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ABSTRACT 

Seismological monitoring of t he  Chocolate Bayou region of Brazoria County, 

Texas, i n  t h e  v i c i n i t y  of t he  DOE Pleasant Bayou geopressured/geothermal design well 

has r e s u l t e d  i n  s i g n i f i c a n t  improvement i n  assess ing  the  p o t e n t i a l  seismological 

hazards and r i s k s  assoc ia ted  with t h e  development of t h i s  a l t e r n a t i v e  energy 

resource.  Since the  incept ion  of t he  monitoring program i n  1978, t he re  have been 

four  per iods during which s i g n i f i c a n t  volumes of br ine have been produced froin the 

Pleasant  Bayou No. 2 w e l l  and subsequently r e in j ec t ed  i n t o  the  Pleasant Bayou No. 1 
w e l l .  Continuous seismic monitoring and analyses of the  da t a  through September 1983 
have r e su l t ed  i n  the  fol lowing observat ions and conclusions. (1) The temporal 

d i s t r i b u t i o n  of seismic events  from 1978 through 1983 i s  not uniform. There is a 
pronounced increase  i n  the  frequency of occurrence of microearthquakes i n  the lat ter 

ha l f  of 1981. (2) Because the  increased se i smic i ty  follows the  Phase I short-term 

f low test with a delay of over two hundred days and occurs both during and following 

the  aborted Phase I1 long-term flow test, the  exact c a u s a l i t y  r e l a t ionsh ip  between 

br ine  production and/or d i sposa l  and induct ion of microearthquakes is  unclear. The 

coincidence of onse t  of se i smic i ty  and t i m e s  of br ine production and the  absence of 

s e i smic i ty  i n  1982 fo l lowing  a fourteen-month shut-in s t rong ly  suggest the  exis tence 

of a c o r r e l a t i o n ,  however. Seismic a c t i v i t y  resumed late March 1983 following the 

r e - i n i t i a t i o n  of t h e  Phase I1 long-term f low test i n  September 1982, t he re fo re  

adding support  f o r  a hypothesized delayed s t r a in - r e l ease  response of t he  l o c a l  

geologic  column t o  the  stress per turba t ion  induced by the  design w e l l  production. 

(3) Microearthquakes occurr ing  i n  the  Gulf Coast region have previously been 

divided i n t o  two sepa ra t e  groups of events.  Type I event is  t y p i c a l  micro- 

earthquake i n  cha rac t e r ,  composed of well-defined body waves and sur face  waves. 

These events  are observed t o  propagate across  the  monitoring a r ray  a t  P-wave veloc- 

i t y .  Type 11 events  propagate a t  very low v e l o c i t i e s  ((400 m/sec) and contain no 

i d e n t i f i a b l e  body phases. Since the increase  i n  frequency of occurrence of both 

event  types during and following w e l l  production ind ica t e s  t h a t  they are i n  some way 

production r e l a t e d ,  it is  important t o  determine t h e i r  o r i g i n  and mode of propaga- 

t ion .  To r e so lve  some of t h e  unce r t a in t i e s  assoc ia ted  with these  events ,  i n  par- 

t i c u l a r  the  quest ion of foca l  depth, syn the t i c  seismograms were ca lcu la ted  by modal 

summation based on a Gulf Coast e a r t h  model. Comparison of t i m e  domain and fre-  

quency domain observed and syn the t i c  s igna l s  has offered  s t rong  evidence tha t  foca l  

0 

Keywords: Microseismic monitoring, geopressured/geothermal energy, Chocolate 
Bayou, Texas 
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depth i s  one d i s t ingu i sh ing  f a c t o r  between these  two event types. Type I1 events 

o r i g i n a t e  a t  depths less than 800 m; type I events apparent ly  have source depths 

greater than 800 m. Depths of type I1 and hypocenter l oca t ions  ca lcu la ted  f o r  the  

majori ty  of observed type I events  are less than t h a t  of the  production reservoi r .  

(4) Spec t r a l  ana lys i s  of observed type I1 s i g n a l s  and syn the t i c  seismograms a l s o  

provide s u b s t a n t i a l  evidence of trapped modes r a the r  than simple Rayleigh propaga- 

t ion.  The s p a t i a l  d i s t r i b u t i o n  of the  seismic epicenter  at  Pleasant Bayou from 

1979 through September 1983 cluster i n  the v i c i n i t y  of proposed loca t ions  of growth 

f a u l t s  a t  depths of 15,000 f e e t  w e s t  and northwest of t he  Pleasant Bayou No. 2 

w e l l .  

( 5 )  

These da ta  combined with the  few unambiguously recorded f i r s t  P-wave motions 

suggest t h a t  these  microearthquakes occur as d ip  s l i p  events  along growth f a u l t s  

above the  production horizon. The sense of block motion is d i l i t a t i o n a l  (downward) 

a t  the  seismograph s t a t i o n s .  Because of the  poor depth r e so lu t ion ,  it is uncertain 

whether the  events are more l i k e l y  assoc ia ted  with br ine  production o r  br ine injec- 

t i on .  The preponderance of events have depths more s t rong ly  favoring br ine injec- 
t i o n  than br ine  production as the  causa l i t y  agent;  however, t h i s  evidence is 

extremely weak. (6 )  The c h a r a c t e r i s t i c s  of the  observed se i smic i ty  do not i nd ica t e  

a high seismic r i s k  assoc ia ted  with these events. No events with magnitudes greater 

than 2.0 have been observed. A l l  events  range i n  magnitude from 0.0 t o  1.5 .  There 

i s  no obvious r e l a t i o n s h i p  between events  which would suggest a normal foreshock, 

mainshock, o r  a f te rshock  sequence as observed i n  ac t ive  t ec ton ic  regions. Even when 

event frequency w a s  high, t he  t o t a l  number of events was  low (<20 - events/5-day 

period). Although the number and s i z e  of these microearthquakes c o n s t i t u t e  a low 

seismic r i s k  due t o  ground acce le ra t ions ,  the  in t eg ra t ed  displacement from many 

events  along a s i n g l e  growth f a u l t  may c o n s t i t u t e  a subsidence hazard. The greatest 

benef i t  t o  be derived from microseismic monitoring of such production regions may be 

t o  i d e n t i f y  which l o c a l  f a u l t s  d i sp lay  the  greatest i n s t a b i l i t y  t o  s l i pp ing  and thus 

c o n s t i t u t e  the  regions which should be monitored most c lose ly  by o ther  techniques 

f o r  subsidence e f f e c t s .  
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INTRODUCTIOI$ 
I 

Commercial u t i l i z a t i o n  of Gulf Coast geopressured/geothermal br ines  as an 

a l t e r n a t i v e  energy source requi res  production and d isposa l  of these environmentally 

hazardous f l u i d s  a t  rates exceeding 10,000 barrels per day per w e l l .  F lu id  volume 

withdrawal and i n j e c t i o n  a t  these  rates alters the  state of subsurface stress, 

thereby p o t e n t i a l l y  r e s u l t i n g  i n  induced microearthquake a c t i v i t y  and ground sub- 

sidence. To inves t iga t e  the  po ten t i a l  seismic r i s k s  associated with the  production 

of b r ines  from the  Pleasant Bayou No. 2 design w e l l  i n  Brazoria County Texas, 

Teledyne Geotech, with the  au thor iza t ion  of the Texas Bureau of Economic Geology, 

conducted a seismic monitoring program at Chocolate Bayou from September 1978 

through September 1983. The primary objec t ive  of t he  Brazoria seismic monitoring 

program was t o  determine i f  production from the  Pleasant Bayou geopressured/ 

geothermal energy wel l :  r e su l t ed  i n  enhanced se i smic i ty  which would c o n s t i t u t e  a r i s k  

i n  i t s e l f  o r  would ind ica t e  the  longer term hazard of acce lera ted  subsidence. 

The r e s u l t s  of t h i s  s tudy have demonstrated tha t  se i smic i ty  is enhanced by the  

br ine production; however, ne i the r  the  increased number of events ,  nor the s i z e  of 

t he  induced microearthquakes c o n s t i t u t e  a ser ious hazard o r  r i s k  due t o  ground accel- 

e ra t ions .  Whether o r  not these  microearthquakes cumulatively c o n s t i t u t e  a long- 

term subsidence r i s k  is not answered by these data. 

This is t h e  f i n a l  t echnica l  repor t  of t he  Chocolate Bayou seismic monitoring 

program. It is  intended t o  def ine the experimental procedures, summarize the obser- 

va t ions  from 1978 through 1983, and discuss  the results and conclusions drawn from 

analyses  of t h e  data.  Although we bel ieve the  p r inc ipa l  ob jec t ive  of the  program 

has been accomplished, we a l s o  bel ieve t h a t  many more questions have been ra i sed  

than answered by t h i s  study. Additional research in the areas of seismic energy 

propagation through Gulf Coast sediments, growth f a u l t  mechanics, and the interac-  

t i o n  of f l u i d  t r anspor t  and mechanical '  c h a r a c t e r i s t i c s  of f au l t ed  aquafers i n  the 

I 

Gulf Coast is  s t rong ly  indicated.  
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I 

THE BRAZORIA SEISMIC NETWORK, INSTRUMENTATION , DESIGN, AND SPECIFICATIONS 

The Brazoria County seismic a r r ay  consis ted of f i v e  seismograph s t a t i o n s  i n  

t h e  Chocolate Bayou area of Brazoria County, Texas. The loca t ions  of these sta- 

t i o n s ,  l o c a l  c u l t u r a l  f e a t u r e s ,  and projected loca t ions  of growth f a u l t s  a t  a depth 

of 16,000 f e e t  are i l l u s t r a t e d  on f i g u r e  1. The aper ture  of the  a r r ay  is four  kilo- 

meters. The l a t i t u d e s ,  longi tudes and e leva t ions  of the  sensors  are l i s t e d  i n ’ t a b l e  

1. Each sta- 

t i o n  cons is ted  of a Teledyne Geotech S-500 seismometer which was locked i n  a bore- 

hole  a t  a depth of one hundred f e e t .  The s i g n a l  from the  seismometer was magnified 

using a Teledyne Geotech 42.50 ampl i f ie r  and then FM multiplexed t o  a voice-band 

Figure 2 i s  a block diagram i l l u s t r a t i n g  the  operat ion of the  array.  

carrier frequency f o r  transmission t o  a common da ta  c o l l e c t i o n  point at Liverpool, 

Texas . Data transmission was  v i a  telephone te lemetry c i r c u i t s  . A t  Liverpool , the  

s i g n a l s  from the  f i v e  s t a t i o n s  were amplitude conditioned and multiplexed together  

f o r  t ransmission.  v i a  AT&T long l i n e s  t o  the Teledyne Geotech labora tory  at Garland , 
Texas. 

TABLE 1. BRAZORIA COUNTY TEXAS SEISMIC ARRAY 

Latitude(N) Longitude(W) Elevation Magnification VCO 
X 1000 C! 5 Hz Hz - S i t e  Deg Min Sec D e  Min Sec Feet 

BEG1 29 17 28 95 16 53 -8 7 147 1360 

- --- 

BEG2 29 17 32 95 14 01 -8 7 138 2380 

BEG3 29 16 54 95 15 22.5 -97 140 1020 

BEG4 29 15 54 95 14 45.2 -90 164 2040 

BEG5 29 15 53.4 95 16 10.3 -8 4 159 1700 

In  Garland, t he  f i v e  s t a t i o n  s igna l s  were demultiplexed from t h e i r  respec t ive  

carriers using Teledyne Geotech 46.12 discr iminators .  The s i g n a l s  and prec ise  t i m e  

code then were recorded on magnetic tape and on 16-mm f i lm  using a Teledyne Geotech 

develocorder. The unity-gain ve loc i ty  response of the  system is i l l u s t r a t e d  i n  

f i g u r e  3. The magnification at  a frequency of f i v e  he r t z  of t he  ind iv idua l  s t a t i o n s  

is  given i n  t a b l e  1. Variat ions i n  e f f e c t i v e  magnification r e f l e c t  the v a r i a b i l i t y  

of t he  ambient no ise  a t  the  d i f f e r e n t  sites. 

Typical power spectra d e n s i t i e s  of ambient noise  condi t ions at four  sites i n  

Chocolate Bayou are i l l u s t r a t e d  i n  f igu re  4. These noise  si tes do not correspond 

with the  f i n a l  a r r ay  sites but are given t o  i l l u s t r a t e  the  t y p i c a l  ambient con- 

d i t i ons .  
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A SEISMOGRAPH STATJONS ' 

t'w' 142Mll.S TESTWELL :.-......:. . . . . . . . 19 MILS + QUADRANGLE LOCATION 

GROWTH FAULTS AT %OOO FEET 

Figure 1. Brazoria County Texas seismic array. 
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In  general ,  the  maximum (0-P) ground displacements observable with the  

Brazoria seismograph instrumentat ion without s gni f icant  d i s t o r t i o n  o r  c l ipping at 

one, f i v e  and t en  he r t z  are respec t ive ly  7 . 4  * 2.6 * and 1.2 * 
meters. The minimum (0-P) ground displacements observable are between 1 * 

10-9 and 5 * meters depending upon ambient ground noise conditions. These 

observat ion l imi t a t ions  correspond t o  events with seismic moments between 1017 and 

1020 dyne-cm o r  approximate l o c a l  magnitudes between -0.5 and 2.5 (see f i g u r e  5). 
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DATA ANALYSIS PROCEDURES 

Two genera l  types of s igna l s  were recorded by the  Brazoria seismic a r ray ,  and 

each required s p e c i f i c  da t a  processing procedures. Type I events were s i g n a l s  which 

t raversed  the  a r r a y  with apparent v e l o c i t i e s  more near ly  l i k e  body waves ( t h a t  is, 

P-waves and S-waves). The ana lys i s  procedures f o r  phase a r r i v a l  timing and loca t ing  

these  events  are discussed under the  heading Body Wave Data. Type I1 events were 
s i g n a l s  which t raversed  the  a r r a y  with apparent v e l o c i t i e s  more near ly  l i k e  sur face  

waves. The ana lys i s  procedures f o r  l oca t ing  these events  are discussed under the  

heading Surf ace Wave Data. F ina l ly ,  t he  methodology f o r  computing event magnitude 

i s  discussed under the  heading of Magnitude Determination. 

Body Wave Data 

The da ta  generated by the  Brazoria seismic a r r ay  were analyzed using standard 

procedures t o  y i e l d  basic information about o r i g i n  times, loca t ions  and magnitudes 

of observed events.  The 16-mm f i l m  seismograms were reviewed ca re fu l ly  t o  de t ec t  

any microseismic events  t h a t  may have occurred. When an event was de tec ted ,  the  

ana lys t  measured the  amplitude,  per iod,  and a r r i v a l  t i m e s  of the  P (compressional), 

S ( shear ) ,  and LR (sur face)  wave of the  event. The amplitude, pe.riod and a r r i v a l  

t i m e  da ta  are s t o r e d  f o r  subsequent input  i n t o  a computer code (MEHYPO) which esti- 

mates the  o r i g i n  times, source coordinates and l o c a l  magnitudes of the  observed 

events.  The es t imat ion  algori thm is similar t o  t h a t  described (Lee and Lahr, 1972) 

i n  t h a t  it f i n d s  the  o r i g i n  t i m e  and set of source coordinates  which minimizes the  

mean square d i f f e rence  between observed and predicted a r r i v a l  times a t  the  various 

sensor  loca t ions .  The code a l s o  provides various loca t ion  uncer ta in ty  estimates 

which are based upon the  assumption t h a t  the  a r r i v a l  t i m e  e r r o r s  are normally dis- 

t r i b u t e d  and t h a t  the  seismic ve loc i ty  s t r u c t u r e  is known without error. The sensor 

frequency response da t a ,  t he  P-wave amplitude and period da ta  are used t o  compute 

t h e  l o c a l  magnitudes of t he  observed events. 

A general ized P-wave ve loc i ty  s t r u c t u r e  f o r  the  Gulf Coast is i l l u s t r a t e d  i n  

f i g u r e  6. The a c t u a l  v e l o c i t y  s t r u c t u r e s  used i n  the  event l oca t ion  procedure are 

l i s t e d  i n  t a b l e s  2a and 2b. Two d i f f e r e n t  ve loc i ty  s t r u c t u r e s  were necessary 

because of sharp v e l o c i t y  invers ions  i n  shallow layers .  These ve loc i ty  inversion 

l a y e r s  can be included i n  the  loca t ion  computational schemes f o r  a r ray- in te r ior  

events  because the  wave incidence angles are s u f f i c i e n t l y  high t o  permit transmis- 
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TABLE 2A. VELOCITY STRUCTURE FOR EVENTS INSIDE THE ARRAY 

Layer 
Parameters 

1 
2 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15. 
16 
17 
18 

P-Wave Vel. 
(Km/sec) 

0.6100 

1 . 7500 
1 8000 
2.0120 
2 . 0730 
2.2550 
2 . 2860 
2.9260 
3 . 3530 
2.4380 
2 . 7430 
2.9260 
3.1700 

1 7070 

2.6210 

2.6210 

3.5000 
3 0 8000 

S-Wave Vel. 
(Km/sec) 

. 352 . 986 
1.010 
1 . 039 
1.162 
1.197 
1.302 

1.513 
1.689 

1 320 

1 936 
1 513 
1 . 403 
1.584 
1.689 
1.830 
2.021 
2.194 

Thickness 
(Km) 

0.0091 
0.1000 
0 0400 
0.1500 
0.1220 
0.2140 
0.2900 
0.3100 
1 036 
1 0500 
0.5500 
0 5200 
0.3100 
0.3100 
0.3000 
0 . 3000 
0 3000 

1000 .,oooo 

TABLE 2B. VELOCITY STRUCTURE FOR EVENTS OUTSIDE THE ARRAY 

Layer P-Wave Vel. S-Wave Vel. Thickness 
Parameters (Km/ se c) (Km/sec) (Km) 

1 0 8000 0.4619 0.0600 
2 1. 1000 0.6351 0.0710 

1.3910 0.8031 0.3270 

2.3500 1 . 3568 0.4500 

7 3'9600 2.2864 .l . 8140 
0.6000 
1. 0000 9 4.7000 2.7136 ' 

10 , '  4.9000 2.8291 5 . 0000 
11 5.1000 2.9446 200.0000 
12 5. 3000 3.0600 1000.0000 

2.2000 1 . 2702 0.2650 

6 3.5400 2.0439 1 6680 

8 4.2500 2.4538 
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s ion  of the  waves through the layers .  However, a r ray  e x t e r i o r  events  can have wave 

incidence angles t o  the  low ve loc i ty  layers  which do not permit t h e o r e t i c a l  trans- 

mission of the  energy as a normal re f rac ted  wave and thus f a i l  t o  converge t o  a 

loca t ion  so lu t ion .  Solut ions e x t e r i o r  t o  the a r ray  can be obtained by smoothing 

these ve loc i ty  inversions out of the  s t r u c t u r e  as i n  t a b l e  2b. Comparisons of known 

and computed loca t ions  of explosions outs ide the  a r ray  demonstrated t h a t  t h i s  

smoothing procedure does not jeopardize the accuracy of t he  locat ion.  On t he  o the r  

hand, including the ve loc i ty  inversion layers  fo r  a r ray  i n t e r i o r  events improves 

both the  prec is ion  and accuracy of the  loca t ions  obtained. 

The S-wave ve loc i ty  s t r u c t u r e  was derived from the P-wave ve loc i ty  s t r u c t u r e  

using the formulation: 

1 

vs = VP /(1 + 1-20)1/2 
where: Vs = Shear wave ve loc i ty  

Vp = Compressional wave ve loc i ty  
0 = Poisson r a t i o  

Water has a Poisson r a t i o  of 0.5, and most competent rock has a Poisson r a t i o  

of 0.25. Lash (1980) has determined the Poisson r a t i o  f o r  s u r f i c i a l  Gulf Coast 

sediments t o  be greater than 0.45 with the  r a t i o  decreasing with increas ing  depth. 

To u t i l i z e  S-waves f o r  hypocenter loca t ion ,  a f ixed  Vp/Vs r a t i o  of 1.732 w a s  used. 

Epicenters  were computed only f o r  events observed a t  four  o r  more s t a t i o n s  because 

of possible  ambiguities of so lu t ions  based on da ta  from fewer s t a t i o n s .  

Surface Wave Data 

Signals  cons i s t ing  e n t i r e l y  of surface (Rayleigh) waves and/or leaking modes 

were recorded commonly by the  Brazoria, Parcperdue , Sweet Lake, and Rockefeller 

Refuge seismic arrays.  Hypocenters of events generat ing these s igna l s  cannot be 

determined using standard Geiger least-squares invers ion  procedures. It is  possible  

t o  determine approximate ep icenters  of these events,  however, i f  an appropr ia te  wave 

ve loc i ty  f o r  the  observed phase a r r i v a l s  can be determined . 
The exc i t a t ion  of sur face  waves, p a r t i c u l a r l y  i n  an environment character ized 

by s i g n i f i c a n t  va r i a t ions  i n  ve loc i ty  i n  th ree  dimensions, is more complex than 

e x c i t a t i o n  of primary body waves. Surface waves, unl ike body waves, propagate not 

only as fundamental mode o s c i l l a t i o n s ,  but a l so  as higher mode o s c i l l a t i o n s .  These 

higher  modes are analagous t o  overtones produced by musical instruments.  Both the  
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v e l o c i t i e s  and amplitudes of the  Rayleigh modes exc i ted  are c r i t i c a l l y  dependent on 

t h e  body wave (both P- and S-waves) ve loc i ty  s t ruc tu re .  Figure 7 i l l u s t r a t e s  the  

r e l a t i v e  e x c i t a t i o n  of t h e  f i r s t  four  ver t ica l ly-or ien ted ,  two-hertz Rayleigh modes 

as a func t ion  of depth f o r  a loca t ion  near Apache, Oklahoma, (Douze, 1964). Also 

i l l u s t r a t e d  are the  dens i ty ,  P-wave, and S-wave p r o f i l e s  f o r  the  upper 3,000 lneters 

of geologica l  sec t ion .  The r e l a t i v e  amplitudes of t he  higher  modes genera l ly  

dec l ine  s i g n i f i c a n t l y  as mode number increases  when the  ve loc i ty  s t r u c t u r e  is free 

of low-velocity zone energy t raps .  I f ,  on the  o ther  hand, the  depth of .a p a r t i c u l a r  

model maximum occurs i n  a low-velocity zone (LVZ), t h a t  mode w i l l  d i sp lay  an anoma- 

lous amplitude compared with t h a t  which would be exc i ted  i f  the  LVZ were not pre- 

s e n t  . The observed Rayleigh-wave energy a t  any p a r t i c u l a r  frequency is dependent 

upon the  depth of observat ion and the  t o t a l  energy in t eg ra t ed  over a l l  poss ib le  

modes. Thus, f o r  example, a seismogram from a loca t ion  at a depth of 2,000 meters 

i n  t h e  s t r u c t u r e  of f i g u r e  6 would d isp lay  Rayleigh waves dominated by f i r s t ,  second 

and t h i r d  higher  mode a r r i v a l s  with very l i t t l e  cont r ibu t ion  by the  fundamental 

mode . 
The Gulf Coast sedimentary column is s i g n i f i c a n t l y  more complex than the one 

i l l u s t r a t e d  i n  f i g u r e  7, and the  r e l a t i v e  importance of higher  mode cont r ibu t ions ,  

p a r t i c u l a r l y  a t  wave frequencies  greater than two he r t z ,  should not  be underesti-  

mated. Figure 8 i l l u s t r a t e s  t he  computed and observed Rayleigh group v e l o c i t i e s  as 

a func t ion  of per iod f o r  s i x  Rayleigh modes i n  Gulf Coast sediments f o r  Refugio 

County, Texas (Ebeniro and o t h e r s ,  1983). Note t h a t  fundamental third-,  fourth-, 

and f i f th -order  harmonics are observed, and t h a t  f i r s t  and second higher modes are 

not .  The higher  modes are s t rongly ,  normally dispersed ( t h a t  is, phase and group 

v e l o c i t i e s  are inve r se ly  related to wave frequency). The fundamental mode, on the 

o the r  hand, is r e l a t i v e l y  nondispetsed, o r  s l i g h t l y  inve r se ly  dispersed,  i n  the 

frequency range from one t o  f i v e  hertz.. This accounts f o r  why the  Rayleigh wave 

t r a i n  f r equen t ly  appeared as an impulsive arrival i n  the  time domain. Since the  

dens i ty ,  bulk and shear  moduli are a l l  l o w  f o r  Gulf Coast sediments, the  fundamental 

\ 

mode Rayleigh wave v e l o c i t i e s  are a l s o  low, ranging from 150 m/sec t o  350 dsec.  

Unfortunately,  t h e  v e l o c i t y  range a l s o  i s  occupied by a c o u s t i c a l  transmissions 

through a i r ,  and s i g n i f i c a n t  coupling of atmospheric acous t i c  and e a r t h  Rayleigh 

waves is  h ighly  probable. Thus, it is very important t o  determine i f  observed 

s i g n a l s  are of atmospheric o r  e a r t h  or ig in .  This d i scr imina t ion  is not necessa r i ly  

obvious as w i l l  be shown i n  a later sec t ion .  

Unfortunately,  s t rong  evidence e x i s t s  t h a t  the  mode of propagation of type I1 
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events  is  not a s i m p l e  su r f ace  wave. There are several energy t r a p s  (low ve loc i ty  

i n  the  Pleasant Bayou ve loc i ty  s t r u c t u r e  a t  depths l aye r s )  between zero and one and 

a ha l f  ki lometers ,  and the  p o t e n t i a l  e f f e c t  of these  traps requi res  some explana- 

t ion.  In  general ,  t he  propagation of energy across  a d i scon t inu i ty  i n  ve loc i ty  phy- 

s i c a l l y  obeys Sne l l ' s  l a w  as i l l u s t r a t e d  i n  f i g u r e  9a. I f  t he re  e x i s t s  i n  the  

v e l o c i t y  s t r u c t u r e  one or more l aye r s  with v e l o c i t i e s  s i g n i f i c a n t l y  less than the  

v e l o c i t i e s  of t h e i r  bounding l aye r s ,  then the  condi t ions are i d e a l  t o  create a wave 

guide or  t rapping  l aye r  as i l l u s t r a t e d  i n  f igu re  9b by the  l aye r  i d e n t i f i e d  as V2. 

I f  t h e  ve loc i ty  con t r a s t  between the  bounding l aye r s  and the  t rapping layer  is suf- 

f i c i e n t l y  large, the  energy can never escape from the  l aye r  and continues t o  propa- 

ga te  down t h e  l a y e r  as a series of r e f l e c t e d  waves. Per fec t  t r aps ,  however, are 

exceedingly d i f f i c u l t  t o  create, and more o f t en  the  case is t h a t ,  at each re f lec-  

t i o n ,  a l i t t l e  energy leaks  off  i n t o  the  adjacent layers .  This "leaked" energy can 

be observed as a leaking  mode a r r i v a l  on seismograms. I f  the  type of wave trapped 

i s  Sv, i n  a poorly consol idated water-rich l aye r ,  the  ve loc i ty  could be exceedingly 

low (S-wave ve loc i ty  i n  water is zero).  Because the  apparent sur face  ve loc i ty  (Va)  

i s  the  su r face  d is tance  between the  source and rece iver  divided by the  t o t a l  t r a v e l  

t i m e  r a t h e r  than t h e  sum of t h e  real ray path d is tances  divided by the  sum of the  

real ray  segment v e l o c i t i e s ,  the  apparent ve loc i ty  can appear t o  be much slower than 

i t  is i n  a c t u a l i t y .  

I f  these  observed impulsive a r r i v a l s  are leaking  mode Sv waves r a t h e r  than 

su r face  waves ( a  s u b t l e  d i s t i n c t i o n  which seems highly probable),  then the  loca t ion  

scheme u t i l i z e d  can r e s u l t  i n  both loca t ion  and o r i g i n  t i m e  b iases .  I f  the  

microearthquake occurs within '  t he  a r r ay ,  the  bias  would be as follows. Since the 

real ve loc i ty  and real  path length  are unknown, the  computed o r i g i n  t i m e  would 

always be underestimated, t h a t  is, the  real o r i g i n  t i m e  would always be earlier than 

t h e  apparent o r i g i n  time. S imi la r ly ,  t he  apparent l oca t ion  would be biased i n  a 

d i r e c t i o n  away from the  real loca t ion  toward the  s t a t i o n  or s t a t i o n s  with the  

fastest v e l o c i t i e s .  

Because of t h e  complexities i n  Gulf Coast modal e x c i t a t i o n  and propagation, 

type I1 event ,  ep i cen te r s  computed from described apparent v e l o c i t i e s  must be 

regarded with a g rea t e r  caut ion than more complete body wave so lu t ions .  The proce- 

dure we fol low t o  loca t e  these  events is t o  solve i t e r a t i v e l y  f o r  the  least-squares 

e r r o r  assoc ia ted  with both t h e  loca t ion  and wave ve loc i ty  simultaneously. The func- 

t i o n a l  r e l a t ionsh ip  between e p i c e n t r a l  area. uncer ta in ty  and half-space ve loc i ty  

t y p i c a l l y  assumes approximately hyperbolic shape ( see  f i g u r e  10). 
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We assume t h a t  t he  hyperbolic ver tex  corresponds with the  best half-space 

ve loc i ty  and t h a t  t he  computed loca t ion  using t h i s  ve loc i ty  is the  test approxima- 

t i o n  of t he  epicenter .  Depth is not resolved by t h i s  technique. 

In  p r inc ipa l ,  t h i s  l oca t ion  ana lys i s  technique p e r m i t s  the  simultaneous deter-  

mination of t he  bes t - f i t  ve loc i ty  and loca t ion ;  however, a word of caut ion is 

appropr ia te  here.  When f e w  a r r i v a l  t i m e  observations ( < l o )  e x i s t  with which t o  

i n v e r t  i t e r a t i v e l y  f o r  an ep icen te r  so lu t ion ,  it is poss ib le  t o  produce an in t r a -  

a r r ay  alias loca t ion  from an extra-array source by f i x i n g  an appropriate  half-space 

ve loc i ty .  The extreme example of t h i s  p o s s i b i l i t y  is t h a t  the  arr ival  t i m e s  from a 

d i s t a n t  teleseism can y i e ld  a loca t ion  so lu t ion  within the  a r ray ,  i f  the  i n t e r i o r  

ve loc i ty  used f o r  l oca t ion  is set s u f f i c i e n t l y  low. For t h i s  reason, ep icenters  of 

events loca ted  using t h i s  least-squares inversion technique, p a r t i c u l a r l y  when best- 

f i t  v e l o c i t i e s  are less than 350 meters/second, should be viewed with appropriate  

caution. Where poss ib le ,  we have attempted t o  i d e n t i f y  such suspect event loca t ions  

i n  a la ter  sect ion.  

Magnitude Determination 

Magnitudes have pr imar i ly  been ca lcu la ted  using durat ion as 

MD = -2.22 + 2.28 l o g  (D) 

where D is dura t ion  i n  seconds from onset of P t o  r e tu rn  of coda t o  ambient noise  

leve l .  It has been shown by (Aki and Chouet, 1975; Chouet and o the r s ,  1978; Aki, 

1981) t h a t  t h e  dura t ion  of seismic coda is 'dependent on the  number and d i s t r i b u t i o n  

of p o t e n t i a l  back s c a t t e r i n g  sources.  For t h i s  reason, coda durat ion magnitude for- 

mulations must be t a i l o r e d  s p e c i f i c a l l y  f o r  each region where they were used. The 

dura t ion  magnitude formula we use is one f o r  the  Miss i ss ippi  Embayment determined by 

t h e  Tennessee Earthquake Information Center. Since a magnitude scale has not been 

developed f o r  t h e  Gulf Coast, it is  poss ib le  t h a t  a l l  quoted magnitudes are i n  

e r ro r .  The magnitudes quoted should agree approximately with normal Richter  magni- 

tudes . 
Magnitudes may be ca l cu la t ed  a l t e r n a t i v e l y  as l o c a l  seismic magnitudes based 

upon maximum sur face  wave amplitude as 

ML = log10 (a/2)  - 1.15 + 0.8 log10 (x)2 
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where ML is  the  l o c a l  magnitude 
and A i s  the  peak-to-peak sur face  wave amplitude i n  millimicron 
and X = [ ( ep icen t r a l  d i s tance)  2 + (hypocentral depth) 2]1/2 
and x > 1.0 

The constant -1.5 i n  t h e  magnitude equation assumes a sur face  wave t o  P-wave 

amplitude r a t io  of 10. Thus, a magnitude 0 event at 1 km dis tance  would generate 

su r face  waves with a peak-to-peak amplitude of about 2.8 millimicrons.  

Throughout t h e  dura t ion  of t he  monitoring program, there  have been few oppor- 

t u n i t i e s  t o  sub tan t i a t e  t h e  magnitude formulas of t he  Gulf Coast. Figure 11 is  a 

microearthquake which occurred near  Lake Charles, Louisiana,  on 16 October 1983. 

This Gulf Coast earthquake was s u f f i c i e n t l y  l a rge  t o  be observed both on the  l o c a l  

a r r ays  and d i s t a n t  seismograph s t a t i o n s  of t he  Tennessee Earthquake Information 

Center. This event provided a cr i t ical  t i e  f o r  Gulf Coast magnitude computations t o  

adjacent  regions.  The durat ion magnitude computed from the  da ta  of the  Parcperdue 

seismic a r r a y  s t a t i o n s  i l l u s t r a t e d  is 3.02. This compares with an Mb (Lg) 
(magnitude based on t h e  amplitude of t he  Lg, s ca t t e r ed  wave) computed from d i s t a n t  

s t a t i o n s  of 3.8. This comparison suggests t h a t  t he  magnitudes reported f o r  the  

Brazoria a r r ay  may be underestimated by approximately ha l f  a magnitude. However, it 

i s  equiva len t ly  important t o  r e a l i z e  t h a t  t h e  majori ty  of events observed a t  

Brazoria had f o c a l  depths apparekt ly  less than a kilometer.  These are s i g n i f i c a n t l y  

less deep than the  Lake Charles earthquake, and, thus,  the  t i e  may be f o r  deeper 

events only. The exact  "s ize"  of the  events recorded by the  Brazoria a r ray  is not 

known. The reported magnitudes are i n t e r n a l l y  cons i s t en t ,  and, i f  a l t e r n a t i v e  

ca l fb ra t ion  becomes ava i l ab le ,  it w i l l  be pos'sible t o  rescale these  magnitudes if it 

is  of importance. 

Special  Analyses Procedures 

The measurement of phase a r r i v a l  times and amplitudes , computation of loca t ion  

and magnitude c o n s t i t u t e  procedures defined as rout ine  s tud ie s .  In  addi t ion  t o  

rout ine  analyses ,  some special  s tud ie s  were performed on se l ec t ed  events t o  deter-  

mine proper t ies  of wave propagation and/or source parameters. For these s p e c i a l  

s tud ie s ,  events  of i n t e r e s t  were d i g i t i z e d  by playing the  analog t ape  of the  event 

through the  AJD converter  of a PDP 11-24 computer. When the  da ta  are i n  d i g i t a l  

format, it is  poss ib le  t o  perform a va r i e ty  of analyses procedures not ava i l ab le  

with analog data.  We have emphasized procedures t o  help understand the  propagation 

< 
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of seismic energy and source depth of events. The results  of these analyses are 

presented i n  a later  section. 
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SEISMICITY AND THE PLEASANT BAfOU PRODUCTION HISTORY 

Microseismic monitoring of the  Pleasant .Bayou geopressured/geothermal test 

w e l l  area began i n  September 1978 and continued through September 1983. During tha t  

t i m e  per iod,  t h e r e  were fou r  br ief  episodes of production from the  Pleasant Bayou 

No. 2 w e l l .  These episodes are i d e n t i f i e d  i n  t ab le  3. More de ta i l ed  descr ip t ions  

of t he  th ree  p r inc ipa l  production periods are given i n  the  following sect ions.  

Phase I Production T e s t  

A short-term brine production test of the  Pleasant Bayou No. 2 w e l l  (Phase I 
tes t )  extended from 16 September through 31 October 1980. Analyses of the  da t a  t o  

determine r e se rvo i r  c h a r a c t e r i s t i c s  have been reported by Hartsock (1981 ) and Garg, 

Riney, and Fwu (1981). The production h i s t o r i e s  published by these  two ana lys i s  

groups are mutually incons is ten t .  Since the  test monitoring was performed by Gruy 

and Associates ,  we have included only the  published bottomhole pressure and produc- 

t i o n  rate h i s t o r y  of Hartsock, 1981, ( f i g u r e  1) t o  i l l u s t r a t e  the  Phase I production 

c h a r a c t e r i s t i c s .  Spec i f i c  per turba t ions  t o  the  pressure log  are numerically iden- 

t i f i e d  and keyed t o  t a b l e  4. Figure 12 i l l u s t r a t e s  t h a t  t he re  were e s s e n t i a l l y  

t h r e e  s i g n i f i c a n t  pressure dec l ines  and two pressure increases  during the perform- 

ance period. These correspond to  times when flow rate was a l t e r e d  dramatically.  

Thus, f o r  example, t h e  production rate reduct ion from 15,324 barrels per  day t o  

13,386 b a r r e l s  per  day d id  not c o n s t i t u t e  a s i g n i f i c a n t  bottomhole pressure per tur-  

ba t  ion. 

0 

The t o t a l  volume of br ine  produced during the  Phase I test was  537,300 
bar re l s .  P r i o r  t o  t h i s  short-term (47 days) test ,  274,000 barrels of br ine  had been 

produced from the  Pleasant  Bayou No. 2 w e l l  between 15 November and 3 December 1979. 

J u l y  1981 Phase I1 Production T e s t  

On 2 J u l y  1981, br ine  production was r e i n i t i a t e d  i n  what was expected t o  be 

t h e  Phase II ' long-term flow test. Because of a v a r i e t y  of problems with instrumen- 

t a t i o n  and t h e  Pleasant  Bayou wells, t h e  high-volume, long-term flow test  was 

aborted on 18 J u l y  1981. 

The t o t a l  volume of br ine  produced i n  the  Phase I1 test of 2-18 J u l y  1981 was  

220,904 bar re l s .  A p l o t  of t he  br ine and gas production versus flow t i m e  is i l l u s -  
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Flow T e s t  
T e s t  No. Identif icat ion 

1 Pre Phase I 

2 

3 

Phase I 
(Short Term) 

Phase I1 
(Long Term) 
Aborted 

4 Phase 11 
(Long Term) 

TABLE 3.  PLEASANT BAYOU PRODUCTION HISTORY 

Flow Flow 
In i t ia t ion  Cessation 

15 November 1979 3 December 1979 

16 September 1980 31 October 1980 

2 July 1981 18 July 1981 

27 September 1982 13 Apr i l  1983 

Volume Average 
Produced Rate 

(* lo5 bbl) bbl/d 

15,222 2.74 

5.37 Variable 
6,600- 
19,200 

2.21 Variable 
14,000- 
28,000 

35.2 19,000 

I 
h , '  m 
I 



5 

0 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 

TIME (DAYS) 

Figure 12. Bottomhole pressure versus time, Phase I test, Pleasant Bayou No. 

TABLE 4. SEQUENCE OF EVENTS I N  PHASE I TESTING, PLEASANT BAYOU NO. 2 WELL 

Event Time Event Time, 
no.* Date hr8 Event no.* Date h r s  Event 

1 9-16-80 1130 

2 9-21-80 1710 

3 9-21-80 1932 

4 10-01-80 1102 

5 10-05-80 0632 

6 10-08-80 1230 

Opened well for  Phase I 7 10-17-80 1550 
test at 6,624 BID 
Well s h u t  in t o  repa i r  8 10-29-80 2240 
adjustable  choke 
Opened well for second 9 10-31-80 1532 
flow r a t e  a t  10,896 B I D  
Increased flow r a t e  t o  10 11-02-80 0940 
19,200 BID 
Reduced r a t e  t o  15,324 B I D  
t o  reduce in jec t ion  11 11-08-80 1700 
pressure 
Reduced r a t e  t o  13,386 BID 
t o  reduce in jec t ion  12 11-10-80 0511 
pressure 13 11-15-80 1800 

14 12-15-80 1304 
*Refer to Fig. 1. 

Lost s ignal  i n  surface 
recording system 
Abnormal presrure- 
product ion response 
Well shut i n  to  monitor 
pressure buildup 
Lost s ignal  from HP gauge. 
Uovcd gauge and regained 
s ignal 
Lost signal from HP gauge. 
Pulled gauge, repaired, 
and re-ran. 
Gauge on bot tom 
Erra t ic  pressure readings 
for one hour 
Pulled Hewlett-Paclurd 
bot tomhole pressure gauge 



t r a t e d  i n  f i g u r e  13. The a c t u a l  production rate h i s t o r y  f o r  the  Phase 11 test is 
i l l u s t r a t e d  i n  f i g u r e  14. This f i g u r e  c l e a r l y  demonstrates t he  d i f f i c u l t i e s  encoun- 

t e r ed  during the  test which required four  s i g n i f i c a n t  shut-ins before the  test was 

aborted. The corresponding production w e l l  and d isposa l  w e l l  bottom hole pressure 

h i s t o r i e s  are i l l u s t r a t e d  i n  f igu res  15 and 16 respect ively.  Although the Phase 11 

test of J u l y  1981 was not successfu l ,  forty-one percent as much br ine was produced 

i n  the  254 hours of flow t i m e  as was produced i n  the  1116 hours of Phase I flow 

t i m e .  Thus, t he  Phase I1 test may be more s i g n i f i c a n t  as a formation s t r a i n  pertur- 

bation_.than the  Phase I test. 

September 1981 Phase I1 Long-Term Flow T e s t  

The Phase 11, long-term flow test of the  Pleasant  Bayou No. 2 geopressured, 

geothermal design w e l l  was r e i n i t i a t e d  approximately 27 September 1982 fol lowing a 

shut-in of over fourteen months. In  an t i c ipa t ion  t h a t  some aspect of the  production 

h i s t o r y  may d isp lay  a c a u s a l i t y  r e l a t ionsh ip  with induced se i smic i ty ,  we maintain a 

computer l o g  of wellhead tubing pressure and approximate withdrawal rate from the 

Pleasant Bayou No. 2 w e l l  and the  wellhead i n j e c t i o n  pressure f o r  the  Pleasant Bayou 

No. 1 w e l l .  Data are 

entered  a t  hourly increments from 1 October through 23 October 1982. A l l  subsequent 

d a t a  are entered at d a i l y  increments because more de t a i l ed  logs  were no longer pro- 

vided t o  us by Gruy Federal. Graphs of the  production wellhead tubing pressure and 

approximate br ine  withdrawal rate and the  wellhead br ine i n j e c t i o n  pressure as a 

func t ion  of t i m e  f o r  the  period from 1 October through 13 Apri l  1983 are i l l u s t r a r e d  

i n  f i g u r e  17. Speci f ic  t i m e s  when flow rate has been a l t e r e d  are indicated by the  

a lphabe t i c  markers a t  the  bottom of f i g u r e  17. Except f o r  seven shut-ins,  a l l  o ther  

e n t r i e s  i n d i c a t e  times when choke adjustments were made. Although a l t e r a t i o n  of 

choke s e t t i n g s  and shut-ins r e s u l t  i n  some short-term per turba t ions  of the  produc- 

t i o n  and d isposa l  h i s t o r i e s ,  t he  production .pressure curve generaI ly  displays a 

long-term exponent ia l  pressure dec l ine  t y p i c a l l y  observed f o r  confined aquifers.  

Similar ly ,  t h e  i n j e c t i o n  pressure curve displays a long-term logari thmic increment 

i n  i n j e c t i o n  pressure as a funct ion of t i m e  commonly observed a t  o ther  i n j ec t ion  

wells . 

Data f o r  t h i s  computer log  are provided by Gruy Federal  Corp. 

Bas ica l ly ,  t h e r e  are two d i s t i n c t  types of s igna l s  which have been recorded by 

the  Brazoria seismic a r r a y  throughout t he  opera t iona l  period: (1) events with 

d i s t ingu i shab le  P and/or S phases (type I ) ,  and (2) events without body phase arri- 
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Figure 13. Phase 11 production from Pleasant Bayou No. 2 for the period 2-18 July 
1981 

-29- 



I w 
0 
I 

PLEASANT BAYOU #2 
BRAZORIA COUNTY, TX 
JULY 2 -JULY 17,19 1 

250 300 

TIME (HOURS INTO PHASE 2 TEST) 

350 

Figure 14. Pleasant Bayou Phase 11 t e s t  production rate history. 
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v a l s ,  but with impulsive Fbyleigh/leaking mode s igna tures  (type 11). Additional 

d e t a i l s  about t he  propagation of these events are given i n  the sec t ion  on spec ia l  

s t u d i e s  of t h e  s igna ls .  A complete l i s t i n g  of the phase a r r i v a l  data and computed 

event l oca t ion  f o r  a l l  n a t u r a l  l o c a l  events is given i n  appendix A. 

The events  with i d e n t i f i a b l e  P and/or S phase a r r i v a l s  which are e i t h e r  

unquestionably o r  suspected t o  be microearthquakes and not explosives have many com- 

mon c h a r a c t e r i s t i c s .  P- and S-waves from these events usua l ly  are r i c h  i n  frequen- 

c i e s  g r e a t e r  than f i v e  h e r t z ,  and the  seismogram coda ta i ls  commonly display 

exponential  amplitude decay similar t o  those of microearthquakes observed at other  

locat ions.  (See f igu re  11). Two examples of t h i s  type of event are included as 

f igu res  18 and 19. 

Determination of P-wave f i r s t  motions is  not unambiguous but appears t o  be 
predominantly d i l i t a t i o n a l  (downward) on most seismograms when discr iminat ion is 

possible .  This i s  a c h a r a c t e r i s t i c  cons is ten t  with a downward l o c a l  geological 

block movement. A l l  of type I events y ie ld  hypocentral so lu t ions  which suggest a 

depth of o r i g i n  genera l ly  between two and s i x  kilometers. No events have been 

observed which loca te  deeper than s ix  kilometers. 

Epicenters  of t he  type I events cluster within one and a half  kilometers of 

t h e  projected 15,000-feet deep loca t ions  of growth f a u l t s  on the w e s t  and northwest 

edge of t h e  r e se rvo i r  ( s ee  f i g u r e  20, loca t ions  ind ica ted  by l a rge  aster2sks).  

Although a few events  appear t o  a s soc ia t e  with the  northeast  trending f a u l t  near 

Liverpool and Chocolate Springs, the  majority of the  ep icenters  appear t o  assoc ia te  

with a north-south t rending growth f a u l t  which passes near seismograph s t a t i o n s  BEG 

1 and BEG 3, and terminates  near Chocolate Springs. Furthermore, t he  majority of 

ep icen te r s  since 1979 which have computed loca t ions  near t h i s  proposed f a u l t  are the 

east (up-dip) s i d e  of the f a u l t .  Since the . locat ion precis ion of most of these 

events  is  poor and the  loca t ion  accuracy of the  growth f a u l t  and the ep icenter  is 

unknown, l i t t l e  s ign i f i cance  can be placed on the  r e l a t i v e  pos i t ion  of the epicen- 

ters t o  the  growth f a u l t .  

The magnitude of type I events are all small, between 0.0 and 1.5, and there  

i s  no obvious func t iona l  r e l a t ionsh ip  between the  frequency of occurrence and the 

magnitude of these  events.  I n  f a c t ,  the  occurrence of t h i s  type of event is relati- 
vely rare. The l a r g e s t  number (10) occurred i n  1981, one was recorded i n  1982, and 

one i n  1983. 

Events i d e n t i f i e d  as Rayleigh o r  leaking mode type I1 s igna l s  f a r  outnumber 

An example of t h i s  type t h e  microearthquakes with P-wave or  S-wave phase a r r i v a l s .  
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Figure 18. Earthquake 1 January 1981, 03:32:29.3 UTC. 
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of s i g n a l  is i l l u s t r a t e d  i n  f igu re  21. Since most of the  s igna l s  observed 

throughout t h e  seismic monitoring period a t  Chocolate Bayou were of t h i s  type,  most 

of t h e  s p e c i a l  analyses have concentrated on understanding these events. These spe- 

c ia l  s tud ie s  w i l l  be described later i n  t h i s  report .  

The ep icen te r s  of events i d e n t i f i e d  as Rayleigh or  leaking mode propagations 

are i l l u s t r a t e d  i n  f igu re  20 as inverted t r iangles .  In  general ,  these events have 

been loca ted  using the  least-squares e r ro r /bes t  ve loc i ty  method described pre- 

viously.  Eleven of t h e  events located with smallest e r r o r s  using ve loc i t iep  less 

than 300 m/sec. Although these loca t ions  may be co r rec t ,  it is d i f f i c u l t  t o  accept 

as phys ica l ly  meaningful v e l o c i t i e s  which are s i g n i f i c a n t l y  less than acous t ic  veloc- 

i t i es  i n  air. Al te rna t ive  ep icenters  f o r  these eleven events were calculated using 

a f ixed  ve loc i ty  of 400 m/sec. The r a t iona le  f o r  using t h i s  pa r t i cu la r  wave propa- 

gat ion speed is t h a t  i t  is a dominant Rayleigh wave ve loc i ty  appearing on the for- 

ward modelled syn the t i c  seismograms. The events on f igu re  20 with a l t e r n a t e  

ep icen te r s  are i l l u s t r a t e d  as inver ted  t r i ang le s  with l i n e s  terminated at open 

circles. The inverted t r i a n g l e  is the  ep icenter  associated with the best-fit veloc- 

i t y ,  t h e  open circle is t he  loca t ion  with the  ve loc i ty  f ixed a t  400 dsec.  If the 

a l t e r n a t e  ep icenter  d id  not remain on the map using the 400 m/sec ve loc i ty ,  the l i n e  

is terminated by an arrow i n  the  d i r ec t ion  of moveout. Because of the uncer ta in t ies  

assoc ia ted  with both loca t ion  procedures, it is only possible  t o  say t h a t  the ?ctual 

ep icenter  l i es  somewhere along the  i l l u s t r a t e d  l i n e  between the  two end points.  

Regardless of t he  uncer ta in ty  associated with the  loca t ion  of these eleven 

events ,  t h e  general  s p a t i a l  d i s t r i b u t i o n  of se i smic i ty  remains r e l a t i v e l y  fixed. 

Why the  se i smic i ty  c l u s t e r s  i n  the  v i c i n i t y  of t he  growth f a u l t s  northwest of the  

test w e l l s  is unknown. We have no reason t o  believe t h a t  t h i s  d i s t r i b u t i o n  is an 

a r t i f a c t  of t he  a r r a y  configurat ion s ince  events a l s o  loca te  near the chemical plant 

east of t h e  Pleasant  Bayou w e l l .  Furthermore, s ince  the  s p a t i a l  d i s t r i b u t i o n  of 

s e i smic i ty  p r i o r  t o  and post test production e s s e n t i a l l y  is i d e n t i c a l ,  production of 

brine enhanced the se i smic i ty  but did not change its character .  

Duration magnitudes of the  type I1 events range from near -2.0 Md to  .5 Md; 

the re fo re ,  as a group, they are smaller than type I events. Type I1 events are 

observed as s i n g l e  events  or  i n  ' swarms ' ,  wl,th mult iple  observations within a short 
time span. 

The temporal d i s t r i b u t i o n  of a l l  seismic events which have been recorded s ince 

t h e  beginning of t h e  Phase I short-term flow test i n  1980 are i l l u s t r a t e d  i n  f igure  

22. Both type I and type I1 events  are embodied i n  the  s o l i d  bars of the histogram. 
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Figure 22. Temporal distribution of seismicity at Pleasant Bayou 1981 and 1982 
through September, 1983. 
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I n  addi t ion  t o  the  temporal d i s t r i b u t i o n  of se i smic i ty ,  t he  production a c t i v i t y  a t  

the  test w e l l s  is  ind ica ted  by arrows along the  t i m e  l i n e .  Although it  is not 

poss ib le  t o  relate t h e  occurrence of s e i smic i ty  t o  p a r t i c u l a r  aspects  of e i t h e r  

Phase I, the  aborted Phase I1 o r  long-term Phase I1 production tests, it is obvious 

t h a t  increases  i n  seismic a c t i v i t y  occurred one hundred and f i f t y  t o  two hundred 

days a f t e r  t he  end of both the  Phase I and Phase I1 production periods. The reason 

f o r  the  delay between t h e  productiqn periods and enhanced se i smic i ty  is unknown but 

may relate t o  a d i f fus ion  process. 
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SEISMICITY ORGINATING NEAR THE CHEMICAL PLANT EAST OF THE 
GEOPRESSURED/GEOTHERMAL ENERGY WELL 

During t h e  Brazoria seismic monitoring program, episodes of s e i smic i ty  have 

been recorded t h a t  l o c a t e  near  t he  chemical complex east of the  w e l l .  Seismic acti- 

v i t y  occurr ing  i n  t h i s  region exh ib i t s  unusual c h a r a c t e r i s t i c s  t ha t  are not observed 

elsewhere. Locatable Rayleigh/leaking mode events with ep icenter  so lu t ions  near the  

chemical p lan t  are o f t en  accompanied by periods of high-frequency rumble and some by 

harmonic tremor of t i m e  dura t ion  up t o  seve ra l  hours i n  length.  This unusual rumble 

and harmonic tremor a c t i v i t y  i s  not observed from other  azimuths at the  Pleasant 

Bayou s i te ,  and is not observed at  o ther  Gulf Coast monitoring sites. The uncharac- 

t e r i s t ic  na ture  of these  events and the  proximity of the  estimated ep icenter  loca- 

t i ons  t o  the  chemical complex l eads  us t o  bel ieve they are assoc ia ted  with 

i n d u s t r i a l  processes and not r e l a t e d  t o  the  geopressured/geothermal energy well. 

They are, the re fo re ,  addressed as a group i n  t h i s  s p e c i a l  s ec t ion  of the  technica l  

repor t  

Table 5 documents da tes  and t i m e s  of occurrences of t h i s  group of events. An 

example of a rumble sequence accompanying a Rayleigh/leaking mode event l oca t ing  

near  t he  chemical plant  is i l l u s t r a t e d  i n  f igu re  23 .  Figure 24 i l lustrates harmonic 

tremor assoc ia ted  with another event l oca t ing  near the  p lan t .  

Two forms of e f f l u e n t  d i sposa l  from i n d u s t r i a l  complexes p o t e n t i a l l y  can 

r e s u l t  i n  t h e  types of seismic s igna l s  observed. These are high-pressure e f f luen t  

f l a r e s  and high-volume subsurf ace i n j e c t i o n s  . Both of these  d isposa l  methods are 

known t o  be p rac t i ced  by the  chemical plant  where the  seismic episodes appear t o  

o r ig ina t e .  

Model I Hypothesis: - The observed seismic episodes - are r e l a t e d  - t o  unusual 

f l a r e  condi t ions a t  one o r  more i n d u s t r i a l  s tacks.  ---- 
Under normal circumstances, the  f l a r i n g  of i n d u s t r i a l  gases should not r e s u l t  

i n  no t iceable  seismic s i g n a l s  at moderate dis tances .  If t he  i g n i t i o n  of the  f l a r e  

was erratic, however, i t  could result i n  repeated i g n i t i o n s  and ex t inc t ions  which 

might generate  acous t i c  s igna l s .  The amplitude and dominant period of the  acous t ic  

s i g n a l s  would c o r r e l a t e  with f i r e b a l l  dimensions, and the  temporal separa t ion  would 

relate t o  t h e  t i m e  between r e ign i t ions .  The seismometers i n  t h e  f a r - f i e l d  would 

record these  s i g n a l s  as impulsive,  acoustic-coupled Rayleigh waves with var iab le  

amplitude and spacing, and each episode would appear t o  o r i g i n a t e  from a s ing le  

source. Due t o  changing atmospheric condi t ions,  d i f f e r e n t  episodes might appear t o  
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED /GEOTHERMAL WELL 

1. 81-12-06 
08: 49: 48.72 
Impulsive Rayleigh event and rumble event sequence 

BEG1 iLR 08: 50~>09. 65; 
BEG2 iLR 08: 50:00.65; 
BEG3 iLR 08:50:02.27; 
BEG5 iLR 08: 50: 04.00 

Descr ipt ion of event series on 05 December 1981: 

22:57:00 - High-frequency rumble event begins and continues u n t i l  08:47:30 
on 06 December 1981 

Descr ipt ion of event series on 06 December 1981: 

0O:Ol:OO - A very s l i g h t  harmonic tremor was recorded a t  t h i s  t i m e  with a 
du ra t ion  of approximately 8 minutes 

08:47:30 -.The high-frequency rumble event subsides t o  the  normal noise  
l e v e l  f o r  t h i s  s i te  

08:49:28 - Low-amplitude Impulsive Rayleigh event l i s t e d  above 

08:50:00 - Low-level rumble a c t i v i t y  begins and i n t e r m i t t e n t l y  occurs 
during the  times l i s t e d  below: 

08:50:00 - 09:43:10 
09:46:37 - 09:43:10 
09:48: 10 - 09:47:20 
09:49:33 - 09:50:10 
09:51:00 - 09:51:30 
09:52:12 - 09:53:00 
09: 53:40 - 09: 54: 15 
09:54:55 - 09:55:40 
09:56:15 - 09:57:00 
09:57:35 - 09:58:10 
09:58:50 - 09:59:30 
1O:OO: lO  - 10:00:50 
10:01:32 - 10:02:20 
10:02:50 - 10:03:22 
10:04:10 - 10:04:50 
10:05:30 - 10:06:10 
10:07:00 - 10:07:40 
10:09:50 - 16:OO:OO 
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE C m I C A L  COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

09: 46: 25.32 - Impulsive Rayleigh event/G13216 

BEGl iLR 09: 46: 46.55; 
BEG2 iLR 09: 46: 37.50; 
BEG3 i L R  09: 46: 39.08; 
BEG5 iLR 09: 46: 40.80 

2. 82-01-05 
09: 49: 16.9 
Impulsive Rayleigh event 

BEG 1 i L R  09: 49: 39.08, A=5, D=4; 
BEG2 i L R  09: 49: 29.70, A=4, D 4 ;  
BEG3 iLR 09:49:31.18, A=3, D 4 ;  
BEG4 i L R  09: 49: 26.40, A=8, D=5; 
BEG5 iLR 09:49:32.93, A=4, D=4 

Descr ipt ion of event series on 05 January 1982: 

04:50: 13 - A series of eleven impulsive Rayleigh a r r i v a l s  ending a t  04:51:36, 
followed by a s l i g h t  rumbling. 

04:51:40 - A  high-amplitude rumble begins (A4mm)  which decreases t o  normal 
ambient noise  l e v e l s  a t  05:04:07. 

05:04: 17 - A weak set of gmpulsive Rayleigh a r r i v a l s .  

05:05:20 - More high-amplitude rumbling occurs (A=8mm), which remains a constant  
8-10 h e r t z  rumble with higher  frequencies of nolse present. 
rumble persists with very few harmonic episodes u n t i l  09:49:00, when an 
emergent ending occurs in the  same order i n  which the impulsive 
Rayleigh waves a r r ive .  

This 

09:49:  27 - k very prominent impulsive Rayleigh event occurs, which apparently 
i n d i c a t e s  a shu t t ing  down of some type, and is the  last  s ign  of any 
a c t i v i t y  from the area southeast  of the  a r r ay  f o r  t h i s  date. I 

I 

30 82-01-10 
07: 20: 17.3 
Impulsive Rayleigh event 

i BEGl iLR 07 : 20 : 39 10; 
! BEG2 iLR 07:20:29.70; 

BEG3 ILR 07: 20: 31.50; 
BEG4 ILR 07:20:26.50; 
BEG5 ILR 07: 20: 33.35 

, 
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

Descr ipt ion of event series on 10 January 1982: 

00:02:20 - An emergent, high-amplitude rumble with a five-second duration. 

00:03:25 - A harmonic tremor occurs and sus ta ins  a constant  amplitude on A=8 f o r  
approximately 20 minutes. The amplitude is near ly  ha l f  ( A = 4 )  f o r  the  
next  60 minutes and even lesser f o r  the next 6 hours,  although the tre- 
mor is st i l l  not iceable .  

02:02:40 -An impulsive Rayleigh a r r i v a l  with a d i f f e r e n t  type of sinuous coda 
forming the t a i l  of the  event. 

06:07:00 - The harmonic tremor mentioned above ends i n  a rumble type of ending 
which is emergent i n  nature.  

06:13:01 - An impulsive Rayleigh a r r i v a l  which precedes another  rumble episode 
which lasts f o r  90 seconds. 

06:17:05 -An impulsive Rayleigh a r r i v a l  precedes another rumble episode of 
numerous high frequencies which has an emergent ending a t  07:09:30. 

07:20:25 -An impulsive Rayleigh a r r i v a l  precedes a harmonic tremor episode which 
lasts u n t i l  08:11:25, where a rumble type of ending occurs. 

08:14:37 -An impulsive Rayleigh a r r i v a l  occurs with another  sinuous coda t a i l i n g  
t h e  a r r i v a l .  These ta i ls  are 4-8 seconds i n  dura t ion  and are c lose ly  
followed by a rumble episode a t  08:16:05 which lasts f o r  30 seconds. 

08:17:10 -An impulsive Rayleigh a r r i v a l  with the  same type of rumble a c t i v i t y  
fol lowing u n t i l  08:33:30, when the  rumble a c t i v i t y  ceases with a surge 
of rumble a c t i 0 i t y .  

08:33:40 - An impulsive Rayleigh a r r i v a l  precedes more rumble a c t i v i t y  which dimi- 
n i shes  a t  08:39:10, and progressively bui lds  up t o  a peak i n  rumble 
a c t i v i t y  a t  09: 17:40. The rumble continues with few not iceable  har- 
monic episodes u n t i l  a severe rumble episode occurs a t  10:43:23 which 
lasts f o r  over 2 minutes and ends abrupt ly  i n  the  same order of a r r i v a l  
as the  impulsive Rayleigh events. 

10:46:48 - An impulsive Rayleigh a r r i v a l  followed by a low-level rumble episode 
with s l i g h t  harmonics noted. 

11:27:00 - A  high-frequency rumble episode occurs which las ts  t o  11:45:00 where a 
10-second, noise-free i n t e r v a l  exists.  The rumble episode continues 
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

u n t i l  another noise-free i n t e r v a l  of 7 seconds is present at  12:OO:OO. 

12:00:07 - A very small, impulsive Rayleigh a r r i v a l  precedes another high- 
frequency rumble episode which remains a t  a very low amplitude and con- 
t a i n s  increas ingly  more harmonics over the next 10 hours. 

19:56:30 - The amplitude of the  harmonic tremor near ly  quadruples f o r  the next few 
minutes. The harmonic tremor continues u n t i l  ind is t inguishable  from 
t h e  ambient noise  near ly  17 hours later. 

4. 82-04-18 
03:25:38.5 
Impulsive Rayleigh event 

BEG 1 iLR 03: 26: 01 . 05; 
BEG2 iLR 03: 25: 53.00; 
BEG3 iLR 03: 25: 53.68; 
BEG4 iLR 03: 25: 48.20; 
BEG5 iLR 03: 25: 54.40 

Descript ion of event series on 18 Apri l  1982: 

01:47:00 - A harmonic tremor begins which lasts u n t i l  02:33:00. 

02:40:40 - The harmonic tremor begins approximately 30-second burs t s  at 02:42:40, 
02:46:20, 02:55:00, 02:56:50, and another 3 m i n u t e  burst  at  03:08:00. 

02:58:53 - A  series of six impulsive Rayleigh events ending at 03:00:08. 

03:18:03 - A l a r g e  amplitude harmonic tremor begins, and ends at 03:21:40 with a 
series of approximately t en  impulsive Rayleigh events (see f igu re  16). 
The ground motion i n  nanometers f o r  t h i s  event has been ca lcu la ted  t o  
be as follows: BEG 1-83 nm, BEG 2-103 nm, BEG 3-140 nm, BEG 4-144 nm, 
BEG 5-83 nm. This clearly shows that BEG 2,3 and 4 are the closest 
s t a t i o n s  t o  the  source of the  event. The decrease i n  ground motion at 
BEG 5 can be explained by in te r fe rence  from a major growth f a u l t  
s i t u a t e d  near the  s t a t ion .  

03:25:53 - A series of four  impulsive Rayleigh events ending at 03:27:20. 

03:40:49 - Two impulsive Rayleigh events which are followed by a rumble event with 
very few harmonics noted. 
s t e a d i l y  over the next six hours. 

The rubble a c t i v i t y  continues t o  diminish 
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

10:04:31 - A  s i n g l e  impulsive Rayleigh event. 

11:10:18 - The beginning of a series of a t  least twenty impulsive Rayleigh events  
which last pe r iod ica l ly  up u n t i l  12:24:18. 

Description of add i t iona l  events on 19 Apri l  1982: 

03:15:00 - A  harmonic tremor begins which lasts approximately 3 minutes. 

03:48:00 - A  high-frequency rumble event occurs which lasts f o r  11.5 minutes. 

5.  82-05-03 
05:00:36.0 
Impulsive Rayleigh event 

BEG2 iLR 05 : 00: 49.87; 
BEG3 iLR 05: 00: 50.60; 
BEG4 i L R  05: 00: 45.24; 
BEG5 iLR 05:00:51.49 

Description of event series on 03 May 1982: 

04:03:23 - A rumble episode begins which lasts u n t i l  04:04:42. This rumble epi- 
sode contains  a s l i g h t  harmonic tremor from 04:04:10 t o  04:04:24. 

04:53:00 - A series of mult ipie  impulsive Rayleigh a r r i v a l s  begins which precedes 
a high-frequency rumble episode which is near ly  t h r e e  t i m e s  t he  ampli- 
tude of t he  normal ambient noise. This rumble episode lasts u n t i l  
05:00:38, when an emergent ending occurs i n  the  same order  of a r r i v a l  
as the  impulsive Rayleigh events. 

05:OO: 45 - An impulsive Rayleigh event preiedes another high-frequency rumble 
episode which is a l s o  much higher i n  amplitude than t h e  normal ambient 
no i se  charac te r  of the  record. This rumble eipsode contains few har- 
monics and has an emergent ending at 05: 25: 00. 

05:28:00 - A high-frequency rumble episode begins emergently and continues u n t i l  
09:25:15. 
0 7 : 50: 00. 

A noted peak i n  a c t i v i t y  was recorded from 07:38:00 t o  

Additional Harmonic tremor episodes on 03 May 1982: 

17: 12:00, b 2 0  minutes 
17:42:00, D=13 
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

Addit ional  Harmonic tremor episodes on 04 May 1982 : 

01: 25: 00, D=15 minutes 
01:46:00, D=5 
02: 37: 00, D=7 
03: 34:00, D=67 
05:54:00, D=26 
08:35:00, D = l l  
11:21:00, D=8 
11 : 40: 00, D=2 

6. 82-05-18 
00: 35: 35.3 

I Impulsive Rayleigh event 

BEG1 im 00: 35: 58.10; 
BEG2 i L R  00: 35: 48.77; 
BEG3 i L R  00: 35: 50.71; 
BEG4 $LR 00: 35: 45.47; 
BEG5 iLR 00:35:52.27 

7. 82-06-12 
11 : 35: 49.0 
Impulsive Rayleigh event and rumble event sequence 

BEG 1 iLR 11:36:10.00; 
BEG2 i L R  1 1 : 36 : 01.90 ; 
BEG3 i L R  11 : 36: 02.63; 
BEG4 iLR 11 : 35: 57.30; 
BEG5 iLR 11:36:03.70 

Addit ional  a c t i v i t y  on 12 June 1982: 

08: 26: 00 - Emergent beginning of a rumble event 

08:51:00 - Decrease i n  amplitude untAil  09:02:00 

09:26:00 - Increase  i n  amplitude to  40 millimeters peak-to-peak which lasts u n t i l  
10: 28: 00 

10:28:00 - Rumble cont inues with s l i g h t l y  not iceable  harmonics 

11:33:00 -Rumble event ends emergently 

11:35:58 - Impulsive Rayleigh event l i s t e d  above 

11:37:52 - Impulsive Rayleigh event  l i s t e d  below 
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

BEG 1 i L R  11:38:05.40; 
BEG2 i L R  11: 37: 57.38; 

BEG4 iLR 11 : 37: 52.78; 
BEG5 iLR 1 1 : 37 : 59.30 

BEG3 i L R  11: 37: 58.38; 

13:16:00 - Small rumble event l a s t i n g  u n t i l  13:18:30 

8. 82-08-22 
18:52:28.7 
Impulsive Rayleigh event and rumble sequence 

BEG 1 iLR 18:52: 51 25; 
BEG2 i L R  18: 52 : 43.14; 
BEG4 iLR 18: 52 : 38.71 ; 
BEG5 iLR 18: 52 : 44.79 

Additional events on 82-08-22 

GROUP I - 18:52:38 t o  19:21:52 

21 impulsive Rayleigh events followed by a rumble episode containing no 
events  (D=22 mins.) 

18:52:42, 18:53:34, 18:54:30, 18:54:32, 18:54:39, 18:55:53, 18:56:46, 
18:56:49, 18:56:52, 18:57:32, 18:57:35, 18:57:36, 18:57:40, 18:57:42, 
18:57:45, 18:57:48, 18:57:52, 18:58:10, 18:58:16, 18:59:00, 18:59:04, 
18:59:06, 18:59:21, 18:59:25, 18:59:38, 18:59:56 

GROUP I1 - 19:21:52 t o  20:20:10 

An uncounted number of impulsive Rayleigh events  occurring almost con- 
t i n u a l l y  during t h i s  period. Separation between most events  i s  less 
than  one second. 

GROUP I11 - 20:20:10 t o  20:34:42 

Harmonic tremor (D=9 mins) begins a t  20:20:10, with a series of 23 
impulsive Rayleigh events  beginning 7 minutes later. 
are followed by 5 minutes of no recorded seismic a c t i v i t y .  

These 23 events  

20:27:10, 20:27:44, 20:27:58, 20:28:04, 20:29:06, 20:29:11, 20:29:36, 
20:30:02, 20:30:26, 20:30:48, 20:31:00, 20:31:17, 20:31:24, 20:31:40, 
20:32:11, 20:32:18, 20:32:20, 20:32:32, 20:33:38, 20:33:45, 20:33:53, 
20: 34: 37, 20: 34: 42 
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR TWE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

GROUP IV - 2 0 ~ 4 0 ~ 3 7  t o  20:46:10 

Harmonic tremor (D=6 mins.) begins with an impulsive Rayleigh event a t  
20:40:37. Three o ther  similar events occur during t h i s  tremor a t  
20:41:13, 20:41:30 and 20:41:51. 

GROUP V - 20:54:03 t o  20:59:20 

Another harmonic tremor ( D 3  mins.) begins with an impulsive Rayleigh 
event  a t  20: 54:03. 
were recorded during t h i s  short-duration tremor. 

Approximately 35 o the r  impulsive RayleigK events  

GROUP VI - 22:13:27 t o  22:13:42 

Three smaller impulsive Rayleigh events were recorded during t h i s  
f i f teen-second period at 22:13:27, 22:13:34 and 22:13:42. 

9 .  82-09-25 
00: 47: 38.2 
Impulsive Rayleigh event and rumble event sequence 

BEG1 iLR 00: 47: 59.56; 
BEG2 iLR 00:47:51.60; 
BEG3 Inopera t ive  
BEG4 i L R  00:47:47.02; 
BEG5 iLR 00:47:53.20 

00:44:00 - Emergent beginning of the  rumble event. Amplitude and frequency begin 
t o  increase  s t e a d i l y  from approximately 5 h e r t z  t o  approximately 7 
h e r t z  

00:47:40 - Amplitude diminishes t o  4 millimeters peak-to-peak on BEG 4 

00:47:47 - Impulsive Rayleigh event occurs which is l i s t e d  above. The high- 
frequency por t ion  of t he  wave is of dura t ion  approximately 2 seconds 

00:48:30 - Seismic traces re tu rn  t o  the  normal ambient no ise  level  

10. 83-03-07 
15:50:00 UTC (D = 10 mins.) 

11. 83-03-22 
22;34:00 UTC (D - 26 mins.) 
Harmonic Tremor 
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TABLE 5. SEISMICITY EPISODES’ LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE 
GEOPRESSURED/GEOTHERMAL WELL (continued) 

12. 83-05-03 
09: 10:40 UTC 
Rumble Episode I 

I 

13. 83-05-25 i 

01:05:33 UTC 
Rayleigh event followed by small rumble sequence (D = 2 mins.) 

/ 
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o r i g i n a t e  from d i f f e r e n t  sources because of va r i a t ions  i n  acous t ic  ve loc i ty  and 

atmospheric r e f r a c t i v e  condi t ions.  The occurrences of rumble-type events  could 

correspond with ep i sod ic  turbulen t  flow from the  s t a c k  which might r e s u l t  i n  addi- 

t i o n a l  acous t i c  s igna ls .  The harmonic tremor possibly might be the r e s u l t  of "organ 

pipe" resonance of t he  stacks under high-volume flow condi t ions o r ,  a l t e r n a t i v e l y ,  a 

pipe hammer induced i n  a valved feed pipe. Essen t i a l ly ,  t h i s  hypothet ical  model 

could r a t i o n a l i z e  a l l  of t he  seismic phenomena observed. 

Model I1 Hypothesis: The observed seismic episodes - are r e l a t e d  - t o  subsurface - 
waste i n j e c t i o n  a t  one o r  more d isposa l  w e l l s .  ---- 

There are many documented cases where subsurface i n j e c t i o n  of f l u i d s  r e su l t ed  

i n  induced microearthquakes. Perhaps the  best documented case is t h a t  of i n j e c t i o n s  

a t  t h e  Rocky Mountain Arsenal Well and the Denver earthquakes ( H o l l i s t e r  and Weimer, 

1968). It is  poss ib le  t o  i n t e r p r e t  the  ensemble of seismic event c h a r a c t e r i s t i c s  

exhib i ted  by t h e  complex episodes from 6 December 1981 and 25 September 1982 by a 

hypothe t ica l  model which involves in t e rmi t t en t  flow of i n j ec t ed  f l u i d s  cont ro l led  by 

s t r e s s - s e n s i t i v e  asperit ies along a system of formational d i scon t inu i t i e s .  This 

hypothesis would r equ i r e  the  impulsive Rayleigh events  t o  be of e a r t h  r a t h e r  than 

atmospheric or ig in .  Since body waves are not observed f o r  these events ,  a mechanism 

t o  j u s t i f y  t h e i r  absence is required (see Data Analysis Procedures Surface Wave b t a  
sec t ion) .  The f a c t  t h a t  events  of t h i s  type,  t h a t  is, impulsive Rayleigh events,  

have been recorded previously a t  a l l  geopressured/geothermal* design well sites and 

t h a t  a s u i t e  of such events  a t  the  Brazoria s i t e  appears t o  co l loca te  with 

microearthquakes loca ted  using body phases would support the  theory t h a t  these  are 

a l s o  microearthquakes. 

I n  conclusion, two a l t e r n a t i v e  models have been presented which could ra t iona l -  

i z e  the  d a t a  equal ly  well. Model I as soc ia t e s  t he  se i smic i ty  with e f f l u e n t  from 

i n d u s t r i a l  f l a r e  stacks . Model 11 assoc ia t e s  the  se i smic i ty  with e f f l u e n t  f l u i d s  

i n j e c t e d  i n t o  a geologica l  formation. Other models not presented a l s o  may account 

f o r  t he  observat ions,  and it  should not be assumed t h a t  e i t h e r  model presented is 

necessa r i ly  the  c o r r e c t  so lu t ion .  

I n  summary, excluding the  events  which loca te  at the  chemical complex east of 

t he  Pleasant  Bayou w e l l s  which are suspected t o  relate t o  a c t i v i t i e s  at the chemical 

plant  r a t h e r  than the  production from the  geopressured/ geothermal w e l l ,  there  are 

several important observat ions from rout ine  analyses  of the  seismic data. (1) Two 
types of events  are commonly recorded, one has i d e n t i f i a b l e  body phase arrivals, the  

o the r  is  charac te r ized  by only sur face  wave propagation. The second type of event 
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f a r  outnumbers the  f i r s t .  (2) The s p a t i a l  d i s t r i b u t i o n  of ep icenters  f o r  both event 

types overlaps and c l u s t e r s  approximately four  kilometers west-northwest of the 

Pleasant Bayou w e l l .  Although there  is a growth f a u l t  projected at a depth of 

15,000 f e e t  a t  t h i s  loca t ion ,  a l l  hypocenters occur at considerably shallower depths 

(less than t h r e e  kilometers).  Unless t h i s  growth f a u l t  is near ly  v e r t i c a l ,  it is  

d i f f i c u l t  t o  relate the  se i smic i ty  t o  tha t  p a r t i c u l a r  s t ruc tu re .  (3) Hypocenters 

f o r  type I events  are poorly constrained, and hypocenters f o r  type I1 events are 

unconstrained using rout ine least-squares loca t ion  inversion procedures. Alterna- 

t i v e  techniques are required t o  b e t t e r  cons t ra in  the  f o c a l  depths. This w i l l  be 

discussed i n  the  Special  Studies  sect ion.  (4) The magnitudes of events are a l l  

smaller than 2.0 but may be underestimated by as much as 0.5 magnitude uni t s .  ( 5 )  

Seismici ty  i s  not uniformly d i s t r i b u t e d  i n  t i m e  but tends t o  occur i n  r e l a t i v e l y  

i s o l a t e d  segments one hundred f i f t y  t o  two hundred days following shut-in of the  

geopressured/geothermal w e l l .  The i n t e n s i t y  of induced se i smic i ty  appears t o  relate 

t o  the  number of days production exceeded 15,000 barre l s /day  i n  the. test period. 

Special  Studies 

I n  addi t ion  t o  the  rougine analyses  of t h e  microearthquakes a t  Chocolate 

Bayou, it became obvious t h a t  some spec ia l  s tud ie s  would be required t o  understand 

the  wave propagation mechanism and source c h a r a c t e r i s t i c s  of t h e  events ,  par- 

t i c u l a r l y  the  mode I1 s igna l s .  To address these problems, we chose two d i r ec t ions  

of approach. The f i r s t  was' t o  &e the Qown ve loc i ty  s t r u c t u r e  t o  forward model 

syn the t i c  seismograms with which t o  compare the observed time-series s igna ls .  The 

second was t o  d i g i t i z e  some of t h e  b e t t e r  defined s igna l s ,  transform them to  the 

frequency domain and perform comparative analyses i n  the  frequency domain of the 

observed and syn the t i c  s igna ls .  These s tud ie s  proved t o  be qu i t e  valuable i n  both 

def in ing  wave propagation c h a r a c t e r i s t i c s  and depth of sources. 

The absence of i d e n t i f i a b l e  body phases f o r  the type I1 events  was  a par- 

t i c u l a r l y  d i s t r e s s i n g  observation. Without body-phase a r r i v a l s ,  near ly  a l l  rout ine 

analyses schemes f a i l  t o  def ine e i t h e r  source or  transmission path cha rac t e r i s t i c s .  

There are a t  least th ree  a l t e r n a t i v e ,  physical ly  p laus ib le  reasons f o r  the absence 

of body phases. (1) A l l  body phases are very high frequency. Thus, the  combination 

of low Q (highly a t t enua t ing )  sediments and incor rec t  instrumental  passband might 

r e s u l t  i n  poorly recorded o r  t o t a l l y  missed body phases. We bel ieve t h a t  t h i s  

explanat ion is the  least a t t r a c t i v e  because some events with body phases are 
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recorded. Furthermore, t he  frequency content of t he  body and sur face  waves f o r  

these  events  is not  s i g n i f i c a n t l y  d i f f e ren t .  (2 )  A second p o s s i b i l i t y  is t h a t  there  

are no body phases because the  events  are acous t ic  coupled from atmospheric sources. 

Such observat ions have been reported previously (Jardetsky and Press, 1952; Cook and 

Goforth, 1967; Espinosa and o the r s ,  1968). This is a very tenable  explanation f o r  

some of t h e  events  such as the  chemical plant  process overturns  and sonic  booms and 

must, t h e r e f o r e ,  be examined carefu l ly .  (3) A t h i r d  possible  explanation f o r  the  

absence of body phases is t h a t  the  events  are generated at some p a r t i c u l a r  depth i n  

which the  body waves become trapped by low-velocity l a y e r s  and only .  appear as 

leaking  modes. This i s  a p a r t i c u l a r l y  a t t r a c t i v e  explanat ion because the  sources 

become ground based r a t h e r  than atmospheric i n  o r i g i n  and is very l i k e l y ,  given the 

Chocolate Bayou s t ruc tu re .  I n  f a c t ,  we have observed events propagated by both the  

second and t h i r d  methods. Furthermore, we bel ieve t h a t  the analyses  procedures we 

have followed p e r m i t  separa t ion  of the  two mechanisms as w e l l  as iden t i fy ing  the  

depth of t he  buried sources.  

The f i r s t  s t e p  i n  our  ana lys i s  procedure has been t o  generate  a s u i t e  of 

s y n t h e t i c  su r face  waie seismograms with which t o  compare the  observed s igna ls .  Two 
pr inc ipa l  a l t e r n a t i v e  methods e x i s t  f o r  generat ing syn the t i c  seismograms through a 

known v e l o c i t y  s t r u c t u r e ,  t h e  general ized ray technique, and t h e  modal e x c i t a t i o n  

technique. Theore t ica l ly ,  both methods y i e ld  i d e n t i c a l  so lu t ions  (dupl ica te  

seismograms) given an i n f i n i t e  number of rays i n  the  former case o r  an i n f i n i t e  

number of f requencies  i n  the  latter. There are s p e c i f i c  cases, however, when one or  

t h e  o ther  method is computationally more p rac t i ca l .  Given a simple ve loc i ty  s t ruc-  

t u r e  i n  which t h e r e  are few invers ions  t o  produce mul t ip le  r e f l e c t i o n s ,  a genera- 

l i z e d  ray  approach t o  produce syn the t i c  seismograms is much f a s t e r  and simpler t o  

compute. When s i g n i f i c a n t  energy traps e x i s t  i n  the ve loc i ty  s t r u c t u r e ,  however, 

t h e  number of rays  which need t o  be summed t o  y i e l d  a meaningful representa t ion  of 

what must happen i n  r e a l i t y  becomes untractable .  In  these  circumstances, a modal 

approach t o  s t r u c t u r a l  resonance c h a r a c t e r i s t i c s  produces the  more representa t ive  

seismogram with fewer computations required.  The number of modes which needs t o  be 
considered f o r  summation depends upon the  complexity of the  ve loc i ty  s t r u c t u r e ,  the  

degree of accuracy with which the  f i t  between s y n t h e t i c  and observed da ta  is 
des i red ,  and the  cos t  of computing the  syn the t i c s  which increases  nonl inear ly  with 

0 

t h e  number of modes. In  order  t o  model body waves i n t o  the syn the t i c s ,  higher order 

modes must be included, thus s u b s t a n t i a l l y  increas ing  cost .  

Because there are s e v e r a l  energy t r aps  in t he  Pleasant Bayou ve loc i ty  s t ruc-  

-5 9- 



t u r e  a t  depths between zero and. one and a ha l f  kilometers,  syn the t i c  seismograms 

were computed using a modal summation approach. The apparent frequency content of 

t he  observed s i g n a l s  ind ica ted  t h a t  l i m i t i n g  the  bandwidth between zero he r t z  and 

fourteen h e r t z  would l i k e l y  y i e l d  a reasonably representa t ive  synthe t ic .  Although 

adding frequencies  t o  a t  least f i f t y  h e r t z  would y i e ld  a more accurate  synthe t ic ,  

t h e  cos t  of computing the  syn the t i c s  becomes prohib i t ive .  In  addi t ion ,  the  recorded 

da ta  are band l imi t ed ,  so  the re  is  no p a r t i c u l a r  necess i ty  f o r  higher reso lu t ion  

data. The chosen parameters exclude modes necessary f o r  modelling body waves; 

however, type 11 events  contain no i d e n t i f i a b l e  body waves. 

The f i r s t  s t e p  i n  computing syn the t i c  seismograms through modal summation is 

t o  determine the  s t r u c t u r a l  e x c i t a t i o n  phase v e l o c i t i e s  f o r  the  bandwidth of 

i n t e r e s t .  The c r u s t a l  s t r u c t u r e  used f o r  these analyses  i s  i l l u s t r a t e d  i n  the  

appendix i n  f i g u r e  B1, and the a c t u a l  l aye r  compressional and shear  v e l o c i t i e s  used 

are l i s t e d  i n  t a b l e  B1. For s impl i c i ty  i n  computation, the  Poisson r a t i o  was f ixed  

a t  0.25. The computed modal phase v e l o c i t i e s  as a func t ion  of frequency are 

i l l u s t r a t e d  i n  f i g u r e  B2. The amplitudes of the  waves t r a v e l i n g  with these phase 

v e l o c i t i e s  a t t enua te  as a funct ion of d i s tance  from the  source because of geometri- 

cal spreading and a n e l a s t i c  e a r t h  proper t ies .  Although Gulf Coast sediments undoub- 

t ed ly  have an a t t enua t ion  c o e f f i c i e n t  (Q) which i s  less than one hundred, t he  

t ransmission paths of i n t e r e s t  are so shor t  t h a t  the a n e l a s t i c  a t tenuat ion ,  even at 

a frequency of four teen  h e r t z ,  is  not p a r t i c u l a r l y  s i g n i f i c a n t .  For our calcula- 

t i o n s ,  we assumed Q t o  be i n f i n i t e  ( the  case f o r  a pe r fec t ly  elastic body). 

Given the  phase ve loc i ty  and amplitude exc i t a t ion  c h a r a c t e r i s t i c s  f o r  the 

Pleasant Bayou region (Appendix f igu res  B1 and B2) i n  the  bandwidth of i n t e r e s t ,  

syn the t i c  displacement seismograms, o r  Green's funct ions,  can be computed f o r  given 

source rece iver  separa t ions  given s p e c i f i c  source c h a r a c t e r i s t i c s .  

We have computed syn the t i c  seismograms f o r  two p a r t i c u l a r  sources. We 

have assumed the  sources t o  be normal dip-s l ip ,  double-couple events with d ip  angles 

of 45 degrees o r  90 degrees t o  be most l i k e l y  f o r  the  Pleasant  Bayou region. The 

displacement is assumed t o  be a s t e p  (Heaviside func t ion)  i n  t i m e  with a s ta t ic  

moment equal  t o  6.28 x 10**20 dyne-cm (roughly equivalent  t o  a magnitude 2.0 

earthquake). Synthet ic  seismograms were computed f o r  source depths of 0.0, 0.3, 
0.8, 1.3, 1.8, 2.8 and 3.8 kilometers  and rece iver  e p i c e n t r a l  d i s tances  from one t o  

ten  kilometers.  The s u i t e  of syn the t i c  seismograms f o r  45-degree dip-s l ip  sources 

as a- func t ion  of depth and d is tance  are i l l u s t r a t e d  i n  the  appendix i n  f igu res  B3 
through B18. The syn the t i c s  f o r  90-degree dip-s l ip  sources are i l l u s t r a t e d  i n  
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f i g u r e s  B19 through B34. Each of the ten  traces i n  f igu res  B3 t o  B34 is scaled to  

i ts  own maximum value. The first f igu re  of each set (of two) v e r t i c a l l y  or iented 

displacement Green's func t ions  is  not corrected f o r  instrument response. 

Convolution of t he  syn the t i c  records with the  instrument response of the  Pleasant 

Bayou seismometers was performed, and response corrected seismograms are shown as 

t h e  second f i g u r e  of each set. 

One of t he  most s t r i k i n g  f ea tu res  of the  s u i t e s  of seismograms is t he  high 

degree of v a r i a b i l i t y  of modal exc i t a t ions  as a funct ion of source depth. The rela- 

t ionship  of the  source depths t o  the ve loc i ty  s t r u c t u r e  is i l l u s t r a t e d  i n  f igure  B1. 
Note t h a t  the  f i r s t  two source depths (0.0, 0.3 km) are above the region of low- 

ve loc i ty  layer ing;  t h e  next two (0.8, 1.0 km) are bounded above and below by low- 

ve loc i ty  l aye r s ;  t h e  next t h ree  (1.3, 1.8, 2.8 km) are within a region of normal 

ve loc i ty  grad ien t ;  and the  last (3.8 km) is i n  the region of ve loc i ty  inversion 

assoc ia ted  with the  geopressured zone. The synthe t ics  generated fo r  surface sources 

have c h a r a c t e r i s t i c s  similar t o  observed explorat ion shots .  The p r inc ipa l  dif-  

ference is t h a t  an explosion is not a double-couple, dip-s l ip  source. The 

seismograms are r e l a t i v e l y  uncomplicated by mult iple  phase a r r i v a l s ,  and the a r r i v a l  

t i m e  moveout as a funct ion of d i s tance  is la rge  (grea te r  than twenty-three seconds 

over an e p i c e n t r a l  d i s tance  span of t en  kilometers). A t  a source depth of th ree  

hundred meters, t he  seismograms have become s i g n i f i c a n t l y  more complex than th6se at 

the  surface.  The sur face  waves are inverse ly  dispersed ( t h a t  is, higher frequency 

a r r i v a l s  precede lower frequency a r r i v a l s ) ,  and the  coda ta i ls  f o r  both source 

depths end with a 1.2-1.3 h e r t z  resonance. In t e re s t ing ly ,  t h i s  resonant frequency 

is not observed on syn the t i c  seismograms with a source depth of e igh t  hundred 

meters. Since t h i s  is  t h e  dominant frequency of t he  harmonic tremors which are 
observed per iodica l ly ,  we  conclude t h a t  the source depths of these events m u s t  be 

less than e i g h t  hundred meters. I n  addi t ion ,  s ince  the  s igna l s  l oca t ing  near the 

chemical p lan ts  southeast  of t he  Pleasant Bayou test wells f requent ly  have asso- 

c i a t ed  resonances a t  t h i s  frequency, it is concluded t h a t  these sources a l s o  are at 

depths less than e i g h t  hundred meters (2,625 f e e t ) .  Since the f l u i d  in j ec t ions  at 

these  chemical complexes are known t o  be at a depth g rea t e r  than 1524 meters (5000 

f e e t ) ,  it seems less l i k e l y  t h a t  the s igna l s  observed are re l a t ed  t o  in j ec t ions  i n t o  

the  d isposa l  horizon. The sources of these events ,  however, remain unresolved. 

Synthet ic  seismograms produced by sources i n  t h e  depth range from e igh t  

hundred meters (2625 f e e t )  through 1,800 meters (5906 f e e t )  have very d i s t i n c t ,  

high-amplitude resonances with a period of approximately 3.5 seconds (0.286 her t z ) .  
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These are p a r t i c u l a r l y  l a r g e  f o r  a source depth of 1300 meters (4265 f e e t )  and an 

ep icen t r a l  d i s tance  of f i v e  kilometers. Given the  apparent ve loc i ty  of t h i s  wave 

(416 m/sec), t h e  length  would be 1456 m (4777 feet)  or a half wave length of 728 m 

(2388 f e e t )  . With these  c h a r a c t e r i s t i c s ,  the  observed wave is an energy resonance 

trapped between the  sur face  and the depth of the last s i g n i f i c a n t  low-velocity zone. 

Unfortunately, t h i s  resonance frequency is outs ide  the passband of the  instruments 

deployed i n  the  Pleasant  Bayou a r r ay  and thus would not be observed. I f  the pass- 

band were wider, however, t he  r e l a t i v e  exc i t a t ion  of t h i s  trapped mode could be use- 

f u l  as an event depth discriminant.  

The syn the t i c  seismograms f o r  events a t  depths of 2.8 and 3.8 kilometers 

d i sp lay  low-frequency (0 .222 Hz) waves on the  seismograms. The corresponding half-  

wave length i n d i c a t e s  t h a t  these  waves correspond t o  energy channeled i n  the low- 

ve loc i ty  zone a t  a depth of approximately 4.5 kilometers.  These waves would not be 

observable on the  cur ren t  Pleasant Bayou a r r ay  because of t he  l imi ted  passband, 

however. F ina l ly ,  note  the  very low a r r i v a l  t i m e  moveout f o r  the  ep icen t r a l  

d i s tance  span from one t o  t e n  kilometers f o r  events with depths g rea t e r  than 2.8 

kilometers. 

The next ana lys i s  procedure t o  help understand the wave propagation charac- 

teristics was t o  perform multifile-filter (moving-window) transformations of the t i m e  

series da ta  i n t o  frequency-versus-velocity space. This technique, developed by 

Landisman and o thers ,  1969, is p a r t i c u l a r l y  luc ida t ing  f o r  separa t ion  of ind iv idua l  

wave propagations i n  complex sur face  wave and/or guided wave t i m e  series da ta  set. 

Basical ly ,  t he  t i m e  series aata are passed through a series of very narrow bandpass 

f i l t e r s  which are centered at p a r t i c u l a r  windows of the da ta  dependent upon the prop- 

agat ion ve loc i ty .  Envelope amplitudes are computed f o r  each window, and the ampli- 

tudes then are normalized and contoured as a func t ion  of energy i n  a 

velocity-versus-logarithm of frequency space. 'Ihe r e s u l t i n g  p lo t  is a contour 

mapping of t he  mechanism of energy propagation. Regions of t he  space character ized 

by energy maxima are contoured i n  high numbers (99), whereas regions of the space 

with energy transmission minima are contoured as low numbers. By examining the 

p l o t s ,  it is immediately obvious i f  energy is propagated as d i s t i n c t  packets as is 

t h e  case with trapped modes o r  as continuously dispersed energy as is the  case f o r  

t y p i c a l  sur face  wave transmissions. In  addi t ion ,  the  d i s t r i b u t i o n  of energy i n  the 

space f requent ly  can be used as a diagnost ic  f o r  some source c h a r a c t e r i s t i c s  such as 

depth of t he  source. 

To provide a known source da ta  set with which to  compare similar analyses of 
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observed s i g n a l s ,  moving window transforms were produced f o r  the  syn the t i c  

seismograms i n  appendix B. The r e s u l t s  of these analyses have been included at the 

end of appendix B. Multiple f i l t e r  p lo t s  have been calculated from instrument- 

response-corrected syn the t i c  waveforms fo r  both 45-degree and 90-degree source dips ,  

depths 0.3, 0.8, 2.8 and 3.8 km at  receiver  ranges 2, 5 and 8 km. Multiple f i l t e r  

p l o t s  f o r  the  45-degree source d ip  are shown i n  f igures  B35 through B46. P lo ts  

ca lcu la ted  f o r  the 90-degree source d ip  are shown i n  f igures  B47 through B58. P lo t  

amplitudes are normalized t o  a maximum value of 99, and have been contoured at 

increments of t e n  uni t s .  

There is an enormous quant i ty  of information embodied i n  these p lo t s ,  and 

ca re fu l  comparative s tudy  of them l i k e l y  w i l l  r evea l  addi t iona l  d e t a i l s  not 

described below. Our in t en t ion  here  is t o  i l l u s t r a t e  some of the  important conclu- 

sions which can be derived from such analyses. Comparing f igu res  B35, B36, and B37, 

f o r  example, i l l u s t r a t e s  both the  general  c h a r a c t e r i s t i c s  of sources a t  shallow 

depths and the  effects of increas ing  distance.  Note t h a t  a l l  contoured energy 

e s s e n t i a l l y  is ve loc i ty  bound between 300 and 650 m/sec. The most prominent veloc- 

i t y  is approximately 400 m/sec. In addi t ion,  note tha t  the predominant exc i t a t ion  

frequency is dis tance  dependent. For example, at a dis tance range of two kilometers 

(B35), t h e r e  is a s i n g l e  energy maximum a t  a frequency of 3 her tz .  A t  a d is tance  of 

f i v e  ki lometers  (B36), however, t he re  are two energy lobes which are apparent,  one 

a t  approximately 2.7 he r t z  and one at 4.5 her tz .  A t  a d is tance  of e i g h t  kilo- 
meters, seve ra l  frequency lobes are present.  This c l e a r l y  demonstrates t h a t  the 

energy is being propagated as ' a  trapped or  guided wave. The pa r t i cu la r  frequency 

which is observed at any given dis tance is a funct ion of the  angles of r e f l e c t i o n  at 

the  top and bottom of the  waveguide. Thus, any given dis tance w i l l  "tune" t o  a par- 

t icular  frequency or  frequencies.  By comparing f igu res  B47, B48, and B49 with B35, 

B36, and B37, it is obvious t h a t  the  source mechanism o r i en ta t ion  also plays a r o l e  

i n  frequency s e l e c t i v e l y  of the  waveguide as w e l l  as the  apparent ve loc i ty  of propa- 

gation. I n  general ,  events  at source depths less than 500 meters have energy propa- 

gated i n  a ve loc i ty  band between 300 and 650 m/sec, The number of eigen frequencies 

exc i t ed  is dependent upon the d is tance  from the s6urce. 

The e f f e c t s  on the  moving window analyses of increas ing  the source depth are 

i l l u s t r a t e d  by comparing f igu res  B35 (300 m), B38 (800 m), B41 (2800 m), and B44 

(3800 m). The r e l a t ionsh ip  between these source depths and the ve loc i ty  t r aps  i n  

the  s t r u c t u r e  are shown i n  f igu re  B1. Essent ia l ly ,  the  same type of behavior can be 

seen a t  g rea t e r  e p i c e n t r a l  dis tances  but is more complex because of the  increased 
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number of e igen frequencies  exci ted.  The source depth e f f e c t  on these p lo t s  is very 

dramatic and c l e a r l y  demonstrates these  analyses  are q u i t e  s e n s i t i v e  methods f o r  

depth evaluat ion.  Comparing f i g u r e s  B35 and B44, f o r  example, illustrates t h a t  the 

Game eigen frequencies  are exc i ted  by sources with depth d i f f e rences  of 2500 meters, 

but t he  d i s t r i b u t i o n  of v e l o c i t i e s  is r a d i c a l l y  d i f f e r e n t .  In addi t ion ,  given a 

s p e c i f i c  source displacement, t h a t  is, 45" or  90" dip s l i p ,  t he re  is a s p e c t r a l  hole 

which is  r e l a t e d  t o  source depth apparent on each of t he  p lo t s .  The primary fre- 

quency of the  hole lowers with increased depth ( f o r  example, 3 h e r t z  on B41 versus 

2.7 h e r t z  on B44). Note, however, t h a t  the pos i t ions  of the  holes  are also depen- 

dent on the  o r i e n t a t i o n  of t he  source displacement. Using these analyses of synthe- 

t ic events as templates f o r  comparison with similar analyses  of observed s i g n a l s  

t he re fo re  provides a powerful t o o l  f o r  i n t e r p r e t i n g  these complex s igna ls .  

It is important t o  understand t h a t  the  observed s i g n a l s  w i l l  be complicated 

a d d i t i o n a l l y  because of s c a t t e r i n g ,  a t t enua t ion ,  and body wave r e f l e c t i o n  in t e r -  

ference.  Nevertheless,  the  da t a  appear t o  be remarkably cons is ten t  with these for- 

ward models. Several  type I and type I1 signals were d i g i t i z e d  and analyzed using 

the  mul t ip le  f i l t e r  ana lys i s  technique. These examples of the  type I1 s igna l s  and 

t h e i r  corresponding mul t ip le  f i l t e r  analyses are i l l u s t r a t e d  i n  f igu res  25, 26, and 

27. Although the  source depths of these  events were indeterminant from the rout ine  

loca t ion  procedures, t h e  genera l .charac te r  of t he  moving window analyses  c l e a r l y  

demonstrates a l l  have source depths less than 800 meters. Throughout the  monitoring 

program, we maintained a pos i t ion  t h a t  the sources of these type 11 events  had t o  be 

very shallow. These moving window analyses f i n a l l y  demonstrate t h a t  t h i s  pos i t ion  

was cor rec t .  The s i m i l a r i t y  of t h e  moving ,window analyses  of t he  l o c a l  events 

( f igu res  25 and 26) t o  the  syn the t i c s  i n  appendix B are very remarkable. The t h i r d  

event ( f i g u r e  27), however, demonstrates t h a t  a t t enua t ion  i n  the  real e a r t h  can 

play an important r o l e  i n  def in ing  the  observed eigen frequencies .  Attenuation 

e f f e c t s  have been neglected i n  the  synthe t ics .  

For comparison, a mul t ip le  f i l t e r  ana lys i s  w a s  performed on a d i g i t i z e d  sonic  

boom and is i l l u s t r a t e d  i n  f i g u r e  28. The t i m e  series s i g n a l  of t h i s  event is 

roughly similar t o  those of f i g u r e s  25 and 26, suggest ing t h a t  d i scr imina t ion  of 
t h i s  source type might be d i f f i c u l t .  There is, however, a d i s t i n c t  multimodality of 

t he  s i g n a l s  i n  f i g u r e s  25 and 26 which is  missing i n  the sonic  boom, and the o v e r a l l  

charac te r  of t he  moving window analyses  are d i s t i n c t l y  d i f f e r e n t .  

Two examples of mul t ip le  f i l t e r  ana lys i s  of type I (P-wave) s i g n a l s  are 

i l l u s t r a t e d  i n  f i g u r e s  29 and 30. In  these cases, the  v e l o c i t y  window has been 
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expanded t o  p e r m i t  viewing of the  region occupied by the  body phase a r r i v a l s .  In  

f i g u r e  29, f o r  example, t h e  P-wave energy is located a t  a frequency band between 

seven and e i g h t  he r t z  with a ve loc i ty  of 1700 t o  1800 m/sec. The corresponding S- 

wave energy appears a t  a frequency of approximately f i v e  he r t z  with a ve loc i ty  be- 

tween 1000 and 1150 m/sec. Other prominent energy a r r i v a l s  occur at a frequency 

between s i x  and seven h e r t z  with a ve loc i ty  of 1500 m/sec, nine t o  ten  he r t z  with a 

ve loc i ty  of approximately 1300 m/sec, and 2.5 h e r t z  with a ve loc i ty  of approximately 

950 m/sec. These a r r i v a l s  cannot be i d e n t i f i e d  pos i t i ve ly  and are possibly second- 

a r y  r e f l e c t i o n s  and/or converted phases. Note t h a t  t he re  is l i t t l e  energy a l lo-  

cated t o  the  su r face  waves compared with the  body waves. This is typ ica l  f o r  a 

source depth/dimension r a t i o  of t h i s  order.  The charac te r  of sur face  wave energy 

d i s t r i b u t i o n  i n  frequency and ve loc i ty  is  comparable t o  the  deeper sources f o r  the 

s y n t h e t i c s ,  confirming t h a t  t h i s  is  deeper source event and not one less than 1000 

meters deep. The second type I event ( f igu re  30) is even more dramatic. There is 

v i r t u a l l y  no energy a l loca ted  t o  the  sur face  waves i n  t h i s  example, and the  body 

wave v e l o c i t i e s  are s i g n i f i c a n t l y  higher. In  t h i s  case, it is l i k e l y  t h a t  the event 

is  deeper than the  hypocenter program so lu t ion  yielded. To produce an average P- 
wave ve loc i ty  of 2400 m/sec requi res  the  event t o  be approximately three  kilometers 

deep. In  addi t ion ,  t h e r e  is  s i g n i f i c a n t  r inging of the  P energy ind ica t ing  a large 

amount of mult ipath propagation. 

I n  conclusion, microseismic monitoring of the  Chocolate Bayou region i n  the 

v i c i n i t y  of t he  Pleasant  Bayou geopressured/geothermal energy w e l l  has r e s u l t e a  i n  

the  fol lowing observations.  

1. Ambient s e i smic i ty  occurs a t  a very low rate of a few events per year. 

The s p a t i a l  d i s t r i b u t i o n  of these events suggests a s soc ia t ion  with a f e w  

s p e c i f i c  growth f a u l t s .  

2. Two types of events  were recorded, one with i d e n t i f i a b l e  body phase arri- 
v a l s ,  and one which has only sur face  wave a r r i v a l s .  The la t ter  event type 

occurs  more f requent ly  than the  former. Both event types range i n  magni- 

tude between -0.5 and 2.0. 

3. Events with i d e n t i f i a b l e  body phases are generated by sur face  explosions 

and events  with depths g rea t e r  than one kilometer. Events which propagate 

as apparent su r f ace  waves have depths of o r i g i n  between 300 and 800 
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4. 

5. 

6 .  

7. 

8. 

9. 

meters. 

Following per iods of pumping from the  Pleasant Bayou w e l l ,  seismic acti- 

v i t y  was  enhanced from ambient conditions.  There was an apparent delay of 

150-200 days between onset  of a c t i v i t y  and i n i t i a t i o n  of pumping at a rate 

exceeding 18,000 barrels /day.  This delay may be r e l a t e d  t o  stress d i f -  

fus ion  rate. 

A l l  s e i smic i ty  observed had f o c a l  depths less than the  production depth. 

Most events had foca l  depths less than the  d isposa l  depth. It is ,  there- 

f o r e ,  unknown whether the  enhanced se i smic i ty  i s  r e l a t e d  t o  withdrawal or 

i n j e c t i o n  of t he  brine.  

It is  unknown whether the  increased se i smic i ty  is r e l a t e d  t o  ground sub- 

sidence s ince  the re  w a s  no independent method of eva lua t ing  subsidence 

simultaneously with seismic monitoring. 

The increased l e v e l  of seismic a c t i v i t y  does not c o n s t i t u t e  a s i g n i f i c a n t  

seismic r i s k  i n  terms of ground acce lera t ions ;  however, it is  unknown 

whether the cumulative e f f e c t s  of these events  may c o n s t i t u t e  a po ten t i a l  

subsidence r i s k .  

Increased understanding of these  seismic observat ions w i l l  not  be 

accomplished by deploying standard microseismic a r r ays  a t  f u t u r e  sites. 

The sites are too s t r u c t u r a l l y  heterogeneous t o  generate simple,  meaning- 

f u l  r e s u l t s  using standard methodologies; however, a l t e r n a t i v e  technology 

t o  address these  i ssues  does e x i s t .  

An important goal  f o r  f u t u r e  s tud ie s  is  t o  determine i f  and how these  

seismic events  relate t o  subsidence and whether commercial scale produc- 

t i o n s  would c o n s t i t u t e  a s i g n i f i c a n t  subsidence hazard comparable t o  the  

documented Houston aqu i f e r  problem. 
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APPENDIX A 

PHASE ARRIVAL DATA FOR EARTHQUAKES 
1981 - SEPTEMBER 1983 



Entries for the data log utilize the following notation conventions: 

Station Identification 

BEG1, BEG2, BEG3, BEG4, BEG5 

Phase Identification 

P - compressional wave 
S - shear wave 
LR - Rayleigh surface wave 
i - impulsive first motion 
e - emergent first motion 
c - compressional first motion 
d - dilatational first motion 
? - ambiguity of designation 
pP - P-wave reflected at the crust near the epicenter 
SS - S-wave converted to P-wave at reflection like pP 

Airy - Airy phase (minimum group velocity) of Rayleigh wave. 
Phase Timing 

Times are designated in Universal Coordinated Time (UTC) which is equivalent to 
Central Standard Time + six hours. Explosions in a sequence may be designated by 
hour and minute only. 

Phase Amplitude and Period 

k, = maximum 0-peak amplitude of the phase in mm observed on develocorder review 
(20 x magnification) 

A = sustained 0-P amplitude in mm observed on develocorder review (20 x 
magnification) of a train of waves. 

T 

D 

C = number of cycles in a wave train. 

Example Data Entry 

BEG1 iPC 04:24:15.1, T = 0.5, A, = 20.0, A = 13.0; 

= period of the wave in seconds. 

= duration of signal in seconds from onset of P to code = ambient noise. 

eS 04:24:20.3, T = 1.0, D = 35 
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Station BEG1 recorded an impulsive-compressional P-wave at 04:24:15.1 UTC. The 
sustained amplitude was 13 mm zero to peak, the maximum amplitude was 20 mm, the 
period of the wave was 0.5 seconds. An emergent S-wave was recorded at 04:24:20.3 
UTC with a period of 1.0 seconds. The total event duration was 35 seconds. 

1. 81-01-01 
03: 32: 29.3 - +0.04 
29'15 '26"N 
95'15 '36.3"W 
H = 6.0, MD = 
90% confidence error ellipse Az = 17', a = 0.5 km, b = 0.3 km 

BEG 1 ePd 
S 
LR 

BEG2 ePc 

LR 
BEG3 ePc 

LR 
BEG4 eP 

is 

eS 

LR 
BEG5 ePd 

LR 
is 

03: 32: 31 80 - +O. 03 9 

03: 32: 33.35, 
03: 32: 34.82; 

03: 32: 33.61, 
03: 32: 34.87; 

03: 32: 34.57; 

03: 32: 32.79 - 9 . 0 2 ,  
03: 32: 34.46; 

03 : 32 : 32.7 7 9 . 02, 
03: 32: 34.46 

03: 32: 31 95 +O. 05 9 - 

03:32:31.61 - +O.02, 

03:32:31.44 +O*02,. 

03: 32: 31 38 +O. 02 
- 

2. 81-05-12 
21:03:42.9 +0.02 
29°15 '38.2"~ 
95'16'04.5"W 
H = 5 .0 ,  MD = 
90% confidence error ellipse Az = 138', a = 3.4 km, b = 3.2 km 

BEG3 i Pd 21:03:44.95; 
BEG4 P 21:03:44.9; 
BEG5 P 21 : 03 : 44.7 ; 

S 21:03:45.9; 
? 21:03:46.45; 
LR Am = 19 

3. 81-05-13 
16:14:12,8 +0.19 
29'15'12.6"~ 
95 '1 6 ' 12.0"W 
H = 1.0, MD = 
90% confidence error ellipse Az = 26O, a = 0.9 km, b = 0.5 km 

BEG3 P 16: 14: 14.7; 
BEG4 P 16: 14: 14.5; 

S 16: 14: 15.55; 
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BEG5 P 16: 14: 14.0; 
LR Am = 12 

4. 81-05-13 
16:23:33.05 +0.44 
29°14'20.5"N- 
95 O 1 6 ' 2 1 . 6"W 
H = 0 km, MD = 
90% confidence error ellipse Az = 133", a = 1.8 km, b = 1.5 km 

BEG3 eP 16: 23: 36.19 

BEG4 P 16 : 23 : 35 55; 
S 16: 23: 37.95; 

S 16: 23: 37.35; 
BEG5 iP 16: 23: 35.3 

S 16: 23: 36.65 

5. 81-05-28 
13: 39: 02.5 +O. 13 
29O17 t09.7"F 
95'14 '56.0"W 
H = 0 km, MD = 
90% confidence error ellipse Az = 148O, a = 0.6 km, b = 0.3 km 

BEG2 iPc 
BEG3 iPc 

S 
BEG4 iP 

S 
D 

BEG5 iP 
S 

13: 39: 03.95; 
13 : 39 : 03.6 y 

13: 39: 04.5; 
13:39:04.4, 
13:39:05.45; 
4.5 
13: 39: 04.75 
13:39:06.0 

6. 81-06-20 
20: 57:  20.2 +O. 47 
2 9 O 1 6 ' 59.8 '*F 
95 O 16 ' 16.5"W 
H = 0.0 km, MD = 
90% confidence error ellipse Az = 37O, a = 2.7 km, b = . 7  km 

BEG 1 P 2 0 ~ 5 7 :  21.07, 
20 : 57 : 2 1 55; S 

BEG2 P? 20: 57: 23.15; 
BEG3 P 20: 57: 22.1, 

S 20: 57: 22.5; 
BEG4 LR 20: 57: 23.5; 
BEG5 P? 20:57:21.75 

7. 81-06-21 
16:23:02.7 
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29°17'42.8"N 
95'15 '03.4"W 

90% confidence error ellipse Ax = 1 5 5 O ,  a = 3.7 km, b = 1.5 km 
* H 0.0, MD = 

BEG 1 i P  16:23:04.9; 
BEG2 i P  16: 23: 03.95; 
BEG3 i P  16:23:03.95; 
BEG4 i P  16: 23: 05.28; 
BEG5 i P  16: 23: 05.3 

8. 81-10-02 
07: 27: 32.9 +O. 28 
29"16'03.7*'~ 
95 O 1 5 ' 26 . 2 "W 
H = 0.0 km, MD = 
90% confidence error ellipse Az = 0", a = 1.3 km, b = 0.5 km 

BEG 1 

BEG3 

BEG4 

BEG5 

i P  
is 

LR 
eS? 

LR 
eP 
i s  

i P  
i s  

LR 

LR 

07: 27: 35.7, 
07: 27: 36.4, 
07: 27: 37.9; 
07 : 27: 35.4, 
07: 27: 37.35; 
07: 27: 34.0, 
07: 27: 34.7, 

07: 27: 33.95, 

07:27:36.15, Am = 4.5 

07 : 27 : 36.2; 

07 : 27 : 34.8, 

9 .  81-10-02 
07: 27: 43. 
29'15'22.4"N 

H = O.OL, MD 
90% confidence error ellipse Az = 179", a = 3.0 km, b = 0.5 km 

' 95'15'26.6"W 

BEG 1 eP 
S 
LR 

BEG2 i P  
BEG3 i P  

BEG4 i P  
is 

BEG5 i P  
is 

LR 

LR 

LR 

07:27:46.7, 
07: 27: 47.6, 
07: 27: 48.9; 
07:27:46.85; 
07: 27: 46.4, 
07: 27: 48.5; 
07: 27: 45.4, 

07: 27: 47.55; 
07: 27: 45.1, 
07: 27: 46.1 

07: 27 : 45.9, 

07:27:47.4, Am 4.5 

10. 82-01-09 
10: 37: 07.6 UTC 
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29 29 26.7 N 
95 09 16.7 W 
Velocity=339 meters/second 
90% confidence e r r o r  e l l i p s e  Az=30 , a=4.4 km, bPO.1 km 

BEG1 i L R  10: 38: 33.10; 

BEG3 i L R  10:38:31.85; 
BEG4 iLR 10: 38: 35.40; 
BEG5 i L R  10: 38: 38.60 

BEG2 iLR 10: 38: 25.30; 

11. 82-01-23 
14: 10:51.4 UTC 
29 17 30.2 N 

H = 0.92 Kilometers 
90% confidence e r r o r  e l l i p s e  h a 5 1  , a-1.6 km, b1.3 km 

95 16 14.1 W 

BEG 1 i P  16: 31 : 27.30; 
BEG2 eP 16: 31 : 27.45; 
BEG3 i P  16: 31 : 27.10; 
BEG4 P 16: 31 : 24.50; 
BEG5 eP 16: 31 : 24.75 

12. 82-06-08 
00:49:29 UTC 
No ep icen te r  determined 

BEG 1 LR 00:49:41.30; 
BEG2 i L R  00: 49: 32.20; 
BEG3 eLR 00: 49: 33.92; 
BEG4 i L R  00: 49: 29.15; 
BEG5 eLR 00: 49: 37.50 

13. 82-07-16 
17:52:59 UTC 
No e p i c e n t e r  determined 

BEG 1 iLR 17: 53: 01-00; 
BEG2 i L R  17: 52: 53.70; 
BEG3 Inope ra t ive  
BEG4 iLR 17: 52: 59.40; 
BEG5 iLR 17: 53: 05.45 

14, 83-01-17 
17:56:57 UTC 
Teleseism from Guatemala 
OT=17: 52: 21.8, H-138 km., mbm4.8 

15, 83-01-17 
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21:31:03 UTC 
Impulsive Rayleigh event from outside the array 

BEG 1 iLR 21 : 31 : 10.00; 
BEG2 Inope rat ive 
BEG3 iLR 21: 31 : 09.57; 

BEG5 iLR 21:31:03.00 
BEG4 iLR 21: 31 : 05.22; 

Additional events on 82-01-17: 21:35:40 (unclear arrivals) 

16. 83-01-17 
22:12:31 UTC 
Explosion shot series from outside the array 

Additional events: 

83-01-17: 22: 18:55, 23:17:26, 23:21:55 
83-01-18: 23: 27: 10 
83-01-25: 17:52:12, 17:57:18, 18:57:48, 20:54:50 
83-01-26: 17:07: 18, 17: 10:00, 17: 13: 15, 17: 16: 50, 18:06:30 
83-01-28: 16:21:50, 16:29:03, 16:55:22, 17:02:38, 17: 12:04, 

17: 18: 22, 17: 47: 20, 17: 53: 40, 18: 00: 25, 18: 07: 12, 
18: 26: 23, 19: 06: 28, 19: 19: 54, 19: 26: 46 

17. 83-01-25 
22: 01 : 05.66 UTC, Velocity=255. m/sec 
Impulsive Rayleigh event 

BEG 1 iLR 22: 01 : 160 25; 
BEG2 iLR 22: 01 : 21 75; 
BEG3 iLR 22: 01 : 1 5 o 5 O ;  
BEG4 iLR 22: 01 :.11. 60; 
BEG5 iLR 22:01:09olO 

Additional events on 82-01-25: 17:28:38 and 21:54:46 (unclear arrivals) 

18. 83-02-03 
17: 32: 48.07 UTC, Velocity=330 m/sec 
Impulsive Rayleigh event from outside the array 

BEG1 iLR 17: 33: 44.72; 
BEG2 Inoperative 
BEG3 iLR 17: 33: 44.05; 
BEG4 iLR 17: 33: 40.15; 
BEG5 iLR 17: 33: 37.30 

190 83-02-04 
05:22:21.66 UCT, Velocity=335 m/sec 
Impulsive Rayleigh event 

BEG 1 iLR 05: 22: 52.30; 
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BEG2 iLR 05: 22: 42.49; 
BEG3 iLR 05: 22: 44.48; 
BEG4 iLR 05: 22: 39.07; 
BEG5 iLR 05:22:45.40 

Additional events on 83-02-04: 

04:22:40 - First event of a series of three (D=3 seconds). 
05:22:54 to 05:34:30 - Thirty-seven (37) events were recorded 
with an average peak-to-peak amplitude of millimeters. 

05: 34: 30 to 05: 38: 13 - Sixty-five (65) event; were recorded 
with an average peak-to-peak amplitude of 10 millimeters. 

05:47:43 - Ap-p-14 IIUII 

05:48:15 - Ap-p=ll mm 
05:48: 18 - Ap-p=14 mm 
05:49:17 - Ap-p=12 uuu 
05:49:26 - Ap-p= 7 
05:50:25 - Ap-p-14 mm 
05:51:26 to 06:08:26 - Two hundred and sixty-five (265) events 
were recorded with an average peak-to-peak amplitude of 15 
millimeters. 

06:12:07 - Ap-p= 5 UIIII 
08:00:17 - Ap-p= 7 mm 
08:01:08 - Ap-p= 4 mm 
08:Ol: 16 *- Ap-p= 5 ~mn 
08:06:26 - Ap-p= 7 

20. 83-02-04 
17:06:42 UTC 
Exploration shot series from outside the array 

Additional events: 

83-02-04: 17:10:00, 17:14:08, 17:24:50, 17:28:12, 20:00:43 
83-02-16: 20: 38: 40, 20: 44: 30, 20: 51: 10, 20: 55: 30, 20: 59: 15, 

83-02-22: 22: 45: 09, 22: 47: 53, 22: 54: 30, 23: 00: 08, 23: 04: 30, 
21:06:47, 21:15:48, 21:37:00, 21:46:32 

23:08: 35, 23: 12: 25, 23: 15: 55, 23: 20: 25, 23: 26: 13, 
23: 30: 26, 23: 35: 50, 23: 38: 05, 23: 44: 35, 23: 52 : 40 

16:25:30, 16:33:30; 16:54:47, 17:05:20, 18:05:10, 
18:41:00, 18:47:03, 18:52:38, 19: 15:52, 19:28:30, 
19:41:40, 19:54:12, 20:00:22, 20:57:15, 21:24:50, 
21: 58: 22, 22: 16: 40, 22: 22: 48, 22:33: 42, 22: 39: 56, 
23: 05: 27 

83-02-23: 15~22~42, 15~51~52, 16:06:00, 16:12:08, 16:19:30, 

83-02-24: 23:36:40, 2 3 ~ 4 2 ~ 0 0  
83-03-04: 15:52:55, 15:59:02, 16:06:00, 16:12:16, 16:18:20, 

16: 25:04, 16: 42: 38, 16: 53: 31, 17:07: 10, 17: 19: 23, 
17: 31: 32, 17: 40:06, 17: 45: 15, 17: 49: 17 

21. 83-02-15 
15:Ol: 15.30 UTC, Velocity=350 m/sec 
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Impulsive Rayleigh event from south of the array 

BEG 1 iLR 15: 01 : 41.85; 
BEG2 iLR 15: 01 : 39.50; 
BEG3 iLR 15: 01 : 36.50; 

BEG5 iLR 15: 01 : 33.00 
BEG4 iLR 15: 01: 30.65; 

Additional events on 83-02-04: 

04:22:40 - First event of a series of three (D=3 seconds) 

22. 83-03-08 
19:01:45 UTC 
Rayleigh event from distant quarry blast to the northwest 

Additional blasts: 

83-03-09: 01:12:29 

23. 83-03-23 
12:27:54.29 UTC, Velocity=345 dsec 
Impulsive Rayleigh events from southeast of the array center 

BEG 1 iLR 12:28: 11-90; 
BEG2 Inoperative 
BEG3 iLR 12: 28: 04.25; 
BEG4 eLR 12: 28: 01.20; 
BEG5 Inoperative 

Additional events: 

83-03-22: 03:30:43, 03:41:59, 03:42:13, 03:44:00 (possibly 5 others) 

24. 83-03-23 
17:02:10.22 UTC, Velocity=140 m/sec 
Impulsive Rayleigh event 

BEG1 iLR 17:02:23.70; 
BEG2 Inoperative 
BEG3 iLR 17 : 02 : 25 20; 
BEG4 LR 17: 02: 32.55; 
BEG5 iLR 17:02:19.30 

25. 83-03-23 
17:10:07 UTC 
Impulsive Rayleigh event from outside the array 

BEG 1 iLR 17: 10:07.00; 
BEG2 Inoperative 
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BEG3 Inoperative 
BEG4 iLR 17: 10: 11.70; 
BEG5 iLR 17: 10: 16.00 

I Additional Impulsive Rayleigh events: 

83-03-23: 17:22:16, 17:44:10, 18:03:03, 18:45:40, 18:49:29, 
19: 13: 12, 19: 15: 26, 19: 18: 32, 19: 28:49, 19: 29: 43, 
19: 32: 53 

26. 83-03-23 
19:34: 11.92 UTC, Velocity=175 m/sec 
Impulsive Rayleigh event 

BEG 1 iLR 19: 34: 25.22; 
BEG2 Inoperative 
BEG3 iLR 19: 34: 22.30; 
BEG4 iLR. 19: 34: 26.75; 
BEG5 iLR 19: 34: 16.60 

Additional Impylsive Rayleigh events: 

83-03-23: 19: 40: 18, 19: 42: 50, 19: 44: 45 

27. 83-03-23 
19:48:30.54 UTC, Velocity=l35 m/sec 
Impulsive Rayleigh event 

BEG1 iLR 19: 48: 44.70; 
BEG2 Inoperative 
BEG3 iLR 19: 48: 46.70; 
BEG4 iLR 19: 48: 54.10; 
BEG5 iLR 19: 48: 39.98 

Additional Impulsive Rayleigh events: 

83-03-23: 19:49:48, 19:52:24, 19:53:27 

28. 83-03-23 
19:59:17.64 UTC, Velocity-155 m/sec 
Impulsive Rayleigh event 

BEG 1 iLR 19: 59: 31 80; 
BEG2 Inoperative 

BEG4 iLR 19: 59: 35.30; 
BEG5 iLR 19:59:23.70 

BEG3 iLR 19:59:29.75; 

29. 83-03-23 
20:28:06.49 UTC, Velocity=195 m/sec 
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Impulsive Rayleigh event 

BEG 1 i L R  20: 28: 20.00; 
BEG2 Inopera t ive  
BEG3 i L R  20: 28: 13.70; 
BEG4 i L R  20: 28: 16.90; 
BEG5 iLR 20: 28: 11.10 

30. 83-03-25 
16:18:57.59 UTC, Velocity=185 m/sec 
Impulsive Rayleigh event  

BEG 1 iLR 16: 18Z59.50; 
BEG2 Inopera t ive  
BEG3 iLR 16: 19:06.80; 
BEG4 i L R  16: 19:09.00; 
BEG5 iLR 16: 19:07.30 

31. 83-03-28 
16:33:43.15 UTC, Velocity=225 d s e c  
Impulsive Rayleigh evept  

BEG 1 ILR 16:34:03.00; 
BEG2 Inopera t ive  
BEG3 i L R  16:34:08.00; 
BEG4 i L R  16: 34: 03.40; 
BEG5 iLR 16: 33: 56.60 

32. 83-03-29 
13:42:30.02 UTC, Velocity=225 m/sec 
Impulsive Rayleigh event  

BEG 1 i L R  13: 42: 36.80; 
BEG2 Inopera t ive  
BEG3 Inopera t ive  
BEG4 i L R  13:42:44.60; 
BEG5 iLR 13:42:41.90 

33. 83-03-29 
20:47:45 UTC 
Impulsive Rayleigh event from ou t s ide  the  a r r a y  

BEG 1 i L R  20:47:49.00; 
BEG2 Inopera t ive  
BEG3 Noisy 
BEG4 i L R  20: 47: 45.30; 
BEG5 Noisy 

Addit ional  events :  
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83-03-30: 17:15:04, 17~46~53, 17:48:.25, 17:49:10, 17:53:40, 17:55:20 

34. 83-05-02 
23:47:45 UTC 
Teleseism from Coalingua, Cal i forn ia  
OT=23: 42: 37.9 UTC, H=12 Km., mb=6.2 

83-05 -03 
04:53:21.01 UTC, Velocity = 349 meters/sec 
Impulsive Rayleigh event from the  chemical plant  southeast  of the  array 

BEG 1 i L R  04: 53: 47.50; 
BEG i L R  04: 53: 40.10; 
BEG3 i L R  04: 53: 40.40; 
BEG4 i L R  04: 53: 34.60; 
BEG5 Inoperat ive 

Addit ional  Impulsive Rayleigh events:  

83-05-03: 13~42: 19, 13:42:23, 13:42:40, 13:42:51, 13~43~21, 
13: 43: 42, 13: 44:04, 13: 44: 22, 13: 45: 02, 13: 45: 19, 
13: 45: 53, 13: 46: 16, 13: 48: 48, 13: 48: 49, 13: 48: 51, 
13:49:06 

35. 83-05-05 
07:39:27 UTC 
Teleseism from south of Panama 
OT=07:33:46.3 UTC, H=ll km., mbz5.5 

36. 83-05-05 
18:57:46 UTC 
Impulsive Rayleigh event from outs ide  the a r r ay  

BEG 1 i L R  18:57:47.50; 
BEG2 Noisy Y 

BEG3 iLR 18: 57: 47.00; 

BEG5 Inoperat ive 

Addit ional  Impulsive Rayleigh events:  

BEG4 i L R  18: 57: 53.50; 

83-05-05: 20:59:23, 23:37:14 

37. 83-05-09 
15:58:20 UTC 
Teleseism from the  Panama-Costa Rica border region 
OT=15:53:02.7 UTC, H-36 Km., mb=5.7 
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83-05-09 
21:02:05 UTC 
Explosion shot series from northeast of the array 

Additional Explosion shots: 

83-05-09: 21: 07: 00, 21: 12: 50, 21: 17: 20, 21: 25: 30, 21: 30: 50, 21: 35: 40, 

83-05-10: 13: 35: 20, 22: 03: 00 
83-05-11: 16:42:37, 17:13:50, 17:20:52, 18:55:30, 18:59:40, 19:04:20, 

23: 31 : 08, 23: 35: 30 
83-05-12: 21:06:44, 21: 17: 40, 21: 21:35, 21:39: 40, 21:45:02, 21: 49: 30, 

21:54:54, 22:06:00, 22:08:51, 22:12:00, 22:14:50, 22:37:37, 
22: 44: 01 , 22: 47: 18 

21:40:92, 21:57:40, 22:03:00 

38. 83-05-09 
21:55:52.72 UTC, Velocity = 347 meters/sec 
Impulsive Rayleigh event from near the geopressured/geothermal well 

BEGl iLR 21:56: 11.80; 

BEG3 iLR 21 : 56 : 04.70; 
BEG4 iLR 21:55:58.80; 
BEG5 Inoperative 

BEG2 iLR 21:56:05.75; 

39. 83-05-09 
23:51:00 UTC 
Impulsive Rayleigh event from outside the array 

BEG 1 iLR 23: 51: 12.50; 
BEG2 iLR 23: 51 : 14.00; 
BEG3 iLR 23:51:11.30; 

BEGS Inoperative 
BEG4 iLR 23:51:09.75; 

Additional Impulsive Rayleigh events: 

83-05-09: 23:57:00 

40. 83-05-10 
00:24:10 UTC 
Impulsive Rayleigh event from outside the array 

BEGl iLR 00: 24: 14.00; 
BEG2 iLR 00:24:24.20; 
BEG3 iLR 00:24: 17.50; 
BEG4 iLR 00: 24: 18.30; 
BEGS Inoperative 

41. 83-05-10 
00:31:00 UTC 
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Impulsive Rayleigh event  from ou t s ide  the  a r r a y  

BEGl iLR 00: 31 : 16.10; 
BEG2 iLR 00: 31 : 16.15; 
BEG3 iLR 00: 31 : 12.30; 
BEG4 ILR 00:31:11.60; 
BEG5 Inope rat i v e  

Addi t iona l  Impulsive Rayleigh events :  

83-05-10: 13: 16:Ol 

42. 83-05-19 
15:36:11 UTC 
Explosion s h o t  series from ou t s ide  the  a r r a y  

Addi t iona l  Explosion shots :  

83-05-19: 15:41:58, 15:47:28, 15:52:59, 15:59:02, 16:04:19, 16: 17:59, 
16:26:16, 16:32:01, 16:41:20, 16:54:16, 17:05:20, 17:12:09, 
17: 30: 52, 19: 39: 45 , 20 : 10 : 38, 20 : 31 : 59, 21 : 01 : 00, 21 : 27 : 46, 
22:50:45, 22:54:23, 23:37: 13, 23:55:58, 23:59:58 

43. 83-05-20 
06:12:31.14 UTC, Veloci ty  = 355 meters/sec 
Impulsive Rayleigh event  from the  chemical p lan t  southeas t  of the a r r ay  

0 

BEGl iLR 06: 12: 49.90; 
BEG2 iLR 06: 12: 40.90; 
BEG3 iLR 06: 12: 42.48; 
BEG4 i L R  06: 12: 38.30; 
BEG5 Inopera t ive  

44. 83-06-01 
01:55:45 UTC 
Teleseism from Mindoro, Phi l ipp ine  I s l ands  
OT=01:37:00.7 UTC, H=260 Km., mb-5.5 

45. 83-06-02 
20:20:28 and 20:21:56 UTC 
Teleseism from t h e  Peru-Brazil border reg ion  
OT=20:12:51.3 UTC, H=607 Km., mb-5.9 

46. 83-06-20 
14:57:42 UTC 
Explosion shot  series from ou t s ide  the  a r r a y  

'Addi t ional  Explosion sho t s :  
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83-06-20: 15:03:31, 15:08:09, 15: 13:31, 17:21:43, 17:25:59, 18:49:41, 
19:20:08, 19:27:50, 19:29: 10, 20:53:00, 21:03:43, 21:29:49, 
21:43:43, 21:55:18, 22:03:01, 22:14:28, 22:19:59, 22:36:31, 
22: 49: 38, 22: 54: 39, 22: 58: 55, 23: 03: 51, 23: 08: 21 , 23: 13: 04, 
23: 17: 51, 23: 22: 44, 23: 36: 33, 23: 41 : 45, 23: 47: 44, 23: 57: 03 

14: 36: 36, 14: 42: 15, 14: 47: 55, 15: 40: 18, 15: 56: 44 

20:08:50, 20:20:39, 21:28:09, 21:27:20, 21:30:51, 21:32:56, 
21: 32: 47, 21 : 36: 34, 21 : 40: 35, 21 : 48: 54 , 21 : 53 : 10, 21 : 56: 14, 
22:01:39, 22:02:46, 22:08:42, 22:10:35, 22:23:19, 22:38:39, 
22:58:16, 23:01:04, 23:04:21, 23:13:39 

83-06-28: 00: 59: 51, 01: 04: 50, 01 :09: 12, 01: 28: 17, 17: 15:01, 17: 27: 59, 
17: 31 :01, 17: 50: 34, 17: 57: 15, 18: 01 : 15, 18: 06: 16, 18: 13: 26, 
19: 24: 47 a 20: 26: 45 , 21 : 01 : 35, 21 : 09 : 10, 21 : 20 : 16, 22 : 12 : 24, 
22:15:35, 22:19:13, 22:22:58, 22:55:37, 23:01:04, 23:05:44 

83-06-29: 00: 52: 58, 00: 57: 28, 01 : 07 : 38, 01 : 11 : 00, 01 : 14: 42, 01 : 17: 39, 
01 : 20: 42 , 01 : 28: 24 

83-06-30: 17: 05: 57, 18: 05: 52, 18: 31 : 13, 18: 29: 49, 18: 48: 00, 18: 55:04 

83-06-21 : 00: 03: 37, 00: 08: 54, 00: 15: 35, 00: 21 : 20, 00: 32: 20, 00: 36: 07, 

83-06-27: 19:39:37, 19:46:31, 19:48:07, 19:53:37, 19:55:35, 20:02:23, 

47. 83-07-06 
00:06:50 UTC 
Explosion shot series from outside of the array 

Additional Explosion shots: 

83-07-06: 00:13:55, 00:18:55, 02:58:30 
83-07-07: 19:34:02, 19:52:11, 19,55,44, 19,58:51, 20:13:11, 20:19:40, 

20: 47: 12, 21: 28: 01, 21 : 35: 25, 21 : 44: 45, 21: 47: 28, 21 : 54: 40, 
22:06:23, 22:08:51, 22:12:46, 22:16:21, 22:29:54, 22:33:39, 
22:40:28, 22:43:26, 22:46:36, 22:56:27, 22:56:40, 23:01:10, 
23: 04: 30, 23: 08: 30, 23: 39: 08, 23: 43: 02, 23: 50: 12, 00: 03: 32, 
00:06:50, 00:10:15, 00:42:15, 00:45:48, 00:49:45, 00:52:15, 
00:58:10, 01:01:00, 01:03:17, 01:37:50 

48. 83-07-07 
19:36:05.8 UTC - 

Large Impulsive Rayleigh event, Velocity = 500 meters/second 
Md = 0.5 ’ 

BEG 1 iLR 19: 36: 17.60; 
BEG2 iLR 19: 36: 08.30; 

BEG4 Inoperative ; 
BEG3 iLR 19: 36: 12.80; 

BEG5 iLR 19: 36: 13.10 

49. 83-07-07 
22: 54: 49.2 UTC 
Impulsive Rayleigh event from inside the array, Velocity = 400 
meters/second 
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BEG 1 iLR 22: 55: 06.00; 
BEG2 i L R  22: 54: 57.00; 

BEG4 Inopera t ive ;  
BEG5 iLR 22: 55: 01.50 

BEG3 iLR 22:54:59.50; 

50. 83-07-11 
20:16:20 UTC 
Explosion shot  series from ou t s ide  of the  a r r a y  

Addi t iona l  Explosion shots :  

83-07-11: 20: 16: 42, 20: 32: 49, 20: 59: 50, 21:04:40, 21:07: 36, 21: 11:50, 
21:11:57, 21:13:08, 21:26:58, 21:51:53, 21:59:43, 22:42:12, 
22:45:39, 23:07:39, 23:11:00, 23:14:54, 23:17:52, 23:25:46, 
23: 50: 25, 23: 55: 56 

00:27:04, 00:30:01, 00:33:04 
83-07-12: 00:01:05, 00:06:17, 00:09:10, 00:13:20, 00:17:33, 00:24:05, 

51. 83-07-26 
15:30:41 UTC 
Explosion shot  series from ou t s ide  of the a r r a y  

Addi t iona l  Explosion shots :  

83-07-26: 15:42:46, 15:50:16, 16:16:28, 16:24:11, 16:38:40, 16:45:23, 
17:55:16, 17:55:45, 18:09:05, 18:15:03, 18:48:25, 19:22:21, 
19: 30: 02, 19: 34: 12 

22: 12:03, 22: 20: 15, 22: 29: 16, 22: 42: 51 , 23: 27: 28, 23: 38: 44, 
23: 41: 58, 23: 57: 57 

00:40:34, 00:40:31, 00:49:51, 00:58:52, 01:34:28, 01:58:08 

83-07-27: 17: 20: 50, 1 8 ~ 5 4 :  35, 19: 24: 39, 19: 42:23, 19: 48: 31, 22~08 :  28, 

83-07-28: 00:09:09, 00: 1 7 ~ 5 7 ,  00:20:59, 00:23:55, 00:34:47, 00:34:53, 

52. 83-07-26 
18: 16: 20 UTC 
Emergent Rayleigh event  from ou t s ide  the  a r r a y  

BEG 1 i L R  18: 16: 32.20; 

BEG3 iLR 18: 16: 27.10; 

BEG5 Inopera t ive  

BEG2 ILR 18: 16: 33.50; 

BEG4 i L R  18: 16: 27.10; 

53. 83-07-26 
18: 19:36 UTC 
Emergent Rayleigh event  from ou t s ide  the a r r a y  

BEG 1 iLR 18: 19: 41 60; 
BEG2 iLR 18: 19: 44.50; 
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BEG3 iLR 18: 19: 44.50; 

BEG5 Inopera t ive  
BEG4 iLR 18: 19: 27.30; 

54. 83-07-26 
19: 13: 38.8 UTC 
Emergent Rayleigh event from outs ide  

BEG 1 i L R  
BEG2 i L R  
BEG3 iLR 
BEG4 iLR 
BEG5 

19: 13: 47.40; 
19: 13: 41 . 45; 

19: 13: 41.30; 
Inopera t ive  

19: 13: 38.00; 

55. 83-07-26 
19: 14: 31.1 UTC 
Emergent Rayleig.. event from i n s i d e  
meters/second 

BEG 1 i L R  19: 14: 45.60; 
BEG2 i L R  19: 14: 39.20; 
BEG3 iLR 19: 14: 39.45; 

BEGS Inopera t ive  
BEG4 i L R  19: 14: 37.00; 

56. 83-07-26 
19:20:40 UTC 
Emergent Rayleigh event from outs ide  

the a r r ay  

he a r r ay ,  Veloci ty  = 250 

the a r r a y  

BEG 1 i L R  19: 20: 49.50; 

BEG3 i L R  19: 20: 42.80; 
BEG4 i L R  19: 20: 40.50; 
BEG5 Inopera t ive  

BEG2 i L R  19:20:42.20; 

57. 83-08-02 
20:38:51 UTC 
Explosion shot  series from ou t s ide  of the  a r r a y  

Addit ional  Explosion shots :  

83-08-02: 21:09:11, 21:22:32, 21:54:00, 22:28:40, 23:25:29, 23:54:12, 
23:58:58, 00:09:57, 00:14:56, 00:19:06, 00:23:33, 00:28:05, 
00: 32: 31, 00: 38: 48, 00: 48: 58, 00: 55: 18 

83-08-03: 14:28:53, 14:36:38, 14:49:09, 15:10:42, 15:20:26 

58. 83-08-04 
03:09: 57.8 UTC 
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Impulsive Rayleigh event from outside the array 

BEG 1 iLR 03: 10: 18: 15; 
BEG2 iLR 03: 10: 16.00; 
BEG3 iLR 03: 10: 20.50; 
BEG4 Inoperative; 
BEG5 iLR 03: 10: 26.10 

59. 83-08-04 
03: 13: 11.1 UTC 
Impulsive Rayleigh event, Velocity = 125 meters/second 

BEG 1 iLR 03: 13: 33.30; 
BEG2 iLR 03: 13: 32.40; 

BEG4 Inoperative; 
BEG3 iLR 03: 13: 36.20; 

BEG5 iLR 03:13:41.90 

60. 83-08-04 
03: 32: 58.7 UTC 
Impulsive Rayleigh event, Velocity = 350 meters/second 

BEG 1 iLR 03: 33: 06.80; 

BEG3 iLR 03: 33;02.10; 
BEG4 Inoperative; 
BEG5 iLR 03: 33: 02.40 

BEG2 iLR 03:33:08.80; 

61. 83-08-04 
03:33:41.6 UTC 
Impulsive Rayleigh event, Velocity = 275 meterslsecond 

BEG 1 iLR 03:33:56.00; 
BEG2 ILR 03: 33: 55.20; 
BEG3 iLR 03:33:49.70; 
BEG4 Inoperative; 
BEG5 iLR 03: 33: 48.10 

62. 83-08-04 
03: 34: 21.1 UTC 
Impulsive Rayleigh event, Velocity = 350 meters/second 

BEG1 iLR 03: 34: 28.00; 
BEG2 iLR 03: 34: 29.50; 
BEG3 iLR 03: 34: 22.00; 
BEG4 Inoperative; 
BEG5 iLR 03: 34: 27.40 
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63. 83-08-04 
03: 35: 02.7 UTC 
Impulsive Rayleigh event ,  Velocity = 350 meters/second 

BEGl i L R  03: 35: 08.50; 
BEG2 i L R  03: 35: 12.20; 
BEG3 iLR 03: 34: 04.90; 
BEG4 Inoperat ive;  
BEG5 iLR 03:35:08.40 

64. 83-08-04 
03: 36: 05.1 UTC 
Impulsive Rayleigh event ,  Velocity = 350 meters/second 

BEGl iLR 03: 36: 18.10; 

BEG3 i L R  03: 36: 13.60; 
BEG4 Inoperat ive;  
BEG5 iLR 03: 36: 09.50 

BEG2 i L R  03: 36: 19.20; 

65. 83-08-04 
19:22:26.6 UTC 
Impulsive Rayleigh event ,  Velocity=325 meters/second 

BEG 1 iLR 19: 22: 40.75; 
BEG2 i L R  19: 22: 35.10; 
BEG3 iLR 19: 22: 38.90; 
BEG4 iLR 19: 22: 44.20; 
BEG5 Inopera t ive  

66. 83-08-04 
20: 01 : 32.8 UTC 
Impulsive Rayleigh event ,  Velocity = 375 meters/second 

BEG 1 iLR 20: 01 : 45.50; 
BEG2 iLR 20: 01 : 42.90; 

BEG4 i L R  20: 01 : 33.40; 
BEG5 Inopera t ive  

BEG3 i L R  20: 01 : 33.40; 

67. 83-08-04 
21:07:49.7 UTC 
Impulsive Rayleigh event ,  Velocity = 100 meters/second 

BEGl i L R  20:08: 11.20; 
BEG2 i L R  20: 08: 23.50; 

BEG4 Inoperat ive;  
BEG5 Inoperat ive 

BEG3 i L R  2 0 ~ 0 8 :  16.25; 
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68. 83-08-04 
21:51:46.5 UTC 
Impulsive Rayleigh event ,  Velocity = 100 meters/second 

BEG 1 i L R  21:52:07.15; 
BEG2 iLR 21:52:14.00; 
BEG3 i L R  21 : 52 : 07.20; 
BEG4 iLR 21:52:04.20; 
BEG5 Inoperat ive 

69. 83-08-05 
06:30:00 UTC 
Teleseism from western Braz i l  
OT = 06:21:42.4 UTC, H = 21 Km., mb = 5.5 

70. 83-08-09 
11:44:50.4 UTC 
Impulsive Rayleigh event ,  Velocity = 250 meters/second 

BEG 1 1 1 : 44 : 5 7 0 0 ; 
BEG2 i L R  11:45:05.70; 

i L R  

BEG3 i L R  11:45:02.30; 

BEG5 Inopera t ive  
BEG4 i L R  11:45:06.45; 

71. 83-08-09 
11:53:42.3 UTC 
Impulsive Rayleigh event ,  Velocity = 100 meters/second 

BEG1 i L R  1 1 ~ 5 4 :  18.80; 
BEG2 iLR 11:54: 15.80; 
BEG3 i L R  11:54: 13.10; 
BEG4 iLR 11:54:07.80; 
BEG5 Inopera t ive  

72. 83-08-09 
16:32:38 UTC 
Impulsive Rayleigh event from outs ide  the  a r r ay  

BEG 1 iLR 16: 32: 45.60; 
BEG2 iLR 16: 32: 43.70; 
BEG3 iLR 16: 32: 48.00; 
BEG4 iLR 16: 32: 52.30; 
BEG5 Inopera t ive  

73. 83-08-10 
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17: 19: 24.5 UTC 
Impulsive Rayleigh event, Velocity = 300 meters/second 

BEG 1 iLR 17: 19: 37.30; 

BEG3 ILR 17: 19: 36.10; 
BEG4 iLR 17: 19:41.00; 
BEG5 Inoperative 

BEG2 iLR 17: 19: 32.10; 

74. 83-08-11 
16: 12: 15.2 UTC 
Impulsive Rayleigh event, Velocity = 375 meters/second 

BEG 1 iLR 16: 12:33. 10; 
BEG2 iLR 16:12:31.60; 
BEG3 iLR 16: 12: 28.10; 
BEG4 iLR 16: 12: 22.60; 
BEG5 Inoperative 

75. 83-08-11 
16: 12: 56.9 UTC 
Impulsive Rayleigh event, Velocity = 350 meters/second 

BEG 1 iLR 16: 13: 20.00; 
BEG2 iLR 16: 13: 17.10; 
BEG3 iLR 16: 13: 14.40; 

BEG5 Inoperative 
BEG4 iLR 16: 13:08.20; 

76. 83-08-11 
16: 13:43.3 UTC 
Impulsive Rayleigh event, Velocity = 350 meters/second 

BEG 1 iLR 16: 13:59.50; 
BEG2 ILR 16: 13: 56.10; 
BEG3 ILR 16: 13: 53.40; 
BEG4 ILR 16: 13: 48.20; 
BEG5 Inoperative 

77. 83-08-11 
16:15:00 UTC 
Impulsive Rayleigh event from outside the array 

BEG 1 iLR 16: 15: 11.55; 
BEG2 iLR 16: 15: 07.80; 

BEG4 iLR 16: 14.59.50; 
BEG3 iLR 16: 15: 05.80; 
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BEG5 Inopera t ive  

78. 83-08-11 
17:04:03.9 UTC 
Impulsive Rayleigh event from outs ide the a r ray ,  Velocity = 350 
meters/second 

BEG 1 iLR 17: 04: 42.60; 
BEG2 i L R  17:04:54.40; 

BEG4 iLR 17: 04: 47.60; 
BEG5 Inopera t ive  

BEG3 i L R  17:04:47.20; 

79. 83-08-11 
17: 13: 55.1 UTC 
Impulsive Rayleigh event ,  Velocity = 350 meters/second 

BEG 1 i L R  17: 14:08.40; 
BEG2 ILR 17: 14: 14.90; 
BEG3 i L R  17: 14: 07.80; 
BEG4 i L R  17: 14: 06.50; 
BEG5 Inopera t ive  

80. 83-08-16 
12:56:20 UTC 
Acoustic-coupled Rayleigh event or Sonic Boom 

BEG1 iLR 16: 12: 33.10; 
BEG2 iLR 16: 12:31.60; 
BEG3 i L R  16:12:28.10; 
BEG4 iLR 16: 12:22.60; 
BEG5 Inopera t ive  

Addit ional  acoustic-coupled Rayeigh events :  

83-09-06: 21:02:00 

81, 83-08-17 
11:07:28 UTC 

OT = 10:55:52.8 UTC, H - 55 Km., mb = 6.5 
I Teleseism from near the  coast  of Kamchatka 
I 

82, 83-08-24 
22:18:10 UTC 
Explosion shot  series from outs ide  the  a r r ay  
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Additional Explosion shots: 

83-08-24: 21:29:15, 22:30:50, 22:59:50, 23~13~05, 23~14~50, 23:17:30, 
23: 20:00, 23: 23: 30, 23: 31 :40, 00: 12: 50, 00: 16: 30, 00: 19: 50, 
00:20:30, 00:31:15, 00:34:20, 00:38:00, 00:44:05, 00:47:20 

83-08-25: 14:29: 12, 14:47:00, 14~50~50, 14~57~40, 15:00:50, 15~08~35, 
15: 12: 50 

83. 83-08-29 
14:35:04 UTC 
Explosion shot series from outside the array 

Additional Explosion shots: 

83-08-29: 14: 54: 47, 15.: 02: 12, 15: 19: 04, 15: 53: 14, 16: 00: 40, 16: 29: 50, 
16: 39: 30, 17: 02: 20, 17: 10: 20, 17: 19: 35, 17: 21: 18, 17: 24: 20, 
17: 27: 12, 17: 27: 30, 17: 30: 30, 17: 40: 38, 17: 50: 10, 17: 55: 33, 
18:02:10, 18:06:09, 18:17:40, 18:20:25, 18:22:52, 18:23:20, 
18: 30: 40, 19: 33: 10, 19: 36: 06, 19: 39: 39, 19: 41 : 12, 20: 19: 14, 
20:21:32, 20:22:13, 20:26:23, 20:30:40, 20:35:01, 20:42:30 

22: 36: 00, 22: 50: 45, 22: 54 : 32, 22 : 59: 06, 23 : 00: 20, 23: 02 : 20, 
23:04: 30, 23: 10: 45, 23: 14: 12, 23: 18: 32 

15:59:34, 16:02:45, 16:06:00, 16:34:30, 16:43:20, 16:58:30, 
18:31:40, 19:14:55, 19:20:23, 19:23:00, 20:59:00, 21:05:10, 
21:09: 10 

17: 59: 40, 18: 02: 05, 19: 02: 32, 19: 40: 48, 19: 45: 30, 19: 47: 00, 
19:51:00, 19:56:50, 20:23:30, 20:28: 15, 20:34:50, 20:36:50, 
20:39:40, 20:41:20, 20:51:50, 21:37:50, 21:41:50, 21:43:20 

83-09-02 16:lO: 10, 16:17:02, 16:22:40, 16:28:50, 16:38:05, 16:44:40, 
17:07: 50, 17: 35: 26, 17: 59: 40, 18: 14: 30, 18: 21: 10, 18: 30: 15, 
18:37: 10, 19:01:25, 19:10:00, 19:24:15, 19:33:10, 19:45:50, 
19:59:00, 29:04:02, 20:24:30, 20:34:10, 20:59:50, 21:06:50 

83-08-30.: 21:13:53, 21:40:55, 21:48:50, 22:16:20, 22:20:40, 22~26~30, 

83-08-31 : 14: 48: 09, 15: 06: 44, 15: 24: 22, 15: 31 : 10, 15: 50: 55, 15: 57: 00, 

83-09-01 16: 38: 50, 16: 46: 16, 16: 50: 56, 16: 56: 20, 17: 01 : 00, 17: 11 : 40, 

84. 83-09-06 
20: 46: 53.5 LJTC 
Impulsive Rayleigh event, Velocity = 275 meters/second 

BEG1 iLR 20: 47: 08.80; 
BEG2 iLR 20:47:07.90; 
BEG3 Inoperative ; 
BEG4 iLR 20: 47: 01.30; 
BEG5 iLR 20: 46: 59.50 

85. 83-09-07 
01 : 14: 44.2 UTC 
Impulsive Rayleigh event, Velocity = 200 merers/second 
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BEG 1 iLR 01:15:05.40; 
BEG2 iLR 01 : 14: 52.90; 
BEG3 Inoperative; 
BEG4 iLR 01 : 15: 05.40; 
BEG5 iLR 01: 14: 53.10 

86. 83-09-07 
19:30:35 UTC 
Teleseism from southern Alaska 
OT = 19:22:04.8 UTC, H = 42 Km., mb = 6.2 

87. 83-09-08 
22:26:13 UTC 
Teleseism from the Ionian Sea 
OT = 22:04:51.0 UTC, H = 10 Km., mb = 5.1 

88. 83-09-09 
01:34:43.7 UTC 
Impulsive Rayleigh event, Velocity = 325 meters/second 

BEG 1 iLR 01 : 35: 03.40; 

BEG3 Inoperative; 
BEG4 Inoperative; 
BEG5 iLR 01 : 34: 51.40 

BEG2 iLR 01: 34: 54.60; 

89. 83-09-08 
01:35:48.3 UTC 
Impulsive Rayleigh event, Velocity = 100 meters/second 

BEG 1 iLR 01 : 36: 19.50; 

BEG3 inoperative; 
BEG2 iLR 01 : 36: 10.40; 

BEG4 iLR 01:36: 13.80; 
BEG5 iLR 01:36:07.20 

90. 83-09-09 
02: 51 : 04.8 UTC 
Impulsive Rayleigh event, Velocity = 100 meters/second 

BEG 1 iLR 02: 51 : 36.20; 
BEG2 iLR 02: 51 : 27.25; 
BEG3 Inoperative; 
BEG4 iLR 02:51:30.00; 
BEG 5 ILR 02: 51: 24.10 
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91. 83-09-09 
03: 00: 56.0 UTC 
Impulsive Rayleigh event, Velocity = 100 meters/second 

BEG 1 i L R  03: 01 : 26.70; 

BEG3 Inoperative; 
BEG2 i L R  03: 01 : 18.80; 

BEG4 i L R  03:01:21.80; 
BEGS iLR 03:01:15.20 

92. 83-09-09 
10:34:20 UTC 
Teleseism from near the coast of Nicaragua 
OT = 10:29:56.1 UTC, H = 73 Km., mb = 4.9 
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APPENDIX B 

SYNTHETIC SEISMOGRAMS BASED ON THE PLEASANT BAYOU EARTH MODEL 
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Crustal structure model used to calculate synthetic seismograms for the 
Pleasant Bayou vicinity. Asterisks indicate source depths used for modeling. 
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Figure B3. Synthetic seismogram calculated for source d i p  45 ' ,  source depth 0.0 km. 
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Figure B4. Synthetic seismogram calculated for source d i p  4 5 ” ,  source depth 0.0 km 
and convolved with instrument transfer function. 
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Figure B5. Synthetic seismogram calculated for source dip 45" ,  source depth 0.3 km. 
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Figure B6. 
and convolved with instrument transfer function. 

Synthetic seismogram calculated for source d i p  4 5 " ,  source depth 0.3 km 
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Figure B7. Synthetic seismogram calculated for source dip 45" ,  source depth 0.8 km. 

B-9 



t 10 SECONDS I 
RECEIVER RANGE- 1 KM 

2 KM 

3 KM 

4 KM 

5 KM 

6 KM 

7 KM 

8 KM 

9 KM 

10 KM 

1 

Figure B8. 
and convolved with instrument transfer function. 

Synthetic seismogram calculated for source dip 4 5 " ,  source depth 0.8 km, 
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Figure B9. Synthetic seismogram calculated for source d i p  45 ' ,  source depth 1.0 km. 
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Figure B11. Synthetic seismogram calculated for source d i p  45" ,  source depth 1.3 km. 
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Figure B12. Synthetic seismogram calculated for source dip 45",  source depth 1.3 km, 
and convolved with instrument transfer function. 
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Figure B10. Synthetic seismogram calculated for source. dip 45", source depth 1.0 km, 
and convolved with instrument transfer function. 
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Figure B13. Synthetic seismogram calculated for source dip 45" ,  source depth 1.8 km. 
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Figure B14. Synthetic seismogram calculated for source d i p  45', source depth 1.8 km, 
and convolved with instrument transfer function. 
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Figure B15. Synthetic seismogram calculated for source d i p  4 5 " ,  source depth 2.8 km. 
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Figure B16. Synthetic seismogram calculated for source dip 4 5 " ,  source depth 2.8 km, 
and convolved with instrument transfer function. 
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Figure B17. Synthetic seismogram calculated for source d i p  4 5 O ,  source depth 3.8 km. 
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Figure B18. Synthetic seismogram calculated for source dip 45" ,  source depth 3.8 km, 
and convolved with instrument transfer function. 
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Figure B19. Synthetic seismogram calculated for source d i p  90°, source depth 0.0 km. 
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Figure B20. Synthetic seismogram calculated for source dip 90°,  source depth 0.0 km, 
and convolved with instrument transfer function. 
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Figure B21. Synthetic seismogram calculated for source dip go", source depth 0.3 km. 

B-23 



I 10 SECONDS I 
RECEIVER RANGE- 1 KM 

3 KM 

4 KM 

5 KM 

1 6 KM 

7 KM 
1 
I r . l l . l I , . .  

8 KM 

10 KM 

1 

Figure B22. Synthetic seismogram calculated for source d i p  90°, source depth 0.3 km, 
and convolved with instrument transfer function. 
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Figure B23. Synthetic seismogram calculated for source d i p  90°,  source depth 0.8 km. 
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Figure B24. Synthetic seismogram calculated for source dip go", source depth 0.8 km, 
and convolved with instrument transfer function. 
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Figure B25. Synthetic seismogram calculated for source dip go", source depth 1.0 km. 



Figure B26. Synthetic seismogram calculated for source d i p  go", source depth 1.0 km, 
and convolved with instrument transfer function. 
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Figure B27. Synthetic seismogram calculated for source d i p  go", source depth 1 .3  km. 
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Figure B28. Synthetic seismogram calculated for source dip go", source depth 1.3 km, 
and convolved with instrument transfer function. 
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Figure B29. Synthetic seismogram calculated for source d i p  go", source depth 1.8 km. 
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Figure B30. Synthetic seismogram calculated for source d i p  9 0 ° ,  source depth 1.8 km, 
and convolved with instrument transfer function. 
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Figure B31. Synthetic seismogram calculated for source dip go", source depth 2.8 km. 
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Figure B32. Synthetic seismogram calculated for source dip 9 0 ° ,  source depth 2.8 km, 
snd convolved with instrument transfer function. 
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Figure B33. Synthetic seismogram calculated for source d i p  90°, source depth 3.8 km. 
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Figure B34. Synthetic seismogram calculated for source dip 90° ,  source depth 3.8 km, 
and convolved with instrument transfer function. 
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Figure B35. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  4S0, source depth 0.3 km, receiver range 2 km. 
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Figure B36. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source dip 4 S 0 ,  source depth 0.3 km, receiver range 5 km. 
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Figure B37.  Multiple f i l ter  analysis of the synthetic seismogram calculated for 
source d i p  4 5 " ,  source depth 0 . 3  km, receiver range 8 km. 
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Figure B38. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  4 5 " ,  source depth 0.8 km, receiver range 2 km. 
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Figure B39. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  45",  source depth 0.8 km, receiver range 5 km. 
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Figure B40. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  45O, source depth 0.8 km, receiver range 8 km. 
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Figure B41. Multiple f i l ter  analysis of the synthetic seismogram calculated for 
source dip 45", source depth 2.8 km, receiver range 2 km. 
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Figure B43. Multiple filter analysis of the synthetic seismogram calculated for 
source dip 45' ,  source depth 2.8 km, receiver range 8 km. 
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Figure B44. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  45', source depth 3.8 km, receiver range 2 km. 
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Figure B45. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  4 S 0 ,  source depth 3.8 km, receiver range 5 km. 
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Figure B46. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  4S0 ,  source depth 3.8 km, receiver range 8 km. 
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Figure B47. Multiple f i l ter  analysis of the synthetic seismogram calculated for 
source d i p  go", source depth 0.3 km, receiver range 2 km. 
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Figure B48. Multiple f i l t e r  analysis of the synthetic calculated for 
source d i p  go", source depth 0 .3  km, receiver range 5 km. 
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90°, source depth 0.3 km,. receiver range 8 km. 
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Figure B50. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  90°,  source depth 0.8 km, receiver range 2 km. 
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Figure B51. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  90°, source depth 0.8 km, receiver range 5 km. 
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Figure B52. Multiple f i l t e r  analysis of the synthetic 
source d i p  go", source depth 0.8 km, receiver range 8 km. 
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Figure B53. Multiple  f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  90°, source depth 2.8 km, receiver range 2 km. 
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Figure B54. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  go", source depth 2.8 km, receiver range 5 km. 
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Figure B55. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  90°,  source depth 2.8 km, receiver range 8 km. 
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Figure BS6. Mult ip le  f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  go", source depth 3.8 km, receiver range 2 km. 
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Figure B57. Multiple f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  go", source depth 3.8 km, receiver range 5 km. 

B-59 



I 

1 0 9  8 7 6 5 4 3 2 1.5 

FREQUENCY ( H Z )  

Figure B58. Multiple  f i l t e r  analysis of the synthetic seismogram calculated for 
source d i p  90°,  source depth 3.8 km, receiver range 8 km. 
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