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ABSTRACT

On grounds of a seniibosonized Nambu-Jona-Lasinio model, which has SUB)p®SU(3)p~symmetry
in the chiral Jimit, mass splittings for spm 1/2 and spin 3/2 baryons are studied in the presence of
an explicit chiral symmetry breaking strange quark mass. To this aim these strangeness carrying
baryons are understood as ST(3)-rotational excitations of an S (2)-embedded soliton solution.
Therefore, within the framework of collective gnantization. the fermion determinant with the
strange quark mnass is expanded up o the second ovder in the flavor votation velocity and up to
the first order in this quark mass. Besides the strange and non-strange moments of inertia, which
have some counterparts within the Sky e model, some so-called anomalous moments of inertia
are obtained. These can he related to the imaginary part of the effective Euclidian action and
contain among others the anomaltous barvon current. This is shown in a gradient expansion up to
the first non-vanishing order. Together with the L-rommutator these are the solitoric ingredients
of the collective hamiltonian, which is then diagonalized by means of strict perturbation theory
m the strange quark mass and by the Yabu-Audo miethod. Both methods vield very good results
for the masses of the spin 1/2 and 3/2 barvons The former one veproduces some Interesting moss
formulas of Gell-Mann Okubo and of Guadagning and the fatter one is able to describe the mass

splittings op (o a fow Me\
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1.INTRODUCTION

Quantumchromodynamics (QCD) is assumed to be the theory of the strong interactions
though it could he proved only in the high encrgy regime thanks to the asymptotic freedom [1).
For the low energy regime, which is responsible for the properties of mesons and baryons, many
phenomenological models, which sheuld mimic at least some of the QCD features, were developped
(-7} Especially the Nambu-Jona-Lasmio (NJL) [1] model, and closely related, the chiral quark
model of Dyekonov and Petrev [8] gained a lat of interest, because it show the important feature
of spontaneous breaking of chiral synnimetry and they cen be regarded as some long-wavelength
expansion of QCD [8-12]. This breaking of the chiral symmetry proceeds in this model as a result

of the fermion-loop contribution to the effective potential and is therefore of dynainical origin.

For the syminetry group SU(2) 25T (2) g this model has been extensively studied in the pas:

and it led to a saiisfactory description of mesons [13] and barvons [14-18]. However it suffered from
non-renormalizability and initially there was the problem of how to choose a suitable regularization
scheme. If it 1s ‘renormalized” in the fermion loop approximation the model suffers from a vacuum
instability paradox [19], which can he avoided and furthermore it corld be shown [20, 21), that the
regularized theory is then rather insensitive to the special vegularization scheme.,
In the approximation where the meson ficlds are classical the model allows for solitonic solutions
which are selfconsistent fields of the equation of motion. Because these configurations have no
good spin and isospin, one has to evoke a collective quantization [22] in order to get the splitting
of nucleon and delta. This has been done in the past theoretically [23] and numerically [15, 18] in
the SU(2)-sectar.

In the present case of STz o ST(3) -synunetey an embedding of the SU(2)-soliton in
the isospin subgroup of SU/(3) [24] was frequently used within the Skyrme model [25-30] in the
chiral quark model [31) and in chival bag models {32). The embedding rather than a full solitonic
SU(3)-caleulation ensures that ondy special triality zero representations survive, which correspond
to those in nature, where the right hypercharge is restricted to one. Then one can treat the sym-
metry breaking cither perturbatively in the current quark mass or one diagonalizes the collective
hamiltonian exactly to all orders of the current masses. The Jatter treatment was proposed by
Yabu-Ando because the perturbation theory leads to an unsatisfactory deseription for the baryons
within the Skyrme model. On the oiher hand, the Yabu-Ando approach seems to interpolate be-
tween the perturbative treatment and the treatment proposed by Callan and KNebanov [33]. These
authors described the strange baryons as bound states of (he corresponding heavy mesons in the
presence of a SU(M)-field configuration. So the rotational Ansatz is given up, but the results are
still unsatisfaccory. Altogether the various attempts within the S{/(3)-Skyrme model with scalar
mesons were not very successful and only the consideration of vector mesons improved the picture
[34, 35).

In this paper we will show that the SU{3)-rotated Nambu-Jona-Lasinio model with scalar
couplings is able to describe the masses of the spin 172 and 3/2 haryons by a trivial embedding of

the SU(2)-soliton in SU(3). The haxic procedure consists in expanding the fermion-determinant
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perturbatively in terms of the strange vurrent mass This and the fact, that the NJL-model has
valence quarks. provides a formalisim different from thar of the Skyrme model. The final results
are good and show :hat the approach s quite satisfactory. Some preliminary results have already
been published in [56]. Caleulations in o siniilar formadism can be found in (37]).

The procedure in the paper is as follows. In Seet.2 we review the SU(31-NJL model and
the corresponding vacum in the perturbative treatment of the strange quark mass. Then we
outline the rotational Ansatz in Sect.d. which leads 1o a rotational Lagrangian after expanding
the fermion determmant i terms of the rorational velocity and 1he svimmetry breakimg. Therefore
we take care to have the symerry breaking pacameters within the fermion determinant. The
mygredients of the rotatioral Lagrangian, namely the anomalous and non-anomalous moments of
mertia, are deseribed in Sectel Using well-known quantization prescuptions, we derive in Sect. 5
the collective hamilionian for the strict perturbative treatiment. Then Sect.§ deals with the Yabu-
Ando collective hamiltonian, in which the group gencrators are expressed in terms of collective
coordinates. After discussing the muncerical results 1 Seet. 7T we sunmarize and discuss our results
in Sect.8.

2Toe SU3)-Nampu-Jona-LasiNio Mo,
The SUS) g ST -invariant NJL- Lagenugion with sealar and psendoscalar coupling terms
reads:
I . | / o ) - . '
Exarn = qQe)(d —mig(r) = = ’t(f/(v")-\ G+ (i) iys Aqle))? (1)

where m = diagO g, g mg) = iy 1 + 0Ny + A s the guark mass matreix and A, are the
y . . /0 . . . . .
usttal Gell-Naun matrices with \Y = \/(i 11 1o the following we neglect isospin breaking and set

(1 =1y} /2 = my = 0. Using the path-integrai bosonization of Eguchi [38) , we arrive at

2
Cagr = qQe)Ud = m)g(ed = g o "N i " Ny () + f_[T((r"l(rq + 7tat) (2)
)

with ¢ = %»f Onre should note that we have chosen 1o take the current quark masses gy =
(g ) and v the quark terims and vof o local bhosonie term proportional to oY and o
For a pure SU(2)-soliton it does not matter very mueh whether one treats my # 0 the fermion
deterninant or as an explicit bosou field teean hecaase g s only a fow MeV [39]. For myg, which
15 around 1500V it matiers a ot and we have to treat icin the fermion determinant. Only in
this way we retain the dynamical content of the current masses, which will play an important role
for the anomalous wector as we will see in the followinyg,.
Alter mtegrating cat the quarks the effectinve ndidean action reads

)

. , . e , . .
Sepp==Splog G = = g(o "\ 4 s\ 4+ f‘.","' et atat) (1

Because this expression contams divergent torans. which can e seen e ina gradient expansion,
it has to be vegalavized inoa proper wave Ty Ret 2010 was shown, the. the solitonic observables

are not very sensitive to the regularization ~chome ~o that we choose here for convenience e



proper-time regularization [10]. In principle one has to apply this regularization from the very
beginning but we will drop it here only for clarity. In the vacuum sector chiral symmetry is in the
chiral limit spontaneously broken down by the non-vanishing vacuum expectation value (VEV) of
oo. Due to the strange quark mass, which hreaks Havor SU(3), there is in general an additional

non-vanishing og. Both are deteriined from the effective potential

p dth , , 0t 4
\‘,»ff = Ty / F:—;H(J;;{ Ftom+ g(ogdg + (yamaNy)) + —;—((r(‘; + 7r,':) (1)
by requiring a stationary phase condition
7y (\
Ly = AL = (%)
A/rr() e (f(?y.; vag
Thas leads after some decoupling of the sealar fields 1o
{'!“‘
= SN O+ (6)
My,
P IR _
jeo= \\_\_;/'/|(\/‘.)+-~--—\—l-——- (7)

where we set M), = \/%-‘/”“' + oy o+ —/'l,?;(}/(fx(r +ing) and My = \/}";g/(rm + oy - '\;/"“':;(flﬁsu +1ms)

and

(8)

In order to derive the mesan masses from the effective potential, we have to rescale the fields from
the normalization of the two-pomt function. wineh contains the kinetic energy for the mesons in

= —mz) o o= ‘3-"\’i7.‘/"’/2(A‘\/u,-‘”v:‘lg =

feading order. We find /- = INg LM Myt

2
=mj-) where we have denoted

, BTAYS ! | .
LM, M ) = / NS S ()
. Jopay ke o+ ,\/l" (h ) + ‘\/J.
The new fields @), = Z,I,/’)fr,,.u = L2 and 1l o= ,?/l\-/lrr,,‘u = 1,956, 7 then have the correct

normalizotion. such that the masses ean be obtained Trom the effective action via

1o LR : )
. : , 1] l = (Pt = TR (10)
- ("i(U)(\rrl,l_/»,n\rr.,(——pj e ot =
1 1 ‘\251 ir 1 l
— A2 =(p" 4+ i) a=1.0.0,7 11
/dl'\' \SX(U) bﬁ,;(}')ﬁﬂﬁ(“‘}') | /’_‘:__’”," v h e msy ( )
This gives
. ETRETIY .
IS e e (12
PARRYH =)
4
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' ) TRITT mny 2 )
L LR L] M, = M, :
M= T (.u,, t “3)+( Iy = Ms) (13)

I remains to fix the weak decay constants [ and [ by the matrix elements of the axial current
A J N

Ay for the pion and kaon decay. From the general form, eg. < 0] A% | 74(p) >= —ipy frn(p),

a=1,2.3, we deduce

Mg+ M S1/2
= n o (14)

. .\/u S0
Jo= =20 N

q 2y

For consistency with the baryon seetor we deternune the vacuum sector also in perturbation with

respect 1o the current masses. This gives fn leading order for the meson mass ratio

)
ney g =+ 1

[ 5 Q r
— el (15)
e <INy

Using fa = 93MeUDm. = B30M U and nnpe = 196 el as input parameters, we require further-
more Zx = L which is eqivalent to nnposing the PCAC relation. From (14) we deduce ag, = fr and
front (6, 12) follows the value of 1% and myg. 1n this approximationis f = fr and My = M, = M

and my follows from (15). Within the proper tiime regulavization the I, (Af) integrals are replaced

by
! | dr L —rAL?
w( M) = =g e [ ()T I
Li(M) “.’_TH:;*“)/ —o(Te (16)

where o(r) i1s a suitable damping funetion. We choose

o(f) = 000 = 1/AT) + (1 =)0t = 1/AS).

which contains X, Ay and ¢ as free parimceters, With imposing the strange quark mass of my =
IS0 eV eq (10) wives g = G130 eV Yor

Z- = l-condition

given Ay the Ay and ¢ are determined from the

4

IN ML (MY = g2 (17)

and from (6). Then we choose the viatio AL /0 = 300 which s very close to the lowest possible
vatue 1o fullill cgs. (17.0) (see Tab 1) siiulianconsly, We want to stress however that the solitan

itself do not to depend on this choice very much, We find for the condensates of the vacuum

o2y B
' ; : : ! .
<> P=add 5P =< B s - ('-’—/_) = 2380V (18)
mo

and the only Tree parameter in our model is the constituent quark mass M = My, = My = M;.
I order to get the classical soliton solution we evaluate the effective action for time-independent

ficlds and obrain [L1 ] dn the chieal limie

a Moy = N 10+ o (U)) (19)

—
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RIS

where Eyq; is the bound state level which comes from the upper Dirac continuum and Eyeq is the
sumn over all states of the upper and lower continuum, \Within the proper time regularization one

obtains
N | T [y 5(1(”27 .
Esall) = 7 ./0 ;T/'E"Z (e —e ) (20)

where E,‘LO) are the energies of the free hamiltanian. This subtraction procedure corresponds to
the infinite vacuum energy, which is otherwise eliminated by normal ordering. Requiring that the
field {7 in eq. (19) is a minimum of the energy leads to a set of equations for the chiral field, which
can be solved iteratively. The results ave presented in Tab.2 together with the isoscalar quadratic

radius as functions of the vonstituent quark mass.

3. THE COLLECTIVE QUANTIZATION

In order to gquantize the soliton =olution we will consider fluctuations in the synumetry modes
(collective coordinates) of the hamiltontan., Therefore we embed the SU(2)-soliton, which is also
a classical solution in SUCH), in the isospin subgroup of SU(3) {24]. Ve obtain for the effective

action

|
Sepp = =Sp log(if) —m = MUy) + ]/12f,2, /([“m.r(U,z“"(;c)Ug(.L')) (21)

VAT
(""‘—( 0 l) (22)

and Uy = (o) +ivsar)/ [z, where the SU2)-licld o,y = a()\/g+—\/l§0'3 is then a linear combination

with

of g and og and these ficlds themselves are constraint by (ro\/g« '\72508 = fx. In the following we
will assume the system to have a hiedgehog form and to obey the chiral circle 0(22) + 7% = f2 because

only then the stability of the soliton in guaranteed {42]. Since the fermion determinant without

symmetry breaking leads to another equivalent solution after substituting Ua(x) — AUs(x)AT,
where A is a 373 rotation matrix, the colleetive guantization then proceeds by extending A to a
function of time A(t) [22]. This is the new collective variable which after the quantization provides
us with the proper SEU(3) quantinn unmbers ol the baryons. On the chiral cirele the local mesonic

mass term vauishes and hience the rotated clfective Euclidean action becomes(t) -
" . dw , . . + + g .
Sepp=~N.T 72—5-|) log(iw + T~ vy AT mA) + AT()A(2)) (23)
T
where the hermitian hamiltonian 1 is given by

I om= iy (i, + MU () (24).

Mror the general structure we refer the reader 1o Rell 22,




Note that the effective action itsell is not henmitian, » 1ch that in the subsequent expansion in
AT ALY we can expeet contributions from the imaginary part of the Euclidean action. \We

assure then that in the Maurer Cartan form [13)
C i i
=g Ato A = gvahJAA = §QAAA (25)

where the ¢, ave the coordinates of SU(3) and the (,,7“" are the vielbeins, the 8 angular velocities
Q4 = —iTe(AT AN ave li|no-imlvpvmluntm.
Now we expand the ellective action (23) in Q.4 and myg, which will be considered as small

parameters. Up to the second order in 2, and zeroth order in g we obtain

i | . N
L™ = S L8 = T\/-_:‘QSU(U) (26)

with B(L) indicating the barvon nuinher off the system with field configuration U, The [4p is the

ST(3) tensor of the moment of inertia

No [ de | 1
lipg = —= — AT Apl.
am=5 J/ = [,.M A (27)

After choosing the sector of the model with bavyen number 3 = 1 and applying the proper time

regilarization scheme i splits into a valouce parl

N -~ < ulAyeal ><val | Ag|n >

lt:u( - v : i 28

i 2 Z. I = /;‘l,(”, (28)
ngval

and a sea part

- Ne g <m Ay |n><niig|lm>
s 20 Ml Ry(Ew, E 96
AB 4 L [ Cp(En En) (29)
m#En
with
. 2 2
| -t (12 - (]2 et e tE,
Ry ) = = —e () | T e T 1Y)
‘/( i nl 2\/7 ,/(; \//“( ) ™m ’(E“—'[Lm) ( )

and where | o and L oare the cigenfoncenons and cigenvalues of the Hamilton operator H of

eq. (21, Beeause ol the embedding (22) we have i fact

Loy for AB=1.223
lyg = ¢ ladgg dor AB=15067 (31)
1 0 for A\.B3=8

In the first order in Q4 only the Qu-term contributes, which is due to the hedgehog structure and
trivial embedding of the SUE)-group The appearanee of the Qu-term in eq. (26) is dependent

on the baevon mmber of the system and therefore entively due to the diserete valence level in the

1

I the same wiy we conld dofine 44T with same vielbein /-,\1}.

-1
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spectrum of the hamiltonian. Suclea ternn can be derived within the Skyrme model only by adding

the Wess-Zumino term {25). "The rotational Lagrangian simplifies with (31) to

x\"
e I3(17). 32
R \/‘—; ) ( ! ( )

)
“

3 T

ol b n ,

Lot = Sl D040+ 512 Dy -
A= A=

Apart fron these terms there are corrections from the strange quark mass, whicl are of the
order mg N and mg NV, corvesponding to terms proportional to my and my§2.4. Let us consider
first the terms of the crder g ,\’\.’. We find

1+ /

JAL AN /fi*-is|, 1-,~—~L,~,‘1+m~,.,.»\ . (33)

Since the miass inatrix i can be written as = g U+ Ay and the unit matrix 1 produces only
a constant shift for all members of the multipler, we consider only the part with my = —(my/V3)
and set g = 0. With the relation Ay FriAT e W ) = 24 Ag.4 one direetly notices that again
only Ag gives a nou-vavishing contribution. \Ve reeall that we have for the Y-commutator the

relation

Al{im) .
- = N = Ly:,”’ -+ \~—‘.\‘l a
i m=t)
where the valence
Yo = N < val | g | eal > (34)
and the sea contribution
“ '\':' N . PR ' ar
Y = mg— \ < n g | sign( LR (E ) (35)
_l A
1

are again suins over single particle energies Lo, The regularization function is given by

L™ dr T
Rutb) === [ SEimol L) (36)
- NEIVTIRvE I
Then one can express LU i terms of ¥ and oliains
I 8 ) -
I = s (1= ) (37)

where 5 = %——"L:———\‘ and and /)‘»:;'L(.‘.) = %'I'rn.\.yl,\H.\*) is o SCCH-Wigner function,

g

Now we liave to consider terms ol the order ’”s-\'\“‘ \We obtain

JARIIFSIP CRNY it P (RIS JPP P o 38
S B A (38)
Analog to LU this can be simplified 1o
2 8 )
L= — ol oy (39)
NG :
8
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where we have denoted by Wy the tensor of the anomalous moments of inertia, given by

ll.A. | | |
Ko = —/ = [u TRy "'A”J | (10)

This reduces in a compact notation to

. N < | Ag o< v dg o> [ =sign(Fy = pgo)sign( Em — )
Nyp=— Z T T+ - (11)

2

nn

It is the full bavyon wnnber one conteibution, provided that the chemical potential g [44] is above

Epar- In the same way like £g it can be split into a sea and o valcnee contribution, such that the

explicit appearance of g drops out.

These N oqp momieuts need no regularization, hecause they originate from the imaginary part

of the effective Fuclidean action and so they are finite. Tn the same way like eq. (31) we find

Nydgg lor AB=1.23

KNag =< Nodgp for AB=15.6.7 (42)
' 0 for A.B=x
such that L) reduees (o
Qi ! (R}
) <y . ~ Ay .
/‘H:"T/T NS +/\,L/) BEIR (43)
' Yoz f A=

Collecting the terms (32,37, 1) we obtain finally the expression for the collective Lagrangian in

second order in Q2.4 and first order in oy

/-».-/,Zs2\§z\+-—/,3 (2\“\«—)—f&> B - 1 (1"/) (n)

=1 V= | - 2

2 2ins N
’” Z/)" RS SR (1)

1= A=

In Fig. 1 we show all the vartous moments ol iertrac for a reasonable range of values of the constituent

quark masses.

4 ANOMALOUS AND NON-ANOMALOUS ATATRIN ELEMENTS

Because the main techuiques in diagonalizing the Dirac-equation and obtaining self-consistent
solutions of the equations of motion are already ouwtlined in orels. [6,11,44], we rvestrict ourself
here in this section mainly to SU(3)-quantities. Therefore we outline the erncial steps used in
computing the moments ol inertia Zy o given by eqo {(27) and the similar anomalous moments of
inertia Ny o given by eq. (10,

Al the moments of inertia are douhle sums over the basts states moand o ol the Hamilton

operator (21). These states can be weitten as [ GUOM (L)) >0 where Gocharacterizes the so-called
J
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grand-spin [5, 6], M is the corresponding magnetic quantam number and ({j) denotes the orbital
and the total angalar momentum. Because the AV = 1,2,3, which are the Pauli-Spin matrices,
are nol diagonal with respect to the gramdspin, there are some matrix-elements, which connects
basis states for a certadn Gowith (C4 1.

As already mentioned by Wakamatsu et al. [18], the non-diagonal elements lead to mistakes, if
one sums over Lhem up blindly, The reason Tor that is the grandspin-dependent boundary condition
Je(hka D) = 0, where the je ace the sperical Bessel-functions, the ky, ave the momentaand D is box
size. This leads to the disadvanage, that the discretized set of states for grandspin G and G++1
are not exactly orthogonal, as long the hox size has any linite value. So we adopt the technique to
diagonalize the hamiltonian for a given grandspin twice, with a boundary condition je; (kD) =0
for matris elements with the same Goand jeoo (b ) = 0 for matris elerments between G and G+1.
In this way we have for cach mamix clement ondy states by, involved, which come from the same
boundary conditicn, e, the same hasis. So we have created an orthogonal set of hasis states, at
least locally for every separate G

The strange moment of inertia fo and the quantity Ny are formally given by eqs. (27, 40),

where the Hamitlton operator 11 contaims the SE7(2) ehival sofiton fields in a subspace. The H can

therefore be written as
=g+ 1 ZqeinyS (45)
where 1= diag( 11 0) and S = diag(0. 0. 1) are the projectors on the relevant suhspaces and

”\'('“, = ”’—:I(/"“)i.n + \/(l('))

//Iwﬁ'(l(.’l = iy (idiy + M) (46)

are the Hamilton operators of the subspaces, Therefore, in this perturbative treatment, we have
equal constituent wasses for strange and non-strange quarks aund a translational invariant ITantilton

operator for the strange direetion. We can write

i I 1 -
. . It s, 47
i+ 1 I+ //\( N lw + /l\__\-(‘(g) ( )

[ this way, we see thivt iy contrast to [, Ay the strange quantities [a, Ay (see eqs, (29, 41)) contain
matrix clements connecting [1 g y-cigenfnetions with //,_5-(r(.z)-eigenf'uncl-ious. i.e. plane waves.

The exact calenlations of the moments of inertia [; and A} can be checked by means of a
gradient expansion up to the first non-vanishing order. "To this end we consider the moments of
inertia for a given meson-profile in dependence of the size. Similar to the case of the Skyrme model,

the leading terms in the gradient expansion are given by

e N7 ' LI
1 - —;: / di A sin? ()

/;{m ! =T / dr A‘I(l —cas?(r)). {4\')
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These terms hehave like /20 where s e epical seale of the profile, which we choose P(r) =

(1= ) in Fig. 2. Whereas Uie coincidvnee of the total value for 7 with 1977 is almost perfect
iz 8 ( 2 2 P

(see Fig.2) for large R, the slight deviation of the total Iy from 72 indicates that the gradient
Bs o b i 1 g

expansion here is not an asvinptotic serics in TI"]? [15).

For the non-regnlavized Ny and Ny, the situation is different hecause of their anomalous
nature, The leading non-trivial teem m the gradient expansion for Ky, which could give a constant
contribution. for large R, can he shown to vamish thearetically. The corresnvonding expression for
Ky is ‘ ‘

vl N (ot N 0
/\; = :\'17 /JIJ' -';-'i";'}-'" +l’),,1’ l".‘“(‘)\-'(,/ {I+i}‘?[, = —L—;-—‘-}- (49}

where yg is the topological enarge of the hedgehog selution. This is the winding number n, which
we choose to voincide with the haryon pumber 33 =, That /\'é’wm‘ 15 just a constant and that
1\"%’”” is vanishing wil at least as 71 for farge R is very well confirmed by our numerical values
for Ay, Iy and can he seen in Fig.s,

S PERTURBATIVE TREATNENT OF THE 1 LECTINVE HAMILTONIAN

So far we have written dovn the oxpansian of the rotated action (41) in angular velocity and
strange quark mass without quam iz d o Theeefare = weite according to ref. [43,46) for the right
generators
(h0)

where the canonical imomenta x,ave definet hy 1= (A1 /) and the vielbeins ¢ are the
inverses of the ones in e ('.23)4'1’}. lmposing now canonical quantization rules for both 7, and the
coordinates g, leads 1o the SUCH-algebra Tor (e generators By [43)0 In terms of the angular
velocitios €2 4 we obtan

= ‘l" ) s 'LI%;' /\‘| /)‘8” A=]28

— (10 7, Nillga)o Am=1..7 (51)
I, \r’ﬂ AN

Without the tertns of order QGnd ) we can write for the symmoetrie (ObmY)) and the symmetry

breaking (O(m!y) part of the collecove hanaltonian,

Nt R i KUY . ] l 2 P
U= Mo g T\“ o G = ) :2; 1, (52)
; i\ Ping [ /\')‘\ r-L N
= g =t « /~|~ - -—/—--'- 2_‘ Dyt +
! Voo ! {ex

Bivwe cenld introduee stnultancously fefv gemevarars Lo by usig £ mstead of (,'“,“, where the

Loy are conneeted with 1ty hot abey conmmatation roles with different sign (see App.).
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2 iy (N)
e v (1= DY)
Sy + iy (\ as (1)) 4

Nomg Ny | (8)

— . 5
TN . (53)

lere we have used the velation 37 Dy lty = Ly = -{‘) where Y7 is the (left) hypercharge.
Because the vight hypercharge from /ey is constraint as a consequence of the trivial embedding, it
does not appear in the collective hamiltouian explicitly, One should noe that the appeatance of
the left hypercliarge Y ois entirely due to the imaginary part of the effeetive action.

I a strict perturbation theory one uses now the wavefunctions of the collective hamiltonian
/‘/:‘,‘:,";;] and considers then matriy clements hetween these wavefunctions and the breaking part
H‘fgu. Because the SE(3)-wavelunctions are themselves certain D-functions [47) and the collective
hamiltonian contains 1 most one Wigner-tunetion, one has 1o consider linally integrals over three
D-functions (see App.). Then one can express the splitting hetween ocret and decuplet and within

each muoltiplet through two quantivies. Phisas it e bic astomsting, hecause we have dhree dillerent

BNT N T, :
operators ./)‘(\.SJ(;U el 1)1{"‘)(.1)./ poind so one would expeet thas the splitting itself is determined

by three quantities. However. due to o nom-trivial growp-theoretieal property we find that the two

quantities A and & are sallicient. They ave given by

2, Ny LK
A=t ( = :;l—'> (54)

S 4y / 1y

)

N o, — (HH)
1

The splitting between octet and decuplet

. 3 -

AR ) 315]
214

. Sy . . . . . SNTINE ' 50
comes soley from /l:‘lf,'(”. e from the difference of the Casimir operators C(SU(2) = f‘___x R
and (,(ST(3) = }:‘T’\:, /?’J‘ moctet and decapdet representations, and coineides precisely with the
nucleon-N splitting within vhe quantization of the SCC2) models The masses relative 1o mee can
be written then as

-1

A
Ny = -~~'~(—,__\»—- N - __\\-__“] (57(1]
| .
Alll‘\ jord ‘—l'-(")_l = AN ) (51{))
| -
_\ll!}_: o T(-]A il A,\\...“] (5!'(.«')
l -
L N A YO (57d)
9
] .
R e Wy (87¢)
N
Ay o= 0 (,")Tf)
|
N 5T
Az = =N (57y)
I
A Ty = "' A4 (-r)Tll)
12
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We fixed mye to the experimental value, hecause as in the SU(2)-case the quantization yields
always too large values for the masses and zero point corrections, as they are suggested in [48] are

not caleulated on the present level, but will he discussed in sect., 7

Aetually the sane equations for the splittings were obtained by Guadagnini [25], who intro-
duced an ad hoc terin proportional to the livpereharge Y into the Skyrine model. Nevertheless he
used the parameters as fitting parameters, whereas we deduced all of them from purely solitonic

quantities based on actual selfconsistent NJ L ealenlations.
One can divectly derive Trom (57) the Goell-Mann Okubo relations [3,:19]
20y A+ mz) =3 4oy
and
MG — HESe S ONTe = AHNe S 0NVe — 11y

as well as the Guadagnini fermuli [25)

|
(thiy = e, (58)

M= = e iy = =
- N

In the same way like the expansion of the rotated action for the energy of the system, we
can alzo devermine the cxoectation values of the varions condensates. Within a path integral

forndation one coa express the condensate < gy > as
. N . ' - ]'“ L N " (
gy 2= N Dy Da(g@d g ) (59)
where @, 15 the projection Vo the individual quark flavor o AWeitten as
b : e o " + .
< g > = -h——(—-—}.‘a|x|(>g(u+ o b AT WY 4 YT (O ) = ds{a gy ATOQ A() ) (60)
S §3=

we can use inmedinted!y the expansion o thie action above to obtain expressions for the non-

strange

A ) .
)< e (= 4 1/){‘.‘.’( 1)
H) ; . o
VI N NP YR, s VE N ,
+-ﬁ(.[_l' - S D - .;-rf)ﬁl‘(.\1-~;~ + 7)—’) (G1)
v e V=1 ' 2 - -
and strange condensates
Yoo L =)
oA p=m e - - N
" AR P (1)
’ 4 . Jord
2 A \ ~ 2h N IV T (VTR
»W(—,‘—' - T.J] STl e+ = DR (N - ) (62)
! ' N =t - - -
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From that one can directly consider the so called strange content of the proton y, which is defined
as:
<plés|p>

= 3
Y <pluntdd+ss|p> (63)

0. DIAGONALIZATION OF THE COLLECTIVE HAMILTONIAN: YABU-ANDO-APPROACH

Within the Skyrme model Yabo and Ando [50) investigated the influence of higher order
corrections due to a finite ey in the collective hamiltonian, This corresponds in the context of
perturbation theory to take higher SU(E) representations into account. They found therefore that
e.g. the proton is then not a pure octet state 8 hut has admixtures of 10 and 27 and so forth,
To get these corrections to all orders they suggested to diagonalize the collective hamiltonian in
the basis [51] provided by all wnaltiplers sith definite Y, J and 1 of the unperturbed collective

s:/m

hamiltonian /770 In terms of o perturbative approacli in terms of powers of m, the Yabu-Ando
approach is not k'()ll&i.\‘lt‘lll. However G the Skyeme model it has heen proven to be successful and
hence we will apphy it here as well,

Therefore one wses an " Eoler angle” representation for the rotation matvix A [52) and represents
the right generators as diflerentiad operators. The coupled second order differential equations

contains the collective Hamihon operataor

: |1 ! 3 !
Yool —_— - (__ e )2 S SR, K
ot = Vet 50 = ) \Zl = S A e (61)
where o is the crgenvadue of
| TR 2y - 2
CONT () 4 Ly = e V(] = D) + ) et e De (2100 ~—-—I D)+
! (i) )5/11,,+m/ o ' )\/.4 2_. sal ll+\§” sa)
Jing . j_‘ iy
20N /)H(:z/r_w—-»/\,/)“) (65)
v T:| Vi

where Cy(SU( = S0 2 = SO LA which s the quadratic Casimir operator of SU(3 Vr/L-
I contrast to the perturbitive treatinent, whe <% depend only on the lowest representations, i.e.
octet or decupler. ¢ depends now also on the svannetry breaking, This is because the collective
hamiltomian s diagonalized i a basis, that contains also higher representations of the spin 1/2

ana 372 bhavvous. For an explicit formn of the senerators see Rell 53,

TOTAL ATASSES

Althougle we mientioned already that the total masses alter the guantization procedure come
out too farge, we want to exhnbic that there are some subtraction mechamsm in analogy to non-
relativistic many pavticle plivsies [01]0 These ave hased on the fact, that the two-parcticle Casimir
operaturs CH (ST () and CLeS0 () and the momentum operator P have finite expectation values

alreacty on the mean-field tevel,
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First il we consider the miasses Tor the center of the actet and the decuplet, ie. the chival limit
of the formutae above, we find

SU | 3 13 SU(2) 1 3 115
Me= M@ L 22 2l = M NI 66
L A o B PSR A B A (66)

So we got for M = 3911V and 150 = 0 4 S = 13070 eV the values Mg = 16020/ eV and
My = 18300V which is. as it stands, 2= 150 e oo high compared with the experimentally
observod Mg = TIHM el and Mg = BISGM el Now we take into account that already on the
mean-field level, without any rotation, a non-vimishing expectation value of the Casimir operators
emerges. This expectation value corresponds i the present model to the cigenvalue of the single
particle Casimir operator within the vadenee quark states, eo a spherical hedgehog state with
G =0, Mg =0 and Vo =3 quarks. Therelore we need the cigenvalues of the Casiniv operators

CoSU2)) and CHLST () Tor the fundinnental representation of the triplet. This yields

< CY(SU() >= —:\ (67)
S UHST()) >= ;.\.. (68)

s0 that the mass

. | | I
AN s e (ST 5 = (= — ) < CYST(2) > = .
T 2 N5l | H{N(2)) LRETS

which has to he subrracted. is evaluated 1o AN = 157,60 U The total masses reduce then

to My = LIS0N eV and Mg = 138330017, extremely close to the experinentally observed masses.
is picture is worsencd. i one ineludes finallv the svnintetey breaking torny 2 e-rie 0

But this picture s worsened, i one tnclades finally the symnmetry breaking term T TR
Q29N e U for g = 150M WV ey 4y = 1220V and X =517 el

Another quantity. which represcars the Tact that the soliton is uot in the rest frame [18],
is obtained after quantization of e vranslational degrees of Treedon [18]. Alter expanding the
system ip to the sceond order o the transtaional velocity voone gets for a system at rest the
correction

<Pl

\ IRRINTRY) - ; -
A/ e (70)

where < PP? > consists now of a valence and o sea contribution and which was calculated in the
present niodel already in [18]. For 1 = 300100 we found AM790s0 = 310AfeV | so that our

total prediction for the mass of the conter of the octet s

4
»\/.\‘ = \/(7’ l.)) + —IL-[ e

! n

Sanky A any

[

O AN ,A,\I‘V'unsl (71)

[~
—
-

which gives Mo = 126000V Beeause the splittigs Tor the haryons itselves are almost perfect.

we resuine that vhe model predictions for st taral nasses are only = 100 e U too ligh compared

with the experingent.
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' : S8.NUMERICAL RESULTS

As explained in the previous seetions we proceed in the following way for the final numerical
calculations. ‘The perturbative relation (15) is used to fix the relavion hetween strange and non-
strange current masses from mesonie datia. We clioose myg = 1H0M el which vields then mg =
6.1A7 ¢V The parameters A and Ay ol the madified proper time regularization (see sect.?) are
then used o reproduce gy = 6.0V aud =0 to vield a reasonable vacuwm condensate of <
tu >=< 858 >= =28V This procedure s done Tor 372 < A € 558M ¢V and the results
are presented in Tab. 1o Tab. 2 shows then the basie results for the solitonic sector in SIU(2)
assuming strict chiral syninetry, e working with my = 0 and an identical M = M, = M.
The table sapports the well known results on the elassical mass My =~ 12007 eV, the isoscalar

=0 nd the S-commutator. The S-comtuutatos is known to show

quadratic charge radius < 1? »
some dependence on the regulavization sehome used {20,21), However the present scheme seems
to work well for this quantity and the X is tngood agreement with the experimental values. This
is important hecause the ST'(2) = Yecommutator plays a decisive role for the splittings of the spin
L/2 and 3/2 bharyons.

The moments ol inertia {2 L0y and K e plotted vs, the constituent quark imass M in Iig.
Lo The values show aelear deercase with increasing ML Actoally in all cases we obtain [} > 245,
a refation, which holds in the Skyrme mnodel as well and can be proved there even analytically.
The actual values of the moments of inertia can be extracted (vony Tab., 3. For 1) and [y the sca
quark contribution, see (29), is about 30% and does not vary very moch with AL for K and Iy

the polarvization of the dirae sea contributes ouly negligibiy,

The strange quark content of the nueleon s s defined in (63) and can be evaluated casily.
For M = 3910V and Vo= HOM A which aree oue prefered values, the strange content of the
proton is TG and 10290 These vadoes cotne out from Skyrme calealations as well, Actually the
Callan-Klehanov approach to synmetry breaking in the strange sector vields different values, they

are all very smiall and only o few pereent.,

I the pertarbative approach the sphittiy hetween the centre of the oetet and the decuplet
is presented i Pigl b and is given by (56), Plotied is the devintion from the experimental value
of A;'C_"'m = 2300V Apparentdy for Moo= 3910 U the deviation from experiment is zero.
This M value is used for all perturbatve calenlations, For the Yabu-Ando method the splitting
is not so well defined and the N s adjusted ro repraduce the whole spin 1/2 and 3/2 baryon
spectrum, The masses of the members o the harvon octet and decupict can be extracted for the
perturbative approach from Tab. 5 and Vigo b Sinee the semiclassical quantization vields always
too large absolute masses we shilt che theoretical values suel that the experimental mass of the ©*
is matched by the ealeulation. The experimental munibers are then given in absolute values and the
theoretical numbers indicate the deviation from experiment. Apparantly for the canonical value of
my = 1500 eV forwhich the condensates and g where properly adjusted according to (6, 18), one
finds an acceptable agreement of the theory with experiment. Al ealeniated masses agree within

S with the corvesponding experimental mnnbors Hoone mereases i, without recaleulating the
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moments of inertia, one obtains noticeably hetter agreement with the experiment with an overall
deviation of loss than 2% for iy = 2000\,

Especially the Ay q-splitting (76,0 c47), which is experimentally much lower than Ay .
(TT8M eV y and Aoz (F250M V), is qualitatively better here (920 ¢ U 1520 eV and 106M eV Tor
my = 170 e17) even than anon-perturbative (Yabu-Amdo) treatment of the Skyrme model [55),
which predicts Av_a 2 Av_z in contrast 1o experimment. Also the weatment of iy as a large
quantity and the giving up of ST(3) as a rotational symwnmetey by Callan and Klebanoo [33] evoked
severe problems within the Skyrime maodel. These ardering problenis like mye < my in ref. [33] or
mz < my inorefl [36] do not appear here.

The results of the Yabu-Ando approach are given in Fig. 5 and Tab. 5. They generally
agree better with the experimental valnes and the agreement is ahuost perfect il one chooses
e o= IRT M el Apparanty the presence of higher representations in the basis in which the
collective lamiltonian s dingonalized exacthy improves the barvon masses for the Yabu-Ando
method significantly. This can be nuderstood o way that the proton for example is not a
pure octet state, but has sienilicant admistives U TO and 27, which was adso found in the Skyrme
model [57]. This is quite an encouraging result and tells that the model as such has certain merits.
The deviation of the Yabu-Audo resalts fron perturbative indicates, that higher powers of my are
relevant. A divect comparison between the Nabu-Ando and the perturbative approach is made in
Fig.6, where the prediction for Xand A is compared Tor a constitient quark mass of Al = 41907V

The absohnte vatues of the masses of the octet and the decuplet can be estimated without
artificial shilt il one subteacts from the elassical hedgehog mass thie zero point energies of rotation
in ordinary space and strauge space and of translation. ~ee (T1). The actual values for < P% > can
be taken from Refo 18 i the chivad it Appaantdy the deviation from the experimental mass
is less 10O eV Henee with the above corrections, taken empivical from [18], even the ahsolute

alues of the masses of the harvon octet and decuplet i pertarbation theory are well reproduced.

. i

S.SUMMARY AND DISCUSSION

ik

The present madel provides in the solitonie sector o generalization of the SI7(2)-Nambu-
Jona-Lasinio model (o SU(S). The model s based on sealar and pseudosealar quark-couplings
and ignores vector mesonic degrecs of Trecedon, The SEC2) soliton with harvon puniber 3= 1 is
trivially conbedded s ST suavineemy the peht dinension for the fower maultiplets, i order
1o quantize the collective rotations a systentie expiuston of the rotated SE(3)-eflective action in
the chiral limit up to second order i in angular velocioy and first order i the strange current mass
mys is performed. The expansion s done i the fernion deternnmant, ‘The collective hamiltonian
contains then a part //"‘_‘\{,’”. which 1= partially ateeady known from the Skyrme model. Due to the
fact that we have an explicit quark theory ane abtatas anomatons moments of inertia. Their origin

is due to the imagmary part of the chival fernnon determiant and has therefore no counterpart

[}
=]
i
!

in the Skyvrme model, Only the chival guark model ar thie tatroduction of vector mesons in the

Sky e model serves as asoures {for stilae teems

The theory is treated o two wayss Pirst o stricty perturbative approach is periormed. This
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: results i oa collective lanilionian whose octet and decaplet states [ulfill the mass formulae of Gell-
Mann-Okubo and of Guadagnini. Not only the stracture of the collective hamiltonian is correct
but. also the nwerical values of tie anomalous and non-anomalons moments of inertia and of the
nucleon X-teem. Thus, for -ty = 1500 eV, the splittings within the mudtiplets are reproduced in
reasonable way il the constituent mass is adjusted to the octet=decuplet splitting. For the larger
alue of g = 2000V the deviation of theory Trom experiment is noticeably smaller.

Second a Yabu-Audo approach is perfortned. 1t consists iu diagonalizing the symmetry break-
g terms linear ‘oo in the basis provided by all unperturbed multiplets. By this procedure the
numbers for vhe splittings get furter inmproved aed the deviaticn from the experimental numbers
becomes negligible for my = 1870}

The absolute values of the masses can be arrnnged by subtracting the zero point energies of

strange and nou=strange roration awnd of translation. 1F one does this, the theoretical values of the
Ymass deviates fess tan 100N U From experinient. Sinee all splittings are well reproduced in
the prosent approach, this small deviation o the absolute mass hoids generafly for all members of
the octet and decuplot

The stranse quark content of the nucleon comes ont 1o 0% in the present model and does

E ]
E-]
=
]

not depend very muaeh on details ol the ealenlations,
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' ' Appendix A.

The wave functions W) of the rotated soliton are Tunctions of a unitary rotational matrix
A, = provided that all otlier degrees of frecdom are frozen. 1t is clear from [Lg, A} = ~3Aa.A that

the SU(3) flavowr penerators Ly aet oo the rotational matrix A from the left,

[(/J../.“\l,] (1] =\ ((-4".0..,\“/‘2:0 (Al)
while the sprn operators 12, from [12, 1] = =144, are the right generators:
[ tton] (1) = W (emivnar2) (4.2)

The standard commutation relations with the usual SU3) structure constants [

{/,,,‘ /.(,] =il l.. “1’,,. /l’/,] =t e (e [/f,“ L(,] =0 (,A’l..‘i)

hold, where the different sign tn the conmutatator relation for 2, in by (A3) can be compen-
sated by a redefinition of the corresponding raising and fowering operaiors [43]. Amrang the eight
generators 18, only three (a = 1.208) hivve the meaning of spin generators: Ry should obey the
quantization rule of eq. (51).

In principle, the commmtation relations (A3 are sallicient 1o construct the wave functions
W) Tor rotating states of the sobiton. They ave the eigenfunctions of commuting generators
T3, Y from L, and . /g.) f = N3 rom 1t and ean be expressed in terms of the so-called
SU) Wigner functions p

stands for the eigenvalues of 7000 and e for S g 0 They Tultid]

1,,,, They woecadize the vepresentation {a} ol the ST (3) group, where v

") (n '
Z/)f,,,,. ) (= DU, G a). (A1)

: S P
and they are unitary matrices inowo indices:

SO [ 0] = s
o
The normahization is
/ FADYL 1=y = e S P 1.6)
Voenmpt Ty = S 2 Ny
| JLn) T i dini(n) (

where do4is the gronp Haar measire ormadized to unity. These relations do not fix the phase

freedom. though,  Usually one inposes the De Swart conditions [47) requiring that all matrix
elements of 1y & 070 and T £ S5 in the given representation he non-negative. [f one accepts the
same agreement for the wave Tunctions W) Loth in the 7 and /o sectors, then these functions can

be expressed throngh the D-Tunetions in the following way:

o T V2 () -1 -
Wiy gy (A= i (=1) + D gy (T (A7)
19
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: Using the definitions ol J and 7" i is siteple to cheek that the right-hand side of this eq. has
correct gquantum numbers, As for the phase factor, it is flixed by the De Swart conditions. Using

the unitarity of the D-funetions we can rewrite this Tunetion in the following form:
p : V! 0 q
Wiy g D) = A (=D D ). (A.8)

Let us proceed now with the matrix elements of the <)|)<-|‘;|lors under consideration.  We
need the matrix elements of %I ARy and of 32! = /)\” Ja. 'The hypercharge Y is already

diagonal in the representation of the D-functions. Let us note that the octet representation is

unitarity-cquivalent to the adjoint represcuotation:

L, . .
5/;'(,\,,/(,\/,.“')12 a5 DS ), (4.9)

The non-zero matrix clements ol 7,y ares

!i /.,\;; = [‘L‘L); = |
/ 1
vy = = = o m = e =l = —=
: vl Lt & " R | \/"‘
.} 2
' . . , , , , i
1 lizor = ~lpey = ~lymy = ~lzon = < = =lhe = = (4.10)
\ We nse the notation of particles to dabel states with corresponding quanium numbers.
Now that both the wave Tanetions and the aperators are expressed i terms of the D-functions
N v v '
] one can caleulate the s clemenis ustng, the generad formla:
B ' (1r)e )(,,). o
R | dAD T ! (L o h {(A.11)
| N TIPS My iy !
- e e
|8 T dim(n) Ny 1w vyoovy o
E where the summ goes aver all occurences of the vepresentation g, in the product of represeniations
ny and ngo With the eq (ALY ar hand i s possible 1o use the standard tables of the SU(3)
Clebselr Gordan coetlicients, e.g. Trom Ref 17,08,

, . N . ,
As Tor the matrvix elements of 3 :~| /)L"\J,, one can calenlate them using the standard matrix
elepents for Jy oo sinee the De Swaet conditions elude the posttivity ol the J4 = ‘\7‘5(J| +ily)

mateix clementsowhich s adopted as a standavd one Tor the SUE2) group. This vields

1 I v ’ K )
JeWippy gy LN = == RSO Lot Dy gy () (A.13)
\, D

which can he used together with
‘“ S0 = D = DS+ D8

rl:l

J4 (A.14)

: N
to deterinine < S0 /)y(\.”’ 1,
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A ¢ Ay Ag B4
(Ael) [AleV) [MeV]

372.00 0.599 76,8 1264.8 168.6
376,65 (.61 202,00 1280.6 170.0
381.30 0.6:20 305.2 12961 171.5
385.05 0.6:13 317.1 1312, 172.9
390.60 0.656 327.9 1328.0 174.2
395,75 0.6 3478 13188 175.6
399,90 0.681 3471 1359.6 177.0
40155 0693 8$55.7 13THA 178.3
109,20 0.701 3638 13912 179.6
11385 0.711 AT L1070 180.9
11850 0.721 ATNS 14229 [82.3
165.00 0.801 1474 15810 195.1
558.00 0.9:43 | 520.5 1897.2 219.7

Tab.1: For recasonable constilucnl quark masscs we show the cocfficient e, the {wo culoff's
ANy and the cncrgy density 13 of the cacaum (bageoustant) [21). whiel sign ensures that we have

o faclt a sponlancouns brcaking of choal symmcteyg brcaking, For all constiluent masses we fized

my = 64N and < gy >V 20000V L0 < ouun > = s

eI PRI LT T e




' ' M e et My > <r?>
RIZAR! [M V) [Alel) [fm?]

372.00 500 1250 5.2 0.58
376.65 HN 1258 53.3 0.56
381330 576 CnT 5.3 0.55
385,05 s I o CB2.6 0.54
390.60 sy 1253 LT 0.53
305,25 553 L sy 51.1 0.52
399,90 519 1252 50.6 0.51
40159 536 1250 50.2 0.50
109,20 530 1210 50.1 0.49
11885 522 1217 50.0 0.8
1850 51 (215, 19.9 0.47
165.00 L3S s 15.9 0.11
35800 200 oo 383 0.33

Tab.2: For a vange of constelucnl quark masses the talble prosents the cnergres of Ne valence
quarks. the classccal hedlichoy cacegy Moy the signia-commuatator X and the corresponding isoscalar

quadratic vadius < 1= > Jor the SU(2)-soliton,

L R R T L VAN CRL T R (AT B R RN L O VI (AN IO TR AT A LT (R L BRI AR umq PR wr\ " w\[h w!\mu\u“ LR ll\‘”'"w u”g “w'w‘"””;” ey M"lw”“""”“mw '



' ‘ M vilenee sea total
[\ () (] ()

L 391.5 VNS 0.45H2 1.296

I3 2915 0107 0.216 0.623

IV 3015 01506 0.001 0.457

Ny $O1.0 0.300 -0.002 0.298

Iy [R5 0.721 0.1533 1.177

[ 1185 0451 0.218 0.569

) 1185 0368 0.001 0.3()“9

N IS5 (120N 0,002 0.255

Tab. 3 The contrivution of the valence wnd the sca part of moments of iertia for |

3OE MV and M o= 118050V

T TR AR T TR R R IR L I AL I R e 1 g A nw 'r\l‘“w”wrlwpnq LH ||"\|H”vu|w| um”w vm:m”““w- w“' wwll\ﬁwumm !"“‘H‘H I ‘WWWM‘




octel N /2 1 3/10
S | 0 ~1/10
= )2 - ~1/5
A 0 {} 1/10

decuplot A 372 | 1/8
ADl ! V) 0
=- 12 - ~1/8
Q ! — ~1/4

ot \ 12 | ~V3/20
v 1 0 -3V3/20
= )2 -1 V375

A 0 () 33720

decupler A Y& | -5V3/16
v | () 0
== 1/2 -1 V316
Q 0 -y 5V3/8

Tub 5 Values of < 1V L DS 00, L eray s

" " 1 T TG 0 I CE LTINS 10
g S R VI LA (N U AR L [ [T L TN R T TR R L T [ TR ARG [ R FIN R R Ll s w R L B ! ‘F '
TR ety Y !



perturbative Yabu-Aundo exp.
M o= 39060 v M = A19MeV
mg = GAM | g = 15000 | e = 000 |y = 1500V | oy = L8TM eV

(A1) [Mev) [AlcV) [AleV) [MeV)

N 1.2 -1 36.9 -0.1 939.0
A <26 ST -4.06 5.0 1116.0

N 20 162 -9.0 5.2 1193.0
z SN IRY -40.8 6.9 1318.0
A 1N S 37 4.1 1232.0
\bie 0.0 . 0.0 0.0 1385.0
= [ [ “33.2 -1 1533.0
0 ‘ K07 o -638.2 -Gt 1672.0

Tabot The dccateon of the Ahcorctiond mass fram the crporacntal value s shown for the

povtuilcfive dicatorcnt sad o coustelacut quack prass M= 39000V aud the Yalbu-Ando method

and o cousdduenl guark mass Mo

{o the copcoomental vae.

HETEE

cowmparcd il the abisodate s pcrtmontal mss,

" D e mueemqegwe g

TR T VO TS T et

ot

The Hicarrtical value of the ¥

L iR

“-mass s adjusted

T R T LR

Por hwo calucs of e strange careent quark nass, these deviations are




o
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LN

IR

TABLE CAPTIONS

Lo For reasonable constituent quark masses we show the coellicient ¢, the two cutolM’s Ay, Ag
and the energy density B ol the vacunm (hageounstant) [14], which sign ensures that we
have in fact a spontancous hreaking of chiral synunetry breaking.  For all constituent

masses we fixed g =600V and < gy SU3= _300Mel', e, < iu >H3= <238MeV

2. For a range of constitnent quark masses the table presents thie energies of Ve valence
quarks.the classical hedhehow energy Mg the signin-conmutator © and the corresponding

soscalar guadratie radins < 07 > for the ST (2)-soliton.

3. For two vilues of the constituent quark mass the table shows the moments of inertia
Dy Lo g and Wy withe their disveibution into valencee and sea part,
4 Values of < 1YY { O ey 1rnay
. alues ol < . ‘ \\\‘\'( )v’ > >.

N)

5 Nalues of < 1Y | 00 ey s,

G, The deviation of the theoretical passes to e experimental values is shown lor the
pertarbative aod the Yahu-Ando nethod for constituent and strange curpent masses,

which give tie best agreetent with the experiment

| Co e TR TR I R T
ey O LTI T R LR TR R A COERTE (IR g N

"

e
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FIGURE CAPTIONS

—

The moments of inertia tor o selfeonsistent profile in dependence of the constituent quark
mass is shown together with the octet-decuplet splitting in perturbation theoty, which

hits the experimentad value for A\ = 3910 e’

2. The total contribution to [y and {4y arve shown for a lixed linear profite and a constituent
guiark mass Moo= 3720V i dependence of the size R ool the profile. Also shown is the
leading verm i the gradient expansion Tor hoth quantities. At small radii (=~ 0.5 fm the
total contribution contain o pole die o the fact, that the valence fevel become part of

the positive continuuan.

3.0 The total contribution ta Ny and Ay arve shown Tor afised linear profile and a constituent
quinck mass M= 3720V i dependence of the size R of the profile. Also shown is the
feading teem in the gradient expansion for Ay, which is o constant proportional to the

topological charge.

: £ he deviation of the theoretieal mass from the experimental one is shown for the pertur-

bative treatient ad acconstitnent guark mass of Vo= 301 el

1
; 5.0 The deviation of the thearetiend inass Tram the experimental one is shown for the Yabui-
l Audo trearment and a constituent quaik mass of Moo= 110 el
G. The deviation ol the theoretical taess Frann the experimental one is shown for the ¥ and
the AL compaeng the pectebative and the Nabu-Ando method Tor M= 1194/ V7,
|
|
i
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U(3) Nambu—Jona—Lasinio model

moments of inertia
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