
LBL--31935

EE92 01,7107

• Sequence Modelling and an Extensible
Data Model for Genomic Database

by

Peter Wei-Der Li

Medical Information Science
University of California, San Francisco

and

Information and Computing Sciences
l, awrence Berkeley Laboratory

University of California
Berkeley, California 94720

January 1992

Thls work was supported by the Director, Office of Energy Research, Office of Basic Energy Science:s,
Applied Mathematical Sciences Research Program, of the US, Department of'Energy under Contract DE.

_. ( ,AC03 76_F(_F) 8 :,

= _)I8FRIBU]JflHOFrHl_ oogtlt_r 1_UI4LIMI]'E_)

.... r , ...... " -- " %w_"t_': "_ a"_ " " _. _1,_ 4tAt . .... lt - lt ' dh_



' , , , , li _ L_, J' _ ' ' ,,II , ' , ,&l,, I_ , hJ,,
..... _, ,,

%

Sequence Modelling and an Extensible Data
Model for Genomic Database

Copyright © 1992

by

Peter Wei-Der Li

_he Government reserves for itself and

others acting on its behalf a royalty free,
nonexclusive, irrevocable, world-wide

license for government_%l purposes to publish,

distribute, translate, duplicate, exhibit,

and perform e_y suda data copyrighted by
the contractor, b

The U.S. Department of Energy has the right to use this thesis

for any purpose whatsoever including the right to reproduce
ali or any part thereof



Acknowledgments

I would like to thank my advisor, Dr. Arie Shoshani, whose, wisdom and guidance have made this

work possible. The many hours of discussion with him were the most rewarding part of this under-

t',ffdng. I would also like to thank my thesis committee members, Dr. Arie Segev, Dr. John Stark-

weather, and Dr. Robert Langridge, for supporting my efforts in this work.

I would like to thank the late Dr. Ma.rsden Blois, who gave me the opportunity to pursue this goal

back in 1984. I would also like to thank Dr. John Stewart and the late Dr. Jack Sadler and for advis-

ing me and guiding my interests while I was a student in their laboratories at the University of Col-

orado. It was at that time when the _eds of this ,,,__,rk was formed.

I would like to especially thank my wife, Jin Jen, for her help on the molecular biology discussed

in this work. In addition, her total support and love helped to make this undertaking a pleasant and

rewarding experience. And of course, many thanks to my son, Jason, for providing the often

needed and refreshing distractions while I was working on this thesis.

°°°

Ul

' '_Iq'l_l 'l'r, * '_lrllle '"_1 F '"¢I_11 " " ''llnl ..... If, i_ ,,,' [11qll 'qrl ,,li - rl iFpirll_s_,,' ii_pi,f i,iI li fir , ','q_,llS ,,,lllll,,lll' Iii' 11' i_ l_,qI'aml Pl'lrll '_"



Sequence Modelling and

.anExtensible Object Data Model ".,

for Genomic Databases
,ii,

by

Peter Wei-Der Li

ABSTRACT

The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the

next century. It will generate DNA sequences of more than 10 billion bases and complex marker

sequences (maps) of more than 100 million markers. Ali of these irfformation will be stored in data-

base management systems (DBMS's). However, existing data models do not have the abstraction

mechanism for modelling sequences and existing DBMS's do not have operations for complex

sequences. This work addresses the prob!em of sequence modelling in the contexlt of the HGP and

: the more general problem of an extensi'jle object data model that can incorporate, the sequence

model, as well ;ksexisting and future data constructs and operators.

First, we proposed a general sequence model that is application and implementation independent.

This model is used to capture the sequence information found in the t-tGP at the conceptual level.

in addition, abstract and biological sequence operators are detined for manipulating the modelled

sequences. Second, we combined many features of semantic and object oriented data models into

an extensible framework, which we called the "Extensible Object Model", to address the need t_l" lh

a modelling framework for incorporating the sequence data model with other types of data con-

structs and operators. This framework is based on the conceptual separation betwt',en constructors _,'*

and constraints. We then used this modelling framework to integrate the constructs for the concep-

tual sequence model. The Extensible Object Model is also delined with a graphical representatitm,

which is useful as a tool for database designer's. Finally, we delined a query language to supp_rl

this model and implement the query processor to demonstrate the feasibility of the extensible

framework and the usefulness of the conceptual sequence model.

z

iv



"FableofContents

Title ....................................................................................................................................... i

Copyright ............................................................................................................................... ii

Acknowledgments ............................................................................................................... iii

Abstract .............................................................................................................................. iv

_' Table of Contents .................................................................................................................. v

Overview ................................................................................................................................ 1

PART I. SEQUENCE ABSTRACTION ........................................................................... 3

CHAPTER 1. BACKGROUND .................................................................................. 3

1.1. Human Genome Project ................................................................................ 3

1.2, Nucleotides .................................................................................................. 4

1.3. Single Stranded DNA .................................................................................. 5

1.4. Double Stranded DNA ................................................................................. 6

1.5, DNA Fragments ........................................................................................... 7

1.6. Biological Organization ............................................................................. 11

CHAlYI'ER 2. ABSTRACT SEQUENCES .............................................................. 13

2.1. Current Sequence Models ........................................................................... 13

2.2. Fundamental Sequences .............................................................................. 17

2.3. Initial Sequence Model Framework ............................................................ 2()

2.4. Resolving Complications ........................................................................... 22

2.5. Improved Sequence Model Framework ...................................................... 27

, 2.6. Operations on Abstract Sequences ............................................................ 31

CHAFq'ER 3. MODELS OF BIOLOGICAL SEQUENCES .................................. 38

3.1. Nucleotides ................................................................................................. 38

3.2. Single Stranded Sequences ........................................................................ 39

3.3. Double Stranded Sequences ....................................................................... 41
al

3.4. Fragment Markers ....................................................................................... 4'7

*',_ 3.5, Fragment As Sequence .............................................................................. 49

CHAPTER 4. SEQUENCE SUMMMARY ............................................................ 54
:'a.

4.1. Conceptual Basis ........................................................................................ 54

4.2. HGP Sequence Models ................................................................................ 55

4.3. Model Expressiveness ................................................................................ 56



Table of Contents

4.4. Open Topics ............................................................................................... 57

PART II. EXTENSIBLE OBJECT DATA MODEL ....................................................... 58

CHAPTER 5. BACKGROUND .............................................................................. 58

5,1. Framework for Data Models ...................................................................... 60

5.2. Comrnon Characteristics ............................................................................63 "_

5.3. Unique Characteristics ................................................................................. 67

5.4. Model Characteristics Summary ................................................................. 72

CHAPTER 6. EXTENSIBLE OBJECTDATA MODEL ....................................... 73

6.1. Definition of Object-Types ........................................................................ 73

6.2. Definition of Instances ............................................................................... 74

6,3. Graphical Notation ..................................................................................... '76

6,4. Object-Types in a Schema ......................................................................... 76

6.5. Other Characteristics .................................................................................. 78

CHAPTER 7. CONSTRUCTORS ............................................................................ 79

7.1. Composition ............................................................................................... 80

7.2. Set ............................................................................................................... 84

7.3. Sequence ..................................................................................................... 88

7.4. IS-A Construction ....................................................................................... 93

7.5. Inheritance ................................................................................................. 94

'7,6. Subset ......................................................................................................... 99

7.7. Union ........................................................................................................ 1()0

7.8. General Characteristics ............................................................................. 1(13

CHAPTER 8. CONTEXT DEPENDENCY ......................................................... 11)7

8, i. Instance Association Diagrams ................................................................ I()9

8.2. Target Dependency .................................................................................. 112

8.3. Source Dependency ................................................................................. 117 _'

8.4. Peer Dependency ..................................................................................... 119 ',-

8.5. Issues of Context Dependency Usage ....................................................... 124

CHAPTER 9. OBJECT MODEL SUMMARY ..................................................... 126

9.1. Conceptual Basis ........................................................................................ 126

9.2. Goals of the Extensible Object Model ..................................................... 129

vi



Tableof Contents

9.3. Comparison with Other Data Models ...................................................... 130

9.4. Differences From Other Models .............................................................. 135

9.5. Open Topics ............................................................................................. 140

PAJtT III. EXTENSIBLE OBJECT QUERY LANGUAGE .......................................... 144

" CHAPTER 10. DESIGN OF A QUERY PROCESSOR .......................................... I44

10.1. Data Definition Criteria ........................................................................... 144
t

10.2. Data Manipulation Criteria ...................................................................... 146

10.3. Implementation Criteria ........................................................................... 148

10.4. Design Limitations ................................................................................... 149

10.5. Backend Limitations ................................................................................. 150

CHAPTER 11. QUERY LANGUAGE REFERENCE ............................................ 152

11.1. Notations ................................................................................................... 152

11.2. Expressions ................................................................................................ 153

11.3. Administration ......................................................................................... 155

11.4. Type Definition ........................................................................................ 157

11.5. Instance Manipulation .............................................................................. 160

11.6. Selection and Control Flow ..................................................................... 163

11.7. Operators .................................................................................................. 165

Conclusions ...................................................................................................................... 167

- Bibliography ...................................................................................................................... 171

Glossary. ........................................................................................................................... 176

-- Appendix A. Context Interactions ........................................................................... 180

Appendix B. Ternary Relationships ......................................................................... 188

Appendix C. Examples of EOM Schema ................................................................ 193

-_ Appendix D. Query Language Syntax ...................................................................... 205

* Appendix E. Query Processor Modules .................................................................. 2! 1

= ._

2-

vii



Overview

Overview

In the Human Genome Project (HGP), several types of sequences are encountered. These range

from simple sequences of bases to complex sequences of markers. However, current database tech-

nology does not provide a conceptual model for sequences. Therefore, when creating a conceptual

schema for a genomic database, the simple sequence information is often forced into an implemen-

, ration-specific form, e.g. character string or binary image, and the complex sequence information

is re-modelled into available constructs, such as sets or arrays. These limitations remove the basic

notion of a sequence from the conceptual schema of genomic databases and force the users either

to give up sequence operations or to develop additional code to recapture the inherent sequence

infonnafion.

Part I of this work develops a conceptual model for sequences. This model is application and

implementation independent so that a user can focus on modelling domain information and not to

be bound by implementation res)_rictions. This is achieved by separating the sequence information

into two components: position and content. This is extended into a framework c)fseveral sequence

models based on the following characteristics of position' order, metric, granularity, atomicity, and

density. Although the focus of this conceptual sequence model is on the types of sequences encoun-

tered in the HGE it was developed with sufficient generality for other applications.

Unfortunately, a sequence model, by itself, is insufficient to handle other modelling requirements

associated with a complex enterprise such as the HGR The.'efore, a general purpose conceptual

data model is also required. Furthermore, this general model must be able to subsume the concepts

from the ,sequence model in a consistent and coherent fashion. Current conceptual data models are

closed in their characterization, i.e. it is very difficult to extend these models with our sequence

concepts in the prescribed fashion. In addition, each model has its own drawbacks in semantic rich-

ness, uniformity, and implementation independence.

Part II of this work develops an extensible conceptual data model, which we call the "Extensible

Object Model", that addresses the above concerns..The result is an organized framework that inte-

grates concepks from semantic and object oriented data models. The reason for a framework,

o instead of only one model, is because we cannot anticipate all the specific constructs and relation-

ships found in different application domains. Therefore, this approach permits the organized exten-

sion for future modelling requirements. The basic components of the framework are constructors

and contexts. The constructors define the structure of the information modelled: composition, set,

sequence, inheritance, and union. The contexts define the constraints ot"values placed on other val.-

ues: target, source, and peer dependency. Under this framework, it was straightforward to integrate

the sequence model from Part I.



Overview

Since tile Extensible Object Model is a framework, not ali features are needed in order to demon-

strate its capability° In particular, we implemented a query language interface for three constructors

in the model: composition, set, and sequence, with some of the contexts. This combination is suf-

ficiently powerful to subsume the relational model, the basic Entity-Relationship model, most

Non-First Normal Form models, and most temporal sequence models. It is also sufficient for most

applications in the domain of the HGP. In Part Hl, we describe this query language and its imple-

mentation design. The main design goals are its independence of the underlying system and the
ql.

robustness of the framework for future extensions. For this demonstration, a relational database

management system with large binary object support serves as the underlying system.

In Appendix A, we describe the interactions among the context dependencies defined in Chapter

8. In Appendix B, we present the details of a generalized constraint introduced in Part II (Section

8.4.1). In Appendix C, we provide several examples of the Extensible Object Model schema. In

Appendix D, we list the full language syntax of the query language introduced in Part III. Finally,

in Appendix E, we describe the major modules of the query processor.



1. BACKGROUND

PART I. SEQUENCE ABSTRACTION

CHAPTER 1. BACKGROUND

The main purpose of Part I is to formulate a well-defined conceptual sequence model and define a

" set of necessary operations. One of the weaknes'_es of current database technology is the lack of

support for modelling and manipulating sequences [25]. As a result, the available genomic

sequence databases [21 ] implement simple sequences as text strings, binary images, or references

to an external file store. This use of implementation specific models reduces the portability and the

evolvability of any given database schema. In these databases, complex sequences, such as maps

(described in Section 1.5), are coerced into ,sets or arrays. Consequently, sequence information,

such as order and distance, are lost because these characteristics are not present in non-sequence

constructs. The development of a conceptual sequence model would address these problems by

capturing domain sequence information at the conceptual level, i.e. independent of physical imple-

mentation. It also provides a set of operations which takes in account of the sequence specific char-

acteristics. This petrnits operations to be defined independent of implementation strategies.

Part I is divided into four chapters. Chapter 1 describes the scope of the Human Genome Project

(HGP) and a brief background of the biology associated with the project. Chapter 2 reviews the

current sequence models and their limitations and proposes an abstract sequence model in terms of

sequence structures and operations. Chapter 3 uses the abstract model and operations to capture the

real-world HGP sequence information. Finally, Chapter 4 presents a summary of sequence model-

ling.

1.1. Human Genome Project

The Human Genome Projects are based on multinational research teams with the objective to

sequence the human genome by 21st century [47,67]. In addition to the human genome, genomes

from Escherichia coli (bacteria), Mycoplasma Capricolum (mycoplasma), Saccharomyces cerevi-

siae (yeast), Caenorhabditis elegans (nematode),Drosophila melanogaster (fruit fly), Mus muscu-

Ius (mouse), and Arabidopsis thaliana (a mustard plant) will also be sequenced. The concerted

effort will be performed in several major genome centers and laboratories around the world. In the
al

US, the HGP's are collectively termed "Human Genome Initiative" (HGI) for Congressional fund-

ing reasons and major funding will be provided by the Department o, Energy, the National Institute

of Health, the National Science Foundation, and the Howard Hughes Medical Institute.

The Initiative is broken down into three five-year phases. The first phase will emphasize develop-

ment of biochemical mapping technology and exploratory efforts in large scale mapping. The sec-

ond phase focuses on the completion of maps, sequencing technology, and exploratory efforts in

large scale sequencing. The third phase completes the genomic sequencing. Tiffs approach is esscn-



1.BACKGROUND

tiaUy a top-down successive refinement methodology. Currently, we are in the middle of the first

phase [68]. Analysis and application of information gathered will be conducted throughout ali the

phases.

There are several _quence databases that act as central clearing houses for discovered deoxyribo-

nucleic acid (DNA) sequences. In addition to DNA and ribonucleic acid (RNA) sequences, there
• ,

. are also protein sequences and structure databases which are commonly u_d by the scientists in

the HGP. Although this work focuses on genomic sequence information, the results also have appli-

cation in these other sequence-related databases. In the US, Genbank is the major database for

genomic sequences [14]. The following graph shows the amount of raw sequence information

stored in Genbank over the last three years:

70 -

60"_ 50

40

30

I

20 ...... l'- I 1 ' 1 I I I I i ......l ...... 1

12/88 12/89 12/90

The current growth rate is approximately 15 million bases per year and it does not include the anno-

tations that contain important biological information. As the HGP reaches the second phase, the

expected rate can be as high as 500 million bases per year. It is this data generation that motivates

this work in developing, sequence-based data model.

In the next sections, we describe briefly the biological structures that we wish to support. This is

necessary in order to develop the functionality required of a HGP sequence data model. For more

detailed information, see [4,70].

1.2. Nucleotides "

The molecular biology of the HGP starts nucleotides, which form the basis for DNA. Four types

of nucleotides can be found in DNA, namely: adenine (A), cytosine (C), guanine (G), and thymine

(T). Each nucleotide is oriented by moiecular structures labelled as 5" and 3" ends. In the context

of this work, nucleotides and bases are synonymous, although, a nucleotide is a base with the deox-



1.BACKGROUND

yribose and phosphate backbone. In some situations, there is incomplete information about a

sequence because of the experimental nature of science. In these cases, a base value is not fully

specified: a pyrimidine (Py) can represent either' C or T, a purine (Pu) for A or G, and nucleotide

(N) for any nucleotides.

. 1.3. Single Stranded DNA

Single-stranded DNA (ssDNA) is the next level of organizational complexity in DNA, which is

" formed by chemical bonding the 5" end of a base to the 3" end of the previous base. Although, the

bulk of the information used in the HGP will be double-stranded sequences (dsDNA), ssDNA does

exist in nature and can serve as a fundamental building block for modelling dsDNA. Because of

the orientation of the bonding, a ssDNA has a directioo based on the molecular 5" and 3" ends,

which correspond to the beginning and the end of the molecule, respectively. A ssDNA can be cut

into two sequences while keeping the same orientation. For example:

5'- ACGTTAGTC -3'

CUt I I concatenate

5'- ACGT -3',5'- TAGTC -3'

Two sequences can be joined, i.e., concatenated, with the 5"-end of one sequence linked to the 3"

end of the other. In the example above, this will result in either the original molecule or the follow-

ing sequence:

5' - TAGTCACGT -3 ', by placing the second sequence first.

Nucleotides can form complementary pairs by hydrogen bonding: A with T and C with G, but in

the opposite orientation. A dsDNA is formed by building the complementary strand from a given

ssDNA and "anneal" them by hydrogen bonding:

Seq A: 5 ' - ACGTTAGTC -3 ' (given strand)

Seq B' 5' - ACGTTAGTC -3 ' (given strand)IIINNIIIIIII| IIli
, 3 ' - TGCAATCAG 5' (complimentary strand)

li III - represent hydrogen bonds, by default, this will not be shown
%,

Therefore, a complement strand is not only a base-by-base complement, but also in reverse order

relative to the given strand. Each paired nucleotides is called a base-pair.



I. BACKGROUND

Given two ssDNA, we ca_xcheck for equality, overlap, and complementation, for example:

Seq A: 5' - ACGTTAG't'C - 3 ' equal;_ty
Sex]B: 5'- ACGTTAGTC -3'

- , _ m,

Seq A: 5' - ACGTTAGTC -3 ' overlap
Seq B: 5' - TACTCATG -3 '

........ ..::u , , : ,wt

Seq A' 5' - ACGTTAGTC -3 ' complementation
Seq B: 3 ' - TGCAATCAG -5 '

There are two types of complementation. First is full complementation, as seen in the above exam-

pie. Another type is patti',d, where single stranded ends protrude from the area of'complementation'

Seq A' 5 ' - ACGTTAGTC .... 3 ' partial complementation
SeqB: 3 ' ATCAGATG .-5'

We use "-" to indicate the missing complementary base.

1.4. Double Stranded DNA

Double-stranded DNA (dsDNA) is the basic structure of nuclear DNA, i.e. inside the nucleus of a

ceil. It is organizationally more complex than ssDNA and is the basis for all the information in the

HGR WhiIe ssDNA has specific orientation (5" and.3"), dsDNA is "symmetric" because of the

complementary orientation, for example:

5'- ACGTTAGTC ..... 3 '
dsDNA A:

3' ATCAGCTG -5 '

¢ ",f _ "P --, I5 GrCGA_TA ...... .%
dsDNA A':

...... C_GATqGtA -5'

= Therefore, in a solution where molecules freely rotate, dsDNA A and A' are copies of the same

molecule. The typic',d representation of a dsDNA is a sequence with the top strand in 5"-to-3" ori-

entation and is assurned to be rotationally free or symmetric. Under certain situations, a dsDNA is

bound to a specific context (part of anothe: dsDNA) or physical orientation (another molecule),

then explicit 5" and 3" ends must be denoted. II

When looking for a subsequence on a ssDNA, only one direction is read, namely 5"-to-3". ()n the_

other hand, looking for a subsequence on a dsDNA requires both directions. A dsDNA can be cut .,

and concatenated, but also denatured (split into component single strands), annealed (forming

_- dsDNA from ssDNA), and filled (complements added to single stranded ends).

=

6

a



1.BACKGROUND

These are shown in the following:

DS Seq A: ACTAATSCCATGC ,.------ID,-cutACTAATGC and --CATGC
TGATTACGGTACG TGATTA' - CGGTACG

" DS SeqA: ACTAATGC
and TGATTA-- _ _ concat .._ ACTA.ATGCCATGC

" r

. DS SeqB: ---CATGC TGATTACGGTACG
CGGTACG

DS Seq A: ACTAATGCCA--- ---------m-denatureSSandSeqX: ACTAATGCCA
--ATTACGGTACG

SS SeqY: GCATGGCATTA

SS Seq Y is in the correct orientation for ssDNA, which is the reverse

of the DS direction with respect to SS Se,q X.

SS SeqX: TAATGCCA anneal --T/-J_.TGCCA---
and _,- DS SeqA:

SS Seq Y: GCATGGCATTAGT ' TGATTACGGTACG

The rotational symmetry of dsDNA creates cerlain problems in modelling biological operations.

For example, several results are possible from a single concatenate"

DS SeqA: ATAGGTCT-- and DS SeqB: C _ATACGP--
--TCCAwAGC ---TATGCATA

can foma both:

(I) ATAGGTCTCGATACGT-- and (II) CGATACGTATAGGTCT--
--TCCAGAGCTATGCATA --TATGCATATCCAGAGC

Depending on whether the single stranded ends are complementary, many results are possible. In

the extreme, up to the number of base.s in the single stranded ends are possible:

DS Seq A: GTACAAAAAAA and DS Seq B' GTAC
CATG TTTTTTTCATG

can form the following:

. GTAC AAAAAAAG'PAC GTACAAAAAAA -GTAC GTACAAAAAAA --GTAC
CATGTTTTTTTCATG CATG-TTTTTTTCATG CATG- -TTTTTTTCATG

arid so on, down to a minimum overlap determined by biopi.ysica! stability.

1.5. DNA Fragments

In the first phase of the HGP, fragments of genomic DNA are created. These fragments of dsDNA

have known lengths, but unknown base sequence. These DNA fi'agments are labelled with "mark-

ers" (described in the next two sections.) and become "maps", which form a crucial portion of orga-



1.BACKGRO[_D

nized biological information for the HGP. The name "map" derives from its use as providing

reference landmarks for navigation. In biology, DNA maps provide biological landmarks for

exploration. Unlike the 2-D cartographic maps, DNA maps are in one dimension and only contain

information on marker names and lengths of the intervening sequences. For example, in the fol-

lowing re.presentation, the distance between marker M I and marker M2 is 4 kilobases (kb):

Ml M2 M3 M4
I I I [i ! !

4.kb 2 kb 3 kb

The process of placing markers on fragments to generate "maps' of human DNA is one of the fun-

darnental tasks in the HGP. There are two directions in map constructions: a) constructing higher

resolution maps from low resolution maps (over the same coverage) and b) constructing larger

maps from smaller rnaps (incre_ing the coverage).

Ir_DNA ,maps, lergth values of DNA fragments are not exact until the whole fragment has been

sequenced. The reason is that some amount of uncertainty is always associated with the measure-

ment methodology. The primary means of fragment length measurement is based on gel electro-

phoresis, and to improve the resolution, one can change the composition of the gel. However, the

resolution is, at best, tr, o-orders of magnitude below the length of the fragment on a given gel. For

example, if a gel is made to resolve a 1130kb (kilobase) fragment, its resolution is usually 1 kb c)r

larger. Consequently, ali lengths measured from this gel have an uncertainty of > 1 kb.

1.5.1. Restriction Sites as Markers

Two types of DNA map markers are commonly used: restriction sites and probes. Restriction sites

are created by enzymes (endonucleases) that cut DNA at specific sequences. The length of the rec-

ognition, sequence varies from 4 to 15 base-pairs, depending on the enzyme. The newly formed

] ends of a cutting site can be blunt or sticky (SS tails) and the recognition sequence can also include _
"wildcard" bases. For example:

Restriction Enzyme "Eco RI" recognizes: _C
CTT k:

" The line denotes t.hecutting site and the separation of strands.

Therefore, the following dsDNA will be cut by Eco RI into two pieces with sticky ends:
ATAGAATTCATG Eco RT ATAG .... AATTCATG

"- andip,_-

-_ TATC TT:_G TAC cut TATC _TAA ..... GTAC
4

8
=

=

....... ' l l_llrl ........ 'lP' ' " '_Pl"'rrl l'lir" '" '0 'llIll' ' II*'"' ,_ ' , rqli_r" ' ii'' L,, II ,li[Ii' lli(l_.ll,r' 'I_II '_Ip'_il'll" rl_rl ', ""'i,FllI ', _l,p,' ' 11111111r,_



1.BACKGROUND

Other enzyme recognition sites have other characteristics, such as:

Alu I AT_.A..,_T creates bhmt ends

Bgl I GCC_GGC N matches any base value
CGGIqNNNNCCG

Hae II Pu_Py Pu stands for Purines (A or C)
" PyJCGCGPu Py stands for Pyrimidines (T or G)

" Some restriction enzymes have more than one specific recognition sequence. For example, Hae II

has the following four possible recognition sequences:

AGCGCT AGCGCC GGCGCT or GGCGCC, ,P ,

TCGCGA TCGCGG CCGCGA CCGCGG

In general, restriction enzyme recognition sequences, with wildcard bases, are palindromes, i.e. the

sequence is the same reading forward or backward (on the complementary strand). Therefore, it is

common to represent these sequences using only a ssDNA and a separation bar cr').

Due to the statistical nature of shc_rtsequences, a fragment sufficiently long will he invariably cut

by some enzyme. Once cut, the lengths of the smaller fragments can be measured and marked, cre-

ating a sequence of restriction markers for a fragment:

Eco RI Alu I Eco RI Hae II

I' 4kb | 2kl_0 3kb {

Although single values for lengths are used, it is understood that uncertainty exists for almost every

valuc except for those DNAs whose composition has been completely sequenced. The diagram

below represents the current state of knowledge of the previous fragment:

AATTC AGCT GAATTC PuGCGC
G TCGA CTTAAG Py

4 kb 2 kb 3kb

where _ represents unknown sequence.

1.5,2. Probes as Markers

Probes m'e short DNA fragments that have been positively identified, but not necessarily

" sequenced. Similar to restriction enzymes which recognize specific sequences in DNA, probes rec-

ognize specific sequences via hybridization, a process where tagged single stranded copies of the

probe is hydrogen bonded to another DNA by complementation. Therefore, we can use the probe

as a marker and then find the locations where the probe hybridizes to in a large DNA fragment.

....... r,..... " ".......... "_....... ' "' ........... "" '_' .... '" " P_" '"' _J.... ;'_,1"_ll"J0'' _'lll" '_'_l!l'P_...... _11I,"'",'" "p_'',¢r'_,,,,_,i "'_'Illl"_l'lf'_...... _iI[lll_............ irl,,_"'l_....._ .......rl!'r'"'<



1. BACKGROLIND

A fragment with mapped probes is shown as follows:

Pl P2 P3 P4
I I t

' 4 cM ' 2 cM ' 3 cM _ A distance of"l cM" represents a genetic
distance of 1% recombination during

meiotic segregation between two markers.P1 to P4 are probes, cM is centiMorgan
It is approximately 1 Mb in length.

If the probes are 1 kb in length, the above map becomes:

Pln=: P2___ =P3 P4..= where mm represents a stretch of DNA

4 cM 2 cM 3 cM Ikb in length

While the latter diagram is more correct, it is not necessarily useful to the biologist, because 1 kb

fragments at cM resolution can be viewed as a point. This is similar to the representation of restric-

tion sites as points.

1.5.3. Marker Information

Restriction sites and probe locations calt be related experimentally. Typically, if both types of

markers are used on the same fragment, the restriction site marks the ends of fragment intervals

and the probe becomes an experimental "handle" for the interval itself. For example,

Eco ILl (A) Alu I (B) Eco RI (C) Hae II
F t I t

4 kb 2 kb 3 kb

If fragment interval (B) laybridizes to probe P, for instance, we can use P to detect the presence of

(B) in a pool of DNA cut with Eco RI and AluI. However, hybridization does not provide the exact

location of P in (B). In fact, ifp extends past either ends of (B), then (A) or (C) could also be

"picked up" by P. On the other hand, P can be used to bridge maps of different resolution. If we are

given the cM map of the previous fragment and if P = P2, then we have additional information

around the region where P2 is marked. This becomes useful in restriction fragment length polyrnor-

phism (RFLP), a technique that links individual uniqueness with the inheritance of genes.

When a fragment has been cut by an enzyme, ali sites that correspond to that enzyme are usually

found, for example:

Seq A: t
unknown fragment

.,d

Seq A (El): _ Seq A (E2):

E1 E1 E2 E2
t | t I F ! t I

all,E 1 sites on A found all E2 sites on A found

10



1. BACKGROUND

Superimposing the two maps, we get the following map:

E1 E2 E1 E2
Seq A (E1 and E2): I I...... I _ _ '_ combined E1 and E2 sit_s

If we have another map, Seq B:

" E1E2 EIE2
, , , , , where ali E1 and E2 sites were found,
! I I ! I ]

then we can tell that Seq A arid Seq B are different by the fact that the first E2 site occur at different

position (assuming the difference is greater than the uncertainty). However, we would not have

made the distinction on the basis of the E1 information alone.

Therefore, as each new set of markers is placed on a fragment, ali new information is grouped with

our current knowledge about that fragment. Negative facts about a fragment, such as a lack of cut-

ting sites, are also useful for determining whether two fragments are equal when the available

information is limited.

1.5.4. Ordered Maps

In addition to sequences of markers, DNA fragments could also exist in the form of ordered clone

maps. These are collections of fragments where the ordering among them is known by determining

whether overlaps occurred, but distances among them are unknown. For example, if we are given

the fragments A, B, and C and we know A overlaps B, B overlaps C, but A does not overlap C,

then an order of A-B-C can be inferred, but the actual distances and lengths are undetermined. In

some situations, the overlap information is incomplete or insufficient to determine complete order-

ing, which results in a partially ordered clone maps.

1.6. Biological Organization

The organization of biologically significant objects in human genome is usually given in a top-

down fashion. Briefly, the human genome is composed ot"22 pairs of autosomal chromosomes and

one pair of sex chromosomes, XX for female and XY for male. Each chromosome is molecularly

one dsDNA, between 50 to 250 million base-pairs long. Biologically, each chromosome holds

between 1 to 5 thousand genes. Molecularly, a gene spans between one thousand to several million

" base-pairs. A gene usually contains regulatory sections and structural sections for transcription into

ribonucleic acids (RNA). RNA differs from DNA in the type of sugar backbone (ribose vs. deox-

yribose) and the substitution of the base uracil (U) for thymine (T). The transcript RNA may

undergo splicing and translation if the final product is a protein, which is a sequence of amino acids.

Although the splicing occurs at the RNA stage, the information which governs splicing is encoded

in the DNA ,sequence.

The types of sequences that are of interest in the HGP is not limited to DNA sequences nor maps.

11



1. BACKGROUND

RNA and protein sequences will become important in the analytical phases of the HGR because it

is in these forms that biological effects are observed. However, we will not focus on RNA and pro-

tein sequence models because their characteristics are very similar to and can be subsumed by

DNA sequence models.

The following diagram is a schematic view of the biological events: ,,
o,

gene: A,, .._:>. o

:noncoding ii "i I :exon

i_ :regulatory/control _ :intron

transcriptionprimary
RNA :
transcript !

RNA splicing: introns removed
v

messenger RNA: [ I

(mRNA) 1 translation

protein,: - '.....

l folding, cutting, and bonding

mature protein:

12

,i ..... -rf, , , ..... i, ,,,, ,,, ,,',,11,..... ,-ai"-'_2q rr' i'l't-vfr 17%lv-':''r't_.........



2. ABSTRACTSEQUENCKS

CHAPTER 2. ABSTRACT SEQUENCES

Given the three types of sequenc'_s (ssDNA, dsDNA, and maps) used in the Human Genome

Project, it is helpful to have a common model for all of tnem. This reduces the number of specific

sequence model characteristics and simplifies the complexity of database implementation. In addi-

tion, if the abstract sequence model is sufficiently general, sequences from other application

domains can also be modelled effectively. An important example is the modeling of temporalo

_quences used in business and scientific applications.

2.1. Current Sequence Models

For the remainder of the thesis, the definition of a sequence will be as follows: a sequence consists

of a set of ordered pairs. One component of the ordered pair is named "position" and the other is

named "content". Other terminology for position and content include referent and variant, domain

and range, independent and dependent, or invariant ard variant. We use the tenr_s "position" and

"content", because we do not consider causal relationships, on which the other terminologies are

based. "Iqaereare additional restrictions on the values of position and content, these will be

described later.

2.1.1. Character String Model

One of the simplest sequence type is a character string. This is considered as a "primitive" type

supported by most DBMS's, i.e. it is directly implemented with prespecified storage and opera-

tions. The position values for character strings are sequential whole numbers starting from "1" (or

"0" for computer scientists) and the content value are encoded by a character, e.g. 7 bits in ASCII.

For example:

"The quick brown fox... " is represented as:

position: 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,...
character: T, h, e, , q, u, i, c, k, , b, r, o, w....

In most DBMS's, the length of a character string is limited to a predete_vnined maximum, e.g. 256.

While some DBMS's now offer unlimited string length [30,63], which could be used to model

" DNA sequences, the storage and access of such strings are implemented external to the query pro-

cessor. Consequently, the DBMS does not support operations on these strir, gs. One of the maior

_" operations used in HGP is pattern or substring search, which is not currently supported by DBMS's

offering unlimited size string type. Furthermore, a character string cannot directly model map

information, as we shall show later.

2.1.2. List or Array Model

The next construct is a "list" or "array" of an arbitrary content type. These are found in so called

13



2. ABSTRACTSEQUENCES

NonFirst Normal Form (NFNF) [1,52] or extended relational implementations [53] and object-ori-

ented DBMS [45]. This abstraction still maintains integer position values, but does permit more

complex values to be stored in place of characters. For example:

struct content x [5 ] is represented as:
"t

position: 1 2 3 4 5
content: x_ x 2 x 3 x 4 x 5

where each xi is a value of "struct content".

We can implement certain HGP sequences in this fashion, although they lack the appropriate posi-

tion semantics, e.g. map sequences with fractional kilo-base (kb) position values cannot be mod-

elled by sequential whole numbers, Therefore, we need to encapsulate the kb position and the

marker label into the "list" content value and change the "list" position into "marker order":

Eco RI Alu I Eco RI Hae II l

t 4kb i 2 kb [ 3 kb i is represented as'

marker order: 1 2 3 4 -_ "list" position

kbposition: 0kb 4kb 6kb 9kb } "list" contentmarker label: Eco RI Alu I Eco RI Hae II

Unfortunately, such sequences cannot be cor.ectly merged by looking at "list" positions alone. For

example, overlap can only be done by analyzing the internal data (kb position) of the content type
for a "list".

2.1.3. Temporal Models

Genomic sequences have a close relative in the domain of temporal data [56]. The temporal model,

described in [56], is based on time and value components, which correspond to the position and

content components of a sequence model. However, each ordered pair has a specific interpretation

based on one of several variants of the temporal model. For example, in the discrete-event model,

each ordered pair is an independent event. In the stepwise or continuous model, each ordered pair

is a transition to a new content value. From these models, a more abstract temporal model can be

formed by removing al! time interval interpretations. The resultant model would be a sequence

model, devoid of temporal characteristics. However, because the core temporal models already

have well-defined semantics and application domains, current research in temporal models are pre- .,

dominantly directed at implementation strategies for collections of temporal sequences [57].

Specifically, if temporal models are directly applied to genomic sequences, we encounter concep-

tual differences on how the two domains use sequence information. Temporal model operations

over multiple sequences assume an absolute time reference frame, i.e. the time values for the
_

=

14



2. ABSTRACTSEQUENCES

sequences are fixed while the content values are modified. For example, to compute the income

history from a salary and a bonus history, the time values are matched, but the income value (new

content) is the sum of salary and bonus values (old contents):

Salary History:

$10K $12K $15K
o

1/1/91 4/1/91 8/1/91 12/31/91
Date

Bonus History:
$5K

$2K

, I.......... I
2/1/91 4131191711191 10/31/91

Date

Income History:

___V----_ ....
1/1/91 12/31/91

Date

On the other hand, operations on genomic sequences have relative reference frames which change

position values but not content values. For example, to combine overlapping maps A and B, the

contents and relative positions are not changed, but the absolute positions in the resultant map C
are new:

Eco RI Alu I Eco RI Hae II
Map A: I I' t I

0 kb 4 kb 6 kb 9 kb

Eco RI Hae II Barn I Hind III

. Map B: I 1 1 I
0 kb 3 kb 6 kb 9 kb

" Eco RI Alu I Eco RI Hae II Bam I Hind III
Map C: I t t I I t

0 kb 4 kb 6 kb 9 kb 12 kb 15 kb

If we start with the temporal models as a basis for genomic sequence models, we will need to spec-

ify additional operations because of the conceptual differences on reference frames. However,

15



2. ABSTRACT SEQUENCES

other aspects of genomic sequences will create additional problems. For example, position type in

genomic sequences could have a partial order if only incomplete information is available, or have

a circular order if information was derived from a circular DNA. Since temporal models presume

a complete and linear order for position type, this extension will take the temporal models to

beyond the original intent. Currently, there is no implementations, i.e. DBMS's, that support non-

traditional algebraic systems beyond boolean algebra and standard number theories.

2.1.4. Combination Model

One approach to genomic sequence modelling is to use two or more current models. A character

string model can be used for DNA sequences while a temporal model can be used for maps. How-

ever, this approach fails to unify the basic concepts of sequences. For example, the abstraction

behind the operations "overlap" and "concatenate" is applicable to both models. Therefore, these

operations should be the same independent of the implementation model used, but in most data

models, these are considered distinct operations due to the different implementations of the data

types. The objective of this Part is to unify and organize the basic concepts of sequences so that

one set of operations can be applied to ali sequence types.

16



2. ABSTRACTSEQUENCES

2.2. Fundamental Sequences

A formal abstract sequence model should bridge the database domain and the application domain.

It should include definitions for the basic components, operations, and semantic relationships. We

start by defining a very simple and abstract model of a sequence that has few components, opera-.

,. tions, and relationships. We then elaborate it in detail, adding characteristics to the starting model

until a ,semantically rich sequence model is achieved. Eventually, a framework of sequences with

- varying complexity is created. Finally, this framework serves as the fundamental basis on which to

model application-specific sequence information.

2.2.1. Components ofa Sequeace

As described earlier, a sequence is built from position and content values. The position and content

values are collectively termed "types"; therefore, a sequence type is constructed from a position

type and a content type. Every position value of a sequence is associated with a value from the con-

tent type, i.e. a word is a sequence of letters where each position is associated with a letter. Another

example is a sequence of markers where every position value of this sequence has an associated

marker (could be null if no markers were found). The content type minimally requires the definition

of the "equality" operator. If the content type is structurally or operationally more complex, then

its complexity can be made visible as new sequence structures or operations. For example, the

complement operation of bases can be extended to a seqaence of bases. But for now, we consider

content type as a black-box structure that has some accessible operations, minimally "equality".

The position-content pair can be considered as a unit, subsequently, a sequence is a set of these

position-content elements. However, the nature of the "order" associated with position values

makes a sequence different from a set. For the following discussion, we will use the notation
below:

{... } denotes a set of "..."

[a, b] is an ordered pair of a and b.

The general model for sequences based on sets is defined as follows:

A sequence type, S, is constructed from the types:

a) position type, E whose instances are ordered, and

b) content type, C.

•. An instance, I, of S, satisfies the following:

I = { [ p, c ] }, i.e. a sequence instance is a set of ordered pairs, where

p e P, i.e. p is an instance of position type and
z

c _ C, i.e. c is an instance of content type.

If I is empty, we have a null sequence.

17



2.ABSTRACT SEQUENCES

If [ Pl, cl ] and [ P2, c2 ] _ I andPl = P2, then Cl = c2,

i.e. for each position only one content value is allowed.

This is equivalent of a well defined mathematical function, i.e. for every value x within the domain,

there is one and only one value y in the range. We will use < [ p, c ] > as a notation for I, instead

of the set notation, { [ p, c ] }, because of the additional requirement of unique and ordered p val- .,
ues. F

2.2.2. Characteristics of Position

There are five qualitative characteristics for position types: order, metric, granularity, atomicity,

and density, which are described as follows:

A. Order

The most basic sequence type is an "order sequence", whose position type is a _LO..._Nt.C!d_ordered

,set of values, i.e. one can determine the order between any two position values. In addition, there

is a minimal position value. This makes a sequence behave similarly to a "ray" in plane geometry

or a "directional vector" in physics where we start at a "zero" and move in the "one" direction.

When speaking of "sequences", this is the most commonly visualized type. By removing the min-

imal value, one creates "bidirectional" sequences, where position values can extend in both direc-

tions ad infinitum. While these do not have biological equivalents, they are useful for modelling

relationships between local sequences. The next abstraction is reducing complete order into partial

order and circular order. These sequences are more difficult to visualize because they are non-linear

and less intuitive. Nevertheless, they play an important role as models of partial maps and circular

plasmids in biology.

B. Metric

A metric assigns semantic significance to the differences in position values. Differences can exist

between position values in a sequence, however, they remain abstract and are devoid of semantics

until a metric is used to interpret the meaning. Once a metric is assigned, a difference in values is

called a "distance". For example, the difference between position 1 and position 7 of a DNA

sequence is 6 bases, only after' a physical unit of measurement, e.g. base, is attached to its value.

Therefore, a metric is defined with a unit, e.g. inch, Kelvin, or kilobases, and the measured value

implies a complete order, i.e. 3 inches is greater than 2 inches. A sequence, whose position has met-

" ric characteristics, is called a "metric sequence". Since comparable physical units can be intercon-

verted, e.g. inches to meters and pounds to kilograms, a sequence with one position metric unit can

be converted into another sequence with some other comparable position metric. Although the

- interconversion of metric sequences are dependent on the specific application domain, the process

of conversion can be generalized to become a part of the abstract sequence mc_del.

18



2. ABSTRACTSEQUENCES

C. Granularity

Granularity implies that multiple resolution levels can be used. For example, a geographic position

can have multiple values based on the context resolution. The granularity is expressed as a fraction

(or multiple) of the physical metric, e.g. 0.1, 10, 1/16, etc. We name a sequence ,,_hose position type

_ can take on multiple granularities a "fractional sequence". The concept of a "fraction" properly

embeds the concept of granularity: the "denominator" of a fraction is the granularity of the mea-
- sure.

D. Atomicity

Atomicity is a consequence of metrics which are of counting type, e.g. nth letter in a word. There-

fore, atomicity limits the finest level of resolution a metric can have. For example, in the context

of letter positions in words and sentences, it is not meaningful to talk about half a letter or a quarter

of a letter position. On the other hand, if we are concerned with physical positioning of letters in a

word, such as kerning, then "half a letter" is meaningful. However, this type of "letter" is really a

representation of a physical distance, not a representation of the "letter" concept in a word. To use

atomicity correctly, we must know the exact nature of the position in the application context.

E. Density

Density distinguishes between actual and potential position values. A sequence is dense if no posi-

tion value can exist between two consecutive position values of a given sequence, i.e., ali potential

values are actual. Examples are DNA sequences or continuous functions where the position values

are over the whole numbers (or the reals). A sequence is sparse if there exists potential position

value between two consecutive actual position values, i.e., not ali potential values are filled. Exam-

pies are a sequence of physical measurements made in a temporal context or a sequence of markers

in the HGP. In general, density is not completely independent of the semantic characteristics of

granularity and atomicity, as a dense sequence at one granularity may become sparse in another, or
vice versa.

19



2. ABSTRACTSEQUENCES

2.3. Initial Sequence Model Framework

Three basic sequence models can be developed based on the characterizaoon of sequences in the

last section.

2.3.1. Order Sequence

The defining characteristics for order sequences are'

[ < [ p, c ] >, D ] where p _ Position, c _ Content, and D is density.

The position is of pure order only, therefore, characteristics of metric, granularity, and atomicity

are not applicable. Fox'example, we have an ordered classification set of "very short", "short",

"average", "tall", and "very tall" people in a classroom. The position type is the ordered enumera-

tion of height: {very short, shorL average, tall, very tall}. The content type is the number of people

in each class. 'Ihen every classroom will be a sequence of 5 numbers without metric, granularity,

and atomicity properties

An example in the HGP for' the dense order sequence is the ordered clone maps. In this situation,

_heposition is an ordering value that is devoid of metric or granularity information (see Section

1.5.4),

2.3,2. Metric/Fractional Sequence

A position type that has multiple grarmlarities invariably also has a metric, since a "fraction" has

to be based on some "unit". Therefore, a "fractional sequence" also has a defined metric attribute.

Similarly, a metric type also has a granularity, due to our limitation to precisely measure differences

in position. For metric/fractional sequences, the defining characteristics are:

[ < [ p, c ] >, D, [ M, G ] ] where M is metric uni', and G is granularity.

Note that M and G are bound together, since they must co-exist together. This is typical of

. sequences we encounter in the physical world of measurements. For example, a temporal sequence

has time as position, with multiple metrics and granularities, but does not have atomicity.

2.3.3. Atomic Sequence

The defining characteristic of an atomic sequence is:

[ < [ p, c ] >, D, [ M, G, A ] ] where Ais atomic granularity. .

Note that M, G and A are bound first, because, atomicity exists only wh_:n both metric and granu-

larities are present. A simple example is letter sequences' M is _he letter position, and G and A are

both 1. In DNA, we use kiloba_s as M, then a given fragment can have G of 0.1 and A of 0A)01.

" Determining the atomicity is application dependent. For example, should time metrics such as

month or day be considered to be atomic? The determining factor is whether the units of position

are counted or scaled. Real world measurement tools often convert a scaling factor to a counting

-ek./



2. ABSTRACTSEQUENCES

number, therefore, making the distinction a matter of choice. In financial applications, a day is con-

sidered to be atomic, while in physics, the same period of time is not atomic.

2.3.4. Examples of sequences

'The initial sequence models fall into the following framework:
....................

r

density M/G M/G/A examples
' ';',', ', ' ,,', ,'I _ '" .... '_" "' : _

- ' dense - - ordered classes

dense + - continuous time and distance
, , ,,,, ., ..l,, , ,,,

dense + + DNA sequences, words
, ,,, , 1 ,,, i, ,,,, , , ..

sparse - - incomplete ordered classes
,,,, i , , .. ,,,, , , r ,, ,, ,,. .

sparse + - event sequences
, ,, ,,,,,, , - -- i -. , _ ,,,

sparse + + incomplete DNA sequences

The description of models is independent of the type of order. That is, sequences whose position

type are circular or partial order can still have metric, granularity, and atomicity characteristics.

While it is easier to visualize and discuss sequences of complete order, it is not a necessary require-

ment. In the context of the HGP, the ,sequences discussed in Chapter 1 can be classified as follows'
....................

HGP density M/G M/G/A SpecialCharacteristics
s:_ L ,,.,,'_, ,.,. ,,, , • ,, , ,,,, ,, .-_

ssDNA dense + +
............................ ,,,,,...... , ,,,

' +dsDNA dense + + symmetry
.... , ,, i .,,, , , , ,,,,, , , ,,.

plasmid dense + + circular orderdsDNA
--- , ,,. ,,, ,, .,,,,. ,, ,, , ,,,,,

ordered
dense - order only

clone map
..... _ ., ,,

genetic map sparse + +
.+

, ,,,,. ., ,,, i ,,. ,,,,

plasmid
sparse + + circular order

" map
,, .,,. , ,, ,., , , ,.,,

incomplete
_. sparse. + + partial ordermap

,, ,. ....

Note that only three types are found in the HGP: Dense, Dense/M/G/A, and Sparse/M/G/A.

21

'._1'_ .................. ill"' III ,, r,_ ,rjr ' , ,, ....... ' .... +II....... "" ........ ,rl:_r...... 1_....... I__P.... _H....., u, '+pIIII.III'P' "1..... IlI_' r,II.... li 'q"l_r,illl'+llll'T_ll,+,ijlllI_il,m_ll[iI, l_llll_,t_,,_,,_v,rl_..... i1_



2. ABSTRACTSEQUENCES

2.4. Resolving Complications

The three initial models provides a good coverage of ali the sequences types encountered in the

Human Genome Project. However, several complications based on the interactions of metric, gran-

ularity, atomicity, and density are observed. In order to construct a more coherent and uniform

framework, these complications must be resolved. These resolutions take on the form of transfor- .,

mations that convert sequences of one type into another.

2.4.1. Semantic Interpretation and Abstraction

If a position type is measured by counting, then it is intrinsically atomic. In measurement theory,

this is termed "absolute" scale. Examples of these are letter positions in a word or base position in

a DNA sequence. Examples of non-atomic position types are scaled measurements such as seconds

or inches. In measurement theory, this is "ratio" or "interval" scale [54]. Another measurement

type that we encounter is the "ordinal" scale for pure order, as exemplified in order maps and in the

enumerated position sequence discussed in Section 2.3.1. A final measurement type is "nominal"

scale for arbitrary categorization, which as no corresponding sequence because there is no ordering

associated with this type.

In the real world, scalable (ratio or interval) physical measurements are often converted to some

form of counting prior to recording. For example, time delays are scaled, but a measurement

device, such as a stop watch or its digital equivalent, measures time by counting exact increments

at its granularity level. In addition, time periods, such as hours and days in the context of financial

domain, are often considered countable not scalable. In ali cases, at the level of the granularity,

scaled measurements can only take on discrete values, thereby, become countable. If the position

measurements, regardless of their countable or scalable nature, are equivalent to counting at the

level of its granularity, then position values of metric/fractional/atomic (semantic) sequences can

be mapped in 1-to-1 correspondence to the whole numbers. Consequently, the whole numbers can

be used for the position type of the "simple abstract" sequence.

There are two directions for the 1-to- 1 mapping. In this discussion, we use the term "j_t__031"

for the direction from abstract sequences to "real-world" sequences, because we attach semantics

to abstract position values (whole numbers) by interpreting them in a specific metric/fractional/

atomic context. We use the term "_gag.Q..0.u!g"for the direction from "real-world" sequences to

abstract sequences, because we remove the semantics from real-world position values by abstract-

ing out the metric/fractional/atomic context. Appropriately, these mappings are domain and appli- "

cation specific, limiting any commonality that we shall need to account for in the abstract sequence

22



2. ABSTRACTSEQUENCES

model.

semantic (metric/fraction/atom'c) - real world

_ _ I interp_retatior_

simple abstract - abstract

- 2.4.2. Metric and Granularity Conversions

In the real world, ali operations over metric/fractio/_A sequences can be viewed in two stages. First,

we convert the sequences into the same metric and granularity. Then, we can perform the operation,

independent of the metric and granularity.

For example, in order to test for "equality":

Seq A: Seq B:
M=M 1 M=M 2
G=G 1 G=G 2

_ convert to consensus type

M = M 3 M = M3 typically, one type remains stable,

G = G3 G = G3 e.g. M 3 = M 1 and G3 = G 1

',, /
test for equality, this is operationally identical for all M3 and

G3, i.e. metric and granularity independent.

The above analysis provides the first major insight to a uniform model of sequences: the ,separation

of metric/granularity information from operational definitions. With this separation, operations can

assume that operand sequences are derived from the same position type regardless of different met-

tics or granularities.

The conversion to a consensus type also has two stages' one to convert metric and the other to con-

vert granularity. The two conversions can be categorized into different classes. Under metric con-

: • v_.ersions, there are multiplicative (e.g. inches/meters), linear (e.g. Fahrenheit/Centigrade) and

nonlinear (e.g. exponential and Lorenz), which also correspond to "interval", "linear", and "non-

" linear" in measurement theory. Under granularity..cgnversjon__, there are averaging, minimum/max-

imum, and random sampling, which correspond to various statistical methodologies. The separa-

tion of metric and granularity conversions (more appropriately called transformations) simplifies

our abstract model by eliminating the need to be concerned about the granularity during metric7.

=

23



2. ABSTRACT SEQUENCES

transformations and vise versa. Such separation results in the "unbinding" of the two attributes:

metric/fractional - real world

I /j_etri_ conversions

"pure" fractional (same metric) independent

I granularity conversions

abstract - pure sequence operations

2.4.3. Atomieity Constraints on Granularity

Atomicity, in addition to its countable nature, is an attribute that ensures the proper maximum res-

olution is not surpassed. For example, in the HGP, a common way to measure DNA lengths is by

gel electrophoresis. When a given DNA fragment is measured at 1.4 kb with granularity of 0.1 kb,

one can improve the measurement to 1.46 kb with granularity of 0.01 kb by using higher resolution

gels and by comparison against markers of known sizes. However, DNA fragments are made of

integral number of bases, thus the absolute finest granularity is 0.001 kb or 1 base and it is not pos-

sible to have a measurement of 1.4623 kb with granularity of 0.0001 kb. In this discussion, granu-

larity is given as a fractional number, thus increasing its value is equivalent to make the granularity

coarser and decreasing its value is the same as making the granularity finer.

The granularity associated with a sequence can only be made coarser, never finer, because a

sequence is either de novo constructed or a result of an operation. A de novo sequence is ensured

by real world semantics to have appropriate granularity, barring errors of transcription. Ali real

world operations do not "inject" information into a sequence. Therefore, they will not decrease the

granularity of the sequence and ali resultant sequences are guaranteed to never have a granularity

less than its real world atomicity. In the unlikely event where an operation is found to "inject" infor-

mation, it is usually based on the information that is previously constructed de novo (at a finer gran-

ularity) or it is a violation of information theoretic foundations, i.e. getting more information out

of a sequence than what it contains. 9,

In addition to this "entropic" property of granularity, the separation of metric and granularity infor-

mation from abstract sequence operations, discussed in Section 2.4.2, would also separate atomic- .,

ity from the "simple" abstraction. However, the atomicity constraint only restricts which metric

and granularity conversions are permissible, but does not affect the operations of the "simple

abstract" sequence.

24

.... , , ,, ,



2, ABSTRACT SEQUENCES

2.4.4. Changes in Density: Event Projection, Filtering, and Interpolation

In an abstract sequence, position values are based on whole numbers. Whole number are dense, i.e.

there are no whole numbers between any two consecutive whole numbers. In the real world, we do

not always have sequences whose position values are dense. Thus, when we relate and operate on

,. two sparse sequences, the gaps between the whole numbers in the "simple abstract" sequence need

to be filled in order for the abstract sequence operations to continue. There are two transformations

. for the filling in the gaps.

First transformation is an interp_olation function which converts a sparse sequence to a dense

sequence. The missing position-content pairs are filled by this function, resulting in a dense

sequence. This maintains synchronicity between position values of two sequences and keeps the

operations on abstract sequences independent of density. In this discussion, interpolation functions

are considered general, i.e. the default interpolation is filling the new content values with nulls.

Specific interpolation functions are dependent on the content types, which are domain specific, and

will not be elaborated here. In the real world, it is often useful to know which content values were

in existence prior to interpolation and which are derived from the interpolation. This can be han-

dled in the abstract sequence model by adding to the content type a flag for this distinction.

A second transformation is a mapping, named "event order", which only retains the ordinal value

of the actual position values. This projection of sequence positions maintains the countable number

of the actual position values, i.e. "events". The result is a dense sequence that can be viewed as a

simple abstract sequence with the position type metric being "event number".

There are also operations in the direction from a dense to a sparse sequence. They art _.ollectively

termed "filter" transforms in this discussion. Examples are selection, averaging or sampling of con.-

tent values to generate a representative value. If the granularity has not been changed, then the

sequence becomes sparse. However, in most cases of averaging and sampling, these transforms

also change the granularity, so the resulting ,sequence remains dense. Only the selection filter leaves

the granularity unchanged.
z

These transforms are summarized msfollows:

sparse sequence
,4

_ in._n_n_n_n_n_n_n_n_,fl.lalj.__'entorder _ l
_- '_ most likely for

dense sequence _._..J averaging andsampling
:

!;

25



2. ABSTRACTSEQUENCES

2.4.5. Summary of Transforms

When ali the transforms are placed together, they creates the following framework:

semantic/sparse

event order fil__r./]l interpolatio,lnse__

simple __encodin _g n t' c/d e__;_t_c n__dns

26



2. ABSTRACT SEQUENCES

2.5. Improved Sequence Model Framework

Consolidating the changes discussed in the previous section, we have the following new frame-

work.

2.5.1. Order Sequence
r

An order sequence is defined as:

< [ p, c ] >, where p e Position and c e Content.
.P

It is simpler than the initial framework model, since it does not participate in density interactions.

Note that the position type is order only which distinguishes it from "simple sequences" (see

below) whose type is metric. Since the only operations defined are equality and order, the position

type is best represented by literals, i.e. "1", "2", etc. The danger of using whole numbers, e.g. 1, 2,

3, etc., as the supporting type is that arithmetic operations are permitted on whole numbers. This

is not appropriate for position values of order sequences, because differences are not meaningful

and users would erroneously "over-interpret" these differences as distances.

2.5,2. S_mple Sequence

A simple sequence is defined as:

< [ p, c ] >, where p e Position and c e Content.

The position type is whole number based. This is the abstraction typically used whenever

"sequences" are referred. The majority of the operations we define here fall into this category. A

difference between any two position values has a meaning in the simple sequence while it does not

in the order sequence. We use the LITERAL function to convert a simple sequence to an order

sequence:

LITERAL: p --_ "p"

where p is a whole number, and "p" is the literal for that whole number.

Functions will be referenced in the discussion by a postfix "()" notation. Thus, LITERAL()

represents the function defined above. Symbols listed inside the parenthesis are the argu-
ments to the function.

A simple sequence can be converted to an order ,sequence by applying the HTERAL() transform
4'

to ali its position values. The only characteristics of whole numbers that is preserved by the LIT-

ERAL0 transform is order and equality. On the other hand, there is no direct conversion of an order

sequence into a simple sequence.

Ali order and simple sequences are intrinsically dense, i.e. they have a content value for every posi-

tion value in the sequence. A sparse sequence would contain missing content values, these are often
,_,,

denoted as "non-existent null _, . However, there are other possible interpretations, e.g. "exist but

unknown" and "not apphcablc .Therefore, the concept of sparsity is a semantic one, based on the

27



2. ABSTRACT SEQUENCES

real world domain.

2.5.3. Semantic Mapping

A semantic sequence is defined as:

[<[p,c]>,[M,G,A]],

where p _ Position and c _ Content. "

and [ M, G, A ] represents Metric, Granularity, and Atomicity, respectively.

In order to map the simple sequence into semantic sequences, we provide domain independent

interpretations of position values. This way, the burden of defining sequence operations for each

metric, fractional, atomic, and density type is removed. The mappings are then defined as:

I_RPRET: p ; [ Metric, Granularity ] _ real world position.

p is a whole number from a simple sequence,

Metric is the name of real world metric, and

Granularity is the fractional number.

Similarly,

ENCODE: redl world position ;[ Metric, Granularity ] ---)p

To complete the framework, we add as many conversion rules as needed. Thus,

Given: SeqA is sequence with [ M 1 , G1 , A ] and

SeqB is sequence with [ M2 , G 1 , A ], then

_1_2: SeqA ---)SeqB, i.e. the transformation from Ml to M2.

Given: SeqC is sequence with [ M1 , G 2 , A ], then

_1_2: SeqA ---)SeqC, i.e. the transformation from G1 to G2.

For sparse sequences, we add one event order function and any number of interpolation and filter-

ing functions. Thus

Given: SeqA is sparse and SeqB is dense with the same

[ M, G, A ] attribute, then

INTERPDLATE: SeqA ---)SeqB, i.e. transform a sparse sequence to dense.

FILTER.: SeqB --4 SeqA, i.e. transform a dense sequence to sparse.

_: SeqA --_ Event-SeqA, i.e. build a dense sequence of events.

Note that INTERPOLATE() should be idempotent, ioe. for any dense sequence, SeqC, INTERPO-

LATE( SeqC ) = SeqC. The reason is that since SeqC is already dense, i.e. ali content values exist,

an interpolate function does not have any work to be done.

Event-SeqA can be an order sequence, simple sequence, or a dense semantic sequence whose [ M,

G, A ] is defined as [ event unit, 1 , 1 ]. However, a dense semantic sequence is most appropriate,

since the concept of an "event" in a sequence is the same as a "letter" in a word. Since we also have

28



2. ABSTRACTSEQUENCES

ENCODE0 and LITERAL() transforms, we can transform Event-SeqA to a simple or an order

sequence as dictated by domain or application. If the actual position values are needed for calcula-

tions, then one can include the original position value in the content value as a composite, but future

content type operations on this transformed sequence will be different from the original content

,. type operations. Consequently, the user will have to provide a set of necessary and correct opera-

tions. An example is shown below:

Eco RI Alu I Eco RI Hae II
I .__ __ I i

DNA map fragment: i 4kb _ 2kb J 3 kb

model

Sparse Semantic Sequence: < [0, Eco RI], [4, Alu I], [6, Eco RI], [9, Hae III >

Position = whole number Metric = kb, Granularity = 1, Atomicity = 1
Content = enzyme name

EVENT()

Event Sequence: < [1, Eco RI-0kb], [2, Alu I-4kb],
Position = whole number [3, Eco RI-6kb], [4, Hae II-9kb] >

Content -. enzyme name Metric ----event, Granularity = 1 Atomicity - 1and map distance

A type of FILTER() is selection, which transforms a sequence to another by selecting for qualifying

content values. Using the previous DNA fragment as an example, we can apply the following FIL-

TER() to obtain another sequence:

Eco RI Alu I Eco RI Hae II

DNA map fragment: ' I I I
u 4 kb 2 kb 3 kb

model

° filter for Eco RI markers FILTER()

/

T

_. < [0, Eco RI], i16,Eco RI], [9, null] >

Metric = kb, Granularity = 1, Atomicity = 1

(Alu I and Hae II removed from the sequence)

29



2. ABSTRACT SEQUENCES

2.5.4. New Framework

The previous framework is now filled as follows:

[<[p,c]>,[M,G,A]]

semantic/sparse

FILT ATE()

LITERAL lep - £i_a¢_e ______

< [ p, c ] > ENCODE()

order abstract

3(1



2. ABSTRACT SEQUENCES

2.6. Operations on Abstract Sequences

The following table describes ali the semantic operations of ,sequences we have discussed:

sequence types semantic operations

............ ......•" simple _ order LIFE

semantic _ simple INTERPRET(),
• ENCODE(),

MCONV0, GCONV0,

INTERPOLATE(),

FILTER(), EVENT()
.............

These operations map our abstract order and simple sequences to real world semantic sequences.

They are domain and application specific, therefore, must be supplied by the users of the model. In

contrast, there is a suite of sequence operations which are independent of semantics:

BASIC OPERATIONS
.......

content _ sequence _-_ multiple

sequence sequence sequences

BUILD(), CUT(), '" APPLY(i'

LENGTH(), CAT(), RECURSE0

VALUE(), REVERSE()

There are also operations that carl be constructed from basic operations. The ones of interest to the

HGP is listed below:

CONSTRUCTED OPERATIONS

sequence _ multiple

sequence sequences
__ _ .,.. "'_

SUBSEQ0 SEQ_EQUAL(),

. MATCH(),

OVERLAP()
,,

2,6,1, Basic Notation

For discussion on operations, we will use the following notation"

<...> to denote a sequence,

{... I to denote a set,

31



2. ABSTRACTSEQUENCES

[...] to denote an ordered n-tuple, and

a[ b ] to denote "subscripts", or the content value of the ordered pair [ b, a ] (where it is
in the form [ position, content ]).

Given a position type, E wb.ose instances are ordered, and an arbitrary type, T, then the type ofT-

sequences, SEQ._T, is de_;:at_das follows:

P - position type,

T - content type,

x's - instances of content type T,

n - whole number or integer > 0,

then an instance of SEQ_'I', z e SEQ_T, can be explicitly represented as:

z=<x [ Pl] ,x [P2] ,x [P3 ] ,...,x [Pnl >

where Pi'S are instances of P under the implicit order of Pl < P2 < P3 < ... < Pn, and every occurrence

of x associated with a "[ Pi ]" is an instance of T.

Operations are defined as:

op_name: list of domain variables _ range type

and to be used as'

op_name (list of domain variables),

which returns an instance from the range type.

We will also assume the following:

(1) position values in a sequence is ordered and dense. In our framework the simple sequence

position types can be represented by the whole numbers: 1, 2, 3, etc. The order sequence

positions by whole number literals: "1", "2", "3", etc., i.e. they can be compared, but dif-

ferences do not have any meaning.

(2) the exister'._e of the some minimal position value. For simple sequence, the minimal ele-

ment is denoted by 1. For the order sequence, the minimal element is also denoted by "1"

Computationally, it is better to use 0 (or "0"), but it would be less intuitive to the non-com-

puter science person.

"null "(3) the existence of a null sequence, _seq , whose set of position-content pairs is the

empty set.

(4) "equality" is defined for instances in T as T_EQUAL().

All the operations will be described in the context of simple sequences, whose position values are

whole numbers. All the operations also apply to order sequences, however, one must use the literal

form of the position values (see Section 2.5.2).

32



2. ABSTRACT SEQUENCES

2.6.2. Content _Sequence

First group of operations deal with the mapping between sexluences and content types, usually

through a position parameter.

tkl2Ik]2: x e T _ SEQ._T

° converts a single element of T into a T-sequence of length I. The position value associated

with x is the minimal value in the context of SEQ_T.
,d

LENGTH: x e SEQ..T _ N (whole number)

returns the length of x. This is equivalent to the cardinality of the sequence. For order

sequences, it is important that this number is derived by counting, because position

differences do not have any meaning. For null_seq, LENGTH() returns 0.

VALUE: x e SEQ_T ; p e P _ T

retrieves the value of x at position p. If x [ p ] is not defined, whcmer it is out of range or x

is the null_seq, then VALUE( x, p ) should return the null value for T.

2.6.3. Sequence _ Sequence

This group of operations deals with the construction of new sequence(s) from given sequence(s).

The values of the content type of a sequence is not changed, but the associated position values will

be changed.

.C,,.UTFRONT: x _ SEQ_T ; p E P _ SEQ._T

CUT BACK: x _ SEQ_T ; p a P _ SEQ_T

returns the beginning, or end, sequence of a cut placed at position p on sequence x. For sim-

ple sequences:

CUT_FRONT ( x, 0 ) --, null_seq

CUT_BACK (x,0) --, x

CUT_FRONT ( x, 1 ) --, BUILD(VALUE( x, 1 ) )

CUT_BACK (x,1) --, z,

where z= < x [ 2 ],xi 3 ] .... ,x[ n ]>,

and n is the largest position value of x.

CUT_FRONT ( x, LENGTH( x ) ) _ x

,. CUT_BACK ( x, LENGTH( x ) ) _ null_seq

If x is null__q, then CUT_FRONT and CUT_BACK returns null_seq.

If p > LENGTH( x ), then the result is the same as if p is LENGTH( x ).

A question remains on whether z, the result of CUT_BACK( x, 1 ), starts at 1 or 2'? If our

assumption of minimal element is maintained, then z should be
=

33



2.ABSTRACTSEQUENCES

z=<z[1],z[2],z[3], ....,z[n-1]>,andnot

z=<z[2],z[3 ],z[4 ],...,z[n]>.

So CUTBACK( x, 1 ) should be:

z[ll=x[2],

z [ 2 ] = x [ 3 ], etc., which can be made robust by using induction.

To be completely robust, in order sequences, "n - 1", i.e. LITERAl.,( n - 1 ), has to be

defined as:

SUCC(SUCC(... SUCC("1" ) ... ) )
with n - I composition of SUCCO, the successor function.

.C,AI: x, y e SEQ..T ---)SEQ_T

concatenates y to x. If we use explicit representation:

x=<x[ 1],x[2],x[3],...,x[n] >and

y=<y[ 1 ],y [2],y[3 ],...,y[m ] >,

then

CAT(x,y) =<x [ li,x[ 2],...,x[n],y[ 1 ],y[2], .... y [ m] >,

more correctly'

CAT(x,y) = < z [ 1 ],z [ 2],..., z[ n +m ] >where

forl<= i<=n doz[i]=x[i]and

forn< i<=n+mdoz[i]=y[i-n]

As expected:

CAT( x, null_seq ) = x

CAT( null_seq, x ) = x

t_..V_: x e SEQ_T --->SEQ_T

this reverses a sequence, lt is the only function that does not conserve order information.

For example:

x=<x[1],x[2] ..... x[n]>

then
i,

REVERSE(x)=<r[ li,r[2], .... r[n]>,where

for l <=i <= n do r [ii = x [ la + 1 -i ]
.it

If x is null_seq, REVERSE() returns a null_seq.

2.6.4. Multiple Sequences

Multiple sequence operations map sequences to other types. This is the most diverse group and the

most difficult to generalize. Instead, we only pre_nt three basic operations in the fashion of LISP

34



2. ABSTRACTSEQUENCES

operators. These operations pemtit the change of content values to construct new sequence types

in arbitrary fashion.

AP_P.E!_:x e SEQ_T ;f _ (T --->T') --->SEQ_T"

this is the iterative apply function, it takes a function f, which maps T to T', and apply it to

" ali the elements of an instance of T-sequence and returns an instance of T'-sequence.

Position values and order are conserved under this operation, only the content values are

• altered.

APPLY(x, f) =< a [ 1 ], a [ 2 ] ,..., a [ n ] >, where

for 1 <=i <=n do a [ i ] = f(x [ i ] )

This operator permits an operation on content type to become an operation on the sequence

type. This "super-operator" is independent of the content , peration, therefore it eliminates

the complexity of verifying each "extended" sequence operation.

APPLY TWO: x, y _ SEQ_T ;f _ (T, T --->T3 _ SEQ_T"

this is the apply "pair-wise" function over two sequences: for each position, p, in the range

of x and y, we generate a new sequence by applying f:

APPIN_TWO(x,y,f)=<z[ 1],z[2], .... z[n]>,where

for 1 <= i <= max( LENGTH( x ), LENGTH( y ) ) do

z[i]=f(x[i],y[i])

The event-joins of the temporal models can be constructed by using APPLY_TWO()"

1. convert the JOIN operation as f0 over the content value.

2. perform APPLY_TWO( x, y, f ).

This is more general than event-joins, since it is independent of sequence type or content

value and it is not limited to work with only corresponding attributes between the two

sequences.

RECURSE: x e SEQ_T ;f E (T, T" --, T') ; d _ T" --4 T"

this is simple recursive apply function.

RRECURSE (x, f) = f(x [ 1 ], f(x [ 2 ] .... f(x [ n ], d)... ) )
II

The value d is used as default value for the initial f(). The previous example is right

, associative, similarly, there is a left associative RECURSE:

LRECURSE(x,f)=f(...f(f(d,x[ 1]),x[2]) .... x[n])

The last three functions are based on a new class of operations that take a function as one (or more)

of their arguments. The return types are no longer restricted by content type T, position type P, nor

sequence type SEQ_T. In the HGP, only APPI.Y() and APPLY_'INVO() are of interest.



2. ABS'IRACT SEQUENCES

2.6.5. Constructed Operations

Many other common operations can be built from these operations. The construction is of theoret-

ical interest only, because in the real world, most of them are implemented directly. Notable exam-

pies are:

_: x e SEQ_T; p 1 , p2 e P _ SEQ_T

retums a subsequence of x. This can be constructed from CUT_FRONT() and

CUT_BACK():

SUBSEQ( x, Pl, P2 ) = CUT_FRONT( CUT_BACK( x, Pl ), P2 )

SEO EOUA_L: x, y e SEQ_T --) Boolean

checks to see whether x and y are equal. This can be constructed from tile left associative

RECURSE0 (LRECURSE):

Let T" = [Boolean, SEQ_T],

X and Y _.SEQ_T,

x and y eT,

t __Boolean, and

left( [A, B ] ) returns A.

Define f' T', T ----)T" as f ( [ t, Y ], x ) returns [ t', Y" ], where:

t" = AND( t, T_EQUAL( x, VALUE( Y, 1 ) ))

Y" = CUT_BACK( Y, 1 )

then SEQ_EQUAL( X, Y ) = left( LRECURSE ( X, f, [True, Y ] ) )

MATC_.H_:x, y e SEQ_T ; p e P --) Boolean

checks to see whether y is a subsequence of x at position p:

SEQ_EQUAL( SUBSEQ( x, p, p + LENGTH( y ) ), y )

_: x, y e SEQ_T ; p e P --) Boolean

checks to see whether y overlaps x at position p:

SEQ_EQUAL( CUT_BACK( x, p ), y )

Overlap definition could be extended to check ali possibilities, including embedding, i.e. y •
is within x.

MAX OVERLAP: x, y _ SEQ_T --_ p e P

determines the position of maximum overlap. A simple O(n 2) algorithm is"

for p from 1 to LENGTH( x ) do

if ( OVERLAP( x, y, p ) ) then return( p )
endfor

36

z



2. ABSTRACT SEQUENCES

retum(0)

37



3. MODELSOF BIOLOGICALSEQUENCES

CHAPTER 3. MODELS OF BIOLOGICAL SEQUENCES

With the definition of the abstract sequence model complete, we can now develop the model for

biological objects. We will start with the nucleotides, then single stranded (SS) sequences, double

stranded (DS) sequences, and finally, markers and fragments. ,,

3.1. Nucleotides

DNA bases can be modelled as an enumerated type, BASE: {A, C, G, T}. As required, we have

base_equal(). In addition, we have basecomplement(), which returns the complement of a base.

We could also model Pu, Py, and N as a part of the enumerated type. Then the functions

base_equal0 and base_complement0 are defined as:

,u, L , ,, ]

base
A C G T Pu Py N base complement

equality
..... ,.. , , n - . "-"_,',,i

A T F F F T F T A T
,, , ,,,, , ,,

C F T F F F T T C G

G F F T F T F T G C
, , ,,,,,,

T F F F T F T T T A
, , , ,,,, :t . t . t , , ,

Pu T F T F T F T Pu Py
,,,, ,,, t ....

Py F T F T F T T Py Pu

N T T T T T T T N N
...... I

"Pu" stands for Purines, which could be either' A or G.

"Py" stands for Pyrimidines, which could be either C or T.

"N" stands for any Nucleotide.

DNA sequences would not normally require the use of Pu, Py, or N, because if the sequence is

known, then the exact base is known, or if the sequence is unknown then it would not be a "valid"

sequence of bases. The use of Pu, Py, or N is to model intermediate uncertainty, i.e. under certain

situations, we only have partial information about the sequence. Instead of losing this partial infor-

mation by not storing anything, we could use these special enumerations. A situation where this is

most useful is the modelling of restriction enzyme recognition sequences. However, there are other

groupings that lack widely used names, such as W for A or T and S for C or G [48].

38



3. MODEI,SOF BIOLOGICALSEQUENCES

3.2. Single Stranded Sequences

To model real world sequences in our framework, we only need to specify the [ M, G, A ] triplet

and the semantic operators. For single stranded (SS) DNA sequences, [ M, G, A ] is [ base unit,

1,1 ]. Let:

SEQ_BASE = sequence of bases,

P = SEQ...BASE position values, which are in "base units", and

- W = whole numbers of the simple sequence position values.

.... , We will use ssDNA to represent the biological single stranded DNA and SS_DNA to represent tile

: sequence model type for single stranded DNA. For abstract operations, SS_DNA is synonymous

with SEQ..BASE, however, for operations that are significant only in biology, we will use

SS_DNA.

For brevity, we will use the character su'ing representation for SEQ_BASE: "blb2b 3 ...", instead of

the verbose form: < [ 1, b1 ], [ 2, b2 ], [ 3, b3 ], ... >.

3.2.1• Semantic Operators

The semantic operators, which map semantic sequences to and from abstract sequences, are

defir ed in Section 2.5.3. They are described in the following table, under the context of biology:

Semantic Operators Mapping Definition

INTERPRET() n e W --_ p e P p = n base_unit

ENCODE() p _ P --->n E W n = numerical value of p

INTERPOLATE() X e SEQ..BASE ---> y[ p ] = N for ali p not in X and
Y E SEQ..BASE y[ p ] = x[ p ] for all p in X.

EVENI'() X e SEQ BASE-_ y[ n ] = x[ p ],
Y _ SEQ_EVENT where n is the ordinal number of p in X

Comments:

1. MCONV0 and GCONV() ,arenot defined in the biological domain of ssDNA because there

• is only one metric ("base unit") and one granularity ("1 base unit").

2. The INTERPOLATE0 function can be the null function where N is "not applicable" or the

", total function where N is "any base".

3•2.2. Sequence Operators

With these definitions, ali ssDNA operations can be derived from the abstract simple sequence

= 39



3. MODELS OF BIOLOGICAL SEQUENCES

operations (define in Section 2.6). The ones of interest for the HGP are:

Sequence Operators Comments

LENGTH() length in base units
,

VALUE() returns the bar value
---- :_ -- __ _ _ 1, , ,,1,,

BUILD() length is 1 base unit for building SS_DNA
r IIII 'I III III mli I I iiirll i . i ._

SUBSEQ() returns a subsequence

CAT() concatenate two ssDNA

SEQ_EQUAL0 defined by using base_equal0
--- " I I1' IIIII I IIII ii I lllI iiii

APPLY() useful for building biological valid functions

REVERSE() since ssDNA is directional, this is used only for
building COMPLEMENrI'() (see below)

3.2.3. Biological Operators

From the set of abstract sequence operators, we can construct operators specific to biology.

Biological Operators Comments

COMPLEMENT() complements a ssDNA

IS_COMPLEMENT0 checks to see if two ssDNA are complementary

MATCH_CUT() cut ssDNA where sequences match

1. _h, IPLEMEN"_: X _ SS_DNA --, SS_DNA

A biological complementary sequence is both base-by-base complement and in reverse
order. Therefore, the definition is:

REVERSE( APPLY( X, basecomplement() ) )

"_ M , _.2. _OMPLE _: X Y _ SS DNA--> Boolean, is defined by:

SEQ_EQUAL( X, COMPL, EMENT( Y ) )

3. MATCt:I CUT: X, Y _ SS_DNA --_ set of SS_DNA
o"

cuts at where Y matches X, returns a set of SS_DNA. We will use a SS_DNA "match cut"

as a building block function for the enzyme digest of dsDNA. For example, if we are given:
X = "ACTAGAAAAAGTC" and

Y = "AAA"

40

III ............ _:; 'ii .... ill, ................................................. ._ .....



3. MODELSOF BIOLOGICALSEQUENCES

then assuming that the cut is placed before the match, a straight forward computational

result will be: {"ACTAG", "A", "AAAGTC" }. However, biology does not deal with a sin-

gle instance of SS_DNA. Typically, in an experiment, there is a pool of identical instances

(value-wise) undergoing the same processing. The result of MATCHCUT(), in the biolog-

ical domain, is:

{ "ACTAG", "AA",

"ACTAGA", "A"•g . i1. ,

"ACTAGAA", "AAAGTC" }.

This is vet3t different from the simple model of MATCH_CUT().

3.3. Double Stranded Sequences

3.3.1. DS DNA Models

There is no direct sequence model for dsDNA because a dsDNA has rotational symmetry and

because it can have arbitrary SS regions. Therefore, dsDNA has to be modelled as a complex type.

We shall discuss three complex models for dsDNA: symmetric, asymmetric, and polymorphic. To

preserve rotational symmetry, a "rotate" operator is needed to obtain a rotational equivalent

DS_DNA from a given DS_DNA. This operator, when used in conjunction with simple equality,

provides the basis for DS_DNA equality.

Semantic Operators Mapping Definition

ROTATE() X e DS_DNA _ returns the value of X after rotation
DSDNA

A. Symmetric Model

The first approach is to build a model that is "symmetric" to rotation.

DS_DNA 1 = [ SS_DNA 1 , SSDNA 2 , offset ], where'

SS_DNAI: start : I end

SS_DNA2: end : I start

" offset

offset is tl"_:::distance t_etween the starts of the component SS_DNNs,
-,,,,

more appropriately, the position of SS DNA2's start relative to SS_DNA 1 start.

The rotational symmetry of DS_DNA is preserved as a swap of the sequence elements

within the ordered triple, since:

_Q..T....4_( [ Sl, s2, offset ] ) --> [ s2, s 1 , offset ].

41



3. MODELS OF BIOLOGICAL SEQUENCF.,S

If offset > (length of SS_DNA 1 + SS_DNA 2 - 1) or offset < 0, we have a null DS_DNA 1'

SS_DNAI' start _ end

SS_DNA2: end J _ I start
offset: ,--.,- -_- .---,ilqr-- !

offset > summed length -1, thus invalid DS_DNA q

or

SS_DNAI: start _ _ end
SS_DNA2: end : .......--4 start

offset:

offset is negative, thus invalid DS_DNA

B. Asymmetric Model

The second model is a brute force model, that specifies the components as we encounter them. Here

DS_DNA is broken down into three sections, lt lacks the symmetry of the first model.

DS_DNA 2 = [ SS_DNA, start, end, tail 1 , tail 2 l, where:

SS_DNA: start _ .... I end

start: _5 start of double stranded region

end: z_ end of double stranded region

tail 1 and tail2: +1 for 5' _ 5' protruding3'

0 for 5, , blunt-end3 J , ,

-1 for 5' "-- 3' protruding3' t

Rotational symmetry is defined as the following operation:

ROTATE( DS_DNA 2 ) --) [ COMPLEMENT( SS_DNA ), LENGTH( SS_DNA ) - end,

LENGTH( SS_DNA )- start,-tail2, - ta.il1 ]

C. Polymorphic Model

The third approach to modelling DS_DNA is a polymorphic sequence, made of SS sequences and

filled DS sequences. The intennediate sequence models needed to create the overall model are"

1. SIMPLE_DS is a filled, blunt-end DS_DNA.

Since it has no SS tails, we can use a simple sequence as its model. But rotational symmetry o

requires that an orientation be specified when a simple sequence is used to model a

DS_DNA.

SIMPLE_DS = [ ss e SS_DNA, orientation ], where

orientation = 1 if ss is in the same orientation with respect to the larger context,

42



3. MODELSOFBIOLOGICALSEQUENCES

-1 if SSis in the opposite orientation, and

0 if ss is not in a larger context.

ROTATE( SIMPLE_DS ) --, [ ss ,- orientation ] or [ COMPLEMENrI'( ss ), orientation ]

Either results is valid.

" 2. SIMPLE_SS is the same as SS_DNA.

However, to maintain the correct biological orientation, it must also have an attribute to
g

determine its orientation with respect to the larger sequence.

SIMPLE_SS = [ ss E SS_DNA, orientation ], where

orientation = 1 if ss is in the same orientation as the larger context,

i.e. 5' to 3' is in the same direction.

-1 if ss is in the opposite orientation, 5' to 3' is the other direction, and

0 if ss is not in a larger context.

ROTATE(SIMPLE_SS) --, [ ss,-orientation ]

Since a SS sequence is always read from 5' to 3', we do not complement ss, but change its
orientation.

3. POLY SEQ is a sequence made of SIMPLE_SS, SIMPLE_DS, and POLY_SEQ.

The rotation operation on a POLY_SEQ is similar to COMPLEMENT() on SS_DNA, it is

defined by using the APPLY() operation:

]_.Q.T_2x,q_(ps ) = REVERSE( APPLY( ps, ROTATE ) )

Since POLY_SEQ is recursive, we can recursively apply the ROTATE() operation until

SIMPLE_DS or SIMPLE_SS has been reached.

A piece of DS_DNA, with two SS end-tails, can be modelled under the polymorphic model as:

ps = < SSl, ds, ss 2 >, where ss 1 , ss2 e SIMPLE_SS and ds e SIMPLE_DS

This is very similar to the asymmetric model. However, it has the advantage of constructing DS

sequences with SS gaps. In general, this advantage is not required, because internal SS regions are

usually filled by biological processes.

If we restrict the polymorphic model to a simple SS-DS-SS sequence, then the three models are

equivalent because they capture the same amount of information. The interconversion between

them is straight forward, therefore, we can use whichever model is convenient for the operaticm
,ii

under study. This reduces the overhead that we make to implement a particular operation for a par-

ticular model. We will predominantly use DS_DNA 1 and DS_DNA 2 for the following discussion.

3.3.1. Semantic and Sequence Operators

Another consequence of rotational symmetry is its effect on position values in a DS_DNA. The

43



3. MODELS OF BIOLOGICAL SEQUb__CES

meaning of a position can be viewed as a physical point, not just a distance value from a reference.

Since DS_DNA has rotational symmetry, a position should be orientation independent, i.e. it marks

the same physical point regardless of the orientation of the DS_DNA. This implies that a position

is always attached to the sequence from where it was obtained. For example, a DS_Position is [ p,

ds ], where p is a whole number and ds is the originating DS_DNA with the implicit understanding

that p is based on the orientation of ds. We minimize the complexity of this problem by only using

position values as inputs to operators. In this case, position values are whole numbers and are to be

associated with the orienlation of the input DS_DNA.

Because DS_DNA is no longer a direct sequence model, semantic operators are no longer appro-

priate. However, an equivalent set of them can be constructed to maintain the "sequence" nature of

DS_DNA:

Semantic Operators Mapping Definition
, .....

,, ,

INTERPRET() n _ W -4 p _ DS_P p = [ n base_units, ds ]
, , ,, ,,,, , ,....

ENCODE() p e P ---)n _ W n = numerical value of p
L , ,,

I'' '

INTERPOLATE() X e DS_DNA ---) y[ p ] = N for all p not in X and
Ye DS_DNA y[p]=x[p]forallpinX.

EVENT() X _ DS_DNA ---) y[ n ] = xi p ],
Y _ DS_DNA where n is the ordinal number of p in X

,,, ,,,,, ,,

ROTATE() X _ DS_DNA ---) returns the value of X after rotation
DS_DNA

..........

Although the simple sequence operators (defined in Section 2.6) are no longer directly applicable

to DS_DNA, an equivalent set of them can be created. The ones of interest are:

Sequence Operators Comments

DS_LENGTH() total length in base units

DS_VALUE() returns the base value under the default orientation

DS_SUBSEQ0 returns a subsequence with the same orientation

44



3.MODELSOF BIOLOGICALSEQ_CES

3.3.2. Biological Operators on DS_DNA

The biological operators are:

Biological Operators

" SS_DNA _ DS_DNA DS_DNA <--+DS_DNA mixed

A2qNEAL0, FILL(), TRIM(), DS MATCH(),
" DENATURE0 DS_CAT0, D S_MATCH_CUT()

DS,EQUAL0

1. ANNEAL: s 1 , s2 _ SS_DNA _ DSDNA 1

takes two SS_DNA and construct a DS_DNA based on complementary overlap. Conceiv-

ably, there can be a set of DS_DNA, since there may be more than one overlap. We will be

interested in only the maximum overlap.

2. DENATURE: ds _ DS_DNA 1 ---){ s1 , s2 _ SS_DNA }

takes a DS_DNA and returns the two SS_DNA components. This returns a set, not an

ordered pair, because biologically, the two SS_DNA components can not be ordered,

3. _: ds _ DS_DNA 2 ---)DS_DNA 2

fills the SS tails of a DS_DNA. If we let ds _ DS_DNA 2 and:

ds = [ ss, start, end, taill, tail2 ],

then, the resultant DSDNA 2 would be:

filled_als = [ ss, 1, LENGTH( ss ), 0,0 ].

4. TRIM: ds E DS_DNA 2 ---)DS_DNA 2

removes the SS tails. The resultant DS_DNA 2, from previous ds, would be:

trimmed_als = [ SUB SEQ( ss, start, end ), 1, end - start + 1,0,0 ].

5. DS EQUAL: ds 1 , ds2 _ DS_DNA 1 ---)Boolean

determines whether two DSDNA are equal. Since rotational symmetry is possible, we
have:

' ( dSl.S 1 = ds2.s 1 AND dSl.S2 = ds2.s 2 AND dSl.Offset = ds2.offset )
OR

" ( dSl.S 1 = ds2.s 2 AND dSl.S2 = ds2.s 1 AND dSl.offset = ds2.offset )

where dsi.s j denotes the sj component of dsi and "=" is SS_EQUAL for SS_DNA compo-
nents and integer equality for offsets.

Another implementation of DS_EQUAL is based on a SIMPLE_EQUAL() that operates on

the components of the specific DS_DNA model:

45

/, , ..... _.... ,r',, ,, , ft,lr_...... ir_ Inlr ""_'TI' '1lr ....llq,.... nlm',',ljMl',,'l,_" ql_l_II!l'kllv_,l,,_e,,' r,n,, :'* rlll'l"_,l , ......... _f*;Inl_rnIrllIIIIn'rllr"','"1,1_I_1'"_ li,, l]_ll,M



3.MODELSOFBIOLOGICALSEQUENCES

SIMPLEEQUAL( ds I ,ds 2 ) OR SIMPLE_EQUAL( ds1 , ROTATE( ds2 ) )

6. _: ds 1 , ds2 _ DS_DNA 2 --4DS_DNA 3

concatenates two DS_DNA together. Conceivably, ds1 and ds2 can have four possible ori-

entations for concatenation, and since more than one overlap is possible, this should return

a set of all possible results. Furthermore, such a concatenation may have internal SS gaps: ,

dSl 4 fl 1'1 1 f I ....

ds2: Lilt.ili_ii(iiii_fliiii[il!_T'--

VVVV
result: i' !i i ! | tilt I1-| .................._i_._iiiii,!,i.T__

AAAA AAAA AA

A and V mark the single stranded gaps

The full model would require the use of polymorphic sequence. For simplicity, we will

assume tile resultant DS_DNA will have ali the gaps filled and the overlap is maximal.

7. _: dse DS_DNA 1 ; sse SS_DNA _ set of DS positions

returns all the DS positions where ss matches ds. We can use SS MATCH() and iterate

through the length of ds.s 1 to generate matching positions on the given orientation, i.e.

associated with ds. Then apply MATCH() against ds.s2 for the complementary strand,

which would generate matching positions associated with ROTATE(ds). This is an example

of an operator where retu "ned position values must be associated with the source DS_DNA.

8. DS MATCH ctrT: ds, dse e DSDNA 2 _ set of DS_DNA

This is the definition of the restriction enzyme cutting. The result is a set of DS_DNA. We

use dse, a DS_DNA 2, to model restriction enzyme site instead of a SS_DNA. The reason is

that SS_DNA is insufficient as a specification for enzyme cutting site, because the cut site

is often off_t from the start of the recognition sequence on both component strands of the

DS_DNA. Therefore, dse is used as a template, matched against ds in both orientation. We

will discuss the use of DS_DNA for restriction recognition site in the next section. The

complete operation specification is nontrivial, but is computable.
q

46



3.MODELSOFBIOLOGICALSEQUENCES

3.4. Fragment Markers

There are two types of markers: restriction enzyme sites and probes. Both can be modelled as

DS_DNA.

3.4.1. Restriction Enzyme Sequences

Restriction enzyme sites are not physical DS_DNA, but rather recognition sequences. Since some

enzymes can recognize more than one specific sequence, therefore, a marker can correspond to a

set of exact sequences. Since a recognition sequence is usually thought as a simple sequence, why

do we modelled it as a DS_DNA? The reason is that restriction enzyme recognize DS_DNA, not

SS_DNA, and the cut site can be modelled by the SS tails. Furthermore, the rotational symmetry

is preserved by enzyme, i.e. it matches a sequence independent of orientation:

Eco RI recognizes: G IAATT C
C TTAA IG

ATGAATTC GTATGC TTAAGATG
when given this DS_DNA sequence:

TAC TTAAG CATAC GAATTC TAC

ATGfAATT CGTATGC TTAAI GATGEco RI will cut at:
TAC TTAAIGCATACG IAATT CTAC

creating three DS_DNA sequences:

ATG .... AATTCGTATGC TTAA .....GATG

TACTTAA ' .... GCATACG .... ,and AATTCTAC

Therefore, if the recognition DS_DNA sequence is considered as a template overlay, we will use

it in both orientations, as appropriate for all DS_DNA operations. Using DS_DNA 2 as a base

model, we modify it slightly to conform to recognition semantics.

RE_SEQ = [ SS DNA, left, right, tail ], where:

SS_DNA: start : I end

left: A left cut, in SS_DNA order

right: A right cut, in SS_DNA order

, tail: + 1 for 5'3, : __ 5' protruding

0 for 5' _ blunt-end
. 3' j

-1 for 5' :
3' _ 3' protruding

47



3. MODELS OF BIOLOGICAL SEQUENCES

For example:

Eco RI sequence, GIAATT C becomes [ "GATrC" 1 5 +1 ].
C TTAAIG' ' ' '

Alu I sequence, AGICT becomes [ "AGC'F', 2 2 0 ]CTI GA' ' ' ' ,11,

Pu GCGCIPy becomes ["PuGCGCPy" 1 5 -1 ]Hae II, sequence, py ICGCG Pu' ' ' ' " .

Pu stands for Purines (A or C)
Py stands for Pyrimidines (T or G)

Although, these three, examples are symmetric, there are restriction sequences where the cut site is

asymmetric, thus both "left" and "right" is needed. However, the "tail" information only needs one

value. The use "Pu" and "Py" in Hae II recognition sequence is a form of sequence shorthand for

a set of exact sequences (see Section 1.5.1). However, this may not be sufficient to describe ali pos-

sible recognition sequences. If the original DS_DNA 2 model is used, then tail 1 = tail and tail 2 =--

tail. This would retain the consistency between restriction sequences and probes.

3.4.2. Probe Sequences

A probe, on the other hand, is physically based on a DS DNA, however, it is used as a SS recog-

nition sequence via the IS COMPLEMENT0 operator. Although the exact sequence of a probe

may be unknown, it is sufficiently unique to be identifiable. In actual biological experiments, one

or both of the component SS_DNA can used as the recognition sequence, but operationally, it is

the same as using a DS_DNA template in both orientations.

3.4.3. Markers in Fragments

Markers, when they are placed on a fragment, are considered as point-like, i.e. the intrinsic lengths

of markers are considered too small to be visible in the context of a fragment. Appropriately, they

are considered as "events" on a sequence whose granularity and atomicity is greater than 1 base.

Subsequently, both restriction sequences and probes can be abstracted as a single quantum, i.e. a
marker ,

48

ill



3. MODELS OF BIOLOGICAL SEQUENCES

3.5. Fragment As Sequence

A fragment is a sequence of markers. The sequence content type is a marker, i.e. a DS_DNA as

described in the previous section. The only operation required of markers is equality. The sequence

position type is dependent on the measuring device for the fragment. When a fragment is measured

- by a gel, its metric is usually in units of bases or kilobases and the granularity is dependent on the

composition of the gel and varies between 1 base to 100+ kb. However, when a fragment is mea-

- sured by recombination, the metric unit is centiMorgan and its granularity ranges from 0.001 to 0.1.

If a chromosomal fragment is visualized by cytological staining, the metric unit can be "percent of

arm-length" and its granularity ranges between 0.001 to 0.1. In all cases, the atomicity never goes
below 1 base. The table below describes some of the values encountered in the HGE

.......... ..............

Methodology Metrics Granularity Range Atomicity
.... ' ,, ' .... II...... , .... ' ............ ', ,

base 1 and up 1 base

Physical kilobase 0.001 and up 0.1301kilobase
,,, , ,,, ,,,, , , , ,,,,

megabase 0.001 and up i0 -6 megabase
: ,,, ,, _-- , ,,i 1 • ,,,, -- ,, , ,,, ,, ,,,, , ,, , • ,,

centiRad 0.001 to 0.1 not exact
Biological .............

centiMorgan 0.001 to 0.1 not exact, .--10-6
,, , , i ,,, .....

band position p 1 to p 111 and not exact
Histological q 1 to q 111

-- ,,,,,, , i , ,,,,, , , , ,,,,,, ,, ....

arm length 0.001 to 0.1 not exact
....

The relationships between biological and histological metrics to bases cannot be described by a

simple ratio. Under current technology, the finest granularity achieved by these methodologies do

not approach the resolution of a single base. However, the mapping between these metrics and

bases are monotonic and, in theory, an experimentally derived function can be found.

We will assume our fragment sequence to be dense, with a "null" (unknown) marker value for the

positions that we do not have actual marker values.

" 3.5.1. Semantic Operators

The semantic operators for fragments are:

Semantic Operators Mapping Definition

INTERPRET() n _ W ---->p e P p = n metric units

ENCODE() p _ P --> n _ W n = numerical value of p

49

i_* tl 1" ' 'f_ ,, , .... II, , i, "llr " "' ',,' _" .... _lerr"",r '_'_



3. MODELS OF BIOLOGICAL SEQUENCES

Semantic Operators Mapping Definition
- , ,,,, ,, , i

MCONV0 X E SEQ_MARK1; convert metrics
me M2--_
SEQ_MARK 2

GCONV0 X E SEQ_MARKI-_ convert granularity "
SEQ_MARK 2

INTERPOLATE() X E SEQ_MARK _ y[ p ] = N for ali p not in X and
Y E SEQ_MARK y[ p ] = x[ p ] for ali p in X.

EVENT() X E SEQ_MARK _ y[ n ] = x[ p ],
Y E SEQ_MARK where n is the ordinal number of p in X

ROTATE() X E SEQ_MARK _ returns the value of X after rotation
SEQ_MARK

Comments:

I. SEQ_M,MIK represents a sequence of markers with an appropriate [ M, G, A ].

2. coarse-to-fine GCONV

These are rare, and if needed, are usually defined by insertion of null marker values for the

newly formed position values.

3. fine-to-coarse GCONV

These can be defined by rounding off position values. However, multiple markers may col-

lect into a single resultant position. For example, if two or more markers now occupy the

new position value, then a composite value, e.g. a set ox"a bag, is needed as a marker value.

Another method is to directly use Set of DSDNA as a marker value. Then no matter how

many markers are collected per position, we still have a sequence of markers.

4. The rotational symmetry of dsDNA is conserved for operations that consider fragments as

large DS_DNA sequences. When applicable, rotational transform is defined as:

ROTATE( fs ) = REVERSE( APPLY( fs, ROTATE ) ), where

fs is a sequence of markers, and

ROTATE() is DS_DNA ROTATE().

qqais symmetry is broken for operations at the level of' fragments derived from histological
i,i

methodologies, because the marker positions now have an absolute reference frame based

on the chromosome structure. Although one can argue that all sequences are located some-

where on a chromosome and therefore, they must have an absolute reference. However, ii

is the operations that determine whether rotational symmetry is meaningful ()r not,



3. MODELSOFBIOLOGICALSEQUI_CE,S

3.5.2. Sequence Operators

Sequence operators (based ira Section 2.6) for fragments are:

Sequence Comments
Operators

Ii, , ...... ,, , , ,,,.,,,,, , ,
-- , .... ,..,,,, L

LENGTH() length in appropriate metric units
.1 , i ,u i 1 , ,,,,.,,,,.,

• VALUE() returns a marker
__ lllil iiiii ii -

FRAG_BUILD0 requires a beginning Marker, an end Marker, and
length.

III I I I III

SUBSEQ0 returns a subsequence
i i iii iiiii i i [ ii iiiiiii ILL III]

CAT() concatenate two fragments

SEQ_EQUAL0 defined by using marker_equal()
I IIIII III I IIIII I -

APPLY() useful for building biological valid functions
, , ,1 , , ,

REVERSE() this is used only for building a biologically valid
reverse

,, 1 ...............

Comments:

1. The original BUILD() only constructs a sequence of 1 unit long. The FRAG_BUILD() is a

short.hand for building a longer sequence with implicit "null" values.

2. A check should be made in CAT() to make sure the end marker of fs 1 is biologically

compatible with the beginning marker of fs2.

3.5.3. Biologically Operators

For biologically significant sequences of markers, we will use the synonym FRAGMENT, instead

of SEQ_MARK. Biologically pertinent operators for fragments are:

Biological Operators

FRAGMENT
, FRAGMENT _ others mixedFRAGMENT

FRAG_OVERLAP() FRAG_EQUAL(), CUT_AT_MARKER(),
FRAG_CONTAINS(), CUT_AT_POS()
INSERT.MARKER()

I. FRAG EQUAL • fs I , fs2 e FRAGMENT-_ Boolean

checks for exact equality of two fragments

51

=2



3. MODELSOF BIOLOGICALSEQUf_CES

2. FRAfj OVERLAP' fs 1 , fs 2 e FRAGMENT ---rPosition

returns the position in fs 1 where fs2 overlap.

3. _"RAG CONTAINS • fs1 , fs2 _ FRAGMENT _ Boolean

checks for containment of fs 2 in fsl.

4. INSERT MARKER" fs _ FRAGMENT ; m _ MARKER ; p _ Position _ FRAGMENT "

inserts Marker m at Position p in fs.

5. CUT AT POS ' fs e FRAGMENT ; p e Position --_ Set of FRAGMENT

cuts fs at Position p. The result is a set of two fragments. The newly created ends do not

have any known marker value, i.e. they have a "null" value.

6. _CUT AT..MARKER' fs e FRAGMENT ; m e MARKER ---)Set of FRAGMENT

cuts fs wherever Marker m occurs. The result is a set of fragments.

3.5.4. Circular Fragments

A biologically significant form of DNA fragment is the circular DNA. To model this under the

abstract sequence model requires an additional attribute of Topology. If the value of Topology is

"linear", then no changes are required for the operators. If the value is "circular", then the "zero"

point, i.e. the beginning of the equivalent linear fragment, is used as a reference point. The follow-

ing operators are defined:

Circular Operators

FRAGMENT
circularization mixed

FRAGMENT
....... , .... ; ........... ,',', ',dl ....,,

CIRCULARIZE() FR'AG-EQUAL0, CUT_AT_MARKER(),
FRAG_CONTAINS(), CUT_AT_POS()
INSERT_MARKER()

f................

1. CIRCULARIZE: fs e LINEAR_FRAGMENT --) CIRCULAR_FRAGMENT

This takes a linear fragment and circularize it if the ends of the fragment are compatible.

2. FRAG_EQUAL0 and INSERT_MARKER0 remains the same.

3. CUT_AT_MARKER: fs e FRAGMENT ; m e MARKER _ Set of FRAGMENrF
w

This is identical to the linear form of CUT_ATMARKER() defined above, except that the

ends of the original fs are sealed between two Markers. Same applies to CUT_AT_.POS().

4. FRAG_CONTAINS() is defined if fs 1 is circular and fs2 is linear.

52



3. MODELSOFBIOLOGICALSEQUENCES

3.5.5. Ordered Maps

A special type of sequence information found in the HGP is from the ordered clone maps. They are

sequences of DNA fragments whose order is known, but not their distances. Therefore, the position

type is of pure order. In Section 2.3.4, we used the dense order sequence to model them and in the

, current framework (Section 2.5.4), they are considered as order abstract, which is still dense. How-

ever, we now propose a different model.

• The justification for the new model is based on the following problem. If we are given an ordered

clone map of fragments with preassigned order values and if we introduce a new fragment into this

map, then we need to assign the new fragment an order value. If the sequence model is dense, then

ali the fragments that follow the new one will have to be reassigned with new order values. If the

sequence model is sparse, then the other order values can remain the same. This is achievable only

if the position type is based on the numbers used in the Dewey decimal system, i.e. the one used

cataloging of books in a library. In this numeric system (based on rational numbers with infinite

precision), one can always insert a number between any two given numbers. Therefore, one can

insert a new fragment into an ordered clone map without affecting the other preassigned position
v_ues.

This approach has the advantage of minimizing changes when an ordered clone map is updated

with new information. Therefore, we could model ordered clone maps as order abstract sequences,

but with an intrinsically sparse position type, e.g. the Dewey decimal numbers.

53



4. SEQUb_CESUMMMARY

CHAPTER 4. SEQUENCE SUMMMARY

4.1. Conceptual Basis

The basis for our conceptual sequence models has two major components: the abstract mathemat-

ical function and the separation of abstraction from semantics. Mathematical functions are purely

characterized by a set of domain values mada set of range values. A subset of these functions has

ordered domain values and, by casting these domains into positions, it formed the basis of our

sequence models. In order to extend the semantics of position values, the position type was further

categorized based on measurement theory. Thus, metric scales, i.e. ordinal and interval, were inte-

grated into the position type and form a framework of models. At this point, the sequence models

were still abstract. The next step was the addition of the real world semantics.

Implementation issues, such as storage efficiency or access methods, and application specific

issues should be ignored in a conceptual model. Therefore, it is critical that we do not inadvertently

introduce implementation or application specifications when adding the semantics. With this prin-

ciple in mind, the relationships between metric, granularity, atornicity, and density were added to

the framework as semantic components to be specified by the user in domain specific fashion.

Other sequence models are typically concerned with implementation or application issues prior to

this stage. Therefore, some of the basic interactions between sequence characteristics were never

modelled and the end result was an ad hoc development of sequence operations.

In addition to the static description of sequence information and its semantics, we also defined a

set of sequence operations. They are summarized below:

Types Names Comments

INq_RPRET() abstract to semantic

ENCODE() semantic to abstract
Semantic _ ........ , ............. _-- ,
Operators MCONV() convert metrics

(domain GCONV0 convert granularities
specific) ........

" I.Nq_RPOLATE() usually the default null interpolation function "

EVENT() generate a sequence type based on event order

-: 54



4. SEQ_CE SUMMMARY

ro,t_ ,,,, ,,,,J

Types Names Comments

_() , ........., ...... ,I ,LENGTH length of a sequence

VALUE() returns the content value

" BUILD() content type to sequence type
_ __ ' ........... I lr i -

Sequence CUT(), SUBSEQ0 returns a subsequence
" Operators ..............

(domain CAT() concatenate two sequences
iiiq ii I I I I

independent) REVERSE() reverses a sequence

SEQ._EQUAL0 defined by using equal() from content type
III III1[ I I III II NI III I I III r IIII I [11

APPLY() apply an arbitrary function to content values
.... ,,,.,,

RECURSE() recursion over elements in a sequence
......... ', "'_ ...... L'," ................. ' ...... ,_I ...... :,', ,',

4.2. HGP Sequence Models

We proposed a model for each of the sequence types found in the HGP. For ssDNA and fragments,

the models were as simple as SEQ_BASE and SEQ_MARK, respectively. On the other hand,

dsDNA required a more complicated model. In the context of the HGP, dsDNA is never "seen"

with SS tails, because the native form of DNA in the cell nucleus is always fully complemented.

Therefore, genomic database models for DNA sequences always assumed the native double

stranded form. Under this assumption, dsDNA can be modelled as ssDNA and, subsequently, char-

acter strings. However, rotational symmetry of dsDNA cannot be accounted for by character

strings. Consequently, programs extem_ to the database must maintain this information and per-

form the necessary transformations to recapture this characteristic. More importantly, the schema

for a database with the string implementation wouId fail to capture this aspect, which would intro-

duce potential maintenance problems for the application developers as clients of the database.

If we made the same simplifying assumption, then our dsDNA can be modelled as SEQ BASE.

However, it would still be named DS_DNA and would still keep all the DS_DNA operators. This

forces the semantics of the rotational symmetry to be associated with the dsDNA model and

" removed the burden of maintaining this information from the clients of the database. In software

engineering terms, this improves the cohesion of information modelling.

55



4. SEQUENCESUMMMARY

Finally, we defined a set of biologically relevant operators:

Types Names Comments
,,,,,,, ,!! , ,,,, ,, ,,,,,, , , ,, ,,, z ...... "

COMPLEMENT(i complements a ssDNA
,, , , , ,,

ssDNA IS_COMPLEMENT0 checks to see if two ssDNA are complementary

MATCH_CUT0 cut ssDNA where the sequence matches
Ipl I I llIl Irll I I 1111 t

ROTATE() preserving equality for dsDNA

Ds..EQuA].,() equality for'DS_DNA
_. __ _ , ,,. ,,,

dsDNA ANNEAL(), ssDNA _ dsDNA
DENATURE()

, ,, ,,, ,, ,, ,.,, , .........

FILL(), TRIM() makes blunt-end dsDNA
, ,. , . ,.. ,

MATCH_CUT0 cut dsDNA where the sequence matches
I I I IIIII I II IIlr I iiiii IIIII ....... II i iiii II

FRAG_EQUAL0 equality for FRAGMENT

FRAG_CONTAINS0 checks to see if a fragment is contained in another

fragments INSERT_MARKER0 insert a marker into a fragment
, ,, . , ,,

CUT_AT_MARKER0 cut a fragment at matching marker positions
,, ,, , , ,,,,.,, .,.

CIRCULARIZE() circularize a linear fragment
, ,,. ,,,, ,,, , ,

4.3. Model Expressiveness

In addition to the sequences found in the HGP (see Section 2.3.4), the proposed framework of

sequences can properly capture the sequence information from the commonly used sequence types
of other domains:

Models density Metric Granularity Atomicity

text dense character 1 1

lists dense index unit 1 1
lt

discrete
events sparse time variable variable

L.

step-wise
continuous dense time variable variable

continuous dense time variable variable

Metric, Granularity, and Atomicity of temporal sequences will depend on the particular applica-



4, SEQUENCE SUMMMARY

tions. Temporal models chose to implement step-wise continuous sequences as discrete event

sequences because of their relational implementation. While it may be more economical to store a

step-wise continuous sequence as a discrete event sequence, this choice should not be made at the

conceptual level.

. 4.4. Open Topics

The sequence framework only addresses the abstractions of a single sequence, it does not address

- the issue of a collection of sequences. This is insufficient for database data modelling, because a

database contains collections of sequences and data models are to reflect the gestalt nature of these

collections. Therefore, the sequence framework must be integrated into a database data model (as

opposed to an programming data model) in order for it to be useful for modelling databases

sequence information. This integration is the goal of Part II of this work. However, there are other

topics open for future discussion.

4.4.1. Position Order

Issues pertaining to partial and circular order were not addressed in the current framework. A non-

standard algebraic position type will affect the arrangement of a framework based on linear, mea-

surable position type. For example, what is the meaning of granularity of a partial order position

type? In addition, operator semantics will need modification. For example, concatenate for partial

order sequences could be a merge of two partial order graphs based on common position-content
values.

57



5, BACKGROUND

PART II. EXTENSIBLE OBJECT DATA MODEL

CHAPTER 5. BACKGROUND

Data models serve as languages of discourse, they convey meanings from one domain to another.

There are three major groups of data models: conceptual, logical, and physical [66]. A conceptual

model provides a way for users to model the real world and to communicate with precision about

their application domains. This is accomplished by capturing the "semantics" of the real world, •

such as object abstraction, integrity, and relationships. The physical model, on the other hand, con-

rains information about the actual implementation of data structures ,andoperations that support the

conceptual model. The specific implementation constitutes the database management system

(DBMS). The logical model is based on an abstraction of the physical model by removing optimi-

zation and implementation-specific features. It acts as an intermediate language between the con-

ceptual and physical models. The following diagram demonstrate their interrelationships:

Real World Concepts Examples'

. Specifies _ I Implements
Conceptual Model EER [65], SDM [28], OSAM [62]

Specifies _ I Implements

Logical Model hierarchical, network, relational [22]

Specifies _ I Implements

Physical Model Ingres [31 ], Sybase [63], Informix [30]

The distinction between conceptual models from logical or physical models is based on the seman-

tic richness of the model and not on the level of implementation. Therefore, the conceptual models

are also termed ,semantic models, as an indication of their semantic richness. It is desirable to go

directly from a rich conceptual model to a physical implementation, which is the reason that certain

logical model (especially the relational model) are being extended [8,16,43].

In addition to the organization of models based on semantic richness, there is an alternative orga-

nization that is based on dependency. Under this scheme, the models are grouped into three groups:

interface, conceptual, and physical. The interface group deals with how the users interact with the_

system. In database applications, this translates into query facilities and user interface issues. In

this group, it is very application dependent but implementation independent, therefore, it is some-

times called the "external level". The conceptual group is similar to the conceptual m¢_dels_in the

previous scheme, lt deals with data models and formal query languages in an application and

_

=

58

,.



5. BACKGROUND

implementation independent fashion. Lastly, the physical group handles implementation specific

information, such as data structures and access methods. However, it is application independent,

therefore,, it is sometimes called the "internal level". Their relationships are diagrammed as fol-
lows:

" Users Dependency:

I application
Interface Level Implementation Independent

I modelling

Conceptual Level Application and Implementation
Independent

I query optimization

Physical Level Application Independent

Our goal in Part II is to develop a conceptual data model, with sequence constructs, that corre-

sponds to both organizations, i.e. it is both semantically rich and application and implementation

independent.

There are two approaches to the integration of the abstract sequence models into a conceptual data

- model. The first approach is to choose an existing data model and graft the sequence model as an

extension. For example, we can extend the relational model with sequence constructs in the style

of Non First Normal Form (NFNF) [ 1]. A better alternative is to use a semantic model for sequence

extension. Since semantic models already provide rich conceptual power, the only task is to add a

sequence construct. However, such an addition has to be semantically consistent with the base

model and remains orthogonal to other constructs. The verification of consistency and orthogonal-

ity would be a limited exercise, but the creation of a new construct may introduce conceptual incon-

gruities in the model. In addition, some semantic models already have a limited version of

sequences, e.g. "lists" and ,'arrays" [28], does one extend or replace existing constructs'?

The second approach is to develop a new model from scratch with sequences as an integral corn-
#P

ponent. Here, we run the risk of redc,,1eloping constructs found in other models and resulting in

redundant work. On the other hand, it allows us to build a new self-consistent model without the

" possibility of conflicts with the presumed intent of existing constructs. In addition, it gives us the

opportunity to resolve open questions in conceptual data modelling. For this work, we choose the

latter approach because we a;e free to address open modelling issues. The remainder of this chapter

reviews the issues of conceptual data modelling. In Chapter 6, a new data model is proposed. Chap-

ters "7and 8 describe the model in detail, Finally, Chapter 9 summarizes the results of Part II.



5. BACKGROUND

5.1. Fralnework for Data Models

Currently, conceptual data models are based on two approaches: semantic and object-oriented.

Many semantic data models have been proposed and they were reviewed in [29,51]. Briefly,

semantic data models borrow constructs from knowledge representation and semantic modelling

in the Artificial Intelligence field. Their objectives are to capture real world concepts in an appli-

cation independent fashion. Object-oriented models are logical models based on Object-Oriented

DBMS's (OODBMS) [38], but due to their semantic richness, these can also serve as conceptual

models. They primarily focus on features of Object-Oriented programming languages, i.e. object

identity, classes, and inheritance. For this research, we are proposing yet another conceptual model,

independent of these two approaches.

Unfortunately, debating merits of data models i_;like debating merits of programming languages:

arguments range from the arcane to the religious. Therefore, we first propose a framework where

conceptual data models can be evaluated and compared. Clearly, the assumptions behind any

framework are also debatable, but once accepted, the models can be evaluated in a systematic fash-

ion. Our framework is built on two central issues of every conceptual model' what a model is and

how the model is Used. This framework is based on the one presented in [46].

5.1.1. Semantic Mapping

In the core of all models is the semantic mapping. The result of a modelling process is the schema.

For conceptual modelling, a schema is "an implementation of the real world". In addition, it can

be viewed as a specification or as a template for translation into a logical or physical schema. This

is diagrammed in the previous figures. Consequently, the conceptual model (as a language to pro-

duce a schema) serves two goals: one is semantic richness to capture real world meaning, another

is formalism to specify implementation. Together, these goals determine the power of the semantic

mapping. The main aspects of this mapping are:

1. Semantic Richness

A direct representation of a real world concept is better than an indirect one. A rich model

will have more constructs that map directly to real world concepts. However, a balance

must be struck between richness and simplicity.

2. Representation Uniqueness

For a given real world concept, it is less confusing if there is only one unique representation

in the model. If there are many constructs for the same concept, then additional rules are

needed to decide which construct is to be used.

3. Implementation Independence

A conceptual model should be independent of its implementation, i.e. the underlying

6O



5. BACKGROUND

model. However, the model is also a bridge between the real world information and the

actual database (or logical model), therefore, the concepts it captures must be implement-

able on any sufficiently capable database (model), not just one specific database.

4. Mathematical Completeness

- In a mathematical framework, a data model can be considered as a logical theory with a

denotation for each construct and a set of definitions and axioms. Completeness is a prop-

, erty that states "model" transformations correspond to "real world" transformations [23]. lt

stipulates that ',diconstructs in the data model are well-defined and all operations are closed.

In addition, there are certain features of semantic mapping that a model should address'

5. Model Extensibility

A model should be extensible to capture application specific concepts in a general fashion.

This is the ability to add new constructs to the model in a systematic fashion when new con-

cepts appear in an application domain. This is equivalent to extending a language, not just

expressing statements from a given language.

6, Domain Invariance

A conceptual schema should only describe the invariant properties of the application

domain. If this is not observed, then after each operation that changes the database state,

the schema would also be changed. This would force operations to be of ad hoc nalure

because one cannot ensure a stable schema prior to the actual operation. Therefore, a con-

ceptual model should only model operation-invariant properties.

5.1.2. Usability

The usability of a model determine how it is used and, in turn, its acceptance. Although semantic

richness is important, human factors dominate in this determination. Two factors of usability are

mental comprehensibility and user interface. Comprehensibility is, in turn, based on a mixture of

factors and it is also a subjective criterion: each application domain and each user will weigh each

factor differently. The main components to comprehensibility is richness and uniqueness from the

semantic mapping part plus the following'

. 7. Model Simplicity

A simple model is easier to learn than a complex model. A model should have a small num-

" ber of simple constructs and a small number of rules governing the interaction between con-

structs. The interaction rules are usually the most complex part of a model, because there

can be O(n 2 x m) cases where n is the number of base constructs and m is the number of=

association constructs.

61



5. BACKGROUND

8. Schema Modularity

A conceptual model should allow the user to divide the "real world" into smaller, manage-

able chunks of related information. There are two mechanisms: encapsulation and refer-

ences. Although encapsulation is based on semantic mapping, i.e. how groupings of le.al

world concepts are mapped to model constructs, its execution as a usability factor is more

important beca.use it determines how we use the model to group concepts. Referencing is

the ability to separate definition from reference. It is a feature that helps the users to handle o

the complexity of real world information by breaking apart a large schema into smaller

pieces.

User interface issues deal with the mechanical process of modelling by a user:

9. Graphical Form

A graphical foml is often more visually comprehensible than a textual form. A model

should support a graphical representation of its constructs. Presumably, each construct in

the model would have an easily identifiable graphical representation.

10 User Support

A set of tools for schema, generation, editing, and viewing would be useful. In addition, if

the conceptual schema is independent of the underlying system or model, then a translation

tool to different systems and models would be useful,

This is a large and comprehensible frarnework. Therefore, our proposed model will only emphasize

some of the features. Of those addressed, some will overlap with other conceptual models.

62



5. BACKGROUND

5.2. Common Characteristics

We will start with the features that most semantic models fulfill.

5.2.1. Semantic Richness

The semantic "richness" of a model is a measure of how welI it can model rem world information.

• Ali conceptual models have a set of basic constructs. The constructs have been reviewed in [29,51 ].

Briefly, they are:
6

1. Types and Instances

These are also termed Classes and Entities, Objects and Instances, Classes and Objects. The exact

terminology isn't important as long as they are used consistently within a model. A model instance

corresponds to a real-world object or absu'action. A collection of instances with common informa..

tion and behavior (with respect to other collections) is called a Type. For example, a Person Type

would include information such as ID, Name, and Age, and "contains" zero or more instances of

Dependent Type. You and I ale instances of Persons, each with different values for ID, Name, Age,

and different dependents.

2. Aggregation and Grouping

Aggregation is also termed Tuple or Cross-Product. Grouping is termed Sets. The terminology is

reversed in some data models. These concepts define two me_hods of collecting instances together

to form a new Type. Tuple construction builds a new Type from a fixed number of instances, each

of a specific Type. When given an instance of the Tuple Type, specific member instances are usu-

ally accessed by their Type name. For example, if x is an instance of Department Type, x.Manager

would retrieve the manager instance. Set construction builds a new Type from an indeterminate

number of instances, usually from one specified Type. The instances within a set cannot be indi-

vidually addressed, instead, they are accessed through selection or iteration on the set.

3. Specialization and Generalization

These are aspects of IS-A hierarchies. Sometimes, they are also used to extend the concepts of Sub-

sets and Union. Specialization constructs a new Type by adding inforrnation or behavior to previ-

ously defined Types. Generalization is the reverse of specialization, it construcm a new Type from

. other Types, but only keeps the common information and behavior. For example, a Student is a spe-

cialization of Person and a Publication is a generalization of' Article and Book.

4. Relationships and Roles

They define how one Type relates to another. Relationships can be represented as a mathematical

mapping between two sets of instances, therefore, we find concepts of 1-to- 1, 1-to-many, many-to-

man),, unto, and into expressed by relationships. Relationships in a data model are named after the

real world relationship. For example, some of the relationships between two Person Types are "Par-

_. 63
_



5. BACKGROUND

ent-of', "Managed-by", and "Married-to". Roles are aliases the Type assumes at the end-point of

a relationship. For example, a Person assumes the roles of Parent and Child at the ends of a "Parent-

of" relationship.

5. Class Construction and Meta-Typing

Some models permit Class construction, where arbitrary instances are explicitly grouped into new

Types. Other models support Meta-Typing, where arbitrary Types can be explicitly grouped into

new (meta-)Types. The two mechanisms allow Type formation based on explicit instances. 'These

are supported by data models which are mo,e instance-oriented than type-oriented.

The more real world concepts for which there is a direct representation, the richer the model. Given

this set of basic constructs, there are many ways to design a consistent model, as demonstrated by

the current _t of conceptual models. Each has its own extensions, but the problem is not semantic

expressiveness because ali of them cover the basics. In fact, some users would be satisfied with the

richness from a subset of these five constructs, because for their particular application domains, a
subset is sufficient.

5.2.2. Representation Uniqueness

For any particular real world concept, most models provide only one unique representation. How-

ever, this fails when relationships are encountered. There are two basic approaches [29]: one

approach is function-based where _I relationships are designated by directed arcs and the other

approach is type-based where new types represent relationships. The function-based approach

lacks the ability to refer to a relationship and its characteristics together. The type-based approach

allows ,ambiguous mapping of relationships. These are demonstrated in the following diagram-

matic example:

Managed-by

[Departmenf "_ Works-For'__ .... ,t[_ --q Employe_

Wnc,io.ai Ve

approach: Name_ "_-"_ Name/ _Salary

- 641



5. BACKGROUND

In the functional approach, there is no mechanism to reference Years based on Works-For or to use

Works-For as a basis to another relationship because the functions have only one destination.

Depanrnent Works-For

" Type-base
approach:

, _ame

In the type-based approach, one cannot prevent modelling Manager as an attribute of Department.

There is no resolution for this problem in "graph"-based data models, because it is a fundamental

semantic gap based on our ability to abstract a relationship as entity and vise versa. We will choose

the type-based approach because it allows us to scale-up relationship abstractions. Therefore, we

will consider the problem of Department/Manager as an error in modelling semantics, i.e. the cor-

rect schema should use an explicit "Managed-by" relationship between Department and Manager.

5.2.3. Implementation Independence

Most conceptual data models can be implemented on top of different logical or physical models.

However, the case and efficiency is dependent on the particular constructs, For example, Entity-

Relationship (ER) constructs have direct implementation into relational schema [18]. However, the

integrity constraints of cardinality and foreign keys specified by an ER schema require additional

processing in the relational model via u'iggers or supporting queries to maintain integrity. Special-

ized constructs, e.g. summary of Object-Oriented Semantic Association Model (OSAM) [62] and

collection of IFO [2], are difficult to shoehorn into the relational form. On the other hand, set con-

structs from the IFO model has a simple and direct implementation on a hierarchical DBMS. Dif-

ficult implementations indicates that the underlying model or system truly lacks certain features

that would make them conceptual. After all, if the relational model captures a rich set of semantics,

we won't have the proliferation of relational extensions and semantic data models. There is also a

principle behind the drive to capture real world semantics: if the model is rich enough to capture

the domain semantics, then it is sufficient.

Object Oriented data models are logical models of OODBMS, therefore, they lack independence

from physical systems. On the other hand, they are rich in semantic constructs. Recent progress has

been made to provide mathematical completeness to OO models, but has not pursued logical-level

independence [69]. However, OO models are rich in mechanisms to implement conceptual abstrac-

tions, albeit only on top of OODBMS.

o5

41 Ill u II Irq llnl_I 'llll ,q iP IIIq qllI I 3111¢,̀ qtql i I , rlq qlqlli ii, II



5. BACKGROUND

5.2.4. Mathematical Completeness

When discussed in the context of mathematical logic, completeness depends on a balance between

the number of distinct constructs and the number of axioms governing their behavior. In a mathe-

matical theory where constructs out-number axioms, completeness is unlikely to be achieved. On

the other hand, if axioms out-number constructs, contradictions may be present. A theory that is

complete implies all statements are provably correct or incorrect, i.e. no statement exists that can-

not be proved. For example, Pressburger arithmetic is complete, but with the addition of "multipli-

cation" to form Number Theory, it becomes incomplete [23]. From another perspective,

completeness is a measure of "semantic complexity". The more complex a theory, the more diffi-

cult for it to be complete.

With the advent of relational model, mathematical formalism has been pursued by all subsequent

models. Given the fact that completeness is related to "semantic complexity", it is unlikely to be

achieved by semantic data models. On the other hand, certain amount of formalisms can be

obtained, e.g. ali terms are well-defined and all operations are closed and computable. For this

work, we will not investigate completeness in our proposed model. This is reserved for future
research.

5.2.5. User Support

Support is often determined by the maturity of available tools for the model. These tools provide

the ability to view, edit, print, and store model schemata. They also provide semantic translators to

other data models for implementation or graphical translators to document processors. These tools

enhance the usability of a model, but the lack of such tools should not detract from its usability as

a conceptual model. The development of these tools is in the domain of user interface research and

not in data modelling research. Furthermore, the development of tools is expensive, therefore, new

or uncommon data models often lack the wide-spread acceptance for such investment. The only

support tool for our proposed model is ll_equery processor described in Part III. Otlaer support tools
are reserved for future research.

66

,J p



5. BACKGROUND

5.3. Unique Characteristics

There are some aspects of conceptual data modelling that have been improved in our proposed

model as compared to others These will be explored in more detail:

5.3.1. Domain Invariance

The concept of invariance is very important in all modelling endeavors. It allows the model con-

structs to only reflect the domain information that is "generally" true. In most semantic data rood-

' els, there does not exist a clear definition of invariance, i.e. what domain information is considered

to be "generally" true. Most models typically start with some statements concerning the definition

of "objects" and their representations, relationships, or implementations. In addition, most models

focus on the abstraction of object characteristics, i.e. type definition, and not on the specific

instances of objects. This is fortuitous because type definition is a form of invariance principle.

This approach works for many applications, because during the lifetime of a database schema, the

type definitions do not change, only the instances of the types. But in certain domains, e.g. statis-

tical databases, it is the instances that do not change, only the types or categorizations of them

change. Clearly, in these domains, the standard type definition may not properly describe the

domain information that is "generally" true and a fundamental semantic gap forms.

In our model, we define the invariance at the level of collection of instances. Domain concepts

related to ali the instances of the same collections are then mapped onto the schema. Concepts

which are specific to individual instances are not modelled. In addition, a collection-level construct

based on "context dependency" will define the relationship between instances. This will maintain

a constant level of abstraction and invariance for the model.

5.3.2. Model Extensibility

Most semantic data models do not provide the mechanism to add new constructs in a systematic

fashion. After all, the goal of a semantic data model is to be semantically rich, therefore, no new

constructs should be needed. This is inadequate for specialized domains, since in the real world,

there are many semantic concepts that cannot be mapped onto a strict set of constructs and rules.

Therefore, our proposed model is constructed so that extensibility is a core feature. This reflects

the "open-ended" nature of ali mathematical models, i.e. new axioms and definitions can always

be added to an existing model to create a new model.

Under what situation would there be a need for new constructs? Typically, it is the emergence of

new abstractions or encapsulations. For example, a Set is an encapsulation of a collection of

instances and it is usually included in a semantic model. However, a sequence or list is an encap-

sulation of a collection of instances that is different from sets, i.e. the information that goes into the

consrruction of a sequence is different from a set. If an existing semantic data model is used, one

would have to shoehorn tuple and set constructions and integrity constraints to emulate a sequence.

67



5. BACKGROUND

On the other hand, extensibility would allow the introduction of a new construct to represent a

sequence, without a complex mapping based on existing constructs.

The ability to extend an existing model depends on the uniformity and orthogonality of the under-

lying model. In most models, no attempt has been made to fully categorize ;_tsmodelling constructs.

Therefore, there is no a priori mechanism to determine if ali the possible semantics have been cap-

tured, For example, the addition of cardinality constraints to ER relationships is considered ad hoc.

There is no precedence of why it should be there, except for the fact that, semantically, it is mean-

ingful. In order to make cardinality less ad hoc, one has to have a problem statement that is con-

sistent (with cardinality) and, potentially, a solution that is complete (cardinality as a part of it). The

use of "consistency" and "completeness" stems from their meaning in relating proof-theoretic and
model-theoretic mathematical models.

In our proposed model, we have focused on three orthogonal features: structural constructors, iden-

tity vs. property, and context dependency. The core model provides a rudimentary set of structural
constructors and context constraints. Therefore, extensions to the core model could include new

structural constructors and new context constraints.

5.3.3. Model Simplicity

Most semantic models have at least five constructs, usually two to three node types and two to three

arc types. Although the number of basic constructs are few (less than seven), the interaction

between them (node × arc × node) is much more complex. This can be quantified by a table of node-

to-node interactions. For example, in the basic ER model [ 18], there are four node types: attributes,

entities, weak entities, and relationships; and two arc types: between attributes and other nodes and

between relationships and entities. The interaction table for this ER model is given as:

N-to-N Entity W-Entity Attribute Relationship

Entity - attr attr rel*

W-En tity attr* attr attr -

Attribute attr* attr* attr*
_: -- ,., ,,.

Relationship rel - attr -

where: "attr" link entities to attributes,

"rel" link entities to relationships,

"-" indicates an invalid link, and

'*' indicates dependence on directionality.

The table format gives us a handle on the complexity of a data model. In addition, it is a form of'

algebraic semantics, providing a "closure" of derivable model concepts, i.e. each (node × arc ×

68



5. BACKGROUND

node) entry has a defined meaning. For example, between Entity and Weak-Entity, the "attribute"

link defines how the Weak-Entity relates to the Entity, and the meaning of this link is constant for

ali occurrences of Entity/Weak-Entity in a schema. This entry forms one distinct interaction and it

is the number of distinct interactions that determines the complexity of the model.

- In more complex models, there is directionality to the arcs. If we add implicit directionality to the

arcs, as defined in the standard ER model, the entries with '*' become invalid and the table

, becomes nonsymmetric. Furthermore, there can be multiple arc types in each node x node cell

when we include IS-A for the Extended ER (EER) model [26]. The resultant table should be a 3-

D table, with arc type being the third dimension.

The IFO model [2] has five node types with 4 arc types and has this interaction table:

N-to-N Printable Abstract Free Collection Product
'" ' '"' , "_' .., J , " " "' ,,,, __ ' ,',j., ,i, ,',

Printable ....
.,, ,, , ,..,

Abstract F F F/G t: F
: , ,,, , , ,, __ ,,,,i __ - ,,,,,

Free F F/S F/S/G F/_.S F/S

Collection C C G/C C C
..... ,, ..

Product C C G/C C C

where F for functional mapping,

S for specialization,

G for generalization,

C for composition,

"-" indicates an invalid link.

In the cell Abstract × Free, the entry Abstract × function × Free is semantically different from

Abstract × generalization × Free. However, the common occurrences of function and composition

links imply generalized features, indicating a similar semantic can be applied to all ×-function-×

and ×-composition-x entries. Localized occurrences, such as specialization and generalization

links, imply more specific features. These may indicate cell-by-cell differences. The directionality

" of arcs is noticeable from the asymmetry of the table.

The simplicity (or complexity) of a model is not determined by the number of basic constructs, but

by the way the interaction table is filled. In many models, the node-to-node interaction is often

given by a seril-s of rules or formal definitions using mathematical terminology. This makes direct

comparison of complexity difficult. In addition, there are also rules and definitions governing the

interaction between non-adjacent nodes. For example, cardinality and participation constraints in

the ER model govern the association between entities across a relationship. Another example is IS-

69

, ' 1lr,,, ,o .... ,, 0,,



5. BACKGROUND

A paths for specializations and generalizations which forbids an entity to occur twice along an IS-

A path.

After understanding how easy it is for a model to achieve complexity, what would achieve simplic-

ity? We again focus on the features of uniformity and orthogonality. IFO functions and composi-

tions links are uniform, but are insufficiently uniform, i.e. certain node combinations are not

permitted. ER cardinality and participation constraints are orthogonal to nodes and links, but they

can't be,applied to attribute links. If the constructs and their interactions are more uniform and

orthogonal, then the model becomes simpler to comprehend and to use.

These two features are not separable. Orthogonality enhance uniformity and vise versa. Therefore,

applying this doctrine, one would attempt to create as many orthogonal or uniform concepts for a

data model as possible. However, if the final result becomes too "atomic", the semantic nature of

the model is lost and the end result will lack richness. For example, the relational model is where

concepts are orthogonal and uniform, but semantically impoverished. A balance must be found

between the semantic richness of model constructs and the pursuit of orthogonality and uniformity.

We approach this problem in three steps. First step is a structural model based on information con-

tent. A database holds information, therefore, the logical mechanism for abstraction is the informa-

tion content. Second step is explicit definitions of identity and property. Every real world object

has an identity and some associated property. This separation is crucial to the integrity of the

domain information and should be retained in the model. Finally, context information is captured.

Every real world object also exists in some context and this affect.,; how it relates to other objects.

Therefore, our model would systematically categorize and abstract context information. Each of

these characteristics will remain orthogonal, so that associations between them can remain uni-

form.

5,3.4. Graphical Form

Most semantic models have a graphical representation. However, the choice of symbols and their

interconnections will affect the usability of the model. This is an issue separate ft'ore the semantics

of the model. There are three major problems with graphical design:

1. Labelling of Objects

This is a problem of where to place the label associated with an object. For example, the ER model

allows the labelling of most objects within the graphical form, but the IFO model almost forces

7O



5. BACKGROUND

external labelling because of internal patterns:

ER: IFO/GSM:

• CLASS
Person

, VS.

On a large schema, such external labelling creates pairing conflicts, when one cannot readily deter-

mine which object is associated with which label.

2. Modularity

Modularity determines whether references can have a graphical form. Certain models, e.g. the ER

and the IFO models, do not have a graphical distinction between object definition and reference.

Therefore, a schema would only have one node per abstraction and references are based on arcs

converging on that node. For a large schema, this would create a graph that has tangled topology.

In practice, references and definitions are separated, but this requires an additional notation on a

graphical object to determine its actual nature.

3. Directionality

Another problem is the lack of directionality. For example, in both ER and IFO models, the arcs

can fan out in any directions. This reduces the comprehensibility of a schema diagram because one

tend to lose track of visited nodes and be overwhelmed by the snaking of arcs.

These are problems in graphical design, not in data modelling. There are many factors governing

graphical design, but the focus of this resem'ch is not about these factors. However, data model

designers should be aware of these issues because they affect the comprehensibility of the graphi-

cal diagrams. We will apply the three described principles to the graphical representation of our

proposed model. First, ali symbols are uniform and internally labelled. This reduces the label-to-

symbol pairing problem. Furthermore, a uniform symbol is also a hallmark of semantic uniformity

in the model. Second, a separation of definition from reference in the graphical form. The "spa-

ghetti" look in most semantic models is due to the lack of this separation. This simple strategy will

permit a schema to be separated into manageable chunks. Finally, an implicit directionality of

information flow is provided, which will give a consistent direction of reading and drawing a

schema to prevent the maze situation.

71



5,BACKGROUND

5.4. Model Characteristics Summary

Our proposed model will address features common to other conceptual models, but in addition, it

will also address features not present in the others. The main features are:

1. Semantic Richness. The constructs supported by our proposed model provide type

definition, aggregation and grouping, specialization and generalizations, and relationships

and roles.

2. Model Extensibility. The proposed model is actually a framework of models. Therefore,

extensions to the core model can be,seamlessly integrated. The abstract sequences, as

defined in Part I, will be one such extension. Other extensions are metatyping,

classification, and generalized constraints, which are reserved for future research.

3. Model Simplicity. The model achieves simplicity by orthogonality and uniformity. We have

divided the conceptual modelling into three categories: structural, identification, and

contexts. Variants of each category can be applied to any variants of other categories

without loss of generality. This also permits extensions organized along these separate

categories.

4. Graphical Form. The graphical representation of this model has a natural organization, lt

trades off some artistic freedom for comprehensibility and reinforcement oi' modular
construction.

The minor features of the proposed model are:

5. Domain Invariance. We have decided to explicitly relate domain invariant concepts to our

model constructs. This is a choice which has advantages in understanding c_fhow domain

concepts map to and from our model.

6. Representation Uniqueness. We have chosen the type-based approach, which follows our

paradigm of extensibility by upward scaling of domain abstractions.

7. Implementation Independence. We will define our basic constructs with abstractions which

are implementation independent.

Some features are not discussed in this work and are reserved for future research: Completeness

and Support.

72



6. EXTENSIBLEOBJECTDATAMODEL

CHAPTER 6. EXTENSIBLE OBJECT DATA MODEL

Our approach to data modelling starts with the concept of information content, which is further

divided into structural and location components. The structural component determines _ infor-

• marion is stored. This is defined by an abstraction in our model called the Object-Type. The loca-

tion component determines _ the information is stored and is defined by an abstraction ca!led

, the Instance. The coupling between Object-Type and Instance is mediated by the abstraction called

Context. A schema with Object-Type and Context definitions can unambiguously determine the

Instances. The remainder of this chapter will describe the basic definitions of the Extensible Object

Model (EOM). Chapter 7 will discuss Object-Type creation by using constructors. Chapter 8 will

discuss context definitions.

6.1. Definition of Object-Types

(1) A database is a depository of information.

It is divided into individual blocks of information. Each block of information holds some

information content. This stored content is an abstraction or an array of binary digits, i.e.

bits, when considered from an information theoretic point of view. Object-Types define the

sizes of these blocks and how they relate to other blocks, defined by other Object-Types.

(2) Each Object-Type defines two mapping functions:

(a) the interpretation of bit patterns (symbolic values) in a storage block to the semantic val-

ues associated with the real world concept of which the Object-Type represents

(b) the encoding of semantic values of a real world concept into a pattern of bits (symbolic

value).

These two functions provide the link between the real world and the symbolic universe and

is identical to the interpretation and encoding transforms discussed in Section 2.5.3.

(3) Each Object-Type is named.

The name corresponds to a concept in the real world. For example, numbers, such as 1, 2,

and 3, can be encoded in binary as "1", "10", and "11". Conversely, binary digits can be

" interpreted as numbers. However, letters, such as "A", "B", and "C", can also be encoded

in binary as "100()(/01", "1000010", and "1000011", an_l in turn, be interpreted as ASCII

• characters. Thus, the concepts of "Integer" and "ASCII character" each have their own

mapping functions.

The same symbolic value can be interpreted, by different Object-Types, into different

semantic values and vice versa. Therefore, the name of an Object-Type is very important tr)

the maintenance of the integrity between the real world and the symbolic universe. From

73

_'_,,,_i,_....'IIrl



6. EXTENSIBLE OBJECT DATA MODEL

now on, unless we specifically state a value is semantic, it is assumed to be symbolic, i.e. a

value is its bit pattern.

(4) Each Object-Type defines a set (collection) of potential values,

Since a type defines the mapping between semantics and symbolics, we can map ali the pos-

sible semantic values, thereby obtaining ali the possible symbolic values (bit patterns).

Therefore, an Object-Type defines a set of potential or permissible symbolic values.

(5) Each Object-Type has a set of symbolic operators or functions.

The operators correspond to the transforms of the real world that affect instances of an

Object-Type. A semantic value will change under real world processes, and because each

,semantic value has a symbolic value, we can construct a symbolic operator which performs

the equivalent transform in the symbolic domain. For example, the semantic concept of

"addition" has a symbolic equivalent in "2's-complement addition operation", which oper-

ates on ordered binary digits, without regard of the semantic inteipretation of these digits.

6.2. Definition of Instances

(1) An Instance of an Object-Type is a particular value.

The collection of instances forms the actual data in the database, i.e., they have "physical

reality" and correspond to actual blocks of bits. Although the Object-Type can define a very

large set of potential values, we are only interested in the actual values in the database.

Therefore, we carl use an Object-Type in a schema to represent the collection of actual

instances found in the database, not the potential instances. For now, we will use "collec-

tion" to represent the "relaxed" form of a set, i.e. a bag, since there can be a multiplicity of

instances having the same value, within the database, represented by one Object-Type,

With this specification, we deviate from the counting principle of constructing Object-

Types. For example, the traditional generation of a cross product term is considered tc) be

"larger" in collection size and number of instances. However, in a database, not ali possible

combinations are present. In fact, the carclinality of the cross product instances may actually

be less than the cardinality of the sources. On the other hand, the number of bits needed to

store the cross product information is always at least the sum of the bits of the sources, i.e.

"larger" than the sources.

The definition of instances simply states the existence of instances, it does not dictate the

: physical location of the information contained by the instances, e,g. volatile memory, disk

,sector, cluster, or file. Although the "source" component of the information c_'_ntent_detines

= _ the information is located, but it is an abstract form ot"location, i.e. an Instance is a
=

conceptual location.

74



6, _SIBLE OBJECTDATAMODEL

(2) Identity of instance is value-based.

If two instances, defined by an Object-Type X, have equal values, then the instances are

identical. In other words, if using ali the information available as Object-Type X and we

cannot distinguish two instances apart, then they are the same instance. If this rule is abso-

, lute, then collections (bags) are not permitted. However, as we shall see later, this value-

based equivalence is amended with their context information for greater expressiveness.

0 The corrected rule is "when given two instances, from the same context, defined by an

Object-Type X ....".
,,

(3) An instance value has two components: ID and Property.

The lD component must always be present and interpretable, thus it has both semantic and

symbolic values. Equality based on this value contributes to the "identity" of the instance.

The Property component contains ali the information other than the liD component, thus it

may or may not be present. These components can be defined as operators of instances, e.g.

ID0 would return the value that form the ID portion of a particular given instance.

Technically, only instances have these components because only instances have an actual

value that can be partitioned into lD and Property values, Object-Types do not have actual

values and cannot provide these component values. However, the derivation of component

values within an instance is identical for ali instances of the same Object-Type. Thus we

can represent these components at the Object-Type level, i.e. an Object-Type "has" ID and

Property components.

(4) Fundamental relationship of ID and Property: ID determines Property.

Given two instances, x1 and x2: If ID(xl) = ID(x2), then Property(xi) = Propelty(x2).

ID(instance) returns the instance II3 value

° Property(instance) returns the instance property value

= is value-equality or bit-wise equality.

The advantage of using explicit ID specification is better control over the scope and extent_

of object instances. In OO data models, a system-wide implicit (surrogate) object ID is
_

. assumed to be present and unique. Instance identity is then based on the equality of this sur-

rogate ID value. In the relational models, identity is based on the key-attribute equality,=

. therefore lt does not have a system-wide uniqueness. In conceptual modelling, there are sit-

uations where the objects should have system-wide uniqueness, but there are also situations

where they should not. In this model, we enforce an explicit ID specification, which allows

both situations to be modelled correctly.

75



6, EXTENSI,BLE OBJECT DATA MODEL

6.3. Graphical Notation

We will also use a graphical form for Object-Types. When drawn in a schema, Object-Types are

shown as:

6

Object-Type

The rationale for a rectangular shape is uniformity. Using the principle of encapsulation, instances

of all Object-Type can be referenced uniformly without knowledge of its underlying definition,

thus all Object-Types have the same shape on the top. On the other hand, once we open up an

instance, then its internal structure, defined by the Object-Type, becomes visible. If the structure is

defined eisewhere, we find an alias or an implementation and if the structure is constructed, we find

the type of construction and its sources (see below). This forms a very simple but effective graph-

ical notation for the Extensible Object Model schema.

6.4. Object-Types in a Schema

For the remainder of the discussion, upper case variables, such as A, B, and X, represent Object-

Types and lower case variables, such as a, b, and x, represent object instances. Lower case variables

can be extended with subscripts to label individual instances, for example: x 1 and x 2. However, this

labelling does not necessarily imply the instances are different. In fact, a single instance may be

given different labels, and only later, we may learn that they refer to the same instance. We will use

"=" to denote value equality between two labelled instances, and "-" if they are identical, i.e. the

same instance.

We resolve multiple occurrences of an Object-Type by separating Object-Type definitions from

declarations (or references). A schema can contain multiple declarations of an Object-Type, these

represent where the Object-Type information is used. However, a schema has only one definition

per Object-Type, which defines the information structure of the Object-Type. Ali Object-Types

with the same name in a schema will denote the same Object-Type information structure. This sep-

aration enhances the model's ability to constn.'ct a schema in readable portions and promote proper

abstractions and encapsulations of Object-T_iJes..

An Object-Type is defined under these three situations" implementation, alias, and constructi_m.

A. Implementation

Abstract Objects are not vet)., meaningful until we implement it with a well-known semantic. Fc,r

, example, Object-Type Name can be implemented -asa character string and ()biter-Type ID# as an
!

'76



6, EXTENSIBLE OBJECT DATA MODEL

integer. Implemented Object-Types are shown as:

Examples Usage:

Object-Type I ID# ] Name Child[Impl ementat i on] [ [integer] [string] [Person]

The implementations of ID# and Name are shown inside the square brackets. A natural extension

to well-known implemented types is any other Object-Types defined in the schema. For example,

the Object-Type Child is an implementation of the Object-Type Person, which means a Child

instance is structurally the same as a Person instance. If an implemented type is supported by the

underlying DBMS, then it is considered as "primitive". Examples of primitive types are integer,

string, date, and time.

B. Alias

Object-Types can be aliases, i.e. renamed from another Object Type,:

Examples Usage:

Alias -Type

(Actual-Type) Manager ! P-Dept
(Person) _! (Dept)

This allows more natural and semantically meaningful names. In this example, Manager is an alias

for an Object-Type Person, which is shown in parenthesis. This means a Manager instance is an

instance of Person, and if Person is defined elsewhere, then Manager is also defined. In addition to

the "structur,'d" definition, alias also defines the collection where the instances are to oe obtained,

i.e. the collection represented by the actual Object-Type.

C. Construction

The last type of definition is by construction. Here the Object-Type is on top of a small labelled

circle denoting the type 04"construction, with one or more incoming arrows.

Examples Usage:

• Ob j ect:.- Type target' I Committee ]

p ,%

[ .... .

' The "C" is an abbreviation for "Composition".

The Composition, Set, and three more' will be discussed in Chapter 7. q-he direction of the arrow

5.

= 77



6. EXTENSIBLE OB 'JF.L-'TDATA MODEL

denotes "information flow", i.e. the information content of the source contributes to the informa-

tion content of the target. Therefore, a target Object-Type is defined if its source Object-Types are

defined. If we combine the schema from the implementation example above, then Person would be

defined. Furthermore, Committee would also be defined. Otherwise, we have partial definition and

the current schema is considered incomplete, o

6.5, Other Characteristics

The process of defining an Object-Type by implementation, alias, or constructors_ fixes the seman-

tic functions of interpretation and encoding. For the case of implementation and alias, ID and Prop-

erty components are defined by the referenced Object-Type. If an implementation type is

"primitive", then ID is set to the implementation value and Property is set to null. For constructors,

we will define ID and Property components individually.

The EOM forces the user to define a set of operators when an Object-Type is defined. By default,

a minimal, genetic set of operators is provided with each constructor, however, the user is free to

define additional operators. Since we are dealing with information abstraction, the results of these

operations can be viewed as Property values of the instance. As long as the results behave as Prop-

erty, it does not matter _ the value is providedo Therefore, they can be explicitly stated in the

EOM schema by defining Property components that are "implemented" as procedures or queries.

78

=



7. CONSTRUCTORS

CHAPTER 7. CONSTRUCTORS

Constructors determine the structure of the infoi_nation content in an Object-type, i.e. what infor-

marion is included in an Object-Type and how it is organized. Under the symbolic viewpoint, a con-

, structor determines how to partition the block of bits into smaller blocks based on the defined

source Object-Types. We now describe five basic constructors to build complex Object-Types:

, (1) Composition

(2) Set

(3) Sequence

(4) Inheritance

(5) Union

The constructors are similar to the generics of Object-Oriented programming. They are indepen-

dent of the source Object-Types, yet all Object-Types, derived :from the same constructor, organize

information in a similar manner. These constructors have been explored in previous semantic data

models. The most traditional constructor is Composition, which is identical to cross product and

tuple construction. Set and Sequence constructors are new to relational and ER modelling_ but well

developed in Object-Oriented models and NFNF relational extensions. Inheritance and Union have

been explored in many semantic models. However, we are going to bring them together in a con-
sistent manner.

The general form of a constructor is diagrammed as follows:

Constructed
Object-Type

an'le

Property Arcs

The name of the constructor is defined irathe circle under the constructed Object-Type. lt receives

one or more incoming ID arcs (thick) and zero or more incoming Property arcs (thin). Each of the

arcs originates from another Object-Type. The constructed Object-Type is named the "target" and

the sources for the constructor is named the "component" or "source". We will use the "." (dot)

notation to reference a source of a construction, e.g. "X.A", and "[...]" (vector or tuple) notation to

reference a set of sources, e.g. "[ A, B ]".

m

79



7. CONSTRUCTORS

7.1. Composition

The paradigm of abstract information storage 'allows us to construct an Object-Type from a com-

position of other Object-Types. This is similar to a C "struct" or Pascal "record" implemented as a

contiguous block of memory storage. This constructor is similar to the tuple structure in the rela-

tional model. We denote a Composition as follows:

X 0

ID Arcs -__ .

The links will de_ermine explicitly which source Object-Types will make up the ID component and

which will make the Property c(_mponent. The fundamental relationship of ID determining Prop-

erty would then be enforced. In ER and relational terminology, ID defines the key attributes and

Property defines the non-key attributes. Since we are not forced into a two-level construct ("tuple

and field" or "'entity and attribute"), the "key concept" is applied m the component Object-Types,

not specialized "attributes".

The default operators furnished by a Composition constructor is source reference and equality. This

can be applied to both types and instances. In the diagrammed example, X.A is the Object-Type A

in X, x.a is the instance value of A in the instance x, and [ X.C, X.D ] is the Property port.ion of X,

while [ x.c, x.d ] is the property value of instance x. ID( X ) is defined as [ ID( X.A ), ID( X.B ) ].

It is understood that when we apply ID() and Property() to Object-Type, we imply instance appli-

cation. Therefore, two instances of X, x 1 and x2, are equal ifr ID( xi.a ) = ID/ ,,2.a ) and ID( x 1.b )

= II3( x2.b ).

7.1.1. Examples of Composition

Here is an example to the Employee/Department problem. We define Person as:

Comments:

(1) A Person is detined as a Composition
of II)#, Name, and Age.

_mT--] _ (2) ID( Person )= [ID( ID# )]

(3) Property( Person ) = [ Name, Age ]

-=- 8O

=



7. CONSTRUCYrORS

Dept as:

[ Dept ] Comments:

IQ_j______ (1) ADept is defined as a C°mp°siti°n °f

Name, Floor, and Manager.

(2) ID( Dept ) = [ lD( Name ) ]

" ..... (3) Property( Dept ) = [ Floor, Manager ][lh !/ Name Floor Manager
, , ' ..... -- _ (Person) (4) Manager is an alias for a Person.

/

and Works-In as:

LWorks._In ] Comments'
C (1) Works-In is defined as a Relationship

(Composition) of Employee, Dept,
Salary and %Time.£ _

[-Employee[ .. ' ID( Works-In
(Person) lme ] (2) ) = [ID( Employee ),1 I ID( Dept ) ]

I Dept-"_ [ Sal_y/ (3) Property( Works-In )= [ Salary,

In Section 7.8.2, we will show that ID equality is the same as instance equality. Therefore, lD(

Works-In ) can be defined as [ Employee, Dept ]. For now either form is sufficient.

The current state of the EOM schema is'

Defined: Abstract:
Comments:

[ Person ] [ ID# ] [ Floor ] (1) The abstract Object-Types can be

[ Dept [ Name ] [ %Time implemented as primitive types or bedefined as a construction.

[Works-In ] [ Age l [ Salary

As the schema evolve, we may wish to define Person.Name. We can give Name a new definition,

so the previous schema is not affected:

Comments:

• I Nam' Name is defined as a Composition of First,N,

(1) Middle_N, and Last_N." (2) I1_(Name ) = [ First N, Middle_N, Last_N ]

: [ First_N 1[ Middle_N 11 Last._N ] (3) Property(Name)= [], i.e. none
?

However, this would change Dept.Name as an unexpected side-effect. The solution is to rename

the new definition "PName" and implement Person.Name as P_Name. Then Dept.Name is left

-_ 81a



7. CONSTRUCTORS

unaffected. An 'alternative is to attach the new definition directly below an existing one:

Comments:

(1) Person.Name is now defined as a
Composition of FirstN, Middle_N,
and Last_N.

...... (2) Since access to Person.Name is still

lD# [ [ Name I [ Age ] through Person, this ensures

Person.Name behaves properly and '

Dept.Name is unaffected.

[ First_N] [Middle_N][ Last_NI

This schema requires local Object-Type definition. If permitted, then future uses of Object,Type

"Name" will be anlbiguous, i.e. it could be Person.Name or Dept.Name. Thus, for reason of sim-

plicity, we disallow "context-dependent" Object-Type definition for the core EOM, see Section

7.5.2 for more discussion and Section 9.5 for extension.

7.1.2. Composition and Relationships

The Composition constructor can also be used to model relationships. Some would argue that a dif-

l ferent constructor should be used, e.g. "R" for relationship, so that the real world relationships,

such as Works-In, can be distinguished from the real world compositions. Since the operational

definition of the new constructor, Relationship, is the same as a Composition, we choose to use one

constructor to model two real world semantics. On the other hand, there is an advantage of using

the Relation:;hip constructor to clarify the interpretation of schemata. Therefore, we shall allow the

use of' the Rt_lationship constructor as an alias for Composition.

Since we unified both Composition and Relationship, it opens the problem of the semantic meaning

of the ID and Property arcs. Our formal definition of the relationship between the target and the

source is information containment. 'The most obvious interpretation for this definition is "has" or

"part-of'. However, other interpretations are permitted provided the containment semantics are not

violated. For example, in a typical E-R schema, a Person "has" a lD#, Name and Age. On the other

hand, a Dept "has" a Name and Manager, but "is on" a Floor. The alternative is to construct a

"IsOn" Object-Type as a relationship that has Dept and Floor as components and a "Manages"



7. CONSTRUCTORS

Object-Types as a relationship that has Dept and Person components:

' i .  xoo __j

[ Name I L_o._.__ [ Manager
(Person) I

[ Dept ! [ Manager 1

The choice depends on the user's perception of attributes vs. relationships. If expressed as a rela-

tionship, then we expect the Objects "IsOn" or "Manages" to have additional Properties. If

expressed as a component of Dept, then there should not be additional components to the real world

relationship between Dept and Floor or Dept and Manager. Therefore, as long as the source infor-

mation is properly contained within the target information, the arc between them can take on other

meanings without conflicts.

83

" 'III '_ Ii, ,i



7. CONSTRUCTORS

7.2. Set

A SET constructor builds an Object-Type of instances that are "sets of instances". We diagram a
Set constnactor as follows:

Set of X '

X Size

We do not support heterogeneous sets, so only one ID arc is permitted for the Set constructor. The

source Object-Type supplies the elements to the instances of the Set-constructed Object-Type. If

Set_X (Set of X) is such a construct, then ar_instance in Set_X is a particular set of X's. For exam-

pie, let _te set of source instances X = {x1, x 2, x3}. Let Set of X, named "Set_X', be the Set-con-

structed Object-Type from Object-Type X, then instances of Set X are sets of x's. And the set of

instances of Set_X can be as large as the power set of X:

PowerSet_X={{ },{x 1},{x 2},{x 3},{xl,x 2},{x 1,x 3},{x2'x 3},{x 1,x2,x 3} }

Since we are only interested in the actual elements in a database, Set X would be a subset of Pow-

erSet X. If we want to retain the ID() and Propelty0 operators, then we need to ]efine ID0 over

the instances of Set_X such that it distinguishes instances of Set X from each other. The simplest

approach is to define ID( s ), where s is an element of SetX, as the set of ID components over x's
in s:

113(s)={1D(x)lwherex_ s}

Then equality of ID0 is simply set equality. When coupled with the fact that ID0 of an instance of

Set is value dependent on the source instances, the source arc for the Set constructor is like an II3

arc and is given the same forrn.

As an Object-Type, a Set constructor provides a set of operators. The standard ones we associate

with sets are "member-of", "subset", and "union", "intersection", and "equal".

: 7.2.1. I _sage

The Set constructor provides us a way to resolve the relational multi-value dependency (MVD)

[22,64]. When a MVD appears in a relational database, it is usually the result of modelling sets in

strict relational form. However, the concept of the "set" is far more intuitive than MVD, the form

described using relational algebra. 'The solution from the relational model would be a second rela-

84



7. CONSTRUCTORS
z

tion to carry the set information. However, at the conceptual level, we only need to know that a set

is operated upon as a unit, not as individual instances. This is equivalent to the NFNF models where
the basic relational semantics have been extended with a set (or more correctly, relational) attribute.

Here is an example usage of the Set constructor:

. _ Comments:

['"'"'"'"_] (1) Committee is composed of a Name, a
, Set_of_Persons, and a Budget.

(2) Size is a property of the Object-Type

Set_of_Persons.

] Set of [ (3) Budge is a property of Committee.
Name 1 ..__Person J Budget

=

z

7.2.2. Set Instance Naming-

- The pragmatist would argue that identifying a set instance by its contents is not very efficient nor

- intuitive. He would ask for a "name" to be associated with each set instance. If we do this for the

previous example, then the Committee Object-Type becomes a Composition and the Set construc--

--< tor becomes a Set arc:_

= _ Set Arc

2

- Consequently, this removes the construction of a distinct Set Object-Type. Unfortunately, this is

not true for all situations, i.e. there are occasions where "anonymous" sets are used or where prop-

=- - erties of the Set Object-Type are distinct from the named component.

7.2.3. Type Naming and Object Property
_

What is the appropriate name for the Set constructed Object-Type? If we named it "Committee",

- then we expect it to have some properties associated with its function or characteristics, e.g. Bud-_
_- get. If we named it "Set of Persons", then it would only have properties associated with generic

85



7, CONSTRUCTORS

sets, e.g. size. In the process of modelling, the user attaches a name that carries real-world meaning

to a type, i.e. the type nameis always associated with the two semantic mapping functions, The

problem now becomes a question of whether a set instance has distinct Property components. Nat-

urally, size is a property of a Set instance. However, a more interesting question is whether there

exist non-computable property as a result of real world semantics? For example, Budget in the pre-

vious example could be a candidate for non-computable Set property. If such property information

exists, does it belong to the context of the set or does it belong to the set itself? To resolve this ques-

tion, one would need to determine the "epiphenomenon" of a construct, i.e. what is the difference

between the whole and the sum of parts? Using our previous example, Budget is a property of the

Committee, but we can also view Budget as an epiphenomenon of the Set of Persons. "Tqaereare

two answers to the question of where Budget belongs.

To a "constructivist", simple constructs, e.g. sets and ,sequences, has little or no epiphenomenon.

Therefore, he would argue that we would assign little or no non-computable property values: a Set

of Persons has the characteristics of generic sets and no more. However, when an "intuitionist" sees

us using sets to model the real world, he would say we are coercing complex real world relation-

ships into such simple constructs that we will lose "epiphenomenon" information unless we allow

explicit capture. He would also caution us that even if the property component of a Set Object-Type

is computable, it may not be feasible nor accurate given our current state of knowledge. The two

approaches are diagrammed as follows:

C

._... I I Set of Budget

Constructivist's Answer Intuitionist's Answer

Which answer is correct? The solution is based on the name given to the Set-constructed Object-

Type. As discussed earlier, a name given to an Object-Type conveys a semantic concept and pr(,-

vides the interpretation and encoding functions. Therefore, the intuitionist's model has to rename

86

' ' ,,, ,, r.... '" " '"_" ' 'ilia'* '_ " ' ....... '....... r' '",11}1 ' " " ,,r ,' Ii' ' ,,., ,, ,, ,, ,Iii' ,' .... i,qr II"i_'



7. CONSTRUCTORS

Committee to Named_Committee and Set of Persons to Committee. As it turns out, these two sche-
i ' 'mata model different real world situations. In the construct vlst s case, the budget is not a property

of the Set of Persons. Instead, it is the context of the Set of Persons which determines the budget.

Conceptually, this budget is not a property of a Set of Person as much as being "associated" with

a Set of Person, similar to the way two entities relate through a relationship in the ER model. In the

intuitionist's case, the budget is determined by the number of persons in the Committee instance.

, The result is a budget which is an epiphenomenon of a Set of Persons, i.e. it is dependent on the

number of instance members. This situation exists if Budget is not determined by the co_text of the

committee. The correct model, therefore, depends on the real world and each schema has its own

semantic interpretation.

° 87



7. CONSTRUCTORS

7.3. Sequence

As described in Section 4.1, our framework for sequences is based on mathematical functions, i.e.

for each position in a sequence, there is one and only one content value. There are several

approaches to building sequences of this type.

7.3.1. Set Approach

The simplest approach is to compo_ the position and content Object-Types together and build a
set of them:

["--Set of -] Comments:

(1) Position-ContentValue is a composition.
For a given Position, there is only one

ContentValue. Thus ContentValue can be

viewed as Property.

(2) Set Property is dependent on the Set

constructor, e.g. size.

[ContentValu_

Set of Position-ContentValue is ordered, based on the value of Position. Unfortunately, this schema

only provides the functions and operators associated with a Set and the semantics associated with

a sequence would be lost. Therefore, we would not be able to perform sequence operations on this
construct.

7.3.2. Sequence Constructor

0 Another approach is to develop a position or "ordering" arc that can emanate from any component

of the lD component of the sequence. This allows sequences ordered from any component of the

sequence-source Object-Type.

88



7. CONSTRUCTORS

The following example demonstrate this approach:
Comments:

(1) Enzymatic Activity properly belongs as
a property of Protein. The intrinsic
enzymatic activity is always dependent

, on the sequence of amino acids. Thus
_,, . ,, for any given sequence, the activity will

, _, _os_onedl |Enzymaticl be the same for any other matching

'"
:i ....Activity I (2) AminoAcid is our sequence base type

and is promoted to an lD component.

(3) A special "ordering" arc goes from the

Position Object-Type to the Sequence
constructor.

As a new Object-Type, the Sequence constructor provides new operators. These include "length",

"concat", "cut", etc., as described in Section 2.6. Since ali Object-Types support ID(), we need to

construct a sufficiently distinct value fi)r ID function. In the protein example, a given protein

sequence, pr, has

ID( pr )= < ID( pr.lst positionedAA ), ID( pr.2nd positionedAA ) ,... >.

Reminder: <...> denotes a sequence,

{... } for sets, and

[...] for tuples or compositions.

Since the ID of Positioned AA is [ID(Position), ID(AminoAcid)], we have

= < ID( pr.pa 1 ), ID( pr.pa 2 ),... >

= < [ID( pr.Pal.P ), ID( pr.Pal.aa ) ], [ ID( pr.Pa2,p ), ID( pr.Pa2.aa ) ] .... >

where pan is nth Position-AA instance,

p stands for Position instance, and

aa stands for AminoAcid instance.

This is sufficient to distinguished instances of protein based on the amino acid sequence. If we did=
,t

_ not promote ArninoAcid to an ID, then:

: . lD( pr )= < [ lD( pr.pa 1 ) ], [ lD( pr.pa 2 ) ] ,... >
_

= < [ID( pr.Pal, p ) ], [ ID( pr.Pa2,p ) ] .... >

o ---<1 ,2,3 .... >

_-_ which would not be unique enough to distinguish protein instances apart. The ordering arc permits

the user to order a sequence based on an arbitrary, but well-defined, component. In order to support_

89

'hill



7. CONSTRUCTORS

the sequence model developed in Part I, the necessary conditions for Position Object-Type are

uniqueness and complete order when viewed as a set.

7.3.3. Alternative Sequence Constructor

The use of a Position-ContentValue composition Object-Type as the source of a Sequence con-

structor seems to be redundant. We could include its assumed existence in the Sequence constructor

directly'

,,,,,,,.....,..,.II,. Position Arc
.,_,,,,',x_l_ _ ContentValue Arc

[-7_sitTn-_ _minoAci_ [ Size l [-Activity-]

This raises the problem of attaching Property component to the Position-ContentValue Object-

Type as a result of Composition. The Property components _t the level of the Sequence constructor

does not apply to the intermediate level Composition. In certain domains, the intermediate Property

information is important. For example, annotations are usually attached to this inteqnediate com-

position. Therefore, our explicit representation is a necessary construct.

7.3.4. Semantic Sequences

The Sequence constructor, as it stands, can model abstract order and simple sequences. In order to

model abstract semantic sequences, the positional characteristics of Metric, Granularity and Ato-

micity (_e Section 2.2) need to be added as generic components. '12rare are three approaches,

In the first approach, we add a "semantic sequence" constructor. Typically, the positional charac-

teristics of Metric, Granularity, and Atomicity are invariant within a sequence, i.e. ali the position

values of'a given sequence have the same Metric, Granularity, and Atomicity value. Therefore,

despim the fact that these characteristics are positional, they should b.ea component of the Seman-

tic Sequence Object-Type, not a component of the Position Object-Type. Since these characteris-

tics are semar_tically distinct, they should be distinguishable from each other by arc type, not by
" "}' "l ", . •()t .lcct-Type name

9'0



7. CONSTRUCTORS

The following is an example of tile graphical representation:

ISeo encel

%,,, ...... ,t., -J

"lt _ ,Consequently, there are now five arc types' Order, Sequence-Source, Metric Granularity, arid Ato-

micity. All the arcs are: like II3 arcs in their thickness because each component participates as an

ID component. For example, two Semantic Sequence instances, which only differs in Metric value,

should be considered different, Similar arguments hold for Granularity and Atomicity. However,

when we have two Semanuc Sequence instances that cernbe changed to matching values through

Metric or Granularity conversions, then the sequences are considered to be "equal". T'his implies

"equality" for Semantic Sequence constructor is no longer a simple value-by-value comparator.

The drawback to this approach is the number of ,arctypes. Each new arc type needs to be evaluated
,_' .._ p ,._with respect to the arc source Object-Type. For example, the Order arc requires an O_.lect- I YD-

whose values are completely ordered, Metric requires a semantic label, Granularity and Atomicity

requires rational values. Therefore, the Position Object-Type cannot be arbitrary as seen in Com-

position or Set-Source. This limits the generality of the arcs.

The second approach is the other extreme where the positional characteristics are encoded into the

Sequence Object..Type name, e.g. "SequenceName M_G_A" where M, G, and A stand for Metric,

j Granularity, and Atornicity domain names. In this case, positional characteristics arc not modelled

as independent Object-Types, but as domain-specific semantic information. Fnr example, for a

sequence of markers with kilobase Metric, 0.1 Granularity, and 0.()01 Atomicity, the name would

be "MarkerSequeace_kb_l 0thl (XX)th".In this case, ali instances ot' a Sequence ()bject-Type

: would have the same positional characteristics. Under some situations this is desirable, but it would

be limiting for the management of interconvertable sequences with different positional character'-
- istics.

" The third approach is based on the first, but uses a Composition constructor to "implement" a

91



7. CONSq'RUCq'ORS

_mantic sequence, The positional characteristics are implemented as a set of lD components for

the semantic sextuence. This retains the simplicity of the Sequence constructor and satisfies the

requirements of the abstract semantic sequence model. However, like the first approach, it requires

a new definition for "equality" for the semantic sequence. The following is a representation of

Semantic Sequence using the Composition and Sequence constructors:

i,

[ Metric ranulant Atomlc_ty
.,,_'- _ Comments:

-""" _ .... Semantic,,,-- ,%. (I) Metric, Granularity, and A.torntctty are
%% '_ :1, _ "

,,,,-"______.._...._ Sequence components.
_i 1,., Positio!a. | (2) Simple Sequence remains the same as before.
",',,, I uontent.value. I

The association of Object-Type name to positional characteristics becomes domain specific and

user defined, not mediated by distinct arcs. "[Trisis compatible with the EOM definition tbr Object-

Type naming, i.e. it is the u,_r to defines the semantic mapping Csee Section 6.1). We will choose

the third approach has the basis for semantic sequences.

92

..... " " '+ '+ ' '_ _'......... '+ , ...... +I_ " 'IIUI ..... qll,"' 0+' ',,"',,+' '"," P' ",'+ ....."' +l+'+'rll,P,r ,,, Pl, , ,i,,;_ ,,",lP . ,' ",+i' ,_ull+ iii,, ,,,, .... llll[,':



7,.CONSTRUCTORS

7.4. IS-A Construction

So far we have only described how instances from one Object-Type associate with instances from

another Object-Type. For example, a target instance is associated with source instances in the Com.

position constructor, or with a set of instances in the Set constructor. Object-Types define the col-

" lections and an ins_'_ce can only come from a single collection. However, in the real world we also

cart have an instance which came from two collections, i.e. it is from the interaction of two. This

' is the concept behind "IS-A hierarchy". The cardinal statement of IS-A characterization is:

An instance of A is an instance of B.

Let the following diagram denote a IS-A relationship between A and B:

[ B ] "_-_ set of B instances

set of A instances

Comments'

(1) The direction of an'ow defines the "IS-A".

(2) Set A is a "subset" of B, or

(3) An instance of set A °'belongs" to both sets A and B.

There are .several possible mechanisms that satisfy the definition of a natural language IS-A: inher-
itance, subset, and union. We will discuss these in order.

=

93



7. CONSTRUCIZ)RS

7.5. Inheritance

Inheritance is a fox'ra of "IS-A" relationship. This constructor is diagrammed as follows:

X

ID Ar_operty Arcs

In the EOM, we define it as strict subtyping hierarchy, i.e. every instance of X has all the informa-

tion of some instance A or some instance B (or both). In the Object-Oriented terminology, A is the

supertype and X is the subtype. Since operations are based on the information content, all opera..

tions defined on A can be applied to instances of X. When given an instance of X and if we

"reduce" it into an instance of A, then only the information and operations as an instance of A

should be available. Likewise for B. Therefore, the "navigational" step we take from X to A would

limit the amount of information we can work with. An analogy in the relational model is the "pro-

jection" of X onto A. In other semantic models, this i_;considered as "specialization": the subtype

is a specialization of the supertype.

We reverse the direction of IS-A arc: the supertype is the source and the subtype is the target. The

reason for this reversal is information content. Our constructors follows the general principle that

the constructed type has more "information" than its sources. Therefore, a subtype, under inherit-
1

ante, has room information than the supertype. As a result, the arrow is directed toward the sub-

type.



7. CONSTRUCTORS

An example using the inheritance constructor is diagrammed as follows:

FEng ee ] Comments:in r (1) An instance of Student or Engineer"is an"

instance of Person. The Person Object-

Type is the "supertype". Student and
" Engineer Object-Types are "subtypes".

(2) Property of Student and Engineer is

, [ GPA l [ Person ] I Salary I different.(3) Property of Person is common to Student
and Engineer.

(4) In this example, we permit the situation
where an instance of Person is common to

both Student and Engineer. For example,

[ D# ] [Name] [ Age l persons in a Co-op student program.

The arc from the supertype to the Inheritance constructor is thick because the identity of the sub-

type instance is determined by the supertype instance, i.e. ID is dependent on that arc. The inher-
itance constructor can be viewed as a short hand notation for an otherwise flat schema. The

transformation between the schemata is a simple reattachment of supertype components to the sub-

type Object-Type. The above schema is equivalent to:

F ID# 1[ Name ][ Age 1[ t.iPA ] ['--'ID# ][ Name 1[ Age 1I S_I_Y ]

Although the transformation of schema with inheritance constructors to one without is simple and

straightforward, inheritance is a very useful abstraction tool to be retained. For example, it permits

. the existence of persons who have not been assigned to students nor engineers. In addition, the con-

cept of a Person Object-Type and the operations on a Person Object-Type is now collected and

independent of both subtypes. In programming languages, inheritance improves cohesion [59].

Similar improvements between data objects can be obtained in database modelling. Therefore,

despite the technical simplicity of "de-inheritance" transform_ it is a useful tool of conceptual mod-

elling. However, several issues remain to be resolved.

95



7. CONSTRUC'TORS

7.5.1. Composition vs. Inheritance

What is the operational difference between inheritance and composition? Inheritance "percolate"

both ID and Property components, as defined by the transformation of the schema, so the compo-

nents of the supertype is fully visible as components of the subtype. If the inheritance constructor

is replaced by a Coroposition constructor, then Property() of the subtype would not retrieve the

Property() of the supertype. If we used a Composition in our example, Property( Engineer ) would

return Salary and ID( Engineer ) would return lD( Person ), or lD#. Name and Age would have to

be retrieved by Property( Engineer.Person ). Using Inheritance, Property( Engineer ) would return

Name, Age, and Salary, as expected from the fiat schema and the semantics of the real world.

There are other semantic differences between composition and inheritance. An instance from a

Composition is "associated" with instances from its sources. On the other hand, an instance from

an Inheritance "is" the same instance from file lD sources of inheritance. "Association" imply dif-

ferent instances, therefore, one instance can change without affecting the other one. "IS-A" implies

the same instance, which means changes to one will 'affect the other. For example, changing the

Age of an Engineer instance would affect the Age value of the source Person instance and will also

affect the Age value of any inherited Student instance of that person.

7.5.2. Overloading

"/'he perceived strength of inheritance is derived from the concept of overloading. This is a result

of the natural language deficiency for re,'d world semantics, i.e. multiple meanings are mapped to

the same linguistic token. In the process of modelling, there is a tendency to maintain this over-

loaded mapping and to use coratext information (a la natural language) to resolve the ambiguity. In

general, there are two types of overloading. Consider the following schema:

I -

F ...........1 ....l
The first type is definition overloading. If we permit context-dependent Object-Type definition,

then Engineer, Status can contain different information content than Person.Status. However, in the

96



7. CONSTRUCq'ORS

core model, an Object-Type's name determines the ,semantic mapping between real world concepts

and symbolic values. Therefore, Object-Types with the same name must have the same mapping.

If Person.Status was meant to be marital and Engineer.Status was meant to be professional, then

the two Status Object-Types should be named differently. Therefore, definition overloading is not

• permitted in the core model.

The second type of overloading is value overloading. Here, Engineer.Status and Person.Status h_

• the same Object-Type definition, but different values. The "de-inherited" schema remains the

same, i.e. Engineer is still a composition of II)#, Status, and Age. However, the retrieval of com-

ponent instances is changed to reflect overloading. For example, we can use direct source priority

to determine which overloaded value to use. In the lookup for Engineer.Status, if Status is declared

as a source directly under Engineer, it will be the one used. Otherwise, a search is made for Status

in the supertype Person. In the lookup for Person.Status, only the sources of Person is scanned.

Thus it would not return the Status value under subtype Engineer.

7.5.3. Overloading and Consistency

Value overloading creates another problem of its own: consistency. If we adopt the value resolution

algorithm as described above, then there exists the potential that an Engineer's instance status is

different from his status as a Person. This would be a violation of the consistency in the real world.

If atainstance of Person is also an instance of Engineer, then the two instances are "identical". Con-

sequently, their Status values should also be the same. Therefore, ii"Status was meant to be marital,

then a Person instance and the corresponding Engineer instance should have the same value.

If we consider the fact that overloading is a linguistic limitation and not a modelling limitation, it

places doubts on the worth of v_flue overloading. After 'all, if a value is to be overloaded, then that

value could be easily made a part the supertype instance v',due in the first place. Under this analysis,

value overloading is superfluous and dangerous, therefore it is not supported in the core model.

7.5.4. Multiple Inheritance

Multiple inheritance is an extension to permit 1-to-many "IS..A" relationship between a subtype

instance and supertype instances. However, a "competition" overloading presents an additional

problem for the redeclared Object-Types in the supertypes.

97

Tri, ,, ,,, I*1n ,111_ ,N,, "ln'iPll ',rq'_ qlnlll_tltP , ' ,,,11, ,b, _]n'I" ' lP , ,, ilIl_ "' "q'_'l_Fr_, _ ,v;t'_'r¢ ....



7. CONSTRUCTORS

This problem can be demonstrated in the folh,wing example:

hibious]
hicle [

i

m

___h_ i__hicle_

[ ID#-"- _] [- ID#.......

Fw :oi] l ;SPiace,,,eZ]
AmphibiousVehicle inherits from LandVehicle and WaterVehicle and the Property of AmphVehi-

cle includes #Wheels and Displacement. However, from which supertype shall it inherit Weight'?

If the Weight instance value is the same, then there is no problem. On the other hand, if they are

different, then there is no a priori mechanism to resolve the ambiguity. A similar, but more serious

problem also exist for ID#.

Since we excluded context dependent Object-Type definition, i.e. no definitional overloading, then

the resolution is simple, since ali same-name Object-Types refer to the same content. Then Land-

Vehicle.ID# and WaterVehicle.ID# are the same Object-Type definition. Similarly, both Weights

are the same. The resultant "de-inherited" schema for AmphibiousVehicle would look like:

]I woi  ,][ W eel. t '
Since we disallowed value overloading, i.e. values must be consistent, then it does nc_T.matter

which lD# and Weight values will be associated with the instances of AmphibiousVehicle. Presum-

ably, in a consistent database, LandVehicle.ID# and WaterVehicle.ID# (and Weight) will have the

same value for the instances which are also Amphibious. This becomes an integrity constraint on

the componenks of Inheritance constructors to maintain value consistency.

98



7. CONSTRUCTORS

7.6. Subset

Subset is the separation of instances based on some predicate over the value of the instances, For

example, Person is the superset to Young_Person and Old_Person subsets:

Young ld Perso
. Person (1) An instance of YoungPerson or

OldPerson "is an" instance of Person.
, Person is the "superset". YoungPerson

and OldPerson are "subsets".

(2) Properties of YoungPerson and OldPerson
Person

are the same as Person.

__ (3) ha this example, a Person cannot be both
Young and Old. However, in other
examples, the subsets could be

ID# ] _ I Age ] overlapping.

Strict Subset cannot have additional components. So the Subset constructor has only one incoming

ID arc and no Property arcs. The direction of the arc in a Subset constructor goes from the superset

to the subset, because a subset instance contains the information content of its superset instance

plus the information encoded by the subset predicate. Therefore, a subset instance "holds" more

information than the superset instance.

7.6.1. Subset and Inheritance

Subset can be viewed as Inheritance, although the distinction between inheritance and subset is the

presence of the predicate. If the model permits arbitrary predicates to be supplied, then the result

is the indeterminacy of a Turing machine. This would argue for moving the predicate out of the

definition of the EOM and, instead, use a "hook" for an outside agent in the application domain to

perform the semantic decision. Similarly, the real world decision that determines the correspon-

dence between a supertype instance and a subtype instance in an inheritance schema is also outside

the definition of the conceptual model. For example, the process that decides whether a person is

a student or an engineer is not modelled, but rather, the decision is accepted and reflected in the

state of the database. If so, then inheritance and subset cap be represented by the same constructor

• in our model. Furthermore, Subset can be viewed as a special case of Inheritance where no new

source components are added, This "overloaded" use of a constnJctor for botl_ Inheritance and Sub-

" set is similar to the use of Comoosition constructor for both ER relationships and attribute charac-
terization.

99



7. CONSTRUCTORS

7.7. Union

The third type of "IS-A" is the Union constructor:

XuY
,A

__

This is equivalent to the "generalization" concept in other semantic data models: an instance of

X_Y is an instance of X or an instance of Y. A Union instance must also contains the information

that determines which source Object-Type it is derived from. As a result, it contains "more" infor-

mation than the sum of its sources, and the arc points toward the Union Object-Type. Naturally, the

ID arc determines the possible sources for the Union. Property arc is for any new infommtion avail-

able as a Union Object-Type. Our usage of"Union" is based on the "union"-type of programming

languages. The Union constructor provides dynamic binding, which allows an instance reference

to be defined by the dynamic state of the databa,_ system and not by the static definition of a

schema.

7.7.1. Example

An example of the Union constructor is:

Article Book Paper

w

Journal Page Publisher Title k Session

Date [Date] Date

100



7. CONSTRUCTORS

Comments:

(1) An instance of Publication "is an" instance of Article, Book, or (Conference) Paper.

(2) Not shown are the Property componen_ of Article, Book, and Paper.

(3) There is no a priori common information expected of Article, Book, or Paper. In this par-

" ticular schema, Date happens to be common.

7.7.2. Union and Inheritance

Some would argue that a Union schema can be viewed as an Inheritance schema upside down. In

our example, Publication would be the supertype, providhlg the source Object-Type to subtypes

Article, Book, and Paper. If this is the only difference between Union and Inheritance, then Union,

as a distinct constructor, should be dropped from the model and its semantics replaced with the

Inheritance constructor. However, a union instance retains the full information content of the

source type, while the inheritance supertype only has the "reduced" information content. This dif-

ference in information content determines what kind of operations are permitted on a Union

instance.

A second argument to eliminate Union constructor is its similarity in form to multiple inheritance.

However, a union instance does not inherit the information content of' its source instances nor is it

subject to the integrity constraint of consistent values that a multiply inherited instance in under.

Therefore, the semantics of multiple inheritance is not the correct interpretation of the union con-

structor.

7.7.3. Union and Superset

The concept of Union is distinct from Superset because Union allows heterogeneity of information
=

content between source and target while strict Superset does not. In fact, strict Superset is a special

case of Union, where all the sources are homogeneously defined, lA'this is the case, then ali the

source Object-Types are aliases of a core Object-Type.

7.7.4. Considerations of IS.A

There are two uses of IS-A constructors. First objective is the simplification by removing redun-

dant information in a schema. Common themes can be grouped together into a "supertype", and

only the specifics need definition in the subtypes. Second objective is the graceful evolution of the

schema: new extensions and groupings can be added without redesigning the old schema. "Ibis pre-

" serves the validity of previous queries and reduces the software maintenance of database applica-

tions. The second objective also forces the separation of Inheritance ("specialization") constructor

from Union ("generalization") constructor. A data model can propose only one constructor for

both, but in doing so, the ability to gracefully evolve a schema is lost. Using the Publication exam-_
z

pie, if we first define Article and Book as subtypes of Publication in the schema, then when we add

101

.



7 CONSTRUC'I'ORS

Paper, _e sources for Publication could _ shuffled Thus any queries defined for Publication

before the addition of Paper is now inconsistent with the new _hema However, with a Union con-

stractor, queries for Publication can remain indepen'tent cf its sources

I(D

i I ii iI• ,,



7, CONS2_UCTORS

7,8, General Characteristics

7.8.1. Infon_aation Content of Instanc_

We defined ID and Property components to an Object-Type, hence, also to -my hastances belonging

to that Object-Type, but is the total information content of an instance the same as the sum of the

lD components and the Property components? As it turns out, the definitions of I13, as functions

for Composition, Set and Sequence constructors, do not return ali the information of the ID cora-
l.

ponents. For example:

I

Dept Years Employee

Name Floor Budget ID# Name Salary

ID( Manages ) = [ lD( Dept ), lD( Employee ) ]

= [ID( Dept.Narne ), ID( Empl0Yee.ID# ) ]

[ Dept, Employee ]

Property( Manages ) = [ Years ]

• Therefore, lD( Manages ) + Property( Manages ) _ Manages. This difference raises the question of '
7,

whether to "enlarge" the definition of IDO to include the property component of an ID source, i.e.

let ID( Manages ) = [ Dept, Employee ]. Since we can reference the information content of the ID

components by tuple notation, i.e. "[...]" and the eqtvality determination is not dependent on the

Property value (see following section), we will not support this proposal.

7,8,2. Extension to fl_e Fundamental Relationship

For any constructor, in addition to the fundamental relationship of lD and Property, we can also
state:

If ID( x I ) = ID( x2 ), then x 1 = x2, i.e. bit equality over ali the bit,:.
ii

Proof:

I. For every ID component A, of X:

ID( x 1 ) = ID( x2 )---_ID( xl.a ) = ID( x2.a )

-) Property( xl.a ) = Property( x2.a ),

103

_,_



7. CONSTRUCTORS

2. if A is primitive, then x 1.a = x2.a.

3. if A is constructed, then we recursively traverse the construction tree, until primitive

Object-Types are reached. Technically, this is done via induction from the primitive to

the complex.

4. For every Property component C of X:

ID( x 1 ) = ID( x2 ) --_ xl.c = x2.c,

by the original definition of fundamental relationship.

5. Therefore we have x 1 = x2.

This is much sta'onger than the fundamental "ID determines Property" rule, because it asserts equal-

ity over all the component values of two instances. In addition, this removes the "enlargement" of

ID() proposed in tile previous _ction and keeps the "computation" of ID0 down to a minimal.

7.8.3_ Recursive Ap',_iicafion of Constructors

Object-Types can be d.,_finedonly once, but they can be declared or referenced multiply. What

would happen if an Object-Type is encountered multiply within its definition:

1
ependenu Name (Person) j

<

In this definition of Person, we encounter Manager, which is another Person and a Set of Depen-

dents, which are made of Persons. In the Manager path, there is a potential conflict ii"a person is

his/her own manager. In the Dependent path, there is usually no conflict, since a person is never

his/her own dependent (except for tax purposes). The contlict becomes apparent when recursive ,

access is attempted. For example, to answer the question: "find ali managers of X", one. usually
z

apply recursive access. If an instance is re-encountered in the access, some heuristic must be

applied to prevent infinite regress. For ex,'unple, if a Person instance X has a manager who is him-

self, then the search must be terminated. These problems have been addressed in the recursive

- 104

-_



Lllfilinli,,, ,_1 , lib

7. CONSTRUC"I_RS

query processing research and will not be reiterated here.

A deeper problem exists for the Extensible Object Model if recursion occur along the ID path. We

analyze this problem in two parts, first with IS-A constructors and second with conventional con-
structors.

" A. IS-A Com_tructors Must be lD Acyclic

Any IS-A constructor cycle along the 113path is invalid. This is because an instance constructed by
• an IS-A constructor is the same instance of its source. An example of cyclic ID path can be dem-

onstrated by the Inheritance constructor.

For example:

Iy 1......

Vy---_ I super_yp e ]

We have"

ID( subtype x ) = ID( y ) and ID( y ) = ID( supertype x ),

but since the x instances for both sub- and super-types are identical, we also have:

supertype x r._--subtype x.

Therefore, it bring us back to the beginning. Consequently, the ID value of an X instance cannot

be found in this cycle. Therefore, X does not have a definable ID. A similar argument can be made

for a cycle of pure Union constructors and a cycle of mixed Inheritance/Union (any IS-A) construc-

tors.

B. Conventional Constructors Must be lD Acyclic

This situation is more subtle. An Object-Type has one or more ID source components, which in

turn, have their own. If one of its descendent II) Types eventually refer back to the initial Object-
m

105



7. CONSTRUCTORS

Type, we would encounter a similar problem to the IS-A example:

xl] Uv2

.' ,m

,]Ix
We have:

ID( xi ) = IE)( Yi) and ID( Yi) - lD( xj ).

If xi .-=xi, have the same situation as in IS-A.

If xi _ xi, we still need to define xi'

ID( xj ) = ID( yj ) and II)( yj ) = ID( xk ), ad infinitum.

Consequently, the lD value of a.nX instance cannot be fully defined due to infinite regress. There-

fore, X is not "lD definable". The end result is that Object-Types along ID arcs cannot form cycles,

independent of constructor usage. On the other hand, cycles in Property arcs are permitted, but only

if some form oi' termination heuristic is provided.

106

......................... :.......:.,L,aw_--,-_---:77F..........!--" _T...................F- "II ........II...................................................."..........................m .....



8.CONTF.XTDEPENDENCY

CHAPTER 8. CONTEXT DEPENDENCY

In Chapter 6 and Chapter 7, we have defined the following:

(1) the concept of an abstract Object-Type.

• (2) the concept of an Instance.

(3) the representation of a collection of instances by an Object-Type.

(4) the concept of lD and Property values with respect to the abstract Object-Type and the fun-

damental rule that "ID determines Property".

(5) the concept of constructors, from which we construct new Object-Types.

(6) file use of ID and Property arcs in the Object-Type constructors for the explicit determina-

tion of ID and Property of an instance.

The_ definitions build a conceptual model in which we know the following:

(1) _ information is stored _ as defined by Object-Type constructors and definitions.

(2) how to interpret the stored information _ by the semantic mapping associated with the

name of the Object-Type.

(3) basic properties of the information content _ two instances with equal ID values must have

equal Property values.

A schema based ota the above principles provides relationships between Object-Types, i.e. struc-

tural information, but this is insufficient to model instance relationships such as cardinality and

dependency. Therefore, we will extend the model by defining wh_...._e!'_ethe information is stored, i.e.

the relationships between Instances. The approach is by augmenting Object-Type definition with

the concept of "context dependency" to form an abstract definition of location for the Instances.

There are three types of context dependencies'

(1) target dependency, which determines the relationships between instances and their target

instances. This also establishes the _ relationship for instances, i.e. identity,

beyond the equality relationship.

• (2) source dependency, which determines the relationship between instances and their source

instances. This provides integrity constraints for instance existence.

, (3) peer dependency, which determines the relationship between instances of the same Object-

Type. This provides the basis for cardinality relationships and is also an integrity constraint
for instance existence.

Context Dependencies create an orthogonal set of specifications that can be applied independent

of the constructors. Visually, following the arcs and constructors, target dependency "goes up" the

107

' ..... , " ,11, _1 ' _,' , , ....... i_ ,pq ..... i, _111 , , rl .... _11, , ii, .... ,, .... "rl' ,i,,' "1' rl _1 r., ,i,,p,,, .... H", .... ,pill, 1111_ it;_ '[llI*



8. CONTEXT DEPENDENCY

schema and source dependency "goes down" the schema. Peer dependency goes left and right in

the schema, looking up source siblings within a constructor.

108

.... , .... , ,, ,, .,_ ,,,, ..... _ r, .-, _ _,-,-_,----" -- ,-,,rr ....... _--'+_r_-rr_'_er-,_,r ,--



_. CONTEXTDEPENDENCY

8.1. Instance Association Diagrams

Before we, describe the various context depf'_,,Jencies, we introduce a different graphical notation,

named "instance association diagrams", to help us visualize Instance locations. Previously, a

,schema "graph" only shows the Object-Types and arcs between them, which defines how inforrna_

' tion from one Object-Type associates to another. However, a schema is also a representation of

information content in a database, i.e. each Obj_t-Type represents a collection of'instances in the

" database. Therefore, we introduce a different graphical representation to denote actual instances

defined by a schema. This representation is to be used as a tool to visualize the interaction between

Object-Types and collections of instances under context dependency, they are not to be used in an

Extensible Object schema. In addition to the visualization, this instance association diagram is also

a semantic "model" fox"the instances defined by our conceptual Extensible Object schema. Ulti-

mately, it will help us define and resolve the issue of context dependency.

8.1.1. Composition, Set, and Sequence

_, a example of the instance association diagram is show as follows:

EOM Schema: Instance Association Diagram:

Collection ofPerson Person instances

Set of Instances

_'_') Bag of Instances
Collection of Collection ofm

" Instance Name instances ID instancesXX

-----_.- Instance Association Links

The Person Object-Type defines a collection of Person instances. In this case, the Person collection

is a set and holds three instances, Pl, P2, and P3. The same applies to ID#. The Name collection is

a bag and holds three instances. The links from n's to p's indicate which Name instance is associ-

109

111 '_ _ "tilv '



8. CONTEX'I"DEPENDENCY

ated with which Person instance. These links are the "instance" equivalent of the schema arcs for

Composition. We do not differentiate II) from Property because, on the "instance" side, they are

ali association links. There should be..only at most one arc between any two instances, since none

of our constructors support a multiplicity of instances within a strict set.

From now on, the term "set" is defined as z strict set, i.e. each element in a set is unique and has a

different value from ali other elements of the same se_. For collections with multiple equal-valued

instances, the term will be a "bag". In the case of a bag, we could have two instances whose values

are equal ("="), but they are not identical or equivalent ("-").

In the instance association diagrams, we denote distinct instances by distinct physical locations on

the diagram. However, a single instance may be given different labels because of ,tifferent paths

were used to reach the instance. These paths include navigation from target instance or selection

applied to a collection of instances. When used as references, without the benefit of an instance

association diagram, we face the possibility that two differently labels may actually refer to the
same instance.

8.1.2. Inheritance and Union

Instance association diagrams can also be applied toward the Inheritance and Union constructors.

A Union schema will create the following example diagram:

l pu ic. ti l /"7-_ -
lt,Qj_ - _1 P3 P4 P5

0oa;

7
The differentiation between "structural" constructors and IS-A constructors is represented in the

instance association diagrams by the different types of links. Therefore, the links between a Publi-

cation instance and its source instances have double-ended arrows to indicate IS-A. Note tha!.P2 is

both a Journal Article instance and a Conference Paper instance.

110



8. CONTEXTDEPENDENCY

An example that includes both "structural" and IS-A constructors is diagrammed in the following:

[ Enl',ineer ]

- _l st I st2 engl eng

t,

- [ SeniorityI

-/___ gpal gpa 2 senl sen 2

[ 113# ] Name ] [ Age [

idl id 2 id3 agel age2 age 3

IS-A link nl n2 n3
_..___ Association link

The links between Student instances and Person instances have double-ended arrows to indicate

IS-A. Same for Engineer instances. Person P2 is both a student and an engineer.

111



8. CONTEXT DEPENDENCY

8.2. Tzrget Dependency

To address the issue of target dependency, let's take an ER schema as a starting point:

A _ B

,,t

If we convert this schema to the Extensible Object Model, we have:

Al [ I
] Y ] [ z I

In the ER model, W has a different symbol than A, therefore they are interpreted differently. How-

ever, irl the Extensible Object schema, they are equivalent, i.e. they both are lD source to a Com-

position constructor. Therefore, if we wish to capture the ER difference, we need to examine the

associations between Object-Type W and A vs. A and R. The question becomes what arc the

semantic differences between W/A association and A/R association in the ER model? and how do

we capture these differences in our model?

One interpretation for Object-Type W is that of an attribute for an entity. That is, the attribute's

value is the sole property of the entity and is not subjected to constraints from other Object-Type

definitions. Consequently, the value of this attribute is modifiable without constraints. Another

interpretation for W is that they are implemented values, such as integers, dates, and strings, with

independent storage. Therefore, changing any of these values do not affect the values of other

112



8. CONTEXTDEPENDENCY

instances within the same target instance nor the corresponding instance values of other instances.

The equivalent in the relational model are field values: each tuple (row) has independent field val-

ues. Certain semantic models define a specific node for these type of objects, e.g. "Printable" in

IFO [21.

- The interpretation for A is that of an abstract object, in which instances coexist under a strict set

criterion, e.g. duplicates are not permitted. In the ER model, they are Entities and Relationships,

- and in the relational model, they are tuples and relations. The "gestalt" values of entity or tuple

instances can not be changed without the consideration for constraints of set membership, cardi-

nality (e.g. I-M), etc..

Most data models have this separation between attribute and abstract values. However, in the

Extensible Object Model, there is no distinction between attribute and abstract, i.e. all Object-

Types are equivalent and behave the same. Although we provide the "implementation definition"

of an Object-Type, this should not weaken the uniformity of the abstraction. Therefore, we need to

define this problem in a broader scope, for which the attribute/abstract dichotomy is only a limited

solution for it. Our solution for the extended problem is the concept of target dependency.

There are two equivalent interpretations for target dependency: identity and set generation. The

first is based on the idea that the identity of an instance is dependent on its target. Instance identity

can be phrased as the following question: when we are given two instances from a collection, how

do we determine if they are different instances or the same instance? This is the core problem of

equivalence vs. equality. The standard approach is "downward", i.e. object identity is determined

by the value of the instance. This approach is taken by the relational model: a tuple's identity is

determined by its key fields, lt is also the approach taken by pure Object-Oriented models: an

instance's identity is determined by the surrogate (virtual, system, hidden, intrinsic, or implicit) lD

value. Target dependency introduces the concept of "upward" object identity, i.e. identity of an

instance is not only based on its "lower" values, but also the "upper' values, defined by its target.

This dependency is a form of context dependency, i.e. the context of the instance is needed to deter-

mine its identity.

The second interpretation of target dependency is the generation of sets. While instance identity

• interprets target dependency by "upward" direction, set generation interprets by "downward"

direction from the instance's target. The basis of this interpretation is that every instance belongs

, to a strict set. However, there may be many strict sets associated with each declared Object-Type,

with the multiplicity dependent on the target dependency designation. Since our concept of identity

is value-based, the formation of strict sets ensures identity of instances within a strict set is always

achievable. Furthermore, this explicit identity provides a useful integrity constraint that prevents

the collision of instance values and, subsequently, identifies.

113



8. CONTEXT DEPENDENCY

Target dependency is a "vertical" concept, so our discussion is restricted to the Object-Type of

interest and to its "target", i.e. the constructed Object-Type of which one of its sources is our given

Object-Type. The following diagram describes the terminology:

[ Target_.._ Target Object-Type

__ ..............................Some constructori

{:"'.,,- .......................Either II) or Property Arc
/

1 s_ ..... Context Designation
[ Source }-.,r,--_Object-Type of interest

8.2.1. Types of Target Dependency

We define target dependency with the following assumptions:

(1) lt applies to the immediate target level, i.e. target dependency is not defined between

Object-Types spanning more than one level of constructors.

(2) lt applies to both ID and Property arcs without differentiation. This preserves the orthogo-

nality between ID/Property differentiation from target dependency.

(3) The corresponding "downward" characterization, between a given Object-Type and its

sources, is strictly value-based. This means the context of an Object-Type X, with respect

to its target ks independent of the context(s) of X's sources.

(4) Target Dependencies are not applied toward Inheritance nor Union constructors. Because

the instance links of IS-A constructors are not of the "association" type.

There are three target contexts we use in the EOM, each will be defined with both identity and set

generation interpretations.

A. Local (or target-instance) context

Under local-context, two instances ,are identical if and only if they are value-equal and their target

instances are identical, i.e. the given instances are local to their target instances. The target instance

is the instance in the constructed Object-Type above the given source Object-Type in the schema.

Using our Person example in Section 8.1.1 and assigning local-context to Person.Name, an

instance of Name, pl.n1, is identical to another, p2.n2, iff lD( pl.n1 ) = lD( P2.n2 ) and Pl = P2. In

other words, two Name instances are identical if they have the same value and belongs to the same ,

Person instance. The latter "equivalence" on Person instances is stronger than equality of the Per-

son.ID#, because it forces a potential "upward" percolation of equality tests.

If the given Object-Type is of local-context, then the each instance of the target Object-Type

defines an isolated set of the given Object-Type instances. "INis creates a sel of sets such that the

114



8. CONTEXTDEPENDENCY

instances of the given Object-Type is partitioned by the corresponding target instances. Attributes

in the E-R model has this characteristic. By default, a declared Object-Type has instance context.

Example Usage:

[ Person 1

Object-Type

i
B. Shared (or target-set) context

Here we overlook target instance differences, but recognize target instance sets, i.e. the given _i

instances are shared among their target instances. In other words, instances are partitioned into sets _.

based on the sets of their respective target instances. Therefore, if we assign shared-context to Per- '_

son.ID#, then an instance, pl.idl, is identical to another, p2.id2, iff ID( pl.idl ) = ID( p2.id2 ) and

Pl and P2 are instances from the same set, i.e. Person. This is equivalent to defining a set of ID#

instances for each set of target instances. If the schema defines another composition, Company, also

made of ID#, then by this definition, the set of instances of Person.D# is partitioned separately

from Company.ID#. Thus, even if ID( Pl.ld# ) = ID( el.ld# ) for some Person instance Pl and some

Company instance c 1, the two ID# instances are not identical because Pl belongs to a different set

than Cl. This is commonly used to preserve one-to-one correspondence between a Composed

Object and a singular ID component. An Object-Type with shared-context is shown as:

Example Usage:

s [__Person ]

Object-Type _

[ ID#-_ 7 ID# --_]

C. Global (or target-independent) context

. In this case, ID value equality is object identity, i.e. no target information is required. This is equiv-

alent of defining only one set of instances for 'ali declarations of the Object-Type. For example, if

every instance of Person came from the same set, regardless from which Person declaration it is

chosen from, then the Person Object-Type is considered to have global-context identity. "/'he E-R

models uses this form of global-context identity for entities. This is also used for the EOM Object-

Type definition from aliases, i.e. the alias type is considered to be global. We denote a global-con-

115



8. CONTEXT DEPENDENCY

text Object-'l'ype as:

Example Usage:

............Obj ect -,Type G /[W°rks'In(c) J _ (c)anaged'b_.... .

FPerso n G] P'_

These contexts are analogous the scopes of variables in a high-level programming language. Local

variables inside a subroutine is of local-context. Static variables, local to a module and common to

a set of subroutines, are of shared-context. Global variables has global-context. In data models, the

context of a data instance is not determined by lexical nor execution scope, but is determined by

its relationships with other data instances. The instance association diagrams for the various con-

texts are shown in Appendix A.

116-

_



8. CONTE2£TDEPENDENCY

8.3. Source Dependency

A converse situation to target dependency is source dependency, i.e. an instance existence is depen-

dent on its source instances. This problem is similar to the relational model &snull vs. non-null col-

umn designation. If an attribute or field in a relation is specified non-null, then every row in that

" relation must have a valid value for that field. On the other' hand, if the field can be null, then there

can exist rows without a valid value, or a "null" value, for that field. In the Extensible Object

" Model, a target's existence can be,similarly dependent on the existence of a source, i.e. requires a
source instance. We will denote them as follows:

R for Required (source-dependent), default is Non-required (source non-dependent):

[ Person l

In this example, a Person's Name instance is required, but Race is not a required in._tance. For every

instance in the Dept Object-Type, both Name and Manager source instances are required. In gen-

eral, Property source objects can be either required or non-required, while lD should be required.

Unlike target dependency, source dependency is applicable to IS-A constructors. The. instance

association diagrams for the various contexts are shown in Appendix A.

8.3.1. Dependency vs. Null

Dependency and null address different issues. Null is a semantic problem while dependency is an

integrity problem. The semantic problem is resolved in the Extensible Object Model by allowing

semantically meaningful "null" values. If a null value is semantically meaningful, then it must have

a symbolic representation, i.e. a unique bit pattern. Since equality on bits is defined, a null value is

distinct from the any other values. Furthermore, there can be many distinct null values, e.g.

"unknown" and "not applicable". Therefore, a null value can be used as a "normal" value, and it

, can also be used for ID value without losing the properties we have defined. This extension comes

from the ability to add new tokens carrying new semantics to almost any model without loss of con-

sistency. In reality, however, a null value must be operationally well-defined, because a set of val-J

ues, as defined by an Object-Type, is paired with a set of operations. Although this requirement

makes the construction of operations more difficult, it occurs outside the scope of the Extensible

Object Model. In summary, in the Extensible Object Model, a null value is treated like any other
"normal" value.

117

'Ill ' ' '_li[ ....... I[q, i,r........ ii I...... lllll[ ' ..... ,IlH ,I ............... llnl '"'_l'l' _............. I1_I' ...... ".....''_1''''_'1, roll......_!'PIll['......iiii" til....._rl,P',"' ", ,l,l,'r,: lllllrl[,[t,_,,,_,llll!s',rllllllr'_",m,iqp_¢_



8. CONTEXTDEPENDENCY

The integrity problem of source dependency is whether a target instance can exist without a source

instance. It is determined by the presence or absence of the instance association (or IS-A) link

between the target instance and the source instance, lt is not detervnined by the values of instances.

For Required source dependency, the link must be present and be sourced from a valid instance.

For Non-required, the link can be absent.

The null value problem in the relational model is a mixture of semantic and integrity problems. The

reason is that the relational model is purely value-based, therefore the integrity problem of

instance-to-instance relationships cannot be fully expressed. Our source dependency deals only

with the integrity problem.

8.3.2. ER Participation Constraints

Mandatory vs. optional participation in the ER model has a similar interpretation to source depen-

dency. If applied between an entity and an attribute, the entity is source-dependent on the manda-

tory attribute. If applied between a relationship and an entity, the relationship is source-dependent

on the mandatory entity. However, ER has another constraint where the implication is reversed: a

"total role '_constraint is where the entity is "source-dependent" on the relationship [64]. Under this

constraint, an entity instance can exist only if a relationship instance, associated with that entity

instance, also exists. This is not target dependency, because it can be applied on global Object-

Types. Nor is this source dependency, because of the reverse direction of dependency. The "total-

role" constraint actually opens up the possibility for arbitrary dependency between unrelated

Object-Types. Since the objective of the Extensible Object Model is to provide a core model, we

will not pursue this extension.

118
_



8. CONTEXT DEPENDENCY

8,4. Peer Dependency

If an Object-Type defines the actual instances of a database, we will need to determine which

potential instances are permitmd to be inserted into a database. Clearly, if we are to accommodate

E-R relationships as a composition, we need additional characterizations for cardinality. For exam-

" ple, if we are given'

1 _ M [
" A B

i

then it can be modelled as:

Comments:

R (1) The Relationship constructor is an alias for

the Composition constructor.

(2) When given an instance of R, r,

ID( r)= [ lD( r.a ), ID( r.b ) ]

In order to model the 1-M relationship between A and B, we need to restrict the instance set R by

ID values of A and B. Unfortunately, the lD value of a single instance is insufficient to determine

whether a given instance belongs to the set defined by the Object-Type.

This is the basis for peer dependency, i.e. the valid existence an instance is dependent o11the exist-

ence of its peers. Therefore, a Composition constructor needs to include one or more peer depen-

dency rules which operates "side-to-side".

8.4.1. Approaches to Peer Dependency

There are two basic approaches: functional dependency and involvement cardinality. To compare

their differences, we use the "pigeon-hole" paradigm: with every instance added to the set, it occu-

pies a new slot and covers a set of incompatible slots. To insert a new instance, therefore, we must

find an open slot. If we don't find an open slot, then the new instance is either identical to an exist-

ing instance or in conflict with one. When given an instance x, we determine whether x has a valid

existence in the instance set R through the following steps:
,q

(1) We test x against r1 , r2 , r3 .... of the instance set. The test is determined by whether we

choose functional dependency or involvement caz'dinality.

(2) The results of successive tests are AND'ed to obtain the final answer.

Thus if any current instance rules against insertion, then the final result is false. Although the test

119



8. CONTEXTDEPENDENCY

is phrased as an insertion problem, it can be used as a static consistency check. For example, if we

are given a set of r's, then we can check to see if this set is consistent with the peer dependency

rules by inserting the r's one by one, in any order, into a new set with the same rules. If all can be

inserted, then the set is consistent. If not, the set is inconsistent.

8.4.2. Functional Dependency •

The first approach is functional dependency. We will use the previous schema for the binary case.

A. Binary Relationships "

For 1-1 relationship between A and B, we have:

If x is an instance of R, then for ali instances, r, of R in the database:

ID( x.a ) = ID( r.a ) _ ID( x.b ) = ID( r.b )

For I-M relationship:

If x is an instance of R, then for all instances, r, of R in the database:

ID( x.b ) = ID( r.b ) --_ ID( x.a ) = ID( r.a )

For M-M relationship, no restrictions ,areapplied. However, we always have the fundamental

°'ID--> Property" rule:

If r1 and r2 are instances of R:

ID( r1 ) = ID( r2 ) --9 Property( r1 ) = Property( r2 ).

The logical predicates expressed here are equivalent to the functional dependency principle of 1-

1 or 1-M relationships [64].

B. Ternary Relationships

We will let x = [ a1 , b 1 , c1 ] and r = [ a2, b 2,c 2 ], where r ranges over r1 ,r 2 , r3 ..... We now use

a truth table to describe the results of all possible comparisons. The first three columns describe the

result of the comparison of the component values between x and r. The next four columns describe

the combined component result based on the functional dependency. For example, if we are testing

for 1.-1-1, then the result ofx and r I (chosen from the 1-1-1 column) is AND'd with the result c,fx

and r2 (chosen from the 1-1-1 column) and so on.

120



8. CONTEXT DEPF2qDENCY

This produces the following (comments in parentheses):
...... _ ,- .............

al=a 2 b2=b2 c1=c2 1-1-1 1-1-M 1-M-M M-M-M Comments

T T T T T T T (1)
.... •_ .... , ,, , _...... , ii

T T F F T(4) T T
li , i i ,, • ,. i,, , i ,,,,,, , J ,.,,, , ,, i

T F T F F T(5) T
a-

,,, _ _ ,., i ,, | _ ,, .,,, i , ,,

T F F T(3) T T T
i ......... t

F T T F F F T(6)
,, li ' '"11 ....

F T F T(3) T T T
i ,i ,,, , , ,,,

F F T T(3) T T T
,, ,,,, , , ,,, ,,,,,

F F F T T T T (2)
,i .................

Comments: Let A -=(ai=a2), B = (bi=b2), and C -- (c]=c2).

(1) If all three components are equal, then x = ri for some ri in R, thus insertion of x does not

affect the instance set of R (by the definition of a set). However, this can be considered as

invalid if Property( x ) _ Property( r i ), then all values should be False.

(2) If x is different from any r already in the set R, then x can be inserted.

(3) Since 1-1-1 is defined by the predicate ((A AND B)_C) AND ((A AND C)--_B) AND ((B

AND C)---)A). As long as there are two components that are different, x can be insert¢',,!into
R.

(4) The functional dependency of 1-1-M is ((A AND C)_B) AND ((B AND C)---_A). There-

fore, this is True.

(5) The functional dependency of 1-M-M is (B AND C)--)A.

(6) There is no dependency under M-M-M, therefore, any x can be inserted.

8.4.3. Involvement Cardinality

The second approach is by involvement cardinality, which is based on the principle that a source
f

instance can originate association arcs at its given cardinality, i.e. be involved at the specified car-

dinality. Under this interpretation, the I--M binary relationship would be the converse of its logical

interpretation under functional dependency, i.e. ID( x.a ) = ID( r.a ) _ lD( x.b ) = ID( r.b ). Since

an instance of A can be associated with only one instance of R, this implies if two instances of R

that have the game instance of A, they must be the same instance. Involvement cardinality and

functional dependency interpretations for 1-1 and M-M relationships remain the same.

121

• ................................................. ,,,, ,lh,, III



8. CONTEXT DEPENDENCY

The ternary relationship under involvement cardinality produces the following table:
, , ....

al=a 2 b2=b 2 Cl=C2 1-1-1 1-1--M 1-M-M M-M-M Comments
, , ,,. ,, • _ ,, , ,,., . . ,, , , ,, - _

-- I , i . , m , , , , ,, .,..,,,

T T T T T T T (1)
_ ,,, ,, , ,,,.,,, ,,.,, , ,, , ,,! ,,,

.lt

T T F F(3) F(4) F(5) T(6)
_ IIII i I ii IIIN IIIIII li I I I ....

T F T F(3) F F T ..
k I II ]111 _ lull I I I ...... I I --

T F F F(3) F F T
,, , , , ,.., i ,, ,, , ,......

F T W F(3) F T T
- , ....... . .... ., . --

F T F F(3) F W T
................ ,,, , ,t , ,,,,, ,, , , , .......

F F T F(3) T W T

F F F T T T T (2)
...........

Comments'

(1) Same as functional dependency.

(2) Same as functional dependency.

(3) Involvernent cardinality of 1-1-1 is (A_--_B)AND (B_---_C)AND (C_---_A).Therefore, if any

sources are equal, all sources must also be equal. This will preserve the number of occur-

rences of that source instance in a target instance set at the specified cardinality of 1.

(4) 1-1-M is (A<---_B)AND (A---_C)AND (B_C). Therefore, this is False. The last predicate,

(B---_C),is redundant.

(5) 1-M-M is A---_(BAND C), which is a deduction from (A--_B) AND (A---_C).

(6) Same as functional dependency, since there are no additional rules.

8.4.4. Other Uses of Truth Table

In any modelling process, one encounters the problem of equivalence between two schemata.

When we have a schema with three or more lD source Object-Types, is there a mechanism to deter-

mine if this schema can be converted to one where the lD sources are cascaded? This is achievable

because the pigeon-hole mechanism makes any peer dependency condition based on equality and "

boolean algebra into a truth table. Since we can enumerate all possible truth tables tbr a fixed num-

ber of components, we can determine whether or not a given composition is truly n-ary, lt will also

provide a decomposition, and possibly, a unique one. Naturally, if the peer dependency condition

_ goes beyond equality, e.g. arithmetic counting and procedural, this method will not succeed.

122



8. CONTEXTDEPENDENCY

In Appendix B, we examined all the cases of ternary relationships using the generalized truth table.

Although half of the ternary compositions can be decomposed into cascaded binary compositions,

there may not be a motivation to do so because of the semantics of Object-Type definition. A sim-

ilar situation exists for choosing a particular cascade against an equivalent cascade. Ultimately, it

. is the user who will decide which one is semantically correct.

8.4.5. Approaches to Peer Dependency

" The basic approach to peer dependency could be either functional dependency or involvement car-

dinality, with the arcs designated "1" or "M". The more general approach is to specify the truth

table for a given composition. However, this may be too broad and may not be semantically mean-

ingful to the user. That is, an arbitrary combination of T and F is consistent but is not as interpret-

able as functional dependency or involvement cardinality. On the other hand, this does not mean

that other meaningful combinations do not exist. An extension of cardinality is to provide a number

range for involvement cardinality. This approach goes beyond the truth table because it requires

counting variables. We will not explore this issue as a part of the core Extensible Object Model.

The most general approach is an arbitrary function based on the new instance and the set of existing

instances. This goes beyond the truth table because the operations are no longer based on equality

and boolean algebra. This peer dependency function is interpretable only by "name", and, in gen-

eral, it is not possible to determine if the function is computable or not. A "rule" or "trigger" mech-

anism for database updates is such an implementation.

Functional dependency does not generalize to Set or Sequence constructors, because there is only

one ID source with these constructors. However, involvement cardinality still applies in these

cases. Furthermore, functional dependency becomes more difficult to define when n > 3. Therefore,

in this model, we will use involvement cardinality, and denote a singular involvement by a "1",

otherwise it would be assigned "many" (M) by default. The instance association diagrams for the

various contexts are shown in Appendix A.

123



8. CONTEXTDEPENDENCY

8.5. Issues of Context Dependency Usage

8.5.1. Target Local.Context vs. Attribute Value

One may argue that local-context instances are not instances, but "attributes", as in the ER model.

Thus they should not be considered as Object-Types and should be modelled as attribute values

directly than some "instance" that has a given value. For example, a Person's Age should be a sim-

ple value rather than an "instance". The end result is similar to a primitive implementation defini-

tion, but it reduces the uniformity of the Extensible Object Model. lt may be true that value storage

is more compact and direct, but such optimization decision should be left to the schema compiler,

just as current language compilers and query processors perform optimizations to generate "code"

for the underlying system or model.

Target local-context also generalizes to Set and Sequence constructors. For the Composition con-

structor, a local-context component implies only one instance will exist under a target instance.

This is why an attribute approach is applicable, but misguided. However, under the Set con,;tructor,

multiple instances can exist under a local-context for the ID component. In this situation, the

attribute approach would lose the ability to reference the elements of a Set instance as instances.

8.5.2. Target Shared-Context and Labelling

Shared-context Object Types are usually an artifact of "labelling" (surrogate), i.e. the real world

has constructed an identifying label for objects which have the same characteristics (values). This

is usually achieved by analyzing context information, but because of the complexity of real world

context information, it is simpler to reference the object through its label. For example, when two

chairs have the same features (Property values), such as shape, # of legs, color, etc., and require

two identities, we could use their locations or owners for identification, but these may change with-

out affecting the chairs themselves. The solution is to use a sticker on the underside of each chair

and write unique numbers to the stickers. The value on the sticker becomes our shared-context ID

value. As long as the values are unique for chairs, they are adequate for identification, and the one-

to-one relationship to the real world is maintained.

8.5.3. Definition vs, Declaration Context Dependency

Can different context dependencies be assigned to different declarations of the same Object-Type .,

in a single schema? Before adding conte.xt dependency, the definition of an Object-Type only dealt

with _he information content from a structural point of view. No assumptions were made about

the information is located. However, a database is dynamic, and we need a specification of

information locality so that changes remain semantically consistent with the real-world and can be

described by a static schema. Context dependency provides this specitication in a compact and

static form. If an Object-Type can have different dependency among its declarations, then the

dependencies must be orthogonal to Object-Type definitions. Since there is only one definition pet'

124



8. CONTEXTDEPENDENCY

Object-Type, the operations defined by an Object-Type must be independent of context depen-

dency to maintain this orthogonality. If this requirement is satisfied, then one should be able to

assign different dependencies to different declarations. This is the approach we took with the EOM.

8.5.4. Placement of Context Dependency Designation

" There are two places where context designations can be placed:

In the Objec-Type: On the Arc'r

[ works:In [ [Works-In [

pt c] [ Person ] [ Dept

Since the Extensible Object Model uses different arcs for ID and Property, so one would assume

that context dependency relationships between target and source should also be placed on the arcs.

However, if an Object-Type declaration sources two or more arcs, the haterpretation becomes

ambiguous. For example, if the designation is placed on the arc:

[ Person [ ...... DePt '

: l ID#- ] [ Name ] [- Size ]

The declared Name Object-Type is used as local-context for Person, but shared-context for Dept.

We can interpret this schema as a shorthand for a schema with two separate Name declarations,

which then resolves the ambiguity by distinct arc annotations. But this schema gives the impression

that Person and Dept are semantically associated by one collection of Name instances. If the con-

text designation is placed in the Object-Type, then we avoid this false impression because we

, would be forced to use two Name declarations. This may look inconsistent with the D/Property

arc differentiation, but in fact it is not. The reason is that the ID/Property characteristic is orthogo..

: . nal to context dependency. Furthermore, each Object-Type declaration can potentially represent

different collections, in which case, the internal context designation is closer to the expectation. For

_ example, a global Object-Type is not global from the "arc" designation, but from some intrinsic

semantic properties of the Object-Type.

.:2

125



9. OBJECTMODELSUMMARY

CHAFFER 9. OBJECT MODEL SUMMARY

9.1. Conceptual Basis

9.1.1. Basis for Object-Types

The Object-Type in the Extensible Object Model (EOM) was a distillation of concepts presented

in semantic data models and Object-Oriented programming (OOP). The core concept was the

infom'mtion theoretic mapping between semantic concepts and physical implementations [58]. In "

many models, this was left undefined or implicitly stated. With an explicit definition, our model

formed a clean separation between real world concepts and symbolic values (bits) stored in a data-

base. This also determined which real world concepts properly belonged in a schema and which

didn't. :

The concept of an "instance'_' has taken shape in the database world independently of the similar

concept in OOP. The deve!op_ae,_t of OODBMS has since then merged the two efforts and

strengthened its "fight to existence" [36]. However, the problem of identity and its operations were

addressed at the implementation or physical level, not at the semantic or conceptual level. This

model brought identity and property into the conceptual level so that it can be related to other

aspects of the conceptual level, such as structural abstraction and integrity. The explicit identity of

EOM was a departure from the use of surrogate or virtual ID's espoused by many database imple-

mentations. However, they are not incompatible, because the use of surrogates is an implementa-

tion technique that should be hidden at the conceptual level. On the other hand, the notion of

"identifying characteristics" is a "conceptual" abstraction.

9.1.2. Basis for Constructors

A schema defined how Object-Types are associated with each other through the semantics of con-

structors and ID/Property arcs. The constructors were based on several concepts. First was the use

of data abstraction in programming languages [42]. This ability to encapsulate a collection of infor-

mation units into a new unit was also crucial for semantic modelling. The explicit semantic map-

ping provided the basis for data abstraction: a ,semantic grouping of real world concepts is

implemented by an equivalent grouping of database values. Second was the separation of type and

instances. In the EOM, only types are shown in the schema. This maintained a constant "conceptual

level" in which a user can model real world semantics. Finally, the graphic design was based on

ER and other semantic data models, but the biggest influence was Jackson Design Methodology

and its data structure diagrams [32].

The specific constructors were based on well-known data abstractions. Composition and set con-

structors were well characterized in previous efforts of relational and semantic data models. The

sequence constructor was developed to support the biological applications, but it was based on the

126



9. OBJECTMODELSUMMARY

results of the abstract sequence model (Section 2.5) and previously developed concepts of "text",

"list", "vector", and "time". Our IS-A constructors, inheritance and union, were developed from

specialization and generalization. In this model, the semantics of IS-A was defined by the use of

instance association diagrams, which removed many ambiguities of multiple inheritance and over-

, loaded attributes.

9.1.3. Basis for Context Dependency

" Context dependency was introduced to extend constructor-defined Object-Type associations to the

instance level. Context dependency was classified into three types' target, source, and peer. The

objective of this classification was to construct a systematic framework for integrity constraints. At

the same time, this framework removed the need of "references", "foreign keys", and "surrogates",

ali of which are implementation solutions to context questions. Therefore, they should be hidden

by the proper use of context dependency. In addition, context dependency retained explicit value-

equality as a mechanism for resolving instance identity. This preserved the ideal that instance iden-

tity is a ,semantic (real-world) concept that is accessible and can be directly modelled.

The instance association diagrams, which were used to illustrate context dependencies and abstract

instance locations, also formed a semantic interpretation mechanism for integrity r,mstraints. This

interpretation model was an intermediate between the EOM and the actual database. Since it was

essentially based on instances and sets of instances, it can be readily implemented de novo or on

top of existing DB MS's.

(1) Target Dependency

The inspiration for local context was based on two concepts. First was the hierarchical model

where each instance has its own set of children instances. Second was the concepts of value repli-

cation and independent modification. Global context was based on the global references of pro-

gramming languages and the use of foreign keys in the relational model. Shared context was based

on the use of module-local variables in programming languages, e.g. "static" variables of an ".c"

file in C. It was further refined by the examples of real world 1-to- 1 labelling of objects.

(2) Source Dependency

Source dependency was based on the problem of null vs. non-null in the relational n todel and the41"

mandatory vs. optional participation in the ER model. We did not include a "total role" constraint

because it would have permitted dependencies not specified in the local schema and between arbi-

trary Object-Types. On the other hand, this provided a new direction for future research.

(3) Peer Dependency

Peer dependency was based on a generalization of the cardinality cor_:,traints found in the ER mod-

els. Although this research has extended the original idea, we chose involvement cardinality

127



9, OBJF_ MODEL SUMMARY

because of its scalable interpretation and simplicity. Nevertheless, the framework for generalized

constraints had been laid down for future research.

128



9. OBJF_KTFMODELSUMMARY

9.2. Goals of the Extensible Object Model

Part II started by reviewing some of the problems of conceptual data modelling and set forth a list

of goals for a new data model: semantic richness, model extensibility, model simplicity, organized

graphical representation, domain invariance, representation uniqueness, and implementation inde-

" pendence (see Section 5.4). We then presented the EOM with the following features:

(1) Object-Types with semantic mapping functions

(2) ID and Property characterization of Object-Types

(3) Constructors to build new Object-Types

(4) Context Dependency to define Instance-to-Instance relationships •

Through the use of constructors and context dependency, this model has achieved the semantic

expressiveness similar to EER, IFO, and OSAM*. A demonstration of semantic richness is detailed

in Section 9.3. Because the organization of these semantic constructs are orthogonal, each can be

applied uniformly and extended independently. For example, new constructors, such as Bag, Tree,

and Semantic Sequences, can be added; constructor arc types can be extended with OrderedBy

arc, as in Sequence constructor; and "total role participation" can be defined as reverse source

dependency. Directions for extensions are less clear in the other semantic data models, since their

framework was not as well defined as the EOM.

We also proposed a graphical notation for the model that is based on the orthogonal characteriza-

tion. In addition, the notation is oriented top-down and left-to-fight, which improves readability

and lowers the possibility of"getting Iost", which is commonly seen with the omnidirectional arcs

: associated with other data models (,see Appendix C.1). The use of instance association diagram_ i_

a form of instance semantics. Since the association diagrams are reflections of the Extensible ,_

Object schema, we now have ,an implementation independent view of information location.

With the separation of definition from declaration, the information captured by a schema is also

localized, which reduces the amount of information one needs prior to comprehension. A model

based on an orthogonal semantics, i.e. two object symbols + three arc types + three contexts, also

reduces the number of interactions one h_ to learn in order to effectively use it. Therefore, this _-
_

- model has an additional advantage in simplicity.

Using the semantic information flow model, where type names are based on semantic mapping -

" functions of encoding and interpretation, we have created a natural enforcement of language usage.

: Therefore, each constructor/arc/context semantic can be verified against the real world phenome- _

-- non. Certain guidelines are listed in Appendix C.

129



9. OBJEL"rMODELSUMMARY

9,3. Comparison with Other Data Models

The semantic expressiveness of the EOM can be demonstrated by restricting its full expression and

by mapping constructs from the other 'models. There are two aspects to this model mapping. One

is construct equivalence w,herethe constructs from both models are similar, which results in a

schema with the same number of objects, i.e. there is a one-to-one schema object equivalence. The

second is implementation equivalence where several constructs from one model are used to

"implement" a specific construct in another model. Although, the information captured remains the

same, the new objects require new integrity enforcements. Only the first aspect will be considered

to be a demonstration of semantic expressiveness. We now map the features of the traditional and

semantic data models using the constructs from flae EOM.

The relational model can be modelled by only using the Composition constructor. In _ddition, all

source components to the Composition constructor is of "primitive" implementations, e.g. integers,

floats, and strings. The II) components correspond to the key attributes in the relational model. Tar-

get dependency is always local, peer dependency is always singular, and source dependency is

either required or non-required depending on the relational null or non-null specification, respec-

tively. This is construct equivalent, because a relational schema expressed in the EOM has the same

number of"relations" and "fields" (Object-Types). The following is a schematic view of the map-

ping:

Relational Model' Extensible Object Model:

Relation X L-- X_--J

Z2,
- Attribute A: Integer, Key, NonNull "---AL_'k_l [ _

z

Attribute B' String, Null

: L,R,1
Attribute C' Float, NonNull C -

[float]

For extensions to the relational model, such as NFNF, we add the equivalent of the set or sequenc, e
construct, Therefore, the EOM subsumes the relational and NFNF models.

=

Similarly, the Extended Entity-Relationship model can be described with Composition and Inher-

itance constructors. Composition is applied in two situations. The first situation is Entity-Compo-

sition. It is u_d to model ER Entity, which is identical to the Composition in the relational ntodel.

130

,,,,, ,,, h ,r .... F_, ' .... ' .... ,_l,I , ',.... q ' _, pq__','J,',_,'_'-, ............. ,,'*_,yl%_'"'-v",-_r'_,,,,----l--,'__,,r,l_mR_,_l_t_illlq_la_



9. OB3F_/ZrMODELSUMMARY

The ,second situation is Relationship-Composition. lt is used to model ER Relationship, which has

II) sources that are Entity-Compositions. To model Weak-Entities, simply attach the Weak-Entity-

Composition as a Property source. For ER cardinality specification, we convert them into the cor-

respondiv.g peer dependency and for ER participation specification, source dependency is used.

, The direction of inheritance in EER is "reversed" with respect to the EOM Inheritance constructor,

i.e. supertypes are sources to the Inheritance constructor. The following shows the mapping
. between the two models:

EER Model: Extensible Object Model:

I x I i x

[typeA] i [typeB] ,! t..

1

m and n under functional dependency m and n under involvement cardinality

[ X ] [ y c]

IIS. Al V--x
In newer EER models, relationships can be built from other relationships using a merged entity/

- relationship symbol, but this is handled by a cascade of Compositions in the EOM without addi-

tional symbols. If the ER model chooses functional dependency for ternary and higher-degree rela-

. tionships, then the EOM will have to extend the simple involvement cardinality to the generalized

constraint derived from the truth table for source dependency (see Appendix B). Other ER charac-

teristics that would require EOM exmnsions are: range declaration for cardinality instead of the

simple one or many and total role participation.

131 :-
E



9. OB.IF_,C'_ MODEL SUMMARY

For the IFO model, the mapping from the EOM ksstill straight forward:

IFO Model: ; '

! x _ l x _i × _ x 3

Extoosib,eo_ectMo_e,:_ ? _
[typeY]

IFO Symbol Set:
,any type of

; = _ :: |

IFO Model: I Y I printable type

_y type of_ _ free typet x Lx.....
Extensible Object Model: constructed type

Y Y the Abstract Type ,
(not shown)

All features of the IFO model can be properly mapped by the EOM.

The mapping of the OSAM* model [62] to the EOM is limited to a subset of construcks. Direct

support is available for Aggregate, Generalization and Interaction Associations. The following dia-



9. OBJEL-q'MODELSUMMARY

gram demonstrate the equivalent constructs:

o, .Model: o. at ributtnami.
. (_ _Int_ _)

[ x _....... x

Extensible Object Model: Q_

y 1[typeYl ] [

- X OSAM Symbol Set:

OSAM* Model: _. Domain ClassI, z G
Z Entity Class

_n z _ a_y type ofX_ Either Class
Extensible Object Model: "-=

. _1:

OSAM* also suppork_ the set association, which is equivalent to the Set constructor (not shown).

For generalization, OSAM* provides Set-Exclusive and Set-Equality characterizati{m which are

riot supported in the core EOM. In addition, several OSAM* constructs are not available in the core

EOM: OSAM* Composition, which is an explicit instance-to-type classification, and Cross-prod-

uct, which is a statistical aggregate.

Object-Oriented data models are based on existing OODBMS's. Therefore, in the sense of irnr, le-

133
-

,,



9. OBJEC'TMODELSUMMARY

mentation independence, they are not conceptual modelsl However, the constructs available from

the underlying language, namely C++ libraries [61] and Smalltalk Classes [27], are very useful for

conceptual modelling. A subset of these constructs can be mapped to the EOM constructors,

namely Composition, Set, Sequence, and Inheritance. Other OODBMS constructs that are not sup-

ported in the core EOM are: Bags, Queues, Stacks, and Trees. However, these can be provided by

extensions to the EOM (see Section 9.5.6).

Some standard constraints can be declaratively stated in OODBMS's, e.g. cardinality, but in most

other cases, they are user-defined procedures added to the DBMS. OO philosophy is based on the

encapsulation of both data and operations, therefore, as one defines a class, equivalent to the EOM

Object-Type, one includes the operations which manipulate the instances of that class and also

maintains the integrity of the instance collections. The EOM allows this operational definition in a

schema by abstracting them as an Object-Type whose implementation is "procedural". Because our

constructors are data definitional, there is Ilo support to further define a procedure at the schema

level, i.e. specifying the actual code. But at the query language level, one can fully define the oper-

ational specification of a procedure (see Part III).



9.OBJECTMODEL SUMMARY

9.4. Differences From Other Models

The strengths of the EOM are based on the unique features described in Section 5.4. The following

table summarizes the differences between the EOM and other semantic models. The categories are

Abstraction, Constructors, Constraints, and Graphical Representation. Abstraction covers model

" features such as extensible framework, model simplicity, implementation independence, and

domain invariance. Constructors and Constraints are aspects of semantic richness. Graphical Rep-

" resentation deals with comprehensibility of a schema. Clearly, some models carries additional fea-
tures not listed.

......

Characteristics Extensible Extended ER IFO Object- OSAM*
Object Oriented

.... '" ' 'i ,,, "' , ! ..... '.' ,.,',', ,, . "" . - " _

Abstraction:

' Extensible ...................¢, ¢,Framework

Model i/, ¢" d'
Simplicity

............. ! ......

Implementation
Independence complete mostly mostly limited mostly

.......... . .............

Domain Collections + Collections +
Collections Collections Collections

Invariance Instances Insta nces
lP'li III II IIII I III Ii I iii IIII -- I

Existing Constructors:

Composition ¢" ...... ,/" .... ¢" ,/ 4¢
..

Set ¢¢ ¢" ¢

Sequence ¢" ¢"

Inheritance .... d" .......,/; ....... _ ..... 4' 4"

Union t,/ i/ i/'
ml I I III I I ..... ' II II_lP I I

Existing Constraints"

lD/Property - _/ ....... _ " ¢" ........ ¢" --

- Cardinality ,¢" / v"

Contexts ¢¢ J'
_-- iii 111 i ii ii 11111 " i I...... _ ............

" Graphical Representation:

"1"

Nodes unique unique unique none unique

Arcs unique ambiguous unique none unique

Simplicity I/' d"

135



9. OB.IF_L-_MODELSUMMARY

9.4.1. Extensible Framework

Extensibility provides the ability to extend the model in an organized fashion. In the EOM, we have

grouped certain semantic features into categories and "load" them onto distinct representations.

For example, the constructor carries the "what" information and the context dependency carries the

"where" information. They form two orthogonal categories, each are extensible independent of the

other. This is missing in other data models where constructs of different semantic nature are devel-

oped in ad hoc fashion. Consequently, without a framework for organized extension, these models

are "characteristically closed", i.e. extensions are made in ad hoc fashion. The extensions of the

EOM are based on the two semantic categories.

(1) Constructors

In other models, when a new semantic association is to be added, the typical apprHach is to add a

new object type, e.g. entity and attribute. This creates a consistency problem because one needs to

verify the interaction between the new type and the existing types in the model. Our model resolves

this problem by defining a new constructor, whose instances represent the information captured by

the new association, independent of the previously defined constructors. Once this is achieved,

instances from this new Object-Type behave like ali other instances, free to participate in any other
constructors.

(2) Contexts

In other models, constraints are designated between object types. However, no framework is given

with the constraint types. Therefore, it is difficult to add new constraints in a systematic fashion.

On the other hand, we have classified the constraints into three distinct context groups: target,

scurce, and peer. Technically, only target context is true context designation, while source and peer'

contexts are cHns_.raints.Nevertheless, future constraint extensions can be added along any Hf the

three groups, independent of each other.

OODBMS present a special case for extensibility. Native OODBMS normally do not support the

Union constructor. Therefore, to extend an OODBMS with the Union constructor would be equiv-

alent to constructing a Bag or Queue constructor, i.e. these are really implemented in a class library

and is not a feature Hf the underlying language. In fact, only Composition and Inheritance construc-
a.

tots are provided as native language features, everything else is implemented. This method Hf

extension is just as powerful as our framework.

9.4.2, Model Simplicity

Model simplicity is based on Hrthogonality and uniformity. Clearly, a benefit of orthogonality is

the cxtensibility framework discussed previously. However, the main advantage is still user com-

prehensibility achieved through uniformity. This can be demonstrated by the following ER exam-

ple. The ER model has nonuniform semantics and rules for construct adjacency, e.g. a full ranked

136



9. OBJFXTrMODELSUMMARY

entity (non-weak) can not be attached to another entity without going through a relationship (see J

Section 5.3.3). For example, an Address can be considered as an entity, composed of Number,

Street, and City. On the other hand, it can be considered as a sWing attribute to another entity, e.g.

Person. In the former, it is a complex object, in the latter, a primitive object. In the ER models, the

. entity Address can only be attached to Person entity via a relationship, while the attribute Address

can be attached directly. This forces the schema designer into choosing one form or another:

- Address as Entity: vs. Address as Attribute:

[ Address 1 [Person]

The EOM eliminates this dilemma by allowing the schema designer to consider an Address as an

abstract object, then the decision for choosing which schema to use is based on the semantic factors

in the domain, i.e. whether the relationship between Person and Address is containment (composi-

tion)or peer association (through Lives-At), and not by the non-uniformity of model construction.

Other semantic models disallow specific construct-pairs because they also lack uniformity. This

introduces complexity into the model, because, each special case must be defined separately. O0

data models are uniform, but they occur at the implementation level. Therefore, the implementa-

tion-driven problem of the Address example is still present. For OSAM*, uniformity came at the

cost of' orthogonality. While ali the constructors can be uniformly paired, there was a proliferation

of similar constructors, e.g. aggregation and interaction. Consequently, it became difficult to lind

" the appropriate constructor to use.

9.4.3. Implementation Independence

With explicit semantic mapping between physical implementation and domain concepts (see Sec-

tion 6.1), the EOM maintains itself at the conceptual level. In other data models, some link with

the logical or physical level always remained through the use of printable types or primitives. This

detracts from focusing on the real issue of capturing conceI:,_ual semantics of the application

domain. Furthermore, this forces a user to prematurely commit to an implemented type. The EOM

z

137



9. OBJECT MODEL SUMMARY

does not suffer from either of these side effects.

An additional benefit of implementation independence is evolvability and maintenance. Data mod-

els with links to the underlying system are much more difficult to evolve or maintain as either the

underlying system changes or when the domain semantics changes. OO data models, by the virtue

of being logical models, suffers the most when one needs to migrate a schema from one database

format to another.

A consequence of the semantic mapping is the elimination of the distinction between "attribute"

and "entities". In most models, a distinction is made because it follows the predominant paradigm

of mental modelling, which is one of dominant/dependent pairing. However, we took another

approach because we needed a uniform model, and there wasn't sufficient justification for the dis-

tinction. Shifting the paradigm away from the dominant/dependent conceptualization to one of

information flow, the EOM permits completely uniform usage of constructs. As one can see, the

decisions made in one area, e.g. implementation independence, also have an impact in other areas,

e.g. model simplicity.

9.4.4. Domain Invariance

Domain invariance in the EOM determines which properties of the domain are to be modelled. This

ensures the consistency of the schema constructs and their interpretation. This is not seen in

instance-oriented data models, e.g. OSAM*, where both instances and collections have represen-

_tions on the same schema. In addition, uniform instances and types allow Object Types, as rep-

resentations of instance collections, to be arbitrarily associated with other Object Types without

restriction. This is not observed in other data models that also have "constructor"4ike features, but

lacks explicit domain invariance.

: 9.4.5. Semantic Richness

The number of constructors and constraints de_rmines semantic richness. For the applications in

the HGP, our core model is sufficiently rich. The entries in the table indicate that it is a superset of

most other models. Clearly, other models could also be extended to include features in the EOM,

= but without a framework for extensions, it is less clear of how unifoixn the extensions will be.

9.4.6. Representation Uniqueness

Semantic uniqueness is controlled by the definition of model constructs. Since our model was

based on a perspective of information capture and flow, it is very specific about how a schema

should be constructed. For example, most semantic models, e.g. ER, separate composition from

relationship, but the EOM does not. The reason is, under the information flow perspective, a com-

position is simply an information container box, holding the association information of its sources,

and a relationship is also a container box, holding the association information of its sources. There-

fore, the behaviors of the two constructs are identical and the distinction is not made in the mc)del

138



9. OBJECTMODELSUMMARY

itself, but left to the user's interpretation. Furthermore, with separate constructs for composition

and relationship, other semantic models requires additional distinguishing definitions, which

unnecessarily complicates the model.

These considerations have an impact on the graphical form of the model. Since the EOM is a sim-

" pier model, the symbols used have unique meaning. In other data models where symbols are over-

loaded, there will 'always be ambiguities that must be resolved by context information. However,

- it is often the user who is faced with this task of collecting the sufficient amount of the ctmtext
information.

9.4.7. Feature Summary

There is no single feature that distinguishes the EOM from others, instead, it is the gestalt of ali

these features that makes this model unique and powerful. Currently, it also contains certain weak-

nesses. For example, it lacks a verification for mathematical completeness and lacks a sufficient set

of support tools. But these can be remedied with future research and development.

139



9. OBJECTMODELSUMMARY

9.5. Open Topics

There are several open topics for the EOM.

9.5.1. Classification

Classification is the explicit formation of types from instances. Traditional data models, e.g. hier-

archical, network, and relational, are collection-based (or type-based), i.e. schema objects reflect

collections of instances and specific instances are not denoted. Therefore explicit classification of

instances is not supported in these models. On the other hand, OODBMS and certain semantic data

models, e.g. OSAM* and SDM [28], are instance-based, i.e. explicit instance references are pro-

vided and classification is supported. The EOM Object-Type is based on the domain invariance of

collections and therefore, lacks explicit instance references. In addition, if Classification is sup-

ported in the EOM, we will have to introduce a new symbol for instances and a schema will no

longer have uniform abstraction. Furthermore, if a model provides the ability to cross the instance-

type boundary at one level, then it could also cross multiple levels for full generality. This opens

up the problem of Metatyping.

9.5.2. Metatyping

Metatyping is the formation of types based on a type-description schema, i.e. a metatype, which

represents a collection of instances where each instance is a Type. If the data model provides Clas-

sification, then Metatyping is supported, because the "instance Types" are explicitly denoted and

grouped into bdetatypes by the use Classification. The problem of invariance is now carried to the

Meta-Type level. If the database, by necessity, spans several levels, then the choice of the abstrac-

tion level for its schema may not be freely decidable. For example, a database for taxonomic clas-

sification of biological organisms may fluctuate in both instances, types, and metatypes. In other

_- words, none of the three are invariant within the domain. Therefore, a schema for this database

should be at the highest abstraction (or meta-metatype) level.

Strict metatyping is supported by some OOPL, but not supported in database data models. Conse-

quently, several concepts have been used as substitutes: IS-A hierarchy, subject-term hierarchy, and

parametric typing. These provide various amount of organization for metatype relationships. Sub-

# ject-term is an implicit classification method to form types and type-level characteristics, e.g. the

partitioning of organisms into kingdoms, phyla, etc.. Parametric typing allows structurally similar
li

types to be collectively referenced. But none of these provide the true semantics of metatyping. For

more details on metatypes and inheritance, see [6].

9.5.3. Overloading and Naming

One extension to Object-Type naming is to allow overloading. In the EOM, because Object-Type

names defines the semantic mapping of real world concepts to symbolic values, overloading was

140=li

............ .,



9. OBJE,C_ MODELSUMMARY

disallowed (see Section 7.5.3). However, overloading is a concept strongly defended by OO para-

digms because of two major arguments: first is the limited natural language expressions for unique

objects, and second is the ability to resolve similar names by context information. If a conceptual

model is to provide real world semantics by using natural language con:;tructs, then overloading

. should be added to the EOM. Otathe other hand, if a conceptual model is to bridge real world

semantics and database, implementations, then it would not be necessary to use overloading. The

. EOM can be extended to support name overloading, using the traditional name resolution strategies

[61].

9.5.4. Extended Target Contexts

We have specified three target contexts. However, there may be situations where an unrelated

Object-Type is a source component. For example, in a schema, one can attach Dept.Floor under a

Person as Property:

[ Dept l [ Person 1

[ Name"is T _"_] [ Floor 7] Mp_saogne{-[ ] ry ]Dfloor 7]
(Dept.Floor) ]

But where does the Dept.Floor instance comes from when the user accesses the instance Person.-

Dfloor? Since Dept.Floor is localized to the context of Dept instances, what should be its target

context under Person? When this type of schema is mapped to the instance association diagrams,

source instances to a constructed instance may refer to an instance that is not global nor related to

the constructed Object-Type. In the core EOM, it should be the Dept that is directly attached to the

Person with global target context, then there is no ambiguity when Person.Dept.Floor is accessed.

Semantically, this is the correct schema. On the other hand, Dfloor may be a useful shorthand for

generating schema projections. The nature of this extension has not been worked out and is

- reserved for future research.

9.5.5. Constraint Arcs

" In addition to ID and Property arcs, we used the Ordered-By arc for sequence constructors. This is

a special case of a constraint arc. A future extension would change Ordered-By arc to a generalized

constraint arc, where it can be sourced from any other Object-Type. For example, an Ordered-By

arc that is sourced by an object not directly connected to the Sequence constructor, lt is an open

question whether orthogonality can be maintained, i.e. is there a combination of contexts that pre-

141



9, OBJECTMODELSUMMARY

elude a constraint arc? This is similar to the previous problem of attaching "unrelated" Object-

Types.

9.5.6. Additional Constructors

Now that a framework for building constructors has been erected, we can explore other construc-

tors. Certain constructors are implicitly defined by our core constructors. For example, a Relation-

ship constructor is subsumed by the Composition constructor and the Subset is subsumed by

Inheritance. However, if relationship or subset constructors have clearly distinguishable semantics,

then these can exist as independent, primary constructors.

Certain constructors can be modelled by using the core constructors. For example, a Bag construc-

tor can be built from a Set of a Composition, where one element of the composition is its multiplic-

ity and the other element is the actual ID component to the Bag:

]BagOiEleml '_
_ ImplementationL.._

of a Bag ,.

[ Element I [ SiZe 9 [_Elem'C°un_'i xI size ti

Therefore, a method for constructor extension is by defining partial schema, i.e. a new constructor

is instantiated by placing its source objects in the places defined by the partial schema. Although

some constructors can be defined by parti',d schema, it may be simpler to consider them as primary

constructors. For example, Queues and Stacks can probably be considered as primary than struc-

tures containing a mixture of Sequence and Composition constructors.

There is also a need for domain specific constructors. For example, a statistical cross-product or

subject-term constructor will be useful in population and classification studies. Constructors that

relate spatial values would be useful in CAD/CAM databases. These are reserved for future

research.

9.5.7. Cyclic ID's

In Section 7.8.3, we concluded that Object-Type cycles on ID arcs are ambiguous and undefinable.

However, if we now consider the possibility that the ID of an instance is determined by the path

(graph) of the instance association links, then the cycles are permitted. In this extension, identity

142



9. OBJECTMODELSUMMARY

of an instance is graph based and can be uniquely determined. If so, then ID() has to be redefined

as the instmlce graph that is traced out by descendent components and instance association links

(both associative and IS-A). This possibility remains to be analyzed.

9.g.8. Instance Equivalence Property Relationship

" The Fundamental Relationship is based on ID equality to determine Property equality. We can

change this relationship to instance equivalence instead of ID equality, The resultant relationship

" will permit instances with the same ID value, but with different identities due to different contexts,

to have different Properties. This extension addresses the problem of assigning unique annotations

to sequence and set elements.

143



10.DESIGNOF A QUERYPROCESSOR

PART III, EXTENSIBLE OBJECT QUERY LANGUAGE

Part III of this work will be concerned with a demonstration of the Extensible Object Model. We

will implement a query processor for a language, named the "Extensible Object Query Language"

(EOQL), that features the main properties of the EOM. Chapter 10 dis_'usses the design criteria for

the query language and its processor. Chapter 11 is a user reference manual for the query language.

CHAPTER 10. DESIGN OF A QUERY PROCESSOR
A query language provides access and modification to a database based on the data model. The data

model provides a certain amount of abstraction, which removes the user from the detailed knowl-

edge of the database implementation. The query language should also maintain this abstraction and

information hiding. This goal is identical to any other computer languages. For example, assembly

language replaces address references with labels and effectively hides the need to know about

absolute addresses. Higher languages, such as Pascal and C, hides the details of control flow, space

allocation, and register arithmetic. A query language fbr EOM should hide the implementation

details of the constructors and context dependency.

There are many aspects to a query language design [6]. However, in the context of this work, we

are only interested in providing a core language that demonstrates the main features of the EOM.

Therefore, the design criteria we chose ma), not be the ones to use for another environment, e.g.

comme_cial, a query language has t,,v_ cc_rnpc_nents'data definition and data manipulation.

10.1. Data Detinition Criteria

Ali query languages provide a syntax to specify schemata for databases. Although the EOM is

specified graphically in Part II, a lexical grammar will be given. In particular, the EOQL will sup-

port the: specification of:

(1) Definitions by Implementation and Alias,

(21) Definitions by Con,_tructors,

(3) lD and Property Components, and

(4) Context Dependencies

10.1.1. Model Extensions

Since the EOM is an extensible model, the language should also be extensible. ThereR_re, the

grammar must be organized so thai new constructors and contexts can be added to lhc language

grace fulix'.

10.1.2. Storage Directives

In Part II, the conceptu;|l rn(_del \v',is explored in depth, from which a location abstraction was

144 7



10. DESIGN OF A QUERY PROCESSOR

defined through the use of instance association diagrams. However, there is insufficient informa-

tion to map the location abstraction to real, physical database locations. This mapping is important

for performance optimizations. Therefore, in the EOQL, the language is extended with storage

directives. In real world databases, these directives would include access methods, indices, explicit

, clustering, etc.. However, we will only provide three storage directives to be assigned to construc-

tor components, similar to the assignment of context dependency. These directives are orthogonal

- to the EOM constructs and they are listed as follows:

(1) Direct

The information content of the component instance is stored with the target instance. In pro-

gramming languages, this is equivalent to packing a value in a record, i.e. the field in the
record holds the actual value.

(2) Indirect

The information content of the component instance is stored elsewhere, i.e. independent of

the target instance, In programming languages, this is equivalent to packing a "pointer" in

a record, i.e. the field in the record hold!+a reference to the actual value. In relational data-

bases, this is similar to the use of a foreign key.

(3) Virtual

The information content of the component instance is not stored in the database, lt is cre-

ated from context information by the query processor or by procedures.

The EOQL grammar wiJl include these storage directives for the underlying system. Since these

directives are part of the implementation strategy, they must be separated from the conceptual

schema. Grammatically, this can be done by separate statements or by enclosing storage tokens in

special markers.



10. DESIGN OF A QUERY PROCESSOR

10.2. Data Manipulation Criteria

The data manipulation component of a query language has to handle changes in the state informa-

tion of a database and manage information flow for the user in a local session. Four main criteria

stands out: declarative nature, state information, control flow, and operations.

10.2.1. Declarative Nature

Since the development of SQL for the relational model, other query languages have been compared

to its declarative approach that allows the user to specify "what" a query is and not "how" to do it.

The main aspect to this declarative nature of SQL is the abstraction of the selection process. SQL

provides a single selection statement: "SELECT ... FROM ... WHERE ...", which hides the details

of access methods and selection strategies. The advantage of this approach is that storage imple-

mentations are effectively hidden from the user and the maintenance of applications is simplified

when the underlying storage methods or strategies are changed. The EOQL will also use the declar-

ative approach, by providing an abstraction for the selection process. However, the EOQL

SELEC'T command is not considered as an operator which returns a value (set of tuples), there fore,

it could not be used in a nested selection.

10.2.2. Stale Information

In conjunction with the declarative approach, SQL also removed dependency on state information

inside a query. The virtue of stateless query is the fact that it can be invoked anytime. However,

this removal of state information places two burdens on the user. The first burden is that a user need

to represent a query strategy as a stateless SQL statements. The second is, in some situations,

domain complexity may force the user to reconstruct state information by using temporary tables

and tuples. Consequently, many SQL extensions include variables to hold state information

[30,63]. The EOQL will also provide variables.

10.2.3. Control Flow

Secondary to state information is control flow, i.e. the only useful purpose for state information is

to have an impact on the next operation. Basic SOL does not provide control flow, but many exten-

sions do. The EOQI. will also provide basic control flow capability. Control structures allow the

user to specify "how" and n_t "what" and, therefore, this seems antagonistic to the declarative o

approach. In fact, they are independent features, because the control flow specification occurs at a

level above the access methods, i.e. control flow in lhc EOQL is domain driven, not implementa-

tion driven. In addition, control structures provides a popular model for users to phrase their

domain-specific queries.

10.2.4. Operations

The simplicity of the relational model permit:; ali the operations to be defined on the "relation" type

146



10. DESIGN OF A QUERY PROCESSOR

alone. Consequently, the result of one operation can be used in any other operation, e.g. one can

embed a SELECT command whereever a tuple set (relation) is used. Since. the EOM has different

constructors, operational uniformity of the relational model cannot be enforced, i.e. there are oper-

ations that are meaningful in one constructed type but not in another. In fact, each constructor

4 defines a set of generic operators for any instances derived from that constructor. These construc-

tor-specific operators are well-defined and their implementations can be hidden, but they cannot be

•, used in arbitrary combinations.

A core set of the constructor-specific operators will be provided by the query language. In addition,

the EOM allows each Object-Type to specify operations from the domain semantics, which are out-

side the model. The query processor will provide hooks to access these domain-specific operations.

10.2.5. Strongly "ryped

The EOQL will be strongly typed, i.e. every statement is verified for consistent type usage prior to

execution. Although we will not pursue the development of a query compiler, type checking is one

of the fundamental components to building a compiler, The advantage of type checking for a query

interpreter is the prevention of potentially d_ngerous results.



10, DESIGN OF A QUERY PROCESSOR

10.3. Implementation Criteria

The previous design criteria are for the query language itself, i.e. the features that language should

have. However, it is the query processor that implements the operations defined by the language

and it is the query processor that changes information in the database. Associated with design cri-

teria of the EOQL, there are also design criteria for the Extensible Object Query Processor /_

(EOQP).

10,3.1. Physical Independence

The EOM is a conceptual model and consequently, EOQL should be a conceptual language. There-

fore, EOQP should remain independent of the implementation of the database. In fact, with the

abstract location defined by instance association diagrams, one can build EOQP on top of any set

and tuple-based database engine. For this particular demonstration, we have chosen Sybase DBMS

with binary large object support as the underlying database engine. However, the code for EOQP

should be designed so that one can replace the $ybase DBMS with another relational engine or an

Object-Oriented database engine with minimal code reworking.

10.3.2. Domain Specific Operators

Since the EOM permits domain specific operators, the query processor must be organized so that

users can define their own operations and integrate it into the QE lt is assumed that the user-defined

operators are robust and free of side-effects because it is nearly impossible to verify this require-

ment independently. Therefore, the user is responsible to maintain and correct any errors irl their

operators.

148



I0. DESIGNOFA QUERYPROCESSOR

10.4. Design Limitations

Because this implementation is just a demonstration of the EOM, not all features associated with

a complete query language will be available. The limitations are listed below.

10.4.1. Constructors

Only Composition, Set, and Sequence constructors are implemented because of their direct appli-

cability to the HGP, Inheritance and Union constructors are reserved for future development. In the

EOQL, one can specify Inheritance and Union constructions. However, they can only be used as

Composition constructions, i.e. the semantics of IS-A is not implemented.

10.4.2. Primitive Types

Only a few primitive types are supported: integer, float, and character string. In addition, user spec-

ified enumerated types are supported. Other types, e.g. boolean, date, and time, are reserved for

future development.

10.4.3. Types and Storage Directives

The supported interaction between types and storage directives is listed in the following tables:

Storage Directives
..............

Direct Indirect Virtual

Primitive ,/ ,/'
......... ,,,,, , , .... ,

Component Enumerated 4" ¢e

Type Procedural ,/"
, --.

Constructor (see text) ¢¢ ¢"
,,, ....

ID component to Set and Sequence constructors can be Direct if the ID component is of fixed size

and target dependency is Local. Set or Sequence Object-Types whose the ID component is target

Global and peer One are not supported. These are secondary to the current implementation of Set

and Sequence constructors. In addition, context dependency are not verified for virtual compo-
nents_

149



10. DESIGN OF A QUERY PROCESSOR

10.5. Backend Limitations

The choice ofSybase DBMS with binary object support as the underlying system also creates some

limitations.

10.5.1. Object-Type to Relational Mapping
J

The mapping of constructed Object-Types is straightforward:

(1) Ali non-Virtual components are mapped to a column, using the same name. For the Set and

Sequence constructor, the ID component is mapped to a Sybase Image data type with the

name ".set" and "sequence", respectively. Primitive data types are mapped accordingly.

Components which are constructed are mapped to their object id (integer).

(2) An Object_lD and Context_lD column are added. They will hold the object id and context

id (for Shared context), respectively.

(3) If the constructor is of an IS-A type, the a Valid column is added. This determines which

ID sources are present.

(4) If the constructor is Set or Sequence, a Length and Hash column are added. The Length col-

umn holds the count of elements in the set or sequence instance. The Hash column holds a

hash value for faster lookups.

10.5.2. ObjectiD and Context_lD Generation

Since Sybase DBMS does not provide unique row id or tuple id, we are forced to create and manage

our own ids. A separate ID daemon is built to supply ID's for Object_lD and ContextiD columns.

Object_lD is always unique. Context_lD is an lD for the set that contains the instance, this is used

for Shared context dependency to determine identity. We do not "garbage collect" discarded ID

values in this version. A simple but effective algorithm for managing ContextiD is as follows:

(1) Upon insertion, an instance is given a new object id from the ID daemon

(2) If it is global, its context is set tc_0.

If ii is local, its context is set t(_its parent's object id.

lP it is shared, its context is lc_c)kectup by the ID daemon for the combination of

[ parent's type name, parent's context id ] a,

(3) The combination of [ instance',_ type name, nnstance's context id ] is assigned a unique con-.

text id for future reference.

Since ID's are assigned only when the instances are added to the database, this is; the only time

when new lD values are used up. For lc_¢_kupsand identity determination, only Step (2) is needed.

10..g.3. Binary Large Object (BLOB) Support

Ali the instances that forms a Set or Sequence instance is packed inside a Sybase Image data type.
v.

150



10. DESIGN OF A QUERY PROCESSOR

For components with fixed size storage, a Direct storage is feasible. In this situation, the values of

the elements are packed into consecutive bytes of a block in the image data. When accessed, this

block of bytes is unpacked into an element instance. For elements with variable size storage, e.g.

has components which are character strings, sets, or sequences, only Indirect storage is possible.

,t In this situation, only the object id is stored in the image data. When accessed, the id is retrieved

and another retrieval to the relation holding the elements is made.

- These methods are rudimentary but simple. Clearly, with image data type, one can construct

embedded indices, along with the data, to improve access and hold variable size elements. How-

ever, the current version of EOQP is only concerned with correct operations and not performance.

151



11.QUERYLANGUAGEREFERENCE

CHAPTER 11. QUERY LANGUAGE REFERENCE

The Extensible Object Query Language is separated into four parts: administration, data definition,

instance manipulation, and selection/control flow. We will provide a description of each of these

parts for the Extensible Object Query Language. The full grammar is given in Appendix D. ..

11.1. Notations

We will use the following formats for describing the formal language:

KEYWOiqD - keywords of the EOQL are denoted in upper-case letters.

name - names are denoted in lower-case letters, they are user supplied.

token - a token has additional structure, e.g. see scoped_name.

... - ellipsis is for repetition of the previous construct

- underline encloses optional phrase

Each formal language token can be entered into the query processor in different ways:

RE_,'_rORDS - they can be entered in either upper or lower case letters.

name - any character strings, other than keywords, that start with an alphabetic

character: a-z, A-Z, and '_' (underline). They may include either alphabetic
or numeric characters: 0-9.

The commands are first described with the formal notation. Then examples of usage are shown

using the actual notation.

152



11.QUERYLANGUAGEREFERENCE

11.2. Expressions

A basic feature of the EOQL is the construction of expressions for data modification or control

flow.

11.2.1. Values

Basic values in the EOQL can be of integer, float, or string type'

. value = integer

I float

I string

The vertical bar '1' indicates an alternative using the standard BNF notation. Integer and floating

values are based on the underlying architecture. Typically, they are four bytes wide. Heating point

value conversion is also dependent on the underlying architecture.

Examples:

19- - integer value 12

123.45 - floating point value that corresponds to 123.45

"test:" - string value of "test"

A string can enclose '"' (double quote) by e_aping them with 'V (backslash). For example: "a

\"new\" world"

11.2.2. Variables

A variable or instance is referenced as follows:

scoped_name = name

I func_name (_zd2/.e,_.L_, ,,, )

I scoped_namename

I scoped_namefunc_name (expressio_.n., _ )

The ellipsis "..." denotes zero or more expression's If the function does not expect any argu-

ments, then they are optional.

Examples:

" Person -.Person instance

Person .Age - Age instanceinPerson instance

Dept. Manager. Age -Age instanceinManager instanceinDept instance

add (5,4 ) -Add 5 and4

Person. Age. increment ()

-IncrementPerson. Age

153



11,QUERYLANGUAGEREErERENCE

11.2.3. Expres,_ions

An expression is composed of binary operations on values and variables'

expression = scoped_name

I value

i expression binop expression

I- expression

I( expression )

A binop is an arithmetic operator: +, -, *, and/, which stands for addition, subtraction, multipli-

cation, and division, respectively.

Examples:

3 + 5 -add3and5

Person. Salary * 1.9.. add20% toPerson's Salary instance

2 + length(dnaseq) -add2 tolengthofdnase_I

dnaseq, length ( ) / 2 - divide the length of dnaseq by 2

A boolean expression is used in control flow:

condition = condition OR condition

I condition AND condition

I NOT condition

I( condition )

I expression boolop expression

A boolop is a comparator: <, >, and =, which stands for less than, greater than, and equal to,

respectively.

Examples:

3 > 5 - returns False

length (dnaseq) _, 5 - returns True if length of da-aaseq is greater than 5

(Person.Age < 40) AND (PerBon. Salary= 40000)

- returns True if Person's Age is less than 40 and

Salary is equal to 40000

154



1I. QUERYLANGUAGEREFERFJ'qCE

11.3. Administration

These commands are mainly directed at the backend of the EOQP, i.e. Sybase DBMS. Since this

is implementation specific, certain limitations are visible here.

11.3.1. Start-Up
_t

Sybase start-up requires a password for each user, this is maintained in the EOQP.

11.3.2. Database Creation and Destruction

CREATE DB db_name ;

DESTROY DB db_name ;

If the user has the correct privileges, then he can create and destroy databases.

11.3.3. Default Database

USE DB db_.name ;

This sets the default database to db_name. Subsequent operations goes to the database db_name,
until the next USE DB command.

Examples:

CREATE DB test ; creates a database named "test"

USE DB test ; sets the default database to "test"

DESTROY DB test ; destroys the database named"test"_

11.3.4. Direct Backend Access

BYPASS string ;

This allows direct command submission to the backend. The string enclosed in double quotes is
sent without modification.

-" Examples:

BYPASS "sphelp', ; asks for help from Sybase

BYPASS "select * from test" ;

' sends the SQL query "select * from test" to the backend

. 11.3.5. Table Management

: The EOQP maintains several tables. They can be viewed by:

DISPLAY pool;

= DISPLAY pool name ;

- DISPLAY pool string;

The value for pool is TYPE, FUNC, VAR, or VALUE. The DISPLAY command reports on the=

defined types, functions, variables, and values, respectively. The string is used for regular expres-
=

=

_ 155-



11,QUERYLANGUAGEREFERENCE

sion selection of table entries for output. A special case exists when pool is VALUE and the string

format is: "name_c.._". Thi_ only prints the values from start to end in the value buffer.

Examples:

DISPLAY TYPE ; display ali the type definitions

DISPLAY FUNC com_l ; display the function definition of compl

DISPLAY VAR "^a" ; display ali variables with names that start with 'a'

DISPLAY VALUE "integer :3-5" ;

display currently used integers in buffer 3 to 5.

11.3.6. Scripts

The EOQP can read in a previously stored script:

READ string ;

The string determines the filename of the script. At this point, the EOQP process the commands in

the designated file. It returns after the end of file is reached.

Examples:

READ "define_all" ; read the EOQL script named "define_all"

!1.3.7. Comments

# comments

Comments areany text that follows a '#' character and tlp to the next line, except when they occur

in strings.

Examples:

# count is 0 -comment

count = count + I; # increment count

- the increment command followed by a comment

156



11,QUERYLANGUAGEREFEREqqCE

11.4. Type Definition

11.4.1. Primitive Types

INTEGER, FLOAT, and STRING

, The basic types are given above. They should be considered as keywords.

11.4.2. Implementation

DEFINE name IS IMPL_BY impl_name ;

DEFINE name IS IMPL_BY PROC func_name ( ty0e name., _ ) ;

DEFINE name IS IMPL_BY ENUM • enum_label, . ;

An Object-Type can be implemented by another Object-Type. In this case, the Object-Type name

has the samestructureasthe Object-Typeimpl_name. An Object-Typecan also be implemented
as a function, then accessing an instance of this type is equivalent to calling the defined function.

Finally an Object-Type can be an enumeration. Enumeration labels can be either name or string.

Enumerated types are equivalent to prirnitive types. A special typename for the function is the

string "..." (ellipsis in quotes), this represents an indeterminate number of arguments.

Examples:

DEFINEposition IS IMPL_BY INTEGER ;

Type position is structurally similar to INTEGER

DEFINE length :rS IMPL_BY seq_length ( "... " ) ;

Type length is the function seq_length that takes an indeterminate

argument.

DEFINE base IS IMPL_BY ENUM: A, C, G, T, Pa, Py, N ;

Type base is an enumeration.

11.4.3. Aliasing

DEFINE name IS ALIAS_OF alias_name;

An Object-Type can be an 'alias of another Object-Type, i.e. the instances of this type are actually

from the aliased type.

- Examples:

DEFINE manager IS ALIAS_OF person ;

Type manager is really type person

o 157

r._



11. QUERY LANGUAGE REFERENCE

11.4.4. Construction

DEFINE name IS constructor

I
lD comp_name ; _ _ P.._ [ _ ] ;

,li

pROPERTY como name; IRr.gg__,., _ [ _. ] ;

ob,

ORDERD BY scoped name ;._ _Q_r._.__ [ VIRTUAL ] ;

};
constructor is COMPOSITION, SET, SEQUENCE, INHERITED, or UNION

target is LOCAL., SHARED, or GLOBAL

source is REQUIRED or NONREQ

peer is ONE or MANY

storage is DIRECT, INDIRECT, or VIRTUAL

The "..." after lD and PROPER"I'Y components indicate that more of them can be specified.

PROPERTY components are not required. For the SET and SEQUENCE constructors, only one

lD component is -allowed. However, for the UNION constructor, at least two lD components are

needed, q'ne order of component specification is not important.

Only one ORDERED_BY component can be specified with the SEQUENCE constructor.

Although it is specified with scoped_narne, it should be either lD_name, comp_name, or

ID_name.comp_name, where lD_name is the nameof the ID component and comp name is

a component under the ID component. Since the ORDERED_BY component is a constraint, its

context dependencies are ignored and its storage directive should be VIRTUAL.

Context dependencies default to LOCAL, NONREQ, and MANY, Storage directive defaults to

INDIRECT.

Examples:

DEFINE posbase IS COMPOSITION

{ ID position : REQUIRED, ONE [ VIRTUAL ] ;

ID base : REQUIRED, ONE [ DIRECT ] ;

) ;

DEFINE. dnaseq IS SEQUENCE

{ ID poebase : REQUIRED, ONE [ DIRECT ] ;

ORDERED BY _osbase.position [ VIRTUAL ] ;

PROPRRTY length [ VIRTUAL ] ;

--

_

--- 158



11.QUERYLANGUAGEREFERENCE

PROPERTY complement [ VIRTUAL ] ;

) ;

DEFINE dm_dna IS COMPOSITION

{ ID dnaseq : SHARED, REQUIRED, ONE [ INDIRECT ] ;

" PROPERTY uource : GLOBAL, NONREQ, ONE [ INDIRECT ] ;

PROPERTY mapped : LOCAL, NONREQ, ONE [ DIRECT ] ;

- ) ;

The first example defines a positioned-base. Note that the position component is virtual. "l'herefore,

it is not stored in the database. This is a special case where the sequence operators will fill the posi-

tion value based on the context of the positioned-base instance. The second example defines a sin-

gle stranded DNA sequence, made of positioned-bases. The properties of length and

complement: are procedure types, to be defined elsewhere. The third example defines a double
stranded DNA.

11.4,5. Undefine Types

UNDEFINE type_name ;

This will allow one to undefine an Object-Type. If the type holds existing variables (see Section

11o5.1), then this command will not complete.

11.4.6. Storage for Types

CREATE STORE type_name ;

DESTROY STORE type_name ;

The definition of Object-Types is not sent to the backend (Sybase) until explicit storage creation.

This command will recursively create ai1 component types if they are also constructed. If the back-

end already have an existing instance store (relation) with the same name, this command will not

complete.

- 159



11. QUERY LANGUAGE REFERHqCE

11.5. Instance Manipulation

11.5.1. Variable Creation and Destruction

CREATE VAR var_name IN scoped_name;

DESTROY VAR var_name ;

These commands create and destroy variaNes, which are instances of a given type, but they exist

only in the query processor and not in the permanent store. The scopeO_name is either nested

type_name's, which traverses the type definition, or it can start with a variable name. In the

former case, var_name is simply a variable of the last type_name encountered. In the latter case,

var_name isa variable to a descendent component of the first variable in scoped_name. Variable

destniction is transitive, i.e. any variables dependent on the destroy one will also be destroyed.

Examples'

CREATE VAR x IN d__dna ;

Variable x is an instance dg_d.na in local session

CRFdkTE VAR y IN ds_dna.dnaseq ;

Variable y is an instance of dnaseq

CRFJkTE VAR z IN x.dnaseq ;

Variable z is the instance of dnaseq in ::

DESTROY VAR x ;

Variables x and z (if created by the previous statement) are

destroyed

11.5.2. Storage Effects

INSERT scoped_name ;

UPDATE scoped.name ;

DELETE scoped_name ;

In order to change the state of the database, we use the above commands. The scoped name is

used a.sa reference to the actual instance that will be operated on.

Examples:

INSERT d.ma_lager ;

insert the instance referred by d. manager into it:_collection.

UPDATE p. age ; update the value of age in instance p.

DELETE x.clnaseq ;

delete the inslance reference by x. dnaseq from its collection.

If the instance references by seeped_name is an lD instance ot'a Set or Sequence instance, then

d-
: 160 :

_-

A



11. QUERY LANGUAGE REFERI_CE

the Set or Sequence instance value will be affected.

Example:

CREATE VAR x in dnase_ ;

... # fetch an x instance

CREATE VAR y in x.posbase ;

... # build a value of y

" INSERT y ;

This will cause y to be inserted into the sequence referenced by x m_dthe instance of y will be

inserted to its collection. Therefore, the instance x is also 'affected by this command.

11.5.3. Printing Values

OUTPUT expression,... ;

This statement prints the expressions in order. The format is based on the type of the expression:
..................................

Type Output
,,, ,, ,,,,, ,,, , ,,, , ,,, ,, ,,

raw the string, without quotes
string

....

calculated the calculated value, strings are quoted
value

comma separated component instances:
constructed if primitive _ the actual value

if constructed --->the object id

semicolon-separated elements in braces, "{ }"
set value if direct -_ the actual value(s)

if indirect --_ the object id
,, .....................

semicolon-separated elements in angle brackets,
sequence value "< >", otherwise the sameas set

Examples:

" OUTPUT "the answer to 3 + 4 is " , 3 + 4 ;

pants: the answer to 3 + 4 is 7

OUTPUT x ;

prints:243 , 345 , False

OUTPUT x.dnaseq ;

prinK: < a ; c ; g ; t ; c >

OUTPUT x.dnaseq.dna2str() ;

161

_

,,'..... , . , ,,,11 ,_ ,, ,i, ,, ,_ , ,



11.QUERYLANGUAGE_RI_CE

prints: "acgec"

11.5.4. Value Assignment

scoped_name = expression ;

scoped_name := expression;

(- ,,)To effect changes in variables, we have value copy ("=") and instance assignment .= . In both

situations, if the instance referenced by seoped_namo is a primitive type, only the value is copied

to the destination, and if the instance is a constructed type, then ali the component values are copied

to the destination. The object id and context id values are copied only if it is an assignment.

Examples:

x = y ; copyyvalue tox

x • = y ; assign identity ofy to x and copy y value to x

p. age = 50 ; copy the value 50 into p. age

p. age : = 50 ; copy the value 50 into p. age

162

=

........... , ' _ ' 'l,_lll_ "rrrr



11. QUERY LANGUAGE RF_'ER.ENCE

11.6. Selection and Control Flow

11.6.1. Selection Statement

FOREACH

var_name IN scoped_name,
m,

tit,

YY_ _ condition

PERFORM statement;

This is the select operation tor instance¢o]|¢cdons. The ellipsis, "...", indicates multiple variables

canbe iterated in one statement.The scoped_name is identical to the one used for variable cre-

ation (Secdon 11.5.]). The statement is executed for every combination of instances that satisfy

the WHERE clause. If the WHERE clauseis not specified, then the statement is executed for ai]

instm_ces.

Examples are:

FOREACH p IN person

WHERE ( p.age > 40 )

PERFORM OUTPUT p ;

FOREACH pb IN x.dnaseq

WHERE ( "c" = base2str(pb.base) )

PERFORM count = count + 1 ;

FOREACH m IN dnaseq , n in dnaseq

WHERE ( overlap ( m , n ) > 5 AND NOT ( m = n ) )

PERFORM OUTPUT m , n ;

The first example prints out all Persons whose age is greater than 40. The second example counts

the number of c's (cytosine) in the DNA sequence of x. The third example prints all pairs of distinct

DNA ,sequences whose overlap is greater than 5.

11.6.2. If-Then-Else Statement

IF ( condition ) staternent ; _ _t,&t.e.m_.e__:

The standard If-Then-Else control flow.

11.6.3. While Statement

WHILE( condition ) statement;

The standard While control flow.

11.6.4. Compound Statement

statement = { statement;... }

163



11. QUERY LANGUAGE REFERENCE

This permits multiple statements to be executed as a unit for the selection or the control flow state-
ments.

Examples:

FOREACH p IN person

WHERE ( p.age < 40 )

PERFORM

{

OUTPUT "Person is " " in dept " .• p.name • , p dept.name;

count = 0 ;

FOREACH c 7N p.children

WHERE (c.age > 3 )

PERFORM count = count + I;

OUTPUT "number of children > 3 years is ", count ;

} ;

This prints ali the persons who areyounger than 40 years old, the department they worked in, and

the number of children greater than 3 years old.

11.6.5. Other Flow Control

BREAK;

CONTINUE;

EXIT;

These allow r_direction of control flow. BREAK will terminate the execution of any compound

statement in a selection or control flow statement. This implies the termination of FOREACH and

WHILE statements. CONTINUE will restart the execution of the compound statement. In the

FOREACH statement, the next instance combination satisfying the WHERE clause will be

fetched and in the WHILE statement, the condition is checked to see if another round of execution

is warranted. EXIT will terminate the session.

164



11.QUERYLANGUAGEREFERENCE

11.7. Operators

The query processor will support a basic set of operators for the primitive and constructed types.

Ali of these can be accessed as prefix function calls, e.g. f ( a, b), or if the first argument is a

soaped_name, as infix function calls, e.g.a, f (b).

11,7.1. Primitive Types

Numeric operators for integer and floating point values:

add( value, value ) - add two values

sub( value, value ) - subtract the second value from the first

mult( value, value ) - multiply two values

div( value, value ) - divide the first value by the second

neg( value ) - negate the value

scoped..name can also be used if the referenced instance is implemented by a primitive type. If

needed, these operators will promote integer to float prior to execution.

Comparison operators for integers, floats, and strings:

gt( value, value ) - returns true if the first value is greater than the second

It( value, value ) - returns true if the first value is less than the second

equal( value, value ) - returns true if the first value is equal to the second

Tile result for strings is based on standard lexicographic ordering.

Standard boolean operators:

and( boo(., value, bool.., value )- returns true if both values are true

or( bool_ value, bool_ value )- returns true if either values is true

not( bool._ value ) - returns true if the value is false

They only operate on boolean types derived from a result of a comparison.

Ali these operators have an infix binary operator described in Section 11.2.3.

Examples:

add ( 4 , 3 ) returns7

add ( 4 , 3.5 ) returns 7.5, 4 is promoted to 4.0 prior to addition

div ( 3 , 0 ) retums error

. ge,. ( "abc" , "abd" ) returns false

or (equal(x,y) , It(3,4))

returnstrue

11.7.2. Constructed Types

The following operators applies to all constructed instances:

165



11. QUERY LANGUAGE REFERENCE

equal( scoped_.name, scoped..name) - returns true if instance values are equal

equiv( scoped._name, seeped_name) - returns true if they are the same instance

Examples:

eq'ual ( x , y ) - returns true if x equal y

e_iv ( x , y ) - returns true if x is y "

11.7.3. Set and Sequence Operators

To affect change in a set or sequence instance:

insert ( set_or._seq, seeped_name ) - insert instance into a set or a sequence

update ( set_.or_.seq, scoped..name ) - update instance in a set or a sequence

delete ( set__or..seq, scoped_name ) . delete instance from a set or a sequence

These operations will not flush the scoped_name instance to its collection store, unlike the

INSERT, UPDATE, and DELETE commands. The distinction is very important if scoped_-

name is a transient indirect instance. This characteristic is subject to change in future versions.

Sequence specific operators are'

length ( sequence ) - retun'ts the length of sequence

concat ( sequence, sequence ) - concatenatetwo sequences

nange ( sequence, start_position, end_.position )

- returns subsequence

index ( sequence, position ) - returns element at position

append ( sequence, element) - append element to sequence

overlap ( sequence, sequence ) - find maximal overlap position

The append() will affect the sequence, i.e. it modifies the argument sequence. Ali others returns

" a copy of the value. They can also be applied to character strings, except for index() and append(),

since the type CHAR is not supporu_d.

Set specific operators are'=

union ( set, set ) - returns the union of two sets

- diff ( set, set ) - returns the difference of the first set from the second

intersect ( set, set ) - returns the intersection of two sets "

issubset ( set, set ) - returns true if the second set is a subset of the first

isrnember ( set, element ) - returns true if the element is in the set=

Examples:

insert. ( ch:_.aseq , x ) insert x into dnaseq based on position in x
=

. length ( x ) returns the length of x!

. x. eor'scat ( y ) concatenates x and y, using infix function call

2

166

....... .:...........................................................................

1 I I' I III I1' III '_



Conclusions

Conclusions

Review

.This thesis has three major parts: 1) sequence modelling for Human Genome applications, 2) gen-

eralized conceptual object modelling as a framework to incorporate sequence models, and 3) a

query language for the above models and their implementations.
ii

The purpose of Part I is to provide an understanding of the structure of sequences encountered in

the Human Genome Project (HGP) and operations over them. In addition to traditional data types,

the HGP also produces a lax'geamount of information as sequences. Therefore, a first step in build-

ing genomic databases is to understand the nature of this sequence information. The informatics

requirement and the biology of the HGP are described in Chapter 1.

As described in Chapter 2, there is no consensus on how to model sequences from current data

models. Therefore, we started with the most primitive and abstract sequence model: a set of

ordered pairs, with one component being the position and the other component being the content.

The next step was to characterize the real world types for position, which were characterized in

terms of their metric, granularity, and atomicity properties. Then, by analyzing the real world inter-

actions of these position characteristics, we added semantic operations to the sequence model. This

provided a framework of the basic sequence model. We followed that, at the end of Chapter 2, with

the definition of some abstract sequence operations using only the equality operation provided by

the content type.

In Chapter 3, we verified the expressiveness of the sequence framework by using it to model the

basic types of sequences found in the HGP. In addition, we built new operations specific to the HGP

by using operations derived from domain semantics, such as the complement and match cut oper-

ations. Finally, in Chapter 4, we summarized our sequence model results and concluded with

remarks for future extensions to the framework.

Part II of this work dealt with generalized conceptual data modelling. For the HGP, the primary

reason for developing a new data model was the ability to integrate the sequence framework

defined in Part I. Another reason was the fact that a conceptual model is the easiest form for porting

an existing database to new database technologies. Because of the long life-time of the HGR data-

base technology will invariably evolve over time. Therefore, porting of genomic databases can best

be done at the conceptual level, similar to porting programs written in high-level vs. low-level lan-

guages. External to the needs of the HGP, an objective of this model was to bring forth a new

approach to conceptual modelling. This was embodied in its information ttow perspective and its

extensible nature. In addition, this model was developed with the potential as a conceptual model=

for Object Oriented (OO) DBMS.

=

-- 167

_a

,, '' ,, q,, _, ,,, ,, . , _, _, ii, ii , ,, ,, ,, f, ,_ ,, ,lM



Conclusions

In Chapter 6, we defined the basic tenets of the Extensible Object Model. lt includes the definition

of Object-Typesand Instances. In Chapter 7, Object-Type constructors were defined to provide

semantic richness. These gave the ability to encapsulate multiple distinct information units into a

single unit. Specifically, it provided a framework for defining complex objects that have multiple

components (information units), some of which can be complex as well. In Chapter 8, context

dependencies were defined to manage semantic integrity. These provided the ability to specify con-

straints for instances at the type level. The result was a rich conceptual model that is highly uniform

and orthogonal in the sense of increasingly richer layers of object structures and their semantics

(see further discussion on this point in the section "Common Themes" below). Furthermore, a

graphical representation was given to simplify schema design and improve its comprehensibility.

In addition, the concept of physical locality has been abstracted by the use of instance association

diagrams. This allowed the EOM to be implemented on top of any primitive database engine, with-

out sacrificing its semantic richness and power. Irl Chapter 9, the EOM was compared with other

data models and the previously stated goals in Chapter 5. Finally, various extensions were infor-

mally discussed for future research.

The main focus of Part II has been the data definition component of the EOM. As with ali models,

the EOM is incomplete without a data manipulation language. The third part of this work was to

show that a working query language (EOQL), based on the EOM, can be developed. Therefore, we

designed a query language that contained the major features of the EOM and implemented the

query processor (EOQP) for such as language. Since this was only meant as a demonstration of the

features unique to the EOM, the language did not include many features common to all query lan-

guages, such as transaction management. These design criteria and limitations were discussed in

Chapter 10. A commercial DBMS, Sybase, was chosen for the backend engine to implement the

instances. In Chapter 11, we briefly described the major language constructs and provided example

usage.

Below we discuss t_riefly features of the sequence model, the object model, the query processor,

and common themes between the sequence and object rnodels.

The Sequence Model

The construction of the sequence mociel framework is an initial step in the unificaticm of many dif-

ferently named, but related sequence constructs in separate application domains. This unification

removes the burden of reinventing the sequence model for each domain specific database model.

Since this framework is at the conceptual level, it properly hides the implementation of the

sequence operators. Consequently, the user only has to model domain concepts and not be coerced

into specific constructs by implementation details. For example, research in temporal data model-

ling often deals with optimizing its operations for the relational implementation, t-lc_wever, as

168



Conclusions

newer database technologies evolve, the strategies discovered in the relational implementation

may not be applicable. On the other hand, a physical implementation of the model should not be

oblivious to these optimized strategies. Therefore, in our EOQP implementation for sequences, an

optimized temporal joins, for example, can be used for the operator SEQ_APPLY() if the imple-

" mentation was on top of a relational system.

The Object Model

The EOM was constructed with OO principles in mind. However, borrowing OO concepts does

not mean we have to bind the model to a specific OODBMS. Therefore, the resultant conceptual

model was independent of any specific OODBMS, but still provides the "feel" of an OO model.

Because of the its semantic richness, this model also subsumed many features from the traditional

and semantic data models. In addition, it also extended certain abstractions to a higher conceptual

level., e.g. context dependencies. Consequently, the EOM can be used as a transition model for

evolving databases by first mapping the existing database schema to an EOM schema and then con-

vetting the EOM schema to the next generation database schema.

The Query Processor

Although the query processor was meant as a demonstration of the EOM features, it has many pow-

erful constructs, such as functional overloading and procedural types. In addition, the query pro-

cessor has a code frame that supports future extensions and has isolated the underlying database

engine. This is well suited for replacing the underlying engine, which will provide the opportunity

to test and compare new back-end technology, e.g. OODBMS, without reconstructing the front-end

programs. The EOQL and EOQP still lack some of the common features of query languages, but

these can be borrowed from available technologies.

Common Themes

Three common themes were present in Part I and Part II. The first theme is the separation of seman-

tics from symbolics. In Part I, this was used to separate position values from its real world values.

In Part II, this was used to separate model constructs from real world objects. Both models employ

the use of semantic mapping functions that are defined by the application domain and not by the=

- model. This allows each model to work completely in the symbolic domain and yet retain its real
world characteristics.

" The second theme is the framework for extensions. It is not realistic to think that one can build the

_ end-ali model for ali purposes and domains. Therefore,, it is better to construct an extensible frame-

work so O_atfuture additions can be made without redoing all the previous work. Both the sequence

_ model framework and the object model framework were designed to be extensible.

The third theme is the orthogonal layering of concepts. In Part I, three specific layers of sequence

169



Conclusions

models were built: order, simple and semantic. In Part II and Part III, three layers of object charac-

terization were defined: constructor, context, ,andstorage. Each outer layer is an elaboration of the

inner layer with more semantic information. Each inner layer is an abstraction of the outer layer.

The type of information abstracted at each level is independent of the other layers. This results in

modelling by successive refinement in both conceptual abstractions and conceptual objects.

While the specific models will find uses in their respective domains, the three themes for building

the models are much more crucial to the understanding of data model building. If applied appro-

priately, they serve to create models that can gracefully evolve with both the application domain

and the underlying database technology. In addition, they create models that are simple to under-

stand and easy to use.

170



Bibliography

Bibliography

Abbreviations Used:

DOOD Deductive and Object Oriented Databases

" OOPSLA Object-Oriented Programming System',, Languages, and Applications

SIGACT ACM Special Interest Group on Automata and Computability Theory

" SIGART ACM Special Interest Group on Artificial Intelligence

SIGMOD ACM Special Interest Group on Management of Data

TODS ACM Transaction on Database Systems

TOIS ACM Transaction on Information Systems

VLDB Very Large Data Bases

ECOOPS European Conference on Object Oriented Programming Systems

I. Abiteboul, S. and Bidoit, N., "Non-First Normal Form Relations to Represent Hierarchically

Organized Data". Proceedings of SIGACT-SIQ.M_.MO__DSym.posium on Principles of Database.

Systems, p. 191-200, 1984.

2. Abiteboul, S. and Hull, R., "IFO: A Formal Semantic Database Model". TO_Q.D_D_,12(4)' 525-

565, December 1987.

3. Albano, A., Ghelli, G., and Orsini, R., "A Relationship Mechanism of a Strongly 'l'yped

Object-Oriented Database Programming Language". Proceedings of VLDB 1991 Confer-

, enc_....__e,p. 565-575, September 1991.

4. Alberts, B., Bray, D., Lewis, J., Raft, M, Roberts, K, and Watson, J.D. _u._l_la_ oj2.

the Cell, 2hd Edition. Graland Publishing: New York, New York: 1989.

5. Agrawal, R. and Gehani, N.H., "ODE (Object Database and Environment): The Language

and the Data Model". Proceedings of SIGMOD 1989 Conference, p. 36-45, June 1989.

6. Bancilhon, F. and Buneman P. Eds. A.0vances in Database Programming Lar_uages. ACM

" Press/Addison-Wesley: Reading, Massachusetts. 1990.

7. Barker, W.C., George, D.G., and Hunt, L.T., "Protein Sequence Database". Methods in E_-

" r_olo_.lg.g_183:31-_9, 1990.

8. Batory, D.S., I,eung, T.Y., and Wise T.E., "Implementation Concepts for an Extensible Data

= Model and Data Language". T__O,D__,13(3): 231-262, September 1988.

_ 9. Beech, D. "A Foundation for Evolution from Relational to Object Databases_". Advances in

Database Technology - EDBT 198.8, Lecture Notes in Computer Science, #303, p. 251-27().

171



Bibliography

Springer-Verlag: BerJ,in, 1988.

10. BeeN, Catriel, "Formal Models for Object Oriented Databa_s". Pro,¢eedin.gs of DOOD 1989

f_..9..O.f.g.N._,p. 405-430, December 1989, Elsevier: North Holland. 199().

11. Bilofsky, H.S., Burks, C, Fickett, J.W., Goad, W.B., Lewitter, El., Rindone, W.R, Swindell,

C.D., and Tung, C.S., "The GenBank Genetic Sequence Data Bank". Nucleic Acids

tLesearcla, 14(1): 1-4, 1986.

12. Bouzeghoub, M. and Metais, E., "Semantic Modeling of Object Oriented Databases". Pr....p.o-

eeedings of VLDB 1991 Conference, p. 3-14, 1991.

13. Brunn, C., personal communications. The Genome Data Base, Welch Library, John Hopkins

University, Baltimore, Maryland.

14. Burks, C., et. alo,"Genbank: Current Status and Future Directions". Methods in Enzym__..2.ko_g_,

183: 3-22, 1990.

15. Carey, M.J., et. al., "The Architecture of the EXODUS Extensible DBMS". Prpceedings 9f

Qbject-Oriented Database Workshop, p.52-65, 1986.

16. Carey, M.J._ et. al., "The EXODUS Extensible DBMS Project: An Overview"...g_adings in...

.b.Q[2j.c._.Qr.ientedD ata.b,a..stSystems. Eds. Zdonik, S.B.and Maier, D., p.474-499, 1989.

17. Cattell, R.G.G., D.hN._tData Managt.tn._t. Addison-Wesley: Reading, Massachusetts. 1991.

18. Chen, P.P.S., "The Entity-Relationship Model - Toward a Unified View of Data". TOD___._S,

1(1)' 9-36, january, 19"76.

19. Clemons, Eric K.. "Data Models and the ANSI/SPARC Architecture". Pcinciples.of Dat;t_

]2_'_21..I2.!.d)gical_Qrgani_. Ed. Yao, S.B. Prentice-Hall: Englewood Clifl_, New

Jersey. 1985.

2(1. Committee for Advanced DBMS Function,"Third-Geaeration Database System Man_lt_sto

SIGMOD Rec0rd, 19(23)"31..44, September 1990.

21. Courteau, Jacqueline, "Genome Databases". _, 254:2I)1-2()7, 1991.

22. Date, C.J. An Inlroduction to Database Systems. 5th Edition. Addison-Wesley: Reading,
Massachusetts. 1990.

23. Enderton, H., _Mathematicat Introducti_. Academic Press: Orlando, Florida.

1972.

24. Fickett, J.W. and Burks C., "Development of a Database for Nucleotide Sequences . Mathe-

!'nati¢i_.lMethods of DNA_q_, p. 1-34. CRC Press: BocaRaton, Florida. 1989.

25. Frenkel, Karen A., "Tqae Human Genome Project and Informatics". _h'I, 34(11): 41-51,
1991.

--7-____ 172

m

.... ..... ', ,,' ,q',....... ................. _ "_1,_ _ .......... "_'_' r_._ _*-_-._,-*_: .........._ ................................................. i.- _;____ _rl _..... mI ..... ii, . lr • ii _1 " I"Iiq,,,, ,,_lpr_l



Bibliogr_nhy

26. Gogolla, M. and Hohenstein, U., "Towards a Semantic View of an Extended Entity-Relation-

ship Model". I.QDS, 16(3): 369-416, Seotember, 1991.

27. Goldberg, A. and Robinson D. Small_Lk.x80: The Language and !ts Implementation. Addi-

son-Wesley: Reading, Massachusetts. 1983.
l/

28. Hammer, H. and McLeod D., "Database Description with SDM: A Semantic Database

Model". If).]2_, 6(3)' 351-386, September 1981.
t

29. Hull, R. and King R., "Semantic Database Modeling: Survey, Applications, and Research

Issues". AGM Computing Survey. 19(3): 201-260, September 1987.

30. Informix-OnLine Programmer's Manual. Version 4.0. Informix: Menlo Park, California.

March, 1990.

31. I.._n_qOl., Reference Manual. Release 6.3. Ingres: Alameda, California. Janumy, 1990.

32. Jackson, M. A. Principles of Program DesigI1. Academic Press: Orlando, Florida. 1975.

33. Joseph, J., Thatte, S., Thompson, C., and Wells, D., "Report on the Object-Oriented Database

Workshop". SIGMOD_,.C.g2_, 18(3): 78-101, September 1989.

34. K_n, R and Cameron, G., "EMBL Data Library". Methods in .Enzy_, 183:23-31,
199O.

35. Kent, William, "Limitations of Record-Based Information Models". "I'OD_._.._S,4(1): 107-131,
March 1979•

36. Khoshafian, S.N. and Copeland, G.P,, "Object Identity". l?Lg..9.g,e,.O._gsof OOPSLA .1.,9_o__u!-

f.Czf,B_, p. 406-416, 1986.

37. Kilov, Haim, "Reviews of Object-Oriented Pape,'s". SIGMOD Record.s, 18(4): 50-55, 1989.

t, R38. Kim, Won, esearcla Directions in Object-Oriented Database Systems". P_rocc=c_-_"_l'!nt_s......of

_.I.G_'-S!GMOD-_;.I.(2ART 1990 Cotaference, p. 1-15, 1990.

39. Lander, E.S., Langridge, R., Saccocio, D.M., "Mapping and Interpreting Biological Informa-

tion". _._CM, 34(11): 33-39, 1991 or IEEE Computer, 24( 11)'6-13, 1991.

40. Lawrence, C.B., "Data Structures for DNA Sequcnce Manipulation". N__._I.fj_A..g.j.d_L

- Research, 14(1): 205-216, 1986.

41 Lecluse, C., Richard P., Velez, F., "1'39 an Object-Oriented Data Model oProceedings o1____

" S!GMOD 1988 Conference, p. 424-433, 1988.

42. Liskov, B. and Guttag, J., Abstraction and__.fi.qati.0n in Program Develop!a3¢n.t.MIT

Press: Cambridge, Massachusetts. 1986.

• , ' ' _ ¢'_'E "_ '43 Lohm',m, G.M., Lindsay, B., Pirahesh, H. and Schlefer, K.B., "xtensaons to Starburst:

Objects, Types, Functions, and Rules".. _, 34(1()): !i)4-1()9, Octobei 1991.

r,

_- 173 "



Bibliography

44. Loomis, M.E.S., Shah, A.V., Rumbaugh, J.E., "An Object Modeling Technique for Concep-

tual Design". proCeedings of 1987 ECOOPS, p. 192-202, 1987.

45. Maier, D. and Zdonik S., "Fundamentals of Object Oriented Databases". Rea.dings in Object

.QriCnted Da.labase Systems. Morgan Kaufman: San Mateo, California. 1990.
li

46. McGee, William C., "On User Criteria for Data Model Evalutaion". T.D._D_.S,1(4) . 70-._87,

1976.

47. National Research Council, _Moppingand Sequencing the Human Genome. National Acad-

emy Press" Washington, D.C., 1988.

48. Nomenclature Committee of the International Union of Biochemisty, "Nomenclature for

incompletely specified bases in nucleic acid sequences". Journal of Bi ologic_l Chemistry,

261(1)" 13-17, January 5, 1986.

49. Osborn, S.L. and Heaven, "I.E., "The Design of a Relational Database System with Abstract

Data Types as Domains". TOD._..___S,11(3): 357-373, September, 1986.

50. Pearson, P. L., Maidak, B., Chipperfield, M., and Robbins, R., "The Hurnan Genome Initia-.

tive - Do Databa,;es Reflect Current Progress?", _, 254:214-215, 1991.

51. Peckham, J. _nd Maryanski, E, "Semantic Data Models". ACM Comp_t!ting Surveys, 2(i)(3)'

153-189, September 1988.

52. Pistor, P. and Anderson F., "Designing a Generalized NF2 Model with an SQL-type Lan-

guage Interface". __f__VLDB 19___Cctn_re_nc_e,p. 278-285, 1986.

53. Pistor, R and Traunmeuller, R., "A Database Language for Sets, Lists, and Tables". Informa-

tion SY&'L.em.._s,11(4): 323-336, 1986.

54. Roberts, Fred..Discrete_'Iathemati_ca! Models. Prentice Hall' Englewood Cliffs, N.J.. 1976.

55. Roth, M A. and Korth, H.F._ "The Design of-,lNF Relational Databases into Nested Normal

Form". Pr0ctLedi_M. OD 1987 Conferen.ce, p. 143-159, 1987.

56. Segev, A. and Shoshani, A., "Logical Modeling of Temporal Data". Proceeclings of S1GMOD

1987 Cortf_rence, p. 454-466, 1987.

57. Soo, Michael D., "Bibliography on Temporal Database". SIGMOD Record, 2()(1): 14-23,
1991.

58. Sowa, J., _onccplua!_Struc_Lu_)_ation Process in_&in_._Mindand M___. Addison-

Wesley: Reading, Massachusetts. 1984.

59. Stevens, W.P., Myers, G.J. and Constantine L.t,, "Structured D,.slgn . IBM System,; Jour-

na..._2I,13(2)" 115-I39, I974.

60. Stonebr_er, M., Stettner, H., Lynn, N.0 Kalash, J., Guttman, A., "Document Processing in a

174 --



Bibliography

Relational Database Systt rn". _Q,I_, 1(2), 1983.

61. Stroustrup, B. _ _.+ Programming L_nguage. Addison-Wesley: Reading, Massachusetts.

1986.

62. Su, S.Y.W., Krishnamurthy, V., Lain, H."An Object Oriented Semantic Association Model
Ii

(OSAM*)". Artificial Intel iRgence: Manufacturing Theory_ and Practice, Eds. Kumara, S.T.,

Soyster, A.L., and Kashyap, R.L.. Chapter 17. IIE/IEM Press: Norcross, Georgia. 1989.

63. Svbase Transact-SOL Users Gui_. Release 4.0. Sybase: Emeryville, California. May, 1989.

64. Teorey, T.J. Database Modeling _nd Design: The Entity_-Relationship Approa_. Morgan

Kaufinan: San Mateo, California. 1990.

65. Teorey, T.J., Yang, D.Q., Fry, J.E, "A Logical Design Methodology for Relational Databases

Using the Extended Entity-Relationship Moder'. A_CMC_omputing Surveys, 18(2): 197-222,
June 1986.

66. Tsichritzis, D.C. and Lochovsky, F.H., Data Models. Prentice Hall: Englewood Cliffs, New

Jersey. 1982.

67. U.S. Congress, Office of Technology As_ssment, Mapping Ou.r Genes--The Genom_e

_w Big, H__owEas3. OTA-BA-373. U.S. Government Printing Office: Washington,

D.C., April 1988.

68. U.S. Department of Health and Human Services, "Understanding Our Genetic Inheritance:

The First Five years" _..e,._.S. Human Genome Proie_. N.I.H. Publication No. 90-1:_90.

April, 1990.

69. Vossen, Gottfried, "Bibliography on Object-Oriented Database Managements'"._SIGMOD'.._.._"

Record, 20(1): 24-46, March 1991.

70. Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., Weiner, A.M.. Molecular Biology of

the Gen_, 4rh Edition. Benjamin Cummings' Menlo Park, California. 1987.



Glossary

Glossary

Biology

This glossary is based on [68].
II

A, C, G, T - DNA nucleotides adenosine, cytidine, guanosine, and thymidine, respectively. Also

stands for the bases adenine, cytosine, guanine, and thymine.

A, C, G, U - RNA nucleotides, same as DNA nucleotides except thymidine has been replaced

with uracil. In addition, the deoxyribose sugar molecule in each nucleotide is replaced by

a ribose.

amino acids - A class of small molecules which can be chained together to form proteins.

anneal - The process by which two complementary single stranded nucleotide molecules (DNA or

RNA) are hydrogen bonded into one double stranded molecule.

autosomal chromosome - A chromosome that has been identified with a number between 1 and 22.

There are paired in normal human cells.

base- A molecule whose nonionic form is basic (hydrogen ion receptor), as in acids and bases. In

molecular biology, they refer to a class of 5 molecules.

base pair - Two nucleotides ( A and T or G and C ) held together by weak (hydrogen) bonds. Two

strands of DNA are held together in the shape of a double helix by the bonds between base

pairs.

centimorgan - A unit of measure of recombination frequency. One centimorgan is equal to a 1-per-

cent chance that a genetic locus will be separated from another marker due to recombina-

tion in a single generation.

chromosome - A structure found in the cell nucleus and containing the genes. Chromost rees are

composed of DNA and prowins. They can be seen in the light microscop during certain

stages of cell division.

complement - the pairing of nucleotides, A with T (or U) and C with G.

cytological mapping -Mapping of genes using DNA probes that bind to the chromosome at the site

of the gene and are visible in a light microscope.

DNA (deoxyribonucleic acid) - The molecule that encodes genetic information. DNA is normally

a double-stranded molecule held together by weak (hydrogen) bonds between pairs of

nucleotides on opposim strands.

DNA sequence - The orde_ of base pairs, whether in a stretch of a DNA, a gene, a chromosome, or

an entire genome.



Glossary

double helix - The shape in which two linear strands of DNA are hydrogen bonded together.

electrophoresis - A method of separating large molecules from a mixture by differentiating mobil-

ity in a medium under an electrically charged field.

exon - The piece of primary transcript RNA that is kept for mRNA.
'lh

gel - A medium used for electrophoresis, lt is commonly made of either agarose (complex s_,2ar)

,"i or polyacrylamide (organic polymer).

/ gene - The fundamental physical and functional unit of heredity. A gene an ordered sequence of

nucleotides located in a particular position on a particular chromosome.

gene mapping - Determining the relative locatic.ns of different genes on chromosomes.

genome - Ali the genetic material in the chromosomes of a particular organism. Its size is generally

given as the total number of base pairs.

Human Genome Initiative - An initiative whose goal is to map and sequence the human genome.

' Human Genome Project - The implementation of the concepts proposed as the Human Genome Ini-
tiative.

Human Genome Program - The individual programs, such as those at the DOE and the NIH, that

make up tile Human Genome Project.

intron - The piece of primary transcript RNA that is removed to fon-n the mRNA.

locus., The position of a marker on a chromosome or piece of DNA.

marker - An identifiable physical location on a chromosome, e.g. restriction enzyme cutting site,

gene, RFLP marker, whose inheritance can be monitored.

: mRNA (messenger RNA) - A class of RaNAwhose role is to carry the genetic code from the chro-

mosome to the ribosome, the site of protein synthesis.

nucleotide - A unit of DNA or RNA consisting of a nitrogenous base molecule, a phosphate tool..

ecule, and a sugar molecule. DNA nucleotides is usually represented as A, C, G, and T and

RNA nucleotides is usually represented as A, C, G, U.

physical map - A map of the locations of identifiable landmarks (from markers) on DNA. Distance

. • is measured in base pairs. The lowest resolution is the banding pattern on the chromosome,

- the highest resolution would be the complete nucleotide sequence.

" primary transcript RNA - An exact RNA copy of the DN/ in the coding region of a gene.

=_ protein - A molecule thal is a sequence of amino acids. They serve as messenger,,;, metabolic pro-

cessors, and structural support for cellular activity.

purine - A type of base molecule, either A or G.

pyrimidine - A type of base molecule, either T, U, or C.
.7-

177



Glossary

recombination - The process by which portions of DNA are exchanged or deleted. Recombination

occurs naturally between or within chromosomes, particularly during the formation of

sperm and egg cells.

restriction enzyme (RE) - An enzyme that recognizes a specific base sequence (usually four to 6

base pairs in length) in a double stranded DNA molecule and cuts both strands of the DNA

molecule at every place where this sequence appears.

restriction enzyme cutting (recognition) site - A specific nucleotide sequence of DNA at which a

RE cuts the DNA. Some are frequent, e.g. every several hundred base pairs, some are infre-

quent, e.g. every 10,000 base pairs.

RFLP (restriction fragment length polymorphism) - The presence of two or more variants in the

size of DNA fragments from a specific region of DNa that has been exposed to a particular

RE. These fragments differ in length because of an inherited variation in a RE recognition
site.

sex chromosome- Either X or Y chromosome. A normal human male has one X and one Y chro-

mosome and a female has XX.

transcription - The process by which a RNA copy is made from the DNA. for the expression of the

gene.

translation - The process by which an amino acid sequence (protein) is synthesized by reading an

mRNA sequence.

Data Modelling

abstraction - Th,_ process by which information concerning an object is converted into a symbol in

a language or model.

attribute -A characteristic, usually of a data model entity or an object.

cardinality - The number of instances in a set or collection.

conceptual data model - a data model that primarily focuses on the concepts of the application
domain and is not involved with the details of databases.

. data model - A descriptive language that is used to express concepts from whatever domain it is "

modelling. Like a language, its richness determines its expressiveness.

,/Il database - a depository of organized information.

Database Ma, Jagement System (DBMS) - the collection of computers and programs that rnanages

a database via the storage, retrieval, and updates of information.

entity - A common abstraction used in data modelling to represent objects (or collection of objects)
in the real world.

178



Glossary

Entity-Relationship Model - A simple conceptual data model that is based on the abstractions of

Entities, Attributes, and Relationships between Entities.

First Normal Form - A relational characteristic where each field in the tuple holds only one value.

hierarchical mndel - A logical database model whose objects are organized into single parents and

its children, i.e. tree-like.

informatics - The study of the application of computer and statistical techniques to the rr,anagement
of information.

logical data model - A data model for databases that does not contain any implementaticrl specific
characteristics.

methodology - A set of rules and methods for achieving a stated goal.

network model - A logical database model whose objects are organized into multi-parents and their'

children, i.e. direct acyclic graphs.

NonFirst Normal Form - A data model that is an extension of the relational model where the First

Normal Form assumption is not held, i.e. a field may contain several values.

Normal FotTn - A characteristic of a relation m the relational model which determines the amount

of data cohesion. There are several types of normal forms.

Object Oriented - Any process or methodology that describes the static and dynamic characteristics

of a concept into a single unit of abstraction.

physical data model - An implementation-specific data model for databases, i.e. the actual DBMS

specification.

query language- A language used to access and update database information.

query processor - A program that processes the commands of a query language and effect the

changes in the database.

relational model - A logical database model whose objects are organized in sets and tuples.

schema - A description of the data collections and their characteristics in a database. Usually

expressed using a data model language.

' semantics - The meaning of something, as in the meaning of a value.z

semantic data model - A data model that is rich in semantics, i.e. real world concepts.

stepwise continuous - a function (sequence) whose range (content) value is held constant until the

next event. For example, salary history.

_- traditional data model - A hierarchical, network, or relational data model.

_. 179

--3



A.ContextInteractions

APPENDIX A. Context Interactions

In this Appendix, we will briefly describe the interactions of context dependencies and their corre-

sponding instance association diagrams. We will first look at target context dependency alone, then

add source dependency, and finally add peer dependency.

A.1. Target Dependency
It,

For the purpose of enumerathag the possible combinations, we will assume that the Target Objee "-

type defines a strict set of instances. The three contexts have the following instance association

examples.

A.I.1. Global.context

Set of Target 1
instances Set of Target2

instances

x4 instances

Comments:

(1) Since X is global-context, its instances are independent of target Object-Types. Thus x4 is

not associated with any target instances and x 1 can be associated with both tl 1 and t2 I.

(2) No distinction is made on the arc, they could be lD or Property. No distinction is made on

the constructor, it could be Composition, Set, or Sequence. Thus t22 can have both x2 and

x3 be associated with it.

180

_" rle " i, 1,,r, ,,,,, _, ,, ,b ', plt r_ '_'lI '_ ,,,_ , i,,, ,r1,,ir_lll.... lllll ...... , 'hl' llr ii .... l, iI .,,,llr II¢[]". ,_[_51=llll'"Irnql¢l'l'PT ' lll,lrllq,



/

A. Context Interactions

A.1.2. Shared-context

Set of Targetl Set of Target2

insmnc__'-__ N _---__nstances

0 0

, rc ;

Sets of X_--__ ........... .._,y'r",,_.__ ,i/ ) 'L.Bag o
instances ln_,tances

Comments"

(1) Since X is shared-context, each set of Targets is associated with its own set of X instances.

Instance x7 is an "orphan" because it is not associated with a Target 1 instance. This can be

flagged as a violation or be "forgiven", depending on the database designer. The link

between t21 and ×3 is a "rogue", it is a violation.

(2) Instance x 1 under Targetl can be value-equal to instance x4 under Target2. However,

= shared-context will ensure that they are different instances. Within each set, the values must

be distinct, i.e. values of x 1, x2, x3, and x7 must be distinct, same for x4, x5, and x 6.

A.1.3. Local.context

Set of Targetl Set of Target2

instanc_ _//------"_nsumces
t21 t22 '_ "

4

lip

- Instances

181

........... - .... -..... ,, rt............... .............. tt lili ii ........ [ -- Illil ..... ............... II....



A.ContextInteractions

Comments'

(1) Since X is local-context, each Target instance define a set of X instances. Instance x4 is an

orphan. The link between t12 and x2 is a rogue and a violation. The set enclosing x8 is an

orphan set and a violation,

(2) Instance values within each set have to be unique, but can overlap with instances from other

sets. For example, x 1 and x3 can be value-equal but remain non-identical.

A.2. Target and Source Dependency

Now there are two possible context dependencies. The left side will be of Required source depen-b

dency and the right side will be of Non-required (default).
r

A.2.1. Global-context

Set of Target 1
instances Set of Target2

instances

-// .Se! of X
instances

Comments:

(1) With respect to Targetl, each instance of Targetl must have an association arc from a

source X instance. The instance tl 2, with a "dangling reference", cannot exist, because it is

a violation of source dependency, while t22 can exist and is valid.

182



A ConmxtInteractions

A.2.2. Shared-context

Set of Targetl _ Set of Target2

instances__-_"_ _._---_._nstances

Q

,/ instances

Comments:

(1) Between X and Target1, each instance of Target 1 must receive an arc from a X instance.

Therefore, tl 2 is a violation. Instance x2 is an orphan and its disposition is dependent on

target dependency.

(2) The link between x3 and t21 is a rogue, and is a violation of target dependency, but t21 can

have valid existence because it is non-dependent on X.

A.2.3. Local-context

Set of Targetl Set of Target2

instances_"_ _instances

..... .

............ _ _._"l_-.Bag of X
instances

Comments'

(1) One of the links, between x3 and t l 2 or between x4 and t l 3, is a rogue. Removing one will

create a violation of the source dependency on the other Targetl instance.

183



A,ContextInteractions

The link between x6 and t22 is a rogue because it violates target dependency. However, t2 2 is a valid

instance in Target2, because it is not dependent on any X instance.

A.3. Target, Source, and Peer Dependency

Now we have ali three context dependencies. There are 3 × 2 × 2, or 12, cases. We are going to
,0

block them into 6 diagrams, within each diagram, the left side has involvement cardinality of "1"

and the right side has "M" (default). As the following diagrams demonstrate, the actual number of

semantic distinctions between target, source, and peer interaction is only 3 + 2 + 2, or 7, because

these dependency rules are independent of each other and they can be interpreted separately.

A.3.1. Global/Non-Required context

Set of Target 1
instances Set of Target2

instances

rog

Set of X
instances

Comments:

(1) With respect to Target 1, each instance of X can only originate one association arc. If we

accept the link between x 1 and tl 1, then the link between x 1 and tl 3 is a rogue and a viola-

tion. Because of non-dependency, tl 3 is still valid after the removal oi"the link. The link

between x3 and tl 2 is valid, depending on the type of constructor.

(2) Each instance of X can originate multiple arcs to instances in Target2. The cardinality only

applies toward the local constructor. Thus between Targetl and X, the source cardinality is ,

1, while between Target2 and X, it is M.

184



A. ContextInteractions

A.3.2. Global/Required context

Set of Targetl
instances Set of Target2

instances

l

rogue _

Fx'G
instances

Comments:

(1) One of the links emanating from x 1 is a rogue. Therefore, a con'ection by removing one of

them will cause the other target instance to violate source dependency. Instance t22 is a

direct violation of source dependency.

: A.3.3. Shared/Non.Required context

Set of Target 1 Set of Target2
instances instances

xi__ _J ..../.?tie,,, r_)

x 1 x2 x 3 x4 x5

: ,, instances

" Comments:

(1) Between X and Target l, each instance of X should only originate orie arc, thus the link

: between x2 and t13 is a rogue and a violation of peer dependency. The link between x3 andI

° t21 is a rogue, but it is a violation of taz'get dependency.

= (2) Between X and Target2, the cardinality is M and because of shared-context, this set of X

1

185



A.ContextInteractions

instances are isolated from Targetl's set of X instances. Both tl 3 and t21 are valid because

of non-required source dependency.

A.3.4. Shared/Required context

Set of Target 1 Set of Target2 ,
_. j....---......, instancesinstances

t22Target I_ " Target2 '

I I / 7*_ 1........I I

:J
,,. instances

Comments:

(1) One of the links emanating from x2 is a rogue and removing it will cau,m the other target

instance to violate source dependency. The link between x3 and t21 is a rogue, but it is a

violation of target dependency. Removing this link will also cause t21 to violate source

dependency.

A.3.5. Local/Non-Required Context

Set of Tar et 1 qo,. t-_f T.qroot'9• , , get I ......... e.c.-

msmnceslf t- _ _'-'---,,_ instances
/<_l <22 ,,..\la, ,2, <2,", ,------

[','==_<1]t, i #"', a')(_ L.i;' ) I'F=,,_<2

k,. - t'*""Ba_<>.rx.
instances

C,:>mmenU_:

(].) Since X is lo,cal-context, there is only one. target for each X instance. The link between x2

186



A,ContextInteractions

and tl 2 is a rogue ,anda violation of target dependency.

(2) For the case where c_a'dinality is M, still only one link can originate from each X instance

because of the local-c_ontext. A redundant link, e.g. one of the two links between x8 and t23,

is invalid because ins;rance association diagrams dc ,',or support multiplicity. However, if a

' Bag constructor is defined, this might become possible, indicating the multiplicity of occur-

rence of an instance iinits target. If so, this would generalize to ali contexts and dependen-
' ties,

(3) Despite their dangling references, t13 and t24 are valid because of source non-dependency.

A.3.6. Local/Required Context

Targetl _,., ' i [__rget___.j

instances

Commenks:

(1) Instate t l 3 is a direction violation of source dependency. The link between x 2 and t12 is a

rogue and a violation of target dependency. Removal of it will not affect tl 2.

(2) One of the arcs emanating from x7 is a rogue because of target dependency violation.

Removal will cause the other target inst,'mce to violate source dependency.

18'7



B.TernaryRelationships

APPENDIX B. Ternary Relationships

The truth table mechanism for peer dependency was introduced irl Section 8.4.1. As a demonstra-

tion of its generality, we shall use it to analyze ternary relationships. 'The basic questions are:

(1) Under what circumstances is a ternary relationship truly ternary, i.e. can it be decomposed '

into a cascaded binary relationship?
i

(2) What differences exist between functional dependency ,and involvement cardinality con-

straints on ternary relationships?

B.1. Binary Cascades

Assuming target dependency is not a factor in this analysis, i.e ali elements are global-context, we

will consider the simple case of three lD sources. There are three possible ca,cadcs.'_s" _'

Cascade I: Cascade II: Cascade III"

R L _2 I_L__

....z,wx_
[. y][ c .li c ,l I A.li a 'l [ _'

For each cascade, the values of w, x, y, and z could be either 1 or M to form 24 or 16 possible trees.

Binary relationships based on functional dependency is the "converse" oi' involvement cardinali_y,

thus I-M becomes M-1 while 1-1 and M-M remains the same. Therefore, all cases of binary rune..

tional dependency can be mapped onto the cases for involvement cardinality and do not need to be

analyzed separately. From this point, we can safely let our cardinality numbers represent involve-

ment cardinality. Cascade II is a rotation of Cascade I, i.e. A --:, B --) C, and Cascade III is another

rotation, A _ C --+ B. Thus, once we have the truth table for Cascade l, we can generate the truth

table for Cascades II and III by rotation of A, B and C, which is equivalent to row permutation. Wc
nov,' focus on Cascade I.

188



B.TernaryRelationships

B.2. Cascade Predicates

To deten'nine whether a new instance can be inserted is determined by the relationship between A

and S and the relationship between B and C. The relationships can be expressed as dae following

predicates:

W X Predicate Y Z Predicate
i _ ' ' '|

1 1 A_-_S 1 1 B _--_C

1 M A-->S 1 M B-->C
..... ,r : ::....... . , ...... ,, , , ,,

M 1 S-->A M 1 C-->B
...... , .... ,,,

M M None M M None
-- L ........

where A - (al=a2), B =-(bl=b2), C - (c1-a22), and S = (B AND C)

We now have the. 16cases for Cascade I:

Case W X Y Z Equivalent Predicate

1 l I I 1 (A _ S) AND (B <-->C)
,,, ,,

2 1 1 1 M (A _ S) AND (B --->C)

3 1 1 M 1 (A _ S) AND (C --> B)
t,,,.i , t. ,,

4 1 1 M M (A 4-->S)
,,, .1

5 1 M 1 1 (A --) S) AND (B 4-9C)

6 1 M 1 M (A --> S) AND (B --_C)
--- :: ,,,, , 1

7 1 M M 1 (A --> S) AND (C -->B )

8 1 M M M (A --->S)

9 M 1 1 1 (S-,-> A) AND (B <--_,C)
., ,. t

10 M 1 1 M (S --_ A) AND (B -.)C)
,,,,,, t ,, , ,,

" 11 M 1 M 1 (S --> A) AND (C -.. B)
............ , ,

12 M 1 M M (S --> A)

13 M M l l (B <-+C)
.... ,.......

14 M M 1 M (B --. C)

15 M M M 1 (C _ B)

16 M M M M none

189

...................... i ......................... ii i ......... :........ :................................................. iiiii1[ ............................................. i , r,,l, .... i _"



B. Ternary Relationships

B.3. Cascade Truth Table

The truth table for the sixteen cases of Cascade I a_'e:

_tl IIILL.. I . . I I IIIlll _'_ ,i_ _ li ,la I _ . ] ili

_ [-, [.. [-- [-- [-. t-- [- ! [--

(-, b., _ [-, [--, _ _.. b,
, ,,, --- , 1,, t

[-. _. [- [- [- _, t-- t-
, ,,, , , :_. --

__

b- F- b, b, _, b- b, b.
i

_ E-, F., a. _ _ a., [-- F-

_ [.- _ lc, [.- mc, _ t.:., [--,
ii

¢_ [--, mc, _ _ _ [-" ['-' [--"

__ ::::t_ = ,, , ,.,,. --,I _, ,

[-- mr., P.., _., [--, _ _ b-

II]l Ii !_ I I

,II I I_ ! I ,Hill ,I IIII ,'ilmJ 11 /

• ..... __ .,...--_, _. ._ _ , ._ --._ _.

_d 7-- .......

...... : I Iii II i_1 iili 11_?: : ......... _!il I



B. Ternary Relationships

To generate Cascade II, we perfoma permutation on the truth values of A, B, and C"
.................. ,..... _......

Truth Values for Cascade II Equiv',dent Cascade I
= . :_ . .._,_._ .... . ....... c == , , -- ,, __ -- __., , ,

A B C A B C
, ...., , ,, ,,, ,,,, ,,t -7 ,,,I, - g t_ 2_ ..... i i, _ ,, ....

T T T T T T no change
: J ' _11 , , _. --' _

, T T F T F T row 3 of Cascade I

T F T F T T row 5
t_. _ 1, , ,, ,- , _-- _ .........

T F F F F T row 7
, , . ,,, ,,,| _ ,, i , e,, ,,,,,i . ,li, ,- -- ,,.,,,

F T T T T F row 2
,,, _ • _ __ _, _. ,....... _ . ,--,

F T F T F F row 4
" , • ,,, , ..... , , , I , ,,,,, t __ ,,,

F F T F T F row 6
'| ' 1 t ,, __ , ........ ,

F F F F ] F F no change.................

After row permutation, the first eight cases of Cascade II would be the following:
• ,, .., ....... --

Truth Values for A, B, C Cases tor Cascade II
'' r ,,. . . i,,,,., .... , ,,, , ,,

A B C 1 2 3 4 5 6 7 8
,,._ ........ '",',"'_ '""' ,,,,, j._ : ,, , , , .... _.... :.! ' _r=:y,, .-•" z

T T T T T T' T T T T T
--.= , , ,, ,, :, , j . , ,,,,, , ,_, ._

T T F F F F F F F F F
, ,., ,__1, , ,,, , , • , .

T F T F F F F T T T T
.... : _ ...... , . • , , , ,,, ,

T F F F T F T F T F T
i

........... ,k [. ___ ,., , ,, , ..... :

F T T F F F F F F F F
, .... , .. , , p, , ,,

F T F F F F F F F F F
................ : ...... , , ,a .... ,,,

F F T F F T T F F T T
• : -r .... ...... i , , , ,, -- ,,,, t , ,,

,, F F F T T T T T T T T
........ _ ,, ,,,i- l ---- m _, . '.'...

Cascade I equivalent: 1 9 2 1()
,I,,

B.4. Results

Note that several cares between Cascade I arid Cascade II overlaps. After fully enumerating ali 48

possible cases (3 cascades with 16 cases each), only 32 are unique. Each of the standard ternary

cases under involvement cardinality can be matched to a case. in a cascaded binary relationship. ()n

191



B. TernaryRelationships

the other hand, the ternary case 1-1-M and 1-M-M under functional dependency are not decompos-

able. In a ternary table, there are 23 - 2 or 6 rows (excluding all T and all F), each of which can be

T ore resulting in 26 or 64 unique columns or cases. We have already enumerated 32 such cases

from the cascaded binary compositions, thus leaving 32 cases of pure ternary relationships that are

not decomposable into cascades. Of the 32, two are identified by ternary functional dependency.

In general, we can fully describe a n-ary relationship as a truth table column using 0(2 n) space. We

also can decide if a relationship is truly n-ary by comparison against tables constructed from rela-

tionships of lesser degree, ha theoretical terms, this is equivalent to predicate transformation and

logic synthesis, both of which have a vast amount of literature. Since it is outside the scope of this

thesis, we will not pursue the connection further.

192



C.ExamplesofEOM Schema

APPENDIX C. Examples of EOM Schema

C.1. Transformation of ER Diagrams

An example of a large but basic ER diagram is shown in Figure C. 1. This is taken from Genome
t

Data Base (GDB) [13]. It represents the conceptual model associated with locus information. In

this exercise, we will take the ER diagram and convert it into an Extensible Object schema. There

are three basic stages: structure, context, and storage.

C.I.1. Structure Determination

The first stage determines structural relationships between Object-Types. For ER conversion, it

consists of the following steps:

(1) Map "alithe entities and attributes into composition constructors. Ali key attributes (marked

with "*") are converted to ID arcs. Since EOM is not bound by implementation specific

types, all references to "id" is replaced by the original object. For example:

n
note
date committee ]

[person]

(2) Examine 1-to-M relationships and decide if a set constructor is more appropriate. If so, then

redundant ID components can be dropped. For example:

L... L°cus ]

other components
[_Lo tL{' I of Locus
] Locus ] [ Notes J

Locus
Notes

193



C. F..xample,_,of E,OM Schema

#

J

Figure C. 1

194



C. Examples of EOM Schema

Once LocusNotes has been convert to an lD source to the Set constructor, its Locus ID com-

ponent can be removed.

An alternative is to embed the "1" entity as the source component for the "M" entity. If

applied to the previous example, it leaves the LocusNotes object alone, because it already

' contains Locus as an ID component. The end result is the remov,-d of the "1o3" relationship.

In fact, LocusNotes is an ER implementation of a relationship in the guise of an entity,

' which, in turn, is an ER implementation of a set constructor.

(3) Examine 1-to-1 relationships and decide if they should be modelled as components or as a

relationship-composition. For example:

1 1

. c "VS.

 L/cL0cus,,
other components [ r_J^ | other components
of Locus I _"'_' J of Locus/DNA

In the GDB example, LocusDNA should be a component of Locus.

(.4) Examine M-to-M relationships. They are typically relationship-compositions, therefore,

they are mapped as such.

(5) Weak entities are mapped to compositions. In ER models supporting IS-A links, we would

convert them into inheritance or union constructors, whichever is appropriate for the appli-
cation.

C.1.2. Context Determination

In this stage, we attach context designators for target, source, and peer dependencies in three sep-
arate steps'

(1) Look for dependencies on targets. Clearly, some components are not dependent at ali ()la

their target instances, these components are marked Global. For example, MIM ref under

195



C. ExamplesofEOMSchema

LocusMIM_eref is Global. Other components are dependent and specific to their target

instances, they are marked Local. For example, LocusMIM_annot in LocusMIM_eref is

specific to each target instance, therefore, they should be considered Local. Shared compo-

nents are the hardest to determine. Invariably, they are represented in ER models as "id"

values. For example, Locus_id ksdependent on Locus instance, but the set of Locus_id val- '

ues is shared among ali Locus instances and the id-to-instance integrity will be maintained

only through source and peer dependency. The result of these examples is diagrammed as
follows:

IM eref [

other components
of Locus

MIM ref

(2) Determine source dependencies, i.e. whether a component is required or not required. An

Object-Type that is the only ID component of a target is typically required, unless one

wishes to preserve a possible "null" value for other uses, e.g. defaults or summaries. Since

EOM does not distinguish null vs. non-null in terms of value, this source dependency

relates to domain integrity. The ER diagram provided from GDB does not designate null or

non-null, therefore, the conversion will be based on guessing the domain semantics.

(3) Finally, we convert cardinality constraints from ER functional dependency to Extcnsible

Object Model involvement cardinality. For binary relationships, this amounts to the rever-

sal of" 1" and "M". In general, Local components for Composition, Inheritance, and Union

are set to "1" because, in their target context, they are unique.

196



C. Examplesof EOMSchema

Using the previous examples, the Extensible Object schema is diagrammed as follows:

Note [ LocusMIM eref ]

' 1
note date note L'm

' Locus annot

G,NR,/qI[ G,R,
person committee

! MIM ref

The target dependency of SetOfNotes under Locus should be Local, since an instance of Set-.

Of Notes is only associated with one Locus instance. LocusNotes, now as an ID component to the

SetOfNotes, can be either Local or Shared, because SetOfNotes is already partitioned into disjoint

sets of one element each. If one wish to associate a LocusNote instance to several Locus instances,

then LocusNotes will have to be global =andits cardinality set to "M". This is demonstrated in the

Committee Object-Type (not derived from the GDB diagram).

l l.x,cus ] [Committee]
- ---- .... C --

_,_//J/,'_l]// Of'_qON_i J //[ Ls'et-°fPers°ns]
]Locus ] other components ,_, ] Ootth_ro3Ommp_nents "_

r --'_ -_.R,n

C.1.3. Storage Determination

The last step is detenwining the storage characteristics. This stage is highly implementation spe-_L

cific. Therefore, EOM does not permit a graphical representation for them. However, in the query

language, there are provisions for specifying storage attribute_ so that physical optimization may

be carried out (see Section 10.I.2). Since we do not designate storage directives in the EOM

schema. This step will be ignored.

197



C. _.xamplesof EOM Schema

C.1.4. Rgsult of Transformations

The simple entities are mapped to the following:

r--'---"k"i_ ,r .... -L,s--_ de

L
_---=_"--'_ [LocusC_'---'--_'_* t

F-g_i--i,,_---I
_s-_gnme---_q I Boundary I

_ ---"

r-'--_ F--- L,N'----'_Key J

The reason the,._ are "simple" is because, ali their characterization is encapsulatud into the "desc" ,,

Object-Type. Conceivably, the_ can be further defined into more details.

igg



'_ li, ..... , .... mll_ ,H ,,, lib , , _ , , L,I . , _hl, ,,IL _lul I,k IrlII,I,lUI., i_ J, iLial_, _U_i,,_ LdL,,II,iLIJI

C.Example.sof EOMSchema

The more complex entities are mapped to the following:

F---_ r--_rl

[:2hrom Banc_ kocus Alia_.._s

Number J _ ................Region "----" [ Da[:'t_ "

Boundary ] [ G.NRIMI

[DNAType i

The simple relationships are:

GenBank ] I HGML ] [ ECNum ]
_.._E.ref J [ ....Eref: 1 "__1

Locus,Locus , ,GenBank [ I..ocusi I l I l-- - ! R_f

[ MIM ] [Assignmentl [
i Eref ] LMogeIrefJ LMessage

I
, ...... Iref j

.... _ L,Sk, _ '--n,,-rcr]

• [ Mode



C. Examplesof EOMSchema

The more complex relationships are mapped to the following:

Notation: A horizontal "}" represent multiple arcs of the same type: _---'&_ :_-_

This allows grouping of similar components together to improve organization.

__ lPro_i_,fi '
i

f

[ Locus_ [ Persong_l [ AddD_'e_ [ Locu_ _.abSym_o_ IBestl-_,CloneIL'NRixl

r,, 'r_x,-q _,R:_ F'_ _*,_1
[ Sourc'e_ [ ..........E, _iNr_,,[Probe Order ICommittee] Probe ] Source]

I___ _C y t 0 L Oa a _

-- _'T-- c -

F---
"--"6'i. K'_

I L°cus/U_ Segment_ commen_ G,R,,] t..,R,,C .rom, [P U,i
Family.._] Number I B ounda_,_._

lD Is-'7''T1 ExpressC,R,qCode iSuffix Code I
Boundary] "-----_,_--_ G,R,,l

DNA [ Chrom [
_Co_x._ Number ]

2O0



C. Examples of EOM Schema

The mapped set constructors are the following:

['-get of I
_et Of Note_ [Locations_]

, Se_. I-_ °'_"_
]CytoLocation] Number Of[[ _ Bread |
L ..... J t.ocation ]1 Operation]

Finally, we have the following:

l.....Locus I
,,i C =-

Nam PolymType Add Date Review Public
Committee

S,R, 1 L,NR,I ---"--"_'_, l L,NR,1]
Symbol / Location Mod Date 1-"....... GINR.il Ever [

....... _ Approv ]IAOdP_r_o.ISummary. L,NRII --.
G,R,1]

Pcevious I L,R,I Appr Date G,NR,I_

Symbol] Cloned L,NR, I Admin ]
A._6fy_r_ov__._At.,NR,l] _ Add Comm

. Date L,NR,1Ref [ LocusType
Mark ] - t.,NR,"--'--"--"T Set Of

Set Of Notes
Locations

"Locus Proposal" is left msan exercise for the reader.

201



C. E_.'unplesof EOM Schema

C.2. Set and Sequence Constructors Under Target Context

In the following ex,'anples, we will examine some of the complex interaction between constructors

and target contexts. The question we will ask. is' are ali target dependencies meaningful for the ID

source of a Set or Sequence constructor?

C.2.1. Global Context

Going back to the Committee example in Section 7.2.1, if the Person is set to global-context and

the SetOfPersons is local-context, we would end up with this diagranv

Cl c2

[ ,Name+1 e O er+
Se -

_ b 1

t
nl n2

Pl P2 P3 P4

Comments: +o

(1) Each instance of Committee is composed of zm instance ot"Name, SetOfPersons, and Bud-

get. SetC, fPersons, Budget, and Size are local-context, thus each instance value is isolated

from the other values. If there is another instance of Committee, c 3, and it is composed of

an instance of SetOfPersons, sp3, such that sP3 is composed of {Pl, P2, P3 }, then sp3 is

value-equal to sPl, but is a separate and distinct instance by context.

= (2) Person is global, thus the SetOfPersons instances are derived from a common set of Person

2O2



C. ExamplesofEOMSchema

instances. "Ihe Person instance, Pl, of sPl (ID = {Pl, P2, P3}) and of sP2 (lD = {Pl, P4}) are

identical, i.e. same person.

The result of this combination of contexts is that the same set of persons can function as different

Committees and operate with a separate budget where the nature of the committee is probably asso-

ciated with the Name given.

C.2.2. Shared Context

Shared Context is similar to Global context because the elements for a Set or Sequence is drawn

from the same set. The only difference is that they are partitioned based on the target instance (set

or sequence instance) sets.

C.2.3. Local Context

Using the protein example in Section 7.3.2, we need to assign the context dependencies such that

changes in a protein's sequence can be made without affecting ether proteins, at the same time

_ctaining the ability to verify against previously inserted protein sequences in the database. Assign-

ing global-context to Protein and local-context to Positioned-AA satisfies these requirements. Here

is how the schema and its instance association diagram would look:

[Protein]

pr 1 pr2 pr3

we link a set as a
_horthand notation

[Positionedt] [Enzymatic_
k____._.J A_ity._]

_.

'I Pal Pa2 pa3 Pa5 pa6 Pa8

" L Pl P2 P3 P4 P5 P P7 P8 P9

a1 a2 a3 a4 a5 a6 a7 a8 a9

203



C.Examplesof EOMSchema

Comments:

(1) The instance set for Enzymatic Activity is not shown.

(2) Each instance of Protein is associated with an independent set of PositionedAminoAcids.

There are three proteins: < a1 , a2, a3 >, < a4, a5, a6 >, and < a7 , a8 , a9 >. As long they
J

are distinct sequences, repeated values are permitted. For example, pr 1could have the value

< Val, Phe, Tyr >, pr2 could have <Val, Phe, Phe >, and pr 3 = < His, Phe, Tyr >. The
#

position is implicit in the order of the amino acid occurrence.

(3) The set boundaries between each instance of AminoAcids has not been drawn for brevity.

The shaded area around the Positioned-AA, Position, and AminoAcid are "bags".

(4) Position is shared-context in Positioned-AA to maintain correct set membership relation-

ship between Positioned-AA and Position. In this case, values of p, =p ;=p7= 1,

p2=PS=P8=2, and p3=P6=P9=3. As a set, Pl, P2, and P3 are distinct.

(5) AminoAcid is ,anlD component of local-context, therefore we can have multiple equal-val-

ued instances. For example, < Val, Phe, Phe >.

Using the example values, we can change the 3rd amino acid of pr 1 to His, without affecting the

3rd amino acid of pr3 because of the local-context separation of AminoAcid. The result protein

instances are: < VaI, Phe, His >, < Val, Phe, Phe >, and <His, Phe, Tyr >. However, we are

prevented from changing the value of a3 to Phe, because the ID( pr1 ) is < Val, Phe, Tyr > before

the change and < Val, Phe, Phe > afterwards, which would now equal II)( pr2 ). This integrity is

maintained by the fact that II) is based on value only and the new ID value of pr 1 would now be

equal to ID( pr2 ).

Another change we can perform is Position value, if we change the value of P3 to 2, we could create

a protein with two different amino acids, a2 and a3, at the same Position value. This does not violate

the construction of Positioned-AA. For example, the value of pr I now becomes { [1,Val], [2,Phe] ,

[2,Tyr] } and is a unique value. However, now we only have { Pl, P2 } as the set of pr 1 positions

and two association arcs will originate from P2. This is not a sequence, but an ordered set. To main-

tain semantic consistency with sequence, we need to add a peer dependency constraint, so that only

one arc is permitted to originate from each position instance and invalidate this change of P3 value.

Therefore, Position is given the involvement cardinality of "1"

204



D. QueryLanguage Syntax

APPENDIX D. Query Language Syntax

The syntax listed in this Appendix is a stripped version. The actual one has numerous error trapping

rules which are not relevant to flais discussion. Therefore, some rules have been condensed together

, to improve readability. Keywords are in upper-case and is translated to unique numeric values by

the lexical analyzer. However, NAMe',,NUMBER,and _TRrNG are supplied by the lexical analyzer as

special token nodes.

D.1. Chaining Statements

The starting point for the parser is sen_tlist.

opt stmtlist : stmtlist

I /* NULL */

stmtlist : statement

I stmtlist statement

D.2. Basic Statement Types

statement dba_statement ';'

bypass_statement ';'

read_statement ';'

display_statement ';'

define_stmt ';'

under_statement ';'

storage_statement ';'

dbinst_statement ';'

assign_statement ';'

query_statement

flow_statement

compound_statement

i;i

Ali statements are termina_dby ';',exceptforcompoundstatement. Sincequery_statrnent

" and flow_statement ends witha statement, the';'isunnecessary.

D.3. Administration

dba statement : CREATE DB NAME

I DESTROY DB NAME

205



D. Query Language Syntax

I USE DB NAME

bypass_statement : BYPASS STRING

,i

read_statement : READ STRING

;

D.4. Viewing Internal Table

display statement : DISPLAY TYPE opt_pattern

I DISPLAY FUNC opt_pattern

] DISPLAY VAR opt_pattern

I DISPLAY VALUE opt_pattern

opt pattern : STRING

I NAME

I /" NULL */

If opt_pattern is a STRING, it is considered as a reguiar expresbon pattern. If it is a N,-MVlE,then it
is used as an exact match pattern.

D.5. Type Definition

define_stmt : DEFINE scoped_name IS define_phrase

t

define__phrase : ALI.AS OF scoped_name

I IMPL_BY PROC func._call

I IMPL_BY ENUM ':' arglist

I IMPL_BY scoped_name opt_storage

I constl_ctor token '{' componentlist ') '

Although scoped_naxne is used, they are actually restricted to one name in this version. The vali-
dation module checks for violations.

constructor_token : COMPOSITION

l SET

I SEQUENCE

I II,MERITED

I UNION

2O6



D. Query Language Syntax

This is where future extension of constructors are added

componentlist : component

, I componentlist component

Must have at least one component in a componentlist.

component : ID scoped_name opt_contextlist opt_storage ';'

I PROPERTY scoped name opt_contextlist opt_storage ';'

J ORDERED_BY scoped_name opt_contextlist opt_storage ';'

opt_contextlist : ':' context_list

I /" _OLL */
t

context_list : context_token

J context_list '0' context_token

I /* NULL */

context_token LOCAL /* target */

SHARED /+ target */

GLOBAL /* target */

REQUIRED /* source */

NONREQ /* source */

ONE /* peer */

MANY /* peer */

The contexts are pooled, becaus_ they can occur in any order and can be left out. The validation
module will manage them co_ectly. This is _so De piace where future extensions are added.

opt_storage : '[' DIRECT ']'

I '[' INDIRECT ']'

• I '[' VIRTUAL '] '

I /* NULL */

Currently only one storage directive is permitted. However, future extensions can be added here.

undef_statement : UNDEFINE NAME

207



D, Query Language Syntax

D.6. Storage Management

storage_statement : CREATE STORE NAME

I DESTROY STORE NAME

;

D.7. Instance Manipulation

dbinst_statement : CREATE VAR NAME IN scoped_name

I DESTROY VAR NAME

I INSERT scoped name

I UPDATE scoped_name

I DELETE scoped_name

i dbioutput_stmt

The INSER_ UPDATE, and DELETE commands have con'esponding overloaded function calls, e.g.
insert(). The command calls the function for effecting change in the instance's context, then if
necessa_, will perform the actu_ DBMS action.

dbioutput_stmt : OUTPUT opt_arglist outFut_redirect

output_redirect : ADDTO primitive

I /* NULL */

This allows the output to be direc_d into a file.

_ D.8. Instance Assignment

assign_statement : scoped_name '=' expr

I scoped_name ' :=' expr

. I scoped_name

g The scoped_name by i_elf is a speci_ case of re_rencing the last instance in the scopedname. "

- However, if there are functions wi_ side-effects along the way, the side-ef_c_ will be carried out.
_

: D.9. Select Command

query_statement : FOREACH varlist opt_whereclause PERFORM statement

208



D. Query 'LanguageSyntax

varlist : var_def

I varlist '_' var_def

At least one variable must be defined

var_def : NAME IN scoped_name

opt_whereclause : WHERE ' (' condition ')'
I /* NULL */

D.IO. Control Flow

flow_statement : WHILE '(' condition ') ' statement

I IF '(' condition ')' statement opt_el,_e

i BREAK ';'

I CONTINUE ';'

I EXIT ';'

opt_else : ELSE statement

I /* NULL */

compound_statement: '{' opt_stmtlist ')'

D.11. Basic Expressions

opt_arglist : arglist

I /* NULL */

.

arglist : argument

d I arglist ',' argument

argument : condition
=

I expr
=

:

condition : condition OR condition
z
_

=

2_

%

_



D. Query Language Syntax

i condition AND condition

I NOT condition

I '(' condition ')'

I expr '=' expr

J expr '>' expr

I expr '<' expr
, |

expr expr '+' expr

expr '-' expr

expr '*' expr

expr '/' expr

'-' expr %prec UMINUS

' (' expr ')'

value

Need to specify unary minus precedence to ensure proper evaluation.

•value : scoped_name

I STRING

I N%II_BER

scoped_name : simple_name

I scoped name ' ' simple name

simple_name : NAME

I funccall

func_call : NAME '(' opt_arglist ')'

I overload '(' opt_arglist ')'

overload : INSERT

I DELETE

I UPDATE

This is for handling overloaded names that matches keywords.

210



E. Query Proce.ssorModules

APPENDIX E. Query Processor Modules

The major modules of the Extended Object Query Processor are described in this Appendix. If

there is a module-specific structure, it is first described, followed by some of the major functions

' in the module, and, finally, any interesting files in the module are mentioned.

E.1. Evaluators
4,

This module handles the evaluation of statements.

evaluate () - takes a parse tree made of Node's and evaluates the command. This call is _!_

reentrant. Therefore, it can be called for evaluating subtrees. A large switch _

statement is used to call the specific evaluation functions.

evalvalid ( ) - takes a scoped_name Node tree and performs type checking. Since expres-

sions are converted to a scoped_name Node tree, this handles ali static type

checking.

eva l () - the callback for the parser.

evaltest, c - the main body of the program. If linked with the stubs library, the program is

a debugging version. If linked with the Sybase DB library, the program is a

working version.

E.2. Functions

This modules manages the operators (functions) visible to the user.

typedef struct {

char *name ; name of function

char **args ; type names of arguments, null terminated

char *retval ; type name of return value

int ( * func) ( ) ; actual function

char * ( * inst_retval ) ( ) ; type name of return value

) Func ;

Ifretval issig_inst,i.e.an arbitraryinstance,thentiletypecheckingroutinewillcall

inst_retval () [odeterminetheactualtypeofthereturnedvalue.

func_findO - lindtheindexofa functioninthefunctiontableforthegivenname.

func_call() - calls a function. Arguments are: func_ptr,return_inst, arg_inst [].

func_ptr is a pointertoFunc, return_inst and arg_inst arepointersto

211



E, QueryProcessorModules

Inst, and the arg_inst [] is null-terminated.

func_varcall() - calls a flmction. Arguments are: name, return_inst, argO, argl ..... O. llais

is a var._args implementation of func_call ().

constructor - submodule with ali constructor specific functions.

overload - submodule with ali overloaded functions.

primitive - submodule with ali primitive type functions.

primitive/template,c and temF,late.h

- template for adding compiled functions.

user - user defined functions

E.3. Grammar

This module handles ali the grammar, it primarily calls functions in the Node module to create a

parse tree.

low - submodule where ali the EOQL grammars are located.

low/-,y - the grammars, with query.y being the top file. They have a standard tbrm, ali

keywords are in uppercase, ali other tokens are in lowercase. This is used to

dynamically generate the token, h and types,ta.See the Makerile in this mod-
ule.

low/core .y - if-then-else evaluation is special, so that under immediate mode, the parser
does not wait for the next token before evaluation.

low/le_:, l .. the lexical analyzer in standard lex format. We changed the input ( ) macro

to handle reading EOQL script files.

typegen, c - a pro[,ram that generate a C file from EOQL type definitions.

E.4. Instances

This module manages the session instances, such as creation, destruction, reference, and evalua-
tic)n.

v

typedef struct {

cba r *narr_e ; name of the instance

'I_,peVa,l "type ; actual type of the instance

1,ao,._eI rast • re f ; pointer to the referencing Node
int status ; status information

212

_



E. Qt,ery ProcessorModules

struct _instance "parent ; parentinstance

struct _instance *sib; sibling chain from same parent

struct _instance *child; points to child instance chain

int num_flds ; number of values in the instance

' itnt *values; indices into the value buffers

) Inst ;
I

The parent/sib/child linksallows [he QP totrackdependencies when values are changed. The

node referenceand theopposite ]inkfrom the Node allow the seeped_name evaluatorto use pre-

viouslycreated Instances.

inst_find() - returns the index of instance in the instance table with matching name.

inst_eval () - evaluate an instance based on parent information.

inst_ref ( ) - returns the instance at the end of a seeped_name reference.

inst_store, c - routines for searching instances in an image data, i.e. sets or sequences.

inst_value, c - manages the values of an instance.

E.5. Nodes

This modules provides the basic structure for the parse tree.

typedef struct (

NodeType type;

) NodeProto;

Each node type has different structure, but they ali start with NodeType type.

template, c and template, h are used for making new node types.

E.6. Storage

This module is the main interface to the underlying database engine, lt is the most implementation

specific portion of the EOQP. If the engine is replaced, then this module has to be receded.

typedef struct (

inr (*setcolumn) ( ) ; determine column locations of components
inr ( *create ) ( ) ; create the collection store

int ( *destroy ) ( ) ; destroy the collection store

int (*updateparam) ( ) ; updates the relational overhead columns

J.nt ( "exi.st ( ) ; determines if an instance exist in the store

213

ql ....... _,_,',,,,, ,, ..... r, ,,v "_' "' ' '$' ...... '*la' ",, r_,_,',,, ,, "l*ta ' IJO.... m "' ..... P' ' " Jll__ ' 't¢lI'_? II '_,1",_a m ' ,,,,,a,,, _%'1_ "etr ¢1..... _vt',e_,eelJal',,, rlle_,_¢ ...... ¢¢_$1_ ,,,r_, rl ', ,, cir, _,,ir,,irill_,_fN_,,,qgll{/,



E. Query Processor Modules

inr ("read) ( ) ; read the component values of an instance

int ("update) ( ) ; update the component values of an instance

int (* insert ) ( ) ; insert an instance into the store

inr ('delete) () ; delete an instance from the store

) StoreRec;

Eachconstructorwillhavea StoreRec.
!

The interfaceto the StoreModule isthrough the genericstore_* () call.

impl@ -a symbolic linktothe actualimplementation,ltshould containroutinesforall

the constructors.

include@ -a symbolic linkto the includefilesof the underlying engine.

phys ical. c -base routinesfor interfacingwith the underlying engine,

sdstubs, c - stubs for ali the calls to the underlying engine, for testing purpo, cs.

re 1--blob - submodule for the current implementation.

serial - submodule for building serial lD daemon, lt uses RPC for communication.

serial/serial_wrapper, c

- hides the details of the get_serial () call from rest of the system.

E.7. Support

Miscellaneous support routines.

args. c - routines for managing arrays of character pointers, e.g. char *args [ ].

E.8. Types

This module manages the types used in the session, such as creation, destruction, and lookups.

typedef struct Ii

char *typename ; name

TypeStruct const ; type of type definition

int inst_count ; number of instances

inr defined; whether the type is defined

) TypeProto ;

There are many types" primitive, enumerated, core, alias, implemented, and constructor. Each has

its own structure, but all start off with the Ty.peProto definition.

214



E. Query Processor Modules

type_f ind ( ) - returns the index of the matching type in the type table.

type_resolv() - resolves a type fully, i.e. make sure the type is weil-defined.

typecompat, c .- routines to determine whether two types are compatible.

, typecore,c - holds all file definitions of primitive and core types.

typeproc, c - handles look ups for procedural types.

typestore. C - checks for validity of a type for external storage.

typevalue, c - routines that manage references to the value buffers for ius instances.

user - a submodule where users can define their own types based on EOQL type def-

initions. The program typegen from Grammar is used to build C files.

E.9. Validation

This module performs validation of parse tree to make sure certain semantic constraints are not vio-

lated. For example, it checks for conflicting context dependencies and incorrect number of lD/

Property/Ordered_By arcs in Object-Type definition.

validate ( ) - takes a parse tree made of Node's and validates the command. This call is reen-

trant, Therefore, it can be called for validating sobtrees. A large switch state-

ment is used to call the specific validate functions.

E.IO. Value Buffers

The value buffers serve to manage the data used by the instances.

typedef struct (

Va IEnum va I type ; lypeof valuesstored

char *name; name of the value type

int val_count ; the upper bound of existingbuffers

int store_size; unit size of a value in bytes

• uns igned char in_use [ ] ; reference count for the usage of a value

} ValPool ;

There are several types of value buffers', binary, boolean vector, byte, integer, float, ;lnd string. Each
has a different structure, but all of them start with the same definition.

valpooa_find() ,. find the valpool with the matching type name.

value_new(), value_free()

- allocate new' buffer and free buffer.

215



E. Query Processor Modules

value_get() , value_set()

- gets and sets a value. Setting a value is by copying.

value_use ( ) - increment a value's reference count.

216






