had to be corrected for th is  d ilu tio n . Blank 

impactor runs were performed with each set o f runs to ensure that no a r t i f i ­
c ia l weight gains resulted from flu e  gas in teraction  with the impactor 
substrate m ateria l. The impactor substrates were also acid washed to neu tra l­
ize  any a lka lin e  s ites  th a t might adsorb SOj and cause a spurious weight gain.

Prior to each set o f impactor runs, a measurement o f the gas-phase SO3  level 
by the controlled condensation method was made to  assure constant conditions. 
To cover a range of acid mist concentration, two series o f tests were conduct­
ed at nominal SO3  levels o f 25 ppm and 47 ppm. For these two series of tes ts , 
the average in le t  mass loadings of acid mist were 8 . 6  mg/acm (0.0038 g r/ac f) 

and 16.3 mg/acm (0.0071 g r /a c f) . These loadings were lower than expected for 

complete condensation o f the acid, possibly due to removal o f some of the acid 

vapor in the spray chamber. Nevertheless, the loadings showed the expected 

varia tion  with SO3  le v e l. A summary of the te s t results is given below.



Test Parameter Low SO, High SO,

In i t ia l  SO3  concentration, ppm 
In le t  mass loading, mg/acm (g r/a c f)  
In le t  mass median diameter, /on 
WESP applied voltage, kV 
ESP current density, /xA/ft^
Specific co llecting  area, ftVkacfm  
Collection e ffic ie n c y , %

Smaller than 1 im 
Smaller than 5 /xm

25
8.59 (0.0038)

1.9 
68

251
48.9

87.4 to 92.9
88.5 to 93.0

47
16.3 (0.0071) 

1.5
68

196
40.3

62.1 to 83.0
71.4 to 91.8

These results show th at the WESP is  capable o f good control e ffic ie n c ie s  at an 
SO3  level o f 25 ppm. However, the WESP performance degrades at the higher SO3  

level of 47 ppm. Although th is  is p a rtly  a ttrib u ta b le  to a s lig h t d ifference  

in the spec ific  co llecting  area, the primary factor is  the reduction in cur­
rent density from 251 to 196 /xA/ft^, a reduction o f 22%. This resu lts  from 

the increased particu la te  space charge and the concomitant suppression of 
corona current.

The space charge e ffe c t could be seen very dram atically in the voltage-current 
characteris tics  of the WESP, as il lu s tra te d  in Figure 4. At an applied v o lt ­
age o f 50 kV, the operating current with no acid mist present was about 1.1 

mA, compared to a current o f about 0 .4  mA with 25 ppm of SO3  ( 8 . 6  mg/acm of 
acid m is t). With 47 ppm of SO3  (16.3 mg/acm of acid m is t), the current was 

further reduced to  about 0.35 mA at 50 kV. In actual p ractice, i t  may be 

possible to compensate fo r th is  e ffe c t to some degree by increasing the ap­
plied voltage. As shown in Figure 4, the voltage was ac tu a lly  increased to 

over 80 kV without sparkover, but th is  was not considered to be a r e a l is t ic  

operating point fo r a commercial WESP.

I t  should be noted th a t a ll  o f the WESP testing  with an actual acid mist was 

done with a much lower SCA than that used in the laboratory tests with the DES 

aerosol (40 to 49 versus 74 ftV kacfm ). This was done to provide a more re a l­
is t ic  simulation o f a very compact WESP that could be re tro f it te d  onto a 

scrubber. This d ifference in SCA, combined with the reduced current densities  

(196 to 2 5 1  versus 270 /xA/ft^), account for the lower co llection  e ffic ien c ies  

with the acid m ist. The reduced current densities are a resu lt of the space 

charge e ffe c t, which is  more pronounced with acid mist due to the larger 

number o f fin e  partic les  (1 .5  to 1.9 versus 4 /xm mass median diam eter).



PILOT COMBUSTOR TESTS WITH MIST AND FLY ASH
Since a dramatic space charge e ffe c t was evident in the m ist-only resu lts , 
additional tests were conducted to examine any further degradation in WESP 

performance th a t might be caused by fin e  f ly  ash p a rtic le s . This was accom­

plished by c o -fir in g  the S0 2 -doped natural gas with a small quantity of coal 
to simulate the mass loading of f ly  ash in flu e  gas leaving a scrubber. The 

to ta l thermal input- in to  the combustor was maintained constant so there would 

not be a s ig n ific a n t change in the temperature p ro file . With coal burned at a 

ra te  of 2 lb /h r  and SOj-doped natural gas fire d  at a ra te  o f 970 cfh, the flue  

gas entering the spray chamber contained about 45 ppm of SO3 , and the in le t  

mass loading averaged about 27.6 mg/acm (0.012 g r /a c f) . This is  comparable to  

recent measurements made by F lak t, In c ., a t a scrubber in s ta lla tio n  of 
Seminole E le c tr ic , where an average loading of 28.8 mg/acm (0.0126 g r/a c f) was 

reported ( 1 ) .

Assuming th a t the ra tio  o f the acid mist mass loading to the SO3  level was the 

same as in the two m ist-only tes ts , the in le t  loading of acid mist may be 

estimated to be 15.6 mg/acm (0.0068 g r /a c f) . By d ifference , the in le t  loading 

of f ly  ash is  about 12.0 mg/acm (0.0052 g r /a c f) . With a coal containing 10% 

ash, th is  loading of f ly  ash would correspond to an upstream control e f f ic ie n ­
cy (in  the primary ESP or baghouse and scrubber) o f about 99.7%, y ie ld ing  a 

mass emission ra te  o f about 0.013 Ib/MMBtu, based on f ly  ash only. The to ta l 
mass emission ra te , including acid m ist, would be about 0.03 Ib/MMBtu. The 

to ta l p articu la te  mass would be composed of about 57% acid mist and 43% f ly  

ash. Based on the measured mass median diameters (mmds) o f the mist (1 .5  //m) 
and the m is t /f ly  ash combination ( 2 . 2  im ), the mmd of the f ly  ash is estimated 

to be 3.1 /mi. This case is  believed to be a reasonable simulation o f a 

precipitator/scrubber in s ta lla tio n  operating in compliance with the 1979 NSPS 

(4 ) .  The results o f th is  te s t are summarized below; the results o f the high- 
SO3  mist case are also included for comparison.



Test Parameter
Mist Only 
High SO3

Mist Plus 
Fl v Ash

In i t ia l  SO3  concentration, ppm 
In le t  mass loading, mg/acm (g r/a c f)  
In le t  mass median diameter, /xm 
WESP applied voltage, kV 
WESP current density, /xA/ft 
Specific co llecting  area, f t  /kacfm 
Collection e ffic ie n c y , %

Smaller than 1 /xm 
Smaller than 5 /xm

47
16.3 (0.0071) 

1.5
68
196

40.3

62.1 to 83.0
71.4 to 91.8

45
27.6 (0.012) 

2 . 2  
45 
64

42.5

63.4 to 77.1 
65.1 to 77.6

Comparison of the mist-plus-ash case and the m ist-only case shows a s trik in g  

degradation o f the e le c tr ic a l operating conditions with f ly  ash present. With 

f ly  ash in the system, i t  was not possible to maintain the same applied v o lt ­
age th a t was used in the m ist-only case. In term itten t sparking resulted in 

excessive tripp ing  o f the power supply and lim ited  the applied voltage to 

about 45 kV. I t  may have been possible to  operate at a higher voltage, but 
th is  would have required frequent resetting  o f the power supply, which may 

have compromised the o u tle t impactor data. In actual practice, the use o f a 

spark-rate co n tro lle r may p a r t ia lly  a lle v ia te  th is  problem.

The presence of the f ly  ash appears to produce a larger performance degrada­
tion  in the 1 to 5 /xm size range than in the submicron size range. Since a 

very small mass frac tion  o f the f ly  ash is submicron (ty p ic a lly  less than 1  to 

2 %), i t  would not be surprising to see s im ilar submicron co llection  e ff ic ie n ­
cies for the two cases, i f  the e le c tric a l operating conditions were s im ila r. 
However, the degraded e le c tric a l conditions apparently lim ited  the maximum 

submicron co llection  e ffic ien cy  to 77.1%, compared to 83.0% for the mist only. 

For a ll  p artic les  smaller than 5 /xm, the cumulative co llection  e ffic ien cy  was 

reduced from a maximum of 91.8% to 77.6% with f ly  ash present.



PHASE I I  OBJECTIVES

The primary goal o f the Phase I I  work was to re fin e  the projections o f WESP 

performance by using data from two u t i l i t y  FGD in s ta lla tio n s . This required 

SO3  and p a rtic le  size measurements, along with chemical analyses, to  determine 

the loadings of acid m ist, f ly  ash, and scrubber solids downstream from the 

two scrubbers. These measurements provided the data needed to project WESP 

performance using the computer model developed in Phase I .  A secondary 

objective was to  estimate the e ffe c t of the WESP on opacity re la tiv e  to the 

baseline configuration (scrubber with ME on ly ). Another major objective of 
Phase I I  was to develop plans for a follow-on demonstration o f the WESP 
concept at u t i l i t y  s ite s , i f  warranted.

SITE SELECTION

The f i r s t  task under Phase I I  was to select the te s t s ites  fo r the f ie ld  

measurements. I t  was preferred that the two sites  have substan tia lly  d i f fe r ­
ent levels o f SO3  in the flu e  gas, so that the e ffe c t o f acid mist loading 

could be examined. A high SO3  concentration was desirable at one o f the 

s ite s , so th a t the e ffects  o f space charge corona suppression could be further 

analyzed using the computer model. I t  was also considered desirable to avoid 

the selection o f two s ites  with the same types o f bo ile rs , scrubbers, and MEs, 
so that the results would be applicable to a wider range o f equipment types. 
Based on these considerations, two sites were u ltim ate ly  selected.

S ite  1 was a 700-MW, cyclone-fired un it equipped with a combination ve n tu ri/ 
spray tower FGD system. The FGD system consisted o f s ix  scrubber modules, 
f iv e  of which were normally in  operation. At the e x it  of each tower, the gas 

was discharged at a r ig h t angle and flowed h o rizon ta lly  through two vertica l 
mist e lim inators. Because of severe corrosion of the reheater tubes, the 

reheater had been removed, and the un it had been converted to wet-stack 

operation. The combination o f a high sulfur content (3.2% nominal) and high 

iron content in the ash, along with the high-temperature cyclone f ir in g , was 

reported to  produce a very high SO3  concentration at th is  s ite  (5 ) .



S ite  2 was a 575-MW, pulverized c o a l-fire d  un it equipped with a venturi 
rod/spray tower FGD system. Each o f the four scrubber modules was equipped 

with a horizontal mist e lim inator mounted d ire c tly  above the spray tower, so 

that the gas flow through the mist e lim inator was v e r t ic a lly  upward. Just 

above the mist e lim inator was an in - lin e  tubular reheater. Previous data 

obtained at th is  s ite  ( 6 ) suggested that the SO3  concentration would be lower 
than at S ite  1, although the nominal coal su lfu r content was about the same as 

at S ite  1. The lower conversion of SO2  to  SO3  a t S ite  2 is  presumably 

associated with the d iffe re n t b o iler type and the lower iron content of the 

ash.

SO2 /SO3  DATA

Table 1 gives a sunsnary o f the SO2  and SO3  concentrations measured ahead of 
the scrubber a t both s ite s . There is essen tia lly  no d ifference in the SO2  

concentrations measured at the two s ite s , but the SO3  concentration is  

s ig n ific a n tly  higher at S ite  1, fo r the reasons already discussed. I f  the 

reported amounts o f SO3  were completely condensed in the form o f s u lfu ric  acid 

(H2 SOJ, th is  m aterial alone could account fo r a mass loading of about 0.03 

gr/dscf a t S ite  1 or about 0.02 gr/dscf a t S ite  2. At S ite  1, th is  would be 

s u ffic ie n t to account fo r over 85% of the particu la te  mass measured at the ME 

o u tle t by the cascade impactors. At S ite  2, i t  would be s u ffic ie n t to account 
for about 70% of th is  mass. However, chemical analyses o f the impactor 
samples (discussed la te r )  reveal that the H2 S0  ̂ ac tu a lly  accounts for only 40 

to  45% of the p articu la te  mass a t S ite  1 and about 57 to 62% of the particu­
la te  mass at S ite  2. This suggests that some of the SO3  or s u lfu ric  acid is  

removed in the scrubber and ME system.

To investigate the question of SO3  removal across the scrubber, o u tle t SO3  

measurements were made at S ite  2. To determine the amount o f SO3  removed, the 

sampling probe was heated to  convert a ll  o f the H2 S0  ̂ back to SO3. Measure­
ments were also made with the probe at flu e  gas temperature (about ISD’ F a fte r  

reheat) to  v e r ify  th a t a ll  o f the SO3  was condensed. These measurements 

confirmed that a ll  o f the SO3  was condensed at th is  point (residual below the



detection l im it  of 0 .3  ppm) and that the amount o f condensed H2 SO4  was 

equivalent to an SO3  concentration o f 6  ppm. A fter correcting the in le t  and 

o u tle t SO3  concentrations to the same O2  leve ls , the removal o f SO3  across the 

scrubber was calculated to be 28%. Allowing for th is  loss, the acid mist 
would be expected to  account for about 61% of the o u tle t particu la te  mass at 
Site  1 and about 50% of the o u tle t p articu la te  mass at S ite  2. Chemical 

analyses of the impactor samples revealed 40 to 45% H2 S0  ̂ a t S ite  1 (about 16 

to 20% less than calculated from the gas-phase SO3  concentration) and 57 to  

62% H2 SO4  a t S ite  2 (about 7 to 12% more than ca lcu la ted). The lower H2 SO4  

recovery at S ite  1 may indicate that the SO3  removal was higher than at S ite  2 

(removal measurements were made at S ite  2 on ly ). The s lig h tly  higher recovery 
at S ite  2 could be a ttrib u ta b le  to other sulfates in the ash.

TOTAL AND SUBMICRON MASS LOADINGS

P a rtic le  size and mass loading measurements were made a t both s ites  using 

U niversity  o f Washington Mark V cascade impactors th a t were heated to avoid 

condensation w ith in  the impactor. At S ite  1, these measurements were made at 
the ME in le t  and o u tle t with e ith er one or two MEs in place. This provided an 

analysis o f the size-dependent co llection  e ffic ien cy  of the MEs to compare to  

the projected performance of the WESP. Normally, the FGD system at S ite  1 
operates with two MEs in series . However, a WESP supplier (ABB F lak t, In c .)  

recommended that one o f the MEs be removed i f  a WESP were to be re tro f it te d .  
Therefore, measurements were made with both one and two MEs in place. 

Surprisingly, there was very l i t t l e  d ifference in the cumulative mass loadings 

measured with e ith e r one or both MEs in service. Therefore, only a single  

value is reported for the o u tle t mass loading.

At S ite  2, measurements were made at the ME o u tle t and the reheater o u tle t. 
Only the ME o u tle t data are o f in teres t fo r a WESP r e t r o f i t .  I t  would not 
make sense to r e t r o f i t  a WESP a fte r  the reheater, because the evaporation 

across the reheater would make the droplets fin e r and possibly more d i f f ic u l t  

to c o lle c t. These measurements were made at the request o f the host u t i l i t y  

to assist them in correlating  the measured emissions with opacity.



Table 2 presents the average to ta l and subtnlcron mass loadings obtained at 
both s ites  a t each sampling location. As expected, the mass loading was very
large ahead of the NEs (13.7 g r /a c f) , and th is  mass was dominated by partic les
larger than 1 /xm. The mass mean diameter (NMD) o f th is  m aterial was estimated
to be 44 /on. Downstream from the MEs, the mass loading was much lower, and
the p a rtic u la te  mass was predominantly submicron in s ize . The cumulative 

submicron mass loading was s lig h tly  higher at S ite  1 than S ite  2 (0.022 versus

0.021 g r /a c f) , although the cumulative submicron percentage was lower at S ite  

1 than S ite  2 (87% versus 95%). Thus, S ite  2 appears to have a fin e r  d is t r i ­
bution on the basis of submicron mass percentage, but i t  ac tu a lly  presents 

less challenging conditions for a WESP r e t r o f i t  than does S ite  1, because the 

absolute loading of submicron partic les  is lower a t S ite  2. This small 
difference in submicron mass translates into a large d ifference in the 

number concentration of submicron p a rtic le s , which is  c r it ic a l in terms of 
space charge e ffe c ts .

CHEMICAL COMPOSITION

The cascade impactor samples were analyzed to  determine the weight percent of 
HjSO ,̂ f ly  ash, and scrubber solids as a function of p a rtic le  s ize . The 

analytical methods and procedures for calculating the weight percent o f each 

component are detailed  in the Phase I I  fin a l report (7 ) .  To provide a 

s u ffic ie n t quantity of sample for analysis, selected impactor stages were 

combined, y ie ld ing  four size fractions: ( 1 ) larger than 8  /an, ( 2 ) 1  to 8  /xm,
(3) 0.1 to 1 /xm, and (4) smaller than 0.1 /xm. Figure 5 shows the H2 SO4  

content o f the various size fractions from S ite  1. As expected, H2 SO4  content 
increases with decreasing p a rtic le  s ize . At S ite  2, th is  same trend was e v i­
dent down to the 0 . 1  to 1  /an frac tio n , but the fraction  smaller than 0 . 1  /xm 

contained s lig h tly  less acid than the 0 . 1  to 1  /an frac tio n , as indicated  

below.

Scrubber Fly
Size frac tio n , /an H,SO.. Wt % Solids. Wt% Ash. 1

Less than 0.1 56.9 0.4 42.7
0 . 1  to  1 61.8 2 . 2 36.0
1 . 0  to 8 47.1 1 1 . 2 41.7
Larger than 8 27.3 72.7 0



WESP PERFORMANCE PROOECTIONS

The WESP computer model developed 1n Phase I was used to make performance 

projections fo r WESPs re tro f it te d  at the two te s t s ites  discussed above. For 
the S ite  1 projections, the mass loading and size d is tr ib u tio n  measured with 

one ME in place were used, since that configuration was recommended by a WESP 

supplier. For the S ite  2 projections, the measurements made at the ME o u tle t 
were used. In each* case, projections were made with two sets of e le c tric a l 

conditions, corresponding to the best and the worst conditions achieved in the 
Phase I p i lo t  tes tin g .

Predicted co llection  e ffic ie n c v . % 
E lec trica l conditions S ite  1 S ite  2

45 kV and 72 nA/cm  ̂ 84.9 97.5
60 kV and 114 nA/cm 90.2 98.7

The lower e ffic ie n c ie s  fo r S ite  1 are e n tire ly  a ttrib u ta b le  to the higher 

loading o f fin e  p artic les  and the resu lting  space charge e ffe c ts . For both 

cases, the SCA was 50 ftVkacfm ; the gas ve lo c ity  was 2 0  f t /s e c ; and the tube 

length was 1 0  f t .

For S ite  1, the baseline opacity, with both MEs in place, was 42 to 60% (as 

determined by a trained smoke reader a fte r  dissipation o f the steam plume).
The projected opacity a fte r  the WESP r e t r o f i t  described above was 11 to 19% 

with the worst e le c tric a l conditions and 8  to 14% with the best e le c tric a l 

conditions. For S ite  2, baseline opacity data were not ava ilab le , but the 

projected opacity (a fte r  the WESP r e t r o f i t )  was substantia lly  lower than at 
S ite  1 (1 .5  to  3% with the worst e le c tric a l conditions and less than 1.5% with 

the best e le c tr ic a l conditions). These results strongly suggest that the WESP 

r e t r o f i t  could maintain opacity below 2 0 % at both o f the s ites  investigated.

FOLLOW-ON DEMONSTRATION

Based on the resu lts of Phase I and Phase I I ,  a follow-on demonstration of the 

WESP concept appears to  be ju s t i f ie d . Therefore, prelim inary planning for a



follow-on demonstration has been undertaken. Two approaches have been consid­
ered: (1) In s ta lla tio n  o f a prototype WESP on a fu ll-s c a le  scrubber module
and (2) construction o f a sm aller, mobile WESP demonstration un it that could 

be tested at various u t i l i t y  s ite s . Although the fu ll-s c a le  un it would be 

preferable in some respects, the a b il i ty  to te s t a wide range o f conditions is 

a key factor favoring the mobile u n it. One possible embodiment o f a mobile 

unit is shown in Figure 6 . This un it would handle a gas flow of about 10,000 

acfm at 125*F (about 5-MW equivalent) and would f i t  on a standard 40 to 50 f t  

t r a i le r .  The design would include provisions to te s t d iffe re n t types of 
discharge electrodes as well as d iffe re n t types o f co llecting  tubes. Provi­
sions would also be made for rea l-tim e  monitoring o f the gas flow, tempera­
tu re , voltage, current, and opacity. Test parameters fo r the WESP demonstra­
tion  program would include: coal type, SOj/acid mist loading, f ly  ash and 

scrubber solids loadings, size d is tr ib u tio n , scrubber type, ME type, electrode 

types, and cleaning methods and frequencies.

There is  no d e fin ite  source of funding for the WESP demonstration un it a t th is  

tim e. However, the Department of Energy, the E lec tric  Power Research In s t i ­
tu te , several u t i l i t i e s ,  and a major WESP supplier have expressed considerable 

in te res t in th is  concept. Recognizing the potential benefits to the u t i l i t y  

industry and the potential market fo r WESP technology, the u t i l i t ie s  and the 

WESP supplier have agreed in principal to share a portion o f the project 
costs. During the in i t ia l  portion o f the proposed follow-on demonstration, an 

economic analysis o f the WESP technology would also be done. This analysis 

would address ex isting  WESP technology as well as various advanced concepts in 

discharge electrodes and m aterials o f construction.
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Table 1.

Summary o f SOj/SO  ̂ Measurements

S ite  1 S ite  2

Average SO, Concentration, ppm 2100 2200
502  Concentration Range, ppm 2000 to 2260 2190 to 2210
Average SO, Concentration, ppm 19 11
503  Concentration Range, ppm 13 to 25 9 to  13
Average SO^to-SO, Ratio 0.009 0.005
SO^-to-SOjIlatio Range 0.0065 to 0.011 0.004 to 0.006

Table 2.

Total and Submicron Mass Loadings

Mass Loading, g r/ac f

S ite  1 - ME In le t  
S ite  1 - ME Outlet 
Site  2 - ME O utlet 
S ite  2 - Reheater Outlet

Total Submicron

13.7 0.026 ( 0 . 2 %)
0.025 0.022 (87%)
0 . 0 2 2 0.021 (95%)
0 . 0 1 1 0.010 (91%)
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