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ABSTRACT

Seismological monitoring of the Chocolate Bayou region of Brazoria County,
Texas, in the vicinity of the DOE Pleasant Bayou geopressured/geothermal design well
has resulted in significant improvement in assessing the potential seismological
hazards and risks associated. with the development of this alternative energy
resource.. Since the inception of the monitoring program in 1978, there have been
four periods during which significant volumes of brine have been produced from the
Pleasant Bayou No. 2 well and. subsequently reinjected into the Pleasant Bayou No. 1
well. Continuous seismic monitoring and analyses of the data through September 1983
have resulted in the following observations and conclusions. (1) The temporal
distribution of seismic events from 1978 through 1983 is not uniform. There is a
pronounced increase in the frequency of occurrence of microearthquakes in the latter
half of 1981. (2) Because the increased seismicity follows the Phase I short-term
flow test with a delay of over two hundred days and occurs both during and following
the. aborted Phase II long-term flow test, the exact causality relationship between
brine production and/or disposal and induction of microearthquakes is unclear. The
coincidence of onset of seismicity and times of brine production and the absence of
seismicity in 1982 following a fourteen—month shut-in strongly suggest the existence
of a correlation, however. Seismic activity resumed late March 1583 following the
re-initiation .of the Phase II: long-term flow. test in September 1982, therefore

adding support for a hypothesized delayed strain-release response of the local

geologic column to the stress perturbation. induced by the design well production.

(3) Microearthquakes occurring in the Gulf Coast region have previously been

divided into two separate groups of events. - Type I. event is typical micro-

earthquake in character, - composed of well-defined body waves and surface waves.

These events are observed to propagate across the monitoring array at P-wave veloc~

ity. Type Il events propagate at. very low velocities (<400 m/sec) and contain no

identifiable body phases. Since the increase in frequency of occurrence of both

event types during and following well production indicates that they afe in some way .

production related, it is important to determine their origin and mode of propaga-
tion. To resolve some of the uncertainties associated with these events, in par-
ticular the question of focal depth, synthetic seismograms were calculated by modal
summation based on a Gulf Coast earth model. Comparison of time domain and fre-

quency domain observed and synthetic signals has offered strong evidence that focal

Keywords: Microseismic monitoring, geopressured/geothermal energy, Chocolate
Bayou, Texas
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depth 1is one distinguishing factor between these two event types. Type II events
originate at depths less than 800 m; type I events apparently have source depths
greater than 800 m. Depths of type II and hypocenter locations calculated for the
majority o% observed type 1 events are less than that of the production reservoir.
(4) Spectral analysis of observed type II signals and synthetic seismograms also
provide substantial evidence of trapped modes rather than simple Rayleigh propaga-
tion. (5) The spatial distribution of the seismic epicenter at Pleasant Bayou from
1979 through September 1983 cluster in the vicinity of proposed locations of growth
faults at depths of 15,000 feet west and northwest of the Pleasant Bayou No. 2
well. |

These data combined with the few unambiguously recorded first P-wave motions
suggest that these microearthquakes occur as dip slip events along growth faults
above the production horizon. The sense of block motion is dilitational (downward)
at the seismograph stations. Because of the poor depth resolution, it is uncertain
whether the events are more likely associated with brine production or brine injec-
tion. The preponderance of events have depths more strongly favoring brine injec-
tion than brine production as the causality agent; however, this evidence 1is
extremely weak. (6) The characteristics of the observed seismicity do not indicate
a high seismic risk associated with these events. No events with magnitudes greater
than 2.0 have been observed. All events range in magnitude from 0.0 to 1.5. There
is no obvious relationship between events which would suggest a normal foreshock,
mainshock, or aftershock sequence as observed in active tectonic regions. Even when
event frequency was high, the total number of events was low (£20 events/5-day
period). Although the number and size of these microearthquakes constitute a low
seismic risk due to ground accelerations, the integrated displacement from many
events along a single growth fault may constitute a subsidence hazard. The greatest
benefit to be derived from microseismic monitoring of such production regions may be
to identify which local faults display the greatest instability to slipping and thus
constitute the regions which should be monitored most closely by other techniques

for subsidence effects.




INTRODUCTION

Commercial utilization of Gulf Coast geopressured/geothermal brines as an
alternative energyvsource requires production and disposal of these environmentally
hazardous fluids at rates exceeding 10,000 barrels per day per well. Fluid volume
withdrawal and injection at these rates alters the state of subsurface stress,
thereby potentially resulting in induced microearthquake activity and ground sub-
sidence, To investigate the potential seismic risks aséociated,with the production
of brines from the Pleasant Bayou No. 2 design well in Brazoria County Texas,
Teledyne Geotech, with the authorization of the Texas Bureau of Economic Geology,
conducted a seismic monitoring program at Chocolate Bayou from September 1978
through September 1983. The primary objective of the Brazoria seismic monitoring
program was to determine if production frbm the Pleasant Bayou geopressured/
geothermal energy well resulted in enhanced seismicity which would constitute é risk
in itself or would indicate the longer term hazard of accelerated subsidence.

The results of this study have demonstrated that seismicity is enhanced by the
brine production; however, neither the increased number of events, nor the size of
the induced microearthquakes constitute a serious hazard or risk due to ground accel-
erations. Whether or not these microearthquakes cumulatively constitute a long-
term subsidence risk is not answered by these data. '

This is the final technical reporf of the Chocolate Bayou seismic monitoring
program. It is intended to define the experimental procedures, summarize fhe obser-
vations from 1978 through 1983, and discuss the results and conclusions drawn from
analyses of the data. Although we believe the p;incipal objective of the bmogram
has beenvaccomplished, we also believe that many more questions have been raised
than answered by this study. Additional research in the areas of seismic energy
propagation throdéh.Gulf Coast - sediments, growth fault mechanics, and the interac~
tion of fluid transport and mechanical characteristics of faulted aquafers in the

Gulf Coast is strongly indicated.




THE BRAZORIA SEISMIC NETWORK, INSTRUMENTATION, DESIGN, AND SPECIFICATIONS

, The Brazoria Cduﬁty seismic array consisted of five seismograph stations in
thé Chdéolate Bayoﬁ.area of Brazoria County, Texas. The locations of these sta-
tibné; local cultufél features, and projected locations of growth faults at a depth
of 16,600 feet éfe'illustfatéd on figure 1. The aperture of the array is four kilo-
meters. The iatituaes, longitudes and elevations of the sensors are listed in’table
1. ‘Figure 2 is avblock diagram illustrating the operation of the array. Each sta-
tion consisted of a Teledyne Ceotech S-500 seismometer which was locked in a bore-
hole at a‘dépth of one hundred feet. The signal from the seismometer was magnified
usihg a Teledyne Geotech 42.50 amplifier and then FM multiplexed to a voice-band
carrier frequency for transmission to a common data collection point at Liverpool,
Téxas.- Data transmission was via telephone telemetry circuits. At Liverpool, the
signals from the five stations were amplitude conditioned and ﬁultipleXEd together
for transmission.via AT&T long lines to the Teledyne Geotech laboratory at Garland,

Texas.
TABLE 1. BRAZORIA COUNTY TEXAS SEISMIC ARRAY

Latitudé(N) Longitude(W) Elevation Magnification' vco
Site Deg Min Sec Deg Min Sec Feet X 1000 @ 5 Hz Hz
BEG1 29 17 28 95 16 53 -8? 147 1360
BEG2 29 17 32 95 14 01 -87 138 ‘ 2380
BEG3 29 16 54 95 15 22.5 =97 : 140 1020
BEG4 29 15 54 95 14 45.2 -90 164 2040
BEG5 29 15 53.4 95 16 10.3 -84 159 1700

In Garland, the five station signals were demultiplexed from their respective
carriers using Teledyne Geotech 46.12 discriminators. The signals and precise time
code then were recorded on magnetic tape and on 16-mm film using a Teledyne Geotech
develocorder. The unity-gain velocity response of the system is illustrated in
figure 3. The magnification at a frequency of five hertz of the individual stations
is given in table 1. Variations in effective magnification reflect the variability
of the ambient noise at the different sites.

Typical power spectra densities of ambient noise conditions at fouf sites in
Chocolate Bayou are illustrated in figure 4. These noise sites do not correspond
with the final array sites but are given to illustrate the typical ambient con-
ditions.
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In general, the maximum (0-P) ground displacements observable with. the
Brazoria seismograph instrumentation without significant distortion or clipping at
one, five and ten hertz are respectively 7.4 * 10'5, 2.6 * 10'6, and 1.2 *
10~ meters. The minimum (O-P) ground ‘displacements observable are between 1 *
1079 and 5 * 10~2 meters depending wupon ambient ground noise conditions. These
observation limitations correspond to events with seismic moments between 1017 and

1020 dyne-cm or approximate local magnitudes between -0.5 and 2.5 (see figure 5).
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DATA ANALYSIS PROCEDURES

Two general types of signals were recorded by the Brazoria seismic array, and
each required specific data processing procedureé. Type I events were signals which
traversed the array with apparent velocities more nearly like body waves (that is,
P-waves and S-waves). The analysis procedures for phase arrival timing and locating

these evénts are discussed under the heading Body Wave Data. Type II events were

signals which traversed the array with apparent velocities more nearly like surface
waves. The analysis procedures for iocating these events are discussed under the
heading Surface Wave Data. Finally, the methodology for computing event magnitude
is discussed under the heading of Mégnitude Determination.

Body Wave Data

The data generated by the Brazoria seismic array were analyzed using standard
procedures to yield basic information about origin times, locations and magnitudes
of observed events. The 16-mm film seismograms were reviewed carefully to detect
any microseismic events that may haﬁe occurred. When an event was detected, the
analyst measured the amplitude, period, and arrival times of the P (compressional),
S (shear), and LR (surface) wave of the event. The amplitude, period and arrival
time data are stored for subsequent input into a computer qode (MEHYPO) which esti-
mates the origin times,vsource coordinates and local magnitudes of the observed
events. The estimation algorithm is similar to that deécribed (Lee and Lahr, 1972)
in that it finds the origin time and set of source coordinates which minimizes the
mean square difference betweén‘observed and predicted arrival times at the various
sensor locations. The code also provides various location uncertainty estimates
which are based upon the assumption that the arrival time errors are normally dis-
tributed and that the seismic velocitj structure is known without error. The sensor
frequency response data, the ?-wave amplitude and period data are used to compute
the local magnitudes of the observedbeQents.:

A generalized P-wave velbcity structure for the Gulf Coast 1is 1illustrated in
figure 6. The actual Velocity Structures used in the event location procedure are
listed in tables 2a and 2b. Two different velocity structures were necessary
because of sharp velocity inversions in shallow layers. These velocity inversion
layers can be included in the 1location computational schemes for array-interior

events because the wave incidence angles are sufficiently' high to permit transmis-

-11-
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TABLE 2A. VELOCITY STRUCTURE FOR EVENTS INSIDE THE ARRAY

Layer P-Wave Vel. S—Wave Vel. Thickness

Parameters (Km/sec) (Km/sec) = (Km)

. § ‘0.6100 352 o 0.0091
-2 - 1.7070 +986 0.1000
3 1.7500 1.010 0.0400
4 1.8000 1.039 - 0.1500
5 2.0120 _ 1.162 . 0.1220
6 2.0730 1.197 0.2140
7 2.2550 1.302 - 0.2900
8 2.2860 1.320 0.3100
9 2.6210 1.513 1.036
10 2.9260 1.689 1.0500
11 3.3530 1.936 0.5500
12 2.6210 1.513 0.5200
13 2.4380 1.403 0.3100
14 2.7430 1.584 © 0.3100
15, 2.9260 1.689 - 0.3000
16 3.1700 1.830 0. 3000
17 3.5000 2.021 .. 043000
18 3.8090 2.194 1000.0000

TABLE 2B. VELOCITY STRUCTURE FOR EVENTS. OUTSIDE THE ARRAY

Layer P-Wave Vel. S-Wave Vel. Thickness

Parameters (Km/sec) ~ (Km/sec) (Km)
1 0.8000 0.4619 0.0600
2 . 1.1000. 0.6351 0.0710
3 1439100 " '0.8031 ’ 0.3270
4 2,2000 oo l.2702 . . 0.2650
5 2.3500 1.3568 0. 4500
6 3.5400 ¢ 2.0439 1.6680
ST ©.3.9600 .. . ... 242864 . - - 1.8140
8 4,2500 2.4538 B 0.6000
9 - T 4,70000 0 T 2.7136 7 1.0000
10 .- 449000 . 2.8291 S 5.0000. -
11 5.1000 | 2.9446 . 200.0000

12 °5,3000 ‘. 3.0600 °  1000.0000

13-




sion of the waves through the layers. However, array exterior events can have wave
incidence angles to the low velocity layers which do not permit theoretical trans-—
mission of the energy as a normal refracted wave and thus fail to converge to a
location solution. Solutions exterior to the array can be obtained by smoothing
these velocity inversions out of the structure as in table 2b. Comparisons of known
and computed locations of explosions outside the array demonstrated that this
smoothing procedure does not jeopardize the'accuracy of the location. On the other
hand, including the velocity inversion layers for array interior events improves
both the precision and accuracy of the locations obtained.

The S-wave velocity structure was deri?ed from the P-wave velocity structure
using the formulation:

1
Vs = Vp /(1 + 1-20)}/2

where: Vg = Shear wave velocity

Vp = Compressional wave velocity
(o Poisson ratio

Water has a Poisson ratio of 0.5, and most competent rock has a Poisson ratio
of 0.25. 1Lash (1980) has determined the Poisson ratio for surficial Gulf Coast
sediments to be greater than 0.45 with the ratio decreasing with increasing depth.
To utilize S-waves for hypocenter location, a fixed Vp/Vg ratio of 1.732 was used.
Epicenters were computed only for events observed at four or more stations because

of possible ambiguities of solutions based on data from fewer stations.
Surface Wave Data

Signals consisting entirely of surface (Rayleigh) waves and/or leaking modes
were recorded commonly by the Brazoria, Parcperdue, Sweet Lake, and Rockefeller
Refuge seismic arrays. Hypocenters of events generating these signals cannot be
determined using standard Geiger least-squares inversion procedures. It is possible
to determine approximate'epicenters of these events, however, if an appropriate wave
velocity for the observed phase arrivals can be determined.

The excitation of surface waves, particularly in an environment characterized
by significant variations in velocity in three dimensions, is more complex than
excitation of primary body waves. Surface waves, unlike body waves, propagate not
only as fundamental mode oscillations, but also as higher mode oscillations. These

higher modes are analagous to overtones produced by musical instruments. Both the

-14-




velocities and amplitudes of the Rayleigh modes excited are critically dependent on
the body wave (both P- and S-waves) velocity structure. Figure 7 illustrates the
relative excitation of the first four vertically-oriented, two-hertz Rayleigh modes
as a function of depth for a location near Apache, Oklahoma, (Douze, 1964). Also
illustrated are the density, P-wave, and S-wave profiles for the upper 3,000 meters
of geological section. The relative amplitu&es of the ‘higher modes generally
decline significantly as mode number increases when the velocity structure is free
of low-velocity zone energy traps.' If, on the other hand, the depth of a particular
model maximum occurs in a low-velocity zone (LVZ), that mode will display an anoma-
lous amplitude coﬁpared with that which would be excited if the LVZ were not pre-
sent. The observed Rayleigh-wave energy at any particular frequency is dependent
upon the depth of observation and the total energy integrated over all possible
modes. Thus, for example, a seismogram from a location at a depth of 2,000 meters
in the structure of figure 6 would display Rayleigh waves dominated by first, second
and third higher mode arrivals with very little contribution by the fundaméntal
mode. ’

The Gulf Coast sedimentary column is significantly more complex than the one
illustrated in figure 7, and the relative importance of higher mode contributions,
particularly at wave frequencies greater than two hertz, should not be underesti-
mated. Figure 8 1llustrates the computed and observed Rayleigh group velocities as
a function of period forl six Rayleigh modes in Gulf Coast sediments for Refugio
County, Texas (Ebeniro and ofhers, 1983). Note that fundamental third-, fourth-,
and fifth-order harmonics are observed, and that first and second higher modes are
not. The higher modes are strongly, normally dispersed (that is, phase and group
velocities are inversely related to wave frequeﬂcy). ‘The fundamental mode, on the
other hand, is relatively ndndispersed, or slightly inversely dispersed, in the
frequency range from one to five hertz. This accounts for why the Ray}eigh wave
train frequeﬁtly appeared as an Impulsive arrival in ﬁhe time domain. -Since the
density, bulk and shear moduli are all low for Gulf Cdast sediments, the fundamental
mode Rayleigh wa;e velocities are also low; ranging from 150 m/sec to 350 m/sec.
Unfortunétely, .the velocity range also -is occupied by. acoustical transmissions
through air, and significant coupling of atmospheric acoustic and earth Rayleigh
waves 1is highly probable. Thus, it 1is Gery important to determine 1if observed
signals are of atmospheric or earth origin. This discrimination is not necessarily
obvious as will be shown in a later section. |

Unfortunately, strong evidence exists that the mode of propagation of type II
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Figure 7. Rayleigh wave group velocity for six modes in Texas Gulf Coast sediments
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events is not a simple surface wave. There are several energy traps (low velocity
in the Pleasant Bayou velocity structure at depths layers) between zero and one and
a half kilometers, and the potential effect of these traps requires some explana-
tion. 1In general, the propagation of energy across a discontinuity in velocity phy-
sically obeys Snell's law as illustrated in figure 9a. If there exists in the
velocity structure one or more layers with velocities significantly less than the
velocities of their bounding layers, then the conditions are ideal to create a wave
guide or trapping layer as illustrated in figure 9b by the layer identified as Vg.
If the velocity contrast between the bounding layers and the trapping layer is suf-
ficiently large, the energy can never escape from the layer and continues to propa-
gate down the layer as a series of reflected waves. Perfect traps, however, are
exceedingly difficult to create, and more often the case is that, at each reflec-
tion, a little energy leaks off into the adjacent layers. This "leaked" energy can
be observed as a leaking mode arrival on seismograms. If the type of wave trapped
is Sy, in a poorly consolidated water-rich layer, the velbcity could be exceedingly
low (S-wave velocity in water is zero). Because the apparent surface velocity (Vy)
is the surface distance between the source and receiver divided by the total travel
time rather than the sum of the real ray path distances divided by the sum of the
real ray segment velocities, the apparent velocity can appear to be much slower than
it is in actuality.

If these observed impulsive arrivals are leaking mode Sy waves rather than
surface waves (a subtle distinction which seems highly probable), then the location
scheme wutilized can result in both 1location and origin time biases. If the
microearthquake occurs within' the array, the bias would be as follows. Since the
real velocity and real path length are unknown, the computed origin time would
always be underestimated, that is, the real origin time would always be earlier than
the apparent origin time. Similarly, the apparent location would be biased in a
direction away from the real location toward the station or stations with the
fastest velocities.

Because of the complexities in Gulf Coast modal excitation and propagation,
type 1I . event epicenters computed from described apparent velocities must be
regarded with a greater caution than more complete body wave solutions. The proce-
dure we follow to locate these events is to solQe iteratively for the least-squares
error associated with both the location and wave velocity simultaneously. The func-
tional relationship between epicentral area. uncertainty and half-space velocity

typically assumes approximately hyperbolic shape (see figure 10).
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a. Diagram illustrating transmission of an energetic ray across a velo-
city interface. b. The propagation of a leaking mode from a trapping layer (Vé).
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We assume that the hyperbolic vertex corresponds with the best half-space
velocity and that the computed location using this velocity is the best approxima-
tion of the epicenter. Depth is not resolved by ;his technique.

In principal, this location analysis technidue permits the simultaneous deter-
mination of the best-fit velocity and locétion}, however, a word of caution is
appropriate here. When few arrival time observations (<10) exist with which to
invert iteratively for an epicenter solutién, it ié possible to produce an intra-
array alias location from an extra—arréy-source~by fixing an appropriate half-space
velocity. The extreﬁe example of this possibility is that the arrival times from a
distant teleseism can yield a -location solufion wdthin the array, if the interior
velocity used for location is set sufficiently low. For this reason, epicenters of
events located using this least-squares inVéfsion technique, particularly when best-
fit velocities are less than 350 umteré/sécond, should be viewed with appropriate
caution. Where possible, we have éttémpted to identify such suspect event locations

in a later section.
Magnitude Determination
Magnitudes have primafily_bgen calculated using duration as
MD = -2.22 + 2.28 log (D)

where D is duration in seconds from onset of P to return of coda to ambient noise
level. It has been shown by (Aki and Chouet, 1975; Chouet and others, 1978; Aki,
1981) that the duration of seismic coda is'dependent on the number and distribution
of potential back scattering sources. For thié[reason,,coda duration magnitude for-
mulations must be tailored specifically for each region where they were used. The
duration magnitude formula we use is one for the Mississippi Embayment determined by
the Tennessee Earthquake Information Center. ~Since a magnitude scalé has not been
developed for the .CﬁlfA Coést, it 1is possible that all quoted ‘magnitudes are in
error. The magnitudes quoted should agree approximately with normal Richter magni-
tudes. |

Magﬁitudes may be calculated alternatively as local seismic magnitudes based

upon maximum surface wave amplitude as

ML = 1logl0 (a/2) - 1.15 + 0.8 logl0 (x)2
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where ML is the local magnitude

and A 1is the peak-to-peak surface wave amplitude in millimicrons
and X = [(epicentral distance) 2 + (hypocentral depth) 2]1/2
and X > 1.0

The constant -1.5 in the magnitude equation assumes a surface wave to P-wave
amplitude ratio of 10. Thus, a magnitude 0 event at 1 km distance would generate
surface waves with a peak-to-peak amplitude of about 2.8 millimicrons.

Throughout the duration of the monitoring program, there.have been few oppor-
tunities to subtantiate the magnitude formulas of the Gulf Coast. Figure 11 is a
microearthquake which occurred near Lake Charles, Louisiana, on 16 October 1983.
This Gulf Coést earthquake was sufficientl& large to be observed both on the local
arrays and distant seismograph stations of the Tennessee Earthquake Information
Center. This event provided a critical tie for Gulf Coast magnitude computations to
adjacent regions. The duration magnitude computed from the data of the Parcperdue
seismic array stations illustrated is 3.02. This compares with an Mb (Lg)
(magnitude based on the amplitude of the Lg, scattered wave) computed from distant
stations of 3.8. This comparison suggests that the magnitudes reported for the
Brazoria array may be underestimated by approximately half a magnitude. However, it
is equivalehtly important to realize that the majority of events observed at
Brazoria had focal depths apparéntly less than a kilometer. These are significantly
less deep than the Lake Charles earthquake, énd, thus, the tie may be for deeper
events only. The exact "size" of the events recorded by the Brazoria array is not
known. The reported magnitqdes are internally consistent, and, if alternative
calibration becomes available, it will be possible to rescale these magnitudes if it

is of importance.
Special Analyses Procedures

The measurement of phase arrival times and amplitudes, computation of location
and magnitude constitute procedures defined as routine studies. In addition to
routine analyses, some special studies were performed on selected events to—aeter-
mine properties of wave propagation and/or source parameters. For these special
studies, events of interest were digitized by playing the analog tape of the event
through the A/D converter of a PDP 11-24 computer. When the data are in digital
format, it is possible to perform a variety of analyses procedures not available

with analog data. We have emphasized procedures to help understand the propagation
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of seismic energy and source depth of events.

presented in a later section.
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SEISMICITY AND THE PLEASANT BAYOU PRODUCTION HISTORY

Microseismic monitoring of the Pleasant wﬁayouf'geopressured/geothermal test
well area began in September 1978 and continued through Séptember I983.? During that
time period, there were four brief episodes of production from the Pleasant Bayou
No. 2 well. These episodes are identified in table 3. More detailed descriptions
of the three principal production periods are given in the following sections.

Phase I Production Test

A short-term brine production test of the Pleasant Bayou No. 2 well (Phase I
test) extended from 16 September through 31 October 1980. Analyses of the data to
determine reservoir characteristics have been reported by Hartsock (1981) and Garg,
Riney, and Fwu (198l1). The production histories published by these two analysis
groups are mutually inconsistent. Since the test monitoring was perfbrmed by Gruy
and Assocliates, we have included only the published bottomhole pressure and produc—
tion rate history of Hartsock, 1981, (figure 1) to illustrate the Phase I production
characteristics. Specific perturbations to the pressure log are numerically iden-
tified and keyed to table 4. Figure 12 illustrates that there were essentially
three significant pressure declines and two pressure increases during the perform—
ance period. Tﬂ;se correspond to times when flow rate was altered dramatically.
Thus, for example, the production rate reduction from 15,324 barrels per day to
13,386 barrels per day did not constitute a significant bottomholevpressure pertur-
bation. ' V

The total volume of brine produced during'.the Phase 1 test was 537,300
barrels. Prior to this short-term (47 days) test, 274,000 barrels of brine had been
produced from the Pleasant Bayou No. 2 well between 15 November and 3 December 1979.

July 1981 Phase II Production Test

On 2 July 1981, brine production'Waé reinitiated in what was expected to be
the Phase II long-term flow test. Because of a variety of problems with instrumen-
tation and the Pléasant Bayou wells, the high-volume, long-termv flow test was
aborted on 18 July 1981. ,

The total volume of brine produced in the Phase II test of 2-18 July 1981 was
220,904 barrels. A plot of the brine and gas production versus flow time is illus-
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TABLE 3. PLEASANT BAYOU PRODUCTION HISTORY

Flow Test
Test No. Identification
1 Pre Phase I
2 Phase 1

(Short Term)

3 Phase 11
(Long Term)
Aborted

4 Phase II

(Long Term)

Flow
Initiation

15 November 1979

16 September 1980

2 July 1981

27 September 1982

Flow
Cessation

3 December 1979

31 October 1980
18 July 1981

13 April 1983

Volumef
Produced

(* 10° bbl)
2.74
5.37

2.21

35,2

Average
Rate

bbl/d

15,222

Variable
6, 600-
19,200

Vériable
14,000~
28,000

19,000




20 x
7 =
% g
;5;;;7 15 §
Yy =
7z ,;j?’C;QZ?%Z:;éiﬁa;y' 0 S
L1 29-;22523*é23;2? 427‘/) 74 4
27 "//'3/ XK 41;,,,7 V6 e =3
1,200 //// ;/4{;;7//1/4 //2/1/ 5 %
A ALITA A AN " o ¢
17 \® ] ©
113, »
10900 Rt I @ =
2 ) |
£ o8 -
y o
7 toe00
; of |
0300 ol MG fot

4 8 12 16 20 24 28 .32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

" “TIME {DAYS)

Figure 12. Bottomhole pressure versus time, Phase I test, Pleasant Bayou No. 2 well.

TABLE 4. SEQUENCE OF EVENTS IN PHASE I TESTING, PLEASANT BAYOU NO. 2 WELL

Event Time . - Event Time,

no.* Date  hrs Event : no.* Date  hrs _ Event
1 9-16-80 1130 Opened well for Phase 1 7 10-17-80 1550 Lost signal in surface
- test at 6,624 B/D- S . ‘ recording system .
2 9-21-80 1710 Well shut in to -repair 8 10-29-80 2240 Abnormal pressure-~
) : . adjustable choke ’ T production response
3 9-21-80 1932 Opened well for second 9 10-31-80 1532 Well shut in to monitor
S flow rate at 10,896 B/D ) : pressure buildup :
4 10-01-80 1102 Increased flow rate to 10 11-02-80 0940 Lost signal from HP gauge.
- 19,200 B/D . Moved ‘gauge and regained
5 10-05-80 0632  Reduced rate to 15,324 B/D signal
i : " to reduce injection - 11 11-08-80 1700 © Lost signal from HP gauge.
pressure Pulled gauge, repaired,
6 .10-08-80 1230 Reduced rate to 13,386 B/D o - and re-ran.
to reduce injection 12 11-10-80 0511 Gauge on bottom
pressure 13  '11-15-80 1800 Erratic pressure readings

for one hour
14 12-15-80 1304 Pulled Hewlett-Packard
*Refer to Fig. 1. bottomhole pressure gauge




trated in figure 13. The actual production rate history for the Phase II test is
illustrated in figure 14. This figure clearly demonstrates the difficulties encoun-
tered during the test which required four significant shut-ins before the test was
aborted. The. corresponding production well and disposal well bottom hole pressure
histories are illustrated in figures 15 and 16 respectively. Although the Phase II
test of July 1981 was not successful forty-one percent as much brine was'produced
in the 254 hours of flow time as was produced in the 1116 hours of Phase I flow
time._ Thus, the Phase II test may be more significant as a formation strain pertur-

bation than the Phase I test.

September 1981 Phase II Long-Term Flow Test

The Phase II, long-term flow test of the Pleasant Bayou No. 2.geopressured/
geothermal design well was reinitiated approximately 27 September 1982 following a
shut-in of over fourteen months; In anticipation that some‘aspect'of the production
histoty may display'a causality relationship with induced seiSmicity,vwe;maintain a
computer log of wellhead tubing pressure and approximate withdrawal rate from the
Pleasant Bayou No. 2 well and the wellhead injection pressure for the Pleasant Bayou
No. 1 well. Data for this computer log are provided by Gruy Federal Corp. Data are
entered at hourly increments from 1 October through 23 October 1982. All subséquent
data are entered at daily increments because more detailed‘logs were no longer pro-
vided to us by Gruy Federal. Graphs of the production wellhead tubing pressure and
approximate brine withdrawal rate and the wellhead brine injection pressure as a
function of time for the period from 1 October through 13 April 1983 are illustraced
in figure 17. Specific times when flow rate has been altered are indicated by the
alphabetic markers at the bottom of figure 17. Except for seven shut-ins, all other
entries indicate times when choke adjustments were made. Although alteration of
choke settings and shut-ins result in some short-term perturbations of the produc-
tion and disposal histories, the production pressure curve generaliy displays a
long-term exponential pressure decline typically observed for confined aquifers.
Similarly, the injection pressure curve displays a long-term logarithmic increment
in injection pressure as a function of time commonly observed at other injection
wells.

Basically, there are two distinct types of signals which have been'recorded by
the'Bfazoria seismic array throughout the operational period: (1) events with
distingnisheble P and/or S phases (type I), and (2) events without body phase arri-
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vals, but with impulsive Rayleigh/leaking mode signatures (type II). Additional
details about the propagation of these events are given in the section on special
studies of the signals. A complete listing of the phase arrival data and computed
event location for all natural local events is given in appendix A.

The events with identifiable ‘? and/or ‘S phase arrivals which are either
unquestionably or suspected to be micrbeatthquakes and not explosives have many com-
mon characteristics. P~ and S—waves fro@ these,events usually are rich in frequen-
cies greater than five hertz, and(ﬁthé.zseiSmogram coda tails commonly display
exponential amplitude decay similaf:tb those of microearthquakes observed at other
locations. (See figure 11). Twoﬁexamples of;this type of event are 1included as
figures 18 and 19. Coad

Determination of P-wave first ﬁotioﬁs is not unambiguous but appears to be
predominantly dilitational (downward) on most seismograms when discrimination is
possible. This is a characteristic cbnsistent with a downward local geological
block movement. All of type I events Yiéld hypocentral solutions which suggest a
depth of origin generally between'FGO and six kilometers. No events have been
observed which locate deeper than six'kilometefs.

Epicenters of the type I events cluster within one and a half kilometers of
the projected 15,000-feet deep locations of grdwth faults on the west and northwest
edge of the reservoir (see figure 720, locations indicated by large asterisks).
Although a few events appear to associate with the northeast trending fault near
Liverpool and Chocolate Springs, the majority of the epiceﬂfers appear to associlate
with a north-south trending growth fault which'paéses near seismograph stations BEG
1 and BEG 3, and terminates near Chocolate Springs. Furthermore, the majority of
epicenters since 1979 which have computed locations near this proposed fault are the
east (up-dip) side of the fault. éince’the'location precision of most of these
events 1s poor and the location accuracy of the growth fault and the epicenter is
unknown, little significance can be placed on the relative position of the epicen-
ters to the growth fault. | , j ,

The magnitude of type 1 events are all small, between 0.0 and 1.5, and there
is no obvious functional relationShip between . the frequency of occurrence and the
magnitude of these events. In fact, the occurrence of this type of event is relati-
vely rare. The largest number (10) occurred in 1981, one was recorded in 1982, and
one in 1983.

Events identified as Rayleigh or leaking mode type II signals far outnumber

the microearthquakes with P-wave or S-wave phase arrivals. An example of this type
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Figure 18. Earthquake 1 January 1981, 03:32:29.3 UTC.




_Ls..

BCD TIME

BEG1 (107K)

BEG2 (117K}

BEG3 (112K}

BEG4 (184K)

BEGS (130K)

} 10 SEC |

21:04:00 UCT (UNCORRECTED)

|
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of signal is 1illustrated in figure 21. Since most of the signals observed
throughout the seismic monitoring period at Chocolate Bayou were of this type, most
of the special analyses have concentrated on understanding these events. These spe-
cial studies will be described later in this report.

The epicenters of events identified as Rayleigh or leaking mode propagations
are illustrated in figure 20 as inverted triangles. In general, these events have
been located using the least-squares error/best velocity method described pre-
viously. Eleven of the events located with smallest errors using velocitier less
than 300 m/sec. Although these locations may be correct, it is difficult to accept
as physically meaningful velocities which are significantly less than acoustic veloc-
ities in air. Alternative epicenters for these eleven events were calculated using
a fixed velocity of 400 m/sec. The rationale for using this particular wave propa-
gation speed is that it is a dominant Rayleigh wave velocity ai:»pearing on the for-
ward modelled synthetic seismograms. The events on figure 20 with alternate
epicenters are illustrated as inverted triangles with 1lines terminated at open
circles. The inverted triangle ié the epicenter associated with the best-fit veloc-
ity, the opeh circle 1is the location with thé velocity fixed at 400 m/sec. If the
alternate epicenter did not remain on the map using the 400 m/sec velocity, the line
is terminated by an arrow in the direction ofgmoveout. Because of the uncertainties
associated with both location procedures, it is only possible to say that the actual
epicenter lies somewhere along the 1illustrated liné between the two end points.

Regardless of the uncertainty associated with the location of these eleven
events, the general spatial distribution of seismicity remains relatively fixed.
Why the seismicity clusters in the vicinity of ﬁhe growth faults northwest of the
test wells is unknown. 'Wé’have no reéson to believe that this distribution 1is an
artifact of the array configuration since events also locate near the chemical plant
east of the Pleasant.Bayop well, Furthermore, since the spatial distribution of
seismicity:prior to and post test;produgtionvessentially is identical, production of
brine enhanced the seismicity’but?did not change its character.

Duration magnitudes of the type II events range from near -2.0 Md to .5 Md;
therefore, as a group, they are smaller than type I events. Type II events are
observed as single events or in 'swarmé', with multiple observations within a short
time span. : '

The temporal distribution of all seismic events which have been recorded since
the beginning of the Phase I short-term flow test in 1980 are illustrated in figure
22. Both type I and type II events are embodied in the solid bars of the histogram.
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In addition to the temporal distribution of seismicity, the production activity at
the test wells is indicated by arrows along the time line. Although it is not
possible to relate the occurrence of seismicity to particular aspects of either
Phase I, the aborted Phase II or long-term Phase II production tests, it is obvious
that increases in seismic activity occurred one hundred and fifty to two hundred
days after the end of both the Phase I and Phase II production periods. The reason
for the delay between the production periods and enhanced seismicity is unknown but

may relate to a diffusion process.
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SEISMICITY ORGINATING NEAR THE CHEMICAL PLANT EAST OF THE
GEOPRESSURED/GEOTHERMAL ENERGY WELL

During the Brazoria seismic monitoring program, episodes of seismicity have
been recorded that locate near the chemical complex east of the well. Seismic acti-
vity occurring in this region exhibits unusual characteristics that are not observed
elsewhere. Locatable Rayleigh/leaking mode events with epicenter solutions near the
chemical plant are often accompanied by periods of high-frequency rumble and some by
harmonic tremor of time duration up to several hours in length. This unusual rumble
and harmonic tremor activity is not observed from other azimuths at the Pleasant
Bayou site, ‘and is not observed at other Gulf Coast mbnitoring‘sites. The uncharac-
teristic nature of these events and the proximity of the estimated epicenter loca-
tions to the chemical complex leads us to believe they are associated with
industrial processes and not related to the geopréssured/geothermal energy well.
They are, therefore, addressed as a group in this special section of the technical
report.

Table 5 documents dates and times of occurrences of this group of events. An
example of a rumble sequence accompanying a Ra&leigh/leaking mode event locating
near the chemical plant is illustrated in figﬁre 23. Figure 24 illpstrates harmonic
tremor associatgd with another event locating near the plant.

Two forms of effluent disposal from industrial complexes potentially can
result in the types of seismic signals observed. Thesé are high-pressure effluent
flares and high-volume subsurface injections. Both of these disposal methods are
known to be practiced by the chemical plant where the seismic episodes appear to
originate.

Model I Hypothesis: The observed seismic episodes are related to unusual

flare conditions at one or more industrial stacks.

Under normal circumstances, the flaring of industrial  gases should not result
in noticeable seismic signals at moderate distancesg‘ If tﬁe ignition of the flare
was erratic, however, it could result in repeated ignitions and extinctions which
might generate acoustic signals. The amplitude and &ominant period of the acoustic
signals would correlate with fireball dimensions, and the temporai’separation would
relate to the time between reignitions. The seismometers in the far-field would
record these signals as impulsive, acoustic—coupled Rayleigh waves with variable:
amplitude and spacing, and each episode would appear to originate from a single

source. Due to changing atmospheric conditions, different episodes might appear to
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED /GEOTHERMAL WELL

1. 81-12-06
08:49:48.72
Impulsive Rayleigh event and rumble event sequence
BEG1 iIR 08:50:09.65;
BEG2 iLR 08:50:00.65;
BEG3 iIR 08:50:02.27;
BEGS iLR 08:50:04.00

Description of event series on 05 December 1981:

22:57:00 - High-frequency rumble event begins and continues until 08:47:30
on 06 December 1981

Description of event series on 06 December 1981:

00:01:00 - A very slight harmonic tremor was recorded at this time with a
duration of approximately 8 minutes

08:47:30 - The high-frequency rumble event subsides to the normal noise
level for this site

08:49:28 - Low-amplitude Impulsive Rayleigh event listed above

08:50:00 - Low~level rumble activity begins and intermittently occurs
during the times listed below:

08:50:00 ~ 09:43:10
09:46:37 09:43:10
09:48:10 - 09:47:20
09:49:33 - 09:50:10
09:51:00 - 09:51:30
09:52:12 - 09:53:00
09:53:40 09:54:15
09:54:55 09:55:40
09:56:15 09:57:00
09:57:35 09:58:10
09:58:50 - 09:59:30
10:00:10 10:00:50
10:01:32 10:02:20
10:02:50 10:03:22
10:04:10 10:04:50
10:05: 30 10:06:10
10:07:00 10:07: 40
10:09:50 16:00:00
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED/GEOTHERMAL WELL (continued)

09:46:25.32 - Impulsive Rayleigh event/G13216

BEG1 iLR 09:46:46.55;
BEG2 ilR 09:46:37.50;
BEG3 ilR 09:46:39.08;
BEGS5 iLR 09:46:40.80
2, 82-01-05

09:49:16.9

Impulsive Rayleigh event
BEG1 iIR 09:49:39.08, A=5, D=4;
BEG2 ilR 09:49: 29,70, A=4, D=4;
BEG3 ilR 09:49:31.18, A=3, D=4;
BEG4 ilR 09:49:26.40, A=8, D=5;
BEG5  4iIR 09:49:32.93, A=4, D=4

Description of event series on 05 January 1982:

04:50:13 ~ A series of eleven impulsive Rayleigh arrivals ending at 04:51:36,
followed by a slight rumbling.

04:51:40 - A high-amplitude rumble begins (A=8mm) which decreases to normal
ambient noise levels at 05:04:07.

05:04:17 - A weak set of impulsive Rayleigh arrivals.

05:05:20 - More high-amplitude rumbling occurs (A=8mm), which remains a constant
8-10 hertz rumble with higher frequencies of noise present. This
rumble persists with very few harmonic episodes until 09:49:00, when an
emergent ending occurs in the same order in which the impulsive
Rayleigh waves arrive.

09:49:27 - A very prominent iﬁpulsive Rayleigh event occurs, which apparently
indicates a shutting down of some type, and is the -last sign of any
activity from the area southeast of the array for this date.

3. 82-01-10

07:20:17.3

Impulsive Rayleigh event
BEG1 ~ 1LR 07:20:39.10;
BEG2 iIR 07:20:29.70; -
BEG3 - {iLR © 07:20:31.50;
BEG4 = {LR 07:20:26.50;
BEGS ilR 07:20:33.35
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED/GEOTHERMAL WELL (continued)

Description of event series on 10 January 1982:
00:02:20 - An'emergent, high-amplitude rumble with a five-second duration.

00:03:25 — A harmonic tremor occurs and sustains a constant amplitude on A=8 for
approximately 20 minutes. The amplitude is nearly half (A=4) for the
next 60 minutes and even lesser for the next 6 hours, although the tre-
mor is still noticeable.

02:02:40 — An impulsive Rayleigh arrival with a different type of sinuous coda
forming the tail of the event.

06:07:00 - The harmonic tremor mentioned above ends in a rumble type of ending
which is emergent in nature.

06:13:01 - An impulsive Rayleigh arrival which precedes another rumble episode
which lasts for 90 seconds.

06:17:05 - An impulsive Rayleigh arrival precedes another rumble episocde of
numerous high frequencies which has an emergent ending at 07:09:30.

07:20:25 - An impulsive Rayleigh arrival precedes a harmonic tremor episode which
lasts until 08:11:25, where a rumble type of ending occurs.

08:14:37 - An impulsive Rayleigh arrival occurs with another sinuous coda tailing
the arrival. These tails are 4-8 seconds in duration and are closely
followed by a rumble episode at 08:16:05 which lasts for 30 seconds.

08:17:10 - An impulsive Rayleigh arrival with the same type of rumble activity
following until 08:33:30, when the rumble activity ceases with a surge
of rumble activity.

08:33:40 - An impulsive Rayleigh arrival precedes more rumble activity which dimi-
nishes at 08:39:10, and progressively builds up to a peak in rumble
activity at 09:17:40. The rumble continues with few noticeable har-
monic episodes until a severe rumble episode occurs at 10:43:23 which
lasts for over 2 minutes and ends abruptly in the same order of arrival
as the impulsive Rayleigh events.

10:46:48 - An impulsive Rayleigh arrival followed by a low-level rumble episode
with slight harmonics noted.

11:27:00 - A high-frequency rumble episode occurs which lasts to 11:45:00 where a
10-second, noise-free interval exists. The rumble episode continues
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED/GEOTHERMAL WELL (continued)
until another noise-free interval of 7 seconds is present at 12:00:00.

12:00:07 - A very small, impulsive Rayleigh arrival precedes another high-
frequency rumble episode which remains at a very low amplitude and con-
tains increasingly more harmonics over the next 10 hours.

19:56:30 — The amplitude of the harmonic tremor nearly quadruples for the next few
minutes. The harmonic tremor continues until indistinguishable from
the ambient noise nearly 17 hours later.

4, 82-04-18

03:25:38.5

Impulsive Rayleigh event
BEG1 iLR 03:26:01.05;
BEG2 iLR 03:25:53.00;
BEG3 iLR 03:25:53.68;
BEG4 iLR 03:25:48.20;
BEGS5 iLR 03:25:54.40

Description of event series on 18 April 1982:

01:47:00 -

02:40:40 -

02:58:53 -

03:18:03 -

03:25:53 -

03:40:49 -

A harmonic tremor begins which lasts until 02:33:00.

The harmonic tremor begins approximately 30-second bursts at 02:42:40,
02:46:20, 02:55:00, 02:56:50, and another 3-minute burst at 03:08:00.

A series of six impulsive Rayleigh events ending at 03:00:08.

A large amplitude harmonic tremor begins, and ends at 03:21:40 with a
series of approximately ten impulsive Rayleigh events (see figure 16).
The ground motion in nanometers for this event has been calculated to
be as follows: BEG 1-83 nm, BEG 2-103 nm, BEG 3-140 nm, BEG 4-144 nm,
BEG 5~83 nm. This clearly shows that BEG 2,3 and 4 are the closest
stations to the source of the event.  The ‘decrease in ground motion at
BEG 5 can be explained by interference from a major growth fault
situated near the station.

A ‘series of four impulsive Rayleigh events ending at'03:27:20.
Two impulsive Rayleigh events which are followed by a rumble event with

very few harmonics noted. The rumble activity continues to diminish
steadily over the next six hours.
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED/GEOTHERMAL WELL (continued)

10:04:31 - A single impulsive Rayleigh event.

11:10:18 ~ The beginning of a series of at least twenty impulsive Rayleigh events
which last periodically up until 12:24:18.

Description of additional events on 19 April 1982:
03:15:00 - A harmonic tremor begins which lasts approximately 3 minutes.

03:48:00 - A high-frequency rumble event occurs which lasts for 11.5 minutes.

5. 82-05-03"
05:00:36.0
Impulsive Rayleigh event
BEG2 ilR 05:00:49.87;
BEG3 iIR 05:00:50. 60;
BEG4 ilR 05:00:45. 24;
BEGS ilR 05:00:51.49

Description of event series on 03 May 1982:

04:03:23 - A rumble episode begins which lasts until 04:04:42, This rumble epi-
sode contains a slight harmonic tremor from 04:04:10 to 04:04:24.

04:53:00 - A series of multipie impulsive Rayleigh arrivals begins which precedes
a high-frequency rumble episode which is nearly three times the ampli-
tude of the normal ambient noise. This rumble episode lasts until
05:00:38, when an emergent ending occurs in the same order of arrival
as the impulsive Rayleigh events.

05:00:45 - An impulsive Rayleigh event precedes another high-frequency rumble
episode which is also much higher in amplitude than the normal ambient
noise character of the record. This rumble eipsode contains few har-
monics and has an emergent ending at 05:25:00.

05:28:00 - A high-frequency rumble episode begins emergently and continues until
09:25:15. A noted peak in activity was recorded from 07:38:00 to
07:50:00.
Additional Harmonic tremor episodes on 03 May 1982:

17:12:00, D=20 minutes
17:42:00, D=13
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED /GEOTHERMAL WELL (continued)

Additional Harmonic tremor episodes on 04 May 1982:

01:25:00, D=15 minutes
01:46:00, D=5
02:37:00, D=7
03:34:00, D=67
05:54:00, D=26
08:35:00, D=11
11:21:00, D=8
11:40:00, D=2

6. 82-05-18
00:35:35.3
Impulsive Rayleigh event
BEG1 iLR 00:35:58.10;
BEG2 ilR 00:35:48.77;
BEG3 iLR 00:35:50.71;
BEG4 iLR 00:35:45.47;
BEGS5 iR 00:35:52.27
7. 82-06-12
11:35:49.0
Impulsive Rayleigh event and rumble event sequence
BEG1 ilR 11:36:10.00;
BEG2 ilR 11:36:01.90;
BEG3 iLR 11:36:02.63;
BEG4 ilR 11:35:57.30;
BEG5 iLR 11:36:03.70

Additional activity on 12 June 1982:
08:26:00 — Emergent beginning of a rumble event
08:51:00 - Decrease in amplitude until 09:02:00

09:26:00

Increase in amplitude to 40 millimeters peak—to—-peak which lasts until
10:28:00 '

10:28:00 - Rumble continues with slightly noticeable harmonics

11:33:00

~ Rumble event ends emergently
11:35:58 - Impulsive Rayleigh event listed above
11:37:52 - Impulsive Rayleigh event listed below
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED/GEOTHERMAL WELL (continued)
BEG1 iLR 11:38:05.40;
BEG2 iLR 11:37:57.38;
BEG3 ilR 11:37:58.38;
BEG4 ilR 11:37:52.78;
BEG5 iLR 11:37:59.30

13:16:00 -= Small rumble event lasting until 13:18:30

8. 82-08-22
18:52:28.7

Impulsive Rayleigh event and rumble sequence

BEG1
BEG2
BEG4
BEG5

iIR
iLR
ilR
iLR

18:52:51.25;
18:52:43.14;
18:52:38.71;
18:52:44.79

Additional events on 82-08-22

GROUP I - 18:52:38 to 19:21:52

21 impulsive Rayleigh events followed by a rumble episode containing no
events (D=22 mins.)

18:52:42,
18:56:49,
18:57:45,
18:59:06,

18:53:34,
18:56:52,
18:57:48,
18:59:21,

18:54:30,
18:57:32,
18:57:52,
18:59:25,

18:54:32,
18:57: 35,
18:58:10,
18:59: 38,

18:54:39,
18:57:36,
18:58:16,
18:59:56

GROUP II - 19:21:52 to 20:20:10

18:55:53,
18:57:40,
18:59:00,

18:56: 46,
18:57:42,
18:59:04,

An uncounted number of impulsive Rayleigh events occurring almost con-—

tinually during this period.

than one second.

GROUP III - 20:20:10 to 20:34:42

Separation between most events is less

Harmonic tremor (D=9 mins) begins at 20:20:10, with a series of 23

impulsive Rayleigh events beginning 7 minutes later.

These 23 events

are followed by 5 minutes of no recorded seismic activity.

20:27:10,
20:30:02,
20:32:11,
20:34:37,

20:27:44, 20:27:58, 20:28:04, 20:29:06, 20:29:11,

20:29:36,

20:30:26, 20:30:48, 20:31:00, 20:31:17, 20:31:24, 20:31:40,
20:32:18, 20:32:20, 20:32:32, 20:33:38, 20:33:45, 20:33:53,

20:34:42
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TABLE 5. SEISMICITY EPISODES LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED/GEOTHERMAL WELL (continued)

GROUP IV -~ 20:40:37 to 20;46:10

Harmonic tremor (D=6 mins.) begins with an impulsive Rayleigh-event at
20:40:37. Three other similar events occur during this tremor at
20:41:13, 20:41:30 and 20:41:51.

GROUP V - 20:54:03 to 20:59:20

Another harmonic tremor (D=5 mins.) begins with an impulsive Rayleigh
event at 20:54:03. Approximately 35 other impulsive Rayleigh events
were recorded during this short—duration tremor.

GROUP VI - 22:13:27 to 22:13:42

Three smaller impulsive Rayleigh events were recorded during this
fifteen-second period at 22:13:27, 22:13:34 and 22:13:42.

9. 82-09-25

00:47:38.2

Impulsive Rayleigh event and rumble event sequence
BEG1 1iLR 00:47:59.56;
BEG2 ilR 00:47:51.60;
BEG3 Inoperative
BEG4 iLR 00:47:47.02;
BEG5 ilR 00:47:53.20

00:44:00 - Emergent beginning of the rumble event. Amplitude and frequency begin
to increase steadily from approximately 5 hertz to approximately 7
hertz

00:47:40 - Amplitude diminishes to 4 millimeters peak~to-peak on BEG 4

00:47:47 - Impulsive Rayleigh event occurs which is listed above. The high-
frequency portion of the wave is of duration approximately 2 seconds

00:48: 30 Seismic traces return to the normal ambient noise level

10. 83-03-07
15:50:00 UTC (D = 10 mins.)

11. 83-03-22

22;34:00 UTC (D = 26 mins.)
Harmonic Tremor
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TABLE 5. SEISMICITY EPISODEé LOCATED NEAR THE CHEMICAL COMPLEX EAST OF THE
GEOPRESSURED/GEOTHERMAL WELL (continued)

12. 83-05-03
09:10:40 UTC
Rumble Episode

13. 83-05-25
01:05:33 UTC ;
Rayleigh event followed by small rumble sequence (D = 2 mins.)

/
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originate from different sources because of variations in acoustic velocity and
atmospheric refractive conditions. The occurrences of rumble-type events could
correspond with episodic turbulent flow from the stack which might result in addi-
tional acoustic signals. The harmonic tremor possibly might be the result of “organ
pipe” resonance of the stacks under high-volume flow conditions or, alternatively, a
pipe hammer induced in a valve& feed pipe. [Essentially, this hypothetical model
cogld rationalize all of the seismic phenomena observed.

Model II Hypothesis: The observed seismic episodes are related to subsurface

waste injection at one or more disposal wells.

There are many documented cases where subsurface injection of fluids resulted
in induced microearthquakes. Perhaps the best documented case is that of injections
at the Rocky Mountain Arsenal Well and the Denver earthquakes (Hollister and Weimer,
1968). It is possible to interpret the ensemble of seismic event characteristics
exhibited by the complex episodes from 6 December 1981 and 25 September 1982 by a
hypothetical model which involves intermittent flow of injected fluids controlled by
stress—sensitive asperities along a system of formational discontinuities. This
hypothesis would require the impulsive Rayleigh events to be of earth rather than
'atmospheric origin. Since body waves are not observed for these events, a mechanism
to justify their absence is required (see Data Analysis Procedures Surface Wave pata
section). The fact that events of this type, that is, impulsive Rayleigh events,
have been recorded previously at all geopressured/geothermal' design well sites and
that a suite of such events at the Brazoria site appears to collocate with
microearthquakes located using body phases would support the theory that these are
also microearthquakes.

In conclusion, two alternative models have been presented which could rational-
ize the data equally well. Model I associates the seismicity with effluent from
industrial flare stacks. Model II associates the seismicity with effluent fluids
injected into a geological formation. Other models not presented also may account
for the observétions, and it should not be assumed: that either model presented is
necessarily the correct solution. ,

In summary, excluding the events which locate-at the chemical complex‘east of
the Pleasant Bayou wells which are suspected to relate to activities at the chemical
plant»rather than the production'from the geopressured/ geothermal well, there are
several important observations from routine analyses of.the seismic data. (1) Two
types of events are eommonly recorded, one haS‘identifiable bbdy phase arrivals, the

other i1s characterized by only surface wave propagation. The second type of event
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far outnumbers the first. (2) The spatial distribution of epicenters for both event
types overlaps and clusters approximately four kilometers west-northwest of the
Pleasant Bayou well. Although there 1is a growth fault projected at a depth of
15,000 feet at this location, all hypocenters occur at considerably shallower depth.s
(less than three kilometers). Unless this growth fault is nearly vertical, it is
difficult to relate the seismicity to that particular structure. (3) Hypocenters
for type I events are poorly constrained, and hypocenters for type II events are
unconstrained using routine least-squares location inversion procedures. Alterna-
tive techniques are required to better constrain the focal depths. This will be
discussed in the Special Studies section. (4) The magnitudes of events are all
smaller than 2.0 but may be underestimated by as much as 0.5 magnitude units. (5)
Seismicity is not uniformly distributed in time but tends to occur in relatively
isolated segments one hundred fifty to two hundred days following shut-in of the
geopressured/geothermal well. The intensity of induced seismicity appears to relate

to the number of days production exceeded 15,000 barrels/day in the test period.
Special Studies

In addition to the roufine analyses of the microearthquakes at Chocolate
Bayou, it became obvious that some special studies would be required to understand
the wave propagation mechanism and source characteristics of the events, par-
ticularly the mode II signals. To address these problems, we chose two directionms
of approach. The first was' to use the known velocity structure to forward model
synthetic seismograms with which to compare the observed time-series signals. The
second was to digitize some of the better defined signals, transform them to the
frequency domain and perform comparative analyses in the frequency domain of the
observed and synthetic signals. These studies proved to be quite valuable in both
defining wave propagation characteristics and depth of sources.

The absence of identifiable body phases for the type II events was a par-
ticularly distressing observation. Without body-phase arrivals, nearly all routine
analyses schemes fail to define either source or transmission path characteristics.
There are at least three alternative, physicaily plausible reasons for the absence
of body phases. (1) All body phases are very high frequency. Thus, the combination
of low Q (highly attenuating) sediments and incorrect instrumental passband might
result in poorly recorded or totally missed body phases. We believe that this

ekplanation is the 1least attractive because some events with body phases are
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recorded. Furthermore, the frequency content of the body and surface waves for
these events is not significantly different. (2) A second possibility is that there
are no body phases because the events are acoustic coupled from atmospheric sources..
Such ‘observations have been reported previously (Jardetsky and Press, 1952; Cook and
Goforth, 1967; Espinosa and others, 1968). This is a very tenable explanation for
some of the events such as the chemical plant process overturns and sonic booms and
must, therefore, be examined carefully. (3) A third possible explanation for the
absence of body phases is that the events are generated at some particular depth in
which the body waves become trapped by low-velocity layers and only appear as
leaking modes. - This 1is a particularly attractive explanation because the sources
become ground based rather than atmospheric in origin and 1s very likely, given the
Chocolate Bayou structure. - In fact, we have observed events propagated by both the
second and third methods. 'Furthermore, we believe that the analyses procedures we
have followed permit  separation of the two mechanisms as well as identifying the
depth of the buried sources.

The first step in our analysis procedure has been to generate a suite of
synthetic surface wave seismograms with which to compare the observed signals. Two
principal alternative methods exist for generating synthetic seismograms through a
known velocity .structure, the generalized ray technique, and the modal excitation
technique. Theoretically, both methods yield identical solutions (duplicate
seismograms) given an infinite number of rays in the former case ;r an infinite
number of frequencies in the latter. There are specific cases, however, when one or
the bther method is computationally more practical. Given a simple velocity struc-
ture in which there are few inversions to produce multiple reflections, a genera-
lized ray approach to produce synthetic seismograms is much faster and simpler to
compute. When significant energy traps exist in the velocity structure, however,
the number of rays which need to be summed to yield a meaningful representation of
what must happen in reality becomes unttac:able. In these circumstances, a modal
approach to structural resonance characteristics produces .the more representative
seismogram with fewer computations required. The number of modes which needs to be
considered for summation depends upon the complexity of the.velocity structure, the
degree of accuracy with which the fit between synthetic and. observed data is.
desired, and the cost of computing the synthetics which increases nonlinearly with:
the number of modes. In order to model body waves into the synthetics, higher‘order
modes must be included, thus substantially increasing. cost.

- Because there are several energy traps in the Pleasant Bayou velocity struc-
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ture at depths between zero and 6ne and a half kilometers, synthetic seismograms
were computed using a modal summation approach. The apparent frequency content of
the observed signals indicated that limiting the bandwidth between zero hertz and
fourteen hertz would likely yield a reasonably representative synthetic. Although
adding frequencies to at least fifty hertz would yleld a more accurate synthetiec,
the cost of computing the synthetics becomes prohibitive. 1In addition, the recorded
data are band limited, so there is no particular necessity for higher resolution
data. The chosen parameters exclude modes necessary for modelling body waves;
however, type II events contain no identifiable body waves.

The first step in computing synthetic seismograms through modal summation is
to determine the structural excitation phase velocities for the bandwidth of
interest. The crustal structure used for these analyses is illustrated in the
appendix in figure Bl, and thg actual layer compressional and shear velocities used
are listed in table Bl. For simplicity in computation, the Poisson ratio was fixed
at 0.25. The computed modal phase velocities as a function of frequency are
illustrated in figure B2. The amplitudes of the waves traveling with these phase
velocities attenuate as a function of distance from the source because of geometri~-
cal spreading and anelastic earth properties. Although Gulf Coast sediments undoub-
tedly have an attenuation coefficient (Q) which is 1less than one hundred, the
transmission paths of interest are so short that the anelastic attenuation, even at
a frequency of fourteen hertz, is not particularly significant. For our calcula-
tions, we assumed Q to be infinite (the case for a perfectly elastic body).

Given the phase velocity and amplitude excitation characteristics for the
Pleasant Bayou region (Appendix figures Bl and B2) in the bandwidth of interest,
synthetic displacement seismograms, or Green's functions, can be computed for given
source receiver separations given specific source characteristics.

We have computed synthetic seismograms for two particular sources. We
have assumed the sources to be normal dip-slip, double-couple events with dip angles
of 45 degrees or 90 degrees to be most likely for the Pleasant Bayou region. The
displacement 1is assumed to be a step (Heaviside function) in time with a static
moment equal to 6.28 x 10*%*20 dyne-cm (roughly equivalent to a magnitude 2.0
earthquake). Synthetic seismograms were computed for source depths of 0.0, 0.3,
0.8, 1.3, 1.8, 2.8 and 3.8 kilometers and receiver epicentral distances from one to
ten kilometers. The suite of synthetic seismograms for 45-degree dip-slip sources
as a function of depth and distance are illustrated in the appendix in figures B3
through B18. The synthetics for 90-degree dip-slip sources are illustrated in
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figures B19 through B34. Each of the ten traces in figures B3 to B34 is scaled to
its own maximum value. The first figure of each set (of two) vertically oriented
displacement Green's functions 1s not corrected for instrument response.
Convolution of the synthetic records with the instrument response of the Pleasant
Bayou selsmometers was performed, and response corrected seismograms are shown as
the second figure of each set.

One of the most striking features of the suites of seismograms is the high
degree of variability of modal excitations as a function of source depth. The rela-
tionship of the source depths to the velocity structure is illustrated in figure Bl.
Note that the first two source depths (0.0, 0.3 km) are above the regioﬁ of low-
velocity layering; the next two (0.8, 1.0 km) are bounded above and below by low-
velocity layers; the next three (1.3, 1.8, 2.8 km) are within a region of normal
velocity gradient; and the last (3.8 km) is in the region of velocity inversion
associated with the geopressured zone. The synthetics generated for surface sources
have characteristics similar to observed exploration shots. The principal dif-
ference 1is that an explosion 1s not a double-couple, dip-slip source. The
seismograms are relatively uncomplicated by multiple phase arrivals, and the arrival
time moveout as a function of distance 1s large (greater than twenty-three seconds
over an epicentral distance span of ten kilometers). At a source depth of three
hundred meters, the seismograms have become significantly more complex than thése at
the surface. The surface waves are inversely dispersed (that is, higher frequency
arrivals precede lower frequency arrivals); and the coda tails for both source
depths end with a 1.2-1.3 hertz resonance. Interestiﬁgly, this resonant frequency
is not observed on synthetic seismograms .with a source depth of eight hundred
meters. Since this is the dominant frequency of the harmonic tremors which are
observed periodically, we conclude that the source depths ‘of these events must be
less than eight hundred meters. In addition, since the signals locating near the
chemical plants southeast of the Pleasant Bayou test wells frequently have asso—
ciated resonances at this frequency, it is concluded that these sources also are at
depths less than eight hundred meters (2,625 feet). "Since the fluid injections at
these chemical complexes are knownrto be at a depth greater than 1524 meters (5000
feet), it seems less likely that the signals observed are related to injections into -
the disposal horizon. The sources of ‘these events, however, remain unresolved.

Synthetic seismograms produced by sources .in the depth range from eight

- hundred meters (2625 feet) through 1,800 meters (5906 feet) have very distinct,

high-amplitude resonances with a period of approximately 3.5 seconds (0.286 hertz).




These are particularly large for a source depth of 1300 meters (4265 feet) and an
epicentral distance of five kilometers. Given the apparent velocity of this wave
(416 m/sec), the length would be 1456 m (4777 feet) or a half wave length of 728 m
(2388 feet). With these characteristics, the observed wave is an energy resonance
trapped between the surface and the depth of the last significant low-velocity zone.
Unfortunately, this resonance frequency is outside the passband of the instruments
deployed in the Pleasant Bayou -array and thus would not be observed. If the pass-
band were wider, however, the relative excitation of this trapped mode could be use-
ful as an event depth discriminant. 7

- The synthetic seismograms for events at depths of 2.8 and 3.8 kilometers
display low-frequency (0.222 Hz) waves on the seismograms. The corresponding half-
wave length indicates that these waves correspond to energy channeled in the low—
velocity zone at a depth of approximately 4.5 kilometers. These waves would not be
observable on the current Pleasant Bayou array because of the limited passband,
however. . Finally, note the very low arrival time moveout for the epicentral
distance span from one to ten kilometers for events with.depths greater than 2.8
kilometers.

The next analysis procedure to help understand the wave propagation charac-
teristics was to perform multiple-filter (moving-window) transformations of the time
series data into frequency-versus—velocity space. This technique, developed by
Landisman and others, 1969, is particularly lucidating for separation of individual
wave propagations in complex surface wave and/or guided wave time series data set.
Basically, the time series aafa are passed through a series of very narrow bandpass
filters which are centered at particular windows of the data dependent upon tﬁe prop-
agation velocity. Envelope amplitudes are computed for each window, and the ampli-
tudes then are normalized and contoured as a function of energy 1in a
velocity-versus-logarithm of frequency space. The resulting plot is a contour"
mapping of the mechanism of energy propagation. Reglons of the space characterized
by energy maxima are contoured in high numbers (99), whereas regions of the space
with energy transmission minima are contoured as low numbers. By examining the
plots, it is immediately obvious 1if energy is propagated as distinct packets as is
the case with trapped modes or as continuously dispersed energy as is the case for
typical surface wave transmissions. In addition, the distribution of energy in the
space ‘frequently can be used as a diagnostic for some source characteristics such as
depth of ‘the source.

" To provide a known source data set with which to compare similar analyses of
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observed signals, ‘moving window transforms were produced for the synthetic
seismograms in appendix B. ~The results of these analyses have been included at the
end of appendix B. Multiple filter plots have been calculated from instrument-
response-corrected synthetic waveforms for both 45-degree and 90-degree source dips,
depths 0.3, 0.8, 2.8 and 3.8 km at receiver ranges 2, 5 and 8 km. Multiple filter.
plots for the 45-degree source dip are shown in figures B35 through B46. Plots
calculated for the 90-degree source dip are shown in figures B47 through B58. Plot
amplitudes are normalized to a maximum value of 99, and have been contoured at
increments of ten units.

There is an enormous quantity of information embodied in these plots, and
careful comparative study of them 1likely will reveal additional details not
described belows Our intention here is to illustrate some of the important conclu-—
sions which can be derived from such analyses. Comparing figures B35, B36, and B37,
for example, illustrates both the general characteristics of sources at shallow
depths and the effects of increasing distance. Note that all contoured energy
essentially is velocity bound between 300 and 650 m/sec. The most prominent veloc-
ity is approximately 400 m/sec. In addition, note that the predominant excitation
frequency is distance dependent. For example, at a distance range of two kilometers
(B35), there is a single energy maximum at a frequency of 3 hertz. At a distance of
five kilometers (B36), however, there are two energy lobes which are apparent, one
at approximately 2.7 hertz and one ‘at 4.5 hertz., At a distance of eight kilo-
meters, several frequency lobes are present. This clearly demonstrates that the
energy is being propagated as a trapped or guided wave. The particular frequency
which is observed at any given distance is a function of the angles of reflection at
the top and bottom of the waveguide. Thus, any given distance will “tune” to a par-
ticular frequency or frequencies. By comparing figures B47, B48, and B49 with B35,
B36, and B37, it is obvious that the source mechanism orientation also plays a role
in frequency selectively of the waveguide as well as the apparent velocity of propa-
gation. In general, events at source depths less than 500 meters have energy propa-
gated in a velocity band between 300 and 650 m/sec. :The number of eigen frequencies
excited is dependent upon the distance from the source.

The effects on the moving window analyses of increasing the source depth are
illustrated by comparing figures B35 (300 m), B38 (800 m), B4l (2800 m), and B&4
(3800 m). The relationship between these source depths and the velocity traps in
the structure are shown in figure Bl. Essentially, the same type of behavior can be

seen at greater epicentral distances but 1is more complex because .of the increased .
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number of eigen frequencies excited. The source depth effect on these plots is very
drama;ic and clearly demonstrates these.analyses are quite sensitive methods for
depth evaluation. Comparing figures B35 and B44, for example, illustrates that the
same eigen frequencies are excited by sources with depth differences of 2500 meters,
but the distribution of velocities is radically different. In addition, given a
specific source displacement, that is, 45° or 90° dip slip, there is a spectral hole
which is related to source depth apparent on each of the plots. The primary fre-
quency of the hole lowers with increased depth (for example, 3 hertz on B4l versus
2.7 hertz on B44). Note, however, that the positions of the holes are also depen-
dent on the orientation of the source displacement. Using these analyses of.synthe—
tic events as templates for comparison with similar analyses of observed signals
therefore provides a powerful tool for interpreting these complex signals.

It is important to understand that the observed signals will be complicated
additionally because of scattering, attenuation, and body wave reflection inter-
ference. Nevertheless, the data appear to be remarkably consistent with these for-
ward models. Several type I and type II signals were digitized and analyzed using
the multiple filter analysis technique. These examples of the type II signals and
their corresponding multiple filter analyses are illustrated in figures 25, 26, and
27. Although the source depths of these events were indeterminant from the routine
location procedures, the general, character of the moving window analyses clearly
demonstrates all have source depths less than 800 meters. Throughout the monitoring
program, we maintained a position that the sources of these type II events had to be
very shallow. These moving window analyses finally demonstrate that this position
was correct. The similarity of the moving window analyses of the local events
(figures 25 and 26) to the synthetics in appendix B are very remarkable. The third
event (figure 27), however, demonstrates that attenuation in the real earth can
play an important role in defining the observed eigen frequencies. Attenuation
effects have been neglected in the synthetics.

For comparison, a multiple filter analysis was performed on a digitized sonic
boom and is illustrated in figure 28. The time series signal of this event is
roughly similar to those of figures 25 and 26, suggesting that discrimination of
this source type might be difficult. There is, however, a distinct multimodality of
the signals in figures 25 and 26 which is missing in the sonic boom, and the overall
character of the moving window analyses are distinctly different.

Two examples of multiple filter analysis of type I (P-wave) signals are
i1lustrated in figures 29 and 30. In these cases, the velocity window has been
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expanded to permit viewing of the region occupied by the body phase arrivals. In
figure 29, for example, the P-wave energy 1s located at a frequency band between
seven and eight hertz with a velocity of 1700 to 1800 m/sec. The corresponding S-~
wave energy appears at a frequency of approximately five hertz with a velocity be-
tween 1000 and 1150 m/sec. Other prominent energy arrivals occur at a frequency
between six and seven hertz with a velocity of 1500 m/sec, nine to ten hertz with a
velocity of approximately 1300 m/sec, and 2.5 hertz with a velocity of approximately
950 m/sec. These arrivals cannot be identified positiveiy and are possibly second-
ary reflections and/or converted phases. Note that there is little energy allo-
cated to the surface waves compared with the body waves. This. is typical for a
source depth/dimension ratio of this order. The character of surface wave energy
distribution in frequency and velocity is comparable to the deeper sources for the
synthetics, confirming that this is deeper source event and not one less than 1000
meters deep. The second type I event (figure 30) is even more dramatic. There is
virtually no energy allocated to the surface waves in this example, and the body
wave velocities are significantly higher. In this case, it is likely that the event
is deeper than the hypocenter program solution yielded. To produce an average P-
wave velocity of 2400 m/sec requires the event to be approximately three kilometers
deep. In addition, there 1s significant ringing'of.the P energy indicating a large
amount of multipath propagation.

In conclusion, microseismic monitoring of the Chocolate Bayou region in the
vicinity of the Pleasant Bayou geopressured/geothermal energy well has resulted in

the following observations.

1. Ambient seismicity occurs at a very low rate of a few events per year.

The spatial distribution of these events suggests association with a few

specific growth faults.

2. - Two types of events were recorded, one with identifiable body phase arri-
vals, ‘and one which has only surface wave arrivals. The latter event type
occurs more frequently than the former. Both event types range in magni-

tude between -0.5 and 2.0.

3. Events with identifiable body phases are generated by surface explosions
and events with depths greater than one kilometer. Events which propagate

as apparent surface waves have depths of origin between 300 and 800




4,

5.

6.

8.

9.

meters.

Following periods of pumping from the Pleasant Bayou well, seismic acti-
vity was enhanced from ambient conditions. There was an appareni delay of
150-200 days between onset of activity and initiation of pumping at a rate
exceeding 18,000 barrels/day. This delay may be related to stress dif-

fusion rate.

All seismicity observed had focal depths less than the production depth.
Most events had focal depths less than the disposal depth. It is, there-
fore, unknown whether the enhanced seismicity is related to withdrawal or

injection of the brine.

It is unknown whether the increased seismicity is related to ground sub—
sidence since there was no independent method of evaluating subsidence

simultaneously with seismic monitoring.

The increased level of seismic activity does not constitute a significant
seismic risk in terms of ground accelerations; however, it is unknown
whether the cumulative effects of these events may constitute a potential

subsidence risk.

Increased understanding of these seismic observations will not be
accomplished by deploying standard microseismic arrays at future sites.
The sites are too structurally heterdéeneous to generate simple, meaning-
ful results using standard methodologies; however, alternative technology

to address these issues does exist.

An important goal for future studlies is to determine if and how these
seismic events relate to subsidence and whether commercial scale produc-
tions would constitute a significant subsidence hazard comparable to the

documented Houston aquifer problem.
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APPENDIX A

PHASE ARRIVAL DATA FOR EARTHQUAKES
1981 - SEPTEMBER 1983




Entries for the data log utilize the following notation conventions:

Station Identification

BEGl, BEG2, BEG3, BEG4, BEGS

Phase Identification

P - compressional wave

S - shear wave
LR - Rayleigh surface wave

1 -~ impulsive first motion

e - emergent first motion

¢ - compressional first motion

d ~ dilatational first motion

? - ambiguity of designation
pP - P-wave reflected at the crust near the epicenter
sS -~ S-wave converted to P-wave at reflection like pP

Airy - Airy phase (minimum group velocity) of Rayleigh wave.

Phase Timing

Times are designated in Universal Coordinated Time (UTC) which is equivalent to
Central Standard Time + six hours. Explosions in a sequence may be designated by
hour and minute only.

Phase Amplitude and Period

Ap, = maximum O-peak amplitude of the phase in mm observed on develocorder review
(20 x magnification)
A = sustained O-P amplitude in mm observed on develocdrder review (20 x

magnification) of a train of waves.
T = period of the wave in seconds.

D duration of signal in seconds from onset of P to code = ambient noise.

c

number of cycles in a wave train.

Example Data Entry

BEGl  iPC  04:24:15.1, T =
eS  04:24:20.3, T

I
—O
[ ]




Station BEGl recorded an impulsive-compressional P-wave at 04:24:15.1 UTC. The
sustained amplitude was 13 mm zero to peak, the maximum amplitude was 20 mm, the
period of the wave was 0.5 seconds. An emergent S-wave was recorded at 04:24:20.3
UTC with a period of 1.0 seconds. The total event duration was 35 seconds.

1. 81-01-01
03:32:29.3 +0.04
29°15'26"N
95°15'36.3"W
H = 600, MD =
90% confidence error ellipse Az = 17°, a = 0.5 km, b = 0.3 km

BEG1 ePd 03:32:31.80 +0.03,
S 03:32:33.35,
LR 03:32:34.82;
BEG2 ePc 03:32:31.95 +0.05,
eS 03:32:33.61,
LR 03:32:34.87;
BEG3 ePc 03:32:31.61 +0.02,
LR 03:32:34.57;
BEG4 eP 03:32:31.44 +0.02,
is 03:32:32.79 +0.02,
LR - 03:32:34.46;
BEGS5 ePd 03:32:31.38 +0.02,
is 03:32:32.77 +0.02,
LR 03:32:34.46
2., 81-05-12

21:03:42.9 +0.02

29°15'38.2"N

95°16'04.5"W

H= 5.0, MD =

907% confidence error ellipse Az = 138°, a = 3.4 km, b = 3.2 km

BEG3 iPd 21:03:44.95;
BEG4 P 21:03:44,9;
BEG5 P 21:03:44.7;
S 21:03:45.9;
? 21:03:46.45;
LR Am = 19
3. 81-05-13

16:14:12,8 +0.19

29°15'12.6"N

95°16'12.0"W

H = 1.0, MD = .

90% confidence error ellipse Az = 26°, a = 0.9 km, b = 0.5 km

BEG3 P 16:14:14.7;
BEG4 P 16:14:14,.5;
S 16:14:15.55;




4,

5.

6.

7.

BEGS P 16:14:14.0;
LR Am = 12

81-05-13
16:23:33.05 +0.44
29°14'20.5"N
95°16'21.6"W
=0 km, Mp =
90% confidence error ellipse Az = 133°, a = 1.8 km, b = 1.5 km

BEG3 eP 16:23:36.1,
S 16:23:37.95;
BEG4 P 16:23:35,55;
S 16:23:37.35;
BEG5 iP 16:23:35.3
S 16:23:36.65
81-05-28

13:39:02.5 +0.13
29°17'09.7"N
95°14'56.0"W
=0 km, Mp =
90% confidence error ellipse Az = 148°, a = 0.6 km, b = 0.3 km

BEG2 iPc 13:39:03.95;

BEG3 iPc 13:39:03.6,
S 13:39:04.5;

BEG4 ip 13:39:04. 4,
S 13:39:05.45;
D 4.5

BEGS iP 13:39:04.75
S 13:39:06.0

81-06~20

20:57:20.2 +0.47
29°16'59.8"N

95°16'16.5"W

H = 0.0 km, Mp =

90% confidence error ellipse Az = 37°, a = 2.7 km, b=.7 km

BEG1 P 20:57:21.07,
S 20:57:21.55;
BEG2 P? 20:57:23.15;
BEG3 P 20:57:22.1,
S 20:57:22.5;
BEG4 LR 20:57:23.5;
BEG5 P? 20:57:21.75
81-06-21
16:23:02.7

A-3




8.

9.

10.

29°17%'42,8"N
95°15'03.4"W
H =0.0, MD=
90% confidence error ellipse Ax = 155°, a

3.7 kmy, b = 1.5 km

BEG1 ipP 16:23:04.9;
BEG2 iP 16:23:03.95;
BEG3 iP 16:23:03.95;
BEG4 iP 16:23:05.28;
BEG5 ip 16:23:05.3
81-10-02

07:27:32.9 +0.28

29°16'03.7"N

95°15'26.2"W

H = 0.0 km, MD =

90% confidence error ellipse Az = 0°, a = 1.3 km, b = 0.5 km

BEG1 iP 07:27:35.7,
is 07:27:36.4,
LR 07:27:37.9;
BEG3 eS? 07:27:35. 4,
LR 07:27:37.35;
BEG4 eP 07:27:34.0,
is 07:27:34.7,
LR 07:27:36.2;
BEGS iP 07:27:33.95,
is 07:27:34.8,
LR 07:27:36.15, Am = 4.5
81-10-02

07:27:43.9
29°15'22.4"N

"95°15'26.6"W

H = OQOL, MD =
90% confidence error ellipse Az = 179°, a = 3.0 km, b = 0.5 km

BEG1 eP 07:27:46.7,
S 07:27:47.6,
LR 07:27:48.9;
BEG2 iP 07:27:46.85;
BEG3 iP 07:27:46.4,
LR 07:27:48.5;
BEG4 iP 07:27:45.4,
is 07:27:45.9,
LR 07:27:47.55;
BEGS ip 07:27:45.1,
is 07:27:46.1
LR 07:27:47.4, Am = 4.5
82-01-09

10:37:07.6 UTC
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11.

12.

13.

14,

15.

29 29 26.7 N

95 09 16.7 W

Velocity=339 meters/second

90% confidence error ellipse Az=30 , a=4.4 km, b=0.1 km

BEG1 iR 10:38:33.10;
BEG2 iLR 10:38:25.30;
BEG3 ilR 10:38:31.85;
BEG4 iLR 10:38:35.40;
BEGS5 iLR 10:38:38.60
82-01-23

14:10:51.4 UTC

29 17 30.2 N

95 16 14.1 W

H = 0.92 Kilometers
90% confidence error ellipse Az=51 , a=1.6 km, b=1.3 km

BEG1 iP 16:31:27.30;
BEG2 eP 16:31:27.45;
BEG3 iP 16:31:27.10;
BEG4 P : 16:31:24,50;
BEGS eP 16:31:24.75
82-06-08

00:49:29 UTC
No epicenter determined

BEG1 LR 00:49:41.30;
BEG2 iLR 00:49:32.20;
BEG3 eLR 00:49:33.92;
BEG4 ilR 00:49:29.15;
BEG5 eLR 00:49:37.50
82-07-16

17:52:59 UTC
No epicenter determined

BEG1 iLR 17:53:01.00;
BEG2 iLR 17:52:53.70;
BEG3 Inoperative

BEG4 iLR 17:52:59.40;
BEG5 iLR 17:53:05.45
83-01-17

17:56:57 UTC
Teleseism from Guatemala
OT=17=52:21-8, H=138 kmo, mb=4-8 ’

83-01-17
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21:31:03 UTC
Impulsive Rayleigh event from outside the array

BEG1 ilR 21:31:10.00;
BEG2 Inoperative
BEG3 iLR 21:31:09.57;
BEG4 iLR 21:31:05.22;
BEGS iLR 21:31:03.00

Additional events on 82-01-17: 21:35:40 (unclear arrivals)

16. 83-01-17
22:12:31 UTC
Explosion shot series from outside the array

Additional events:

83-01-17: 22:18:55, 23:17:26, 23:21:55

83-01-18: 23:27:10

83-01-25: 17:52:12, 17:57:18, 18:57:48, 20:54:50

83-01-26: 17:07:18, 17:10:00, 17:13:15, 17:16:50, 18:06:30

83-01-28: 16:21:50, 16:29:03, 16:55:22, 17:02:38, 17:12:04,
17:18:22, 17:47:20, 17:53:40, 18:00:25, 18:07:12,
18:26:23, 19:06:28, 19:19:54, 19:26:46

17. 83-01-25
22:01:05.66 UTC, Velocity=255 m/sec
Impulsive Rayleigh event

BEG1 iLR 22:01:16.25;
BEG2 ilR 22:01:21,75;
BEG3 iLR 22:01:15.50;
BEG4 iLR 22:01:11.60;"
BEG5 ilR 22:01:09.10

Additional events on 82-01-25: 17:28:38 and 21:54:46 (unclear arrivals)

18. 83-02-03
17:32:48.07 UIC, Velocity=330 m/sec
Impulsive Rayleigh event from outside the array

BEG1 iLR 17:33:44.72;

BEG2 Inoperative

BEG3 iLR 17:33:44,05;

BEG4 iLR 17:33:40.15;

BEGS iLR 17:33:37.30
19. 83-02-04

05:22:21.66 UCT, Velocity=335 m/sec
Impulsive Rayleigh event

BEG1 ilR 05:22:52.30;
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BEG2 iLR 05:22:42.49;
BEG3 iLR 05:22:44.48;
BEG4 ilR 05:22:39.07;
BEG5 iLR 05:22:45.40

Additional events on 83-02-04:

04:22:40 - First event of a series of three (D=3 seconds).

05:22:54 to 05:34:30 - Thirty-seven (37) events were recorded
with an average peak-to-peak amplitude of millimeters.

05:34:30 to 05:38:13 - Sixty-five (65) events were recorded
with an average peak-to-peak amplitude of 10 millimeters.

05:47:43 - Ap~p=14 mm

05:48:15 — Ap~p=11 mm

05:48:18 - Ap~p=14 mm

05:49:17 - Ap~p=12 mm

05:49:26 - Ap~p= 7 mm

05:50:25 -~ Ap~p=14 mm

05:51:26 to 06:08:26 - Two hundred and sixty-five (265) events
were recorded with an average peak-to-peak amplitude of 15
millimeters.

06:12:07 - Ap-p= 5 mm
08:00:17 - Ap~p= 7 mm
08:01:08 - Ap~p= 4 mm
08:01:16 = Ap~p= 5 mm
08:06:26 - Ap~p= 7 mm

83-02-04
17:06:42 UIC
Exploration shot series

20.

from outside the array

Additional events:

83-02-04:
83-02-16:

83-02-22:

83-02-23:

83-02-24:
83-03-04:

17:10:00,
20:38:40,
21:06:47,
22:45:09,
23:08: 35,

23:30: 26,

15:22:42,
16:25:30,
18:41:00,
19:41: 40,
21:58:22,
23:05:27
23:36: 40,
15:52:55,
16:25:04,

17:14:08,
20:44: 30,
21:15:48,
22:47:53,
23:12:25,
23:35:50,
15:51:52,

16:33:30,

18:47: 03,
19:54:12,
22:16: 40,

23:42:00
15:59:02,

17:24:50,
20:51:10,
21:37:00,
22:54:30,
23:15:55,
23:38:05,
16:06:00,
16:54:47,
18:52:38,
20:00:22,
22:22:48,

16:06: 00,

17:28:12,
20:55: 30,
21:46:32
23:00:08,

23:20:25,

23:44:35,
16:12:08,
17:05: 20,
19:15:52,
20:57:15,

22333:42,

16:12:16,

16:42:38, 16:53:31, 17:07:10,
17:31:32, 17:40:06, 17:45:15, 17:49:17

20:00:43
20:59:15,

23:04:30,
23:26:13,
23:52:40

16:19:30,
18:05:10,
19:28:30,
21:24:50,
22:39:56,

16:18: 20,
17:19:23,

21, 83-02-15
15:01:15.30 UTC, Velocity=350 m/sec
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Impulsive Rayleigh event from south of the array

BEG1 iLR 15:01:41.85;
BEG2 iLR 15:01:39.50;
BEG3 ilR 15:01:36.50;
BEG4 iLR 15:01:30.65;
BEG5 iLR 15:01:33.00

Additional events on 83-02-04%
04:22:40 - First event of a series of three (D=3 seconds)
22. 83-03-08
19:01:45 UTC
Rayleigh event from distant quarry blast to the northwest
Additional blasts:
83-03~-09: 01:12:29
23. 83-03-23

12:27:54.29 UTC, Velocity=345 m/sec
Impulsive Rayleigh events from southeast of the array center

BEG1 iLR 12:28:11.90;
BEG2 Inoperative
BEG3 ilR 12:28:04.25;
BEG4 eLR 12:28:01.20;
BEG5 Inoperative

Additional events:

83-03-22: 03:30:43, 03:41:59, 03:42:13, 03:44:00 (possibly 5 others)

24, 83-03-23
17:02:10.22 UTC, Velocity=140 m/sec
Impulsive Rayleigh event

BEG1 iLR 17:02:23.70;

BEG2 Inoperative

BEG3 ilR 17:02:25.20;

BEG4 LR 17:02:32.55;

BEGS5 iLR 17:02:19.30
25, 83-03-23

17:10:07 UTC
Impulsive Rayleigh event from outside the array

BEG1 ilR 17:10:07.00;
BEG2 Inoperative
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26.

27.

28.

29.

BEG3 Inoperative
BEG4 iLR 17:10:11.70;
BEGS iLR 17:10:16.00

Additional Impulsive Rayleigh events:

83-03-23: 17:22:16, 17:44:10, 18:03:03,
19:13:12, 19:15:26, 19:18:32,
19:32:53
83-03-23

19:34:11.92 UTC, Velocity=175 m/sec
Impulsive Rayleigh event

BEG1 iLR 19:34:25.22;
BEG2 Inoperative
BEG3 iLR 19:34:22.30;
BEG4 iLR 19:34:26.75;
BEGS iLR 19:34:16.60

Additional Impulsive Rayleigh events:

83-03-23: 19:40:18, 19:42:50, 19:44:45

83-03-23
19:48:30.54 UTC, Velocity=135 m/sec
Impulsive Rayleigh event

BEG1 iLR 19:48:44.70;
BEG2 Inoperative
BEG3 iLR 19:48:46.70;
BEG4 iLR 19:48:54.10;
BEGS5 iLR 19:48:39.98

Additional Impulsive Rayleigh events:

83-03-23: 19:49:48, 19:52:24, 19:53:27

83-03-23
19:59:17.64 UTC, Velocity=155 m/sec
Impulsive Rayleigh event

BEG1 iLR = 19:59:31.80;

BEG2 Inoperative

BEG3 iLR 19:59:29.75;

BEG4 iLR 19:59:35.30;

BEGS iLR 19:59:23.70
83-03-23

20:28:06.49 UTC, Velocity=195 m/sec
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Impulsive Rayleigh event

BEG1 ilR 20:28:20.00;

BEG2 Inoperative

BEG3 iLR 20:28:13.70;

BEG4 ilR 20:28:16.90;

BEG5 iLR 20:28:11.10
30. 83-03-25

16:18:57.59 UTIC, Velocity=185 m/sec
Impulsive Rayleigh event

BEG1 iLR 16:18:59.50;

BEG2 Inoperative

BEG3 iLR 16:19:06.80;

BEG4 iLR 16:19:09.00;

BEGS iLR 16:19:07.30
31. 83-03-28

16:33:43.15 UTC, Velocity=225 m/sec
Impulsive Rayleigh event

.BEG1 iLR 16:34:03.00;

BEG2 Inoperative

BEG3 iLR 16:34:08.00;

BEG4 iLR 16:34:03.40;

BEG5 iLR 16:33:56.60
32. 83-03-29

13:42:30.02 UTC, Velocity=225 m/sec
Impulsive Rayleigh event

BEG1 ilR 13:42:36.80;
BEG2 Inoperative
BEG3 Inoperative
BEG4 ilR 13:42:44.60;
BEG5 iLR 13:42:41.90
33. 83-03-29

20:47:45 UTC

Impulsive Rayleigh event from outside the array
BEG1 iLR 20:47:49.00;
BEG2 Inoperative
BEG3 Noisy
BEG4 iLR 20:47:45.30;
BEG5 Noisy

Additional events:

A-10




83-03-30: 17:15:04, 17:46:53, 17:48:25, 17:49:10, 17:53:40, 17:55:20

34, 83-05-02
23:47:45 UTC
Teleseism from Coalingua, California
0T=23:42:37.9 UTC, H=12 Km., mb=6.2

83-05-03
04:53:21.01 UTC, Velocity = 349 meters/sec
Impulsive Rayleigh event from the chemical plant southeast of the array

BEG1 iLR 04:53:47.50;
BEG iLR 04:53:40.10;
BEG3 iLR 04:53:40.40;
BEG4 iLR 04:53:34.60;
BEGS Inoperative

Additional Impulsive Rayleigh events:

83-05-03: 13:42:19, 13:42:23, 13:42:40, 13:42:51, 13:43:21,
13:43:42, 13:44:04, 13:44:22, 13:45:02, 13:45:19,
13:45:53, 13:46:16, 13:48:48, 13:48:49, 13:48:51,
13:49:06

35. 83-05-05
07:39:27 UTC
Teleseism from south of Panama
0T=07:33:46.3 UTC, H=11 km., mb=5.5

36. 83-05-05

18:57:46 UTIC

Impulsive Rayleigh event from outside the array
BEG1 iLR 18:57:47.50;
BEG2 - Noisy ;
BEG3 iLR 18:57:47.00;
BEG4 iLR 18:57:53.50;
BEGS Inoperative

Additional Impulsive Rayleigh events:
83-05-05: 20:59:23, 23:37:14

37. 83-05-09
15:58:20 UTC

Teleseism from the Panama-Costa Rica border region
OT=15:53:02.7 UTC, H=36 Km., mb=5.7
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38.

39.

40.

41.

83-05-09

21:02:05 UTC
Explosion shot series from northeast of the array

Additional Explosion shots:

83-05-09:

83-05-10:
83-05-11:

83-05-12:

83-05-09

21:07:00,
21:40:02,
13:35:20,
16:42:37,
23:31:08,
21:06: 44,
21:54:54,
22:44:01,

21:12:50,
21:57: 40,
22:03:00
17:13:50,
23:35:30
21:17: 40,
22:06:00,
22:47:18

21:17:20,
22:03:00

21:25:30,

17:20:52, 18:55:30,

21:39:40,
22:12:00,

21:21:35,
22:08:51,

21:55:52.72 UTC, Velocity = 347 meters/sec
Impulsive Rayleigh event from near the geopressured/geothermal well

21:56:11.80;
21:56:05.75;

. 21:56:04.70;

21:55:58.80;
Inoperative

Impulsive Rayleigh event froq outside the array

BEG1 iLR
BEG2 iLR
BEG3 iLR
BEG4 iLR
BEG5

83-05-09

23:51:00 UTIC
BEG1 iLR
BEG2 iLR
BEG3 iLR
BEG4 iLR
BEGS5

23:51:12,50;
23:51:14.00;
23:51:11.30;
23:51:09.75;
Inoperative

Additional Impulsive Rayleigh events:

23:57:00

Impulsive Rayleigh event from outside the array

83-05-09:
83-05-10
00:24:10 UTC

BEG1 iLR

BEG2 iLR

BEG3 iLR

BEG4 iLR

BEG5

83-05-10

00:31:00 UTC

00:24:14.00;
00:24:24.20;
00:24:17.50;
00:24:18.30;
Inoperative
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18:59:40, 19:04:20,

21:45:02, 21:49:30,
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42,

43.

44,

45,

46,

Impulsive Rayleigh event from outside the array

BEG1 iLR 00:31:16.10;
BEG2 ilR. 00:31:16.15;
BEG3 ilR 00:31:12.30;
BEG4 ilR 00:31:11.60;
BEG5 Inoperative

Additional Impulsive Rayleigh events:

83-05-10: 13:16:01

83-05-19
15:36:11 UTC
Explosion shot series from outside the array

Additional Explosion shots:

83-05-19: 15:41:58, 15:47:28, 15:52:59, 15:59:02, 16:04:19, 16:17:59,
16:26:16, 16:32:01, 16:41:20, 16:54:16, 17:05:20, 17:12:09,
17:30:52, 19:39:45, 20:10:38, 20:31:59, 21:01:00, 21:27:46,
22:50:45, 22:54:23, 23:37:13, 23:55:58, 23:59:58

83-05-20
06:12:31.14 UTC, Velocity = 355 meters/sec
Impulsive Rayleigh event from the chemical plant southeast of the array

BEG1 ilR°  06:12:49,90;

BEG2 iLR 06:12:40.90;

BEG3 iLR 06:12:42,48;

BEG4 iLR 06:12:38.30;

BEGS Inoperative N
83-06-01

01:55:45 UTC
Teleseism from Mindoro, Philippine Islands
0T=01:37:00.7 UTC, H=260 Km., mb=5.5

83-06-02 .

20:20:28 and 20:21:56 UTC

Teleseism from the Peru-Brazil border region
0T=20:12:51.3 UTC, H=607 Km., mb=5.9

83-06-20
14:57:42 UTC
Explosion shot series from outside the array

‘Additional Explosion shots:
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47,

48.

49,

83-06-20:

83-06-21:

83-06-27:

83-06-28:
83-06-29:
83-06-30:

83-07-06
00:06:50 UTC

Explosion shot series

15:03:31,
19:20:08,
21:43:43,
22:49:38,
23:17:51,
00:03:37,
14:36: 36,
19:39:37,
20:08:50,
21:32:47,
22:01:39,
22:58:16,
00:59:51,
17:31:01,
19:24:47,
22:15:35,
00:52:58,
01:20:42,
17:05:57,

15:08:09,
19:27:50,
21:55:18,
22:54:39,
23:22: 44,
00:08: 54,
14:42:15,
19:46:31,
20:20: 39,
21:36: 34,
22:02: 46,
23:01:04,
01:04:50,
17:50: 34,
20:26: 45,
22:19:13,
00:57:28,
01:28:24
18:05:52,

15:13:31,
19:29:10,
22:03:01,
22:58:55,
23:36:33,
00:15:35,
14:47:55,
19:48:07,
21:28:09,
21:40:35,
22:08: 42,
23:04: 21,
01:09:12,
17:57:15,
21:01:35,
22:22:58,
01:07:38,

18:31:13,

from outside of the

Additional Explosion shots:

83-07-06:
83-07-07:

83-07-07

17:21:43,
20:53:00,
22:14:28,
23:03:51,
23:41: 45,
00:21:20,
15:40:18,
19:53:37,
21:27: 20,
21:48:54,
22:10: 35,
23:13:39
01:28:17,
18:01:15,
21:09:10,
22:55:37,
01:11:00,

18:29:49,

array

17:25:59,
21:03:43,
22:19:59,
23:08:21,
23:47: 44,
00:32:20,
15:56: 44
19:55: 35,
21:30:51,
21:53:10,
22:23:19,

17:15:01,
18:06:16,
21:20:16,
23:01:04,
01:14:42,

18: 48: 00,

00:13:55,
19:34:02,
20:47:12,
22:06:23,
22:40:28,
23:04: 30,
00:06: 50,
00:58:10,

19:36:05.8 UTC
Large Impulsive Rayleigh event, Velocity = 500 meters/second

Md = 0.5

BEG1
BEG2
BEG3
BEG4
BEG5

83-07-07

00:18:55,
19:52:11,
21:28:01,
22:08:51,
22:43:26,
23:08: 30,
00:10:15,
01:01:00,

02:58:30
19,55, 44,
21:35:25,
22:12: 46,
22:46:36,
23:39:08,
00:42:15,
01:03:17,

20:
21:
22:
22:
23:
00:

19,58:51,
21:44:45,
22:16:21,
22:56:27,
23:43:02,
00:45:48,
01:37:50

13:11,
47:28,
29: 54,
56: 40,
50:12,
49:45,

iLR
iLR
iLR

ilR

19:36:17.60;
19:36:08.30;
19:36:12.80;
Inoperative;
19:36:13.10

22:54:49,2 UTC

Impulsive Rayleigh event from inside the array, Velocity =

meters/second
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18:49:41,
21:29: 49,
22:36:31,
23:13:04,
23:57:03
00:36:07,

20:02:23,
21:32:56,
21:56: 14,
22:38:39,

17:27:59,
18:13:26,
22:12: 24,
23:05: 44
01:17:39,

18:55:04

20:19:40,
21:54:40,
22:33:39,
23:01:10,
00:03:32,
00:52:15,




50.

51,

52.

53.

BEG1
BEG2
BEG3
BEG4
BEG5

83-07-11
20:16:20 UTC

iLR 22:55:06.00;
iLR 22:54:57.00;
iLR 22:54:59.50;

Inoperative;
ilR 22:55:01.50

Explosion shot series from outside of the array

Additional E

83-07-11:

83-07-12:

83-07-26
15:30:41 UTC

xplosion shots:

20:16: 42, 20:32:49,
21:11:57, 21:13:08,
22:45:39, 23:07:39,
23:50:25, 23:55:56
00:01:05, 00:06:17,
00:27:04, 00:30:01,

20:59:50, 21:04:40, 21:07:36, 21:11:50,
21:26:58, 21:51:53, 21:59:43, 22:42:12,
23:11:00, 23:14:54, 23:17:52, 23:25:46,

00:09:10, 00:13:20, 00:17:33, 00:24:05,
00:33:04

Explosion shot series from outside of the array

Additional E

83-07-26:

83-07-27:

83-07-28:

83-07-26
18:16:20 UTC

xplosion shots:

15:42: 46, 15:50:16,
17:55:16, 17:55:45,
19:30:02, 19:34:12
17:20:50, 18:54:35,
22:12:03, 22:20:15,
23:41:58, 23:57:57
00:09:09, 00:17:57,
00:40:34, 00:40:31,

16:16:28, 16:24:11, 16:38:40, 16:45:23,
18:09:05, 18:15:03, 18:48:25, 19:22:21,

19:24:39, 19:42:23, 19:48:31, 22:08:28,
22:29:16, 22:42:51, 23:27:28, 23:38:44,

00:20:59, 00:23:55, 00:34:47, 00:34:53,
00:49:51, 00:58:52, 01:34:28, 01:58:08

Emergent Rayleigh event from outéide the array

BEGI]
BEG2
BEG3
BEG4
BEGS

83-07-26
18:19:36 UTC

ilR 18:16: 32, 20;
iLR 18:16:33.50;
iLR 18:16:27.10;
iLR 18:16:27.10;

Inoperative

Emergent Rayleigh event from outside the array

BEGI1
BEG2

i1LR 18:19:41.60;
ilR 18:19: 44.50;
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54.

55.

56.

57.

58.

BEG3
BEG4
BEG5

83-07-26

iLR
iLR

19:13:38.8 UTC
Emergent Rayleigh event from outside the array

BEGI1
BEG2
BEG3
BEG4
BEG5

83-07-26 -

iR
ilR
ilR
iLR

19:14:31.1 UTC
Emergent Rayleigh event from inside the array, Velocity = 250

18:19:44.50;
18:19:27.30;
Inoperative

19:13:47.40;
19:13:41.45;
19:13:38.00;
19:13:41.30;
Inoperative

19:14:45.60;
19:14:39.20;
19:14:39.45;
19:14:37.00;
Inoperative

Emergent Rayleigh event from outside the array

meters/second
BEG1 iLR
BEG2 iLR
BEG3 iLR
BEG4 iLR
BEGS
83-07-26
19:20:40 UTC
BEG1 iLR
BEG2 ilR
BEG3 iLR
BEG4 iLR
BEG5
83-08~02

20:38:51 UTC

19:20:49.50;
19:20:42,20;
19:20:42,.80;
19:20:40.50;
Inoperative

Explosion shot series from outside of the array

Additional Explosion shots:

83-08-02:

83-08-03:

83-08-04

21:09:11, 21:22:32, 21:54:00, 22:28:40, 23:25:29, 23:54:12,
23:58:58, 00:09:57, 00:14:56, 00:19:06, 00:23:33, 00:28:05,
00:32:31, 00:38:48, 00:48:58, 00:55:18

14:28:53, 14:36:38, 14:49:09, 15:10:42, 15:20:26

03:09:57.8 UTC
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Impulsive Rayleigh event from outside the array

BEG1 ilR 03:10:18:15;

BEG2 iLR 03:10:16.00;

BEG3 iLR 03:10:20.50;

BEG4 Inoperative;

BEG5 iLR 03:10:26.10
59. 83-08-04

03:13:11.1 UTC
Impulsive Rayleigh event, Velocity = 125 meters/second

BEG1 iLR 03:13:33.30;

BEG2 iLR 03:13:32.40;

BEG3 iLR 03:13:36.20;

BEG4 Inoperative;

BEGS ilR 03:13:41.90
60. 83-08-04

03:32:58.7 UTC
Impulsive Rayleigh event, Velocity = 350 meters/second

BEG1 iLR 03:33:06.80;

BEG2 iLR 03:33:08.80;

BEG3 iLR 03:33:02.10;

BEG4 Inoperative;

BEGS5 ilR 03:33:02.40
61. 83-08~04

03:33:41.6 UTC
Impulsive Rayleigh event, Velocity = 275 meters/second

BEG1 iLR 03:33:56.00;

BEG2 ilLR 03:33:55.20;

BEG3 iLR 03:33:49.70;

BEG4 Inoperative;

BEGS5 iLR 03:33:48.10
62. 83-08-04

03:34:21.1 UTC
Impulsive Rayleigh event, Velocity = 350 meters/second

BEG1 iLR 03:34:28.00;
BEG2 iLR 03:34:29.50;
BEG3 iLR 03:34:22,.00;
BEG4 Inoperative;
BEG5 iLR 03:34:27.40
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63.

64.

65.

66.

67.

83-08-04

03:35:02.7 UTC
Impulsive Rayleigh event, Velocity = 350 meters/second

BEG1
BEG2
BEG3
BEG4
BEGS

83-08-04

iLR
iLR
ilR

iLR

03:36:05.1 UTIC
Impulsive Rayleigh event, Velocity = 350 meters/second

BEG1
BEG2
BEG3
BEG4
BEG5

83-08-04

iLR
iLR
ilR

iLR

19:22:26.6 UTC '
Impulsive Rayleigh event, Velocity=325 meters/second

BEG1
BEG2
BEG3
BEG4
BEGS5

83-08-04

iLR
iLR
iLR
iLR

20:01:32.8 UTC
Impulsive Rayleigh event, Velocity = 375 meters/second

BEG1
BEG2
BEG3
BEG4
BEG5

83-08-04

iLR
iLR
iLR
iLR

21:07:49.7 UTC
Impulsive Rayleigh event, Velocity = 100 meters/second

BEG1
BEG2
BEG3
BEG4
BEG5

iLR
iLR
iLR -

03:35:08.50;
03:35:12.20;
03:34:04.90;
Inoperative;
03:35:08.40

03:36:18.10;
03:36:19.20;
03:36:13.60;
Inoperative;
03:36:09.50

19:22:40.75;
19:22:35.10;
19:22:38.90;
19:22: 44, 20;
Inoperative

20:01:45.50;
20:01:42.90;
20:01:33.40;
20:01:33.40;
Inoperative

20:08:11.20;
20:08:23.50;
20:08:16.25;
Inoperative;
Inoperative
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68.

69.

70.

71.

72,

73.

83-08-04
21:51:46.5 UTC
Impulsive Rayleigh event, Velocity = 100 meters/second

BEGI iLR 21:52:07.15;
BEG2 iLR 21:52:14.00;
BEG3 iLR 21:52:07.20;
BEG4 ilR 21:52:04.20;
BEGS Inoperative
83-08-05
06:30:00 UTC

Teleseism from western Brazil
OT = 06:21:4204 UTC, H = 21 Kmu’ mb = 5.5

83-08-09
11:44:50.4 UTC
Impulsive Rayleigh event, Velocity = 250 meters/second

BEG1 iLR 11:44:57.00;

BEG2 ilR  11:45:05.70;

BEG3 ilR 11:45:02.30;

BEG4 iLR 11:45:06.45;

BEGS Inoperative
83-08~09

11:53:42.3 UTC
Impulsive Rayleigh event, Velocity = 100 meters/second

REG1 iLR 11:54:18.80;

BEG2 iLR 11:54:15.80;

BEG3 iLR 11:54:13.10;

BEG4 iLR 11:54:07.80;

BEGS5 Inoperative
83-08-09

16:32:38 UTC
Impulsive Rayleigh event from outside the array

BEG1 iLR 16:32:45.60;

BEG2 iLR 16:32:43.70;

BEG3 iLR 16:32:48,00;

BEG4 iLR 16:32:52.,30;

BEG5 Inoperative
83-08~10
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74,

75.

76.

77.

17:19:24.5 UTC
Impulsive Rayleigh event, Velocity = 300 meters/second

BEG1
BEG2
BEG3
BEG4
BEG5

83-08-11

iLR
iLR
iLR
- iLR

16:12:15.2 UTC
Impulsive Rayleigh event, Velocity = 375 meters/second

BEG1
BEG2
BEG3
BEG4
BEGS5

83-08-11

iLR
iLR
iLR
iLR

16:12:56.9 UTC
Impulsive Rayleigh event, Velocity = 350 meters/second

BEG1
BEG2
BEG3
BEG4
BEG5

83-08-11

iLR
iLR
iLR
iLR

16:13:43.3 UTC
Impulsive Rayleigh event, Velocity = 350 meters/second

BEG1
BEG2
BEG3
BEG4
BEGS

83-08-11

iLR
iLR
iLR
iLR

16:15:00 UTC
Impulsive Rayleigh event from outside the array

BEG1
BEG2
BEG3
BEG4

iLR
iLR
iLR
iLR

17:19:37.30;
17:19:32.10;
17:19:36.10;
17:19:41.00;
Inoperative

16:12:33.10;
16:12:31.60;
16:12:28.10;
16:12:22.60;
Inoperative

16:13:20.00;
16:13:17.10;
16:13:14.40;
16:13:08.20;
Inoperative

16:13:59.50;
16:13:56.10;
16:13:53.40;
16:13:48.20;
Inoperative

16:15:11.55;
16:15:07.80;
16:15:05.80;
16:14.59.50;

A-20




78.

79.

80.

81,

82.

BEGS Inoperative

83-08-11

17:04:03.9 UTC

Impulsive Rayleigh event from outside the array, Velocity = 350
meters/second

BEG1 iLR 17:04: 42.60;

BEG2 iLR 17:04:54.40;

BEG3 iLR 17:04:47.20;

BEG4 iLR 17:04:47.60;

BEG5 Inoperative
83-08-11

17:13:55.1 UTC
Impulsive Rayleigh event, Velocity = 350 meters/second

BEG1 iLR 17:14:08.40;

BEG2 - 1LR 17:14:14.90;

BEG3 iLR 17:14:07.80;

BEG4 iLR 17:14:06.50;

BEGS Inoperative
83-08-16

12:56:20 UTC
Acoustic~coupled Rayleigh event or Sonic Boom

BEG1 iLR 16:12:33,.10;
BEG2 iLR 16:12:31.60;
BEG3 ilR 16:12:28.10;
BEG4 iLR 16:12:22.60;
BEGS Inoperative

Additional acoustic—coupled Rayeigh events:

83-09-06: 21:02:00

83-08-17

11:07:28 UTC

Teleseism from near the coast of Kamchatka
OT = 10:55:52.8 UTC, H = 55 Km., mb = 6.5

83-08-24
22:18:10 UTC
Explosion shot series from outside the array

A=-21




83.

84.

85.

Additional Explosion shots:

83-08-24: 21:29:15,
23:20:00,
00:20: 30,
83-08-25: 14:29:12,
15:12:50
83-08-29
14:35:04 UTC

22:30:50,
23:23:30,
00:31:15,
14:47:00,

22:59:50,
23:31:40,
00:34:20,
14:50:50,

23:13:05,
00:12:50,
00:38:00,
14:57: 40,

Explosion shot series from outside the array

Additional Explosion shots:

83-08-29:

83-08-30:

83-08-31:

83-09-01

83-09-02

83-09-06

14:54: 47,
16:39: 30,
17:27:12,
18:02:10,
18:30: 40,
20:21:32,
21:13:53,
22:36:00,
23:04: 30,
14:48:09,
15:59: 34,
18:31:40,
21:09:10
16:38:50,
17:59: 40,
19:51:00,
20:39: 40,
16:10:10,
17:07:50,
18:37:10,
19:59:00,

20:46:53.5 UTC
Impulsive Rayleigh event, Velocity = 275 meters/second

BEG1
BEG2
BEG3
BEG4
BEG5

83-09-07

15:02:12,
17:02: 20,
17:27:30,
18:06:09,
19:33:10,
20:22:13,
21:40:55,
22:50:45,
23:10: 45,
15:06: 44,
16:02: 45,
19:14:55,

16:46:16,
18:02:05,
19:56: 50,
20:41:20,
16:17:02,
17:35:26,
19:01:25,
29:04:02,

15:19:04,
17:10: 20,
17:30:30,
18:17: 40,
19:36: 06,
20:26:23,
21:48:50,
22:54:32,
23:14:12,
15:24:22,
16:06:00,
19:20:23,

16:50: 56,
19:02: 32,
20:23: 30,
20:51:50,
16:22:40,
17:59: 40,
19:10:00,
20:24:30,

iLR 20:47:08.80;
iLR 20:47:07.90;

Inoperative;
iLR 20:47:01.30;
iLR 20:46:59.50

O01:14:44,.2 UTC
Impulsive Rayleigh event, Velocity = 200 meters/second

A=-22

15:53:14,
17:19:35,
17:40:38,
18:20:25,
19:39: 39,
20:30: 40,

-22:16: 20,

22:59:06,
23:18:32

15:31:10,
16:34:30,
19:23:00,

16:56:20,
19:40:48,

20:28:15,

21:37:50,
16:28: 50,
18:14:30,
19:24:15,
20:34:10,

23:14:50,
00:16: 30,
00:44:05,
15:00: 50,

16:00: 40,
17:21:18,
17:50:10,
18:22:52,
19:41:12,
20:35:01,
22:20:40,
23:00: 20,

15:50:55,
16:43:20,
20:59:00,

17:01:00,
19:45:30,
20:34:50,
21:41:50,
16:38:05,
18:21:10,
19:33:10,
20:59:50,

23:17:30,
00:19:50,
00:47:20
15:08: 35,

16:29:50,
17:24:20,
17:55:33,
18:23: 20,
20:19:14,
20:42:30
22:26:30,
23:02: 20,

15:57:00,
16:58:30,
21:05:10,

17:11: 40,
19:47:00,
20:36: 50,
21:43:20
16: 442 40,
18:30:15,
19: 45250,
21:06: 50




BEG1 ilR 01:15:05.40;

BEG2 iLR 01:14:52.90;

BEG3 Inoperative;

BEG4 iLR 01:15:05.40;

BEGS iLR 01:14:53.10
86. 83-09-07

19:30:35 UTC.
Teleseism from southern Alaska
OT = 19:22:04.8 UTC, H = 42 Km., mb = 6.2

87. 83-09-08
22:26:13 UTC
Teleseism from the Ionian Sea
OT = 22:04:51.0 UTC, H = 10 Km., mb = 5.1

88. 83-09-09
01:34:43.7 UTC
Impulsive Rayleigh event, Velocity = 325 meters/second

BEG1 iLR 01:35:03.40;

BEG2 iLR 01:34:54.60;

BEG3 Inoperative;

BEG4 Inoperative;

BEG5 iLR 01:34:51.40
89. 83-09-08

01:35:48.3 UTC
Impulsive Rayleigh event, Velocity = 100 meters/second

BEG1 iLR 01:36:19.50;

BEG2 ilR 01:36:10.40;

BEG3 inoperative;

BEG4 iLR 01:36:13.80;

BEGS ilLR 01:36:07.20
90. 83-09-09

02:51:04.8 UTC
Impulsive Rayleigh event, Velocity = 100 meters/second

BEG1 iLR 02:51:36.20;
BEG2 ilR 02:51:27.25;
BEG3 Inoperative;

BEG4 ilR 02:51:30.00;
BEG5 ilR 02:51:24.10
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91.

92.

83-09-09
03:00:56.0 UTC
Impulsive Rayleigh event, Velocity = 100 meters/second

BEG1 iLR 03:01:26.70;

BEG2 ilR 03:01:18.80;

BEG3 Inoperative;

BEG4 ilR 03:01:21.80;

BEGS iLR 03:01:15.20
83-09-09

10:34:20 UTC
Teleseism from near the coast of Nicaragua
OT = 10:29:56.1 UTC, H = 73 Km., mb = 4.9
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APPENDIX B

SYNTHETIC SEISMOGRAMS BASED ON THE PLEASANT BAYOU EARTH MODEL
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Figure Bl. Crustal structure model used to calculate synthetic seismograms for the
Pleasant Bayou vicinity. Asterisks indicate source depths used for modeling.
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Figure B3. Synthetic seismogram calculated for source dip 45°, source depth 0.0 km.
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Figure B4. Synthetic seismogram calculated for source dip 45°, source depth 0.0 km
and convolved with instrument transfer function.
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Figure B5. Synthetic seismogram calculated for source dip 45°, source depth 0.3 km.
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Figure B6. Synthetic seismogram calculated for source dip 45°, source depth 0.3 km
and convolved with instrument transfer function.
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Figure B7. Synthetic seismogram calculated for source dip 45°, source depth 0.8 km.
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Figure B8. Synthetic seismogram calculated for source dip 45°,
and convolved with instrument transfer function.
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Figure B9. Synthetic seismogram calculated for source dip 45°, source depth 1.0 km.
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Figure Bll. Synthetic seismogram calculated for source dip 45°, source depth 1.3 km.
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Figure Bl12. Synthetic seismogram calculated for source dip 45°, source depth 1.3 km,
and convolved with instrument transfer function. :
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Figure BlO. Synthétic seismogram calculated for source dip 45°, source depth 1.0 km,
and convolved with instrument transfer function. '
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Figure B13. Synthetic seismogram calculated for source dip 45°, source depth 1.8 km.
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Figure Bl4. Synthetic seismogram calculated for source dip 45°, source depth 1.8 km,
and convolved with instrument transfer function.
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Figure Bl5. Synthetic seismogram calculated for source dip 45°, source depth 2.8 km.
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Figure B16. Synthetic seismogram calculated for source dip 45°, source depth 2.8 km,
and convolved with instrument transfer function.
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Figure Bl7. Synthetic seismogram calculated for source dip 45°, source depth 3.8 km.
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Figure B18. Synthetic¢ seismogram calculated for source dip 45°, source depth 3.8 km,
and convolved with instrument transfer function. '
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Figure B19. Synthetic seismogram calculated for source dip 90°, source depth 0.0 km.
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Figure B20. Synthetic seismogram calculated for source dip 90°, source depth 0.0 km,

and convolved with instrument transfer function.
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Figure B2l. Synthetic seismogram calculated for source dip 90°, source depth 0.3 km.
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Figure B22. Synthetic seismogram calculated for source dip 90°, source depth 0.3 km,

and convolved with instrument transfer function.
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Figure B23. Synthetic seismogram calculated for source dip 90°, source depth 0.8
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Figure B24. Synthetic seismogram calculated for source dip 90°, source depth 0.8 km,
and convolved with instrument transfer function.
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Figure B25. Synthetic seismogram calculated for source dip 90°, source depth 1.0 km.
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Figure B26. Synthetic seismogram calculated for source dip 90°, source depth 1.0 km,

and convolved with instrument transfer function.
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Figure B27. Synthetic seismogram calculated for source dip 90°, source depth 1.3 km.
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Figure B28. Synthetic seismogram calculated for source dip 90°, source depth 1.3 km,
and convolved with instrument transfer function.
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Figure B29. Synthetic seismogram calculated for source dip 90°, source depth 1.8 km.
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Figure B30. Synthetic seismogram calculated for source dip 90°, source depth 1.8 km,
and convolved with instrument transfer function.
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Figure B3l. Synthetic seismogram calculated for source dip 90°, source depth 2.8 km.

B-33




10 SECONDS

RECEIVER RANGE= 1 KM

AN st L Al POy P e e .
vy wwy v
2 KM
WP S N BTN A
3 KM
4 KM
BAAE AN dde-da bt A Ao
LAl I pASaad
5 KM

Ao dea b
W - A

8 KM

9 KM

10 KM

Figure B32. Synthetic seismogram calculated for source dip 90°, source depth 2.8 km,
and convolved with instrument transfer function.
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Figure B33. Synthetic seismogram calculated for source dip 90°, source depth 3.8 km.
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Figure B34. Synthetic seismogram calculated for source dip 90°, source depth 3.8 km,

and convolved with instrument transfer function.
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Figure B37. Multiple filter analysis of the synthetic seismogram calculated for

source dip 45°, source depth 0.3 km, receiver range 8 km.
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Figure B38. Multiple filter analysis of the synthetic seismogram calculated for
source dip 45°, source depth 0.8 km, receiver range 2 km.
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Figure B39. Multiple filter analysis of the synthetic seismogram calculated for
o
source dip 45°, source depth 0.8 km, receiver range 5 km.
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Figure B40. Multiple filter analysis of the synthetic seismogram calculated for

source dip 45°, source depth 0.8 km, receiver range 8 km.
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Figure B44. Multiple filter analysis of the synthetic seismogram calculated for

source dip 45°, source depth 3.8 km, receiver range 2 km.
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Figure B45. Multiple filter analysis of the synthetic seismogram calculated for
source dip 45°, source depth 3.8 km, receiver range 5 km.
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Figure B46. Multiple filter analysis of the synthetic seismogram calculated for

source dip 45°, source depth 3.8 km, receiver range 8 km.
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Figure B47. Multiple filter analysis of the synthetic seismogram calculated for

source dip 90°, source depth 0.3 km, receiver range 2 km.
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Figure B48. Multiple filter analysis of the synthetic

-

source dip 90°, source depth 0.3 km, receiver range 5 km.
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Figure B49. Multiple filter analysis of the synthetic seismogram calculated for
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Figure B50. Multiple filter analysis of the synthetic séismogram calculated for
source dip 90°, source depth 0.8 km, receiver range 2 km. '
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Figure B5l. Multiple filter analysis of the synthetic seismogram calculated for

source dip 90°, source depth 0.8 km, receiver range 5 km.
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Figure B52. Multiple filter analysis of the synthetic seismogram calculated for

source dip 90°, source depth 0.8 km, receiver range 8 km.
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Figure B54. Multipie filter analysis of the synthetic seismogram calculated for

source dip 90°, source depth 2.8 km, receiver range 5 km.
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Figure B55. Multiple filter analysis of the synthetic seismogram calculated for
source dip 90°, source depth 2.8 km, receiver range 8 km.
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Figure B56. Multiple filter analysis of the synthetic seismogram calculated for
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source dip 90°, source depth 3.8 km, receiver range 2 km.
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Figure B57. Multiple filter analysis of the synthetic seismogram calculated for

source dip 90°, source depth 3.8 km, receiver range 5 km.
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Figure B58. Multiple filter analysis of the synthetic seismogram calculated for

source dip 90°, source depth 3.8 km, receiver range 8 km.
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