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The flow induced in nuclear-reactor-pumped gas lasers by the competing effects of spa­

tially nonuniform fission-fragment heating (pumping) and heat transfer to the walls is exam­

ined. The equations of motion are acoustically filtered (low Mach number approximation), 

and the resulting equations are seen to have three timescales: the duration of the heat­

ing, the time required by the heating to produce a pressure rise comparable to the initial 

pressure, and the time for the thermal boundary layer to grow into the center of the laser 

cell. Three distinct regimes emerge from consideration of the relative magnitudes of these 

timescales. In the negligible-conduction regime, thermal-conduction effects are small, and 

the motion is determined by the spatial nonuniformity of the heating. In the dominant-

conduction regime, thermal-conduction effects govern the motion. In the mixed regime, the 

effects of thermal conduction and heating nonuniformity are comparable, but since they are 

oppositely directed, a complex gas motion results. Analytical solutions to the equations of 

motion are presented for the negligible-conduction and dominant-conduction regimes, and 

examples are given for all three regimes. Plots of the second spatial derivative of the density 

field (a quantity often used in optical analyses) are given for the negligible-conduction and 

the dominant-conduction regimes as functions of the appropriate similarity parameters. 
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Nomenclature 

Cp specific heat at constant pressure 

Co specific heat at constant volume 

e energy per unit mass 

G spatial variation of applied heating 

h temporal variation of applied heating 

h thermal conductivity 

ko initial thermal conductivity 

k k/ko (nondimensional) 

L domain semi-extent in x 

p pressure 

po initial pressure 

p s-averaged p 

p p-p 

p p/po (nondimensional) 

Q volumetric applied heating 

Q, amplitude of applied heating 

Q Q/Q* (nondimensional) 

R gas constant 

SA amplitude similarity parameter 

SB boundary layer similarity parameter 

Sg SB value when to « tc 

SF foil-thickness similarity parameter 

SB homogeneity similarity parameter 

SQ heating similarity parameter 

t time 

tc thermal-conduction timescale 
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to heating duration 

i t/tjj (nondimensional) 

T temperature 

To initial temperature 

f T/To (nondimensional) 

•u velocity z-component 

u utjj/L (nondimensional) 

X Cartesian coordinate (across width) 

X x/L (nondimensional) 

XQ Lagrangian parametric variable 

a thermal conductivity exponent 

7 specific heat ratio 

K thermal difFusivity ko/poCy 

p. shear viscosity 

HQ initial shear viscosity 

Ji P^/fiQ (nondimensional) 

fly bulk viscosity 

fi„ p-v/fj^o (nondimensional) 

TT pt]j/poL^{l -f- SB) (nondimensional) 

p density 

Po initial density 

p pjPo (nondimensional) 

^ dummy variable 
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Introduction 

It is possible to pump gas lasers with the energetic products of fission reactions (fission 

fragments) induced by a pulse of neutrons from a nuclear reactor.̂ ~^° Such "nuclear-reactor-

pumped" lasers have tome important advantages over lasers with other pumping methods. 

First, the nuclear energy is utilized directly to excite atomic or molecular lasing states. The 

alternative to this is conversion of the nuclear energy to heat and subsequently to electricity 

(with the associated efiEiciency losses at each conversion) before being used to excite the laser 

medium.̂ ^ Second, these lasers can take advantage of the large energy densities associated 

with nuclear power.** 

Figure 1 shows a schematic diagram of a laser cell which illustrates one means by which 

this type of pumping can be achieved. When irradiated with the neutron flux from a nuclear 

1 em 
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Figure 1. Schematic diagram of a typical laser cell used in nuclear-reactor-

pumped-laser research. 

reactor, coatings of fissionable material on the side walls of the laser cell emit fission frag­

ments. Some of these fission fragments pass through the gas-filled region of the laser cell, 

depositing energy as they go. Since most of the deposited energy is rapidly thermalized, the 

pumping process heats the gas. This heating is large (the energy deposited in the gas during 



the pulse is comparable to the thermal energy originally present), transient (the neutron flux 

varies temporally), spatially nonuniform (the fission fragments heat the gas more near the 

side walls), and volumetric (the fission fragments penetrate deeply into the gas to deposit 

energy). The spatial nonuniformity of the applied heating induces gas motion in toward 

the center (laser optical axis). However, the side walls remain colder than the gas, so heat-

transfer effects induce gas motion out toward the walls. Since these effects are oppositely 

directed, heat-transfer and heating-nonuniformity effects compete to determine the overall 

gas motion. 

Since the density of a gas is related to its refractive index,*' this gas motion establishes 

gradients in the refractive index normal to the optical axis. More specifically, the heated 

gas acts like a lens with a temporally varying focal length. Under certain circumstances, the 

lensing produced in this manner can change the optical stability of the laser resonator.*^~*^ 

Thus, in order to predict the optical behavior of these lasers, it is essential to understand 

the gas motion induced by the competing effects of the thermal conduction and the heating 

nonuniformity. 

Previous studies have concentrated on the gas motion induced by the spatial nonunifor­

mity of the fission-fragment heating but have neglected the effect of thermal conduction on 

the gas motion.**"'" Although this is justified for short pulses during which the effects of 

thermal conduction are confined to thin thermal boundary layers at the side walls, for longer 

pulses this assumption breaiks down. In this paper, the gas motion in a nonuniformly heated 

laser medium is analyzed including the effects of heat transfer to the cold side walls. Three 

heat-transfer regimes are found. Analytical solutions for the induced gas flow are presented 

for two of the regimes, and examples are presented for BU three regimes. 

The Model Problem 

In order to understand the laser's optical behavior, the following model describing the 

gas motion is examined. The gas is assumed to obey the perfect gas law, 

P = RpT, (1) 
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where p, p, T, and R are the pressure, density, temperature, and gas constant, respectively. 

The gas is also assumed to have constant specific heats Cp and ĉ , with the ratio 7 = Cp/cy 

thus constant. The thermal conductivity of the gas is assumed to vary with temperature 

according to the relation 

k = fco(T/To)" , (2) 

where ko, To, and a are constants. This relation, although approximate, provides a relatively 

accurate representation of the thermal conductivity of many gases.'* 

Flow and variation of thermodynamic properties are allowed only in the x-direction (see 

Figure 1). Thus, this model neglects variations in the y- and z-directions. Such vairiations 

are often minor;* '̂'° moreover, the emphasis of this paper is on heating-nonuniformity and 

thermal-conduction effects, which are strongest in the z-direction. The values x = ±.L and 

X = 0 are chosen to correspond to the side walls and to the centerplane (in which the laser 

optical axis lies), respectively, and symmetry about 2 = 0 is assumed henceforth. 

The equations describing the gas motion are the conservation equations for mass, mo­

mentum in the z-direction, and energy: 

dp 8 

at 
a , dp 8 [/A \8u] 

lp(e+lu') + -?^pu{e + r/p + \u') 

c = p / p ( 7 - l ) . (6) 

Here, u, p,, p„, e, and Q are the velocity, the shear viscosity, the bulk viscosity, the energy 

per unit mass, and the applied power density from fission-fragment heating, respectively. 

By virtue of the assumed symmetry, oidy the region from z = 0 to x = X is considered. 

Boundary conditions for these equations are u = 0 at x = 0 and x = X,T = Toatx = X, 

and aT/8x = 0 at x = 0. 
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The energy equation has a source term Q on the right-hand side corresponding to fission-

fragment heating. This volumetric heat source has the form 

Q = Q.hW'^)Ll^O ( i £ ^ ^ ' ; S „ S r ) 

= Q.Kt/tp) (£) G- (j £ 2 ^ dx'; SB, SJT) . (7) 

Although Equation (7) is daunting at first sight, the quantities in this equation all have 

straightforward interpretations. The quantity Q, is the scale factor which converts the 

(nondimensional) neutron flux h{t/tjy) into power density (kW/cm^). The function h is 

the temporal variation of the neutron flux, which is approximately Gaussian, and to is the 

timescale characterizing the duration of the neutron pulse, proportional to the full width 

at half maximum. The term aG/8x is the spatial variation of the applied heating. The 

derivative 8/81 appears since the energy source term is the divergence of the correspond­

ing nondimensional fission-fragment energy flux (G). The argument of G represents the 

coupling between the gas density field and fission-fragment energy deposition.'"*""'* Since 

the absorption of fission-fragment energy depends on the number of absorbers (molecules) 

present per unit volume, the gas density appears in an integral in the argument of G, which 

is similar to its appearance in the related problem of light absorption by a gas. The function 

G is monotonically increasing with positive concavity, and the normalization of G is chosen 

conveniently to yield G(0) = 0 and G(l) = 1 (see Figure 2). Calculation of the x-variation 

of Q from Equation (7) gives a roughly parabolic profile proportional to G' which is concave 

upward and has a minimum at x = 0 (see Figure 2). The quantities Ss and Sp are model-

dependent similarity parameters'" determining the precise form of the spatial variation of 

Q. As the homogeneity similarity parameter SH is increased, the minimum for Q becomes 

deeper, and when SB = 0, Q has no spatial variation. Thus, SB is a measure of how homo­

geneous or spatially uniform the applied heating is. The foil-thickness similEirity parameter 

SF has relatively little effect on the shape of Q and will not be discussed further. See Ref. 20 

for a detailed discussion of Q. 
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Figure 2. Typical examples of G(0 (solid curve) and G'(0 (dashed curve), the 

slope of G. G'{() indicates the spatial variation of the applied heating. 

There are several relevant timescales in this model: the time for an acoustic wave to travel 

from the side walls to the center; the time for thermal-conduction effects to reach the center 

from the side walls; the time over which the energy is deposited (the pulse duration); and the 

time required for the applied heating to increase the pressure and temperature by amounts 

comparable to their initial values. Typically, the acoustic timescale is much smaller than 

the other three timescales, so the Mach number of the induced flow is much less than unity. 

Therefore, the equations can be acoustically filtered.'"•'^•'« This procedure has the effect of 

removing the wave nature of the pressure variation from the problem: the pressure partitions 

into a large mean p{t) plus a small local deviation p(x,t) = p(x,t) - p(t). Thus, acoustic 

filtering eflfectively removes the acoustic timescale from consideration. The equations that 

result from this procedure are: 

80 a 
(8) 

^ a , ap a \fA \au] 
"^^Tx^ --/x^rx[[r^^^)rx\ ^ 

a^ 
at 

f = (7 - i)QMt/tr,) + ^ 1 ^ 

(9) 

(10) 



7pu = (7 - l)Q,h{tltD)L [G Q jf" ^ ^ dx^ -

+ (7 -1 ) 
,aT X / , a rM 1 , , 

p=RpT. (12) 

The general procedure to obtain these equations is outlined in Ref. 20 although the thermal-

conduction and viscous terms are not included in that study. 

These equations have the following physical interpretations. Equations (8) and (9) are 

just mass and momentum conservation (since p is not a function of z, it does not appear in 

Equation (9)). Equations (10) and (11) are related to energy conservation. Equation (10) 

shows that the mean pressure rise is governed by the mean heat addition minus the mean 

heat loss by thermal conduction (it is the perfect gas law in an unusual form). Equation (11) 

shows that velocities are induced when the local heating (both applied and conduction) 

differs from the mean heating (shown in Equation (10)). Thus, the tendency is for the 

system to approach uniform heating.'" Note that p appears only in Equation (9), so in effect 

it is decoupled from the motion. 

To assess different flow and heat-transfer regimes, it is necessary to cast these equations 

in nondimensional form. The following nondimensionalization is used: 

p = p/po p = P/PQ 

f = T/To it = k/ko 
X = x/L i = t/to , 
u = utjj/L f — pt])/poL^{l + SB) 
p. = p/po Pv = fiv/po 

where SB will be defined shortly. The equations that result from this procedure are: 

p = pf , (13) 

jfe = f" , (14) 

it^Tx^-'^ (15) 

r*̂  = * (k^\ I 
\ / le=i 

S M0 + 5 g M * p - l l ' (16) 



Si'7P« = K') G 

+ S5» 

a,. a . .- ,, _ .8T: 

M'^^Bi'^ = - ( l + 5«)jj 

--«(^)M[(i^--)i- (") 
Here, the parameters 5x, SQ, and 5j5 are defined as follows: 

s . = ( l : i l W ^ , (19) 

5Q = ? ^ , (20) 
AoT, 

^ ^ ^ ( 7 - l ) W . (21) 
PoL* 

The amplitude similarity parameter Sx is the ratio of the pulse duration to the pressure-

rise timescale and as such indicates the scale of the normalized pressure rise that would 

be produced by the applied heating in the absence of thermal conduction. The heating 

similarity parameter SQ is proportional to the ratio of the thermal-conduction timescale 

(the time required for the thermal boundary layers to grow from the side walls into the 

center of the laser cell) to the pressure-rise timescale and therefore measures the relative 

strength of the applied heating to thermal-conduction loss. The boundary layer similarity 

parameter SB is proportional to the ratio of the pulse duration to the thermal-conduction 

timescale. Note that these parameters are not independent but obey the relation 

SA = SBSQ . (22) 

Since in the notation of Carslaw and Jaeger'^ the thermal-conduction timescale tc can be 

estimated using a value of x/2y/Ktc ^ 2 with x = X and K = ko/poc,, the thermal-conduction 

timescale tc and the pulse duration to are approximately equal when SB = 5%^ 1/16. Thus, 

SB is the reference value to which SB is to be compared to determine the relative importance 

of thermal-conduction and heating-nonuniformity effects. 
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The type of motion that results from the equations of motion is governed by the rela­

tive values of these parameters. This behavior can be determined through application of 

the principle of dominant balance." Simply put, the largest terms in these equations must 

be approximately equal, and smaller terms can be neglected. In each of Equations (16) 

and (17) there are three terms: a "source" term involving h\ a "loss" term involving thermal 

conduction scaled by 5^*; and a "dynamic-response" term scaled by 5^*. Since this study 

emphasizes motion induced by the applied heating, the source term must be balanced by 

(at least) one of the other two terms. [By way of contrast, the cool-down period following 

the termination of heating is not considered herein.] Suppose SB/S^ <C 1. Then by Equa­

tion (22) terms proportional to 5^^ are much larger than terms proportional to 5^*, so the 

balance is between the source terms and the dynamic-response terms. This is the negligible-

conduction regime. Suppose SB/SB ^ !• Then by Equation (22) terms proportional to 5ĵ * 

are much smaller than terms proportional to 5^*, so the balance is between the source terms 

and the loss terms. This is the dominant-conduction regime. Suppose Ss/Sg '^ 1. Then by 

Equation (22) all terms are of the same magnitude, so no terms can be removed from the 

equations. This is the mixed regime. In the following sections, each regime is considered in 

turn. 

Negligible-Conduction Regime 

In the negligible-conduction regime {SB/S^ <C 1), thermal-conduction effects are con­

fined to thin boundary layers at the side walls. The total heat removed from the gas by 

thermal conduction over the duration of the pulse is thus very small and does not affect the 

gas motion significantly. In the limit SB —* 0, the equations have the following solution in 

Lagrangian parametric form:'" 

P = \-VSA( h{T)dT, (23) 

p = {G'(xo) + [1 - G'(xo)r'/^}"' , (24) 

X = G(xo) + [xo - G(xo)]p-'/^ , (25) 
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<?(« = ! . (26) 

In these equations, the parametric variable XQ must be eliminated to find the spatial variation 

of the density field p{x,i). Although previously derived,'" the solution for this regime is 

presented here to illustrate its region of validity {SB/SB <C 1) and to contrast this regime 

with the other regimes. Note that SA is the important similarity parameter in this regime. 

From the above equations, it is seen that the gas density distribution at a given time 

is determined by the normalized pressure at that time, where the normalized pressure is 

just the normalized amount of energy in the gas at that time (see Equation (23)). By way 

of contrast, the heating rate (proportional to h) is unimportant since it enters only in an 

integral sense in Equation (23). Since the quantity xo — G(xo) is positive (see Figure 2), 

the induced gas flow is inward and improves the spatial uniformity of the applied heating 

(absorbers move into the low-flux region near z = 0 and out of the high-flux region near 

z = X). A density maximum is thus produced in the center, so the heated region is optically 

focusing. Note also that as p (or equivalently SA) becomes large, the density field approaches 

a limiting profile, which is unaffected by further heat addition. Analytical results for u, TT, 

and other quantities are contained in the appendix. 

As an example, consider helium gas, initially at 200 kPa and 300 K, contained in a laser 

cell with a 1-cm gap (X = 0.5 cm) and with l-pxa UO3 layers on the side walls. The heating 

is described by Q, = 3.55 kW/cm' and h = 1 loi 0 < t < to with to = 0.1 ms (^ = 0 at 

other times). For this case, SB/S^ = 0.0095. Figures 3 and 4 show the spatial variations of 

the density and power density (applied heating) fields, respectively, at 0.05 ms and 0.1 ms 

as determined from a numerical simulation of the full equations. Outside the thin thermal 

boundary layers, the gas motion is inward, as discussed above. Also, the applied heating has 

become slightly more uiuform at later times. 

The quantity a'p/5z'(0), often used in optical stability analyses of laser resonators,*^"*^ 

can be determined for the negligible-conduction regime. In the limit 5 B —» 0 with 
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0.34 

0.50 

Figure S. The density is shown as a function of position at 0.05 ms (solid curve) 

and 0.1 ms (dashed curve). Note the inward gas motion and the thin thermal 

boundary layers. 

OT 
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0.25 0.50 

Figure 4. The power density (heating) is shown as a function of position at 

0.05 ms (solid curve) and 0.1 ms (dashed curve). Note the increased uniformity 

at the later time. 
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JToo ^('•) dr = 1, this quantity can be expressed as 

d'p 

ai^ 
^ ( 0 ) = ri(SH,Sf)rj(5^,5K,Sjr) (27) 

Plots of ri and r , are given in Figures 5 and 6. These generic plots can be used to determine 

the amount of lensing to be expected for experiments lying in the negligible-conduction 

regime. From these graphs, it is seen that larger values of SA and SB produce larger 

-4.0 

-1.0 

Figure 6. The quantity n is plotted against SB for Sp = 0.2 (solid curve is 

full scale, dashed curve has been reduced by a factor of ten for convenience of 

display). These results depend very weakly on 5jr. 

curvatures of the density field. These observations are summarized by the statement that 

large heating (large SA) and large nonuniformity (large SB) produce large motion. 

Dominant-Conduct ion Regime 

In the dominant-conduction regime {SB/S^ > 1), thermal conduction affects the gas 

flow everywhere and removes heat as rapidly as it is deposited. In the limit SB -» oo, the 

equations have the following solution in Lagrangian parametric form: 

p = / ' {1 -h [^(1) - S{()]aSQh/pyf'' di , 
^0 

(28) 
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Figure 6. The quantity rj is plotted against SA for Sp = 0.2 and the following 

SB values: SB = 0.1 (curve A); SB = 0.2 (curve B); SB = 0.3 (curve C); 

SB = 0.4 (curve D); SB = 0.5 (curve E). These results depend very weakly on 

SF. 

p = p{l + [H(l) - H{xo)]aSQh/p}-'f'' , (29) 

i = P-' fj {1 + [^(1) - E{i)]aSQh/pYl'^ di , (30) 

H{xo) = j'^GiOdi. (31) 

In these equations, the parametric variable XQ must be eliminated to find the spatial variation 

of the density field p{x,t). Also, Equation (28) is an implicit equation for the pressure p. 

Note that SQ is the important similarity parameter in this regime. 

From the above equations, it is seen that the gas density distribution at a given time is 

determined by the heating rate (proportional to k) at that time. By way of contrast, the 

amount of energy added to the gas up to that time (proportional to the time integral of h) 

is unimportant. Since H is monotonically increasing, Equation (29) indicates that the gas 

density is smallest at the center and largest at the side walls, so the heated region is optically 

defocusing. Moreover, this minimum becomes deeper (outward flow) as h increases and 
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shallower (inward flow) as h decreases. Thus, thermal-conduction effects actually worsen the 

spatial nonuniformity of the applied heating by increasing the density near the wall (putting 

more absorbers in a high-flux region) and by decreasing the density near the center (removing 

absorbers from a low-flux region). Note also that as p (or equivalently SQ) becomes large, the 

density field approaches a limiting profile, which is unaffected by further increasing the heat 

addition. Analytical results for u, TT, and other quantities are contained in the appendix. 

As an example, consider helium gas, initially at 200 kPa and 300 K, contained in a laser 

cell with a 1-cm gap (X = 0.5 cm) and with 1-pm UOj layers on the side walls. The heating 

is described by Q, = 2.22 x 10"' kW/cm' and ^ = 1 for 0 < < < t/j with to = 160 ms (fc = 0 

at other times). For this case, SB/S^ = 15. Figures 7 and 8 show the spatial variations of 

the density and power density (applied heating) fields, respectively, at 80 ms and 160 ms as 

determined from a numerical simulation of the fuU equations. Neither the gas density nor 

OAS 

£^ 0.40 

I 
I 0.36 
CO c 
9 
Q 0.30 

0.25 
-0.50 -0.25 0.00 0.25 0.50 

X (cm) 

Figure 7. The density is shown as a function of position at 80 ms (solid curve) 

and 160 ms (dashed curve). The density field is virtually unchanged as the energy 

deposition increases while the power is held constant, indicating that the density 

field depends oiJy on power, not energy, in the dominant-conduction regime. 

the power density varies significantly when the heating is held constant. 
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0.25 0.50 

Figure 8. The power density (heating) is shown as a function of position at 

80 ms (solid curve) and 160 ms (dashed curve). 

The quantity 5'^/flx'(0) can be determined for the dominant-conduction regime. In the 

limit 5 B —» oo with h{i) = 1, this quantity can be expressed as 

A3 -

^ ( 0 ) = qi{SB,SF)q2{SQ,SB,SF) (32) 

Plots of gi and gj are given in Figures 9 and 10. These generic plots can be used to determine 

the amount of lensing to be expected for experiments lying in the dominant-conduction 

regime. From these graphs, it is seen that the curvature does not depend strongly on SB 

or SQ for SQ above unity. 

The normalized pressure p can also be determined for the dominant-conduction regime. 

In the limit 5 B —» oo with h{t) = 1, this quantity can be expressed as 

p = PI(SB, SF)P2{SQ, SB, SF) . (33) 

Plots ofpi and pa we given in Figures 11 and 12. From these graphs, it is seen that SB 

does not affect p greatly. Increasing SQ (increasing the applied heating relative to the ability 

of thermal conduction to remove heat) is seen to residt in the expected increase in p. 
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Figure 9. The quantity qi is plotted against SB for Sp = 0.2 and a = 0.75. 

These results depend very weakly on Sp. 

Figure 10. The quantity qj is plotted against SQ for Sp — 0.2, a = 0.75, and 

the following SB values: SB = 0.0 (curve 0); SB = 0.1 (curve A); SB = 0.2 

(curve B); SB = 0.3 (curve C); SB = 0.4 (curve D); SB = 0.5 (curve E). These 

results depend very weakly on Sp. 
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Figure 11. The quantity pi is plotted against SB for Sp = 0.2 and a = 0.75. 

These results depend very weakly on Sp. 

Figure 12. The quantity pj is plotted against SQ for Sp = 0.2, a = 0.75, and 

the following SB values: SB = 0.0 (curve O); SB = 0.1 (curve A); SB = 0.2 

(curve B); SB = 0.3 (curve C); SB = 0.4 (curve D); SB = 0.5 (curve E). These 

results depend very weakly on Sp. 

19 



Mixed Regime 

In the mixed regime {SB/SB '̂  1)) the competing effects of spatially nonuniform heating 

and thermal conduction produce a complex gas motion. No analytical solution is available, 

so numerical solutions of the equations of motion are necessary to study the gas flow in 

this regime. However, qualitative statements can be made regarding the flow based on the 

results of the two previous sections. Since Ss/Sg is the ratio of the pulse duration to the 

time required for the thermal boundary layers to grow from the side walls into the center, 

at early times the thermal boundary layers are thin, but they have reached the center of 

the laser cell at later times. Therefore, mixed-regime cases resemble cases in the negligible-

conduction regime at early times but resemble cases in the dominant-conduction regime at 

later times. In a similar van, the flow in the central region of the laser cell resembles the flow 

in the negligible-conduction regime, but the flow near the side walls resembles the flow in 

the dominant-conduction regime. Thus, the competition of thermal-conduction and heating-

nonuniformity effects acts to produce both a density maximum at z = 0 and large densities 

at the side walls, with density miiuma at intermediate locations. These minima are quite 

close to the walls at early times, but they propagate in toward the center and eventually 

engulf the central maximum. Furthermore, this motion depends in a complex manner on 

both the energy, as in the negligible-conduction regime, and the power, as in the dominant-

conduction regime. Note that there are both optically focusing and defocusing regions since 

both maxima and minima exist in the density field. 

As an example, consider helium gas, initially at 200 kPa and 300 K, contained in a laser 

cell with a 1-cm gap (X = 0.5 cm) and with l-pm UO3 layers on the side walls. The heating 

is described by Q, = 0.089 kW/cm' and h =^ 1 for 0 < t < tr> with <c = 4 ms (ft = 0 at 

other times). For this case, SB/SB = 0.38. Figures 13 and 14 show the spatial variations 

of the density and power density (applied heating) fields, respectively, at 2 ms and 4 ms as 

determined from a numerical simulation of the full equations. For cases in the mixed regime, 

the flow is frequently observed to reduce the density in the central region but maintain a 
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roughly constant density curvature in this region while doing so. 

Conclusions 

A model describing the gas flow in a nuclear-reactor-pumped laser has been examined. 

This gas flow is induced by the competition between the spatial nonuniformity of the fission-

fragment heating and the effects of thermal conduction to the side walls. Three heat-transfer 

and gas-flow regimes are found and characterized in terms of SB/S^, the ratio of the pulse 

duration to the time required for the thermal boundary layer to grow from the side walls 

into the center of the laser cell. 

The negligible-conduction regime corresponds to small values of SB/S^. In this regime, 

the density field is determined solely by the energy deposited in the gas (the power is unim­

portant), and a central density maximum is formed (an optically focusing region). Thermal-

conduction effects are confined to thin boundary layers, and little heat is removed during 

the pulse. 

The dominant-conduction regime corresponds to large values of SB/SB- In this regime, 

the density field is determined solely by the power (rate of applied heating) in the gas (the 

energy deposited is uiumportant), and a central density minimum is formed (an optically 

defocusing region). Thermal conduction removes heat as rapidly as it is deposited during 

the pulse. 

The mixed regime corresponds to values of SB/SB near unity. In this regime, the density 

field is determined by the energy and the power. At early times, a central density maximum 

forms, but density minima propagate inward from the side walls and ultimately engulf the 

central density maximum. It is often found that the curvature of the density field in the 

central region remains relatively constant during the latter portion of the pulse even though 

the density in the central region falls significantly. 

Analytical solutions of the equations were presented in the limits 5 B —̂  0 (negligible-

conduction) and SB —* oo (dominant-conduction). These solutions were used to generate 

graphs delineating the behavior of the curvature of the density field in terms of the relevant 
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dimensionless parameters. 
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Appendix 

This appendix contains a compilation of analytical results relating to gas motion in the 

negligible-conduction and dominant-conduction regimes. 

The following are analytical results for u,ir,Q = Q/Qt, and the density curvature in the 

limit SB —• 0: 

« = - ^ l i - G ( x o ) ] , (Al) 

- J\l - m - G{K)\ ii ^ J*\( - G(0] d(^ , {A2) 

Q = hG'{xo)p , (A3) 

dx»^ ^ {G'(0)-f [1 - G'(0)]p-i/7}4 • ^̂ ^̂  

Parametric expressions for the density field p(x) are given below in the limit SA. —* oo: 

p - . [G'(xo)]-' , (A5) 

X -* G(xo) . (A6) 

This limiting field is to be interpreted as a bound on the motion rather than as a physically 

realizable field. 

The following are analytical results for u, TT, Q = Q/Qt, &nd the density curvature in the 

limit SB —» oo: 
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/(«o) = r {1 + [̂ (1) - H{0]aSQh/p}-'^-'f'' 
Jo 

x[H{l)-HU)]d(, (A76) 

J(xo) = {1 + [^(1) - ir(io)]aSQ/i/p}-i+^/-

x [ i r ( l ) - ^ ( x o ) ] , (A86) 

Q = hG'{xQ)p , (A9) 

ax»^"^ [l-|-JEr(l)a5<,Vp]'+=»/° • ^ ^ 

Parametric expressions for the density field p(z) in the limit Sq —» oo: 

£ ( £ ( l ) - £ ( 0 ] ^ ,..^. 
'̂  [jy(i) - -ff(xo)]v- ' "̂̂ ^̂ ^ 

(A12) . //•'[g(i)-g(0]V°rfe 
/;[^(i)-F(Op/-<^ • 

This limiting field is to be interpreted as a bound on the motion rather than as a physically 

realizable field. Note that this density field has an integrable singularity at x = xo = 1. 

In these derivations, frequent use has been made of the fact that 

. / f i x 
\dxc 

which is the equation of continuity written in Lagrangian form. 

H^)r'' '̂ "' 
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