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Quantum Monte Carlo for Atoms and Molecules
by

Robert Nicholas Barnert

Abstract

The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been
employed in studying energy-eigenstates for 1-14 electron systems. Previous work
employing the diffusion QMC technique yielded energies of high quality for H,, LiH,
Li;, and H;0. Here, the range of calculations with this new approach has been
extended to include additional first-row atoms and molecules. In additon, improve-
ments in the previously computed fixed-node energies of LiH, Li;, and H,O have been
obtained using more accurate wial :':nctions. All computations were performed within,
but are not limited to, the Bomn-Oppenheimer approximation. In our computations, the
effects of variaion of Monte Carlo parameters on the QMC solution of the
Schridinger equation were studied extensively. These parameters include the time
step, renormalization time and nodal structure. These studies have been very useful in
determining which choices of such parameters will yield accurate QMC energies most
efficiently. Generally, very accurate energies (90-100% of the correlation energy is
obtained) have been computed with single-determinant mial functons multplied by
simple correlaton functions. Improvements in accuracy should be readily obtained

using more complex trial functons.



Further work involved substantial modifications to our QMC algorithm in order to
develop new approaches for computing properties other than the energy. Calculating
such properties involves the computation of expectation values of coordinate operators,
over the exact distribution, which yield which dipole and higher moments. Several
aigorithms were studied for H, H; and LiH. Expectation values and moments are in
excellent agreement, = 0.5%, with exact theoretical results, H and H,, or experiment,
LiH. '

Finally, the scope of diffusion QMC has been further broadened by developing
novel methods to compute double-state expectation values, e.g., transition dipole
moments. The calculations were motivated by the fact that transition dipole moments
are of great interest in chemistry and physics but are difficult to compute using
expansion-based techniques. In studying the feasibility of QMC to obtain accurate
double-state expectation values, several new QMC approaches for determining several
states simultaneously were developed and employed in computing the transition dipole
moment for the 1s—=2p, transition of the hydrogen atom. The most efficient of these
was used to compute the 22§ 52%P ransition dipole moment of lithium atom. The
resulting moment and QMC-computed energies of each state yield an oscillator
strength and excited state lifetime in excellent agreement with precise experimental
measurements.  For the oscillator strength the QMC and experimental values are
0.742(7) versus 0.742(1), and for the excited-state lifetime, 27.41(35) 3:107% versus
27.29(4) x10™%. (For QMC values the numbers in parentheses represent one standard

deviation in the mean.)
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Chapter 1
Introduction

1.1 Theoretical Background

A fundamental tenet of theoretical chemistry is that quantities which can be meas-
ured experimentally may also be computed from quantum mechanics. That is, for a
given system, e.g., atom or molecule, the theoretical approach involves finding the
state wavefunction, ®;, whose modulus squared is the probability density function for
the system in state /. Since relativistic effects have little affect on most chemical pro-
perties, the wavefunction is obtained by solving, as originally proposed by Schridinger

[1], the equation which bears his name,

H@, = E,°' . (1.1)
In this equation, H is the Hamiltonian operator for the system in question, and E; is

the energy for the system in state /. The wavefunctions, @;, are time-independent or
‘“stationary”” states. To obtain a time-dependent wavefunction, ®;(t), the time-

dependent Schridinger equation

w22 _ o) 12
or
must be solved. If A is an operator corresponding to an observable, i.e., a quantity

which may in principle be measured, then the expectation value of A



<A> = <P lA1D,> a3
represents the value of this observable upon measurement. This last equation demon-

strates the contributions theory can make; any property of a state can be de*~rmined
once @, is known.

For a system with N particles the Hamiltonian is given by

H=%ﬂ+VUJ.“nNL (1.4)
i=
where T; = -%ﬁzm,-"V% is the kinctic energy operator (in coordinace space) and V is
the potential energy. For a system with N, nuclei and N, electrons, H, in atomic
units (A, m, (elecoon rest mass), and e (unit charge) = 1) is,
O T I MR ~1
_-Eg‘lma Va- ?iEIVi - :Ea Zaria +i§jr,-j +EBZ.,ZV . (1.5)
where Creek and Roman subscripts denote nuclei and electrons, respectively. Also,
mg is the mass of nucleus a and Z,, its charge. -

The theoretical approach for smdying chemical systems is now formulated: solve
the Schrdinger equation (1.1) with the Hamiltonian given by Eq. (1.5). Unfor-
tunately, such solutions are only known, in closed analytic form, for one-electron
atoms. The first step towards obtaining approximate, albeit accurate, wavefunctions is
to write the Hamiltonian as,

H=Ty+H,, (1.6)

where the electronic Hamiltonian, H,, is

1 ey Nele IS .
H, :—EEV,- - E Zarig + 3+ %zazpra;. .7
[ %

i=1 i<
and Ty is the Zirst term in Eq. (1.5). Eigenfunctions of H,, ‘¥;, are then obtained by



solving

HW;(r; R)=E,R)¥;(-; R), (1.8)
where r and R represent all the electron and nuclear coordinates, respectively. The

semi-colon indicates that the dependence on the nuclear coordinates is understood to

be parametric. The full solutions to Eq. (1.1) may tien be written as

O R) = T/ R B) (s
i=1
. with
[Ty + ER I/ R) = Ex/ R). (1.10)

A further simplification resuits from the Born-Oppenheimer approximationf2],
where the ruclear and electronic motions are assuxaed to be separable. Since nuclear
masses are 1oech greater than the electron mass, this approximation is generally very
accurate. In this approximation the total wavefunction is written as a single term of
Eq. (1.9),

@, R) =3/ R)®iz: R) . (L1D
The quantty, E;(R) in Eq. (1.8). is referred to as the potential energy surface (PES)
for the nuclear motion for the elactronic state i.

The problem of solving the Schrodinger equation with the full Hamiltonian is
reduced to finding zigenfunctions of H,, and then solving for the nuclear motion from
Egq. (1.10). However, eigenfunctions of H, are only known for one-electron atoms and
one-clectron homonuclear diatomics. This is due to the fact that analytic wave {unc-
tions which exactly describe the instantaneous correlations of two or more electrors
are not known. Therefore, approximate, though generally accurate, approaches are

employed in theoretical chemistry calculations as outlined in the next section.



1.2 Approximate Theoretical Approaches

The benefit of approximate theoretical techniques is that, since the exact solution
can not be determined, an algorithm for obtaining inexact, but hopefully very accurate,
wavefunctions is employed. The most widely used of such approaches are those based
on expansions in basis functions[3], perturbaton theory{4] and density functonal
theory[5]. In studies of chemical systems expansion methods are the most commonly
employed.

For the lowest-energy state of a given symmetry, expansion techniques can take
advantage of the variational principle[6] in estimating the accuracy of a computed
energy. This principle states that the energy expectation value of a function, ¥,

E[¥] = [dR'¥" H'¥/[dR 1912 (1.12)
is always above the exact-ground state energy. (From hereon, R denotes a 3N-
dimensional vector specifying the electronic coordinates.) Thercfore, parameters in ‘¥
are varied to obtain a minimum in E[¥]. (A similar variational principle for excited
states has been formulated by MacDonaldi7].)

Expansion techniques are useful because, when W is expanded in a complete set of
basis functions, the minimization of E[¥] does yield the ground-state energy, Eg.
Also, for judicious choices of the basis functions, convergence to Eq can be rapid.
Accurate energies had been obiained as early as the work of Hylleraas[8] in computing
the ground-state energy of He. Essentially exact energies have been calculated by
Pekeris[9] for He, and by Kolos and Wolniewicz[10] for H;. Using Hylleraas-type

expansions, King and Shoup(11] and Alhenius and Larsson[12] computed highly accu-



rate energies for the ground state and first-excited P state of Li, respectively. For
these systems the near-convergence to the exact energy is greatly aided by employing
functions which explicitly involve powers of r;;. For other atoms and molecules this
explicit description of electron correlaton is generally not incorporated into ¥ due, in
part, to the reduced usefulness of Hylleraas expansions for more complex systems. In
addition, powers of r;;, when used with Slater-type orbital (STO) basis sets, necessitate
the computation of the many-center two-clectron integrals by numerical quadrature.
The result is that large expansions in one-electron coordinates are a more practical
alternative, but the accuracies described above in this paragraph are usually not attain-
able.

Despite this drawback, useful chemistry is <crived from expansion techniques
because much of chemistry is concerned with energy differences, e.g., bond and excita-
ton energics, and potential energy surfaces. The difference betwcc;1 two computed
total energies, which are upper bounds, may be much more accurate than either of
these energies individually, due to cancellation of errors. Also, the properties of a PES
are unaffected by the addition of a constant. Therefore, a computed PES may yield
accurate properties, ¢.g., spectroscopic constants, by being above, but nearly parallel
to, the exact surface. However, such fortuitous cancellation of errors does not always
occur. Noted exceptions are the electron affinities of the first-row atoms - despite

apparently accurately computed energies for the atom and anion[13] .
1.3 Self-Consistent Field and Configuration Interaction

Since the Self-Consistent Field (SCF) and Configuration Interaction (CI) techniques



are cornerstones of theoretical chemistry, they are outlined below.

The SCF method is based on an orbital description and was developed by Har-
tree{14], Fock{15] and Slater{16]. (For an excellent description, see Roothaan{17].) In
this approach orbirals, y;, are expanded in a set of one-particle basis functions, ¢;, and
multiplied by a function of spin, ¥;(s),

Wi (x) = (T 0 0 () - (1.13)
where x is the s]I:in-space variabl; rs, and x,-(%) =a (*‘spin-up’’) and x,-(—-;—) =B

(**spin-down). This orbital description yields an N-electron wavefunction

¥ =yi(wa2) - -y W) . (1.14)
To obtain anti-symmetry upon electron interchange, a Slater determinant is formed,

(1,2, - N = TP Py (W) - wn V) (i.15)
where Z(—)P P is over all possible N-particle permutations.
The optimization of the linear coefficients, (c,-,-). to minimize E[¥], requires that

the orbitals satisfy

N
Hywix) + 2w @ow;ar (1 = Prvi@)y;E)dx; = &v;(x)). (1.16)
i=t

In Eq. (1.16), H, is the one-electron part of the Hamiltonian,

Na N, N,
Hy =3V - 3Zor i + Trij' + TZoZpras (1.17)

« j% a<f
Note that in Eq. (1.16), each orbital is dependent on the N — 1 remaining orbitals so
that the N equations must be solved simultaneously. The solutions are therefore
obtained, i.c., the values of {c;;} are found which satisfy Eq. (1.16) for all orbitals v;,
in an jterative process known as the *‘self-consistent field*’ (SCF) approach. (Sec Ref.

17 for more details.) In the limit that a complete 1-particle basis {¢;} is used, the



lowest energy obtainable from this technique, the Hartree-Fock (HF) energy, results.
The approximation inherent in this method is that electrons move in a potential result-
ing from a startic field. That is, the instantaneous correlations of the electronic motion
are not described.

The HF energy is used to define a term widely known in the field of theoretical
chemistry — the correlation energy. For a given state, the correlation energy is defined
as the difference between the eigenvalue of the Hamiltonian employed for this state
and its HF energy[18]. Improvements over the HF description are then measured in
terms of the amount of correlation energy gained.

The Slater determinant represents an N-particle wavefunction based on an expan-
sion in a 1-particle basis set. To improve on this function, by describing instantaneous
clectron correlations, an expansion in N-particle functions (Slater determinants) is usu-
ally constructed[19]. This is the basis of the CI approach in which the wavefunction is
written as

¥=Yc, P, , (1.18)
where euach &, now represents a Slater determinant. However, as referred to in the
last secion, such expansions can converge very slowly[20]. This difficulty has lent
impetus to the development of new technigues.

In Chapter 2 the quantum Monte Carlo (QMC) approach, with emphasis on fixed-
node QMC using a “*shont-time”™ Green's function, is discussed. In Chapter 3 compu-
tations of QMC energies for several systems, 1-14 electrons, are presented and dis-
cussed. Chapter 4 discusses and presents new algorithms for the computation of

single-state properties other than the energy, and in Chapter 5 these ideas are extended



to the calculation of expectation values across different states. Chapter 6 ends this

dissertation with a summary and conclusions.



Chapter 2

Quantum Monte Carlo

2.1 Introduction

As discussed in the previous chapier, expansion techniques can yield a very slowly
convergiug energy, and if cancellation of errors is not complete, inaccurate energy
differences result. Additionally, while the energy may be well-converged, other com-
puted properties may stll not be accurate. This is because the energy, E[\¥], is accu-
rate to second order in the error in ‘¥, but properties obtained from expectation values
of operators which do not commute with the Hamiltonian are accurate only to first
order. Since ‘¥ is chosen to minimize the computed energy, rather than local devia-
tons from the eigenfunction, @, regions will exist in which ¥ is a poor approximation
toc @®. While this effect may not be significant for the energy, results for properties
that are sensitive to the local accuracy of ¥ in such regions may be quite poor. For
example, accuracy in ‘¥ at the periphery of an atom or molecule is not important for
energy minimization, but is important for properties such as polarizabilities and per-
manent moments[21]. A noted example of the difficulty in obtaining accurate results,
despite very accurately computed energies, is the computation of transition dipole
moments using expansion techniques{22).

The sensitivity of many atomic and molecular properties lo the accuracy of ‘¥,
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rather than of E[¥], translates into a marked dependence on the 1-particle expansion
(basis set). Therefore, for such properties, large basis sets are required[21], greatly
increasing the computational cost. Finally, convergence of a computed property (other
than the energy) to the exact value, as the 1- and N-particle bases are increased, is not
necessarily monotonic.

An altemnative to minimization of the energy is to minimize the expectation value
of the variance[23), U 2[‘{’], rather than the energy. Here,

UMY = [(H'$-E¥)2dR /[ 1%dR . Q.1
The integrand in the numerator can be significant even when ¥ is small. Therefore,
the quality of the wavefuncton should be much more uniform than when energy
minimization is employed. Also, since I/ 2> 0, this functonal is variational. Unfor-
tunately, minimizing U? is quite difficult when expansion techniques are employed,
due 10 the presence of (H'¥)? in the integrand. However, such minimizatons present
no special difficuliy for Monte Carl;) techniques, and are currently being employed
with much success[24,25].

As stated in the discussion to this point, obtaining highly accurate solutions of the
Schrodinger equation remains a challenging problem. Therefore, it is of interest to
investigate a method which is not predicated upon large 1- and N-particle expansions
yet can, in principle, yield exact results. One approach, generally referred to as quan-
tum Monte Carlo (QMC), is employed in the computations described in this thesis.
Several variants of QMC exist. A brief discussion of Monte Carlo the and variants of

QMC are discussed in the next two sections.



1n
2.2 Monte Carlo Background

Monte Carlo methods employ random numbers to solve the problem at hand.
Despite the random nature of the approach, Monte Carlo techniques may be employed
10 compute quantities which are not inherently statistical.

A simpl= example is offered by the computation of a definite integral,

1
I=[f@ydx. 22
0

To compute this integral by Monte Carlo, one may select a set of values of x, {x;}.
such that x; =&;, where &; is a uniform random variate between 9 and 1. This is
referred to as ‘‘sampling” values of x [and hence of f(x)}. A Monte Carlo “‘est-

mate”” of /, Iy, is then given by

1 N
=% }_‘{ ), 2.3)

where N is the number of points sampled and A}im Iy =1I. The statistical nature of
—pan

the method is now apparent; for finite values of N the average in Eq. (2.3) need not
cqual [. That is, the ‘‘statistical error”, generally taken to be one standard deviation
in Iy, will cause /y = /. From the central limit theorem, for N sufficiently large
independent values of /y may be assumed to be distributed according to a Gaussian
distribution[26] for which one standard deviation is referred to as the statistical error in
Iy.

It is instructive to consider the statistical error of this example and a well-known
method for reducing it. For N points, the statistical error in sampled values of f is

most generally measured as
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Nl-—

ww>-w*zvu> - 2.4)
(When the average I is not known it is replaced by Eq. (2.3) and N~! is replaced by
(N-1"1) Generalizing to sampling the entire distribution yields the stadstical error in

a sampled value of f as

1 1 1
w=¥%m-gamﬂ7. 2.5)
The standard devianon in the computed average of f, Iy, is given by oy,
Oy =0y AN [28], or when o is not known, o (V) is employed. The statistical ermr
in Iy may be decreased to any value desired simply by sampling more values of x.
However, the dependence of oy on N causes the process of error reduction to be one
of diminishing returns. That is, to reduce the statistical error by an order of magnitude
requires an increase of two orders of magnitude in the sampling.’
An efficient way to reduce the statistical error is to employ importance sam-

pling[27]. Importance sampling involves recasting Eq. (2.2) as

I = ()G !
Fﬁﬂ%ra (2.6)

where values of x are now sampled from the probability distribution g (x )/G (20)

1
where Ig (x)dx = G. Now, Monte Carlo estimates of / can be obtained from
0

_1¥fa
WZ_—(X 2.7

Note that for g(x) = f(x), (f (x) 2 0), Iy =7 and the statistical error is zero for all

1
values of N. Of course, such a selection implies G = jj(x )dx =1 is known, which is
[}
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assumed not to be the case. Therefore, one chooses a function g(x) 20 (with G
known) which mimics the behavior of f (x), i.e., 2(x) = f(x). To the extent that g
resembles f, values of x are sampled where f is large, or important, thus ‘‘impor-
tapce sampling’’. In addition, since g = f, fluctuations in the ratio f (x)/g (x) will be
much less than those in f (x) with the result that O(r15)< < Of > and the statistical error
of Iy is reduced.

The simple example above involved solving a non-stochastic problem using random
rnumbers. Naturally, Monte Carlo techniques may be employed in studying random
processes as well, such as neutron transport[2%] and Brownian motion. The ase of
Monte Carlo techniques for solving the Schridinger equation is discussed in the next

section.
2.3 Quantum Monte Carlo

Over forty years ago Fermi suggested that the time-dependent Schrodinger equation
could lend itself to simulation when written in imaginary time[30). The first
significant QMC calculations were undertaken by Kalos in studying three- and four-
body nuclei[31], atomic helium[32], and a Boson fluid interacting through a Lennard-
Jones potential[33]. In these calculations the time-independent Schrédinger equation is
cast into an integral equation. That is,

Hy=Ey, H=Hy-W (2.8)
is written in integral form as

V(R") = [GoR-RE+W (R)IW(R)AR . 29
Here G, is the inverse operator of Hy which satisfies HyGo(R - R)=8R - R")
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and any other boundary conditions inherent in the physics of the problem at hand.
The zeroth-order Hamiltonian, H g, and by implicaton Gy, is chosen so that values of
R’ can be readily sampled from Gg(R—R"). The Green’s function, G, serves as
transition probability density function and W, the residual part of the Hamiltonian, acts
as a weighting factor. The procedure for obtaining the ground state is to iterate a set
of points sampled from some initial distribution, W, 10 a set distributed according to
a final distribution, W**), It is easily shown[33) that as # becomes large, ¢ becomes ]
the lowest-energy eigenfunction of H not orthogonal to w®. This approach yielded
encouraging results for the probiems studied. Basically, a differential equation is
solved by casting it into an integral equation and sampling a Green’s function by
Monte Carlo - thus *‘Creen’s function Monte Carlo (GFMC)*’.

A major advance in GFMC was the inclusion of importance sampling in computa-
tions on helium-like systems at 0° Kelvin{34]). Here the integral equation is derived
using the full Green's function, i.e., W =0, and Wy = EgH "y, is written

VDR = Ep JORR)WIR)IR | @10
To implement importance sampling using a trial function, ¥y, Eq. (2.10) is rewritten in

terms of f ™(R) = Y (RWIR) as

FODRY) = Ep [G(R—RHf"YR)R (21D
where G;(R—R") = Y (R)GRSRYYR). Also, the reference energy, Ep, is
chosen as = Eg, E > 0, in order to stabilize the normalization of the solution since
YD = (Ep 1E g™ at large n. For Yr =y, the energy can be obtained immediately
with no statistical error[34]. Therefore, in a vein similar *c .2t described in the first

section, ¥ is chosen to mimic the behavior of the lowest-energy eigenfunction to
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reduce statistical error. Subsequently, variants of the GFMC approach have been
developed. For a discussion of QMC techniques sec Refs. 26,35-36.

The two major difficulties encountered by Monte Carlo approaches in studying
chemical systems are sampling the Green’s function, since H~! is generally not known,
and obtaining an anti-symmemic solution. The latter difficulty is the most
significant[37] as it is the only remaining barrier 1 the computation of statistically
exact ground-state e;lergies.

The lowest-energy Fermi state, described by an antisymmetric eigenfunction ¢y, is
generally higher in energy than the nodeless Bose ground state. Therefore, the
approach described thus far will not yield antisymmetric eigenfunctions unless the
Monte Carlo solution is forced to have nodes. If the nodes of the Fermi ground state
are known, ¢; may be obtained simply by not allowing these ncdes to be crossed.
However, the exact location of the nodes of eigenfunctions describing chemical ground
states are unknown. In this case the truc nodal structure must be estimated by an
approximate one, and these nodes are crossed. A sign of. +1 is assigned to a point if it
is arrived ar after an even number of node crossings and the sign is -1 otherwise.
Since ignoring the signs yields the (symmetric) Bose ground state, the lowest-energy
(antisymmetric) Fermi state is obtained as the differcnce, by using the signs, between
points sampled from the Bose ground state. This method becomes unstable because
the cnergy of the Bose state (Ef), being lower than the Fermi-state energy (Ef),
means that the normalizaticn of the Bose state, and hence its statistical error, increases
geometrically relative to that of the Fermi state[35,36). Therefore, the Fermi state,

obtained effectively as the difference between two continually growing ‘‘+'’ and ‘-’
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distributions, is made statistically insignificant by the statistical errors in these com-
porents. (For a simple example of this effect see Ref. [38]). The time by which the
Fermi state is “‘lost”” depends on IE§ — E} |, and so instabilities occur more quickly
as the size of the system increases. Thus far, the use of GFMC to obtain the lowest-
energy Fermi state has been limited to atoms and molecules with ten elsctrons or less.

An alternative to carrying signs is to ‘‘fix”’ the preassigned nodes.f39] That is,
moves in R-space are nor allowed to cross prescribed nodal boundaries so that the
instabilities induced by carrying signs is removed. The Schrddinger equation is now
solved within each nc 1al volume. This approw.h, discussed in detail in the next sec-
tion, yields an error depending on the accuracy of the fixed nodes. If the ‘‘fixed-
node’’ error is sufficiently small, then the stability obtained by fixing the nodes is
justified.

As stated on the previous page, the exact Green’s function is generally not avail-
able in closed analytic form. In GFMC it is sampled in an iterative (and presumably
convergent) process {34,35,40-42). The complex and iterative nature of this procedure
causes the sampling of the exact Green's function to be time consuming. if an accu-
rate approximation to the Green's function, G,, is known, then a direct sampling of
G, will be more efficient and yield little error. Such an approximation, to be dis-
cussed in more detail in 'the next section, was introduced by Ceperley and Alder to
solve the Schrodinger equation in imaginary time{39].

The solution of the Schridinger equation in imaginary time with fixed nodes,
“‘Fixed-Node diffusion QMC"’, employing an analytic ‘‘short-time’’ approximation to

the Green's function is now discussed.
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2.4 Fixed-Node Diffusion Quantum Monte Carlo
2.4.1 The Schrodinger Equation in Imaginary Time

The QMC technique employed here is now described in detail. This description is
similar to that of Reynolds et al.[43].
The theory begins with the time-dependent Schrodinger equation in imaginary time

@-nlih=1)

- a_¢;(g;_,:_) = [H - BR]JOR, 1), 2.12)
where £, is a reference energy which only affects the (imaginary) time dependence of
®(R, t). While the Hamiltonian above is completely gereral, from hereon the elec-
ronic Hamiltonian, H,, is employed since this is the context of our computations.
(Calculations employing the full non-relativistic Hamiltonian have been performed by

Ceperley and Alder{44] for solid hydrogen at high pressures.) Writing Eq. (2.12) wiih

H, (in atomic units) yields

_ B¢(R.£ _ _l 2 _
T =[5V +V - ERIOR, 1), 2.13)

where, for N electrons,

N
Vi= yV2, (2.14)
i=]
and V is the potential energy, [cf. Eg (1.7)].
To determine the time dependence of ®, this function is expanded in the complete

set of normalized eigenfunctions of A,

OR, 1) = TG 0(R) . (2.15)
i=0 .

Substituting this expansion into Eq. (2.13) and solving for the expansion coefficients
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yields

€;(0) = c;(Oexpl~t (E; - Eg)], ;(0) = [6°RYDR, 0)dR . (2.16)
Therefore, we may write
DR, ) = 3 c;(Mexp[~+(E; - EQ)p:R) , @17
i

so that the asymptotic form of @ is

®R, 1) = coexpl~(Eq — Ep)looR) , (2.18)
with ¢g = c¢(0). The subscript O denotes the lowest-energy eigenstate not orthogonal

to ®(R, 0). The excited states decay, relative to ¢y, according to exp[—t(E; — E], and
Ep is chosen to be = E to minimize the time-dependence of the asymptotic form of
.

The ground state ¢g(R) is then obtained by propagating an initial function
sufficiently far in imaginary time via Monte Carlo simulation. Eq. (2.13) corresponds

to a combination of diffusion (3dvar =%V2¢) and a first-order rate process

(@1 = —(V - Eg)P). The QMC approach simulates these two processes by sam-
pling the Green’s function of the imaginary-ime Schrddinger equation (2.13). This

Green'’s function is

G(@)=exp[—(T +V - Eg)], (2.19)

and, in coordinate space, the time evolution of @ is
DR, 1+1) = [GR R DOR, )R . (2.20)
The Green’s function is a solution to Eq. (2.13) in the coordinate R with the boundary
condition G(R =R, 0) = 3R ~R").
The diffusion and first-order rate process (branching) may be simulated by employ-

ing a *‘short-time'’ approximation to the Green’s function, G,. Thatis, as¢ — 0,
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G (D) = G,(7) = exp(—tT )exp[—t(V - Ep)], 2:21)

where 1T signifies small values of ¢, and G, is accurate to order 12, The first factor

corresponds to diffusion and the second to birth (V < Eg) or death (V > Ep). The

form of G, in coordinate space is easily derived, and the QMC simulation is readily
performed.

This simulation involves propagating a set of points, initially distributed as ®(R, 0),

until ¢ is obtrined as determined by the convergence of the energy or some other

quantity. Subsequently, more points are sampled and the ground state energy, E,, is

computed from the average of the potential energy;
1M
<V>= M"_".‘-H,E VR)) = [oo@®)V R)dR / foo(R)dR

= [0o(R)H -1dR [ [6o(R)1dR = E, . (222)
The second line is obtained from the first since (in coordinate space) the kinetic energy
operator annihilates the constant function, 1, and the last equality is obtained from the
hermitcity of H. Since error arises from G, for non-zero T (time step), either small
time steps must be employed, or results must be exrrapolated to T = 0.

Simulations of the type described above have been carried out by Anderson for
one- to four-electron systems[45-47}. Large statstical errors in the energy resulted,
e.g., about 30 kcal/mol for Be, because the energy is obtained from the average of the
potential energy, cf. Eq. (2.22), a quantity which possesses large fluctuations. Despite
the fact that computers would be one to two order§ of magnitude faster in the near
future, these calculations demonstrated that importance sampling would be required for

precise QMC computations.
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2.4.2 Importance Sampling

A particularly elegant way of incorporating importance sampling into the QMC
approach was introduced by Kalos et al.[34] as described in section 2.3. In diffusion
QMC, importance sampling involves defining a new density function

SR, 1) =YR)DPR, r). Rewmting Eq. (2.13) in terms of f yields

Y 1V S BRI EY + LVURRN, @23
where Ej(R) = Wr'(R)HW(R) and Fy(R) = Vinl¥(R)I? are the “‘local energy” and
*‘quantum force”’, respectively.

Once again a diffusion equation is obtained. Here, however, the diffusive motion
occurs in the presence of an external force, Fj. The role of ¥, in guiding the ran-
dom walk, can be seen from the form of Fp. As M2 decreases, |Fp ! increases and
the walk is guided away from regions where I¥12 is small. Another important
difference, from the case of no importance sampling, is that the branching term is row
given by E;(R) - Ez. For judicious choices of the trial function, e.g., to remove or
minimize the Coulomb singularities, the branching is now much better behaved than
V([R) - Ep. Note that as ¥r — ¢y, the branching term becomes a constant, Eg — Eg,
since £y = ¢5'Hdy = Eq. Thus, ¥ is chosen to approximais ¢,

The asymptotic form of ®(R, ¢), cf. Eq. (2.18), yields the large ¢ form of f,

SR, 1) = coexpl-1(Eq — Ex ]'Vr(R)0o(R) . (2.29)
As the convergence is exponential in ¢, the ‘‘asymptotic’* form of f(R, ¢) is readily
obtained. The QMC energy is now given by the average of the local energy over

points sampled from f(K . ;). Thatis,
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M
<> = Jim LB ®) = [fR, DERMR ! [f®R, }R
=M=z

= [O®RHYR)R | [0oRI¥(R)IR = E . (2.25)
where the last equality is deduced from the hermiticity of 4, and the cancellation of
the time-dependence requires that £ not depend on R. Since the statistical error in
E; vanishes when ¥ = @, the statistical error in averages of the local energy is
greatly reduced (an order of magnitude or more), in comparison to those of the poten-

tial energy, for reasonable choices of ;.
2.4.3 The Short-Time Green’s Function

The time evolution of the probability density function, f(R, ¢t), is
FR', ++7) = [dRFR, )GR SR’ T) . (2.26)
Here, as in Sec. 4.2.1, the Green’s function defines a move from R to R’ in dme t.
This function is a solution of the imaginary-time Schrodinger equation (with impor-
tance sampling), Eq. (2.23), with the boundary condition G(R R 0) =38R’ - R).
A ‘‘shor-time” approximation to G is employed to simulate the diffusion, drift
and branching of Eq. (2.23). It is obtained by assuming that the local energy and
quantum force are constant during the course of a move from R to R’. With these

assumptions, valid at © = 0, this Green's function is given by
2
G(R—-R )= (21!:1)"3"’ /'Zcxpl:_[l_z I_E —%FQ(E )] /21]

x cxp[—t [(EL RN+ E (RMN2 - ER]] . 2.27)

The first factor is the transition probability of moving from R to R’ in time t, and the
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second arises from the branching and gives the weight, relative to that at R, to be
astigned to R’. This approximate Green's function becomes exact as T — 0[47-49]
(except, perhaps, at the nuclei). For non-zero values of the time step, <, the asymp-
totic form of f(R, t) approximates ‘Fréy, so that computed results will differ from the
t=0 limit. The difference between T # 0 and t = 0 values is referred to as ~‘time-
step bias’’. Therefore, computations must be performed at values of T at which the
bias is masked by the statistical error, i.e, is not significant, or results must be extrapo-
lated to T = 0.

The Green’s function in Eq. (2.27) is modified slightly in order to maintain detailed
balance.[43] In this context, detailed balance means that the probability of moving
from R to R’ equals the probability of the reverse move. The modification involves
employing a diffusion QMC Green's function, Gp,

GR-=RD=GR-RDAR-R D), (2.28)

where
AR R’ 1) = min(l, WR -R! 7)) (2.29)
with

¥ (RV2G(RR 1)
¥ RWPGR-RT)
The factor, A, incorporates an acceptance/rejection step into the algorithm. That is,

(2.30)

WR-R 1) =

after a move is completed, it is accepted with probability A. Ast—0,4 = 1 and
G, becomes exact implying that Gp is also exact at T = 0.
Finally, when ¥, = ¢y, Gp yields f= I [? for any value of . This results from

the fact that G, satisfies detailed balance for any value of <. i.e.,



GR-RDM R = % RIPGRSR,T) . (231)
As illustrated in Ref. 26, when detailed balance is satisfied between a transition proba-

bility function, K, and a given probability distribution function, g, sampling from K
(Gp for any 1) will yield convergence to g, (I'¥-(R)|?). Generally, i.c., when ¥ only
approximates ¢g, maintaining detailed balance reduces the time step bias. The use of

Gp is discussed in the presentation of the diffusion QMC algorithm in Sec. 2.5.
2.4.4 Fermi Statistics: The '‘Fixed-Node’” Approximation

As is well known, the eigenfunctions of chemical systems must change sign uprn
the interchange of electron coordinates since clectrons are spin one-half (Fermi) part-
cles. The QMC formalism described thus far, however, requires
f(R, 1) =¥ (R)D(R, t) to be non-negative. If ¥ possesses the same nodes as does
¢p. then f will remain non-negative and the Fermi system may be treated immediately
and exactly. For example, to obtain the exact energy of the 2p, state of H atom sim-
ply requires ¥y to have a node at x = 0. In general, the symmetry of an atom or
molecule does not completely specify the location of the nodes.[51] While techniques
do exist for exactly sampling any Fermi state[35-36,40-42], they suffer from the insta-
bilities discussed in the previous section.

The technique employed here for treating 1 Fermi system fixes the iodes of
@®(R, t), and, therefore of ¢g, to be those of the trial function. That is, moves which
cross these nodes are not allowed so that the simulations are confined within the nodal
volumes of ¥-. Therefore, the Schridinger equation is solved with the nodes of ¥ as

boundary conditions, and statistical error does not diverge since signs are not carried.
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When the assigned nodes are not those of the lowest-energy eigenfunction, the QMC
solution is approximate. This approximation, however, has been found to be quite
accurate in many QMC computations[42-44,52-58].

It is now shown that the fixed-node solution (still referred to here as ¢p) yields an
upper bound to the ground-state energy. First, let the trial function ¥ (R, s) be
antisymmetric in the electron coordinates (r, s). Let v be a nodal volume of ¥, ie.,
a volume enclosed by a nodal surface, and ¢4(R, 5) the lowest-energy eigenfunction,

with eigenvalue €y, obtained from fixed-node diffusion QMC (QMC from hereon).

Then

Hog = €gba, Revy

o 20, (2.32a)
and

e =0, Revy. (2.32b)

The full anti-symmetric eigenfunction, éu(g, §) is then obtained by summing over all

permutations P,

da(R.5)= )P:(-f da(PR, P5) 233)

and from the variational principle

dR b H b
LM =gq2 Ey. (2.34)

[aR §oba

As seen from above, different nodal volurnes may yield different eigenvalues. Fol-
lowing the discussion which led to the asymptotic form of f(R, ¢), cf. Eq. (2.24), the

same reasoning shows that for ¢ sufficiently large, there results
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where m labels the nodal volume in which the QMC energy is a minimum. If the

cnergy differences, lg, — ggl, are sufficiently small, they may be masked by statistical
error or lack of full convergence to the form of f given by Eq. (2.35). However, if all
nodal volumes may be related by a symmetry operation which d(:;cs not change the
Hamiltonian, then the QMC energy obtained in each is the same, see Appendix A.
Note that if ¥ possesses only the requiretf anti-symmetry nodes then the nodal
volumes are all related 10 each other by a permutation, P, of electron coordinates.
Since PH = H, all the g, will be identical. This result may be generalized to opera-

tors other than H which are symmetric upon permutations of electron coordinates.
2.4.5 Variational Monte Carlo

In this section we describe the sampling of M/ [? using a guided Metropolis walk.
This approach is generally referred to as variational Monte Carlo (VMC). (The refer-
ence to variational results from the fact that the variational quantity £[¥] may be
computed. However, the QMC energy is also variational for ground states, cf. Sec.
2.4.4) As discussed in Sec. 2.4.4, the fixed-node energy is determined by the nodes
of W and the statistical error by fluctuations in the local energy. ‘PT"H Yr. This cen-
tral role of the trial function makes it highly desirable to compute the expectation
values

Ar = [dR G P WA / [dR I 2. (2.36)
(Specifically, A = H yields E[¥r).)

The QMC simulations require only the gradients and Laplacians of the trial func-
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tion. Therefore, ¥y may possess features, such as functions of electron-electron
separation, which are desirable but prevent the analytic computation of Ar. However,
in these instances expeciation values may be obtained from averages over points sam-

pled from M 12, ic.,

. 1M
fim - 3% 1RHAYR) = Ar (237
m=pe i=1
for R; sampled from MW A useful method of sampling points from 1912 is
obtained by noting that f= ¥ 2 is an exact solution to the imaginary-time
Schrodinger equation, (2.23), when the branching term is suppressed. Therefore,
employing the Green’s function of Eq. (2.28), but without the branching factor, allows
the distribution ¥ 12 to be sampled comectly for arbitrary values of t, cf. Sec. 2.4.4.

Generally, T is chosen such that the average probability of accepting a move is approx-

imately 0.5.
2.5 QMC Algorithm

In this section, the QMC algorithm for converging to ¥r¢p and computing the
energy is discussed. The algorithm for performing the VMC computations is identical
to that employed for QMC with the exception that branching is not simulated, cf. Sec.
24.

Prior to the Monte Carlo simulations, a trial function is chosen for importance sam-
pling. As stated in the previous section, the ideal choice is ¥y = ¢ which, of course,
is generally not possible. In practice, a trial function which accurately approximates

the ground-state eigenfunction yet is reladvely simple, so that its gradients and Lapla-
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cians can be evaluated quickly, is desirable. The optimum mix of simplicity and accu-
racy is difficult to determine because QMC energies can not be predicted on the basis
of a trial function’s nodal structure. Instead different trial functions are employed and
the resulting QMC energies yield, a postieriori, their quality.

Below the form of the trial function derived from the product of a single Slater
determinant and correlation functions is presented. The exiension to the case of
several determinants readily follows.

A Slater determinant depends on both the spatial and spin coordinates of the elec-
trons. For one with n spin-up and ng spin-down electrons, a function which depends
only on the spatial variables is obtained by assigning elecuwons 1 through n, a spin of
% (up) and electrons nqy + 1 through 24 + ng a spin of —% (down). The result is that
the Slater determinant becomes a product of two determinants — one for the spin-up
electrons and one for those with spin-down. This assignment of spins introduces no
error for a spin-independent Hamiltonian.

The trial function, for N electrons, is now written as

L2 -, N =detlvi VIR - VE ol dety§net) vEgr2) - v (ngenpl

xF(1,2, --- ,N). (2.38)
An orbital subscripi (& or $) denotes that the orbital is occupied by an electron of that

spin. The correlation function F is introduced to give an improvement over the
independent particle approximation. For the calculations performed in this thesis, F is

given by

FR)=G{{ry DH{ra)) . (2.39)

The **electron-electron’’ correlation function, G, is usually chosen to have the form
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where several different fonl-ms of U, have been studied. The exponential form is useful
because it is without nodes. The parameters in U, arc generally chosen to minimize
E[¥r], and to remove the Coulomb singularity in the local energy at ry; =0, ie., 10

satisfy the electron-electron cusp condition. The *‘electron-nuclear’’ correlation func-

tion employed here is,

H({ria)) = exp[ TUs(rio)] - (2.41)

i,

The form of U, studied thus far is,

Uy(rio) = =Aglio/(1 + Varia) . (2.42)
The parameters, A, and Vv, are chosen to minimize E [¥] and/or reduce or remove the
singularity in the local energy at r;, = 0, the electron-nuclear cusp condition. As can
seen from the equations above, the correlation functions are always positive, so that
the nodes of ¥y arc completely specified by the determinants.

In performing QMC (or VMC) computations, trial function ratios, the quantum
force Fg, and the local energy E; must be evaluated. To do this efficiently, the
inverses of the matrices corresponding to the determinants in Eq. (2.38) are computed.
The result is that the quantities above can be readily obtained as scalar products {37].
Details are reserved for Appendix B.

The QMC algorithm employed here is very similar to that of Reynolds er a/.[43]

and is as follows:

(1) The initial probability density, f (R, 0), is chosen as ¥ (R)I%. This is accom-

plished by first randomly choosing a set of Ny = 100 — 300 points, (R;), and using
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VMC 1o obtain N new points sampled from I¥-(R)[2. (During this step “‘trial”
expectation values, Ay, are computed.) Convergence to ¥ |2 is rapid since large time
steps, T, can be employed.

It is very important, however, that none of the initial random points be ‘“‘too’” close
to a node of the trial function. This is because the acceptance probability, A, cf. Egs.
(2.29) and (2.30), becomes zero for a point located on a node of ¥. The
acceptance/rejection step is useful because it yields detailed balance in the simulaton
and guarantees convergence to ¥ 12 for arbitrary time steps. However, since the pro-
bability of moving to a node of ¥ is zero, then, by detailed balance, the probability
of moving off a node is also zero. Therefore, each point (walker) is checked to see if
it is moving through R -space and discarded if it is not.

For an ensemble of points, {R; }, distributed according to ¥ 12, the next steps con-
cemn propagating these walkers in in}aginary time, by employing Gp, cf. Eq. (2.28),

until a new ensemble distributed as ¥ ¢y is obtained.

(2) Each point R,, in the ensemble corresponds, for N electrons, to a 3N-dimensional

vector specifying the positons of the electrons, that is,

R =@, rlm, - rlmy. (243)

To move the first electron, a new set of coordinates, 7™, is chosen from the diffusion
+ drift factor of the Green’s function,

Am) _ . 1 e
e =i g v SR e, ™, iy, (2.44)
whers F = 2% 'V \¥. The second term of Eq. (2.44) simulates the diffusion, that

is, x is a three-dimensional Gaussian random variable (obtained by the Box-Mueller



method[60]), and the last term simulates the drift. If a node is crossed, i.e.,
Y™, o )¥E™, -+ )S0, then the nodal boundary conditions are
enforced by either deleting this walker or rejecting Q'f"”:zl("’)) this move. (The

relative merits of ‘‘rejection’’ versus *‘deletion’’ are discussed in Chapter 3.)

(3) To incorporate detailed balance, the acceptance probability, A, is computed. If
A =1, the move is accepted, if A < 1, then the move is accepted with probability A.
Algorithmically, this is implemerited by obtaining a number /,,

Iy =inA +§) , (2.45)
where & is a uniform random variate between 0 and 1. The move is accepted if [, = 1
and rejected if /4, = 0. It is easily seen, by integrating /, d€ from O 10 1, that the aver-
age value of I, is 4.

The quantity, /4 is stored in order to compute the ‘‘acceptance ratio’” of the calcu-
lation. The acceptance ratio is deﬁn;:d as the number of moves accepted divided by
the total number of moves awtempted. This ratio gives an estimate of how close the
simulation is to the T = 0 limit. Tha: is, for the exact Green’s function, G, it is readily
deduced from the eigenfunction expansion of G, that W and, therefore, A are equal to
one for all moves, cf., Eqs. (2.29) and (2.30). Since the short-time Green’s function is
exact at T=0, then the acceptance ratio will converge to unity as the time step is

made smalil.

(4) Steps (2) and (3) are performed for each of the remaining N — 1 electrons to com-

plete the move R, — R;,.



(5) The “‘multiplicity’’, M,,, is computed in order to simulate the branching where,
M, = exp[—1, {[EL R,) + EL(R7)V2 - Eg}] . (2.46)
The diffusion time in Eq. (2.46) is 7, rather than T becanse some of the electron
moves may have been rejected. The mean-squared distance the electrons wnuld

diffuse in time T, without rejection, corresponds to that of simple Brownian motion,

<> =3t, (247

and, in keeping with this correspondence, rejections yield an actual diffusion time

given by

<r2 opiea> =37, - (2.48)

Therefore, we have

Ty = W< e cepueal <> - (2.49)
Since each electron is moved individually, the local energies are computed as the

sum of one-electron contributions. That is,

N
= (m) pAm) .. pfm) Lm) .. p(m)
E (R,) ‘_Z-;EA(L, ¥ i) il i -r) (2.50a)
and
. S “m) pom) Am) ,(m) m)
E,‘(g,,,)=‘.}:‘1EL,(5l Y A TEY ). (2.50b)

Also, for R = (ry,ra, - -, ryh E; (R) is defined as

= _lg- - 1 - - -
ELR) =¥ RIWVIHR) - Trig' + 5 Zri + N TZZprag’ - (251
a i af
The multiplicity is computed from the local energies and the actual diffusion time.
The branching may then be simulated in either of two ways, or as a combination of
both. The first, referred to as “‘integer rounding’’, signifies that /,, copies of walker

m are created at R, where
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I, =in{M, +E&), (2.52)
and & is once again a uniform random variate between 0 and 1. The second approach,

“‘weighting’’, simply uses M,, to define a weight, w(R,). For the walker at R},,
wiR =M wR,) . (2.53)
The benefit of weighting is that it is always exact rather than exact only on average
(with integer rounding). However, if only weighting is employed, the sampling will
become inefficient because the weights diverge towards 0 or = as the simulation
proceeds. This problem is not present with integer rounding because each walker has
a weight of unity (though more than one walker may be present at a point in R -space).
A useful combination of weighting and integer rounding is to employ weighting with
the constraint that the weights remain between an upper (w,,) and lower (w.;.)
bound. That is, if w(R) 2 w,, at a point R, I, = int[w(R) + §) walkers are created
at R and each is assigned new weight of w(R)/,. If w(R) S w_; <1, integer
rounding is employed by assigning this walker a new weight of int{w + §]. The use-
fulness of this method of simulating the branching is discussed in subsequent chapters.

Expectation values are obtained from the following averages,

— M M
Ay = YILLARYYI, (integer rounding) (2.54a)
m=1 i=1
or
- M M
Ay = TwRIARLITwR,), (weightng) (2.54b)
m=1 i=1

where A is a coordinate operator. (For example, to compute the energy,

AR = EL(R,))

(6) Repeat steps (2)-(5) for all walkers in the ensembie.
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(7) Repeat steps (2)-(6) for N, times, where 1, = N.t, and the *‘block™ time (1) is
generally chosen to be several inverse hartrees. At this point a block is completed and
averages given by Eq. (2.54a or b) are computed.

Block averages are useful because, given the small size of T, there exists a high
degree of correlation between successive moves. Therefore, the QMC calculation is
divided into blocks and final averages are obtained from block values. If the blocks
are sufficiently large, i.e. 1, and/or N are large, then the correlation between block

values is small and the stadstical error from their average will be accurzte.

(8) If the reference energy, Eg, is a poor approximation to Ey, it may be updated, to
minimize the dependence of f(R, ¢) on ¢, according to

Ep(new) = %[ER (old) + E, 1. (2.55)
(or some other combination) where E,, a *‘block energy’’, corresponds to the average
in Eq. (2.54) with A = £, and M is the number of points sampled in the block.

Note from Eq. (2.55) that updating Eg in this way introduces a weak dependence
on the values 6f R sampled in the block, since E, = E,({R, ), #). It is assumed,
however, when obtaining £, from the average of the local energy, that the reference
energy does not depend on R. In the limit that everg'v point in R -space is sampled in
the block, E, and Ep depend only on ¢. Therefore, for sufficiently large blocks it r;1ay
be assumed that Ep depends only on the imaginary time. In practice, the reference
energy is not updated when the QMC energy, for the value of t employed, can be

estimated to within = 0.01% as is often the case.

(9) Before proceeding to the next block, the number of walkers, which may now be
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different than Ny due to branching, is “‘renormalized’” to Ng. This step is necessary
because the fluctuations in the ensemble size increase as the simulation proceeds.
Renormalization introduces a bias[40] since adding or removing a walker at R,, € {
R; }, to obtain Ny walkers, is not arbitrary for blocks of finite length. Therefore,
block lengths (¢, ), are chosen as large as possible, to minimize this (generally not visi-
ble) bias, yet small enough so that the ensemble size will not fluctuate to zero or

beyond the allocated memory.

(10) Repeat steps (2)-(9) undl the block energies have converged, implying that

SR, 1) = ¥r(R)oo(R).

(11) Reset all averages to zero. Then repeat steps (2)-(9) until enough blocks, N, are

obtained so that staristical errors in each computed quantity, A,

A=—XYa4,, ‘ (2.56)



Chapter 3
The Computation of QMC Energies

3.1 Introduction

In this chapter computations of QMC energies arc presented and discussed for a
variety of atoms and molecules. These computations allow several important facets of
fixed-node diffusion QMC to be studied.

As mentioned in Chapter 2, a short-time approximation to the Green’s function is
employed. In principle this approximation is easily removed by computing over a
range of time steps which yields a reliable cstimate of T =0 results. The required
range of time steps depends on the behavior of the computed quantity versus the time
step. If time-step bias is sufficiently large, or is not consistent, then obtaining
unbiased estimates, from extrapolation or otherwise, will necessitate computations at
small tme steps. However, efficiency is generally inversely proportional to 7, due to
the increase in correlation between moves, so that small-t computations are costly.
Therefore, it is of interest to gain an understanding of this bias. Towards this end,
time-step, as well as other, effects are studied in detail for several well-understood sys-
tems in the next section.

It is also of interest to examine the error ingroduced by forcing the nodes of the

QMC solution to be those of the trial function — the fixed-node approximation. As



proven in Chapter 2, this approximation yields a variationally bounded energy for
lowest-energy states of a given symmetry. Also, as the nodes become exact and time-
step bias is removed, QMC results do as well. Beyond these facts, however, the
parameterization of the fixed-node error versus nodal structure is unknown. This is
due, in part, 10 the complex nature of the nodal (hyper-)surfaces of anti-symmerric
functions. Therefore, the accuracy of a trial function’s nodal structure, in terms of the
quality of the QMC energy or other co;'nputed quantities, must be ascertained directly
by computation if previous experience is lacking.

In studying the quality of fixed-node energies, several energy computations have
been performed and are reported in the remaining sections. For tial functions with
nodal surfaces simple enough to be drawn, nodes have been plotted and compared with
computed energies. When this is not the case, conclusions of a general nature con-

cerning the effects of one- and many-particle basis sets may still be made.
3.2 Time-Step Bias in Diffusion QMC Calculations

The magnitude of the time-step bias is considered for all the atoms and molecules
for which we have performed QMC computations. Since the energy generally
possesses the smallest relative statistical error, time-step bias is often most visible in
this quantity. For few-electron atoms and molecules, time-step and other biases may
be studied in greatest detail because of the smaller computational cost incurred. The
results of QMC computations on several small sysiems are presented and discussed
below.

The first effect studied here concems the acceptancefrejecton (AR) step. As
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discussed in Chap. 2, this siep maintains detailed balance and is expected to reduce
time-step bias. The model system studied is the ground state of the H atom with
Y5 = exp(-Lr), { = 1.05. The results presented in Figs. 3.1 and 3.2 demonstrate the
importance of AR in reducing time-step bias. Time-step bias is increased by an order
of magnitude in the energy (cf. Fig. 3.1), and in ry and rZM (cf. Fig. 3.2, where
Ay = <¥p A l19>/<¥ |A 19>), for most values of the time step (t) when AR is omiued.
Consequently, the value of t at which accurate results may be obtained is approxi-
mately an order of magnitude smaller, increasing computational cost by this amount,
without the AR step. Given the size of the effect found here, the use of AR is highly
desirable in computing diffusion QMC energies of Coulombic systems.

When the trial function is exact, no time-step bias is present, and therefore, increas-
ing trial function accuracy should reduce this bias. This effect is dcmonstrate.d in Figs.
3.3 and 3.4 in which QMC energies for the ground state of H are plotted for several
values of §, ¥ = exp(~{r). While L.hc amount of bias is roughly independent of the
sign of the error in {, compare the { = 0.95 and { = 1.05 (exact § = 1) energies in Fig.
3.3, decreasing { to 0.90 leads to a noticeable increase in the size of the time-step bias.
Finally, Fig. 3.4 shows that very poor choices of ¥ lead to great difficulty in comput-
ing the energy accurately. Near-statistical agreement with the exact energy is obtained
only for the very small time step of 0.0005 k™! when { = 0.50. Furthermore, the prac-
tically monotonic behavior of the QMC energies plotted in Fig. 3.3, { = 0.90, 0.95 and
1.05, is contrasted by the fluctuating { = 0.50 energies. Such fluctuations greatly
increase the uncertainty in extrapolations to © = 0.

In addition to the wial function, another consideration is the enforcement of the



nodal boundaries. Several aspects of this are studied for the 2p, state of H; Figs. 3.5-
3.7 present results.

The first effect examined here is that arising from the finite probability of a walker
crossing and recrossing a node during the diffusion step of a move. To remove this
source of bias a walker should be deleted (or the move rejected) with the probability,
which is non-zero for T > 0, that a node cross-recross (CRC) occurred. For the 2p,
state, this probability may be compute;d exactly[46] since the node is kﬁown to be at
x =0, (*“NO CRC” in Figs. 3.5-3.7). Alternately, and more generally applicable, the
location of the node may be approximated using the gradient of the wial function, and,
assuming the node to be a plane perpendicular to the gradient, the CRC probabitity
may be estimated, *‘V CRC".

Fig. 3.5 presents energies computed with and without CRC bias and its approximate
reatment using V¥, ¥ = xexp(-0.55r) (the exact exponent is 0.5). A node crossing
is treated by deleting the walker. It is notable that removal of CRC bias actually
increases tume-step bias, as seen by comparing the NO CRC with the standard walk
(CRC) results. Apparently the CRC bias cancels another so that its removal worsens
computed energies. This is discussed later when rejection of moves crossing a node is
considered. Approximately removing CRC bias with the V CRC technique is found to
slightly increase bias with respect to the standard walk energies, probably to the extent
that cross-recrossings are removed.

The remaining set of calculations in Fig. 3.5 neglect CRC bias. Instead the
“ITERATIVE”’ technique of Anderson{59] is employed to reduce time-step bias. This

approach improves the short-time Green's function through the use of a more
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appropriate quanmum force, Fp in Eq. (2.23), for each move. After sampling 2 point
R’ from G,(R >R 1), R is moved to R” with a quantum force of

Fo = 2[RR) + R .
The extra computation resulting from the increased complexity of the moves will be
justified if time-step bias is reduced by about a factor of two. The energies in Fig. 3.5
show that this iterative technique does reduce bias, in comparison to the standard walk,
but by no more, if not less, than a factor of two.

The next consideration is whether to establish nodal boundary conditions by either
deleting a walker or rejecting a move upon crossing a node. For non-zero time steps
the two algorithms will yield different densities near the nodes and, therefore, different
results. A good example demonstrating the differences between deletion and rejection
is that of a particle in an infinitely deep well. With rejection, choosing the wial func-
tion and reference energy exactly for the ground state yields a stable algorithm and
correct results. However, if walkers.arc deleted upon crossing the boundaries of the
well, a population decaying in time and a biased growth energy are obtained. Other
quantities, such as the density of the walkers near the boundaries, could now be inac-
curate as well.

Energies computed with the deletion approaches possessing the least amount of
time-sicp bias, the CRC and iterative walks in Fig, 3.5, are contrasted in Fig. 3.6 with
rejection (upon crossing x = 0) walks which do and do not possess CRC bias. The
trial function is that of Fig. 3.5. Comparing standard diffusion QMC (CRC) deletion
and rejection energies shows a large reduction in time-step bias when rejecdon is

employed. Energies resuling from rejecting moves yields improvement over the



iterative (deletion) approach as well. Also, removal of CRC has a much less pro-
nounced effect with rejection.

The worsening of the energy by removing CRC bias when deleting walkers is now
readily explained. The QMC energy is computed from the average of the local energy,

E; , over ¥rd (cf. Eq. 2.25), where

EL(r)=-3(0+ lgr‘—l . @3.1)
If { > 0.5, the local energy tends to be higher near the node, i.c., smaller values of |x|
tend to give smaller values of r and higher local energies. Therefore, too low a den-
sity near x = 0 yields an energy biased below the cormrect resuit ~ as occurs with dele-
tion. Removing CRC bias, and thereby deleting more walkers near x =0, further
iticreases time-step bias as observed in Fig. 3.5. Since rejection energies are much
more accurate, the description of the density near the node is better with rejection
versus deletion. A further verification of this fact is found by comparing rejection and
deletion results for averages of 312-}2 over ¥r¢. For 0.05 <t < 1.00 £~!, rejecting
moves gives accurate values while deleting walkers yields values which are far too
high.

The effects discussed above are finally considered for { = 0.45, ie., { below the
exact, and results are presented in Fig. 3.7. As implied by Eq. (3.1), deletion energies
are now biased above the exact, and once again rejection yields far better energies than
deletion.

Due 10 the results presented thus far, rejection is employed in QMC calculations
subsequent to the discovery of the reduced time-siep bias discussed above. Also,

given the unsatisfactory results of the V CRC and iterative techniques, they are not
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implemented in other QMC computations.

The last, and perhaps most important, idea for reducing time-step bias concerns the
choice of the trial function, which is used for importance sampling and setting the
nodal boundary conditions.

As stated in Chap. 2, the trial function is a product of an antisymmetric function
and an everywhere positive correlution function, F, cf. Eq. (2.38). That is,

Wr(R) = Det™{y; (R;)))DetP(y; (R)IF R) , (32)
where {y;) and {y;} are the molecular orbitals (MOs) occupied by spin-up (o) and
spin-down (B) electrons, respectively. For example, a single-determinant trial function
describing the ground state of Be takes the form

i) %(Lz)l Iw;(::) VITD | fopy . (G3)
Yalr) vt | fvalrs) walra)l ™ =7

where R = (ry, ra, '3, r'q). A multi-determinant trial function is, by analogy with Eg.

WR) =

(3.2), a sum of products of *spin-up”’ multiplied by “spin-down’" determinants.

The correlation functions employed here are given by

F®R) =G ([ry DH({rie))
= exp[ZU (rp]exp[ TUi)] G4
i<j ia
where r; and r;, denote electron-electron (E-E) and electron-nuclear (E-N) separa-
tions, respectively. Parameters in U, for the forms we have considered, may readily
be chosen to satisfy the electron-electron cusp conditions. The electron-nuclear func-
tion, U,,

Uirie) = =A(1 + vgrio) » (3.5)

combines with the antisymmetric component of ¥y in determining the behavior of the
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local energy as an electron approaches a nucleus. For a nucleus with charge, Z,, the
ri7l singularity in £, is removed when

[rioE @b 0 = [ 5710 B RIVIHR ) 0 = Za = 0. 36
Abbreviating Der* {wy;(R;)} as D*, and employing ¥ and U, as given by Egs. (3.2)
and (3.5), respectively, yields for the E-N cusp condition,

~Lria@ VD], g+ Ay =2, G
For a Slater-type orbital (STO) basis set, the first term in Eq. (3.7) is generally non-
zero and depends on the positions of the spin-s electrons not on the nucleus. There-
fore, Eq. (3.7) may only be solved approximately if two or more electrons possess the
same spin.

We have found that satisfying the E-N cusp condition, exactly when possible or
approximately otherwise, reduces time-step bias. The importance of satisfying the E-N
cusp condition, for purposes of reducing time-step bias, derives from the Green’s func-
ton, Gp [cf. Egs. (2.28)~(2.30)], we employ in diffusion QMC. Since this Green’s
function yields no time-step bias when ¥, is exact, and E; is a constant, reducing
fluctuations in the local energy should lead to a decrease in bias. Insofar as removing
singularities in E; is an important step towards achieving a constant local energy,
satisfying the E-N cusp condition should yield decreases in bias in comparison to ener-
gies computed otherwise.

For systems with two or more electrons of a given spin, it is useful to determine
the behavior of the first term in Eq. (3.7), Ty, in order to choose the value of A, which
best satisfies the E-N cusp condition. Here, this is done by sampling several thousand

values of R from ¥ 1% For a set of coordinates R, if a value of 7;, is sufficiently
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small, T, is computed and a value of Ay is tabulated according to Ay =Z, —T,. We
have found, for several atoms and molecules described by single-determinant trial
functions with STO basis sets, that the distribution of these values of A, is tightly
clustered about its mode, ‘‘Ag(cusp)’’. An example is given in Fig. 3.8. Therefore,
with Ay = A (cusp) we expect that the E-N cusp condition(s) are approximately, yet
optimally, satisfied.

In Fi'gs. 3.9-3.11 QMC energies are computed with and without satisfying the E-N
cusp conditions for He, Hy, and LiH, respectively. The two trial functions employed
for each system possess the same nodal structures and approximately identical energy
expectation values, E[W] = <W¥ IH |'¥>, For the first two systems, with only one
electron of each spin, the E-N cusp conditions may be satisfied exactly with the
appropriate choice of A. For LiH, this condidon is obeyed approximately employing
computed values of Ay(cusp) and ku(pusp).

Figs. 3.9-3.11 demonstrate the dramatic reductions of time-step bias in the QMC
energy obtained with values of A, optimized to remove the E-N singularities, ‘*“NO
CUSP", in comparison io energies computed with values of A, hand-optimized to
minimize E[¥], “CUSP”. The statstical error in each QMC energy is 0.00085 4
(0.5 kcal/mol) or less. For each system NO CUSP energies are in statistical agreement
with the exact energy, or for LiH the extrapolated to T =0 value, at a time step an
order of magnitude larger than when CUSP encrgies obtain similar agreement. As
with the effects of rejection versus deletion upon crossing a node, the significance of
satisfying the E-N cusp conditica was discovered after many of the calculations

reported below.



3.3 Computations of Energy Differences

The fixed-node diffusion QMC approach is a relatively new ab initio technique.
Inidally, energies of good or excellent quality were obtained for H,, LiH, Li,, and
H,;O employing simple, ie., single-determinant, small basis set, wrial functions.[43]
This success raises the question of the capability of QMC to compute accurately
energy differences such as classical barrier heights, binding energies, level splittings,
electron affinities, and so on.

The first such application was the study of the singlet-triplet energy difference, T,
of methylene.[S2] This system was of interest due to previous experimental discrepan-
cies, 8-10{61] versus 19.5[62] kcal/mol, which have since been resolved, Ty ~ 9
kcal/mol.[63]) The QMC energy of each state, computed with single-determinant, dou-
ble zeia (DZ) basis set, trial functions, are below any previous ab initio values and
also very accurate, 98% and 96% of the correlation energy (CE) obtained for the
singlet and triplet state, respectively. Furthermore, the QMC-computed T4, 9.4(2.2)
kcal/mol, is in good accord with accepted experimental results. (The large statistical
error arises from the fact that these early QMC calcvlations were performed on a VAX
780.)

The work described in this section continues the computation of energy differences.
The systems studied provide a proving ground of the QMC approach. In Sec. 3.3.1
the classical barrier height to the H + H, exchange reaction is discussed. Sec. 3.3.2
presents QMC energies of F and F~ from which an accurate electron affinity is

obtained. Sec. 3.3.3 concludes 5ec. 3.3 with a .calculation of the binding energy of
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N,.
3.3.1 The Barrier to H + H; Exchange

The computation of the classical barrier to the H + H, — H, + H exchange reac-
don is often used as a test case for theoretical methods of determining poteniial energy
surfaces (PESs). Indeed, there have been many semi-empirical and ab initio calcula-
tions of the PES of three hydrogen atoms, and, most importantly, the barrier to H-atom
exchange. A. review of such efforts is given by Truhlar and Wyatt.[64] The large
configuration interaction (CI) calculations of Liu[65] and Siegbahn and Liu[66] have
made the Hy PES the most accurately determined surface to date. Most recently
Liu[65] has reported an improved saddle-point energy and a barrier estimated to be
accurate to 0.1 kcal/mol. Finally, a released-node Green’s function Monte Carlo
(GFMC) calcularion by Ceperley and Alder{41] has yielded a barrier height which is
exact to within statistical error (0.08 kcal/mol). Given the high accuracy of previous
work and the relative simplicity of a three clectron system, the barrier to this H-atom
exchange reaction serves as e-ln excellent test case for diffusion QMC with fixed nodes.

All our QMC computations on H; employ deletion upon crossing a node. Since
single-determinant trial functions yielded accurate encrgies in previous QMC calcula-
tions[43,52], such rial functions are also used here. Several basis sets, however, are
utilized to examine their effect on the QMC energy. These basis sets are given in
Table 3.1, and range in size from single 2eta (SZ) to 4Z with four polarization func-
tons. A basis set with a function between each nuclei is also employed. The MO

coefficients (not shown) are readily obtained using standard molecular codes, e.g.,



HONDO.[68]

In the MO picwre, the ground state of H; consists of two electrons in the lowest-
energy MO, o, symmemy, and one in the next MO, o, symmetry. The QMC
approach, in assigning a spin to each electron, reduces the full 3x3 Slater determinant
to a spin-free product of a 2x2 determinant and a single MO. Including the comelatien
functions yields,

()]
Wriry, rar) = $;(Z:) $;8 lWl(Ls)CXP[EjU 1(’ij)]eXP[iZuUz’ia] . BB

For the electron-electron (E-E) correlation function,

Ur) = (ayr + ardi(l + byr +bord). (3.9)
The value of a; is chosen to satsfy the E-E cusp conditon for electrons of opposite
spin. (The like-spin cusp condition, satisfied when a, = 0.25[43], is not important
since ¥ vanishes when such electrons come together.) The remaining parameters are
optimized to yield a minimum in the VMC energy. Here, this optimization was per-
formed by hand, i.e., by comparing VMC energics between several sets of parameter
values, and is therefore not complete.

The E-E correlation function is monotonically increasing (for the parameters chosen
here, cf. Table 3.2) which pushes electrons further apart thereby expanding the density.
Thus the usefulness of describing instantaneous elecwon correlations is partially
negated by creating a density more diffuse than the SCF density which is qualitatively
correct on average. The E-N correlation function pulls the electrons back towards the
nuclei to improve the density, and also further lowers the VMC energy. The function

U, is given by Eq. (3.5). The parameters A and v are also partially optimized. All
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correlation function parameters are presented in Table 3.2.

Classical barrier heights, computed with the trial functions described in Tables 3.1
and 3.2, are presented in Table 3.3. These barriers, in kcal/mol, are computed as the
difference between the H; saddle-point energy and the exact ground state energies of
H and H,.[10] The exact energies of H and H, arc employed because the QMC ener-
gies are exact for these nodeless systems. The QMC barriers, therefore, are statistical
upper bounds to the exact. The saddle-point geometry, collinear with adjacent atoms
separated by 1.757 bohr, is taken from Liu’s large CI calculation.[65]

The basis sets range from minimum size (SZ), ¥'), to near-Hartree Fock (HF) qual-
ity, ¥¢. A spin-unrestricted HF (**UHF’’) trial function, W5, is also included and
yields an SCF barrier height below that of the HF limit. The addition of the comela-
tion functions is seen to significantly improve trial function quality. In general, 40-
65% of the CE is gained and the accuracy in the barrier height is improved by about a
factor of two in comparison to the SCF results, see Eg (VMC) in Table 3.3.

In computing the QMC energy, the effect of the QMC parameters selected for the
simulation, time-step, number of points in the ensemble, block tmes, eic., must be
considered. (The block time is defined as the number of steps each walker is moved
in each block multiplied by the time step.) Besides time-step bias, other effects may be
present. As discussed in Chap. 2, the number of points in the ensemble is reset to its
initial value at the end of each block by deleting or adding points (renormalization).
Renormalization introduces a small bias which decreases as the frequency of renormal-
ization decreases.[40] In addition to this bias, the updating of the reference energy,

Ep, has a small effect. This effect is due to the fact that updating £ by averaging in
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the current biock energy, cf. Eq. (2.55), yields a correlation between Ep and the sam-
pling of configuration space. This correlation decreases as the ensemble size and
block time increase.

In Table 3.3, an inijtial set of QMC calculations (fourth column) is compared with a
final set (last column) demonsurating the effect of QMC parameters on the computed
energy. In the inidal QMC calculatons the time steps employed were quite small,
0.00125 to 0.00500 k™!, and no time-step dependence is observed. The QMC barrier
heights, however, are significantly above the estimated exact value of 9.6 kcal/mol.
- This poor accuracy was found to be due to short block times. In the first three compu-
tations in column 4 of Table 3.3, the block time is 0.5 £~! and 1.0 2! for the last.
Also the reference energy is updated at the end of every block. For the last set of
QMC computations, all block times are increased to 5 27! and Ep is not updated but
fixed throughout the entire simulation. This reduction of renommalizaton error, and
eliminatdon of correlation of betwe;n Ep and block energies, yields a significant
improvement in the QMC-computed barrier heights. Therefore, a general practice of
seting block times to several inverse hartrees and using a constant reference energy is
strongly recommended.

The final QMC barriers, computed at © = 0.005 k7!, demonstrate the improvements
over the VMC energy obtained by the QMC approach. Even the very simple SZ wrial
function recovers over 90% of the CE. Trial functions W3 ~ ¥¢ yield QMC energies
which obtain over 99%, resulting in barriers within 0.1 to 0.3 kcal/mol of Liu’s best
(unbounded) estimate and Ceperley and Alder’s released-node result which possesses

only statistical error. Finally, note that our most accurate and precise barrier, obtained
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from W, is in excellent agreement with the essentially exact values quoted above, cf.
Table 3.4.

The basis-set dependence of the QMC energy, in contrast to more standard ab initio
methods, is very weak. All QMC barriers are within 2.5 kcal/mol of each other.
Eliminating ¥, as too simplistic reduces differences in QMC barrier heights to only
0.5 kcal/mol for basis sets ranging in size from two functions on each atom to eight.
Variation in thé computed barriers is further reduced to only 0.2 kcal/mol (roughly the
size of the statistical errors) by removing the UHF wial function energy.

The UHF trial function is now considered a5 a special case. The SCF barrier
height of this trial function, ‘¥,, is below those of the remaining spin-restricted
(**RHF"’) trial functions. The QMC barriers are much more similar, and that of ‘¥, is
actually the least accurate with the exception of the ¥, barrer height. This
pheromenon relates to the fact that the distinction between UHF and RHF trial func-
tions is less significant in the context of QMC calculations on the three-electron system
studied here.[69] The QMC energy is determined by the nodal swructure which, ignor-
ing the positive correlation functions, is given for ¥, by @,

) w(
D(ry, ra, r3) =@y \‘:g%l,) fzéz)) . (3.10)

For the ground state of H,, y; and y} correspond to the lowest-energy MO and there-
fore should be without nodes. Consequently, an RHF analog of W, which possesses
the same nodal structure, and thus identical QMC energy, is readily obtained by
replacing y; by y{ in Eq. (3.11). To the extent that the linear coefficients in the 2x2

determinant of the RHF analog are not fully optimized, in comparison to those result-
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ing from a spin-restricted SCF calculation, a UHF trial function may actually yield a
higher QMC energy. For ¥, y; was also found to possess an ellipitically shaped
node far from the nuclei, cf. Fig. 3.15, which will increase the QMC energy. There-
fore, it is not surprising that the QMC barricr of ‘¥, is among the least accurate -
despite having the lowest SCF energy.

As noted in the discussion of the QMC barriers in Table 3.3, the QMC energies
resuiting from W3 - ¥ show little variation. Since the QMC energy is determined by
the nodal structure of the trial function employed, the most direct explanation of the
QMC barrier heights lies in an examination of the trial function nodal structures.

In each of Figs. 3.12-3.14, curves representing nodes of the 2x2 determinant are
plotted for ‘¥, W, and Vs, respectively. Full three-dimensional nodal surfaces are
obtained by rotating the curves about the intemuciear axis, and the mial function van-
ishes when the two like-spin electrons lie anywhere on it (see Appendix C). As seen
from the plots, the highly curved nodal surfaces of ‘¥ are unique, while those of ‘¥4
and s, as well as those of the remaining trial functions (not shown), are practically
indistinguishablc. The dissimilarity of the SZ surface and the similarity among the
nodal surfaces of ¥, — ¥, thus explains the resulting QMC barriers.

The remaining question concerns the variation in the QMC barriers of ¥, — '¥;.
The differences among the QMC results of ‘¥ — ‘¥ are small enough to be caused by
statistical error, especially for W3='¥s, or the slight differences in the nodes of the 2x2
determinant. It is important to note, however, that the ground-state MO of ‘¥5, Ws and
¥4 possess a node far from the nuclei, as shown in Fig. 3.15. (For ¥, this node is in

the MO of the 1x1 determinant only.) Therefore, ¥s and ¥ possess, in addition to the
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exchange nodes, a node when like-spin elecons are on a node of y; or when the
unlike-spin eleczron is on this node. The additional node in ¥, concems only the
unlike-spin electron. The additional node in W5 remains over 20 bohr from the nuclei
and should have litile, if any, effect on the energy. On the other hand, the node in y,
is much closer in for ¥, and ¥¢ which may account for bamier heights above Liu’s
estimate by more than statistical error.

The additional node and slightly higher barrier height of ‘¥g show that nodal struc-
wre does not necessarily improve simply because a HF-limit basis set is approached.
This is reasonable since SCF calculations preferentially optimize the wave function
where it is large, while QMC calculations require accuracy in the nodes where the
exact solution is zem, Thus the accuracy of the SCF-determined nodal structure may
be non-monotonic or relatively constant, as seen here, as the basis set is increased.

In addition to an accurate energy, a trial function is desired which does not incur
large computational cost in obtaining a sufficiently small statistical error. While a
more complex trial function may yield a smailer statistical error for a given number of
sampled points, it may still be less efficient than a simpler trial function due to the
increased effort of computing quantities necessary for the simulation, e.g., Fg and E; .

In Table 3.5 the relative efficiencies of the trial functions are shown. The relative
efficiency of ‘¥;, is a measure of how quickly, in comparison to ¥y, the statistical
crror in the QMC energy is reduced to a given value. The efficiency of the UHF trial
function is seen to be the lowest, further obviating its usefulness. Most notable is that
the efficiency of ‘¥ is only slightly higher than that of ¥;, and lower than those of

W3 - Ws. Therefore, expansion of the basis set to near-HF quality actually reduces



52

efficiency (and, as discussed above, also possibly the accuracy).

Thus far a detailed discussion of time-step bias has bezn omitted. As stated about
the ‘‘short block time’* barrier heights, T-dependence of the QMC energies was not
observed for 0.00125 <t < 0.00500 k™!, We now extend the time-step range to
[0.00125, 0.10] 7! in computing QMC energies with 'Py; results are plotted in Fig,
3.16. The barrier heights plotted in Fig. 3.16 are all in statistical agreement with each
other demonstrating that even at T =0.1 ™} time-step bias is beneath the statistical
error of 0.25 kcal/mol. Furthermore, the barrier computed at 0.005 &™), reported in
Table 3.3, is in agreement with that obtained by extrapolation, 9.86 (0.20) versus 9.86
(0.22) kcal/mol, This agreement implies that the barriers in Table 3.3 of the remaining
wial functions, computed at T = 0.005 k1, also possess a negligible amount of time-
step bias.

The success in accurately calculating the Ha saddle-point energy encouraged the
computation of energies at two other points along the reaction coordinate. The
reaction-coordinate geometries are also taken from Ref. 65. For these points ‘¥; is
employed. This choice is dictated by the desire to use a small basis set beyond SZ
which treats all the hydrogen atoms equivalendy. In Fig. 3.17, the QMC reaction
ccl)ordinatc energies, and a spline fit to Liu’s, are compared. The QMC reaction coor-
dinate energies, which are upp.er bounds since the QMC asymptotic energies are exact,
agree with Liu’s results to within the statistical error, 0.25 kcal/mol.

In conclusion, single-determinant trial functions with small basis sets yield essen-
dally exact energies for the parts of the Hy PES studied. As a result, the QMC-

computed classical barrier height to the H + H, —» H, + H exchange reaction, 9.71
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(0.13) kcal/mol, is in excellent agreement with the exact released-node value of 9.65
(0.08) kcal/mol and Liu’s CI estimate of 9.59 + 0.06 kcal/mol. The computational cost
of these calculations was somewhat high; approximately five hours of Cray-1S time to
obtain a statistical error of 0.25 kcal/mol using ¥5. Since this time, vectorization and
other enhancements have been incorporated into our QMC codes. A more complete
QMC study of the H; PES, for purposes of investigating the possibilities of reso-
nances, has recently been undertaken by Maria Soto. These calculations on Hy now

yield the above statistical error in 30 minutes or less on a Cray/XMP.
3.3.2. The Elecuon Affinity of Fluorine

The accurate determination of electron affinities (EAs) remains a challenging
theoretical task because the total energies of an atom or molecule and its anion must
be computed to the same accuracy. Since an accurate determination of an EA requires
an accurate computation of the difference between two species with much different
electronic structures, difficulty arises using standard @b initio approaches because a
given level of theory generally describes the atom and anion to different levels of
accuracy. Attempts to circunmivent this difficulty leads to the use of very large basis
sets and CI expansions. However, though accurate energies may result, the energy
difference, EA, may still be of poor quality. This shortcoming of standard methods
makes desirable an exploration of alternative theoretical techniques for obtaining EAs.

As scen from our computations on Hj, simple trial functions, single-determinant
with small basis sets, yielded an energy difference accurate to 0.1 kcal/mol. Such

accuracy is a strong motivation to use QMC in approaching the difficult task of
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calculating an accuratc EA of F. Once again simple trial functions are employed to
obtain the desired energy difference.

The history of EA calculations begins effectively with the semiempirical work of
Clementi{70] and Clementi and Mclean[71] who tabulated non-relativistic energies for
several atoms and ions. These energies were obtained by subtracting semiempirical
estimates of the relativistic corrections[72] from the experimental energies.[73] The
energies so obtained for F and F~ led to a non-relativistic EA which was within 1% of
experiment. The point to note here is that the relativistic corrections to the energy of
F and F~ are almost identical — leading to an effective cancellation in determining the
EA of fluorine. This is expected since the added electron goes into the valence shell
where relativistic effects are small. Subsequent semiempirical estimates of the EA of
F and other atoms were performed in the late 1960°s.[74,75] In those studies, correla-
tion energies for atoms and positively charged ions were estimated by configuration
interaction (CI) methods. Non-relativistic ‘‘experimental” correlation energies[76]
(also for the atomns and the positive ions) were combined with these CI energies to
infer correlation energies for the negative ions. Electon affinities were thus deduced
from experimental results and CI estimates of the correlation energies of atoms and
cations.

Because it is desirable to compute physical quantities without reliance on experi-
mental data, several ab initio studies of EAs were undertaken in the early
1970°s.[77,78] To compute reliable ab initio EAs requires the accurate trearment of
electron correlation. This is readily demonstrated by the poor quality of Hartree-Fock

(HF) EAs.[79] Among the first-row atoms, for example, HF theory comrectly predicts
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the sign of the EA for only two cases. Even for these systems, the HF EAs are only
40% of the experimental values.

To incorporate correlation effects, Weiss{77) and Moser and Nesbet[78) employed
the atomic Bethe-Goldstone method to calculate total energies for first-row atoms and

ions. The technique relies on two assumptions: (a) that the total energy can be writ-

ten as

E=Eq+Xen + XEmn » (3.11)
n mn

where E is the HF energy and g, and €, are one- and two-particle comrelation ener-
gies, respectively; and (b) that these correlations can be calculated independently using
a superposition of configurations wave function. That is, the correlation energy of the
mn™ pair, g,.,, is taken to be the energy lowering (relative to HF) upon including only
double excitations of the mn pair in a CI expansion. The Moser-Nesbet and the Weiss
EAs were found to be in good accord with experiment, having an error of only 2% for
F.

Sasaki and Yoshimine[13] (SY), however, showed that summing one- and two-
particle correlations, as implied in Eq. (3.11), would over-estimate the EA of F by
about 6% (0.20 eV) if a complete basis set were used. The SY study involved
extended basis sets and large Cl expansions in computing total energies of the first-row
atoms and their singiy-charged anions. The basis sets contained up 1o i functions
(I=6), while the configuration list consisted of all single and double excitations from
the lowest-energy configuration, as well as selected triples and quadruples. Though the
SY wotal energies for F and F~ are the lowest obtained to date from variational calcula-

tions — having achieved over 95% of the correlation energy — the EA is nevertheless
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0.28 eV (8%) less than the observed value. Thus SY’s study again demonsirates the
difficulty of determining the EA of F (and other atoms) by variational techniques.

Recently, several new theoretical estimates of the EA of F have been reported.[80-
83] The techniques employed include many-body perturbation theory[78,79] as well
as multiconfiguration self-consistent field (MCSCF) plus CI methods.[82,83] These
sophisticated weamments still result in errors of 4-10%. Most recently, Moeller-Plesset
perturbation theory[84] and coupled-cluster {(CC)[85] computations have yielded very
accurate EAs of 3.47 and 3.37 eV, respectively. The CC calculations also yielded
95% of the (CE) for F and F~.

It is worth noting that the experimental determinadon of EAs is also difficult, with
experimental values for the EA of F ranging from 3.4-3.5 ¢V.[86-88] Presently, how-
ever, the recommended EA of F is 3.399 eV.[88] For a further discussion of the
experimental work, see Ref. 82.

The accuracy of the H; energy resulting from single-determinant trial functions
with a DZ basis set led to the use of such trial funcdons for F and F~. The F atom
exponents and linear coefficients are those of Clementi and Roetti{89], while those of
F~ resulted from a hand-optimization for a2 minimum in the SCF energy using
HONDO.[68] The basis sets for the atom and anion are presented in Table 3.6.

For purposes of comparison, the SCF energy of the F-atom basis set is within 0.006
h of the HF limit. The SCF energy for F~, and therefore agreement with HF, is more
difficult to analyze because SCF energies resulting from HONDO are too high in com-
parison to the true SCF energy when STO basis sets are employed. The emor, which

is more noticeable for higher-Z systems, results from using (2 maximum of six)
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Gaussian functions to describe each STO in the basis set. For example, a HONDO
SCF calculation on F with its DZ basis set, though giving accurate linear coefficients,
yielded an energy 0.0336 4 above Clementi and Roetti's value. Subtracting this
difference from the HONDO SCF energy gives an estimate of the correct SCF energy
of F~ lying within 0.021 4 of the HF limit. The poorer agreement, compared to F, of
the F~ SCF energy with the HF is not surprising given the difficulty of describing the
diffuse covalent electron density of an anion with a small basis set. Given the Hj
results, however, agreement or disagreement of the SCF with the HF energy was not a
major concern in considering nodal structure accuracy.

The correlation functions used here have the same form as those employed for Ha,
cf. Egs. (3.4), (3.5) and (3.9). In selecting comrelation function parameters, optimiza-
tion algorithms, besides hand-optimization, were not available. Unfortunately, the
difficulty of hand-optimization, in which parameter values are selected and the
corresponding VMC energies are then compared, greatly increases with the number of
electrons and the total energy. This is because the statistical error in the VMC energy,
for a given amount of computation time, generally rises rapidly with the size of the
system. Therefore, while a, is optimally chosen to satisfy the like-spin E-E cusp con-
dition, the degree of optimization of the remaining parameters is very crude. Despite
these difficulties, about 40% of the CE was obtained in the VMC energies of the atom
and anion. Correlation function parameters are reported in Table 3.6.

In Table 3.7 our QMC resulis are compared with previous studies, see also Ref. 54.
The QMC toral energies are quite good, achieving over 90% of the correlation energy

for koth F and F~. These energies are lower than those of all previous variational
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calculations, with the sole exception of those of SY.[13] It should be pointed out,
however, that it is quite difficult to perform such large basis set, extended CI calcula-
tions, as done in Ref. 13, on most chemical systems. Moreover, the QMC electron
affinity gives much better agreement with experiment{88] than that of SY, as well as
giving better agreement than all other variational calculations. Moreover, the present
QMC EA is also as good as or better than non-variationally cbtained EAs.

Our QMC energies for several time steps, T, are presented in Table 3.8, and shown
graphically in Figure 3.18. In the figure one sees that the fixed-node energies of F and
F~ increase with decreasing 1. Furthermore, the data strongly suggests that the energy
is linear in T for small 7. As can be seen in Fig. 3.18, it appears that the F~ energy
has begun to deviate from linearity by T =0.005 AL, while the F energy remains
linear in this region. In other words, the observed linear domain is smaller for F~ than
for F.

The statistical error in the QMC EA, albeit reasonable, is larger than preferred. For
example, the mean differs from experiment by only 1.5% but the statistical error yields
a small, but not negligible, prebability (about 15%) that the QMC EA is inaccurate by
5% or more. To reduce the statistical error in the EA requires a reduction in the
uncertainties of the QMC energies. These energies are obtained from extrapolation to
T =0 as indicated in Table 3.8 and shown graphically in Fig. 3.18. As secen from
Table 3.8, time-step bias is now much larger than was the case for the low-Z system,
H;. For H; a time step as large as 0.1 A~ was acceptable, while here T = 0.00125 4!
still shows some bias in the F-atom energy and the very small time step of 0.0005 4!

yields a bias for F~. The result is that reliable extrapolations to T =0 require the
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computation of QMC energies at small time steps which greatly decreases efficiency.
As an example of the computing required, at T =0.005 4~!, roughly 3 hours of
Cray/XMP time were needed to calculate the energy for F, and similarly for F~, to the
accuracy shown in Table 3.7. For the time-steps used in these calculations, halving t
doubles the computer time needed to achieve a given statistical accuracy. Thus the
overall computational cost was quite high. (The effect of this cost, however, was
significantly reduced by running our small-memory code at low priorities.) Therefore,
obtaining smaller statistical errors, by simply continuing the calculations as discussed
above, are not practical.

After the EA calculation, however, we discovered the effect of the E-N cusp upon
the ime-step bias, cf. Sec. 3.2 and Figs. 3.9-3.11. Therefore, it is of interest to com-
pare the values of A employed above with w10se which optimally satisfy the E-N cusp
condition, A(cusp), see Table 3.9. For F and F~, the distributions of A values, each
computed to satisfy the cusp condition for a given set of coordinates, are sharply
peaked, and each resembles a Gaussian with a longer tail at larger values, as in Fig.
3.8. For F, 68% of the computed A values lie within 0.006 of A(cusp) = 0.064, while
67% differ from A(cusp) = 0.0165 by only + 0.0015 for F~.

As seen in Table 3.9, the discrepancy between the hand-optimized value of A used
in the QMC calculaticn and A(cusp) is far greater, as is the ume-stey bias, for F~ than
for F. A subsequent calculation of the F~ energy at T = 0.005 k™' with A = 0.0165
yielded an energy of -99.8393(37) h. This energy possesses far less bias than the pre-
vicusly computed value at this time step, -99.9141(28)k, and is in agreement with that

computed at t=0.0005 k~!, -99.8375(21) h. Thus the same amount of bias is
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obtained at an order of magnitude larger time step implying, though not proving since
only one time step is compared, that a similar increase in efficiency can be obtained.
Resetting A to A(cusp) for F should also yield a (less dramatic) reduction of time-step
bias.

In summary, the mazin difficulty encountered in variational calculations of EAs is
that of describing the atom and the anion to the same accuracy. Generally, the atom,
being easier to describe than the anion, is treated more accurately at the same level of
theory. This leads to an underestimation of the EA. Even for a large basis set, large
CI calculation, such as that of SY, this effect persists. For example, SY underestimate
the EA of F by 0.28 eV. On the other hand, with relatively simple importance func-
tions, i.e., DZ basis-set, single determinant, QMC appears to treat F and F~ to virtally
the same accuracy (the EA is in error by 0.05 £ 0.11 eV). Apparently, the quality of
the nodal! structures obtained in the SCF procedure does not vary significandy from F
to F~, and so the fixed-node error in the total energy of each species is almost identi-
cal: 99.9691(21) and 99.9699(45)% of the estimated total energy is gained for F and

F~, respectively.
3.3.3. The Bond Energy of Nitrogen

The accurate determination of the bond energy of Ny is a challenging task for
theoretical chemists. Theoretical studies of N, to list a few, have included
expansion[92-96], perturbation theory[97-100], coupled-cluster[101], and local density
approximation[102,103] approaches.

The difficulty faced by expansion methods is best exemplified by Siegbahn’s
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calculation[92] which yielded a dissociation energy, D,, 0.45 eV below the experimen-
1al value of 9.91 eV[104] despite the large basis set employed. Using bond-centered
functions, Wright and Buenker werc able to obtain a D, of 9.96 eV. This accurate
value, however, was obtained by a balancing between the relatively small numbers of
atom-centered and bond-centered functions employed. As found in their calculations,

. changing this balance destroys the close agreement with experiment. Full CI calcula-
tons with basis sets large enough to give the desired accuracy, 0.1 eV or better, are
not currently possible due to computational cost. This difficulty has led to the
development of schemes[92,96] which approximate the full CI limit without excessive
CPU and storage requirements.

Computations based on Moeller-Plesset perturbation theory are more accurate.
Values of 9.70[98,99] and 9.80 eV[100] have been reported.

As an interesting and difficult problem, the computation of the dissociation energy
of N, serves as an excellent benchmark for further investigating the capabilities of
fixed-node diffusion QMC. For H;, the fixed-node approximation and the time-step
bias are of litde consequence, and a near-exact energy is obtained. For F and F~, on
the other hand, the fixed-node approximation resulted in extrapolated energies notice-
ably above estmates of the exact Bom-Oppenheimer energy, and the large time-siep
bias led to high computational costs. The fact that the total energies of the atom and
anion arc obtained to practically identical accuracy, however, yielded a very accurate
EA. If the similarity in the N and N, QMC energies is that of those for F and F~,
then the QMC dissociation energy will also be of high quality.

Continuing in the same vein as the F-F~ calculations, the nodes are given by a
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single-determinant constructed from a double-zeta basis set. In addition, the forms of
the E-E and E-N correlation functions are the same as those employed in Secs. 3.3.1
and 3.3.2 but with @, = b, =0. These parameters are considered the least important
(they do not affect the E-E cusp condition) and are, therefore, not employed since their
usefulness was furtherc? limited by the unavailabilty of an efficient optimization algo-
rithm. The basis-set exponents are wken from Clementi and Roetti.[89) For the atom,
the linear coefficients are also given by Ref. 89, and those of the molecule were. com-
puted with HONDO.[68) The exponents and hand-chosen correlation function parame-
ters are reported in Table 3.10. These simple trial functions yielded 40 and 18% of
the CE for N and N,, respectively. The lower percentage of the CE obtained for N; is
due, in part, to the greater degree of basis-set incompleteness for the molecule.

The QMC energies of N and N, wers computed at several time steps, and later
recomputed, after the importance of satisfying the E-N cusp condition was discovered,
with A = A(cusp) = 0.05. These energies are presented in Table 3.11 and plottec in
Figs. 3.19 and 3.20. The QMC energies, for which the E-N cusp condition was not
considered, once again possess a large amount of time-step bias. The energies com-
puted at the smallest values of T, 0.00060 A~! and 0.00125 4~! for N and N,, respec-
tively, are still biased above the extrapolated result Linear least-squares fits, which
pass within the statistical error of each point, yield energies corresponding to 90.5% of
the CE for both N and N,. While accuracy in the CE is the same for both the atom
and the molecule, this is not the case for the total er.ergy. The result is that the QMC

dissociation energy of 9.3(1) eV is significantly different from the experimental value

of 9.91 eV, i.e., an error of 6%.
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In addition, there appears to be some discrepancy between the extrapolated encrgies
obtained from computatioﬁs with and without the E-N cusp condition satisfied. Since
changing A does not affect the nodal structure, the energy at T =0 should not depend
on this parameter. The QMC energies of N and N, with A = A(cusp), as expected,
have much less bias, the slope of E versus T is reduced by about a factor of six, and
are therefore more reliable. Thus the bias in the N and N; QMC energies is prob-
lematic to the extent that time steps even smaller than the ones employed are required
to obtain a reliable extrapolation to T = 0 when A = A(cusp).

The dissociation energy obtained with A(cusp), however, is not significantly
affected; D, = 9.0(3) eV. Also, the amcunt of correlation energy obtained for the
atom is once again the same as that obtained for the molecule, now 87%. The fact
that the accuracy in the total energy differs between the two speciés. as opposed to the
case of F and F~, is not necessarily unreasonable. Unlike F and F~, there is a large
difference in the total energy between the two systems studied. Therefore, if the accu-
racy obtainable by a given trial function form depends on the total energy, and thus
complexity, of an atom or molecule, then electron affinities are more easily computed
than bond energies. Another dissimilarity, not present for F and F-, is the different
symmetry between N and N,. Further experience is necessary to predict the amount of
cancellation of error obtained with a given type of trial function when computing

energy differences.
34 Energy Computations on Other First-Row Atoms and Molecules

As seen from the calculations presented in Secs. 3.2-3.3, the fixed-node error of
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single-determinant trial functions is very small for Hjy and increases to about 10% of
the CE for larger systems. Beyond this, little else is discernible concerning the fixed-
node error of a given type of wial function. This section presents QMC energies for a
variety of low-Z atoms and molecules in order to gain an understanding of scurces of
fixed-node error in QMC calculations.

The exact ground-state energies of two-electron atoms and molecules are readily
obtained by QM  since these systems do not possess spatial nodes. This fact is
demonstrated by calculations on the ground state of H, and He, cf. Figs. 3.9 and 3.10.

Turning now to two-electron systems which possess nodes, we consider the first
three excited singlet S states of He. As these states have the same symmetry as the
ground state, their QMC energies are not variational. A simple example of
Eqme < E_zaes is given by considering the 25 state of H with the node displaced from
its exact location at r =2, e.g., r > 2. In this case the nodal volume containing the
nucleus is too large and the QMC energy obtained by sampling in this region will be
lower than the exact 2s-state energy, i.e., as the node is moved out to infinity the
ground-state energy is recovered. Since the lowest-energy nodal volume dominates
after sufficiently long times, the asymptotic QMC energy will be too low. However, if
the nodes of the trial function describing the excited state in question are sufficiently
accurate, the computed QMC energy will be of high quality.

For the excited 'S states of He the two electrons are much farther apart than in the
ground state. Thus their effect on each other, i.e., the degree to which their movement
is correlated, is reduced. The result is that compact trial functions yield accurate VMC

energies. Such trial functions(107) are employed here with the hope that their nodal
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structures are very good. These trial functions are given by

W (1, 1) = Wlrwa(r2) + Wi Jyalr)). (3.12)
In Eq. (3.12), v is simply a Slater 1s orbital and vy, is a Slater 1s orbital multiplied
by a function which is a linear combination of the first four Laguerre polynomi-
als.[107] The accuracies of Ep = <¥IH [M4> are very good, the errors are only 3,
0.9, and 0.4 milli-hartree (mh) for the first three excited states, respectively, cf. Table
3.12.

The QMC energies, computed employing deletion upon crossing a node, are com-
pared with exact values in Table 3.12, The time-step bias, which is visible because of
the small statistical errors, is not large, and reliable extrapolalions are easily obtained.
Differences between rejection and deletion are probably not observable at the time
steps employed.

For ground states, the nodal volumes, which arise from exchange antisymmetry, are
equivalent. This is not the case for most excited states for which additional nodes
generally result in nodal volumes that are not equivalent, in terms of the QMC energy,
unless the wial function’s nodal structure is correct. This effect was studied for the
1535 'S and ls4s 'S statcc by sampling points only in regions which possess the
same sign[¥]. (It should be pointed out, however, that, given the number of nodal
volumes in the trial functions describing these states, there is probably more than one
distinct nodal volume for a given value of sign{'¥r1.) As seen in Table 3.12, the QMC
energy does show a significant dependence on the nodal volume(s) sampled. Since
this dependence vanishes as the nodes become exact, the differing QMC energies are

indicative of the error in the nodal structure of the trial function. Therefore, despite
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the high accuracies of E[¥y] for each state, the location of the nodes is far from
correct.

The incorrect placement of the nodes is further reflected by the QMC energies
obtained. We see that the QMC energies do not recover a large percentage of the
remaining energy, Er — E_.4.,, cf. Table 3.13. For the first-excited state, only 59% of
the remaining energy is recovered (for Hy over 99% is recovered). For the second-
excited state, sampling only where W > O significantly improves the energy over
naive sampling, cf. Table 3.12, yet the amount of energy recovered is still modest,
75%. Interestingly, the QMQ energies for the 1s4s1S stawe show no improvement
over Er when ¥ > 0 and the QMC energy is actually above Er when ¥r < 0.
Theoretically Eqpc S Er, but only for each nodal volume. Therefore, these counterin-
tuitive results for the last excited state must be caused by sampling in nodal volumes
which possess relatively high energies — despite varying sign[¥;]. Though higher-
energy nodal volumes will decay away after sufficient imaginary time, cf. Sec. 2.4, the
energy differences found here are too small, = | mh, for this decay to be significant
" for the simulation times we employed, = 1000 Al

Finding all the distinct nodal volumes of a trial function may be difficult when
studying excited states of systems more complex than He. However, the differences in
QMC nodal volume energies found here are less than 1 mh (0.6 kcal/mol) which is
generally an acceptable accuracy when computing total energies. If the differences in
nodal volume energies are greater, the populations of the higher-energy volumes will
decay away more quickly allowing convergence to the lowest-energy volume to be

more casily obtained. Therefore, the presence of distinct nodal volumes may not be
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significant for computations of excited-state energies of other systems.

Other Monte Carlo algorithms for computing excited state energies exist. {109-110]
These approaches are variational, can compute several energies simultaneously, and do
not have nodal-volume dependences. They do, however, present other difficulties and
have not yet been employed in studying electronic states so comparison is difficult.

QMC energies for other systems which we studied are compared with estimates of
the exact electronic energy in Table 3.14. In all cases, the electronic state is the
lowest in energy for the symmeuy considered so QMC energies are variational to the
extent that bias and statistical error are eliminated. The QMC energies are generally
obtained from single-determinant trial functions and are discussed on a case by case
basis.

We now consider the QMC energies computed for the ground state (225) and first-
excited P state (22P) of Li. These two states are among the simplest for which fixed-
node error is a concern. As such, they afford an excellent starting point for assessing
the accuracy obtained from a single-determinant trial function. The near-HF basis set
and linear coefficients are taken from Weiss.[111] The E-N cusp condition is well
satisfied by the Slater determinant so only the E-E comelation function described in
Sec. 3.3 (with a; = by = 0) is employed. The nodal boundary conditions are enforced
by rejection.

No statistically significant time-step dependence in the QMC energy of the excited
state is found at t=0.005 and t = 0.010 A7}, the statistical error in the difference
between the two energies being over three times larger than the difference itself.

Therefore, the reported excited-state energy is the weighted (by 672) average of the
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energies obtained at the time steps above. Given the imperceptible amount of bias in
the P -state energy, the reported ground-state energy is simply obtained from a calcula-
tion at T = 0.010h~1. The QMC energies agree with the exact values to well within
their statistical errors ( 0.24 mh or 0.15 kcal/mol). Though some fixed-node error
must result from the trial functions, it is found to be very small for these simple sys-
tems, as is the case for Hy. Actually, the largest errors appear to be statistical, e.g.,
the P -state energy is below, but within less than one standard deviation of, the exact
energy.

Turning to more complex electronic structures, we now consider LiH and Li,, at
their experimental equilibrium internuclear separations. With single-determinant trial
functions, the QMC energies reported in Table 3.14 are seen to be very accurate. The
LiH QMC energy, -8.06908(43) 4, is as low as that of the largest CI calculation to
date{112], 132,000 configuration state functions and E = —8.06904 A, and only slightly
above the energy (which is not variational) obtained in a recent coupled-cluster calcu-
lation,[86] E = -8.06951 h. The Li, energy differs from the exact by only 2.2 mh
and gains 98% of the CE. This energy is more accurate than any other ab initio result.
(However, most ab initio calculations emphasize accuracy in the potential energy curve
rather than the total energy.)

In spite of the high accuracy in the QMC energies, fixed-node error is now notice-
able. Therefore, it is of interest to consider deficiencies in the trial functions which
may have led to the errors observed. For LiH, the basis set, given in Ref. 43, is a
truncation of Cade and Huo’s[113] with the linear coefficients re-optimized by the SCF

technique. Using one-, two-, and four-determinant trial functions, Harrison and Handy
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(HH)[56] obtained QMC energies of -8.0696(7), -8.0701(4), and -8.0697(3) 4, respec-
tively. The basis set employed in these calculations is identical to ours with the addi-
tion of a 25 STO on H. These calculations were all performed at t = 0.010 AL
Given that SCF and MCSCF wave functions generally satisfy the E-N cusp condition
very well (HH did not employ an E-N correlation function), and our experience with
LiH, cf. Fig. 3.11, the time-step bias in the three energies presented above should be
insignificant. Most noteworthy are the facts that the HH single-determinant energy
appears to be better than our own, -8.0696(7) versus -8.0691(4) i, very similar to
those of the multi-determinant trial functions, and in near-agreement with the exact,
-8.0702 k. These facts imply that a single-determinant trial function should yield an
almost exact QMC energy. Very recently, we discovered a node in the lowest-energy
MO of our trial function. Removing this node, by slightly changing two of the linear
coefficients (which hardly changed the exchange nodes), and recomputing the QMC
energy yielded a much improved energy, E = -8.0702(6) h. This experience with
LiH, and that with H;, demonstrates the importance of checking for spurious nodes in
the MOs used to construct the Slater determinant.

The Li, energy, though very accurate, also possesses a noticeable fixed-node error.
It is well-known from MCSCF calculations, however, that the near s—p degeneracy of
the Li atom can be important in describing this molecule. Also, the wave function
should properly describe dissociation, e.g., a single-determinant corresponds to a com-
bination of ionized and neutral atoms as the intemnuclear separation becomes large.
The importance of s—p degeneracy and proper dissociation is reflected in the large

mixing coefficients of the determinants describing these effects in a CI or MCSCF
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expansion, for an example see Ref. 114. For the QMC calculations, the trial function’s
nodes are those given by a single determinant{25]. Therefore, it is reasonable to
expect that adding determinants which account for s—p degeneracy and allow for
proper dissociation will yield a trial function giving an improved QMC energy.

Most recently, we have performed a QMC calculation with a four-determinant trial
functdon which describes the effects discussed above. The QMC energies are com-
puted with A = A(cusp) for 0.005 < 1<0.100 571, and time-step dependence is no
longer perceptible by © = 0.035 h~!. The QMC energy is now found to be -14.9945(4)
h, in excellent agreement with the exact value, -14.9945 h. This result demonstrates
that the QMC energy may be computed to near-exact quality by considering effects
that are important in expansion techniques.

Perhaps the most instructive case of how a single-determinant trial function can
yield a poor QMC energy is the ground state of Re. In Table 3.14, we see that only
89% of the CE is recovered. At first this result is surprising given the accuracy of the
QMC energy of LiH and Li;, systems with as many or more electrons and of lower
symmetry. However, the s—p degeneracy effect in this atom is known to be especially
strong. Since treating this degeneracy is most important in obtaining an accurate
wavefunction in standard ab initio ag; roaches, it is of interest to determine whether an
improvement in nodal structure is also obtained. This question is considered by the
calculations of HH who employed, in addition to the determinant arising from the
1152252l occupancy, another corresponding to 11522p2l. (A 1252252 determinant, to
describe radial correlation, was also included, but it had a much smaller mixing

coefficient, 0.02 versus 0.30 for the |l:22p2| determinant, indicating that this effect is
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much less important.) Once again, improving the trial function to describe well-known
effects yields a much more accurate QMC energy; HH obtained 98% of the CE.

The s—p degeneracy effect discussed in the preceding paragraphs, also appears to
be significant for the ground state of BH. The result is that the single-determinant
QMC energy gains only 88% of the CE. Therefore, a multi-determinant trial function
is also recommended for BH as well as other systems which possess degeneracy
effects.

In addition to the QMC energy, tial function optimization and the effect of rejec-
tion versus deletion were studied for BH. In the calculations described in Sec. 3.3,
correlation function parameters are hand-optimized. This method is reasonable for
small systems, two and three electrons, but impractical otherwise. At the time of the
BH calculations a method for machine-optimizing parameters became available. This
method uses correlated sampling and a steepest-descent approach during a VMC walk
to obtained optimized parameters.[115] In a calculation on Hj, the algorithm worked
very well, an optimized nine-parameter trial function gave a VMC energy which
obtaired 91% of the CE.

The initial BH trial function, ¥y, is given in Table 3.15. The basis set is a trunca-
tion of Cade and Huo’s[113] with some of the exponents re-optimized in SCF calcula-
tions. The correlation function parameters are hand-optimized, and the VMC energy
gains only 26% of the CE. The optimized BH wial function, '¥,, is given in Table
3.16, where U, in the E-E correlation function is now given by,

U\(r) = In[l - bexp(~ria, — r¥ay) , (3.13)
with @, = 2b /(1 - b)) to satisfy the like-spin E-E cusp condition and b, < 1. The
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trial function, ¥;, was obtained by optimizing the exponents, linear coefficients, and
most of the correlation function parameters. The parameter a, is fixed to satisfy the
like-spin E-E cusp condition, and Ay and Ay are also fixed since varying these parame-
ters during optimization led to poor results. Generally, attempting to optimize, by
minimizing the energy, parameters which have a large effect on cusp conditions leads
to an overemphasis in regions near the cusp and a poor VMC energy. The MOs are
now optimized in the presence of an explicit description of electron correlation in
order to examine the effect on tie fixed-node error. The optimized trial function
yielded a substantial, though less than hoped, improvement in the VMC energy, 45%
of the CE outained.

Table 3.17 compares the QMC energies of ¥; and ¥, at T=0.01 4~ The effect
of enforcing nodal boundaries by rejection rather than deletion is also studied. The
energies in Table 3.17 show that while optimization improves the VMC energy, in this
case no improvement in the QMC energy is observed. These results indicate that the
limitation of a single determinant in ‘¥ is the overriding factor in determiring the
accuracy of the QMC energy. Also in Table 3.17, the difference between deletion and
rejection is seen to be negligible. This is in contrast with the H (2p,) atom calcula-
tions discussed in Sec. 3.2. This is not unreasonable since the treatment of the noda!
boundaries should be more important for excited states which possess a greater density
of nodes than do ground states. {However, a difference between rejection versus dele-
tion results was noticed in the computation of properties other than the energy (dis-
cussed in Chap. 4).]

The last system to be discussed is the often-studied HyO molecule. The trial
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function parameters are obtained from an efficient optimization algorithm([25] and
presented in Ref. 25. The E-N curelation function parameters Ay and Ag, however,
have been changed slightly to optimally satisfy, as described in Sec. 3.2, the E-N cusp
conditions. The function U, is now given by

U{r) = -bexp(-ar’b), (3.19)
where a = (0.5 to sadsfy the like-spin E-E cusp condition. The resulting QMC ener-
gies are presented in Table 3.18 as well as the T =0 estimate (also in Table 3.14).
The amount of CE gained is similar to that of the other “‘high”-Z systems studied; N,
N,, Fand F~.

The H,0 calculations also emphasize the usefulness of choosing the E-N parame-
ters A, so that the E-N cusp condition is best satisfied. Note that observable time-step
dependence in the QMC energy has van .ed at £ <0.0025 4! allowing a reliable
estumate of the T=0 energy to be obtained simply from the 7 =0.0025 and
1t =0.0010 ! energies. This behavior contrasts sharply with the F-F~ time-step
dependence where biases were still observable at © = 0.001 471,

As seen from the QMC energies presented in this and the precceding section, useful
knowledge, as well as accurate energies, has been gained concerning the accuracy of
nodal structures. The most important fact is that obtaining accurate nodal structures
requires consideration. For many of the systems studied, a single determinant yields
only 90% of the CE is obtained in contrast to the QMC energies of some simple sys-
tems which are nearly exact. In addition, it is found, by us for Li, and by Harrison
and Handy[56] for Be, that improving the trial function to account for well-known

effects, ¢.g., s—p degeneracy, also leads to a significant improvement in the QMC
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energy. It is therefore of interest to ascertain whethsr describing this degeneracy, and
other effects, will also yield accurate energies for systems such as BH, N and N,,
where a single determinant is not satisfactory. Similar considerations will also be
relevant for other atoms and molecules, leading to an increase in the accuracy and

competitiveness of the QMC approach employed here.
3.5 Computing the QMC Energy by Difference

As found in the calculation of the EA of F, the statistical error in QMC computa-
tions can be problematic. A major contribution to the statistical error of the QMC
energy arises from the magnitude of the total energy. For example, 1 kcal/mol statisti-
cal accuracy is obtained for H; (IE| = 1.17) when the relative siatistical error in the
energy is 0.14%. For F atom, on the other hand, this error in the energy must be wo
orders of magnitude lower to obtain the same precision in the total energy. In con-
trast, the correlation energy (CE) only increases by one order of magnitude in going
from H, to F, 0.04 & versus 0.33 4, and is generally two orders of magnitude smaller
than the total energy. This implies that if the CE and the total energy can be com-
puted to the same relative statistical error after equal computation times, then the sta-
dstcal error in the CE will be much smaller the;n that of the total energy. Therefore,
QMC energies (E), given as the sum of the HF and CE energies, or alternatively as
Eypme + (E-Eyyc) if correlation functions are employed, may be computed more
efficiently by calculating energy differences. In this section an idea for directly com-
puting the energy difference, A = E — Eyyc, is presented and explored.

The trial functions may or may not contain correlation functions. In the former
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case, the statistical error of the QMC energy arises from both A and Eypme, while in
the latter the statistical error is due solely to that of A. The relative merits of includ-
ing or not including correlation functions in ¥ is discussed below.

To describe the method by which A can be computed during a single walk, we
begin by noting that, as stated in Sec. 2.5, the branching of the QMC walk may be
implemented through removing or creating walkers (‘‘integer rounding™), by carmrying
weights, or a combination of both. Note that when weights are carried and moves are
rejected, the VMC and QMC walks are isomorphic. That is, omitting the weights,
which suppresses the branching, yields I 1? while including them gives W
(Essentially, the weight is a statistical estimate of ¢¢/¥y.) Therefore, VMC and QMC
expectation values, and more importantly the differences between them, may be
obtained in a correlated fashior during a VMC walk in which weights are computed.

To see how the weights are computed, consider a point, R, which is moved to R
after one time step (t), R, after the second move, and so on. Repeated use of Eq.
(2.53) yields (now with slightly different notation for the poinis sampled)

R, =MRn Ra MRy Rog) - - MRy, RowRy) (3.15)
where w(Rg) =1 since points are sampled from ¥ 1% In Eq. (3.15), M is the

branching factor of the short-time Green'’s function, cf. Eq. (2.44), giving

E; (R n-
w(R,) = exp[-r(—l‘.(zz(-’)_ + EIEL(&-) + EL(Z&) - nEy )] .

i=t

Above, T, = T is employed because weights may be computed more efficiently with a

(3.16)

constant value of the time step. Since small time steps are required to reduce time-

step bias, the acceptance ratio is very nearly equal to one yielding T, = T on average.
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Therefore, not adjusting T to account for rejection of moves should have little effect

(which vanishes as T — 0). The weight of the next point, R, ,,, is then given by

E;(R)) n Er (Ry4)
w Ry = expl( =2+ TE®) + =S - i) (3.17)
i=2

and the weights of subsequent points are computed in a similar fashion. The number
of intermediate steps, n, must be chosen large enough so that the convergence time,
t = a1, yields convergence 1o Wy ¢g from ¥ {2,

With the weights computed as described by Eqgs. (3.15)-(3.17), statistical estimates

of the Eypyc. E, and A are, for a total of N (weighted and unweighted) points

N
Eymc =N"'YEL®). (3.182)
i=1
N N
E=SwRELRIDWR), (3.18b)
i=l i=l
and
N Y N
A= TwRIELR)D WR)-NTTELR) . (3.18¢)
i=1

i=l i=t

Since there is a positive correlation between the above VMC and QMC energies, the
difference will possess a statistical smaller error than either of those in the VMC or
QMC energy.

From Eq. (3.18c), the amount of correlation between the VMC and QMC energies
decreases as fluctuations in the weights increase. In tum, these Auctuations depend on
the bebavior of the local energy and the time, ¢, required to converge to Wr¢p. That
is,

o, /w = wllaw/oE log ,
and from Eq. (3.16) there results,
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o, /w =tog , t=nt. (3.19)
Possible advantages of employing correlation functions are implied by Eq. (3.19).

An SCF trial function yields no statistical error in the VMC energy since this energy is
simply the analytically computed SCF value. However, an SCF trial function gen-
eraily yields a value of 6 2-3 times greater, primarily because the like-spin E-E cusp
condition is not satisfied, than that obtained with correlation functions. In addition, to
the extent thar correlation functions improve the accuracy of the trial function, they
should reduce the time required to converge to W¥;¢g. For these reasons, improvement
over the SCF description will reduce, by reducing g and ¢, the statistical error in w
and, therefore, A. If the statistical error in A is reduced enough to more than compen-
sate for the statistical error in the VMC energy, the use of correlation functions will be
advantageous.

This method of directly computing energy differences was first implemented for
H,0, where ¥ is simply an SCF wave function.[124] To ascertain convergence to
‘¥r ¢g, QMC energies and values of A are computed for several convergence times in a
single calculation. Results are presented in Table 3.19 and plotted in Fig. 3.21; the
time step is 0.0025 A~'. The curve shown in the figure is obtained from a fit of the

energies atr =0 and 1 20.25 47 10

E(t)=Ey+ bexp(-y) . 3.20)
(The energy at t = 0 is included so that the fit yields a reasonable energy at this inter-

cept. Including this point is found 1o have litile effect on the accuracy of the fit at

large £.) “ihis equation arises because at large 7,
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QU) = 4o + <¥rlo,>expl-1(E1 ~ £)l¢y @21
which gives for the energy, to first order in |<¥ l9>1?,

E(t) ~ Eq+ (E| — Eg)l<'¥y 0> %exp[~2¢ (Ey - E)] - (3.22)

In agreement with Eq. (3.22), the data at large values of ¢, here large is assumed to
be 2 0.25471, is fit reasonably well by a decaying exponential, More importantly for
determining the QMC energy, convergence is obtained at approximately 1 4~!. The
converged QMC energies are also seen to be in excellent agreement with the previ-
ously computed QMC value of -76.377(7) h.[43] The statistical errors in the QMC
energy and A generally increase as ¢ increases, as implied by Eq. (3.19). The notable
exception occurs at 7 = 0.0625 A~ which is most likely due to the influence of excited
states which have not decayed away. Calculations at smaller values of ¢, not shown
here, reproduce this effect, and statistical error actually reaches a minimum between
1 =0.125 and 0.250 7.

The most significant fact revealed by the data is that the statistical errors do nor
scale with the magnitude of the quantity computed. Though the energy differences are
over 100 times smaller in magnitude than the total energy, the statistical errors in E
and A are of the same order of magnitude. Therefore, large increases in efficiency
with this ‘‘difference’ technique, versus the standard diffusion QMC approach, are not
obwined. For example, the converged energy with the smallest statistical error is
-76.3818(42) h, and the uncorrelated value is -76.3815(63) h. Apparently an increase
in efficiency of a factor of 2.5 is gained. However, since including correlation func-
tions generally reduces statistical error by at least a factor of 2-3, a QMC energy may

be readily computed in the standard fashion, i.e., as described in Sec. 2.5, which
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possesses a statistical error as small as that obtained in A. Therefore, for tiis H,O test
case, not using correlation functions does not give an increase in efficiency from the
difference approach. Hopefully, including correlation functions in ¥y will improve the
efficiency of this method.

The question of employing correlation functions is swudied in detail for H,. The
MO consists of a Slater 1s orbital, { = 1.19, on each atom and at the center of the
bond. The linear coefficients are obtained in an SCF calculation. Computations are
performed with and without E-E and E-N correlaticn functions and with and without
satisfying the E-N cusp condition.

Results for the statistical errors, in micro-harrees (mih), of E and
E(A) = Eypc + A are presented in Table 3.20. Several time steps are employed and
the convergence time, 4 4~!, has been ascertained to be sufficiendy large to yield
Wr¢g The statistical errors in Table 3.20 are (arbitrarily) normalized to correspond to
one hour (Cray/XMP) of computation time as follows. For the SCF trial function, the
statistical errors are straightforwardly normalized by 7 ,/60, where T, is the compu-
tation time. For the correlated functions, the statistical error in the QMC energy is
also normalized by the factor given above, i.e., it is assumed that only the QMC
energy is computed for 60 minutes. However, the reported statistical error in the
energy obuained from A, E{A) = Eypye + A, is found by considering how the combined
statistical error of Eyye and A is obtained most efficiently. That is, if Type and Ty
are the computation times yielding the statistical errors Oyyc and Gy, respectively,
Tymc and T (Tyyme + T4 = 60) are desired such ¢ at the resulting combined statistical

error i3 a minimum. Therefore, the optimum computation times are obtained by
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maximizing the efficiency of computing E(A). This efficiency is given by, cf. Sec.
331,

Eff = (Timc + TDlovmc? + 0] . (3.23)
The optimum value of Tyyc is thus obtained as,

-1

1

o T 7

Timc = 60 —= [TA ]IH , (3.249)
VMC VMC

and T,=60-Tyyc. The resulting statistical errors in Eyyc and A are

L L
S'vme = TymcTume) 2Ovme and O = (Ty/TA)%0,, respectively, from which the

combined statistical error, Gg(A), is obtained. In practice, such optimization is not
difficult and may be accomplished by estimating Oypc and ©, in small calculations
before proceeding to the computation of precise results. For this reason, 6z (4) is
optimized when comparing with of.

In comparing the correlated trial functons, we see that satisfying the E-N cusp con-
dition most often yields larger statistical errors. This result is caused primarily by the
use of a bond function which necessitates a value of A(cusp) for this ‘‘nucleus’’ which
is unphysical ~ large in magnitude and of negative sign. Thus, a trial function of
rather poor overall quality is obtained, though the time-step bias is reduced, and statist-
ical errors are large.

The relative efficiency of employing correlaton functions in computing E(A) is
examined by comparing Gg(A) between the correlated (with the E-N cusp condition
not satisfied) and the SCF wial function. Table 3.20 demonstrates that at the larger
time steps, 0.04 and 0.05 4™, not including correlation is actually more efficient, while

at t=0.02 and 0.01 k7!, the reverse is wue. At the larger ime steps, the QMC walk



81

is most efficient and so the cost of a VMC calculation is relatively high. Therefore,
the reduction of o, is more than offset by the added cost of the computing the VMC
energy when employing correlation functions. However, at smaller time steps the
QMC walk is less efficient and the relative cost of a VMC calculation is small, so that
reducing o, using correlation functions is advantageous.

The question of whether computing the energy by difference yields smaller statist-
cal errors than with the standard approach is answered by comparing values of og(A)
to 6. For all the mial functions used here, and at all values of T, the statistical error
is reduced when the energy is computed as E(A) = Eyyc + A. (The exception at
©=0.04 47! is not considered here since it appears to be statistically anomalous, i.e.,
O¢ = 55 mih is less than o obtained with the same trial function at a larger time
step.) However, the reductions are once again not large considering the small magni-
tude of A. Furthermore, the best single approach is not evident. While computing the
energy by difference is most efficient at T=0.04 and 0.05 A~} without correlation
functions, this method becomes less efficient than a standard calculation [with correla-
tion functions and A # A(cusp)] at smaller time steps. Employing correlation functions
to compute A does yield 6z (A) < o at small time steps, but by T = 0.0547" the sta-
tistical errors are roughly the same. Therefore, in the general case, computing the
QM energy as E ypc + A may be less efficient, depending on the value of T and the
use of correlation functions.

The final system we have studied using the difference approach is the nitrogen
atom. A DZ and HF basis set[89] are employed to determine how rauch of the fixed-

node error results from using a small (DZ) basis set, cf. Sec. 3.3.3. Since the goal is
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to compute an unbiased energy most efficiently, a small time step (0.0025 %) is
chosen and statistical errors are compared at convergence times for which ¥, ¢, is
obtained, 0.80 and 0.96 k™! for the DZ and HF trial functions, respectively. Also, the
results for H, indicate, since t is small, that the greatest efficiency will be obtained
when correlation functions are employed. Finally, A = A{cusp) so that the time-step
bias actually is small at T = 0.0025 4~!. Correlation function parameters are reported
in Table 3.21.

The value of A(cusp) is obtained somewhat differently than as described in Sec.
3.1. In 3ec. 3.1, Alcusp) is chosen as the mode of the distribution of values which
12

satisfy Eq. (3.7). Below, A(cusp) is the average value, over Iy I4, of A which satisfies

the E-N cusp condition.[125] That is,

(3.25)

n V(R
Alcusp) = —%J'dg_[‘{’r(l_?_ ) BTr( _)] - -Z,
i=1 i I

where n is the number of elecrons and Wy is assumed 10 be ncrmalized. So that the
integration may be performed analytcally, the correlation functions of ¥r are omitted
in Eq. (3.22) yielding
_ _1[a1g,.49000)
Alcusp) = —=[p7(r) -Z, (3.26)
2 or r=0

where p is the onc-electron density function of the Slater determinant. This approach
is slightly more convenient since A(cusp) is obtined directly from the Slater deter-
minant. The difference between the mode value and the average value of A(cusp) is
small in this case, 0.00874, cf. Tables 3.11 and 3.21. The QMC energies computed
with the two values of A(cusp) are compared in Table 3.22, and the mode value is seen

to yield a slightly smaller time-step bias.
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The statistical errors O and Og(A) are reported for each trial function in Table
3.23. These errors are normalized to 60 minutes of computation time on a Cray/XMP
and obtained in the same way as those for H,. As seen from Table 3.23, the
difference approach fails to yield a significant improvement in comparison to standard
QMC. The statistical error in the weights is such that, by the time convergence to
Y ¢p is obtained, the correlation between Eyye and £ is reduced to the point that
computing the energy by difference is not useful. .

As the final point of interest, it is noted that these calculations gave very similar
QMC energies implying that the fixed-node error is due primarily to the use of a single
determinant.

Given :he results of H,, N, and H,0, computing energies by difference does not
yield significant increases in efficiency for the trial functions studied. Also, when
reductions in statistical error are observed, they are dependent on the time step and the
use of correlation functions. It sdll remains to be determined, however, whether
different classes of trial functions (i.e., more highly optimi~ed) will be more useful in
the difference approach. Finally, when computing E () using correlation functions in
¥y, the relative amount of computation of Eypc and A should be optimized as

described in .his section.



Table 3.1. Trial function basis sets.”

Importance Quter H's Central H Bond
Function STO ¢ STO ¢ STO ¢
¥, 1s 1.040 | 1s 1275 | -
Is 0.925
Y, UHP) | L | b L120 | -
v 1s 0925 | Is 0925 |
3 1s* 1275 | 1s* 1275
1s 0.925
¥a st 1rs | M-
1s 0.925
b
Y5 1s’ 1.250 1s 1.120 1s 1.175
1s 1.000 | 1s 1.000
I’ 2200 | 1s* 2200
2 1.000 | 2s 1.000
- 2’ 2200 | 2 2200 |
6 2p 1.700 | 2p 1.700
2p° 2900 | 2p°  2.900
3p 2900 [ 3p 2900
3d 27001 3¢ 2700

“For ¥, — W,, the exponents { arc hand-optimized using HONDO to obtain a minimum in the SCF
energy. For W5 exponents of the STO's on all the H atoms are constrained to be equal.

®A **bond"* function is placed at +0.85 bohs from the central H.

“Ref. 65.
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Table 3.2. Correlation function parameters.®

Correlation Function | Parameters | W3 | Other '¥;’s
a, 0.50 0.50
U b, 1.00 2.00
! ay L12 0.75
b, 1.13 1.00
U A 0.10 0.10
2 v 0.50 0.50

°The parameter g, is chosen Lo salisfy the electror-clectron cusp condition for electrons of like spin.
The remaining parameters are hand-optimized to minimize the VMC energy.



Table 3.3. SCF, VMC and QMC barriers.?

I';E::;:se Eg (SCF) | Eg (VMC) | E5 @MC)® | Eg (QMO)®
¥, 60.9 360 (0.5 | 13.40 0.40) | 12.2 (0.50)
¥, 470 | 274©@2) | 11.16 (0.48) | 10.20 (0.26)
¥, 535 | 27.8(03) 970 (022)
¥, 534 | 259 (02) | 11.67 (0.38) | 9.86 (0.20)
¥, 516 | 244(02) | 1039 (0.40) | 970 (0.13)
2 50.3 23.6 (0.4) 9.90 (0.24)

HF Limit? 50.1 -

¢ All barriers are obtained by subtracting the exact H + H, energy from the computed H, saddle-point
energy. In Tables 3.3 and 3.4 energy differences are in kcal/mol, and, unless stated otherwise,

numbers in parentheses are one standard deviation in the average (statistical error).

b All block times are 0,54, except for ¥s (147%).

¢ All block times are Sk~
#Derived from Ref. 65.
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Table 3.4. Comparison of best QMC barrier height with estimates of the exact.

Method Ep

- < 9.86
Best CI = 9.59 + 0.06
QMC ¥y < 9.70 (0.13)
Exact® 9.65 (0.08)
“Ref. 67.

®Ref, 41,
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Table 3.5. Trial function properties.

Importance | Computation QMC statis- Relative
Function Time (CPU)® | tcal emror (o) | Efficiency”
¥, 35 6.38 1.00
¥, 40 037 092
Y 4 0.31 1.20
Y, 39 0.31 1.35
¥s 50 0.25 162
¥ 77 0.25 1.05

“The time (in scaled units) required to obtain the statistical error, third column, in the QMC encrgy.
b The relative efficiency of ¥, is given by CPU,0,2 / CPU; 0,2



Table 3.6 Trial function parameters for F and F~.

F F~
1s 10.42450 16.200
1s” 7.66585 7.250
Exponentst 2 3.13578 3.100
25’ 1.94456 1.700
2p 4.18389 4125
2p’ 1.85602 1.650
a, 0.50 0.5000
Correlation 4, 0.00 11.5000
function by 3.00 2.8750
parameters® b, 0.00 33,0625
A 0.10 0.1500
v 0.10 © 0.2000

“The exponents and linear coefficients are from Ref. 89. For F~ the exponeris were
hand-optimized for 2 minimum in the SCF energy computed using HONDO(68], the lincar
coefficients are from the SCF calculation.
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®The parameter a, is chosen to satisfy the like.spin E-E cusp condition. The remaining parameters
are hand-optimized for a minimum in the VMC energy.
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Table 3.7. Theoretical and experimental energies of F and F~, and the elecon

affinity.
ENERGY (h)
METHOD EA (eV)
F F-
Ab Atomic Bethe-Goldstone  -89.7131° -99.8411¢ 3.479
initio 3.37
non- Perturbation Theory -99.7299¢ -99.8595°¢ 3.53¢
variational -99.6750¢ -99.8025¢ 3.474
Coupled-Cluster® -99.7128 -99.8368 3.37
ab HFf -99.4093 -99.4594 1.36
initio CI8 -99.7166 -59.8312 3.12
variational MCSCF+CI -99.6202% -09.7369% 3.18"
-99.62350¢ 9973722 3.09
QMC/ 99.7005(21)  -99.8273(34) 3.45(11)
Empirical -99.7313* -99.8574(30)' 3.43(8)"
Experimental -99.8059" - 3.399(3)°
Ref. 77.
5Ref. 78.
“Ref. 80. .
4Ref, 84,
“Ref, 85.
I Ref, 79.
fRef, 13.
ARel. 82.
‘ Ref. 83.
/ This work.

* From experimental results corrected for relativistic effects in Ref. 76. Ref. 13 corrects

an error in the sign of the Lamb shift, resulting in the energy given here.

! Ref. 71.

™ This number is the difference of the empirical non-relativistic energies for F and F~,

*Ref. 86.

R

ded experi

\ valuc of Ref. £8.
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Table 3.8. QMC energies of F and F~ versus time step.

ENERGY (h)
Time-step (A1) F F-
0.00500 -99.7196(17) -99.9141(28)
0.00250 -99.7106(20) -99.8769(28)
0.00125 -99.7050(17) -99.8515(27)
0.00050 - -99.8375(31)
0.0° -99.7005(21) -99.8273(34)

“Obtained from a lincar fit of the cnergies computed at the three smallest time steps.



Table 3.9. Values of A and A(cusp) for F and F~.

Species A Acusp)® A = A(cusp)
F 0.1000 0.0640 0.0360
F~ 0.1500 0.0165 0.1335

¢Computed as described in Sec. 3.2.
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Table 3.10 Trial function parameters for N and N,.

Orbital N N,
s 8.49597 8.49597
1s’ 5.98644 5.98644
Exponents? 2s 2.26086 2.26086
25’ 1.42457 1.42457
2p 3.24933 324933
2p’ 1.49924 1.49924
Correlation  a, 0.5 0.5
function by 30 30
parameters A 0.2 0.2
v 0.3 0.3

“The exponents and linear cocfficients are from Ref. 89,

93
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Table 3.11 QMC energies for N and N, with and without A = A(cusp).?

N N;
T E E (A(cusp)) E E (A(cusp))
0.01000 -54.6317(18)  -54.5743(15) | -109.5575(79)  -109.4769(69)
0.00750 -109.5441(63)  -109.4695(59)
0.00500 -54.6030(23) -54.5702(9) | -109.5231(39) -109.4769(69)
0.00250 — -54.5668(13) | -109.5026(35)
0.00125 -54.5794(12) -109.4916(36)
0.00060 -54.5745(13)
0.0° -54.5716(13)  -54.5648(16) | -100.4835(37) -109.462(14)
Hartree-Fock | -54.4009° -108.9939¢
Exact -54.5895° -109.535

“For N, A(cusp) = 0.0538, and for N, A(cusp) = 0.0505.

# Obtained from a linear fit.

“Ref. 89.
4Ref. 105.

*Esimated from experiment in Ref. 13.
/ Esimated from cxperiment in Ref. 106.



Table 3.12 Excited-state energies of He.® For the 1535

and ls4s states, calculations were performed only in regions
of a given sign[\¥r1, e.g., \r > 0, restricting the number of
nodal volumes sampled.

1s2s 1§

<Y IH 1958 -2.14307
QMC(v)
0.050 -2.14490(6)
0.025 -2.14485(7)
0.010 -2.14480(5)
0.000¢ -2.14478(6)
Exact? -2.14598

1535 18
<Y H Wb -2.06036
QMC(1) Y% >0
0.050 2.06026(11)  -2.06144(8)
0.020 -2.06122(7)
0.005 -2.06108(17)
0.000° -2.06105(17)
Exact? -2.06128

1s4s 1§
< IHNESP 203320
QMC(1) >0 ¥ <0
0.050 -2.03026(11)  -2.06144(8)
0.025 -2.03122(7)
0.000° -2.03105(17)
Exact? -2.03358

“All time steps arc in k™ and energies in .
®Ref. 107.

 Obtained from a lincar fit.

9Ref. 108.



Table 3.13. Percent energy recovered by QMC.

State Dok pe
1s2s IS 58.8(2)
Is3s 1§ 75(18)
Isds 'S 2(3)

S BEpee 2 (EQuc = Eexaes WE7 ~ Egaace)s Er = <Yy IH >,
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Table 3.14.

molecules.®

Single-determinant

97

QMC euergics for selected first-row atoms and

Species

Li
Li(2%P)
LiH

Be

BH

Eyr

-7.43273%

-7.365074

-7.98735
-14.872%
-14.57302¢
-25.1314%
-76.0675™

Ezmcl

-7.47807¢

-7.41016°

-8.07019%
-14.9945
-14.6673
-25.2826¢
-76.4376™

Eqme

-7.47809(24)

-7.41031(22)

-8.06508(43)
-14.9923(8)
-14.6566(7)
-25.2650(11)
-76.4017(15)

%CE

100.0(5)
100.3(5)
98.7(5)
98.2(8)
88.7(7)
88.2(7)
90.3(4)

2 All energies are in # and compuied at the experimental geometry. Electronic ground siates are
computed unless stated otherwise.

bRef. 89.
“Ref. 116.
4Ref. 111,
“Ref. 12.
IRef, 117.

¢ Computed here by addiag D, = 0.09243 £[102] to the finite mass energies of Li and H. The resulting
finite muss encrgy of LiH is then converted 10 the infinite mass (Bom-Oppenheimer) vzlue reported

above.
*Ref. 118.

- i Obtained by the same method as the LiH encrgy reported above with D, = 0.03881 A [119).

7 Ref. 120.
*Ref. 121.
! Ref. 122.
"Ref, 123,



Table 3.15. BH, wrial function parameters of '¥;.

Orbital g MO Linear Coefficients
Vi Y2 LE

15 (B) 4.00000 -0.62188 0.15929  -0.14387
15(B) 575000 -0.39038 0.02268 -0.01033
2s(B) 1.35000  0.00355 -0.57974  0.76663
2p.(B) 0.91077 0.00439 ¢01103 -0.28741
2pi(B) 1.50000 -0.00506 -0.216%0 -0.33636
1s(H) 1.18274 -0.00244 -0.50324 -0.37319
1s'(H) 290014 000044 000636 0.01699
2p.(H, 170000 -0.00051 0.04439 0.01163

Cor.elation function parameters

a; 0.5 13 0.15

by 20 vg 2.00
Ay 0.02
VH 0.20




Table 3.16. BH, wrial function parameaters of ‘F;.

Atom
Orbital
1s(B)
15(B)
25 (B)
2p,(B)
2p. (B

1s{H)
15 (H)
2p, (H)

g
4.02586
5.81396
1.35016
0.91076
1.50008

1.699%0

L5

c
-0.55410
-0.49116
0.00455
0.00324
-0.00975

-0.00517

L]
4
4.00922
5.75058
1.47658
0.91062
1.50666

1.17272
2.90011
1.69911

¢
0.099¢5
C.02154
-0.61542
0.01059
-0.26620

-0.46348
0.00653
0.03565

g
4.00035

£.75015
1.28784
0.89497
1.54825

1.17524
2.90030
1.69986

Y

¢
-0.13592
-0.01402
0.76316
-0.29426
-0.36945

-0.35145
4.01977
0.01068

Correlaticn function parameters

a, 0.66607
b, 0.25000
a;,  1.00300

Ag
Vg
Ay
VH

0.15
2,00
0.02
0.20
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Table 3.17. QMC energies of 'y and W2

Trial function E (deletion) E (rejection)
¥, -25.2663(11)  -25.2667(11)
¥, - -25.2651(10)

®Energies are in 4. Calculations were pesformed at several times steps yielding
energies within the statistical errors shown, but direct comparisons were made
only at T =0.01 A~



Table 3.18. QMC energies of H,O versus time step.

Tt E (h)

0.0100 -76.4276(29)
0.0075 -76.4215(18)
0.0050 -76.4116(19)
0.0025 -76.4015(27)
0.0010 -76.4018(18)
0.0000° -76.4017(15)

“Since the T—dependence of the QMC energy is nat abservable at T < 0.0025 k™, the
1= 0 esti is obtained from a weighted (by 672) average of the T = 0.0025
and 0.0010 A~} encrgies.

101
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Table 3.19. QMC energy of H,O by the difference method versus convergence time.

t (A7 E (k) E(A) (h)°
0.0000 -75.9693 -75.9693
0.0625 -76.1655(64) -76.1653(39)
0.1250 -76.2245(53) -76.2244(25)
0.2500 -76.2912(51) -76.2911(28)
0.5000 -76.3482(57) -76.3485(40)
1.1250 -76.3815(63) -76.3818(42)
1.5000 -76.3852(87) -76.3857(68)
2.2500 - -76.3763(80) -76.3763(78)

“Small differences between the standard estimates of the QMC energy, £, and these results
arise from the sampled VMC cnergy being slighily different than -75.9693 due 1o statistical error.
bRef. 124



Table 3.20. Statistical errors of Hy QMC energies.

T
0.05
0.04
0.03
0.02
0.01

SCF trial

function
6z Og(A)
106 50
125 62
124 83
176 121
261 119

E-N cusp condition

satisfied
(74 (7] (A)
73 73
55 80
117 89
115 99
134 128

E-N cusp condition

not satisfied
O C¢ A)
72 68
84 66
93 83
102 77
183 94

“Siatistical errors are in micro-hartrees and time steps are in o™



Table 3.21. Correlation function parameters of N.

Basis set A v a, b,
DZ 0.06254  0.07500 0.5 3.0
HF 022099 015000 05 35

104



Table 3.22. QMC energies of N with different values of A(cusp)”.

T E{AMcusp) mode }° £ [A(cusp) average 1
0.0100 -54.5743(15) -54.5828(17)
0.0050 -54.5702(9) -54.5765(17)
0.0025 -54.5668(13) -54.5682(19)

4The units for the energy and time step are # and &~!, respectively.
®The mode value is 0.05.:80 and the average value is 0.06254.

105



Table 3.23. Statistical errors in the QMC energies of N.2

Basis set 7 og(A)
DZ L5 1.6
HF 29 2.3

*Statistical errors, in milli-hartrees, are obuained as described in the text and correspond to
1 hour of Cray/XMP computer time.

106
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Figure 3.1. QMC energies with and without acceptance/rejection. Since time-step bias
is eliminated at T =0 for both sets of calculations, energies should converge to the
exact (solid line) value of -0.5 k. For Figs. 1 and 2, ¥ = exp(-1.05r) and statistical
errors, representing one standard deviation in the mean of a Gaussian distribution, are

no larger than the symbol sizes.
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Figure 3.2. Comparison of ry and r%y, with and without acceptance/rejection.
Results are plotted for mixed expectation values, Ay = <% |A lg>i<¥r 1¢>.
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Figure 3.3. Time-step behavior of H atom energies. QMC energies are computed
over a range of time steps for several exponents, {, in the Slater 1s orbital employed
as a trial function. Statistical errors. when not shown explicitly, are no larger than the

point sizes.
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ENERGY (h)

Figure 3.4. Time-step behavior of H-aiom energies using poor wrial functions.
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Figure 3.5. QMC energies of the 2p, stte of H using different algorithms. For all
calculations the nodal boundary condition is enforced by deleting any walker which
attemnp!s to cross a node. In Figs. 5 and 6 the trial function is a 2p, Slater orbital with
{ =0.55. For Figs. 5-7 ““CRC” refers to not considering the possibility of walkers
crossing and recrossing a node, “ITERATIVE’’ refers to Anderson’s method of reduc-
ing time-step bias, *‘V CRC"* indicates that the gradient of the trial function is used to
approximately locate the node in computing the cross-recross probability, and ‘‘NO
CRC’’ means that the cross-recross probability is computed exactly.
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Figure 3.6. Rejection versus deletion tor the 2p, state. QMC energies are compared
for the cases of rejecting a move (“‘REJECT’") and deleting a walker (‘‘DELETE’")
upon an attemtped crossing of the node.
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0.45.

Figure 3.7. Rejection versu« deletion for the 2p, state. §
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Figure 3.8. Values of A which saiisfy the elecron-nuclear (E-N) cusp condition for
LiH. For a point in configuration space, the value of Ay which saiisfies the E-N cusp
condition is given by, A = (%rm ‘IV%\y),i =0+ Zg, sec text. Here, y represents the
determinant constructed from the MOs occupied by electrons of a given spin. Namely,
for Lifl, y = [yi(D¥2(2) - v12ya(D)] i § = 1, 2 or ¥ = [y13)y2(4) — y1B3)ya(4)]
if i =3, 4. Values of A, are computed at points sampled from ¥ 12 with r;q < rpy,
The cutoff, r;,, has little effect, and is chosen large enough to yicld several hundred
values of A,. The distributions below indicate that the E-N cusp condition is best
satisfied on average for Ay; = 0.031 and Ay = 0.061.
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Figure 3.9. Effect of satisfying the electron-nuclear (E-N) cusp condition for He. In
Figs. 3.9 and 3.10 open circles signify that the E-N cusp condition is satisfied, and
closed circles indicare that it is not. The straight line represents the exact energy.
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Figure 3.10. Effect of satisfying the L-N cusp condition for H;. The straight line
represents the exact energy.
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Figure 3.11. Effect of satisfying the E-N cusp condidon for LiH. The open circles
denote computations of the energy with Ay and Ap; chosen to satisfy the E-N cusp
condition on average. The straight line represents the energy at T = 0 obtained from a
second-order fit of the open-circled points.
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Figure 3.12 Exchange nodes of ¥;. The curves are cross sections through a selection
of nodal surfaces arising from the exchange antisymmemy. Full nodal surfaces are
obtained by rotating the curves about the intemuclear axis. Each surface is obtained
by fixing the position of one electron on it and finding the locus of points for the other
like-spin electron at which ¥, = 0. It can be easily shovm, cf. Appendix 3.1, that \¥;
is zero whenever both like-spin electrons are amywhere on a surface. In Figs. 3.12-
3.18, distances are in bohr and the circles represent the hydrogen nuclei.
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Figure 3.3 Exchange nodes of Wy, See Fig. 3.12 for further explanation. Note how
different these nodes are from those of ¥';, shown in Fig. 3.12. This is consistent with
the difference in the QMC energies obtained with ¥} and Y¥'.
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Figure 3.14 Exchange nodes of Ws. See Fig. 3.12 for further explanation. Note the
similarity between these nodes and the exchange nodes of W, (Fig. 3.13), and the dis-
similarity between these nodes and the nodes of ¥, (Fig. 3.12). The exchange nodes
of ¥, W3, and ¥y (not shown) are qualiratively the same as those shown here. This
is consistent with the close similarity in the QMC energies obtained with W,-¥,
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Figure 3.15. Nodes of the o, MO's of ¥, ¥, and W¥s. The curves shown are cross
sections through the nndal surfaces. The tial functions ¥s and ¥g are zero if the
unlike-spin or both like-spin elecrons are on the corresponding nodal surface. Trial
function ¥, is zero if the unlike-spin elecron is on the pictured nodal surface.
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Figure 3.16. QMC barrier height dependence on time step for ¥,. The intercept gives
an unbiased estimate of the QMC barrier height as Ep = 9.86(0.22) kcalVmol. The
curve is the second-order least squares fit E(t) = 9.86 + 5.611 ~ 73.27%
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Figure 3.17. Reaction path comparison. of QMC energies with a fit of the best CI
resalts. The reaction coordinate r, is the distance of the point {r), ry) from the from
the saddle point. The geometries for the Monte Carlo points are ry = r, = 1.757 bohr
(r. =0), ry=2084,r,=1550 bohr (r, =0.387); and r; = 2.572, r; = 1.448 bohr
(r. =0.872). The solid curve is a spline fit to Liu’s reaction path data.
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Figure 3.18. QMC energy versus time step for F and F~. For F, the statistical errors

are contained within the points.
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Figure 3.19. QMC energy versus time step for N with and without A = A{cusp).
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A(cusp).

Figure 3.20. QMC energy versus time step for N, with and without A
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Figure 3.21. QMC energy versus corvergence time for H;O. The QMC energy is
computed by difference and is given by E (1) = A(e) + Egcp, cf. Sec. 3.5. The com-
puted encrgies are fited to @ + dexp(—yt) atz =0 and 1 2 0.25 h~L.
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Chapter 4

Expectation Values of Coordinate Operators

4.1 Introduction

Over the last ten to fifteen years- Monte Carlo techniques have been increasingly
applied to quantum mechanical problems.[126] Several of these QMC methods have
been employed in order to obtain stochastic solutions of the Schrédinger equation for
atomic and molecular systems. The focus of most of these approaches has been the
accurate computation of the total electronic energy of small atoms and molecules.
Since energy is only one of many important properties, it is desirable to evaluate
expectation values of operators other than the Hamiltonian. For propernies whose
operators do not commute with £, such as functions of coordinates from which static
moments of the charge distribution may be obtained, the usual evaluation of QMC
averages as the so-called mixed expectation values is not exact.[127] However, as is
well known, these moments must be accurately determined to describe the interaction
of a mclecule with an electric field or with another species at long range.

As seen in Chap. 3, the fixed-node diffusion QMC approach ; 'cids accurate ener-
gies for a variety of first-row atoms and molecules. For the larger systems, approxi-
mately 90% of the CE is obtained, and computations on 2-4 electron systems yield

98-100%. Given this accuracy, it is of interest 10 broaden the scope of QMC so that
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properties other than the energy may be studied.

The QMC approach described in Chap. 2 samples the “‘mixed’” distribution ‘¥ 4.
If A is an Hermitan operator which commutes with the Hamiltonian, so that
Ady = agdy, then the eigenvalue @y may be obtained by averaging A, = WA, over

\PT¢0' That is,

A = [YrooALdR /¥ odR

= [0oA ¥rdR/ f0oHrdR = ay . @.n
Thus, in the terminology used from hereon, the mixed expectation value A,,, is ident-

cal to the exact, or ‘‘pure’’, expectation value, A, = <@gl l¢g>. (Here, and
throughout this chapter, all wave functions are assumed to be normalized.) Note, how-
ever, that when [A, H] # 0, e.g., A is a coordinate operator,

JooAWraR/fog¥rdR # [0oA GodR | #.2)
i€, A, #A,. Therefore, the QMC approach employed thus far does not give exact
values (to the extent that ¢, is exact) of important properties such as dipole and qua-
drupole moments. As seen from Eq. {4.2), pure expectation values of ccordinate
operators must be obtained by sampling 1¢g)? rather than ¥ ¢y

It should be pointed out, however, that when A, # A,, on improvement over the
mixed expectation value may often be obtained.[127] This is seen as follows. The
mixed average is accurate to first order in quantties which depend on the difference
function, & = ¢y — ¥y, i.e., the quantities <@yl8> and <¢gl4 15>. Also accurate 1o first
order in § is the ‘‘irial”” expectation value, Ay = <¥-lA [¥>. Trial expectation
values are computed by sampling from I 12, in a procedure often referred to as varia-

tional Monte Carlo (VMC). VMC may be cast in a form algorithmically identical to



diffusion QMC, except that the branching, cf. Eq. (2.23), is suppressed. The useful-
ness of Ay in this context, is that it can be combined with A, to obtain an estimate of
A, accurate to second order in 5.[127,128] That is,

Ay 224,- Ap = A+ 0(8Y). (4.3)
Though this approximation is generally better than either the trial or mixed values, it
may still be poorer than desired for reliable predictions. Given this, it is useful to
compute pure expeciation values exactly. Algorithms to ;!o this efficiently are
explored in this chapter. An alternative approach has also recently been explored.{129]

Approaches for modifying the Green’s function Monte Carlo (GFMC) 1o sample
l¢pl* have been proposed and explored by Kalos.[32,33] These approaches, however,
do not incorporate importance sampling, Subsequently, Liu et al,[130] in studying
quantum hard spheres, presented a GFMC technique with importance sampling which
employs the idea of Ref. 33 for obuaining I¢ol2. Here, we follow the approach of Liu
et al. in exploring modifications to the diffusion QMC approach to order 1o obtain
|¢012, and thereby compute pure expectation values of coordinate operators, for atomic
and molecular systems. (Methods for computing pure expectation values of other
kinds of operators, e.g., differential operators, are not known.)

The remainder of this chapter is organized in four sections. In Section 4.2 the
theory for sampling the ratio ¢¢/'f; is presented. Also in this section, algorithms are
presented for computing pure expectation values using a single QMC walk and trial,
mixed and pure expectation values simultaneously employing a YMC walk with QMC
‘‘side walks’’. In studying the relative merits of the algorithms presented in Sec. 4.2,

Section 4.3 gives results for the moinents of H and H, which serve as test cases.
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Section 4.4 gives results for the dipole and quadrupole moments are LiH and BH
employing the algorithms described below. Section 4.5 concludes this paper with

ideas for reducing statistical error in averages of odd functions.
4.2 Algorithms for the Computation of Pure Expectation Values
42.1 Pure Expectation Values by a Single QMC Walk

Since the QMC approach described in Chap. 2 yields only mixed expectation

values, the ratio ¢y must be sampled in order to obtain pure expectation values.

That is,
<A@y <¥rlA@o¥DIo> ; <Hr 100y 10> @4)
<0p/¥r>, <trlee T <Hrlop ’
=<tlAlpgp>=4,.

As shown by Liu ez af.,[130] the ratio ¢y may be obtained from the asymptotic
number of descendants resulting from a QMC walk which starts at R. For complete-
ness, we modify their proof for diffusion QMC.

An initial distribution given by a single point at R, is

RO =YRIMPR", 0)=8R" -R). (4.5)

Expanding the initial state function, @, in the complete set of (normalized) eigenfunc-
tions of A yields
8R"~R) =W RIZ;0R") . 4.6)
i

The expansion coefficients may be obtained by multiplying Eq. (4.6) by ¢,(R"Y¥(R")
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and integrating over R’, giving

¢ = 6 R R). 4.7)
From the asymptotic form of f, Eq. (2.24), we note

Fr(R", t) = coexpl—t{Eg-Ep ¥R VWoRD. (4.8)
Integrating Eq. (4.8) over all space “‘counts”’ the current number of descendants, or for
large ¢ the asymptotic populaton P (R) of a walker starting at . Thus,

PR) = [fpRVR" = ¢o(R YM¥(R Yexpl~t (EqEp 1<y l6g> - “9)
Retwrning to Eq. (4.4) for the evaluation of A,, ¢y/¥y may be replaced by P since the
overlap integral and time dependence present in P cancel.

In order to count efficiently the descendants of a walker during the QMC walk, we
have developed the following algorithm. With it, descendants of an arbitrary walker at
dme ¢ later (or, equivalently, N steps later where Nt =¢) may then be counted to
obtain P o« ¢y/'Fy. Although this process may be repeated for different points sampled
from W ¢y, with this algorithm this repetition is unnecessary because the full distribu-
tion is generated from a single walker. Moreover, an additional cost would be
incurred to propagate each initial point a distance of N time steps to reach the asymp-
totic domain. Instead, each step of a single (potentially branching) walk is used, that
is, by propagating an additional ume step to a time ¢ + T, the ‘‘N-distant’” offspring of
the first gem;.mtion (at time 1) may be computed. Likewise, at time ¢ + 27, N -distant
offspring populatons may be determined for walkers which may be thought of as
beginning at ¢ = 21. Therefore, after an initial investment of ¥ steps, additional N-
distant estimates of ¢y/'¥y may be sampled for points at ¢ = 1, 21, and so on. Further-

more, since N itself is arbitrary, convergence of the asymptotic population as a func-
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tion of N may also be determined

The branching of the QMC walk, however, requires tagging walkers. When the
branching yields several walkers at a time m<, one must know which of those at
(m + N)t are descended from which of those at mt. To store this information a
“‘family tree’” is created as the walk progresses, and each walker is labelled so that its
location in the wee is specified. This labelling is accomplished with two tags. The
first, 8 (0 £ 8 < ©), gives (together wi{h t) a walker’s location in the tree, while the
second, O, specifies that area (range) within the tree in which descendants of this
walker will be placed. The tagging begins by setting 8(k=1, t1=0) = 0, where the
index k labels the walker, and 8(k=1) = ©. If a walker “‘dies”, i.e., has no offspring,
then no subsequent values of @ and & are derived from it. When the £ walker has

n, (> 0) immediate offspring, the values of 8 and & assigned to these daughters are

obtained from 6(%, r) and 8(k) according to

O(M-+l, t47) = 0k, 1) + In;lsuc) {4.102)
k
and

S(M+1) = 8(k)iny, (4.10b)

where ! ranges from 1 w n,. To properly sequence the tags of the daughters,
k-1

M = 3 n; is the partial sum |up to walker (k-1)] of the number of walkers in the new
i=1

generation. As the example in Fig. 4.1 shows, this method yields tags that are iso-

morphic to the tee. Note, in coundng the descendants of a walker with 8 = 8(k, 1)

and § = §(k), these descendants lie in the range, S, given by
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S =[0(, 1), 8k, t) + 8(k)) . 4.11a)
From Egs. (4.10), 8(k, r) + 8(k) S 0(k+1, r); the cquality would always hold if no

walkers died. Since the descendants of the next walker (k+1) possess values of

0 2 9(k+1, 1), the O values of walkers descended from walker k also lie within

S* = [0k, 1), Bk+1, 1)) . (4.11b)
This choice is more convenient, since only 8 values need to be stored to compute the

range in which thz descendants of a given walker are located.

To verify that the limits in Eq. (4.11a) follow from the procedures described by
Egs. (4.10), we consider the values of 8 possessed by the descendants at time 7 + N1
of a walker with 8 = 0(k, r) and & = 8(k). Repeated use of Egs. (4.10) readily shows

that : particular descendant, m, will be located at

71 8k , ...
2 m

14-1
O(n, t+NT) =8k, 1) + :l S(k) +
1
I -1
I o(k) .
LA U I R
The labels I, {1 €1, £ n;}, comrespond to the ancestral lineage of m, while n; (> 0)

(4.12)

give the number of daughters in each family leading to m. For example, there are n,
daughters of walker k; daughter !, who has n, daughters, is the direct ancestor of m
in this generation, and so on. In Fig. 4.1, the direct ancestors of point *15°" are the
points labelled 1, 3, 7 and 12. The minimum value of 8(m, ¢+N 1), corresponding to
the initial walker never dying, is cbtained by setting (I;} =1, which yields
Omin(m, t+N 1) = 8k, r). The maximum 8, corresponding to the walker with the larg-
est value of @ at each time step never dying, results from setting each /; to its max-

imum value (n;) yielding
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_ -1 nel 8Gk) L. P 8GRy
Omax(m, 1+NT) = Ok, 1) + . 3(k) + wy ny T L —
= Ok, £) + 8k )(1mm———) . @.13)
nln2~--nL

Therefore, the range of walker k is indeed given by Eq. (4.11a). Since this range is
contained within [0(k, ¢), 8(k+1, 1)), the *‘descendant spaces’’ of walkers never over-
lap.

With the assignment of labels to walkers as described above, asymptotic popula-
tions are readily sampled during a QMC walk. For a set of N(T') points, T is an arbi-

trary time, the number of descendants of the £t point at a later time T + ¢ is given by
N(T+t)
PRe,Y= XY I, I;i=1,06(k,1)<8(, T+) < B(k+1, 1), 4.14)
i=l

I; =0, otherwise,
and B(N+1, 1) =©.

The discussion thus far treats only one tree. To sample asymptotic populations of
several independent points simultaneously, and to take advantage of the vector capabil-
ities of current machines, a group of family trees is created. This is easily accom-
plished for M), initial points by setting

8;(1,0)=(-1)O, 1sisM,. {4.15)
For each initial point § = ®, new values of 8 and & are computed according to Egs.
(4.10). Again, the descendant spaces are given by either (4.11a) or (4.11b) with
integer multiples of © added to each bound.

Finally, it should be noted that with this algorithm there is the need for some addi-

tional memory overhead in the storage of 8(k, ¢). This can become excessive when
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the time step T must be very small to minimize bias. However, because successive
values of the function to be sampled, A (R), are highly correlated, A and P need not
be sampled at every point along the walk. By sampling only every n steps, these

memory requirements are reduced by a factor of n.
4.2.2 Branching Algorithms with Weighting

Here we explore a variant of the branching generally used in QMC walks to reduce
the statistical error in sampled values of ¢/¥;. Upon completing 2 move, R —R’,
the most common implementation of branching is to obtain an integer, /,, which
specifies the number of walkers at R’. The number of copies, Iy, is int[b(R, R") + &],
where (R, R’) is the weight of R’ relative to R and is given by the branching factor
of the short-time Green’s function, cf. Eq. (2.27), and & i; a uniform random variate
between 0 and 1. While this rounding is cormrect on average, i.e., I_,, = b, a *‘‘micros-
copically’’ exact procedure is to weight each walker by the product of its current
weight and the branching factor b. The drawback to this weighting procedure is that,
since the product of these weights tends to either 0 or o, efficiency is lost with com-
putations on walkers that contribute very linle information due to their low (absolute
or relative) weights.

A combination of branching and weighting, however, is useful. In this case we
omit integer rounding until a weight becomes exceedingly small or Yrge. When the
weight w becomes large, an integer /,, is determined from it, as described above; how-
ever the daughters are assigned weights of /,,/w, rather than unity, so that no loss of

information occurs. When the weight becomes smaller than a threshold value, integer
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rounding is applied. The benefit of this modification is that the variance of the asymp-
totic populations, P, now given as the sum of the weights of descendants, is noticeably
reduced. This leads to improved precision in pure expectation values. See the Appen-
dix D for an analysis of the variance of rounded versus unrounded numbers.

A further point of interest is the omission of renormalization in this algorithm.
Recalling the discussion of the QMu algorithm in Sec. 2.5, the QMC simulation is
divided into blocks. At the end of every block the population of walkers, N,, is reset
to the number of walkers at the beginning of the calculation. This step is useful
because fluctuations in the ensemble size increase as the simulation proceeds.[40]
However, renormalization is not desirable when sampling lgg|? because the copying or
removal of walkers would give an error in the asymptotic populations. That is, for
certain points, the asymptotic populations would be arbitrarily changed by creating or
removing descendants. Therefore, though the single-walk approach is divided into
blocks, the ensemble is not renormalized at the end of each block.

Since renormalization is not employed, the length of the calculation must be kept
sufficiently short so that the number of walkers does not become zero or larger than
the allocated memory. On the other hand, long runs are desired so that the overhead
introduced by converging to asymptotic populations at the beginning of the simulation
is relatively small. For all systems studied, the fluctuations in the ensemble size were
small enough to allow runs in which the overhead due 10 convergence is about 5% of
the total computational cost.

The final point we discuss concerns the amount of bias in block averages. This

bias arises from averaging ratios as opposed to summing numerators and denominators
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and then dividing. This bias may be large when the number of points sampled in each
block varies widely, due 1o the absence of renormalization, as we discuss below.
We note that A, is obtained exacily, by sampling an infinite number of points from

¥ dg, when computed as

N N

A, = im FARIPRY YLPR) . (4.16)
Ny i=1

where P are the asymptotic populations. In practice, only a finite number of points

may be sampled and statistics are obtained from block averages. Therefore, pure (and

other) expectation values are computed from block averages as

NF
Ap(block) = Ny 1Y A; 4.17)
i=1
where
Ni N;
A= TARDPROIITPRY) . 4.18)
k=1 k=1

and N; is the number of points sampled in the i block. Since the average of a set of
ratios [Eq. (4.17)] is not generally equal to the ratio of the sum of the numerators over
the sum of the denominators [effectively, Eq. (4.16)], then a bias is present in
Ap(block). This bias is not significant when the denominators in Eq. (4.18) are
roughly the same, which is the case when renormalization is employed, or when the
number of points sampled in each block is large enough to yield A, (block) = 4,.
Therefore, a useful way to check for this bias in block averages is to increase the
number of points sampled in each' block and see if changes in computed averages
occur. This is most conveniently accomplished by defining a ‘‘block’’ as the entire

run, i.e., compute
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Ny N; Ny N;
A (run) = 3. S ARP R T T PRy) 4.19)
i=1k=1 i=lk=1

and then compare values of A, (block) with values of A, (run). Since the number of
points used in computing A, (run) is an order of magnitude larger than that in each
block, a noticeable difference between block and run values will be observed if block
averages are biased as discussed here. Employing this check, we have found no bias

in computations of properties from block averages.

4.2.3 Pure Expectation Values by VMC with QMC *‘Side Walks”

This approach employs a VMC walk to sample points from the distribution ¥ 12,

These walks are very efficient, can employ large time steps, and have no bias. The
points obtained are then inidal points for QMC *‘‘side walks’’. These side walks are
performed to obtain P, and thereby ¢¢/'¥r. Before implementing the QMC walk, the
starting coordinates of the initial points are stored so that the VMC walk may be con-
tinued after values of ¢y/'¥y are sampled. Since values of P are computed only for
points at the beginning of the QMC walks, the labelling process of the previous sec-
tion is greatly simplified. For example, for M walkers drawn from I'¥y 12, 8() = i and
8(i) = 0. Under these conditions the descendants of ihe i** walker are simply those at
the end of the QMC walk with 6 =i, cf. Fig. 4.2.

Since initial points are selected from W12, the ratio log/¥y 12 is necessary to obtain
pure expectation values. To do so, at least two indzpendent samplings of ¢y/'¥y must
be performed.[129b] Although the asymptotic population P is, on average, equal to
$o/¥r, its square is rot an unbiased esiimate of ¢y ¥ |? because P possesses statisti-

cal error due to the randomness of the QMC walk, To show this we write
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P &) = ¢/ + n(E), (4.20)
where & corresponds to a specific QMC walk, and for convenience the time depen-

dence is not displayed. Denoting the provability distribution of walks by # (&), there
results

[h®P E&)E = 0¥ + [AEME)IE = b/ . (@21
The term, jh EME)EE vanishes because on average =0 (e, P = ¢o/5). Note,
however, that squaring the population yields

[A@PUE)E = log ¥ P + [AEMAE)ME , (4.22)
and the second term on the right-hand side of Eq. (4.22) does not vanish. On the
other hand, the product of two asymptotic populations obtained independently is equal

to loo/¥ 1 on average, that is, from Eg. (4.21),

JREDP E)dE - [hEIP (EdE, = oy 12 . (4.23)

By sampling A and two values of £ zt points selected from ¥y 12, wial, mixed and

pure expectation values may be computed. These averages are, respectively

AT = <‘PT 1A '\PT> N

Ap =< I[P &) + P EDIA W >IURIIP (&) + P EDING>
and

4, = <Hp 1P (E)P A M1 IP € P E) 1> . 4.24)
Although two walks and two samplings of P are required for A,, since A and P are
sampled from a VMC walk which possesses no time-step bias, large time steps may be
taken to sample configuration space efficiently. Another benefit is that in this
approach (which we hereafter denote V+QMC) the statistical error in A, — Ar is gen-

erally much smaller than that of A, alone, since A, and Ar are coirelated. This is
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aseful because tral expectation values can be quickly computed in a separate VMC
calculation to high precision. Therefore, adding A, — Ar from V+QMC with a value
of Ay from VMC alone (referred to ..ereafter as ‘‘correlated V+QMC’’) can yield a

significant reduction in the statistical error of A, .
4.3 Results for H and H,

For purposes of evaluating the different approaches we have studied H and H,.
The H atom trial function is chosen as the 1y Slater orbital with an exponent detuned
to 0.95. For H, the trial function is constructed as follows (cf. Table 4.1). A ls
Slater orbital is used on each atom and at the midpoint of the internuclear axis. The
linear coefficients are obtained from an SCF calculation using the HONDO pro-
gram.[68] In addition, a simple Jastrow function of electron-electron and electron-

nuclear coordinates is also used, namely

ary; Arig
J(r i, ri) = exp( Tebry; - ‘5;‘, Trvr,. ). 4.25)

In Eq. (4.25), Roman indices denote electrons, while Greek indices denote nuclei and
the bond function. The final form of the trial function is,

W (1L 2) = w(hw(2)J (1, 2), (4.26)

where y is the molecular orbital.

Trial, mixed and pure expectation values obtained for H and H, are presented in
Table 4.2. When analytic values of Ay or A, are not available, VMC or QMC results
are computed, respectively. The data in Table 4.2 indicate the amount of improvement

required by each technique.
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Pure expectation values of <r>, <z% and <% for H and of <z%> and <r%> for H,,
computed by the methods discussed in Sec. 4.2, are presented in Tables 4.3 and 4.4,
respectively. Since efficiency comparisons between the techniques is our primary con-
cern, detailed studies of time-step bias and effects of finite convergence time, , are
not undertaken since accuracies are generally better than 0.5%.

We point cut here, however, that pure expectation valees are accurate to only first
order in errors inroduced by finite ¢ (“convergenc;c bias’’) and non-zero T, in contrast
to the energy which is accurate to second order. That is, for ¢f= &g + a(r, 1), where
a(t=oe, 7=0) = 0 and d¢zand ¢; are normalized, there results

<olA 1¢> = <tglA log> + <alA (o> + <thgld la> + <ald la> . 4.27)
However, the increased influence of bias on pure expectation values is mitigated by the
fact that acceptable accuracies in A, are much less than those in the energy. For
example, if bias in the energy has been reduced to an acceptable level of = 0.001%,
then even a wwo order of magnitde increase in this effect for A, will not be
significant since an error of 0.1% in a dipole or quadrupole moment is quite small.
For H and H;, we see below that convergence and time-step bias are small.

In our data, the worst combination of ¢ and T, which for the H atom was a time
step of 0.05 hartree™ (A7) and a convergence time of 5 k!, yields second moments
accurate to 1% or better. These small errors at 1 = 5 2! (relative 1o the 5% error in
the mixed averages, t = 0) imply that values of P are close to their asymptotic limits,
¢/¥r. Doubling the convergence time to 10 2™ further increases the accuracy of the
second moments to within 0.5%. Though this improvement indicates that further con-

vergence is possible, the smallness of the gain, relative to the total change from the
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mixed average, verifies that values of P are well converged. That little time step bias
is present may be seen when reducing t from 0.050 to 0.025 k7 only a small
improvement is obtained (generally less than the statistical error) in the already quite
accurate pure expectation values. In the V+QMC approaches, at r = 5 h71, the errors
are noticeably larger than those resulting from the sing'e QMC walk algorithm. This
is most likely due to the requirement of sampling ($y/¥s) twice, compounding the
error of incompletely converged values of P. This effect is no longer significant at
t = 10 A7}, where the accuracies of all methods are statistically equivalent.

All H, calculations were performed with T=0.01 57!, This time step introduces
very little error, as demonstrated by the accuracy of the results of Table 4.4. Since the
staustical errors are generally larger than the differences between the means and the
exact results, trends are difficult to discern. Generally, it is found that erors in the
means are 1% or less at 1 = 2 k7%, and less than 0.5% arr = 4 and 6 A%,

The results of Tables 4.3 and 4.4 show that each algorithm readily produces accu-
rate expectation values, i.e., convergence and time-step bias are small. For a com-
parison of the efficiency of the various algorithms, all statistical errors in Tables 4.3
and 4.4 correspond to the same amount of computation (10 minutes on a single proces-
sor of a Cray/XMP) and therefore provide a direct measure of relative efficiency.

It is immediately apparent that small but consistent improvement in precision
results for both H and H, when weights are canied in the QMC walk. The average
increase in efficiency, (the squared ratios of statistical errors averaged across T and t),
is roughly 60% for H and 130% for and H,. This improvement does not appear to be

strongly dependent on the choices for the upper and lower bounds of the weights. The
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weights for all the single-walk caiculations were not allowed to exceed a value of 2.
The lower bound was chosen as 0.1 or 0.4, and no noticeable change in the efficiency
was found for these choices.

We now compare the efficiencies of the V+QMC and correlated V+QMC
approaches. As discussed in Sec. 3.5, the difference between a weighted quantity, now
A, and a VMC value, now Ar, decreases as the convergence time, and hence the sta-
tistical error in the weights increase, [cf. Eq. (3.19)]. For H atom (Table 4.3), the
increase in efficiency using correlated V+QMC versus V+QMC is about a factor of 10
at =5k~ and a factor of 6 at r =10 A~!. For H, (Table 4.4), an increase in
efficiency of a factor of 6 is obtained at r = 2 2! which decreases to 3atz =6 A~
Thus all increases in efficiency obtained by exploiting the correlation between A, and
A7 are substantial.

While the most efficient techniques within the single and double walk algorithms
are discemibie, the question of which class is better, is not immediately answerable.
For H, the smallest statistical errors are obtained by the correlated V+QMC approach.
For Hy, on the other hand, the superiority of the correlated V+QMC technique is lost
by r =6 k-1, Since the computation tmes of A7 and A, — Ar are in gnod agreement
with the optimum values (not shown), cf. Eq. {3.24), the most probable cause for the
loss in performance of correlated V+QMC is the decrease in correlation between the
trial and pure expectation values as the convergence time increases. Note that this
trend is accelerated for H, in comparison to H. For examp!e, at ¢ =10 A™' for H,
exploiting correlation in the VMC approach increases efficiency by a factor of 6,

which is the increase found for H, at only ¢ = 2 27!, Nevertheless, since convergence
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to accurate results is obtained for Hp by ¢ =4 h‘l, the correlated V+QMC technique
remains the best approach for H; as well as H.

To summarize, employing VMC and QMC walks and exploiting the correlation
between trial and pure expectation values is the best approach for the systems studied
here. However, the efficiency of the correlated V+QMC method versus a single QMC
walk with weighting is strongly dependent on the length of the QMC walk required for
convergence of the populations to ¢o/¥r, and on how quickly the comrelation between
Ay and A, decreases with convergence time. Therefore, the single-walk method may

be more competitive in computations of pure expectation values of other systems.
4.4. Properties of LiH and BH

The H and H, results of the previous section demonstrate that accurate moments of
the electronic charge distribution may be obtained for simple systems. We now con-
sider the computation of pure expectation values for the ground states of LiH and BH
at their experimental iniernuclear separations. These systems represent a greater chal-
lenge due to the presence of exchange nodes. As discussed in Chap. 3, the QMC
energy resulting from the single-determinant trial functions employed possess a fixed-
node error for LiH ( = 1% of the CE) and BH ( = 10% of the CE). These trial func-
tions are now used to the compute dipole and quadrupole moments of LiH and BH to
determine the effect of fixed-node error on these properties. For LiH, properies are
computed with both the single- and double-walk algorithms. In addition to fixed-node
error, the effects of the time step and convergence time are also studied.

As described in this chapter, moments are obtained from expectation values of
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coordinate operators. (A QMC approach has also been developed which computes a
dipole moment from the change induced in the QMC energy by a static electric
field.[131]) For an n-electron diatomic molecule with the internuclear axis along x,

the dipole and quadrupole operators are given by (in atomic units),

=3 ZoXg - Z‘;xi , (4.28)
a =

and

22 Z,682-R%) "3 zsx (4.29)
In Eqgs. (4.28) and (4.29), Greek indices denote nuclei, Roman indices denuie electrons,
and the nuclear charges are given by Z,. In the Bom-Oppenheimer approximation,

i.e,, fixed nuclei, the dipole and quadrupole moments, when expressed as expectation

values, are
pE=<p>=3¥ Z X, - n<x>, (4.30)
a
and
6=<B>= %); 2,32 -82) - qn<hl~ 1> 431)

Therefore, in the approa‘ches we employ, the dipole and quadrupole moments are
obtained from the pure expectation values of x and 3x2 - r2, respectively.

For a charge-neutral species, the computed dipole moment is independent of the
origin. However, the quadrupole moment does depend on the coordinate origin when
the dipole moment is non-zero. For LiH, the origin was chosen as the midpoint of the
internuclear axis. However, it is most common to report quadrupole (and other)

moments as computed with respect to the center of mass. For a diatomic molecule,
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only the x coordinate differs between the two origins above. Therefore, the center-of-
mass (CM) and midpoint (MP) quadrupole moments are related by

B8(CM) = B(MP) - 2X it » (4.32)
where

XCM=§Maxu/)E Mg. (4.33)
For LiH, we employ the experimental internuclear separation of 3.015 Bohr and the
nuclear masses of the periodic table, My = 1.0079 and M ; = 6.941 atomic mass units,
yielding Xy = 1.1252 Bohr.

The LiH trial function is taken from a single Slater determinant, the basis set is
given in Ref. 43, and the coryelation functions are described by Egs. (3.4), (3.5), and
(3.9). The correlation function parameters (@, = £, = 0) are presented in Table 4.5.
The parameters Ay and Ap; are chosen to satisfy their respective cusp conditions, as
described in Sec. 3.2, to minimize time-step bias. (A programming error yielded
Ap(cusp) = 0.1025 while the correct value, cf. Fig. 3.8, is 0.61. However, as seen in
Fig. 3.11, time-step bias is ..nall.)

Chronologically, the first algorithm developed by the author was the one most
analogous to diffusion QMC computations of the energy, i.e., the single-walk approach
with the brancning simulated by integer rounding. As seen in Sec. 4.3, accurate results
were obtained for H, which motvated further investigation of the capabilities of the
single-walk approach with calculations on LiH. To investigate the effects of time-step
bias (non-zero t) and convergence bias (finite ), single-walk computations of mixed
and pure properties were performed. Results for these, trial, and second-order expecta-

tion values are reported in Table 4.6.
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The first significant point is that the mixed dipole moments are found to be worse
or equivalent to the trial values. Therefore, the second-order approximation is entirely
useless in obtaining improvements over mixed dipole moments, cf. Table 4.6. The
second-order quadrupole moments, on the other hand, are seen 1o give accurate esti-
mates of the pure values.

The limited number of computations in Table 4.6 and the size of the statistical
errors does not allow observations to be conclusive. Monetheless, imporiant trends are
indicated by the data. In examining the dipole moments for example, we see that very
little time-step bias appears to be present at T = 0.010 and 0.005 2™, We also observe
that at T = 0.020 A~! the mixed dipole moment, p,,, is somewhat higher than p, at
the smaller time steps suggesting that some time-step bias is present at 0.020 A~L.
Since M, tends to converge downward from W, towards the exact (note that r =0
yields mixed results), a time-step bias which increases p,, will also increase W,. Yet
we find that By is most accurate at T = 0.020 A~1. This result, therefore, is due to the
increase in convergence time which, apparently, more than compensates for the
increase in time-step bias. In ascertaining the degree of convergence to asymptotic
populations, we now consider values of lu, ~ u,l. Note that Iy, — ! is only 0.023
and 0.020 Debyes (D) at ¢ =4 ™! (1 =0.005 and 0.01G »7!, respectively). In con-
mast, at ¢ =8 A~', convergence from the mixed is over three times greater, 0.71 D.
This comparison indicates that convergence is not complete at 1 = 4 27! and is there-
fore the major source of error in these two calculations. A word of caution is in order,
however, since the statistical emors are of the order of the differences just discussed.

Most important, our most highly converged dipole moment, r = 8 and T=0.02 A7), is
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in excellent agreement with experiment, within 0.6(8)%. As a final point, we note that
increases in efficiency should be readily obtained by carrying weights, cf. Sec. 4.2.2.
Uncompleted calculations indicate that the single-walk algorithm with weighting will
yields improvements in efficiency of a factor of 2-4. The calculations presented here
each took from 1-3 hours on a Cray/XMP.

In considering the quadrupole moment, the computation of the pure value actually
appears to be easier for  this  quantity. For  example, at
r=4hp! ,Ie,J ~0,1=018B(8 = 1025y —cm?) while this difference increases to
only 0.20 3 at r = 8 -, Thus convergence now appears to be atrained at 4 47! in
contrast to the dipole moments which converge at + = 8 47!, Unfortunately, an exact
value of € is unknown, however, we do compare our QMC result with others in Table
48. .

In addition to single-walk calculations of properties, the V+QMC approach has also
been applied to LiH. Two time steps, 0.020 and 0.010 h~!, and several convergence
times, 0 — 8 471, have been employed.

As described in Sec. 4.3, points are sampled from [y 12 and then two estimates of
the asymptotic population (for several convergence times if desired) are obtained for
each point. Subsequently, the VMC walk is continued and a new set of points is sam-
pled from I‘FT12 at a later time and so on. It is highly desirable that points sampled
from M-12 are uncorrelated. If conglation does exist between points sampled from
¥ 2, then sampled values of the coordinate operator {A) and the asymptotic popula-
tion (P) will also be correlated. To the extent that values of A and P are correlated,

computational effort is wasted in the relatively time consuming QMC side walks which
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sample P. This concern becomes more important as the convergence time increases.

For H and H,, correlation in points sampled from ¥4 1% is not problematic. Pure
expectadon values were computed efficiently with guesses, simply based on experience
in previous QMC energy computations, of the number of VMC steps between sam-
pling values of A and P from |12, This is not the case for LiH. In an initial set of
calculations, points were sampled from from [ 12 after every ten steps with T (VMC)
=0.25 k™. The acceptance ratio was 0.6 yielding an actual diffusion time of 1.5 4~}
between samplings. While this amount of tme between samplings seemed sufficient,
apparently it is not as the efficiency of the V+QMC calculations was quite poor. Thus,
the question of sampling configuration space in the VMC walk requires greater con-
sideration for LiH.

One method of addressing the concemn above is to simply increase the time between
samplings from I¥-12. This approach, however, is a rather time consuming method
for ascertaining the best way to sample configuration space in the VMC walk (since
QMC side walks are also performed). A, perhaps, better alternative is to simply select
a very large ensemble of uncorrelated points from ¥ 1> which can be accomplished
quickly. One may then compute the wial values of the energy, dipole and quadrupole
moments (as well as other expectation values if this is deemed useful) from this
ensemble of points. Comparison of these averages and their stagstcal errors with
those from VMC calculations then allows a judgement to be made concerning the ade-
quacy of the ensemble size. Caution must still be applied, however, since the ensem-
ble averages may be fortuitously close to precisely obtained wrial values, and, likewise,

statistical error in these averages may be underestimated due to the limited size of the
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ensemble.

Following the approach outlined in the preceding paragraph, 30,000 points were
randomly chosen and then converged to ¥y 12 in a VMC walk of 25 4! (the diffusion
rime was 19 A~!). The ensemble averages of the dipole and quadrupole moments for
this ensemble are given in Table 4.7 as the + = 0 properties. Comparison of the trial
(VMC) moments in Table 4.6 with the ensemble averages in Table 4.7 indicates that
the ensemble is sufficiently large. This ensemble of 30,000 points is then divided into
30 subensembles of 1,000 points, and then propagated 8 #~1 at T = 0.02 and 0.01 47!
in sampling !¢¢/¥-1%. The computational cost for these time steps is 30 and 60
minutes of Cray/XMP computer time. Results are presented in Table 4.7.

The first point of interest, which implies why convergence to an accurate dipole
moment can be difficult for LiH, is that the accuracy of this moment actually decreases.
in the initial stages of converging to asymptotic populations, compare the 1 = 2 and
¢t =0 h~! dipole moments for both time steps. The quadrupole moments, on the other
hand, converge monotonically.

The most puzzling aspect of the data is that the T=0.02 £, r = 8 #~! moments
disagree with those of the single-walk approach. In considering this, we point out that
time-step bias should be equivalent between the single- and double-walk methods. In
both approaches the time-sicp bias enters in twice, in ‘Wr¢y and ¢y in the single
walk and in |q>0/"I’TI2 in the V+QMC simuladon. However, convergence bias is more
significant in the V+QMC algorithm. As discussed in Sec. 4.3, convergence bias is
compounded with V+QMC, since a product of asymprotic populations is employed, but

not with the single walk. This effect manifested itself in the larger errors obtained
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with V+QMQC, in comparison to the single walk, at the smaller convergence times for
Hand H,. In this light, note that for both time steps in Table 4.7 values of i, and 6,
are still changing at the larger convergence times. While these changes appear to be
well beneath the statistical noise, in fact they probably are not. This is because the
statistical error in, for example, |1, (r=6) - p, (¢=8) is roughly an order of magnitude
smaller than that given by the siatistical error of the two values of p, due to the high
degree of correlation between values at similar convergence times. Therefore, larger
values of ¢ should be employed in future calculations in order to ascertain convergence
to lggl2.

While the T = 0.01 #~! moments are very good. The question of convergence still
remains. In addition, larger convergence times would seem to give a dipole moment
which is too low contradicting the implications of the single-walk calculations. For
this reason, it is important to verify the adequacy of the ensemble size employed here
by generating more ensembles of the same size and comparing the accuracy of aver-
ages over these ensembles with those of the original.

Finally, we have found that while the statistical error in A =, — jr is smaller
than that of p, at the smaller convergence times, these statistical errors were
equivalent by ¢ = 8 £~!. Therefore, no benefit appears to be derived from the corre-
lated V+QMC approach in the context of computing moments for LiH. Comparisons
of efficiency between the single- and double-walk algorithms will be made when
weights are carried in the single-walk approach and when the double-walk calculations
are more complete.

Table 4.8 compares our single-walk (r =8 £, ©=0.02 A™") moments with the
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exact (when available) and those obtained in other ab initio computations. As has
already been stated the QMC dipole moment is quite accurate; similar accuracies are
also obtained by other theoretical approaches. The differential dipole moment, com-
puted from the difference of statistically correlated QMC energies with and without a
small static electric field, is also of reasonable quality. However, this moment was
obrained employing the trial function of Ref. 43 which yielded a rather poor QMC
energy (since the linear coefficients in the MOs are not optimized) of -8.05%(4) £ in
comparison to ours, -8.0691(4) £ (the exact is -8.0702 h). Therefore, it is expected
that the differential dipole moment will be improved using a more accurate trail func-
tion. In considering the effect of fixed-node error of the dipole moment, we note that
this error in the QMC energy is 0.01% of the total energy, and 0.6% in the dipole
moment. Thus, although the fixed-node error rises dramatically for the dipole moment,
the overall accuracy is still quite good.

The more interesting property studied here is the quadrupole moment for which no
exact value exists. A noticeable discrepancy of 0.16 B exists between recent theoreti-
cal calculations of this moment, cf. Table 4.8. If the QMC value of 6 possesses an
accuracy similar to that of 1, then our value of 8 should be quite accurate as well (and
in favor of the CASSCEF result). It will be of great interest to compare our value of
the quadrupole moment with an exact estimate, if it is ever obtained, as this would be
a significant test of the predicative capability of the QMC approach empioyed here.

A very limited set of properties calculations has been performed for BH. The trial
function is ¥, given in Table 3.15 and the single-walk approach (without carrying

weights) was employed with r =3 A~ in all calculations. The effect of deleting a
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walker upon crossing a node versus rejecting the move is examined. For the deleticn
aporoach, calculations were performed at T = 0.005 and 0.010 A~ which used 2 and 1
hour of Cray/XMP computer time, respectively. No time-step bias is discernible for
these two computations. The last calculation used a tme step of 0.010 £~! and rejec-
tion and took three hours.

Table 4.9 compares QMC results with other ab initio values and experiment
(apparently only a few computationsA of properties for BH exist). We see that for the
computation times above, the statistical errors in the QMC moments are reasonable (=
3-4%). However, the convergence time of only 3 A~! (compare with those of LiH)
suggests that convergence is not attained. The most significant result is that the
“‘rejection’” value of the dipole moment is noticeably different from the ‘‘deletion”
moment and in much better agreement with experiment, i.e., now within the (large)
experimental error bar. However, since no time-step bias was observed in the deletion
properties at the time steps employed this discrepancy, albeit large, must remain a
matter of conjecture,

The BH calculatdons show that a reasonable dipole moment may be obtained (if the
rejection value is correct) with a single-determinant tial function. However, the accu-
racy of the quadrupole moment, which does show a substantial disagreement with the
MCSCF value of Bishop er al.[136], can not be ascertained given the paucity of
theoretical calculations and the absence of an estimated exact value. As noted in
Chap. 3, the QMC energy for the trial function employed here gives only 89% of the
CE, a much larger error than that of LiH. While it is of interest 10 deterrine the

effect of this fixed-node error on QMC-computed moments, further pursuit of accurate
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moments should include consideration of a multi-determinant trial function which will,

hopefully, yield an improved QMC solution.
4.5. Moments with Odd Powers

In this section we explore more efficient approaches for computing expectation
values of coordinate operators with odd powers. For such expectation values, cancella-
tions will occur from different regions of space. Therefore, sampling techniques which
exploit this cancellation are preferred.

The one-dimensional computation of <x>'= Ix plx)dx, (p is assumed to be normal-
ized) serves as an example. As the symmetry of p(x) about x = 0 increases,[138] the
degree of cancellation of the integrand also increases. Therefore, lower variance esti-
mates may be obtained by sampling a new disuibution, p” (e.g., by sampling p/p from
the original distribution p) which will exploit this cancellation.

Probably the most straightforward approach is to choose p” as the antisymmetric
component of p, namely p'(x)=p,(x) = %[p(x) - p(=x)]. Since x is an odd func-
tion, the symmetric component of p vanishes upon integration, yielding

<> = [xp, (x)dx . (4.34)
In sampling from p, <x> may now be computed by averaging xp, (x /p(x). Note that
if p is an even function, all sampled values vanish idensically so that the comrect result
is obtained with no statistical error. More generally, of course, p is not fully sym-
metric, and only a finite statistical error reduction ensues. For example, consider a
one-dimensional distribution that, like for a heteronuclear molecule, possesses unequal

exponentially decaying tails at large + x. The antisymmetric part of p, then also
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possesses such tails, though now of differing sign. Thus little error reduction is
expected in this case. In addition, sampled values of xp, (x)/p(x) will be unbounded
in regions where p(x) is small but p(—x) is not, thus increasing statistical error.
Therefore, depending on p(x), the reduction in statistical error may not be significant.

The problems with the naive choice of p”=p, (that the spread in p’ is not
optimally reduced and that p”/p may be poorly behaved) are addressed by a new
choice of p’, is given by ‘

pix) =plx) - p(=x) for p(x) 2 p(=x)

o, for p(x) < p(—x) . (4.35)

It is easily shown that <x> = J'x plx)dx. However, the spread in p should be less than
that of p or p,. If tails are present in the original distribution, one of them is immedi-
ately eliminated. Also, p possesses the zero-variance property (that p, does) when p
is an even function. Finally, by construction the quantity to be averaged in sampling
from p, namely xp/p. will remain bounded for small p since 0 < p/p < 1.

To ke a simple example, consider p(x) = %(1 +x), lxl £ 1. From the definitions
above, py(x)=x/2 on Ixl <1 and Pp(x)=x on 0<x <1. The variance obtained
from p is given by

1
Vy = [p()lxpexipee))dx - <x>?=0.11. (4.36)
-1

Efficiency is thus doubled over sampling from p directly, for which V, =022. In
contrast, V,, is infinite because of the singularity in p,/p at x = -1.
A more realistic example is offered in Fig. 4.3, where p is the square of a trial

function for LiH at a fixed distance from the internuclear axis (x). Comparing the
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solid line, p, to the dotted, P, shows the narrowing of the distribution achieved, even
though p is far from an even function. A numerical computation for the variance
yields Vp(x) = %Vp(x). Applying these ideas is most readily accomplished within the
V+QMC approach. Specifically, values of ¢o/¥r for each point R sampled from ¥ 2
are required at R and at a symmetry point (or points) related to R by reflection or
inversion. If the symmetry is sufficiently high, the extra computadon resulting from
the necessary sampling of added values of I¢gl2 will be compensated by reductions in
the statistical error in the averages. The most pronounced reductions will be found for
charge distributions which are nearly symmetwic. For example, for molecules such as
CO, substantial reductions in statistical error, versus a straightforward sampling of

I¢g/2, should be observable employing the difference technique described here.



Table 4.1. Parameters for the H, trial function.

c(H) 0.48610 a 0.50
¢ (BF%) 0.11089 b 0.50
Exponent 1.19000 A 0.15

v 1.00

“The bond function is located at the midpoint of the intemuclear axis.



Table 4.2. Comparison of wial, mixed and pure expectation values for H and Hy.?

H
<> <> <l
Trial 1.5789 11080 3.3241
Mixed 1.5385 1.0519 3.1558
Second-order* 14981 0.9958  2.9875
Pure 1.5000 1.0000 3.0000
H,
<z <>

Trial (VMC) 1.0787(6)  2.6228(11)
Mixed (QMC)*  1.0491(8)  2.5809(14)
Second-order” 1.0195(i0)  2.5390(18)
Pure (exact)? 1.0230 2.5464

?Results for the H atom are exact, analytic values.
bSee Eq. (4.5).

© Time step for QMC results is 0.01 A7%

4Ref. 10.



Table 4.3. Pure expectation values for H atom by various Monte Carlo methods.”

Method , ™) <> <z <
Single QMC walk: (5, 0.050) | 1.5058(14) 1.0075(32)  3.025(6)
Inteser roundi (10, 0.050) | 1.5038(15) 1.0066(31)  3.015(7)
CeerTouncing (10, 0.025) | 1.5025(21) 1.0029(41)  3.010(9)
Single QMC walk: (5, 0.050) | 1.5052(11)  1.0084(25)  3.024(5)
Integer rounding (10, 0.050) | 1.5040(12) 1.0024(25) 3.018(6)
and weighting (10, 0.025) | 1.5023(15)  1.0040(33)  3.009(7)
(5, 0050) | 1.5074(15) 1.0150(40)  3.033(6)
V4+QMC {10, 0.050) | 1.5032(22) 1.0018(51) 3.012(9)
(10,0.025) | 1.5026(23) 1.0008(53) 3.012(11)
correlated (5, 0050) | 1.5094(5)  1.0144(11) 3.045(2)
V+OMC (10,0.050) | 1.5024(7)  1.0029Q21)  3.010(4)
(10, 0.025) | 1.50209)  1.0025(24)  3.009(5)
Exact® 1.5000 1.0000 3.000

“Units for length and time are bohr and A", respectively. Stalistical errors,
in parentheses, represent one standard deviation in the mean of 3 Gaussian

distribution, and are

lized 10 correspond to 10 minutes of computation time on

a Cray/XMP.

b¢ denotes convergence time; T is the time step.

¢t See Table 4.2.
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Table 4.4. Pure expeciation values for Hy.?

Method ! <> <L

Single QMC walk: 2 1.028(9)  2.554(14)
4 1024(8) 2.549(14)

Integer rounding =} o109y 2.54915)

Single QMC walk: 2 1.034(6) 2.554(10)
Integer rounding 4  1.020(5) 2.535(9)
and weighting 6 1.028(6) 2.545(12)

2 1.034(5) 2.563(9)
V+QMC 4 1.022(8) 2.548(12)
6 1.027(8) 2.550(21)

correlated 2 1.0332) 2.562(4)
4 1.026(3) 2.549(6)
V+QMC 6 1.026(6) - 2.550(10)
Exact? 1.023 2.546

#Units are given in Table 4.3. The time step is 0.01 4~! in all calculations shown;
the statistical errars correspond to 10 minutes of computation on a Cray/XMP.
®Ref. 10.
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Table 4.5. LiH correlation function parameters.

a) 0.50000
by 1.50000
Ay 0.10250
vy 2.00000
A 0.03075

vu 0.02500




Table 4.6. Single-walk properties for LiH.

163

@, ™ Dipole Moments? Quadrupole Moments®

Mixed Pure Second-order? | Mixed Pure Second-order”
(8, 0.020) | 5.932(18) 5.861(46) 5.951(36) 4.25(5) 4.05(17) -4.12(10)
4, 0.010) | 5.909(32) 5.886(46) 5.905(64) 4.17(9) -3.98(13) -3.96(18)
(4, 0.005) | 5914(18) 5.894(28) 5.915(36) 4237y -4.07(13) -4.08(16)
Trial 5913%6) -4.38(1)
Exact® 5.828 -e-

¢ is the convergence time in obuining asympiotic populations and 1 is the time step, both are in #7°,
5Units are 107'® esu—cm (Debyes).
< Units are 1072 esu—cm? and are reported with respect 10 the center of mass. ?See Eq. (4.3).
“ A vibrationless value derived from experiment in Ref. 132 by extrapolating to —1/2 vibrationat
quantum number,



Table 4.7. V+QMC properties for LiH.*

1=0.02

t [T 8,
0? 5.910(24) -4.40(5)
2 5.94427) -4.37(7)
4 5.932(32) -4.31(8)
6 5.918(38) -4,29(9)
8 5.910(42) -4.24(10)
Exact® 5.828

1=0.01
t Ky 8,
o? 5910(24) -4.40(5)
2 5.923(26) -4.33(7)
4. 5.902(31) -4.28(9)
6 5.865(33) -4.22(10)
8 5.835(32) -4.16(10)
Exact®  5.828 -

“Units for the convergence lime (1), time step (t), dipole moment (i, ), and quadrupole

moment (8,) are given in Table 4.6.
¢ = 0 comresponds to the trial values.

°Ref, 132.
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Table 4.8. Properties of LiH by various approaches.

a

Method n
HF? 6.00
CI* 5.85
Largest CI4 5.86
CASSCF® 5.83
Coupled-Cluster 5.87
Differential QMC% 5.77(8)
QMC* 5.86(5)
Exactf 5.83

0
-4.51
-4.16
-4.13
-4.29
-4.05(17)

“Units are given in Table 4.6.
Ref. 117.

¢ Ref. 133.

4Ref, 112,

“Ref. 134,

I Ref. 21,

fRef. 131.

*This work. Single walk with t = 8 A~ and 1=0.02 4™,

 Ref. 132.
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Table 4.9. Properies for BH.?

Method i (-]
HF? 1.74 -3.59
MCSCF 1.32 -3.09
Trial? 1.75(4)  -4.39(2)

QMC(deletion) 1.68(5) -3.83(9)
QMC(rejection)  1.44(6) -4.02(i2)
Experiment® 1.27(21) -

2Units are given in Table 4.6 and quadrupole moments are with respect o the center of mass.
bRef. 135.

¢Ref. 136.

4Trial function ¥,, sce Table 3.15.

“Ref. 137.
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Figure 4.1. Tagging algorithm for single QMC walk method. A *‘family tree’’ for a
single walker starting at the origin is shown. Each ring outward corresponds to one
generation (or an increase in time by t). Location in the diagram identifies a walker
with its 8(k, r) label. All descendants of a walker will be in the range of angles from
6 to 8 + , making identification of progeny possible for all future generations. This
enables one to determine convergence to asymptotic populations in a single calcula-
ton. An ensemble of trees may be readily wreated as described in the text
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Figure 4.2. Tagging algorithm for VMC with QMC side walks method. The family
trees generated are shown for of five points sampled from ¥ 12 Since only the des-
cendants of the points beginning each QMC walk are tracked, the tagging algorithm is
very simple, as indicated here and discussed in the text. Weights are carried with the
branching walkers so that the asymptotic population of a point is the sum of the
weights of its descendants at sufficiently large ¢. For each initial point, wo QMC
walks are employed in order to obtain two statistically independent samplings of ¢y ¥y
and, therefore, an unbiased estimate of I¢o!%I\W 12 As in the single QMC walk
approach, results may readily be computed for several convergence times (z).
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Figure 4.3. Equivalent distributions for the computation of <x>. The solid line
represents the original disuibution, p, while the dotted one represents the difference
distribution P, cf. Eq. (4.35). The average value of x is identical over both distribu-

tions, but the variances are not.
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Chapter §

The Computation of Transition D:pole Moments

5.1. Introduction -

The work discussed thus far began with the implementation of the well-
developed{39,43], though not widely applied, fixed-node diffusion QMC approach for
computing electronic energies, cf. Chap. 3. Subsequently, novel algorithms, designed
to sample I¢gl2, have been developed and explored in calculations on small atoms and
molecules, cf. Chap. 4. The approaches and applications detailed in Chaps. 3 and 4
have considerably broadened the scope of single-state computations by diffusion QMC.
In this chapter, we explore an entirely new area ~ the sampling of several states simul-
taneously so that multi-state properties may be computed. The teconiques described
below al!ow the computation of transition mamix elements. Since transition dipole
moments are by far the most significant class of transition matrix elements, we focus
on, but are not limited to, the computation of these moments.

Transition dipole moments are of great interest in chemistry and physics since they
appear in the expressions for transition rates and probabilities for photon- or electric
field-induced atomic and meolecular swate changes. From first-order time-dependent
perturbation theory in the dipole approximation, the probabilities per unit time for

absorption, induced emission and spontaneous emission are proportional to the square
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of the transition aipole moment between the two states of interest.[139] This moment
can be written in several forms.[140]} For a transition from state m to state n, the

transition dipole moment in the frequently used length form is expressed as

o 1 = 1<0 | 710,512, 6.0

where the sum is over all electrons.

Also related to the dipole transition moments are experimentally observable quant-
ties such as oscillator strengths, f, and mean lifetimes, T. The oscillator strength is
defined as the ratio of the absorption coefficient integrated over frequency to the value
this ciuamity would have if each molecule (atom for elemental substances) of the
absorbing material were replaced by an harmonically bound elecron. For a wansition

from state m to state n, the oscillator strength may be written as,[141} '
=2, -E,)R, 1
Joa = g( 7~ Em) s (5.2)

where E, > E,,, and the transition dipole moment is averaged over the initial and
summed over the final state degeneracies. The mean lifetime of a state n obtained by

excitation from state m, is given by[141}

T, = -;-gn/(gmfm,. 7). (5.3)

Here 1, is in seconds, V is the energy of the absorbed photon in cm™, and g; is the
degeneracy of state i.

Despite the imporance of wansition dipole moments, computing them remains

problematic for all but the simplest systems. This is because 7., is very sensitive to

the quality of the wavefunctions used,[22] so much so that wavefunctions which yield
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very accurate energies can still give inaccurate transition moments. Also, the conver-
gence properties of the mansition dipole moment with basis set and configuration
expansion are generally not known. These difficulties encountered by standard quan-
tum mechanical methods is a strong motivation for investigating the possibility that
accurate transition dipole moments can be computed by QMC. Towards this end, we
investigate approaches for sampling from more than one state. Though our approach
uses diffusion QMC with the fixed-node approximation for treating Fermi statistics,
two of the methodologies developed here may be applied directly to other QMC
methods.

In the next section, we demonstrate how approximations to the transition dipole
moment, accurate to first order in the error in the trial function, may be combined to
obtain second-order estimates. In Sections 5.3-5.5, three different methods for cumput-
ing exact transition dipole moments are discussed. A presentation and discussion of
results for the 15 —2p, transition dipole moment of the hydrogen atom concludes each
of these sections. In Section 5.6, the three methods are compared and their relative
merits and deficiencies are discussed. The final section describes oscillator strength

calculations for the 22§ — 22P wansition of Li.
5.2, Approximate Transition Dipele Moments

Let us define ¢; and ¢, as the two states between which we wish to compute a
transition dipole moment, and ‘¥, and ‘¥, as the mial functions for these states.
Several approximations to the transition ¢pole moment may be computed using QMC.

These approximations are
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Ay = <M lA >, (5.42)

Ay =<0,1A >, (5.4b)
and

Ay =< lAlp>, (5.4c)

where, for notatonal convenience the equations above are in terms of normalized
wavefunctions. Since asymptotic populations (to be employed in the next two sec-
tions) are written in terms of normalized eigenfunctions, ¢;, and in other expressions
0; appears to equal powers in both the numerator and denominator, QMC eigenfunc-
tions are taken to be normalized without loss of generality. The normalization of trial
functions will be discussed when required.

The *‘trial’’ matrix element, A,, is readily computed using VMC by averaging
WA/ M 12 over W12, The *‘mixed”” matrix elements, Ay, and Ay, are obtained
from from a QMC walk. For example, to compute A, ‘PT:‘A Wy, is averaged over
Wr,01. This average is then multiplied by <\{f, i¢!> to give A,. (Methods for comput-
ing overlap integrals are described later.)

Writing ¥ = ¢; + §;, the above thres approximations are all accurate 1o first order
in the error in the trial functions. However, they may be combined to obtain a
“*second-order’’ estimate of <¢, 14 l¢,>. In particular,

A, =A) +Ay - A, =<01A 1> - <5,1418,> . (5.5)

To demonstrate the quality obtainable from these second order estimates, we com-
pute A, analytically for the wansition dipcle moment (4 = x) of the 1s —2p, wansi-
tion of the hydrogen atom. Results are presented in Table 5.1. The wial functions, ‘ff,

and W are 15 and 2p, Slater orbitals with exponents of 0.90 and 0.45, respectively.
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The exponents are chosen such that the variational energy, <\¥5; | N>, differs by 1%
from the exact value. This choice was made to simulate the accuracy of trial functions
generally used in QMC when studying more complex systems. As seen in Table 5.1,
the error in the second-order approximation is an order of magniwde less than the

errors in any of the first-order approximations.

5.3. Exact Transition Dipole Moments: QMC Walks within QMC

Walks (Method 1)

In this section, we discuss a method which involves propagating a QMC walk for
each state under study. Though this approach (as well as the following two) can be
applied to any number of states simultaneously, for simplicity, we limit the discussion
to the study of only two states.

We wish to compute the matrix elements <¢; !4 l¢,> where specifically we focus on
A =x,y orz, and ¢, and ¢, are two different energy eigenfunctions. This method
begins with a straightforward implementation of QMC using ‘¥, as the rial function to
generate the distribution f| «<¥.¢; (cf. Chap. 2). Here, ¥y, is a trial function chosen to
describe state *‘1°’°, and ¢, is the exact (fixed-node QMC) solution for this state. We

now seek an operator, O, sampled from f; such that

<10 10>
<¥lop>

From Eq. (5.6), the wansiton matrix element is obtained when

<0>p = =< lA l¢;> . (5.6)

0 =5\A0,0 . (5.7

where overlap integrals are written as 5; = <\ I¢;> for normalized wial functions.
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The first step in obtaining values of O is to sample a second eigenfunction employ-
ing an auxiliary walk guided by a second wial function, ¥, This walk commences
with points selected from ‘¥, ¢;. The structure of the two walks is shown schemati-
cally in Fig. 5.1. As shown in Chap. 4, for a QMC walk beginning at R, theé number
of points at a later time is asymptotically proportional to the ratio of the QM. solution
to the wial function at R in this case ¢z(R )/\PT;(E ). Thus values of ¢; are sampled
from & standard QMC walk, which yields ¥4, and values of ¢, from an auxiliary
QMC walk, guided by r,, which yields ¢,/'¥7,.

Recasting Eq. (4.9) in terms of ¢, and ‘¥, the asymptotic populations resulting

from the auxiliary walk are given by

PAR ,)Ejf R, 1dR’ = 0R) expl—t(E;—Ep)]s (5.8)
AR, RR, 1)dX ¥R 52 - .
Thus, Egs. (5.7) and (5.8) imply
O = explt (Ey—Ep)ls 5, ", WP oA = 5140/, (5.9)

yields the transition dipole moment in Eq. (5.6).

We point out that for Egs. (5.6)~(5.9) to be consistent, ¥y, and ¥, must be normal-
ized to unity when computing the ratio \Wp,/Fy,. If cormrelation functions are included in
the trial functions, the normalization of the trial function can not be obtained analyti-
cally. Since the correlation functions we employ are desirable, a method of normaliz-
ing trial functions is of interest.

When the trial function is given by Det®DetfF, where the MOs in Det® and Det?
are taken from SCF calculations and F is the correlation function, the trial function

can be normalized as follows. Defining ¥scp = Det®Der?, we compute
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Lo
i

= [Wscpl* M M¥scrldR / [ scplPdR

= <‘{/T lWT>/<‘PSCFl‘PSCP . (5.10)
by employing a VMC walk guided by Wgcp. Note that the ratio of ¥ to WgcE is sim-

ply F. Since the SCF MQO’s are orthonormal,
<Wscpl¥scp> = nalng! (5.11)
where ng and np are the number of spin-up and spin-down electrons, respectively.
(The normalization of Wser is not (ng + np)! because the Slater determinant is
reduced to Det® Det”.) Therefore, if ¥y is not normalized, a normalized trial function
¥ may be obtained from
_ L
Y = [Knglng!] "% . (5.12)
In addition to values of the trial funcdons and their normalizations, the time depen-
dence and overlap integrals in Eq. (5.9) must be computed. The time dependence is

readily obtained by monitoring the change in the asymptotic populations at large 7.

That is,
. J"PTI(!_?_)QJ](E P2, 1)dR (—t (Ey~E, )] I/ (5.13)
1) = = expl—t(Eo~Ep)isat sy '
J‘YT,(R; )01 (R)dR S
where
I= I\PT.(E )91 (R X62(R ), (R))aR . &1

Since the nodes of ¢; are those of ¥, the integrand in Eq. (3.14) is non-negative so
that / is non-zero and ¢o/'¥y, is bounded at the nodes of ¥y, Unless ‘¥, is chosen so
poorly that ‘¥, < ‘¥r,019; at large IR,/ is bounded from above as well. Thus, the

time dependence may be computed from
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expl—t (E—Ep)] = [P ¢ + atyP )™ . (5.15)

The overlap integrals of normalized trial functions differ from unity by only second
order in the error of the wial function, 8. For W, = & + §;, 5; = | + <§;1¢;>, and
from

<> =1 = 1+ <B; lo;> + <@ 1§;> + <§; 1§;>, (5.16)

there results (when ‘¥, and therefore ¢, is real)

<8, lo; >l < .;_<si 18;> . (5.17)

Thus, the overlap integrals and the ratio s,/s, are unity to order <5; 15;>. If necessary,
these integrals may be obtained in separate calculations by sampling the asymptotic

population for points initially dismributed as I‘{‘Tllz. This may be seen by noting that
[cf. Eq. (5.8)]
<P‘~>W¥,z = <Y P V>
= expl~t (E;~Eg)lsi?, (5.18)
and so

1

5= [<P,->,W,exp[: (E,--EE,)]] 2, (5.19)
Once again the time dependent factor may be computed by Eq. (5.15).

To summarize, '¥,9; and P, are sampled using two independent QMC walks, while
the time dependence and overlap integrals are obtained by Egs. (5.15) and (5.19),
respectively. Since the overlap integrals and time dependence factor out of integrals
involving @, their computed values are multiplied into averages of \FTTI\FT,PZA at tie

end of the calculation.



178

The methodology described here, in the context of diffusion QMC, is also applica-
ble with exact QMC approaches, i.e., Green’s function Monte Carlo (GEMC). (For a
description of GFMC, see Refs. 35-36 and 41-42.)

To evaluate the efficiency of the present method, the ls—2p, transition dipole
moment of the hydrogen atom is computed using the trial functions described in Sec-
tion 5.2. State ‘1" in these equations corresponds to the ground state while state ‘2
is the excited state. Since the ground state is without nodes, and the 2p, state has a
node which may be speciiied exactly as x = 0, no fixed-node error results for the trial
functions employed. The time steps used are 0.050 4! for the ground state walk and
0.025 47! for the secondary, excited-state, walk. Biases in the energy and mixed
e);pectaﬁon values of r and r2, resulting from using time steps of this magnitude in
standard QMC calculations, are listed in Table 5.2. Note that the bias in <r> and
<% is an order of magnitude greater than that in the energies. However, since all
biases are very small (0.3% or less), the time steps above are deemed s:itable for the
transition dipole moment calculations.

Results for the transition dipole moment and excited state energy for several
different convergence times are presented in Table 5.3. Each energy is computed by
averaging the local energy over the points in the secondary QMC walk at the time in
question. Ir: this approach the transition dipole moment appears to converge at about
two standard deviations above the exact value — an error of 5%. The inaccuracy of
the transition dipole moment may result from not having fully attained the 2p, distri-
bution. Poor convergence is indicated by the QMC energies for the 2p, state which

have stabilized significantly below the correct value.
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The convergence behavior of the excited-state energies requires explanation. The
last five energies in Table 5.3 are all very well described by an exponential which
agrees nicely with QMC theory. The asymptotic value of ~ —0.1272k obtained from
this fit, however, is in significant disagreement with the QMC energy in Table 5.2
computed with the same time step and wial function. The explanation lies in the fact
that |‘i’Tzl2 describes the initial distribution for the calculation of the excited-state
energy of Table 5.2 whereas ¥, ¢, (i.e., a ground-state distribution) is the initial distri-
bution leading to the results in Table 5.3. Though, the initial distribution does not
affect the fixed-node energy, it can ceﬁainly modify the convergence to the final distri-
bution. Specifically, the Metropolis acceptance/rejection step, in our algorithm, which
maintains detailed balance, causes the probability of moving away from a point
sufficiently near a node to be exceedingly small for time steps of the sizes generally
used. Since the distribution ¥4,9; need not be small at a node of ‘7, sampling points
from ‘¥p,¢; as the inidal distribution in a walk to obtain ‘¥¢, can result in several
walkers being ‘‘wapped’’ near a node of ¥, for exponentiaily lor~ periods of time.

The significance of this effect was verified by performing separaie QMC calcula-
tions of the excited-state energy using ‘W, and with an initial ensemble of points distri-
buted according to ‘¥,¢;. With the time step employed above, 0.025 k™1, the energy
converged to and remained at -0.12827(73) # — even for times up to ¢ = 75,000 k).
Since the probability of moving away from a node increases rapidly as the time step
decreases, a run using T=001 k7! quickly yielded a much improved result of

-0.125302(50) h, yet this fesult is still biased by trapped points. After a time of
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r = 18,000 47}, the remaining wapped points escaped, as indicated by a sudden
increase in the energy o the statistically correct value of -0.125023(23)4.

The trapping effect described above may be avoided by omiting the
acceptance/rejection step for points which do not move. However, this ster, to the
extent that the trial function is exact, eliminates time-step bias that would otherwise be
present, cf. Fig. 3.1, and is therefore useful. Given the relatively small number of
points for which the acceptancefrejection step would not be employed, the omission of
this step for wapped points should, hopefully, not yield a noticeable increase in time-

step bias.

§.4. Exact Transition Dipole Moments: VMC Walk with QMC Side

Walks (Method 2)

As seen in the previous section, convergence from a distribution describing one
state to that describing another can be problematic due to points trapped near a node.
Furthermore, if ‘Pn also has nodes, the computed quantities may depend on the number
of walkers in each nodal volume of this trial function. For example, ict ‘¥, and ¥,
have the nodes of the 25 and 2p, states of the H atom, respectively. Since ¥, has a
spherical node at r = 2, points sampled from f; will be confined in either of two
nodal volumes, r <2 or r >2, during the first QMC walk. The average of
O =5 x,'Vy, is different in the inner nodal volume than in the outer, and will
depend on the number of points in each volume. In practice the relative number of
points in each nodal volume which is correct may be difficult to determine. To avoid

this ambiguity and obtain better convergence to each state, another method is explored.
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(Note, however, that when ¥, only possesses exchange nodes, the transition dipole
moment is independent of the nodal volume sampled since PO = 0.)

In Method 2, shown schematically in Fig. 5.2, quantities are sampled from 2 VMC
walk in which walkers are not confined within nodal boundaries. For a VMC walk
guided by ¥, we now seek an operator O such that

<Oy p = <Y 10 1> = <4, 1A loy> (5.20)
where again we are primarily interested in A = x, y, or z, Eq. (5.20) implies that the

desired form of O is

0="¢ 19,40, . 521
In manner analogous to Method 1, QMC solutions are obtained from asymptotic

populations, P. Here, however, initial points are sampled from l‘}‘g 2 and wo QMC
‘‘side walks”, one guided by ¥, and the 6ther by ‘¥, to sample P; and P,, and
thereby ¢; and ¢,. These walks, and therefore this method, are generalizable to other
QMC approaches.

The form of P, is given by Eq. t5.8) and that of P, is analogous. Therefore, the
desired operator O for this method becomes

O = (5159)" ' T\ To(H W/ ¥, 9P P (5.22)

where the time dependence, exp(s; (E;—Eg )], is abbreviated as T;. Also, ¢, and ¢, are
the times required to converge to the asymptotic populations for the two states in ques-
tion.

In deriving the operator O which satisfies Eq. (5.20), both trial functions and ‘¥,

are assumed to be normalized. If this is not the case, then averages of G over |'%, [2

1
z

must be divided by (1i72)*, where 1; = <Y} I\¥p>/<¥, M, >. In contrast to Method 1,
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normalizations do not need (o be computed separately since 1; may be obtained from
averages over ‘¥, 12 as
;= [ PI¥rE, 2R/ [, R (5.23)
The remaining quantities necessary for computing the transition dipole moment are
the tme dependences and the overlap integrals. The time dependences may be
obtained as described in Sec. 5.3, cf. Eq. (5.15). The overlap integrals may be com-
puted from the asymptotic populations once the time dependence is known. That is,
for

Y; = I, PP, ¥ ¥, PdR /N, PaR (529

there results, (the trial functions are not assumed to be normalized)

¥ = <Y <Y, 1Y, PR fa (5.25)

or
1

s = Tvm)? . (5.26)

As seen from Eqs. (5.23)—(5.26), all quantities necessary for the computation of the

transition dipole moment may be obtained from the VMC and QMC walks. Since the

overlap integrals, time dependences, and nommalizations factor out of the integral

involving O, computed values of these quantities are employed as weighting factcrs,
according to Eq. (5.22), at the end of the calculation.

An additional benefit of Method 2 is that the asymptotic populations may be used

to compute trial, mixed, and pure expectation values of any coordinate operator for

each state. In particular,
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<MprE, POPr> g 2

2 = <O < > 2 =0 (trialy (5.27a)

<|‘y7‘7/q“g |2P;>]q;' d i K O
= <YiQ lg;>i<¥1g;> =1 (mixed), (5.27b)
=<p;1Q1;> n =2 (pure), (5.27c)

For example, to compute a quadrupule moment, Q = %E(3z,~2—r,~2).
i

As discussed in Chap. 4, two independent samplings of the asymptotic population
must be performed to obtain l¢il‘!’7; 12, Therefore, to compute pure exp_ecmtion values,
eacl of the QMC side walks must be performed twice. Since pure expectation values
possess a greater dependence on the degree of convergence than do mixed results, the
behavior of pure values is most useful in ascertaining convergence to asymptotic popu-
lations, which may be critical for accurately computic g transition dipole moments.

In addition to yielding pure expectation values, the statistical error of P; is reduced
by V2 when it is sampled twice. Also, the time dependences do not need tc be com-
puted separatzly. Note that, employing two independent samplings of each asymptotic
population and computing

x; = [\, 2P P, PR T [IY, 12dR (5.28)

there results
K =T 252 N >I<E, 1> (5.29)
Thus, the time dependences, overlap integrals, and normalizations are now given

directly by
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.1 -
(515271 (T, 1, S[<W, 1 ><¥ N5 >] 7 = () 2. (530

When separate cornputations of the tme dependences are not required, continuation of
the QMC walks after convergeace to asymptotic populations is no longer necessary.
Therefore, for the reasons discussed above, the additional computation incurred by two
samplings of P; may be justified.

Finally, the first and second-order approximations discussed in Sec. 5.2 may also be

obtained, namely

<t la > = <YYAY Y . Ay (531a)

<01lA > = s 7T <YLY PA Y Ay (5.31b)

<14 16> = s T, U PA Y S g s Ay (5.31¢)
and

Ay =Ay +Ay = Ay . (531d)

[If functions are not normalized, the approximate moments may be obtained in terms

of normalized functions by dividing by (T\mz);_.]

Having discussed the means by which the transition dipole moment is computed,
we now consider the choice of W,. The goal in choosing '¥; is to be able to converge
to the asymptotic populations of both states without 7, and 7, being excessively large.
The rate of convergence for a given state depends, in part, on how well it is described
by the guiding function ¥,. Therefore, each state should be represented to some
extent in ‘¥, . Since the weighting factor ‘¥, ¥7,/1'F, 12 is incorporated into averages, for
purposes of reducing the statistical error, it is desirable that this quantity be well

behaved where ‘¥, is small, i.e., when (or if) ‘¥, goes 10 zero, both ¥, and ¥, should
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as well. A convenient form of ¥, which satisfi=s both these conditions is given by

v = | Slew . (5.32)
i=1

The ratio, (c,/c,)? affects the rate of convergence for each state. As the
coefficient for the trial function describing a given state is increased, the time needed
to obrain its asymplotic population is correspondingly decreased. It is thus useful to
increase th.e coefficient for a state showing a slower convergence rate.

Results for the QMC energy, transition dipole moment between the 1s and 2p,
states, and other expectation values for the hydrogen atom, computed by Method 2, are
presented in Tables 5.4 and 5.5. Calculations were undertaken for several time steps
and convergence times to investigate convergence and time step bias. Below, removal
of bias is measured by the accuracy in the computed energy and mixed expectation
values, <r>,,.

Examining the results for the energy and <r>_ in Table 5.4 immediately reveals
faster convergence for the ground state than for the excited state. Decreasing ¢, thus
still allows accurate ground-state energies to be obtained for convergence times of only
about 30 A~!. Also note that time step bias is not apparent: varying the time step for
similar convergence times and the same ¢, has little effect on the ground-state results.
However, the dependence of the excited-state quantities on the convergence tirne and
time step is markedly different. The first four energies in Tahle 5.4 reveal that, both at
: =20 and 60 A7}, the energies at T =0.025 and 0.050 4~} are noticeably different.
More importany, convergence to the exact energy is exwremely slow — a noticeable

error persists at ¢ = 60 A~1. The trapping of walkers near the node of the excited state
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appears to once again be affecting the energy. However, the effect is not as large in
comparison to Method 1; at T=0.025%"" and at 1 = 60 h~L, for example, the 2p,
energies from Methods 1 and 2 are -0.12745(7) and -0.12645(15) &, respectively. On
the other hand, the trapping of points near x =0 is not significant for <r>_ as the
accuracy of t'is quantity depends only on the cenvergence time.

Obviously, convergence to the 2p, state distribution is difficult when ‘¥, has equal
mixtures of the ground and excited state tial functions (c) = c3). The last three ener-
gies for each state demonstrate the advantage of increasing the excited state representa-
tion relative to the giound state. Accurate ground-state energies are still obtained, but
now the the 2p, QMC energies are much better than the best ¢; = ¢, energy (0.4%
error versus 1.2%). Even at r = 15 k7%, the 2p, energy (for ¢; = 0.16, ¢, = 0.84) has
roughly half the ¢, = ¢, error at a convergence time of 60 4~! and the same time step.
Therefore, judicious choices of the coefficients yield efficient convergence for both
states.

Values for the transition dipole moments are shown in the last column of Table 5.4.
As expected for a quantity which depends on two different eigenstates, there is overall
less accuracy in the wansition dipole moment when good convergence is not obiained
for both states. The first four computations in Table 5.4 yield the least accurate ener-
gies for each state and transition dipole moments of inferior quality in comparison to
the final two computations. Increasing the representation of the excited state in ‘¥,
and the convergence time for the ground state improves the energies of both states.
However, for first of these results, the fifth entry, the relatively short convergence time

of 15 h7! for the excited state yields the poorest value of <r>,,. As indicated by the
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last two calculations in Table 5.4, further increasing the excited-state convergence time
to 30 47! produced lile change in the (accurate) energy, but significamtly improved
the value of <r>,,. Correspondingly, the most accurate transition dipole moments are
obtained — 0.5% error.

To summarize, the highest quality transition dipole moment is obtained when each
state is described most accurately, as measured by the energy and the mixed expecta-
tion value of r. (Other expectation values should be useful as well.) This conclusion
is not surprising since the energy is only one, and not necessarily the best, way to
judge the accuracy of the sampling of a given distribution. Therefore, it is best to
study the behavior, as function of the convergence time and time step employed in
each QMC walk, of expectation values in addition to that of the energy.

In Table 5.5 we report pure expectation values obtained for r and r2 for both states
using the present method. Since only a single value of Py and P; is sampled, the pure
expectation values are computed employing the square of the asymptotic population
rather than the product of two independent estimates of the quantity. Therefore, an
unknown error is introduced in sampling ¢; /¥ 2. The accuracy of the results in
Table 5.5 implies that this error is quite small.

For the ground state, all the values of <r> are statistically equivalent as are all
those for <r®>. This indicates that these expectation values are fairly insensitive to the
time step, and that sufficient convergence times have been achieved. Note also that
the accuracies are quite good, in each case showing only a 0.3% error. The results for
<r> and <r%> of the 2p, state also appear to be quite insensitive to the time step, but,

in contrast to the 15 state values, show a marked convergence-time dependence. Note
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that as ¢ is increased from 15 to 60 £~), the errors in <r> and <r% are reduced from
32% 10 0.6% and 7.1% 10 0.7%, respectively. Comparing the ¢, = ¢, excited-state
expectation values with the (c; = 0.16, ¢, = 0.84) results reveals that, similar to the
case of <r>,, but unlike that of the energy, increasing the representation of the excited
state in ‘¥, is not necessary to obtain accuracy in pure expectation values of  and r2
for the 2p, state. Finally, we point out that the error in <‘{’T,Ix |'*‘T,> is 11% and that
the errors~in the trial expectation vaiues of r and r2 are, for each state, 11% and 23%,

respectively. Therefore, reducing these emors to under 1% using QMC represents a

significant irnprovement.

5.5. Exact Transition Dipole Moments: Green’s Function Approach

(Method 3)

In the previous two methods, values of 2 QMC solution, ¢;, were sampled using an
auxiliary walk guided by a trial function, ¥;,. These walks were propagated in ima-
ginary time until the number of descendants of the point starting the secondary walk
converged to a value proportional to ¢;/¥;. When convergence times are large, the
computational cost is prohibitive. Therefore, a method which does not depend on
asymptotic populations to compute transition dipole moments might be significantly
more efficient. Such a method, discussed in this section, is based on an idea due to
Kalos[32] for sampling a single eigenstate by averaging an analytic expression for the
Green’s function over a suitable distribution. Here this approach is implemented so
that the eigenstate required for computing the transition dipole moment is sampled by

averaging a shorn-time approximation to Green's function over the appropriate QMC
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distribution. If low variance averages of the Green’s function are readily obtained, this
method will present a viable alternative to the other two.
We begin the theory with the time development of a distribution, f;,
fiR, 1+1) = [GR-R Ofi(R, 1)dR , (5.33)
which implies for the Green’s function average
G R’ . 1) = [GR-R. VAR, dR/[f,R, 1)dR

= fiR’, i+0/[f; R, 1)dR. (5.34)

At large imaginary time, ie., f; = ‘PT,,qa‘., the dependence on 1 cancels in the numerator
and denominator of Eq. (5.34) leaving

GUR’, 1) = exp' 1, (E;~Eg VL R MR Vs, (5.35)
Thus the Green’s function average, like the distribution itself, is proportional to ¥r.¢;.

Here the short-time Green’s function, G,, cf. Eq. (2.26), is employed. Note that,
G, yields time-step bias in both the distribution it generates in the QMC walk, f;, and
the numerical values of ¥.¢; computed by Eq. (5.34). Therefore, as in Methods 1 and
2, time-step bias must be removed.

In the present Green’s function approach, transition dipole momeats are computed
by sampling from two QMC distributions, in analogy to Method 1. (A Green’s func-
tion approach analogous to Method 2 was studied and found to be less satisfactory.)
Here, the first state is obtained from Green’s function averages, and the second from
¥, 9,, as depicted in Fig. 5.3. We now seek an operator O involving G such that

<10 19>1<¥, 1,> = <ty 14 10> . (5.36)
By inspection of Egs. (5.35) and (5.36) O is found to be
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O = s15,explty(E—Ex WU A Y15 (5.37)

where ¥, and ‘¥, are assumed to be normalized. Likewise a quantity analogous to O

in Eq. (5.37) with CZ" may be used to obtain an independent estimate of the transition
moment.

Since 7,lE(~Ep !, a product of two small quantities, is generally less than 0.001,

the exponential factor can be neglected when one is interested in only 0.1% acctracy.

The overlap integrals may be computed from the same distributions used to evaluate

<0>. In particular,

si = (<G>, ] 7, (5.38)
where we again neglect the factor of exp[t;(E;—Eg)] = 1. In addition to the transition
moment, the pure expectation values can bc computed also since

0, = <M I2GPA> /< 1G>, (5.39)

For this method to be viable, Green's function averages should be precise for distri-
butions of reasonable size. In addition, the time step bias in G, must not be exces-
sively large. Becuuse G, approaches a delta function as T goes to zero, the variance
in &, diverges thus precluding the use of very small time steps. However, since the
average of G, evolves the distribution ¢ for only tme 1, if ¥r¢ possesses little
time step bias then one expects the bias in &, to also be small.

In our computation of the 15 —2p, transition dipole moment for the H atom using
the present method, we simply cbtained 50,000 points distributed as ‘¥r-¢ for each state
by diffusion QMC. The trial functions used to guide these walks are the same as

those described in Sec. 5.2. The ground- and excited-state time steps were 0.050 and
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0.025 k7!, respectively. To ascertain the quality of each distribution, we compare
averages of various quantities obtained from them with exact analytic averages over
W1 6. Table 5.6 shows this comparison and demonstrates that the distributions appear
1o be quite good, i.e., errors are less than 0.2% for the ground state and 1.0% for the
excited state.

To test the quality of the averages, G,, overlap integrals and pure expectation
values [cf. Eqs. (5.38) and (5.39)] are computed for each state. This is accomplished
by evaluating ¥ and G, for each point in the QMC distribution, ¥r¢. (While single-
state properties may be computed from Green’s function averages and by Method 2,
neither of these approaches appear to be as efficient in this regard to the algorithms
described in Chap. 4.) When computing G, (R;) for single-state properties, R; is omit-

ted from the average, i.e.

GR)= (N—l)"g‘,_q.(&—»&, 0. (5.40)
=i

This omission is employed because the two samplings of ¢, one from ¥, ¢ and the
other from G, must be independent as shown in Chap. 4. In a sense, including R; in
the computation of G} (R;) corresponds to an antificial “‘clustering’ of the distribution
about R;. This effect was verified in preliminary calculations of pure expectation

values in which including the point R; in G (R;) yielded poor results.
As the number of points, ¥, in Eq. (5.40) is increased, values of G, become more
precise. Therefore, to obtain precise results yet a rough estimate of statistical error,
the 50,000 points were blocked into two groups of 25,000 in computing the overlap

integral and pure expectation values of each state. (Given that only two values are
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averaged, the statistical errors in the pure expectation values are somewhat uncertain,
probably by a factor of two at most.) The results of these computations are presented
in Table 5.7. The accuracy of computed quantities depends strongly on the accuracy
of G, which in tumn depends on the magnitude of time-step bias. Therefore, this bias
was studied for each state by computing at several values of T.

For the ground state, biases are small but noticeable at T =0.20 and 0.10 27!, By
1 =0.05 47! it appears that the values of G, are accurate. This is implied by the
better than 0.5% agreement of the expectation values obtained from Green’s function
averages with those obtained by substituting analytic values of ¥;¢/s for Ea Also,
these results are within 0.5% of the exact pure expectation values. Thus, for 50,000
points sampied from ¥ ¢, where ¥ is. only of modest accuracy, the overlap integral
and pure expectation values are of high quality for the ground state of H.

We now consider the behavior of the Green’s function averages for the 2p, state at
x =0, G,(0) where “0" signifies x = 0. Since G,(0) should be proportional to the
2p, swte distribution, ¥,(0)¢2(0), G, (0) should vanish. However, note that

Ga©) = [Ga(Re = 0, VLR 0 Re )R,/ [¥r, Ry )Ry R, (5.41)
will not vanish for non-zero T because G, and ‘¥,¢, are everywhere positive and only
zero at x = 0. The node only appears for T =0 when G, is a delta function. There-
fore, we have investigated a modification of G, such that it vanishes at x = 0 for non-
zero T as follews. Since G,(R; — 0, 1) is symmemic about x, =0 [employ
Yr(Ry) = xyexp(=yrg) in G,(Ry — 0,7 in Eq. (2.26)] then averages of
G, (R, — R;, T) over W (R,)$:(R,), which is also symmemic about x; =0, will

become zero as x; — O when weighted by sign(x;x;). Finally, since G, becomes a
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delta function as T — 0, weighted and unweighted averages are identical because only
R, = R; [where sign(x, x;) = 1] contributes to these averages at T = 0.

Computations (not shown) were performed with and without this weighting on the
2p, state with 0.05 < T <0.50 A~!. The effect of this modification on values of the
quantities reported in Table 5.7, always less than 0.2%, decreases with decreasing time
step.

The behavior of the expectation values in Table 5.7 shows that time-step bias in
these quantities is larger for the ground state. Pure expectation values for the excited
staie are in statistical agreement with each other, and very accurate (generally less than
1% error), for 0.10 < T 1.00 2~1. In contrast time-step bias is obviously present in all
the computed pure expectation values of the ground state at ©=0.20 A~!. Time steps
which are large, in terms of the resulting bias, for the 1s state are small, by the same
criterion, for the 2p, state. This concept of different ime scales is also reflected in the
behavior of the statistical errors. As stated previously the Green's function becomes a
delta function as T — 0 so that the averages of G, possess large variances (and poor
accuracy) at small time steps. This effect manifests itself in low accuracies and large
statistical errors in computed expectatdon values as the time step becomes ‘‘small’’. A
time step of 0.05 A™! yields high accuracy and small statistical errors in results for the
ground state. On the other hand, this time step gives the poorest agreement with the
exact results, and diverging statistical errors, for the excited state.

Turriag now to the transition dipole moment, we discuss the factors which affect
the computed result. The primary consideration is that values of G, give good agree-

ment with
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GR)="HRORs - (5.42)
That is, both the explicit t-bias, exp{T(E —£g )], and the implicit T-bias, arising from
the short-time approximation, should be small. Furthermore, the number of points
used to compute the Green’s function average must be large enough to yield good sta-
tistical accuracy. This aspect is investigated by performing computations with ¥r¢/s,
the analytic form of G, when it is exact, in nlace of G,. In other words, we compare
averages of Wy Ix'¥;'G}” with averages of W lx ‘I (¥4;0:/5;), the latter aze referred
to as ‘“‘Analytic G in Table 5.8, in ascertaining the accuracy of Green’s function
averages. (The crrors in the Analytic G results arise from statistical error due to the
finite number of points sampled from ‘¥4, and the time step used in the QMC walk
yielding this distributicn.)

Results for the transition dipole moment arc presented in Table 5.8. Two separate
sets of calculations have been carried out at several values of 1. The top set samples
values of ‘P,¢; from G}", while the bottom set samples ¥,y from G” In both sets
of calculations, G is obtained from all 50,000 points distributed as ‘¥r.¢;. Averages
of Wr;lx%;‘&";’ are grouped into ten blocks of 5,000 points each from which statistics
are obtained. The fitst column of results ignores both the explicit T-dependence and
the overlap integrals. Therefore, these and the Analytic G (this column) results allow
a direct analysis of the errors in G, from time-step bias and limited ensemble size. In
the second column of results, the explicit t-dependence is removed by multiplying
first-column results by exp{t; (£;—£p,)] (this factor is unity for the Analytic G values).
This dependence is taken from previous QMC computations on the ls and 2p, states

of H, c¢f. 3.2, with the trial funciions employed here. Finally, the tansition dipole
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moments are obiained by multiplying the seccnd-columin results by the overlap
integrals s, and s, The values of s, and s, are those computed at T = 0.05 and
0.20 &7}, respectively, the smallest values of T before large increases in the observed
statistical error of these quantities occur, cf. Table 5.7.

The results in Table 5.8 demonsmate that values romputed with 5",” possess less
time-step bias than do those of G", as also found in the computasion of pure expecta-
tion values. However, the statistical error in the G resulis is seen 1o be roughly twice
as large, making calculations with Gi° less preferable since, as seen in Table 5.8,
time-siep bias is readily removed. The difference in statisticai errors is caused by the

greater inherent statistical uncertainty in sampling ‘¥, $,/s5, an analytic comparison of

the statistical errors, G, yields
ol <H I (00 0] > Bol{<ET IR (rows D>p] - 042)
Computing the wansition dipole momeni by sampling values of the 1s distribution
(from G"; and averaging over the 2p, distribution is most efficient in Method 3.
Results for expectatioa values computed in this way, top part of Table 5.8, are now
analyzed in detail. Comparing the second and third columns in Table £.8, reveals that
the explicit t—dependence is insignificant when other non-zero—t effects are also negli-
gible, T £ 0.20 h~!. We also see, from the first column, that Green’s function averages
are reliable for T < 0.20 A~! as the discrepancy between G and Analytic G results is
less than 0.9%. 'The last column in Table 8 gives the wansition dipole. Though the
time-step bias in the computed transition dipole moment is large at t=} 47', 27%
error, by T=0.20 h~! convergence to statistically constant and accurate values, for

example only 0.63(62)% emor at T =0.10 47}, is obtained. Thus, distributions of



196

reasonable size (50,000 points from ¥1,¢; and 7,95 used in the “‘Green’s function”
approach yield accurate and precise single-state expectation values and transition

dipole moments for the 1s to 2p, transition in the hydrogen atom.
5.6. Evaluation of Each Method

The results presented here show that Methods 2 and 3 are clearly superior to
Method 1. The 4.4% error in the transition dipole moment obtained from Method 1 is
an order of magnitude worse than the ~ 0.4% error obtained by the other twe. This
disparity might be caused by the lack of convergence te the QMC distribution of the
2p, state, as indicated by the energies in Table 5.3. In addition, the statistical error
with Method 1 is relatively large. For example, to obtain a transition dipole moment
of 0.778(17) usi;g the Method 1 took four times the computation time as Method 2
took to yield a value of 0.7425(35). This poor efficiency results from the ratio ¥/ ¥y,
becoming unbounded as r becomes large [cf. Eq. (5.9)]. In general, such ratios of
trial functons describing different states will possess singularities and cause large sta-
tistical errors in transition dipole moments computed by Method 1. For this reason,
when using several walks, a VMC walk with QMC side walks is more efficient for the
computation of transition dipole moments.

As we have seen, the latter two methods yield highly accurate single-state expecta-
tion values and wansition dipole moments. In considering the relative efficiency of
these two methods, the time-step biases and difficulty in correctly seiecting other
parameters {e.g., convergence time or distribution size) must be examined.

The time-step bias of the two methods is largely equivalent. While small time
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steps were not required in computing Green’s function averages, the time steps
employed 1n obtaining ‘¥;,¢, and ¥r,0, should be the same as those used in the QMC
side walks of Method 2. With Method 2, an ensembie of points sampled from I'F, 12 is
converged to the distributions 7,0 and W79, in sampling asymptotic populations. In
Method 3, each QMC distribution is obtained by converging from ¥ Since iy 2
yields a more accurate description of ¥7,¢; than does I‘Pg 12, convergence in Method 3
is about an order of magnitude faster than in Method 2. However, employing a
Green's function average instead of asymptotic populations gives an additional summa-
tion in the Green’s function approach. Therefore the relative efficiency between the
two methods is strongly dependent on the number of points required to obtain high-
quality estimates of ;¢ from G,. Table 5.8 shows that an accurate mansition dipole
moment is obtained employing moderately sized distributions of 50,000 points for each
state. In addition, the selection of ¢, ¢,, and convergence times in Method 2 is not
trivial. This may be appreciated by noting the number of computations and the vary-
ing quality of the transition dipole moment in Table 5.4. For these reasons the
Green’s function averaging method is the most efficient of the three studied here for
the computation of the 15 —2p, transition dipole moment of the hydrogen atom.

It is possible that larger systems may be more difficult to treat using Method 3 than
Method 2. As the dimensionality of a problem increases, larger distributions are
required for statistically accurate averages of an increasingly complex G,. Such distri-
butions will reduce efficiency versus Method 2 due to the increased computation time
in evaluating G,. It is also notable that the time step bias can be eliminated more

easily using Method 2, although smaller time steps yields longer QMC side walks (to
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converge 'o asymptotic weights) making calculations costly at small t, the limitation
on the smallness of the time step appears to be more severe for Green’s function
averaging. This is due, as seen in calculations on the 2p, state, to statistical errors
rapidly increasing as the time step becomes small and the Green’s function approaches
a delta function.

In conclusion, both Methods 2 and 3 hold promise for computing transition dipole

moments of larger atoms.
5.7 Calculation of the Li 2§ — 2P Oscillator Strength

As seen in the previous two sections, Methods 2 and 3 yield an accurate wansition
dipole moment for H. Here, we investigate the capability of Method 2 to compute the
22§ — 2°P wansition dipole moment from which is obtained the experimentally
observable oscillator strength and excited-state lifetime, cf. Egs. (5.2) ~and (5.3).
(Computations on Li employing Method 3 have not yet been undertaken.) The lithium
atom serves as an excellent test case because it is the simplest atom for which fixed-
node error must be considered for both the ground and first-excited state. Furthermore,
a near-exact theoretical computation of the oscillator strength has not been performed.

For the § and P states, the trial function consists of a Slater determinant multiplied
by an E-E correlation function. As discussed in Chap. 3, the basis seis are of near-HF
quality and are given in Ref. 77. The E-E correlztion function parameters, VMC,
QMC, and estimated exact energies are presented in Table 5.9. As seen from compar-
ing the QMC and exact energies, fixed-node error in the QMC energy is not observ-

able. Therefore, these wial functions make an excellent starting point for computing
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the oscillator strength, f.

We now turn to the initial calculatons of the oscillator strength. Since no time-
step bias was visible in the P-state energy at T =0.01 A7', cf. Sec. 3.4, this time step
was used in the QMC side walks of both states. Also, for all computations discussed
in this section, moves were rejected upon crossing a node. Since carrying the weights
when sampling asymptotic populations was advantageous in the single-walk calcula-
tions of pure expectation values, cf. Chap. 4, weights are carried in the QMC side
walks employed here. The minimum for the weights is set at 0.1 and the maximum at
2.0. In addition, asymptotic populations are only sampled once. Thus, an ermor is
present in the pure expectation values (which was quite small for H). Nonetheless,
these quantitics are expected to show the most marked dependence on convergence to
asymptotic populations and are therefore considered useful.

Table 5.10 presen’s results for the single-state properties and the oscillator swength.
The energies are computed by averaging the local energy over points sampled in the
QMC walk at times greater than ¢/2. The coefficients, ¢ £ and ¢2, are defined by Eq.
(5.32) and **1"* denotes the ground state and “*2°" denotes the excited state. Several
convergence times are employed and the trial functions are weighted differently at
¢ =20 #7). The non-QMC results for r, and r? (ground state) are taken from Ref. 11
in which a 352-term Hylleraas expancion is employed to yield an almost exact energy
of -7.47806 h (the exact is -7.47807 k). Therefore, the expectation values of r and r?
obtained in Ref. 11 should be quite accurate.

While the pure expectation values of the ground state appear to have converged,

and are in good agreement with the results of Ref. 11, the cnergies are too low, by
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more than statistical error, for ¢ =10 ™. As seen in Secs. 5.3 and 5.4, apping
effects can play a role in preventing the convergence to asymptotic populations. In
addition, these effects may be visible in one quantity but not in another. (The overall
effect of trapped points in biasing an average depends on the extremity of the values
near a node of the quantity averaged.)

The excited-state energies, on the other hand, appear to converge by ¢ = 10 4~} and
give statistical agreement with the exact (as did the QMC energy computed straightfor-
wardly, cf. Table 5.9). However, the statistical errors are so large that the discrepan-
cies found in the ground state energies are within the statistical errors of the excited-
state energies. The pure expectation values have also reached a reasonable degree of
convergence. However, no accurate estimates are available for comparison.

We now tum to the oscillator strengths, which are computed from the wansition
dipole moment and AE [= £(P) — E(S)] according to Eq. (5.2). Note that the three-
fold degeneracy of the P state yields a factor of three in Eq. (5.2), and for all QMC
(and VMC) oscillator strengths, AE = 0.06778(30) 4 is obtained from the QMC S5~
and P-state energies (the exact difference is 0.06791 k). For all calculations, the
second-order approximation is more accurate than the pure. In addition, 2} but the
t =20 A~ calculation yielded poor values of the oscillator strength. The relatively
high quality of the ¢ =20 ™! oscillator strength may be due to increasing the
excited-state representation in ‘¥, since this was found 10 be beneficial for the H calcu-
ladons. However, the reasonable quality of the t = 20 A~! oscillator strength versus
the r =30 ™! value is somewhat puzzling given the agreement of the single-state

expectation values. Of course, such an occurrence is possible given the uniqueness of
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the oscillator strength. In any event, our most accurate pure oscillator strength, f,, is
not of the quality desired as it only reproduces the previously most accurate theoretical
value of f=0.748[12], obtained from a Hylleraas expansion. The second-order
f —value is somewhat better, within 0.4% of experiment.

While an accurate value of f is computed above, we wish to further improve the
quality of the calculations. Specifically, convergence to asymptotic populations does
not appear to have reached the point such that excellent agreement with experiment is
observed. While this lack of agreement may be due to fixed-node error, it is of
interest to facilitate convergence to asymptotic populations to insure that converged
results are obtained. Furthermore, time-step bias has not been studied. While it is
expected that time-step bias is not significant at T=0.01 47, it is useful to know if
bias is small at larger time steps since such values of t would allow more efficient
QMC side walks.

Lack of convergence may be due to the trapping of points selected from I‘l’g 12
which are close the node of W, or ¥y, at the start of a QMC walk. For Li, explicit
measurements of the number cf accepted moves for each walker has shown that a
small, but non-negligible, percentage of the points sampled from l‘i"g > do not move
during the entire course of the QMC walk. The results in Secs. 5.3 and 5.4 also
strongly indicate that adverse effects are caused by the trapping of points near a node.
Here, we pursue an idea to greatly reduce wapping effects without removing the
Metropolis acceptance/rejection step which is generally very desirable.

To reduce trapping effects, two time steps are employed during the course of the

walk. The initial time step is very small and is used for only a brief period to allow
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points to move away from nodes. The final time step is of the size typically used in
QMC calculations for the system at hand, and the majority of the QMC walk is imple-
mented with the larger value of T. The results of such calculations are presented in
Table 5.11.

For all the calculations presented in Table 5.11, the initial time step is 0.002 4™,
i.e., about an order of magnitude smaller than those normally used for Li. The inital
propagation time with the first time step is denoted by f;, and r is the total conver-
gence time. Also, ¢y =c¢, =0.5.

In addition to the quantities reported in Table 5.10, the “‘growth™ energy, E,, is
given as well. The growth energy estimates the QMC energy from the change in the
ensemble size as the QMC walk proceeds. Recalling Eq. (2.24), the time dependence
of the QMC distribution is given by

fR, t)= coexpi~t(E - Ep)I¥rRWR) , (543)
from which the population is obtained as

P() = [f R, 1)dR = coexpl~1(E — Ep)I<¥r 19> . (5.44)

Thus, £, is computed from populations at 7 and 2 + T as

E, =Eg - T n[P(e + TUP ()] . (5.45)
While £, is a valid estimator of the QMC energy, it most often possesses a
significantly larger amount of time-step bias than the average of the local energy and
is, therefore, generally not of interest. However, in the current context the sensitivity
of E, is a useful indicator of the remaining effects of time-step bias. Since Eqs.
(5.44) and (5.45) require that convergence to Wy ¢ is obtained, the growth energy is

computed by measuring changes in the population 1-2 h~! before the end of each
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QMC walk.

The most significant results in Table 5.11, are those of the osciliator strength. We
now see that employing two time steps, £.002 27! and 0.010 %71, yields an oscillator
strength in excellent agreement with experiment, 0.741(7) (second-order) and 0.742(7)
(pure) versus 0.742(1), That convergence is enhanced by using two time steps is best
seen by comparing the results above with those using the same final time step and a
longer convergence time (12 4~Y), but without a small initial time step. This com-
parison shows that the oscillator strength and all single-state properties for
©=001 A" and ¢ = 12 4~} are of poorer quality than those for which a smaller time
step is used in conjunction with T =0.01 ™! (except for the P—state QMC energies
which are in close statistical agreement). It is also seen, by comparing the
1=0.025,7 = 10 k™! results with those at T = 0.010, z = 10 47}, that the larger time
step generully yields less accuracy, indicating the presence of time-step bias. These
differences are most noticeable for the for the oscillator strength, growth energies, and
the excited-state values of r, and rpz.

In concluding this chapter, Table 5.12 compares QMC results with other theoretical
values. In addition to oscillator strengths, excited-state lifetimes are also presented.
The QMC value of the excited-state lifetime is obtained from the © = 0.01, ¢ = 10 7!
value of the oscillator strength which is combined with the QMC-computed energy
according 1o Eq. (5.3). Since the other theoretical oscillator strenghts are computed
using the exact energy difference, the corresponding excited-state lifetimes are as well.
As seen in Table 5.12, the QMC result is the moust accurate and is in excellent agree-

ment with recent and precise experimental measurements. However, the accuracy
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above was not easily obtained as care, i.c., a small initial time step, had to be taken to
allow the walkers to propagate to the asymptotic populations. Furthermore, it is desir-
able 1w increase the efficiency of the approach since the 0.9% precision in our value
required seven hours on a Cray/XMP. Improvements in efficiency will require more
accurate trial functions which will yield asymptotic populations more quickly and

reduce time-step bias. In addition, altemative forms of 'Y, 12 should be explored.
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Table 5.1. Approximations to the transition dipole moment. Four approximations to
the transition dipole moment between the 1s (*‘1”) and 2p, (*“2’*) states of the hydro-
gen atom are compared. The trial functions, ‘¥, are given in the text and are approxi-

mations to the exact hydrogenic wave functions, ¢;, accurate to 1% for the energy
expectation value. Al functions are normaiized. The approximations reported here
correspond to A,, Ay, Ay and A; (A =x), respectively. The first three expressions
are accurate to first order in the error in the trial functions, while the superscripted
quantity is accurate to second order.

Quantity Analytic Expectation Value 1% Error |
<V, Ix > 0.8277 111
< Ix 10> 0.8981 206
<y lx 1> 0.6782 9.0
<ty lx [9p>@ 0.7485 0.5

<) X 102> Erger 0.7449 0
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Table 5.2. Time-step biases for the ls and 2p, states of the hydrogen atom. Atomic
units are used throughout: energy is in hartrees, distance in bohrs, and time in inverse
hartrees. Statistical errors, representing one standard deviation of a Gaussian distibu-
tion, are shown in parentheses. The time step for the ground state calculation is 0.050
k™! and that for the excited state is 0.025 ™). All expectation vaiues are computed
vith respect 1o the mixed diswibution ‘¥ for the state in question.

1s state
-E <> <>
QMC 0.49984(4) 1.5819(8) 3.3345(38)
Analytic 0.50000 1.5789 3.3241
% Bias -0.032(9) 0.19¢5) 0.31(11)
2p, state
QMC 0.124999(19) 5.2637(33) 33.251(41)
Analyic 0.125000 5.2632 33.241

% Bias -0.001(15) 0.01(6) 0.03(12)
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Table 5.3. Transition dipole moment of the hydrogen atom by Method 1. The wrial
functions describing the 1s and 2p, states are given in the text. The values for zero
convergence time are computed analytically.

Convergence time -E (2p;) <lslxi2p,>

0.0 0.19625 0.673

7.5 0.12601(7) 0.720(15)
15.0 0.13143(7) 0.731(15)
225 0.12959%(7) 0.742(15)
300 0.12866(7) 0.756(16)
375 0.12812(7) 0.768(16)
45.0 0.12780(7) 0.776(17)
52.5 0.12759(7) 0.777(17)
60.0 0.12745(7) 0.778(17)
Exact 0.12500 0.745
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Table 54. Energies and wransition dipole moment for the 1s and 2p, states of the hydrogen atom by

Method 2. These

are cc

and trial function coefficient [¢, see Eq. (5.32)).

d for several values of the time step (),

convergence time ¢,

1s State 2p, State
<lslxi2p,>
[CA) -E <>, Tt A -E <>

(0.050,20,0.50) | 0.12803(21) | 5.325(26) | 0.7267(20)

(0.050,20,0.50) | 0.49889(3) { 1.5 787(]5& (0.050,60,0.50) | 0.12708(14) | 5.285(12) | 0.7498(20)
(0.025,20,0.50) | 0.12741(9) 5.325(12) | 0.7365(20)

(0.025,20,0.50) { 0.49888(6) | 1.5876(39) | (0.025,60,0.50) | 0.12645(15) { 5.264(10) | 0.7564(30)
(0.040,32,0.16) | 0.49979(5) | 1.5772(36) | (0.025,15,0.84) | 0.12565(4) 5.356(8) 0.7292(23)
(0.040,40,0.16) ; 0.49989(4) | 1.5822(51) | (0.025,30,0.84) | 0.12551(8) 5291(11) | 0.7425(35)
(0.025.35.6.16) 0.49987(3) | 1.577842) | (0.015,30,0.84) | 0.12538(2) 5.294(7) 0.7410(18)

Exact 0.50000 1.5789 - 0.12500 5.263 0.7449
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Table 5.5. Pure expectation vaiues for the 1s and 2p, states of the hydrogen atom by Method
2. The parameicrs T, ¢ and ¢ arc described in the text o take the same valu>s as those in

Table 5.4.
1s State 2p, State
0. <plrlé> <blrilo> .2 <blrles> | <olr¥le>
(0.050,20,0.50) | 5.102(22) | 31.42(32)
(0.050,20,0.50) | 1.5015(17) | 3.008(7) (0.050,60.0.50) | 5.025(11) | 30.33(12)
(0.025,20,0.50) | 5.105(10) | 31.4K15)
(0.025,20,0.50) | 1.5005(23) | 2.995(12) | (0.025,60,0.50) | 4.969(19) | 29.93(13)
(0.040,32,0.16) | 1.5070(3%) | 3.01X13) | (0.025,15,0.84) | 5.160(7) 32.13(11)
(0.040,40,0 16) | 1.5064(65) | 3.023(20) | (0.025,30,0.84) | 5.045(11) | 30.61(12)
(G._OZS.EXS 0.16) | 1.5042(33) | 3.008(11) | (0.015,30,0.84) | 5.056(6) 30.7(7)
Exact 1.5000 3.000 - 5.000 30.00
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Table 5.6. Expectation values over distributions used in Method 3. For each state, the
distribution consists of 50,000 points sampled from Y5¢. Statistical errors are
obtained by averaging ten values of <¥y|Q l¢>/<\¥p 19>, each of which is an average

over 5000 points.

Is state 2p, state
L)
From distribution Exact From distribution Exact
x2 1.1098(74) 1.1080 19.80(10) 19.94
r 1.5816(33) 1.5789 5.240(10) 5.2663
rt 3.328(12) 3324 32.91(11) 33.24
E -0.49942(50) -0.50000 -0.125036(67) -0.125000




Table 5.7. Expectation values from Green's function averages. For these single-state proper-
ties, averages are obtained from two calculations of 25,000 points each. Here, and in Table
5.8, points in the ground- and excited-state distributions were obtained employing time sicps of
0.050 and 0.025 A", respectively.

1s state
T <¥rlo> <> <r> <
0.20 0.99699(19) 1.0172(53) 1.5249(30) 3.0528(11)
0.10 0.99625(33) 1.0034(48) 1.5113(33) 3.0247(34)
0.05 0.99599(22) 0.9975(50) 1.5066(34) 3.0093(29)
Analytic G 0.99613(18) 1.0038(47) 1.5030(22) 3.0062(10)
Exact 0.99585 1.0000 1.5000 3.0000
2p, state
1.00 0.99492(35) 18.06(13) 4.997(10) 29.77(23)
0.75 0.9%4Co(31) 17.98(14) 4.984(10) 29.63(24)
0.50 0.99322(29) 17.90(17) 4.973(11) 29.54(25)
020 0.99150(19) 17.80(20) 4.973(6) 29.60(17)
0.10 0.989324) 17.70221) 4.993(17) 29.92(21)
0.05 0.9848(79) 17.50(35) 5.048(79) 30.79(120)
Analytic G 0.99207(31) 1793(D 4.982(4) 29.74(11)

Exact 099309 18.00 5.0C0 30.00
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Table 5.8. Transition dipole moment of H by method 3. The Green’s function is
averaged over 50,000 points, and the expectation value, <¥5,'x¥;'G} ">y, . is

computed by averaging over ten distributions of 5000 points drawn from ‘{’quoj. The
labels *1°’ and *‘2’’ cormrespond to the Is and 2p, states, respectively.

T HRHG >y, T H RG>y,  <Iskizp>
1.00 0.9370(52) 0.9566(53) 0.9446(52)
0.75 0.8441(45) 0.8535(45) 0.8428(44)
0.50 0.7858(41) 0.7%00(41) 0.7801(40)
0.20 0.7527(41) 0.7539(41) 0.7445(40)
0.10 0.7494(47) 0.7496(47) 0.7402(46)
0.05 0.7496(62) 0.7497(62) 0.7403(61)

Analytic G 0.7561(39) 0.7561(39) 0.7469(38)
Exact 0.7532 0.7532 0.7449

1 < lx ‘Pf;zé,‘%%lol T()<¥'x w,;?é:‘s%lol <Isix12p,>
1.00 0.7364(88) 0.7371(88) 0.7279(87)
0.75 0.7399(89) 0.7403(89) 0.7310(88)
0.50 0.7430(90) 0.7432(%0) 0.7339(89)
0.20 0.7463(93) 0.7463(93) 0.7370(92)
0.10 0.748(10) 0.748(10) 0.739(10)
0.05 0.750(12) 0.750(12) 0.741(12)

Analytic G 0.7426(86) 0.7426(36) 0.7336(85)
Exact 0.7532 0.7532 0.7449

2 The factor exp[t(E ~Fg )], cf. Eq. (5.37), where E is the growth encrgy at lime step T.



Table 5.9, Correlation function parameters and energies of Li.*

S State P State
a; 0.5 0.5
by 35 3.0
E (VMC) -7.4506(10) -7.3865(10)
E (QMC) -7.47809224) -7.41031(22)
E e -7.47807 -7.41016°

¢ All energies are in A.
bRef. 116.
“Ref. 12.
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Table S5.10. Single-state properties and oscillator strengths for Li, first set of
calculations.?

Single-State Properties (S State) 2
~E

1 T P
0 (VMC) 7.4506(10) 1.6811(18) 6.247(14)
5 7.47810(28) 1.6684(23) 6.167(20)
10 7.47830(21) 1.6663(53) 6.169(52)
20 7.47841(22) 1.6639(44) 6.124(33)
30 7.47839£13) 1.6610(66) 6.104(63)
Exact or 7.47807 1.6623° 6.118°
estimated
Single-State Properties (P State)
! -E p rp2
0 (VMC) 7.3685(10) 1.998(4) 9.703(5)
5 7.4186(18) 1.957(18) 9.63(7)
10 7.4107(6) 1.963(9) 9.36(12)
20 7.4098(12) 1.955(9) 9.26(10)
30 7.4095(20) 1.951(10) 9.21(12)
Exact? 7.4102 - -
Oscillator Strengths

! ct.e? Second-order® Pure
0 (VMC) - 0.780(4) 0.780(4)
5 0.50, 0.50 0.757(7) 0.762(7)
10 0.50, 0.50 0.771(9) 0.778(10)
20 0.33, 0.67 . 0.745(N) 0.748(8)
30 0.50, 0.50 0.767(11) 0.775(11)
Experimemf - 0.742(1)
The unit of time is 477, the unit of encrgy is &, and distances are in bohr.
®Ref. 116.
“Ref. 11.
4Ref. 12.
‘ See Eq. (5.5).

/Ref. 142.
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Single-state properties and oscillator strengths for Li, second set of

Single-State Properties (5§ State)

2

(T £9) - -E, r &
(0.025,0.2,4) 7.4800(17) 7.47290(70) 1.6753(63) 6.238(65)
(0.025,0.5,10) 7.47896(63) 7.47284(42) 1.6644(52) 6.138(45)
(0.010,0.5,10) 7.47820(29) 7.47571(31) 1.6659(33) 6.147(34)
(0.010,0.0,12) 7.47750(51) 7.47497(54) 1.67 14538) 6.211 542)
Exact ot 7.47807¢ 7.47807¢ 1.6623 6.118
estimated
Single-State Properties (P State) )
(T4 8) - -E, r X
(0.025,0.2,4) 7.4061(17) 7.4039(8) 1.989(9) 9.67(11)
(0.025,0.5,10) 7.4102(8) 7.4037(6) 1.968(7) 9.48(10)
{0.010,6.5,10) 7.4140(18) 7.4087(3) 1.958(7) 9.33(8)
(0.010,0.0,12} 7.4127(18) 7.4080(4) 1.970(9) 9.74(14)
Exact® 7.4102 7.4102 - -
Oscillator Strengths

(T.4;.1) Second-order Pure
(0.025,0.2,4) 0.765(8) 0.768(8)
(0.025,0.5,10) 0.763(10) 0.770(11)
(0.010,0.5,10) 0.741(7) 0.742(7)
(0.010,0.0,12) 0.758(9) 0.762(10)
Experiment® -~ 0.742(1)

“The units are given in Table 5.10.

® All initial time steps are 0.002 £, 7 is the final time step, 4 is the propagation ime

with T =0.002 4™, and ¢ is the total convergence time.

°Ref. 116,
4Ref. 11.
*Ref, 12.

! See Eq. (5.5).
tRef. 142.
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Table 5.12. Oscillator strengths and excited-state lifietimes for the 225 —22P wansi-
tion of Li.*

Method Oscillator Strength | 22P Lifetime
Hartree-Fock? 0.768 26.36
cr 0.753 26.89
Hylleraas exp~nsion® 0.748 27.07
QMmce 0.7419(69) 27.41(35)
Experiment® 0.7416(12) 27.29(4)
9 Excited-state lifctimes are in nanoseconds.
5Ref. 111.
“Ref, 12,

4The QMC results are derived using the QMC-computed energy difference of 0.06778(30) £ while
the remaining theoretical results are obtained using the exact energy difference of 0.06791 4.
“Ref. 142.
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Figure 5.1. QMC walk within a QMC walk. The primary (vertical) QMC walk is
guided by W7, and generates the distribution ¥1,¢). During the primary walk, secon-
dary (horizontal) QMC walks, guided by ‘7, are performed to sample asymptotic
populations, proportional to $,/¥r,. Combining this weight with an operator {(e.g. x)
allows ike evaluation of the transition matrix element.

DVl\lO
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VMC walk with two QMC *‘side walks®. Configuration space is sampled
d Metropolis (VMC) walk (vertcal) guided by W,. Starting with points
he Metropolis walk, two separate QMC walks guided by ¥y, (horizon-
ard in imaginary time. The asymptotic populations of the QMC
These factors may be combined with mul-

Figure 5.2.
using a guide:
sampled during t
tal) are evolved forw
walks are proportional to ¢/, and ¢/,
tiplicative operators to obtain transition matrix elements.
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Figure 5.3. Green's function averaging approach. As in Method 1, the distribution
Wr,0; is sampled using a QMC walk (vertical) guided by ‘. For a point R; sampled
from *¥r,02, a short-time approximaiion to the Green’s function is averaged over points
R, drawn from the QMC distribution Wr¢,. This average is proponional to
W (R:$1(R; ) Combining these with the operator of interest results in an estimator of
the transition matrix element.

_ < v
) oo =
NA —— [AS)
@) 1= J=
~S- -
™ o
—— ——
=0 1=
170 [[=w]
- Lo
- -~
= oy
= =
= =
1 1
= 9 =
2 J52 .
’/\ —_—
170 _!_'.:C
i 4
120 1= .
2 >
R R
-;6 —__;E-
1= =
e e
S~ S~
- -
1 (Pew)
-




220

Chapter 6

Summary and Conclusions

This thes's has described three areas of- application of the fixed-node diffusion
QMC approach: energies (Chap. 3), single-state properties other than the energy (Chap.
4), and multi-state properties (Chap. 5).

Computations of the energy have been performed for several first-row atoms and
molecules. It has been found that simple trial functions, generally derived from a sin-
gle Slater determinant, have yielded accurate energies. QMC computations on small
systems, i.e., Hs, Li, LiH, and Li,, have yielded much success — obtaining 98-100% of
the correlation energy (CE). For the remaining higher-Z systems that have been stu-
died in detail, BH, N, N,, H,0, F and F~, single-determinant trial functions yield
approximately 90% of the CE. Thus if near-exact energies are desired on a general
basis, trial functions with improved nodal structures will be required.

As has already been observed for Be{56] and Li,, improvement upon a single-
determinant trial function, so that nearly exact energies are obtained, is readily accom-
plished by employing a small multi-determinantal wrial function which describes effects
known to be impontant. This is encouraging as it implies that similar improvements,
over single-determinant energies, may be obtained for other systems. However, it is
important to realize that that increasing the complexity of the trial function along stan-

dard ab initio guidelines does not necessarily yield an improved nodal structure. A
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simple example of this was found for H; where a near-HF basis set introduced an
additional node.

Therefore, it is also useful to consider less standard trial function forms. An impor-
tant advantage possessed by QMC methods is that only trial function derivatives are
required, rather than integrals, allowing a much greater fiexibility in the choice of the
trial function than standard theoretical approaches. The extent to which this flexibility
can be exploited has been demonsuated by Umrigar er al.[24] in obtaining a trial func-
tions for Li and Be whose VMC energies yielded more than 99% of the CE. If trial
functions approaching this accuracy, e.g., 90% of the CE obtained by VMC, can be
found in a more general context, then near-exact QMC erergies should result.

In addition to fixed-node error, the time-step bias resulting from the short-time
approximation to the Green’s function must be considered. That is, estimates of the
unbiased energy must be obtained from calculations of biased energies. When time-
step bias is large, unbiased estimates are difficult to obtain and may require computa-
tions at small time steps which is quite costly. (See, for example, the discussion of the
F-F~ calculations in Chap. 3.) We have found that how well the elecwon-nuclear cusp
condition is satisfied has a large effect on time-step bias. Choosing trial function
parameters to satisfy this condition (exactly or approximately depending on the number
of electrons) has resulted in QMC energies with a greatly reduced time-step bias
allowing reliable estimates of the t© =0 value. For example, for H;O we were able to
compute at values of t for which bias was not discernible, without incurring excessive
computational cost.

In addition 10 the energy, the computation of other single-state properties has been
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explored. Both single- and double-walk algorithms have been presented, and
modifications which improve efficiency have been implemented, i.e., carrying weights
or exploiting the correlation between pure and trial expectation values. Thus far, small
systems such as H, and LiH can be treated with high accuracy. Computations on
larger systems have not yet been implemented, and, as discussed above, trial functions
more accurate than the single-determinant varie.ty are desired.

The final avenue of exploration involved the computation of -transition dipole
moments. Three algorithms were presenied and implemented on the H atom. These
calculations introduced new considerations, such as trial function normalizations, over-
lap integrals, and other quantities. The approaches described in Secs. 5.3 and 5.4 were
found to be the most viable.

Subsequeat to the H atom calculations, Method 2 (VMC and two QMC side walks)
was employed in computing the transition dipole moment, and thereby the oscillator
strength and excited-state lifetime, for the 225 — 22P transition of Li. The resulting
oscillator strength and excited-state lifeu‘me: were found to be of excellent quality. The
high computational cost of the calculations, however, emphasizes, as with the other
applications, that more accurate wial functions are desired to increase the applicability

of the approaches developed here.
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Appendix A

A Condition for the Equivalence of Nodal Volumes

Here, we show that when there exists a one-to-one transformation between two
nodal volumes, which does not change the Hamiltonian, then the nodal volume ener-
gies will be identical.

Consider two nodal volumes v and vy and the corresponding nodal volume ener-

gies €y and €, respectively. These energies are given by

de%(R H 0o(R )/j dR 0z(R)0x(R) (A.D
Revg Rev,
and
& = | AROGRH 0R V[ dR ‘G5B I06(R") . (A2)
R'evp RKevp

Let there exist a one-to-one transformation, T, acting on electron coordinates such that
forR € voand R" € vg, R =TR’ and TH = H. Since T is one-to-one, there exists
an inverse, T, such that R*=T'R and T'H = H.

Employing the ransformation T in Eq. (A.1) yields

= j d(TR Y0g(TR"YTH 0 (TR ')/j d(TR Y0a(TRN0o(TR") . (A3)
eVg ev..l
Since T is one-to-one, the integrals above may be writien as an integration over R”.

Also, for every R’ € vg, we may define a new function in vg as Q’B({f_ ) = 64(R) for

R =TR’. Thus, there results



o= [ dR'OGFRIH YRV dRGFR R . (%)

R'evy R'evy
Since &g is the minimum energy obtainable in vg, £, > £g. However, substituting T'R
into Eq. (A.2) yields by the same reasoning above, €g 2 €, and, therefore, £, = €p.
Finally, if ¢, and ¢z arc unique, ie, no degeneracy exists, then

¢'sR") = $pR") = $5(R). [Note that we may also obwain ¢a(R") = — 0(R).]
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Appendix B

The Computation of the Trial Function and its Derivatives

As discussed in Sec. 2.5, a move R — R’ is performed in a step-wise fashion by
oiataining new electron coordinates for each electron one at a time. Therefore, we now
consider the move above only to consist of r) — r}; computations conceming the
moves of the other electrons are completely analogous. The first n, electrons are
assumed to be spin-up and the remaining N — n, are spin-down. For each electron
move, we desire an efficient algorithm to compute the quantities necessary for the
QMC simulation.

For notational convenience in the equations below, we define,

Ro=lryra - an ),
Ru=(hry o our), and
Ry = (Ghsts Dnwns ** " In) (B.1)

From Eq. (2.38), Wi(R) may be written as

¥r(R) = Det[ A%R ) |Det{APRpIF R) , (B.2)
and analogously at R’. F is the product of the E-E and E-N comelation functions, and
A is the matrix formed from the MOs. The quantities of interest are ¥ (R V'Hr(R),
and ¥,'V ¥ and W 'V3¥ at R and R’. From Eq. (B.1), the spin-down (B) deter-
minant cancels from the quantities under consideration. Also, the correlation functions

and their derivatives are computed straightforwardly, leaving the computation of the
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spin-up determinant and its derivatives as the present concern.

Specifically, we must evaluate Det[A%R D1/Detl A%R »)] and
Det[A%]"}(V,, V3)Det[A%] at R, and R},. The first step towards this end is to obtain
the MOs, their gradient, and Laplacian at r; and r’. As can be seen above, a total of
ten determinants are required. If each is computed individually, the computational cost
scales as 10n 2.

A more efficient alternative is implemented using the inverse of A%. Dropping the

superscript, o, A is given by

W) wll) ooy, (1)
i) v - oy, (2)

AL, o=l ®3)
vilty) walng -0 W, (ng)

The inverse of A, A~}, is computed at the start of the random walk and is updated for
each electron move with an algorithm scaling as 2. Each column of A™! is

A7V = Del(AY M, Mg, - - M), (B.9)
where Mi/' is the minor of a; = \yl-(i ). ’

Returning to the MOs, we define

O y() =[0wi(1), Oyya(1), -+, O W (D], (B.5)
where O, = (V}, V). We now see that the quantities depending on Det(A) may be

coaveniently computed as scalar products, which scale as 71, Namely,

Det{A(R )1 'DetlAR D] = WR A,

Det{A(R )] 10 | DetfA(R )} = [0 W(RHIATY,

and
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Det{ AR )1 10 Detl AR W} = [Cp(R IATIWR DFAT] . (B.6)
From Eq. (B.6), and the fact that A~! must be updated for each electron moved, the

computational cost now scales as n2 + 9n,, which is far more efficient than comput-
ing the determinants individually, 10n2. The computational cost, T, incurred by mov-
ing all the electrons is now seen to be

T =nanl + Ong) + nﬂ(nﬂ2 +9np) , (B.7)

“or for ng=np=N/2,

1 9
T~ ?N3 + ENZ . (B.3)



Appendix C

Antisymmetry Nodes of H;

It is useful to calculate the nodal locations of the trial functions, since these nodes
ultimately determine the ac:uracy of the QMC energy. Calculations of the exchange
nodes lead to the diagrams shown in Figs. 3.12-3.14.

Here we demonstrate that a nodal surface, obtained by finding the zeros of the 2x2
determinant of the tmial function at a fixed position of one like-spin electron, remains
iavariant for the previously fixed electron anywhere on this surface. In other words,
the surface is the same independent of the positions of the like-spin electrons on it.
This property greatly simplifies the picturing of the exchange nodes.

In the 2x2 case considered here, the vanishing of the determinant implies

WIZOWr) = yitvar)) . ((e8))
where v, and v, are the two MO's. If we now move electron 2 to ry, still on the
nodal surface for fixed r,

VI WD) = yirdyalr) - (€2
Dividing Eq. (C.1) by Eq. (C.2) gives

Wolra) W)

, C.3
Wlr) W) ©3

which may be written as
ViEDWAra) = W) (€4

Thus we find that if (r,, r,) and (), 72) are botk on a nodal surface, the determinant
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also vanishes at (r3, r7). So any pair points on the locus of points mapped out at fixed

r) is also on the nodal surface.
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Appendix D

Variance of Rounded Versus Unrounded Weights

Here, we compare the variance obtained for the weight when it is integer rounded
with the correct exp;ctau'on value versus when its full real value is kept. The
difference is significant when it is necessary to sample asymptotic populations.

Consider a number w and its associated probability density function, f(w). The
mean and variance of w are given by

V= wa(w)dw

and

Vi = [wifw)dw - w? . (D.1)
Let 1,,(8) = int(w+&) be the integer rounded weight. Here & is a uniform random vari-

ate between 0 and 1. The mean value of I, (§) over the uniform distribution of &'s is

given as

1 1
L = [I,&)dE = [in(w+E)dE = w . (D2)
0 ]

In comparison to Eq. (D.1), the variance variance of the rounded weight is

1
Vi, = I[I’.}@)dglﬂw Ydw — [II-,f (w)dw }2. (D.3)
0
Defining the remainder r(w) by w = int(w) + r(w) one obtains for the integral over

&



ler 1

1
fr2®)de = [ lintw + OFE + [ [in(w + EPAE ,
0 0 1-r

= (1-r){int(w)? + r[im(w) + 112
=wi+r-r2, (1]

Eq. (D.3) now becomes

vy = J[w2+r 0 )=-rHw)lf(w)dw — w2, (D.5)

or
Vi =V, + [lrw)-r2w)lf(w)aw. (D.6)

Since ~(w) - r(w)? 20 and J{w) is, by definition positive definite, V-' 2V,. This
quantifies the lower variance in the weights when integer rounding is avoided. Though
the additional variance in a single integer rounded weight is small, the reduction in the
variance of the asympiotic populations (which are essentially the products of several

weights) can be significant.
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