

MASTER

DP-MS-80-78

CONF-801226--1

**^{237}Np MOSSBAUER SPECTRA OF NEPTUNIUM(IV)
TRIS(PYRAZOL-1-YL) BORATE COMPOUNDS**

by

D. G. Karraker

E. I. du Pont de Nemours & Co.
Savannah River Laboratory
Aiken, SC 29808

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A paper for presentation at the
American Chemical Society Meeting
New Orleans, LA
December 10-13, 1980

This paper was prepared in connection with work under Contract No. DE-AC09-76SR00001 with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
EB

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

**^{237}Np MÖSSBAUER SPECTRA OF NEPTUNIUM(IV)
TRIS(PYRAZOL-1-YL) BORATE COMPOUNDS***

by

D. G. Karraker

E. I. du Pont de Nemours & Co.
Savannah River Laboratory
Aiken, SC 29808

ABSTRACT

The compounds $\text{Np}(\text{HBpz}_3)_2\text{Cl}_2$, $\text{Np}(\text{HBpz}_3)_2(\text{MeCp})_2$, $\text{Np}(\text{HBpz}_3)\text{CpCl}_2$, and $\text{Np}(\text{HBpz}_3)(\text{MeCp})\text{Cl}_2$ ($\text{pz} = \text{C}_3\text{H}_3\text{N}_2$, $\text{Cp} = \text{C}_5\text{H}_5$, $\text{MeCp} = \text{CH}_3\text{C}_5\text{H}_4$) have been prepared as tetrahydrofuran solvates and characterized by analysis. ^{237}Np Mössbauer spectra showed magnetic splitting, except for $\text{Np}(\text{HBpz}_3)_2(\text{MeCp})_2$. The spectra of $\text{Np}(\text{HBpz}_3)\text{CpCl}_2$ and $\text{Np}(\text{HBpz}_3)\text{MeCpCl}_2$ were distorted by intermediate relaxation effects. Isomer shifts of -0.6 cm/sec were found for both $\text{Np}(\text{HBpz}_3)_2\text{Cl}_2$ and $\text{Np}(\text{HBpz}_3)_2(\text{MeCp})_2$, suggesting that the covalent contribution to bonding by MeCp in the latter compound is small.

* The information contained in this article was developed during the course of work under Contract No. DE-AC09-76SR00001 with the U.S. Department of Energy.

INTRODUCTION

The isomer shifts of ^{237}Np Mössbauer spectra show differences between Np(IV) compounds. These differences are reflected in changes in 5f electron density of the compounds. Comparison among Np(IV) organometallic compounds can be interpreted as showing the addition or withdrawal of 5f electron density by the ligands bonded to the Np(IV) ion.^{1,2} In previous studies, the effect of $\text{C}_8\text{H}_8^{-2}$, $\text{C}_5\text{H}_5(\text{Cp})$, R, OR and acac ligands was investigated. This paper reports on the ^{237}Np Mössbauer spectra of tris(1-pyrazolyl) [$\text{HB}(\text{N}_2\text{C}_3\text{H}_3)_3 = \text{HBpz}_3$] and $\text{HBpz}_3\text{-Cp}$ Np(IV) compounds.

Analogous Th(IV) and U(IV) - HBpz_3 and $\text{HBpz}_3\text{-Cp}$ compounds were prepared and studied by Bagnell and coworkers.^{3,4,5} An interesting possibility in the ^{237}Np Mössbauer study is the assessment of the bonding properties of Cp in a compound such as NpCp_2X_2 . NpCp_2X_2 can be prepared only if X is a relatively bulky ligand compared to chloride. Previous Mössbauer studies have shown a substantial electronic contribution to bonding from the Cp ligands in NpCp_3^+ and essentially no contribution to bonding from Cp in NpCpCl_3 . Therefore, the bonding contribution of a $\text{Cp}_2\text{Np}^{+2}$ unit is of interest.

EXPERIMENTAL SECTION

General

All compounds were prepared in a purified argon atmosphere. Samples for Mössbauer magnetic susceptibility measurements were sealed in plastic holders in a glove box. Solvents [THF, toluene,

petroleum ether (boiling point 20 to 40°C), and ethyl ether} were purified by standard methods in an argon atmosphere. Neptunium was determined by 1) dissolution of a weighed sample in dilute acid and 2) α -counting an aliquot of the solution; ^{238}Pu impurity was corrected from α pulse height analysis results. Chloride was determined by potentiometric titration with standard silver nitrate solution. Mössbauer spectra and magnetic susceptibility measurements were obtained as previously described.^{2,6}

Preparation of Compounds

$\text{K}(\text{HBp}_{\text{z}}_{\text{3}})$

Potassium tris(1-pyrazolyl) borate was prepared by the procedure of Trofimenko.⁷

$\text{Np}(\text{HBp}_{\text{z}}_{\text{3}})_{\text{2}}\text{Cl}_2$

$\text{Np}(\text{HBp}_{\text{z}}_{\text{3}})_{\text{2}}\text{Cl}_2$ was prepared as a THF adduct by adding four equivalents of $\text{KHBP}_{\text{z}}_{\text{3}}$ to a THF solution of NpCl_4 and stirring at room temperature for two hours. The solution was filtered, and the filtrate vacuum was evaporated to recover a glistening brown product.

$\text{NpCp}(\text{HBp}_{\text{z}}_{\text{3}})\text{Cl}_2$, $\text{NpMeCp}(\text{HBp}_{\text{z}}_{\text{3}})\text{Cl}_2$

These compounds were prepared by the reaction of equimolar quantities of $\text{NpCpCl}_3 \cdot 2\text{THF}$ ^{5,8} with $\text{KHBP}_{\text{z}}_{\text{3}}$ in THF. After stirring for two to three hours at room temperature, the mixture was

filtered, and the filtrate was evaporated by vacuum to an oil.

The oil was triturated with petroleum ether, and the product was recovered as a dark red powder.

NpCp₂(HBpz₃)Cl

This compound was prepared by the reaction between NpCp(HBpz₃)Cl₂ and TlCp in THF by a procedure similar to the preceding preparation. The product was a dark brown solid.

Np(MeCp)₂(HBpz₃)₂

This compound was prepared by the reaction of Np(HBpz₃)₃Cl₂•xTHF with TlMeCp in THF and recovered as in the preceding preparations. This product is a glossy brown solid. The analyses of these compounds are shown in Table 1.

TABLE 1

Analytical Results for Np(IV) — Tris(1-pyrazolyl) Compounds

Compound	Np, wt %		Cl, wt %	
	Found	Calcd	Found	Calcd
Np(HBpz ₃) ₂ Cl ₂ •3THF	24.6	25.00	7.50	7.49
Np(HBpz ₃)CpCl ₂ •THF	37.9	36.01	11.8	10.81
Np(HBpz ₃)MeCpCl ₂ •3THF	27.8	29.2	9.1	8.73
NpCp(HBpz ₃)Cl ₂	40.0	38.50	6.75	5.76
Np(HBpz ₃) ₂ MeCp ₂ •4THF	21.3	21.4	-	-

RESULTS

$^{237}\text{Mössbauer}$ spectra for $\text{Np}(\text{HBp}_3)_2\text{Cl}_2 \cdot 3\text{THF}$, $\text{Np}(\text{HBp}_3)_2\text{CpCl}_2 \cdot \text{THF}$, and $\text{Np}(\text{HBp}_3)_2(\text{MeCp})_2 \cdot 4\text{THF}$ are shown in Figure 1; the Mössbauer parameters for these spectra are shown in Table 2.

TABLE 2

Mössbauer Parameters

Compound	Isomer Shift (δ),* cm/sec	Magnetic Splitting Constant, $g_0\mu_N^{\text{Heff}}$ (cm/sec)	Quadrupole Coupling Constant, $(1/4)\text{eqQ}$ (cm/sec)
$\text{Np}(\text{HBp}_3)_2\text{Cl}_2 \cdot 3\text{THF}$	-0.60 ± 0.07	8.93 ± 0.29	0.8 ± 0.4
$\text{Np}(\text{HBp}_3)_2\text{CpCl}_2 \cdot \text{THF}$	-0.27 ± 0.15	8.80 ± 2.5	0.5 ± 0.2
$\text{Np}(\text{HBp}_3)_2(\text{MeCp})_2 \cdot 4\text{THF}$	-0.60 ± 0.07	-	-

* $\text{NpAl}_2 = 0$.

The Mössbauer spectra of $\text{Np}(\text{HBp}_3)_2\text{Cl}_2$ and $\text{Np}(\text{HBp}_3)_2\text{CpCl}_2$ are both magnetically split, with a small quadrupole-splitting component added.⁹ The spectrum of the first compound (Figure 1) is fairly well-resolved, and the significant resonances of this spectrum are easily identified. The isomer shift and magnetic splitting parameters are quite precise. The quadrupole splitting constant is only a crude estimate because $(1/4)\text{eqQ}$ depends on the position of two missing weak resonances at each end of the spectrum. The spectrum of $\text{Np}(\text{HBp}_3)_2\text{CpCl}_2 \cdot \text{THF}$ (Figure 2) is

obviously the same type as that of $\text{Np}(\text{HBpz}_3)_2\text{Cl}_2 \cdot 3\text{THF}$, but the spectrum has been distorted by intermediate relaxation effects. The large errors listed for the Mössbauer parameters reflect two possible assignments for the resonances, and the quadrupole-splitting constant is again a crude estimate, based on a guess for the location of the two missing lines. The spectrum of $\text{Np}(\text{HBpz}_3)_2(\text{MeCp})_2 \cdot 4\text{THF}$ (Figure 3) shows a single resonance at $\delta = 0.60$ cm/sec, but the structure of the resonance suggests that a small, unresolved quadrupole-splitting component may also be present.

The Mössbauer spectra of both $\text{NpMeCp}(\text{HBpz}_3)\text{Cl}_2$ and $\text{NpCp}_2(\text{HBpz}_3)\text{Cl}$ are both distorted by intermediate relaxation effects; therefore, the spectra could not be interpreted. Previous work^{1,2} has found intermediate relaxation distortions in the Mössbauer spectra of NpCp_3X ($\text{X} = \text{R, OR, Cl, Br, etc.}$) compounds and has shown that in some cases, substituting a bulkier ligand may change the relaxation enough to allow usable spectra. A bulkier ligand increases the Np-Np distances in the solid compounds and thereby decreasing the spin-spin interactions which affect relaxation times. The distortion of the spectrum of $\text{NpCp}_2(\text{HBpz}_3)\text{Cl}$ is not unexpected, but that $\text{NpMeCp}(\text{HBpz}_3)\text{Cl}_2$ should have a heavily relaxation-affected spectrum while $\text{NpCp}(\text{HBpz}_3)\text{Cl}_2$ has an interpretable spectrum is not expected. However, substitution of MeCp for Cp may not necessarily increase Np-Np distances in a solid compound. For example, MeCp could increase Np-Np distances

in one direction but shorten them in another. The net effect could be an enhancement of intermediate relaxation effects.

Discussion

The isomer shifts of these compounds, compared with isomer shifts of appropriate reference compounds, can be used to reflect changes in 5f electron density of the Np(IV) ion. Table 3 shows the changes of Np(IV) isomer shifts for one and two HBpz₃ ligands, and for two MeCp ligands bonding to Np(IV). The changes in isomer shift between compounds studied and reference compounds are small, and the effects observed are in the direction of withdrawing 5f electron density. These results indicate that the HBpz₃ and bis-methyl-cyclopentadiene are essentially electrostatically bonded in these compounds.

Biscyclopentadienyl-uranium(IV) compounds are not stable except when coordination sphere of the U(IV) ion includes other ligands that reduce access to the U(IV) ion.^{3,4,10} The analogous Np(IV) compounds are almost identical in chemical behavior because the ionic radius of Np(IV) is only slightly smaller than that of U(IV). The preparation of biscyclopentadienyl-actinide(IV) compounds only in crowded coordination spheres suggests that there is a substantial repulsion between the bonding ligands. This repulsion would be expected to lengthen the bonds between the actinide(IV) ion and the ligand and decrease any covalent contribution to the bonding.

TABLE 3

237 Np Isomer Shifts for Ligand-Np(IV) Bond

Bond	Compound	δ , cm/sec	References	$\Delta\delta$
HBpz ₃ - Np(IV)	Np(HBpz ₃)Cp Cl ₂	-0.27	Np(Cp)Cl ₃	-0.1
(HBpz ₃) ₂ - Np(IV)	Np(HBpz ₃) ₂ Cl ₂	-0.60	NpCl ₄	-0.25
(MeCp) ₂ - Np(IV)	Np(HBpz ₃) ₂ (MeCp) ₂	-0.60	Np(HBpz ₃) ₂ Cl ₂	0.00

Evidently, the tridentate HBpz₃ ligand bonds essentially electrostatically to Np(IV); the biscyclopentadienyl ligands appear to bond electrostatically, probably because ligand repulsion prevents any significant orbital overlap. A measurement of the Cp-Np bond distances in Np(MeCp)₂(HBpz₂)₂ would allow a definite conclusion to be drawn from the Mössbauer results.

REFERENCES

1. D. G. Karraker and J. A. Stone. Inorg. Chem. 18, 2205 (1979).
2. D. G. Karraker. "Covalency of Neptunium(IV) Organometallics from ^{237}Np Mössbauer Spectra." Recent Chemical Application of the Mössbauer Effect. G. K. Shenoy, Ed., ACS Advances in Chemistry Series, Washington, DC (in press).
3. K. W. Bagnall, J. Edwards, J. G. H. Du Preez, and R. F. Warren. J. Chem. Soc., Dalton Trans., 140 (1979).
4. K. W. Bagnall, A. Beheshti, J. Edwards, F. Heatley, and A. C. Tempest. J. Chem. Soc., Dalton Trans. 1241 (1979).
5. K. W. Bagnall and J. Edwards. J. Organomet. Chem. 80, C14 (1974).
6. M. V. Hoehn and D. G. Karraker. J. Chem. Phys. 60, 393 (1974).
7. S. Trofimenko. J. Am. Chem. Soc. 89, 6288 (1967); Inorg. Synth. 12, 99 (1970).
8. L. Doretti, P. Zanella, G. Faraglia, and S. Faleschini. J. Organomet. Chem. 43, 339 (1972).
9. W. L. Pillinger and J. H. Stone. "Methodology of the Np^{237} Mössbauer Effect." Mössbauer Effect Methodology. Vol. 4, p. 217, I. J. Gruverman, Ed., Plenum Press, New York, NY (1968).
10. B. Kanellakopulos, C. Aderhold, and E. Dornberger. J. Organomet. Chem. 66, 447 (1974).

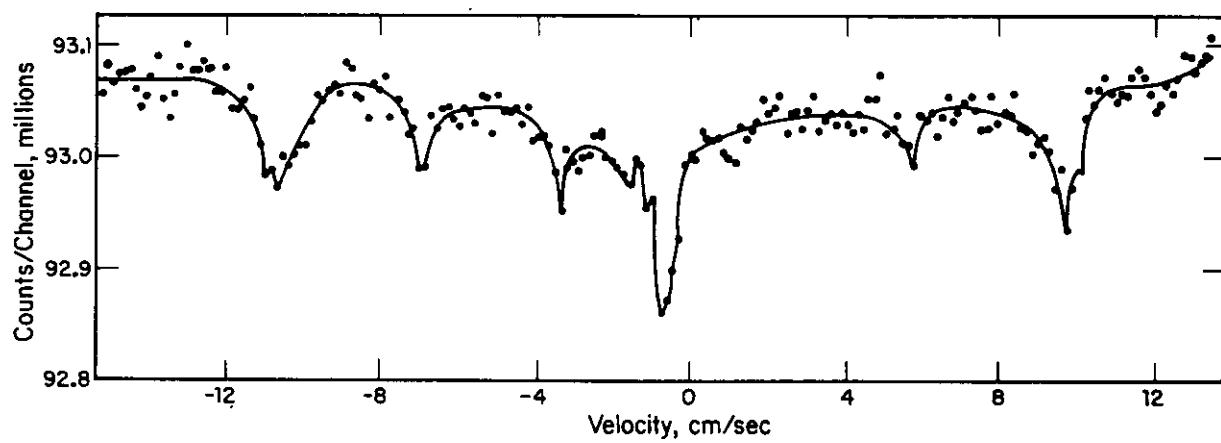


FIGURE 1. ^{237}Np Mössbauer Spectrum of $\text{Np}(\text{HBpz}_3)_2\text{Cl}_2 \cdot 3\text{THF}$

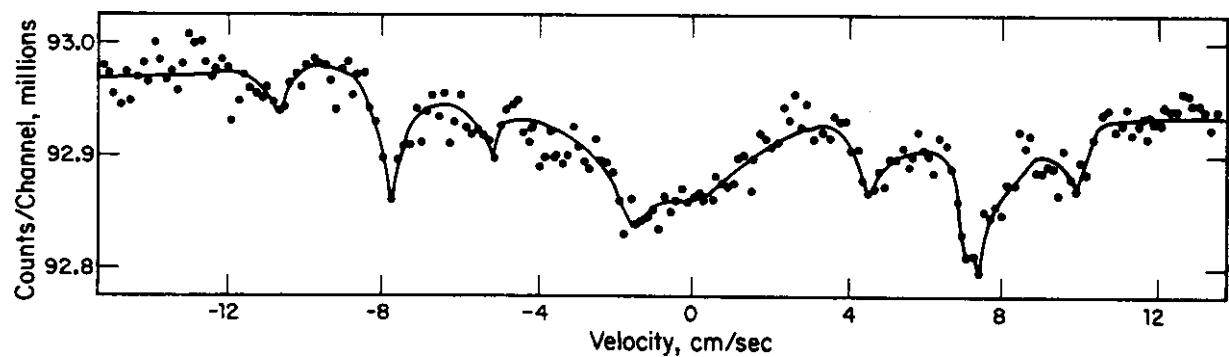


FIGURE 2. ^{237}Np Mössbauer Spectrum of $\text{Np}(\text{HBpz}_3)\text{CpCl}_2 \cdot \text{THF}$

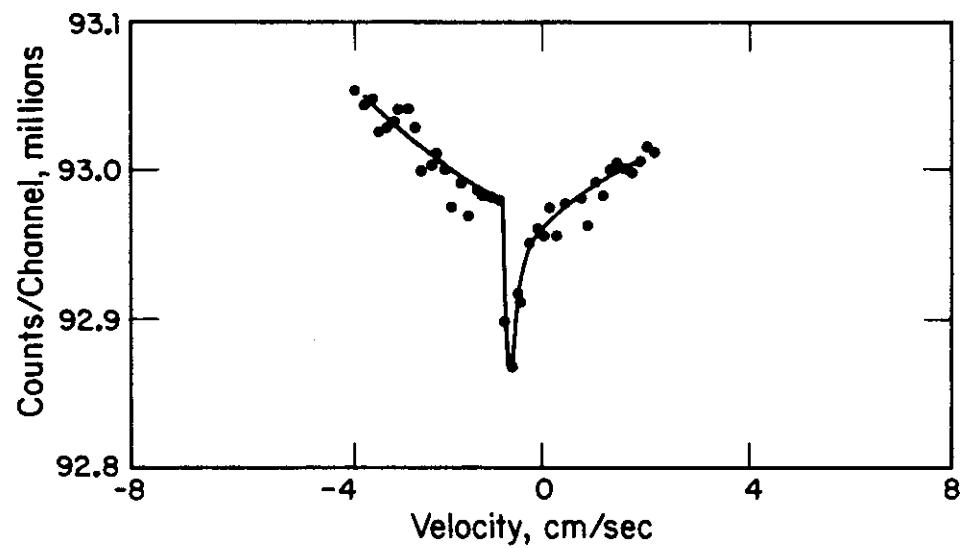


FIGURE 3. ^{237}Np Mössbauer Spectrum of $\text{Np}(\text{HBpz}_3)_2(\text{MeCp})_2 \cdot 4\text{THF}$