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Abstract

The Simulation Problem Analysis Kermnel (SPANK) is a simulation environment under
development at Lawrence Berkeley Laboratory. A principal departure from other simula-
tion environments is that system models are constructed from submodel objects that are
defined without prescribed input or output interfaces, yielding greater modeling flexibil-
ity. Also, graph theoretic techniques are employed to determine the solution sequence,
including reduction of the iterative problem size. In this paper we show one role of sym-
bolic manipulation in SPANK processing, namely automatic generation of submodels
using the MACSYMA™ package. This is demonstrated in the context of steady state
radiant and convective heat transfer in a room with a fluorescent lighting system, and
then in the corresponding dynamic context. Submodel definition and generation are
described, followed by the solution of several interesting problems defined with the sub-
models.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings and Community
Systems, Building Systems Division of the U. S. Department of Energy, under Contract No. DE-AC03-76SF00098.
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Introduction

Contemporary modeling environments, e.g., ACSL [MG75], require the modeler to
describe a particular problem by interconnection of component models, either defined by
the user or selected from a library, which have prescribed inputs and outputs. Such sub-
models are called "algorithmic" or "assignment-based" because the output variables are
calculated from the inputs by a prescribed procedure, and each output variable is
assigned a value. This approach imposes several limitations on modeling flexibility. Pri-
mary among these is the fact that the algorithmic models limit the class of problems
that can be defined and solved by their interconnection. For example, assume that we
have two components modeled algorithmically as:

component A: x := f(y,z)

component B: z = g(x)

Then we can easily solve the problem "given y, find x and z" by iteration on either of the
unknowns. Such iteration is automatically performed by programs such as ACSL. How-
ever, if the problem statement is changed only slightly, such as "given z, find x and y,"
difficulties are encountered because we have an unneeded algorithm for z and no algo-
rithm for y. As a result the modeler must either formulate a new component model by
inverting A, i.e.,

component A": y = fI(x,z),

or resort to the introduction of fictitious "implicit elements" with attendant numerical
difficulties. We see that the modeler is forced to revise component models and recon-
struct the system, and/or introduce non-physical "components" and become involved in
the intricacies of numerical analysis.

The above difficulties are fundamentally related to the ad hoc development of current
simulation environments, which were greatly influenced by analog computation methods,
and to the widely held belief that physical "causality” should be reflected in the system
model. More recent developments [Mat88,Mat89,SS89] suggest that a different set of
model structuring principles is more appropriate. Among these principles is that com-
ponent models should be equation-based rather than assignment-based. That is, the
models above should be seen by the modeler as:

component A:  f(x,y,z) = 0

component B:  g(x,z) = 0

with the understanding that the environment will find a solution procedure that will
enforce the equalities. Simulation environments that employ equation-based component
models eliminate the difficulties seen above. The Simulation Problem Analysis Kernel
(SPANK) is one such environment currently under development. Another, using an
alternate approach, is IDA (formerly MODSIM) [Sah88].



The SPANK environment is based on the intuition that:
(a) there should be a single "model" for a particular component,

(b) the system model should be defined once, yet be capable of solving any well-
posed problem involving the system variables, and

(c) the environment software should select the appropriate solution sequence,
including necessary iteration, in a manner transparent to the modeler.

The underlying principles making this realizable for static (i.e., algebraic) systems have
been described [SBEWS86], and extended to handle dynamic (i.e., differential-algebraic)
systems [SB88]. These ideas are described in terms of the object-oriented paradigm in
[SBN89].

Briefly summarized, SPANK is a nonlinear equation solver with an object-oriented inter-
face and with automatic equation system reduction. SPANK manipulates objects that
are equations, and macro objects that are collections of equations. The task of the user
is to generate the objects and their related software equivalent, and to link them together
in the appropriate way to take into account the variables common to different objects.

A diagram of the current SPANK environment is shown in Fig. 1. In addition to the
main SPANK program, utilities are available that include automatic object generation
using MACSYMA (discussed further in the following sections), automatic library archiv-
ing of newly-created objects and functions, checking of some aspects of the well-
posedness of the problem, graphical output for dynamic simulations, graphical sensitivity
analysis for steady-state simulations, generation of MACSYMA code for evaluating
reduced system Jacobian eigenvalues, graphical representation of the convergence of
iteration variables, and automatic report generation.

Step by step, the procedure that SPANK users follow in setting up and running a simu-
lation is as follows:

(1) Draw a schematic showing the physical components of the system and how they
are connected.

(2) Write the mathematical equations, such as energy balances, mass balances, flux
balances, etc., that describe the system. These equations are the basic objects that
SPANK manipulates.

(3) Run the SPANK MACSYMA preprocessor to generate the C code and associated
functions for the equations (objects) in (2).

(4) Using the SPANK Network Specification Language (NSL) or the MACSYMA
preprocessor, link the objects in (3) into macro objects (sets of equations) that describe
system components or processes.

(5) Using NSL, create a problem specification file in which macro objects are linked
together into a network describing the entire system. (An interactive graphical editor is
being developed that will simplify this step.) >From this file SPANK will then automat-
ically create an executable simulation program for solving the network.



(6) Specify input values and starting values, and, for dynamic simulation, start
time, stop time, and time step.

(7) Run the simulation.
(8) Plot results.

The Need for Symbolic Manipulation

Because SPANK development is still embryonic, there have been many limitations
preventing a meaningful comparison with the existing conventional environments. One
such limitation is that the SPANK component models (called objects) reported in earlier
publications had been "hand crafted." That is, the component modeler in need of com-
ponent A above would have to write computer code such as:

/* SPANK Component Object Model */

/* Stored in comp_A.obj */
define comp A(x, y, 2)
double x,y,z;
{ x=1l(y, 2);
y = f2(x, 2);
z = f3(x, y);

j

The understanding here is that the component model has three interface variables x, y,
and z. Normally, an inverse is given for each interface variable so that the solver can
select the most appropriate for a particular problem (although inverses known to be
problematical can be suppressed).

Because SPANK objects represent a single equation, definition of an entire problem in
terms of objects can be tedious. For convenience and hiding of unnecessary detail when
defining problems, a macro facility is available. With this facility, for example, we could
combine the preceding two objects into a macro object with the code:

/* SPANK macro object definition */
/* Stored in macro_ A B.obj */

macro
declare comp A A;
declare comp B B;
link x(A.x, B.x);
link y(A.y);
link z(A.z, B.z);

Macros are declared in problem definitions (or in other macros) exactly as objects are
declared.

By "hand crafted", above, we mean that the macro definitions, object definitions, and the
inverse functions f7, }2, and fS had to be manually coded as functions in the C computer



language. This is clearly an unnecessary burden on the component modeler, since
software systems such as MACSYMA [MIT83] are available that can accept an equation
such as f(x, y, z) = 0 and return the needed inverses as compilable code. The same pro-
gram can be used to generate macro and object files of the kind shown above. The prin-
cipal aim of this paper is to demonstrate this approach.

It should be noted that automatic generation of macros, objects, and inverses represents
one form of symbolic manipulation in simulation. Another possibility, not explored here,
is generation of derivative formulas. In general, the aim is to perform symbolic manipu-
lation as a pre-step in order to reduce the level of numeric work during the simulation
while affording maximum flexibility to the modeler in defining problems.

In the sections that follow we demonstrate the use of MACSYMA to automatically gen-
erate the SPANK macro object and object definitions, and the required inverse functions
as C code. This is done in the context of a problem from building physics, namely deter-
mination of the transport of lighting energy by convection and multi-band radiation in a
room. While the physical problem is over simplified, the model goes beyond previously
published SPANK example problems [SBEWS86; SBN89] in two important respects.
First, its definition requires vector interface variables, where the vector length is problem
dependent. That is, the number of elementary interfaces for a particular object depends
on the number of other interacting objects. Since neither SPANK objects nor macro
objects admit to wvariable interfaces, the needed flexibility is implemented at the
MACSYMA input level. The second interesting aspect of the problem is that it yields a
highly interconnected set of equations as a result of radiative transfer. As a result, the
ratio of the number of total problem variables to the number of iteration variables
(called the reduction ratio) is not as large as we find for previously studied flow system
simulations [SBN&9].

Problem Description

The problem studied is shown in Fig. 2. Lighting is provided by fluorescent lamps in the
plenum space of a 10,000-ft“ room. A translucent ceiling lens separates the plenum from
the room below. Supply air enters the room, mixes with the room air, then exhausts to
the plenum through small openings in the ceiling lens. Input power leaves the lamp by
shortwave (visible) and longwave (infrared) radiation and by convection to the plenum
air. The radiative portion undergoes interreflection and transmission, and is ultimately
absorbed by surfaces in the plenum and the room. If the plenum air temperature is
greater than the room temperature, some or all of the convective portion can also escape
the plenum by conduction through the transparent ceiling to the room air. Ultimately,
all lamp power must be removed by the airstream after convective transfer from the
various solid surfaces in the room and plenum. We wish to determine the surface and air
temperatures, and the heat removal rate in the room and plenum. Naturally, these will
be functions of the mass flow rate of air and the supply air temperature.

Geometric, radiative and convective data for the problem are shown in Tables | through
5. Lamp power (120,000 Btu/hr or 3.5 W/{t“) and lamp area have been chosen so as to
yield typical illumination at the floor with normal fluorescent lamp brightness. The



lamp diameter to spacing ratio is

D 0 0477

-~ floor

It can be shown that the lamp-set self view factor is (approximately)

F (lamp ,lamp) = = 0.0304

For simplicity, we assume that the dimensions in the horizontal plane are large relative
to room and plenum height, thus making losses through walls negligible. The floor to
ceiling view factor is then assumed to be 1.0. Other view factors can then be determined
by reciprocity and conservation (see Table 4). It is assumed that the floor and ceiling are
adiabatic, i.e., that no heat transfer occurs between the ceiling and the room above or
the floor and the plenum below.

The convective heat transfer coefficients shown in Table 3 assume free convection
[ASH89] and are taken to be constant. A straightforward improvement to the model
would be to make these conductances a function of air flow rate and surface-to-air tem-
perature difference.

Formulation and SPANK Representation

The above problem can be formulated as an n-node network in which each node is
viewed as a surface that can emit, absorb, reflect, and transmit radiant energy in the
short and long wave bands. Also, nodes can interact through surface-to-air convection,
and through bulk flow convection. The system variables include node temperatures,
short and long wave radiosities and irradiations at each node. The basic physical laws
governing the system are those of diffuse radiative transfer, convective heat transfer, and
conservation of energy and mass. See [8073] for details of this formulation.

The equations that describe the problem are as follows:

1. Object "blackbody"

This is the blackbody radiation equation, with eb being the blackbody radiance, a the
Stefan-Boltzmann constant and ¢ the absolute temperature:

eb=(Jt4

2. Object "radiosity" and macro object "radiosity _macro"

This equation gives the radiosity Jk of a node k& in terms of the other node irradiations,
FJj, the generalized transmittance matrix, 'k j and the node source radiosity J°% and
reflectance rk.



Jk-"k-rkFh-Y. 'k jFJj
y-i
The above is valid for node & The macro object radiosity macro corresponds to the sys-
tem of the above equations with k£ running from [ to 7.

3. Object "a.x" and macro object "a.x_macro"

This equation yields, for a node 4, the irradiation FJk in terms of all the radiosities Jj
of the nodes exchanging radiation with £ and the related shape factors Fk y:

FJk = "bFkjJj

y-i
The above is valid for node k£ The macro object a.x macro corresponds to a system of
the above equations with £ running from 1 to 7.

4. Object "net_radiation" and macro object '""net_radiation_macro"

This equation gives the net radiant heat transfer grk for a node k in terms of all the irra-
diations F.Jj of the nodes exchanging radiation with the considered node %, the general-
ized transmittance matrix 73k 7, and the k& node area ak, radiosity Jk, irradiation FJk
and transmittance Tk:

(Irk 7

ak ;=1
The above is valid for node k. The macro object net radiation macro corresponds to a
system of the above equations with & running from 1 to 7.

5. Object "energy balance'" and macro object "energy_balance macro"

This equation gives the energy balance at the node k£ in terms of the node’s source term
q°k, net short wave radiant heat transfer grs k, net long wave radiant heat transfer grlk,
the generalized conductance matrix 2z« k j (which accounts for conduction and convection)
and the node temperatures z;.:

90A-91%-V* =1>%,y*y
y=i
The above is valid for node £ The macroobject energy balance macro corresponds to a
system of the above equations with k running from 1 to 7.

The object energy balance is the only one that has to be changed to switch from steady-
state to dynamic simulation. All that is required is to add a derivative term with heat
capacity, leading to an object dyn_energy balance.

A diagram of the system without bulk air flow is shown in Fig. 3 (the complete system
diagram is only slightly more complicated). The blocks in this diagram are the SPANK
macro objects described above. The dashed lines show vector- or array-valued (e.g. JO or



tau) system variables, some of which are designated as input data. Lines connecting two
or more macro object interface ports indicate that a single (vector- or array-valued) sys-
tem variable is identified with the corresponding macro object variables. (In addition to
the equation-based macro objects there is an "adaptor" object, TAP, that allows us to
"tap into" a vector in order to specify only some of its elements as problem inputs.)

Because long and short wave diffuse radiative transfer are governed by the same laws, we
can use the same macro object class for both. The geometric data — areas A and view
factor matrix F — are the same for both bands, but the reflectance R and transmittance
tau are different. Also note that the long wave radiative transfer is coupled to the heat
balance (through the black body macro object) because long wave emission JOL is a func-
tion of node temperature. On the other hand, because we are ignoring the temperature
dependence of short wave emission from the lamps, the short wave emission JOS is
involved only in the short wave transfer; the net short wave radiation vector Qrs con-
nects only to the energy balance.

Figure 3 represents the system model. By virtue of designation of particular system vari-
ables as "inputs," it also represents a particular "problem." One problem that can be
represented (which corresponds to case (1), below) is:

Given:

All geometric and property data, and convection coefficients.

The short wave emission at each surface, JOS.

The source energy addition/removal rates at all surface nodes and plenum air node,
QO()-QO(6).

The temperature at the room air node, T(7).

Find:

The temperatures at all surface nodes and plenum air node, T(1)—T(6).
The heat addition/removal rate at the room air node, QO0(7).

The short and long wave radiosities and irradiations at each node.

The short and long wave net radiant transfer rates at each node.

However, an important feature of SPANK is that different problems on the same system
can be specified without structural changes in the model. For example, if we wished to
specify a surface temperature and solve for the required heat addition/removal rate we
could simply designate a different input set.

The MACSYMA Interface to SPANK

MACSYMA is a symbolic language allowing manipulation of equations. We have writ-
ten a program in this language that allows the user to enter equations or systems of
equations in natural form. MACSYMA then generates all of the corresponding object
files, macro object files, and function files for a SPANK problem. As an example, the
object, macro object and function files (approximately 35 files in all) needed for the
SPANK simulation of the above problem will be generated.



Only two types of commands are needed (others are available for general macro object
generation, simulation and input file generation, and component merging):

makespank(eq, name, list): Creates the object name.obj and associated functions
corresponding to equation eq. Equation eq can be piecewise defined or can be a single
relationship covering the full range of its variables. Finally, /ist is the list of variables
that we don’t want to solve for by inverting eq (so-called "bad inverses" [SS89]).

writegenericnetmacro(N, macroname, name, fl[k], f2[k,j], list): Creates the
macro macroname, obj that corresponds to the equation system

/ 1[&]=X) /2[fc,y] , for k=1 to N.
y=i

Because all equations of this system are similar, writegenericnetmacro generates only
one elementary object called name.obj defined as

/1 1=EFE/2-1 1
y=i

and then instantiates it N times, filling the variables’ slots with the correct global vari-
able name. Again, /ist is the list of variables for which we choose not to invert the above
equation.

Using these commands we create the SPANK files for the example with the following
sequence (Fig. 4):

(1) Create the blackbody emissivity object blackbody.obj and a Fahrenheit-to-Kelvin
conversion object degkdegf.obj:

makespank([eb=sigma*U4, eb>0, sigma=>0, t=0], "blackbody", [sigma]);
makespank(f=1.8%*k-459.67, "degkdegft", []);

Observe that above we have created blackbody.obj as an elementary object instead of
a macro object in order to demonstrate the makespank tool. In Fig. 3 we use the
equivalent macro that handles vectors instead of scalars.

(2) Create the radiosity macro object, radiosity _macro. obj, which is the system describ-
ing the radiosity vector in terms of itself, the surfaces properties, the shape factor
matrix and the surfaces’ source radiosities (which are zero except for the lamps).
We also created the elementary object radiosity. obj, which is the equation relating to
one surface only. It is used within the radiosity macro. obj macro:

writegenericnetmacro(7, "radiosity_macro", '"radiosity",
JIK]-jOIK]-r[K]*fj[K], taus[K,j1*£[iD, [I;

As an example, Fig. 5 shows (a) the macro object file radiosity macro.obj, (b) the
elementary object file radiosity.obj, and (¢) some C functions generated by this com-
mand. Note that in the above expression j means that j is to be taken literally to



represent radiosity, whereas the j in [j] is a summation index.

(3) Create the macro ax.macro.obj, which is a generic matrix-vector multiplication
object, used here to obtain the irradiation vector from the shape factor matrix and
the radiosity vector:

writegenericnetmacro(7, "ax_macro", "ax", fj[k], JuDb, 1l

(4) Create the macro net radiation_macro.obj, which gives the net radiant heat transfer
vector in terms of the radiosities, irradiations, shape factors, surfaces, etc:

writegenericnetmacro(7, '"met_radiation_macro', '""net_radiation",
qar[k]/a[K]-j[K]+A.-tau[KD*fj[K], -taus[KjI*£[jD, [I;

(5) Create the macro energy balance macro.obj, which performs an energy balance on
each surface:

writegenericnetmacro(7, "energy balance macro'", "energy balance',
qO[K]-qr_s[k]-qr_I[K], uc[K,jI*t[j]), [I;

The SPANK Steady State Simulation

The steady state simulation program created by SPANK was used to carry out a
parametric study of the effect of air flow rate on surface temperatures and heat removal
rates in the plenum and room. Two cases were analyzed:

Case (1): The room air temperature was fixed at 75F; the supply air temperature and
other variables were calculated. This corresponds to an air conditioning system in which
the room air temperature is maintained at a constant value by varying the supply air
temperature at fixed flow rate.

Case (2): The supply air temperature was fixed at 70F; the room air temperature and
other variables were calculated.

The SPANK problem specification input file for case (1) is shown in Fig. 6. There are 86
equations and 86 unknowns. The SPANK reduction process [SBEWS86] leads to an itera-
tion set of 21 variables consisting of all the temperatures (except ceiling and room air),
the ceiling long wave radiosity, and all of the short wave radiosities. The reduction ratio
1s 86/21, or 4.1. A solution was obtained after five iterations.

The problem specification file for case (2) (not shown) is obtained very simply from that
of case (1) by changing the room air temperature, t 7, from an input to an unknown
(i.e., to a link variable), and by changing the supply air temperature, t 0, from an unk-
nown to an input. For case (2) there are also 86 equations and 21 iteration variables.

The simulation results are given in Fig. 7, which shows calculated temperatures and heat
gains for values of air flow from 50 to 400 Ib/hr/luminaire (1.0 to 8.0 cfm/ft). Case (1)
results appear on the left side of this figure and case (2) results on the right. As
expected, we observe a decrease in surface temperatures with increasing airflow. Also
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shown is the the fraction of the heat from lights that is picked up by the air stream as it
passes through the plenum.

The SPANK Dynamic Simulation

To demonstrate that SPANK can be used for dynamic as well as steady-state simulation,
we have run time-dependent simulations of cases (1) and (2) to determine the transient
effects of going from a lights-off condition to a lights-on condition. This simulation takes
into account the thermal lag due to the heat capacity of the floor, ceiling, and other
nodes (as specified in Table 6). The dynamic SPANK problem specification file for case
(1) is shown in Fig. 8. The differences between this file and its steady-state counterpart
in Fig. 6 are very few and have been indicated by arrows.

The simulation results are shown in Fig. 9. For this study the air flow rate was set at 50
Ib/hr/luminaire (1.0 cfm/ft), the lowest of the parametric values used in the steady-
state simulation. A run period of 200 hours was chosen, with a time step of 6 minutes.
Initially, all of the node temperatures are near the steady-state lights-on condition.
Then, at time zero, the lights are turned off and remain off for 50 hours. The lights are
then switched on with an input power of 120,000 Btu/hr (3.5 W/ft2), the same value

that was used in the steady-state runs.

The general behavior observed in Fig. 9 is an initial decrease in temperatures, followed
by an asymptotic approach to equilibrium lights-off values, then a relatively rapid
increase at 50 hours when the lights are turned on, followed by an asymptotic approach
to equilibrium lights-on values. The initial decrease is due to the fact that the tempera-
ture starting values chosen for the simulation were above the equilibrium lights-off
values.

As a check on the physical consistency and reasonableness of the results, we note that, as
would be expected:

(a) With lights off, all of the surface temperatures for case (1) approach 75F, the fixed
room air temperature. For case (2) they approach 70F, the fixed supply air tempera-
ture. The load approaches zero.

(b) With lights on, the surface temperatures for both cases approach those given by the
steady-state calculation at minimum air flow (Fig. 7). The load approaches the
lamp input power.

Conclusions

We have demonstrated that complex SPANK objects and macro objects can be created
automatically with available symbolic manipulation tools. The MACSYMA package
was used although other less sophisticated packages would likely serve as well. Two
MACSYMA-based programs were demonstrated. One, makespank, accepts a general
equation as an argument string and generates the corresponding SPANK object, as well
as the required inverses expressed as C  function modules. The other,

11



writegenericnetmacro, creates a SPANK macro object (and all supporting macros,
objects, and C functions) that represents a set of equations of the kind encountered in
network modeling. This macro generator was shown to be general enough to
create a vector-matrix product, a linear solver, and a complex radiative, convective
and conductive heat transfer problem in a room. While space did not permit
thorough description of the symbolic techniques employed, it has been shown
that these techniques extend the SPANK methodology to an important class of prob-
lems in system simulation. The ease of switching inputs and unknowns to create
different simulation problems without reprogramming was demonstrated. Finally, an
example of SPANK dynamic simulation was presented as a natural extension of the
corresponding steady state problem.
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Table 1

Radiation in Fluorescent Band
0.30 to 0.80 microns

Node Reflect- Transmit-
ance tance

Ceiling 0.7 0.0

Lamp 0.9 0.0

Lens Top 0.05 0.92

Lens Bottom 0.05 0.92

Floor 0.5 0.0

Table 2

Radiation in Thermal Band
1.0 to 200 microns

Node Reflect- Transmit-
ance tance

Ceiling 0.05 0.0

Lamp 0.05 0.0

Lens Top 0.05 0.92

Lens Bottom 0.05 0.92

Floor 0.05 0.0

Table 3

Film Coefficients/Conductances

Btu /hr

72 °F
From To
Ceiling Plenum Air 0.26
Lamp Plenum Air 1.09
Lens Top Plenum Air 0.51
Lens Bot Room Air 0.42
Floor Room Air 0.74
Lens Top Lens Bot 11.20

14

From

Ceiling
Ceiling
Lens Top
Lens Top
Lens Bot
Floor
Lamp
Lamp
Lamp

Table 4

To

Lens Top
Lamp
Ceiling
Lamp
Floor

Lens Bot
Ceiling

Lens Top
Lamp

Table 5

View Factors

0.92728
0.07272
0.92728
0.07272
1.0

1.0
0.4848
0.4848
0.0304

Area/Source Input

Node

Ceiling
Lamp
Lens Top
Lens Bot
Floor

Node

Ceiling
Lamps
Lens Top

Lens Bottom

Floor

Plenum Air

Room Air

Area (/12)

10000.

1500.
10000.
10000.
10000.

Table 6

QO(Btu/hr)
Btu /hr
J7?

0. /0.
120000. / 20.
0. /0.
0. /0.
0. /0.

Svr

Heat Capacities

Capacitance (Btu/°F)

40000
1000
1200
1200

40000
1000
1000



Equations Problem Specification File

MACSYMA
SPANK
Interface No Self No Double No Missing
"macspank" Link Interface
(Macro)Objects
Checker
Organizer
SPANK
: : Run-Time
Executable Simulation Program Input
SPANK Output
T lati o
rartl(s) ation Convergence Sensitivity Dynamic Report
Symbolics Properties Analysis Graphics Generation
Jacobian o
Vg;lital?fets Matrix Iterated Slznsatlv_lty
Convergence Determinant, na y§1s
Graphics Eigenvalues Graphics

Figure 1. The SPANK! simulation environment. From objects representing the
mathematical equations of a physical system, SPANK! creates an executable
program that can be run to determine the steady-state or time-dependent
behavior of the system. Auxiliary programs include automatic generation of
C code for objects (MACSYMA/SPANK Interface), library archiving of
objects (Organizer), consistency checking (Checker), results display (Dynamic
Graphics), and parametric analysis (Sensitivity Analysis Graphics).
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Insulated

Lamps - Node 2 £ Plenum
O O € S 0 Air- O O

W b
Lens Top - Node 3 Node 6

Lens Bottom - Node 4

Room Air - Node 7 00t

0

Air Flow

Floor - Node 5

Insulated

Figure 2. Schematic of the lighting heat transfer problem: vertical section through
room and plenum.
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Block diagram showing macro objects.
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system variables shared by macro objects.

17

T6T7

TAP

Q06 Q07

TAP

QO

QO
- Qs Epergy
- Qrl
- Uc

Balance



/*******************************************************/

/***MACSYMA COMMANDS FOR SPANK OBJECT GENERATION***x*Xx%xx% /
N*******************************************************y
batch("/ul/nataf/vaxima/mysolve.mac")$

batch ("/ul/nataf/vaxima/rad/radnet .mac") §$

makespank ([eb=sigma*t~4/eb>0,sigma>0,t>0] /'blackbody", [sigma])$
makespank (£=1.8*k-459.67, "degkdegf") §

makespank (sum=x1+x2+x3,"sum3") §
writegenericnetmacro(7,"radiosity macro",

"radiosity",

"] [k]-JO[k]-r[k]*£j [k],

taus [k, j] *£j [3], []) §
writegenericnetmacro (7,"ax_macro",

"ax",

] M,

flk, 31*,30[33, D) $
writegenericnetmacro(7,"net radiation macro",

"net radiation",

gr [k] /a [k] - '] [k] + (1. -tau [k]) * £j [k]

-taus [kl J] *fj [J] 1 [])$
writegenericnetmacro (7,"energy balance macro",

"energy balance",

qO0 [k] -gr_s [k] -qr_1 [k] ,

uclk, j1*t[3jl, [1)$
writegenericnetmacro (7,"lumped radiosity macro",

"lumped radiosity",

ualk, j1*jO[jl, [1)$
ucl[k,jl*t []])$*/

/***DYNAMIC EXTENSION****xkkxkkkkhkkkhkkhkkkkkhkkkkkkkkkx /

/*total heat balance(+ non radiative)*/
writegenericnetmacro(7,"dyn_energy balance_macro",
ldyn_energy_ balancel],
q0 [k] —-qr_s [k] —-qr_1 [k] - 'm[k] *tdot [k] ,
uc[k, j1*t[3], [1)$

Figure 4. Input file of MACSYMA commands for automatically generating SPANK
objects.
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Feb 15 17:38 1990 radiosity macro.obj Page 1

/ * SPANK
macro
declare
declare
declare
declare
declare
declare
declare
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link

link
link
link
link
link
link

link
link
link
link
link
link
link
link
link
link
link

macroobject radiosity macro*/

radiosity radiosity_ 1;
radiosity radiosity 2;
radiosity radiosity_3;
radiosity radiosity 4;
radiosity radiosity_ 5;
radiosity radiosity_6;
radiosity radiosity_ 7;

jO_1 (radiosity 1.j0_1)
jO0_2(radiosity 2.j0_1)
jO_3(radiosity_3.j0_1)
jO_4 (radios'ty_4.j0_1)
jO_5(radios!ty 5.j0_1)
j0_6 (radiosity 6.j0_1)
jO_7(radiosity_7.j0_1)
r l(radiosity 1l.r 1)

r 2 (radiosity 2.r 1)

r 3(radiosity_ 3.r_1)

r 4(radios'ty_4.r_ 1)

r 5(radiosity_ 5.r_1)

r 6 (radiosity_6.r_1)

r 7(radiosity_ 7.r_ 1)
j_l(radiosity_1.j 1)
j_2(radiosity_2.j_1)
j_3(radiosity_3.j_1)
j_4(radiosity_4.3j 1)
j_5(radiosity_5.j_1)
j_6 (radiosity 6.j_1)
j_7(radiosity_7.3j_1)
fj_l(radiosity 1.fj_1,radiosity. 2. f£j_2 radiosity

radiosity 4.fj_4,radiosity_ 5.fj_.5, radiosity 6. f]j.
fj_2(radiosity 1.fj_2,radiosity. .2 £j_1, radiosity.
radiosity 4.fj_ 2,radiosity_5.f]j. .2, radiosity_ 6. fj.
£fj_3(radiosity_1.f]j_3,radiosity. .2. fj_3, radiosity.
radiosity 4.fj_3/radiosity 5.fj. .3, radiosity 6. fj.
fj_4 (radiosity 1.fj_4,radiosity. 2. £fj 4, radiosity.
radiosity 4.fj_1,radiosity 5.fj_.4, radiosity_ 6. fj.
fj_5(radiosity 1.fj_5,radiosity. 2. £j_5, radiosity.
radiosity 4.fj 5,radiosity 5.fj. 1,radiosity 6.fj.
fj_ﬁi(radiosity_l.fj_6,radiosity..2.fj_6,radiaéity.

radiosity 4.fj_6,radiosity_5.fj. .6, radiosity 6. fj

£fj_7 (radiosity 1.fj_7,radiosity. .2 £j_7, radiosity.

radiosity 4.fj 7,radiosity_ 5.fj. 7,radiosity 6.fj
taus_1 1 (radiosity_1l.taus_1 1) -
taus_2 1 (radiosity_ 2.taus_1 2)

taus_3 1 (radiosity_3.taus_1_ 3)

taus_4 1 (radiosity_ 4.taus_1 4)

taus_5_ 1 (radiosity_5.taus_1_5)

taus_6_1 (radiosity_6.taus_1_6)
taus_7_1(radiosity_7.taus_1_7)

taus_1 2 (radiosity_ 1l.taus_1_ 2)

taus_2 2 (radiosity_2.taus_1_1)

taus_3 2 (radiosity_3.taus_1_2)

taus_4 2 (radiosity_4.taus_1_ 2)

.3, £3_3,
.6, radiosity_ 7 £3_7)
30 £3_2
.2, radiosity_ 7 . £fj_2)
30 £3.1,
.3, radiosity 7 .£j_3)
3. £5_4/
4,radiosity_ 7.fj 4)
3. £3_5,
.5, radiosity_ 7 . £j_5)
3 £3_6,
. 1, radiosity_7.£j_6)
3. £3_7,
. 7,radiosity_ 7.fj 1)

Figure 5a. MACSATVIA-generated file for the macro object radiosity _macro.
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Mar 12

16:46 1990 radiosity obj Page 1

/*SPANK object file radiosity.obj*/
/*equation [[-fj_1l*r 1+j_1-3j0_1 = £j 7*taus_1 7+fj 6*taus_1_6
*+fj S*taus_1 5+fj_4*taus_1 4+£fj 3*taus_1 3+fj 2*taus_1 2+fj 1

*taus__
define™

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

1.111%/

radiosity (j0_1, j_1, £j_1,r 1, taus_1 1, £j_2 taus_1 2, £j_3|
taus_l_3 fj_4 taus_l_4 £3_5, taus_l_5/ £3_6,
taus_1 6,fj 7ytaus_1_7)

jo_1;

i_L;

£ _1;

rl;

taus_1 1;

£3_2;

taus_1_2;

£j_3;

taus_1_3;

£j_4;

taus_1 4;

£3_5;

taus_1 5;

£fj_e6;

taus_1_ 6;

£35_7;

taus_1_7;

jO0_1=j0_1 radiosity (j_1 £fj 1 r 1 taus_1 1 £fj 2 taus_1 2,
fj_3, taus_1 3, fj 4, taus_1 4, £j 5, taus_1 5/ fj_6, taus_1 6, £j_7,
taus_1_7);

j_1=j_1 radiosity (jO0_1,£fj 1, r 1 taus_1 1, £fj_ 2 taus_1 2,
fj 3 taus_1 3, fj 4, taus_1 4/ £fj 5, taus_ 1 5, £fj_6,taus_1 6, £j_7/
taus_1_7);

fj_1=fj 1 radiosity (j0_1,j_1 r 1 taus_1 1, £fj_2 taus_1 2,
£fj 3, taus_1 3, fj_4/taus_1 4(fj 5, taus_1 5, fj 6, taus_1 6/ £j_7|
taus_1_7)*/;

r 1=r 1 radiosity (j0_1,j_1 £j_1 taus_1 1, fj_ 2 taus_1_ 2,
£j_3, taus_1 3, £fj_4, taus_1 4, £j 5, taus_1 5, £j_6, taus_1_6, £j_7,
taus_1 7) ;

taus_1 1l=taus_ 1 1 radiosity (jO0_1, j 1, £j_1,r 1, £j_2 taus_1 2,
fj_3, taus_1 3« fj 4, taus 1 4, £j 5, taus_1 5 fj_6, taus_1 6/
£j_7, taus_ 1 _7)

£ 2= fj 2 rad1051ty(30 1,31, £5 1, r 1, taus_1 1, taus_1_ 2,
£j_ 3, taus_1 3, £j 4, taus_1 4, £3j__ 5/taus 15, £fj_e6, taus_l_6,fj_7/
taus_1 7)*/

taus_1 2= taus_l_}_rad1051ty(]0 1,j_1 £fj 1 r 1 taus_1_1 £j_2,
fj 3/taus 1 3, £fj_4, taus_1 4/fj 5, taus 1 5, £f3_ 6, taus 1 6
£j_7, taus_1 7),

fj_3= fj 3 rad1051ty(30 1,31, £f51,r 1, taus_1_1, £j_2,
taus_1 2 taus_1 3 £fj 4, taus_1 4, £j_5, taus 1 5/fj 6/ taus_1 6, £3_7
taus 1 _7)*/;

taus_1 3=taus_1 3 radiosity (jO_1,j_1 fj 1, r 1 taus_1 1 fj_2,
taus 1 2, fj 3, fj 4, taus_1 4, £fj_5/taus_1 5/ fj_6, taus_1_ 6,
fj_7 taus_1_7) ;

fj_4=fj 4 radiosity (j0_1, j 1, £j 1, r 1, taus_1 1, £fj_2,
taus 1 2 fj 3, taus_1 3, taus_1 4/£fj 5, taus_1 5/ fj_6/taus_1 6, £j 7
taus_1_7)*/;

Figure 5b. MACSYMA-generated file for the elementary object radiosity.
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taus_1 4=taus_1 4 radiosity (jo-1, j-1, £j_1,r 1, taus_1 1, fj 2,
taus_1 2,fj 3,taus_1 3/fj_4/fj 5,taus_1 5/fj 6/taus_1_6|
£j_7/taus_1_7);

£fj_5=fj_ 5 radiosity (joJ, j_1, £fj_1 r 1 taus_1 1, £fj 2,
taus_1 2 /£ j_3,taus_1 3, £fj 4, taus_1_4,taus_1 5,fj _6,taus_1_6,£f]_7
taus_1 7)*/;

taus_1 5=t;aus_1 5 radiosity (jO_1,j 1 £fj 1 r 1 taus_1 1 fj 2,
taus_1 2/ £fj 3, taus_1 3, £fj 4, taus_1 4, £j_5, £j_6, taus_1_6,
£j_7, taus_1_7) ;

fj_6=£f3 6_radiosity (jOo_1, j_1/£fj 1, r 1, taus_1 1, £j_ 2/
taus_1 2, fJ 3, taus_1 3 fj 4, taus_1 4, £j_5, taus_1 5/ taus_1 6, £j_7
taus_1_7) */;

taus_1 6=t;aus_1l 6_radiosit;y (jO_1 j_1 £fj_ 1 r 1 taus_1_1 £fj_2,
taus_1 2, £j 3/taus_1 3/ fj 4, taus_1 4, £j _5/taus_1 5, fj 6,
£j_7, taus_1_7) ;

£j_7=£j_7_radiosity (j0_1,3_1, £~1, r 1, taus_1_1, fj 2,
taus_1 2,fj 3,taus_1 3/fj 4/taus_1 4,fj 5,taus_1 5,fj 6,taus_1_6
taus_1 _7)*/;

taus_1 7=taus_1_ 7_ radiosity (jO_1, j_1 £ ,r_1l taus_1 1, fj 2,
taus_1 2/£fj 3, taus_1 3, £j_4 taus_1 4, fj _5/taus_1 5/ fj 6,
taus_1 _6,£j_7);

Figure Sb. (cont.)
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Eeb 15 17:42 1990 fj 1 radiosity.c Page 1

/*SPANK function file £j_1 radiosity c*/

#include "val.h"
#include <math.h>
#include <stdio.h>
#define 3jO_1 args[0] .dval
#define j_1 args[1l] .dval
#define £j_1 result.dval
#deflne r_1 args [2] .dval
#define taus_1 1 args|[3].dval
#define £fj_2 args [4] .dval
#define taus_1 2 args|[5].dval
#define £j_3 args[6] .dval
#define taus_1 3 args[7] .dval
#define £j_4 args[8] .dval
#define taus_1 4 args[9] .dval
#define £j_5 args [10] .dval
#define taus_1 5 args[1l1].dval
#define fj_6 args [12] .dval
#define taus_1 6 args[13] .dval
#define £j_7 args[1l4].dval
#define taus_1 7 args[15] .dval
VAL
fj_1 radiosity (args)
VAL args [] ;
{ VAL result;

fj 1 = -1.0*pow(taus_1 1l+4r 1/-1.0) *(£fj_7*taus_1 7+fj 6*taus_1 6

+fj S5*taus_1 5+fj 4*taus_1 4+f; 3*taus_1 3+fj 2*taus_1_ 2-
1.0*j_1+30_1);
return (result);

Figure 5¢c. MACSYMA-generated C functions for the elementary object radiosity.
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Feb 15 17:42 1990 3jO_1 radiosity.c Page 1

/*SPANK function file jO_1 radiosity*/

#include "val.h"
#include <math h>
#include <stdio.h>

#define jO_1 result.dval

#define j_1 args[0] .dval
#define £j_1 args [1].dval
#define r_1 args[2] .dval
#define taus 11 args[3].dval
#define fj_2 args[4] .dval
#define taus_1_ 2 args[5].dval
#define £j_3 args [6]. dval
#define taus_1 3 args [7] .dval
#define £j_4 args[8] .dval
#define taus_1 4 args[9] .dval
#define fj_5 T args[10] .dval
#define taus_1 5 args [11] .dval
#define fj_6  args[12].dval
#define taus_1 6 args[13].dval
#define £j_7 args [14] .dval
#define taus_1 7 args [15] .dval
VAL
j0_1 radiosity(args)
VAL args [] ;
s

VAL result;

JO0_1 = -1.0*fj 7*taus_1 7-1.0*fj 6*taus_1 6 1.0*£j_5*taus_1 5

-1.0*£j__ 4*taus 1 4-1. O*£3j 3*taus 1 3 1.0*£])_. 2*taus 1 2—
1.0%£]__ l*taus 1 l 1.0*%£j_ I*r 1+ 1;
return (result);

Figure 5c. (cont.)
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Feb 15 17:42 1990 3j_1 radioslty.c Page 1

/*SPANK function file j_1 radiosity.c*/

#include "val.h"
#include <math.h>
#include <stdio.h>
#define jO_1 args [0] .dval
#define j_1 result.dval
#define f£j_1 args[1] .dval
#define r_1 args [2] .dval
#define taus_1 1 args[3].dval
#define f£j_2 args [4] .dval
#define taus_1 2 args[5] .dval
#define £j_3 args([6] .dval
#define taus_1_3 args[7] .dval
#define f£j_4 args[8] .dval
#define taus_1 4 args[9] .dval
#define £j_5 args[10] .dval
#define taus_1 5 args[11l].dval
#define £fj_6 args [12] .dval
#define taus_1 6 args[13] .dval
#define £j_7 args [14] .dval
#define taus_1 7 args[15] .dval
VAL
j_1 radiosity(args)
VAL args [] ;
<

VAL result;

j 1 — £j _7*taus_1 7+fj 6*taus_1 6+fj S*taus_1 5+f]j 4*taus_ 1 4

+fj_3*taus 1 3+fj 2*taus 1 2+fj 1*taus 1 1+£3 1*r 1+ 30_1;

return (;esult)T

Figure 5c. (cont.)
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Feb 15 17:43 1990 r 1 radiosity.c Page 1

/*SPANK function file r 1 radiosity.c*/

#include "val.h"
#include <math h>
#include <stdio.h>

#define jO_1 args[0] .dval

#define j_1 args [1] .dval
#define f£fj 1 args [2] .dval
#define r 1 result.dval
#define taus_1 1 args[3].dval
#define £fj_2 args[4] .dval
#define taus_1 2 args([5] .dval
#define f£j_3 args [6]. dval
#define taus_1 3 args[7].dval
#define fj_4 args[8] .dval
#define taus 1 4 args[9].dval
#define £j 5 ~ args[10].dval
#define taus_1 5 args[ll] .dval
#define f£fj_6 args [12] .dval
#define taus 1 6 args[13] .dval
#define £j 7  args[l4].dval
#define taus_1 7 args[15] .dval
VAL
r 1 radiosity(args)
VAL args [] ;
{ VAL result;

rl = -1.0* (£j 7*taus 1 7+fj 6*taus 1 6+£fj 5*taus 1 5

~ +fj_4*taus_1 4+fj 3*taus 1 3+fj 2*taus 1 2+fj l*taus 1 1-1.0*
j—1%30_1) /£3_1;
return (result) ;

Figure Sc. (cont.)
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Eeb 15 17:43 1990 taus_1l 1 radiosity.c Page 1

/*SPANK function file taus_1l 1 radiosity.cV

#include "wval.h"
#include <math.h>
#include <stdio.h>
#define JO 1 args[0] .dval
#define g-1 args|[1l].dval
#define fj-1 args [2] .dval
#define r_1 args[3] .dval
#define taus_1 1 result.dval
#define fj—2 args [4] .dval
#define taus_1 2 args[5] .dval
#define fj—3 args|[6] .dval
#define taus_1 3 args|7] .dval
#define -4 args|[8] .dval
#define taus_1 4 args[9] .dval
#define fJ-5 args[10] .dval
#define taus_1 5 args[ll].dval
#define fJj_¢ args[12].dval
#define taus_1 6 args[13] .dval
#define fj-7 args[14] .dval
#define taus_1 7 args([15] .dval
VAL
taus_1 1 radiosity(args)
VAL args [] ;
¢ VAL result;
taus 1 1 = -1.0* (£j 7*taus 1 7+ fj 6*taus 1 6+fj 5*taus 1 5

+£3j_4*taus_1 4+4fj 3*taus_1 3+fj 2*taus_1 2+fj_ 1*r 1-1.0%
j_1%30_1)/f51;
return (result) ;

Figure 5c. (cont.)
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/*SPANK simulation file for lighting problem*/

/*SPANK file m_ed light7_3.ps*/

/*Short wave are indicated by sw, long wave by lw*/

/*The problem is the following: we have a ceiling and a floor,
*both insulated, with a plenum with lamps in it below the ceiling,
*A translucent lens allows air flow between room and plenum¥*/

/*We have 5 nodes for radiative heat transfer:node 1 is ceiling,

*2 is lamp,3 is top of lens, 4 is bottom of lens and 5 is floor*/

/*Node 6 is plenum air and node 7 is room air*/

/*Same as ed light5, except that air nodes are put into the node
*list*/

/*Units are Btu,hrs,l1lb,ft,kelvin (for tk's) and fahrenheit
* (anywhere else) */

/*Includes mass flow*/

/¢Difference with m_ed light7_2 is that there is no hplenum.

/#Outside temperature t 0 is an unknown, room temperature t 7 is an input*/

/#MAIN SIMULATION FOR STEADY STATE SIMULATION*/ -

declare radiosity macro s,l; /*Short wave and Long wave simulation*/
declare ax_jnacro fis,£31; /*FJ vectors, F shape factor, J radi
declare net_radiation_jnacro fjgrs,£fjqgrl; /*Net radiation in each band
declare heat_balance_ macro h; /*Heat balance on each node*/
declare blackbody ebl,eb2,eb3,eb4,eb5,eb6,eb7;

declare degkdegf kfl kf2 ,kf3 ,kf4,kf5 ,kf6,kf7;

declare sum qgrl, gr2, qr3, qr4, qr5, qré6, qr7;

declare irprod np;

declare msumé6 ucl,uc2,uc3,uc4,uc5,uc6,uc7;

declare heat_add hroom,conv76;

declare prod rr;

declare heat_add wroom,wplenum;

declare hdbw hr,hp,hs;

/#Mass flow and specific heat of air*/
input m(np.ini,hroom.m, wroom.m,wplenum.m,conv76 .m)
input cp (mp.in2)

input rs_1l(s.r_1)
input rs_2(s.r_2)
input rs_3(s.r_3)
input rs_4(s.r_4)
input rs_5(s.r_5)
input rs_6(s.r_6)
input rs_7(s.r_7)

input rl 1(1.r_1)
input rl 2(1.r_2)
input rl 3(1.r_3)
input rl 4(1l.r_4)
input rl 5(1.r_5)
input rl 6(1.r_6)
input rl 7(1.x_7)

/¢Short wave transmittances*/
input taus_1l(fjgrs.tau_l)
input taus_2(fjgrs.tau_2)

Figure 6. Problem specification file for steady-state problem, case (1): fixed room air
temperature. The network that describes the problem is formed by linking
together macro objects that represent system component models and by
assigning input quantities.
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input taus_3(fjgrs.tau_3)
input taus_4(fjgrs.tau_4)
input taus_5 (fjgrs.tau_5)
input taus_6(fjgrs.tau_6)
input taus_7(fjqrs.tau_7)

/*Long wave transmittances¥*/
input taul_1(fjgrl.tau_l)
input taul_ 2 (fjgrl.tau_2)
input taul_ 3 (fjgrl.tau_3)
input taul_4(fjgrl.tau_4)
input taul_ 5 (fjgrl.tau_5)
input taul_ 6(fjgrl.tau”6)
input taul_7(fjgrl.tau_7)

/*Areas*/

input a 1(fjgrs.a_1, fjqrl.a 1)
input a 2(fjgrs.a_2,fjgrl.a_2)
input a 3(fjgrs.a_3,fjgrl.a_3)
input a _4(fjgrs.a_4,fjgrl.a_4)
input a 5(fjgrs.a_5,fjgrl.a_5)
input a_6 (fjgrs.a_6, fjgrl .a_6)
input a_7 (fjgrs.a_7, £fjgrl.a_7)

/*Shape factors*/

input f 1 1(fjs.£_ 1 _1,£31.£ 1 1)
input f 1 2(fjs.£ 1 2,£31.£ 1 2)
input f 1 3(fjs.£ 1 _3,£31.£ 1 3)
input f 1 4(fjs.£ 1 4,£31.£ 1 4)
input f 1 5(fjs.£_1 5,£31.£ 1 5)
input f 1 6(fjs.£_1 6,£f31.£f 1 6)
input £f 1 7(fjs. £ 1_7,£31.£ 1 7)
input f 2 1(fjs. £ 2 1,£31.£ 2 1)
input f 2 2(fjs. f 2" _2,£31.£f 2 2)
input f 2 3(f]s. f 2 _3,f31.£ 2 3)
input f 2 4(fjs. f_2_4 £31.£ 2 4)
input f 2 5(fjs.£ 2 5,£j1.£f 2 5)
input f 2 6(fjs. f 2 6,£5J1.£f 2 6)
input f 2_7(fjs. f 2" _7,£31.£ 2 7)
input f 3 1(fjs.£ 3 _1.£31.£ 3 1)
input f 3 2(fjs. f 3 2,fj1.£ 3 2
input f 3 3(fjs. f_3_3 £j1.£ 3 3)
input f 3 4(fjs.£ 3 4,£f31.£f 3 4)
input f 3 5(fjs.£ 3 5,fj1.£f 3 5)
input f 3 6(fjs.£ 3 6,fj1.£f 3 6)
input f 3 7(fjs.£ 3 7,£31.£ 3 7)
input f 4 1(fjs.£_4 1,£31.£ 4 1)
input f 4 2(fjs.£_4 2,£f31.£ 4 2)
input f 4 3(fjs.£_4 3,£31.£f 4 3)
input f 4 4(fjs.£_4_4,£31.£ 4 4)
input f 4 5(fjs.£_4 5,£f31.£f _4_5)
input f 4 6(fjs.£_4_6,£f31.f 4 6)
input f 4 7(fjs.£_4_7,£31.£ 4_7)

Figure 6. (cont.)
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input £ 5 1(fjs.£ 5 1,£j1.£ 5 1)
input £ 5 2(fjs.f 5 2,fj1.£f5 2)
input £ 5 3(fjs.f5 3,£fj1.£ 5 3
input £5 4(€js.£ 5 4.£j1.£ 5°4)
input £ 5 5(fjs.f 5 5,£31.£5 5)
input £ 5 6(fjs.£5 6,£j1.£ 5 6)
input £ 5 7(fjs.f 5 7,£51.£ 5 7
input f 6 1(fjs.£_6_1,£f31.£f 6_1)
input f 6 2(fjs.£_6_2,fjl.f 6_2)
input f 6 3(fjs.£_6_3,fj1.£f 6_3)
input f 6 4(fjs. £_6_4 £j1. £ 6_4)
input f 6 5(fjs.£_6_5,£fj1.£f 6_5)
input f 6 6(fjs.£_6_6,fjl.£f 6_6)
input f 6 _7(fjs.£_6_7,£f31.£f 6_7)
input £f 7 1(fjs.£_7_1,£31.£ 7_1)
input £f 7 2(fjs.£_7_2,£351.£ 7_2)
input £f 7 3(fjs.£_7_3,£31.£ 7_3)
input £f 7 4(fjs.£_7_4,£31.£ 7_4)
input £f 7 5(fjs.£_7_5,£31.£ 7_5)
input £ 7 6 (fjs. £_7_6, £j1. £ 7_6)
input £ 7 7(fis.£_7_7,£31.£ 7_7)

/*Generalized conductance convectance matrix*/
link uc_1l 1l(h.uc_1 1,ucl.msum)

input uc_1l 2(h.uc_1 2,ucl.xl)

input uc_1 3(h.uc_1_3,ucl.x2)

input uc_1l 4(h.uc_1_ 4,ucl.x3)

input uc_1l 5 (h.uc_1_5 ucl x4)

input wuc_1 6(h.uc_1_6,ucl.x5)

input uc_1 7 (h.uc_1_7,ucl.x6)

input uc 2 1l(h.uc_2 1,uc2.x1)
link uc_2 2(h.uc_2 2,uc2.msum)
input uc_2 3 (h.uc_2 3 uc2 x2)
input uc_2 4(h.uc_2 4,uc2.x3)
input uc_2 5(h.uc_2 5,uc2.x4)
input uc_2 6(h.uc_2 6,uc2.x5)
input uc_2 7(h.uc_2_ 7,uc2.x6)

input uc_3 1l (h.uc_3_ 1,uc3.xl)
input uc_3 2(h.uc_3_ 2,uc3.x2)
link uc_3 3 (h.uc_3_3,uc3.msum)
input uc_3 4 (h.uc_3_4,uc3.x3)
input uc_3 5(h.uc_3_5,uc3.x4)
input uc_3_ 6(h.uc_3_6,uc3.x5)
input uc_3_ 7 (h.uc_3_7,uc3.x6)

input uc_4 l(h.uc_4_1,uc4.x1)
input uc_4 2(h.uc_4_2,uc4.x2)
input uc_4 3 (h.uc_4_3,uc4.x3)
link uc_4 4 (h.uc_4_4,uc4 . msum)
input uc_4 5(h.uc_4_5,uc4.x4)
input uc_4 6(h.uc_4_6,uc4.x5)

Figure 6. (cont.)
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uc_4_7 (h.uc_4_7,uc4 x6)

uc_5 1l (h.uc_5_ 1,uc5 x1)
uc_5 2 (h.uc_5_ 2,uch x2)
uc_5 3 (h.uc_5_3,uc5 x3)
uc_5_4 (h.uc_5_4,uc5 x4)
uc__ (h.uc_5_ 5 uc5 msum)
uc_ (h.uc_5_6,uc5 x5)

55
5 "6
c_ 5 7 (h.uc_5_7,uc5 x6)

ﬂ

uc_6_1 (huc_6_1,ucé
uc_6_2 (h.uc_6_2,ucé
uc_6_3 (h.uc_6_3,ucé
uc_6_4 (h.uc_6_4,ucé.
uc_6_5 (h.uc__ 6 5,ucé6.
uc_6_6 (h uc 6 6chmsum)
uc_6__ 7

.x1)
. X2)
.x3)
x4)
x5)

uc_7_1 (h.uc_7_1,uc?
uc_7_2(h.uc_7_2.uc?
uc_7_3 (h.uc_7_3,uc?
uc_7_4 (h.uc_7_4 uc’
uc_7_5 (h.uc_7_5,uc7 x5)

uc_7_6 (h.uc_7_6,uc7 x6)

uc_7_7 (h.uc_7_7,uc7 msum)

.x1)
.x2)
. x3)
.x4)

/*Special short wave transmittance
tauss_1 1 (s . taus_1_1, fjgrs.
tauss_1 2 (s . taus_1 2 fjgrs.
tauss_1 3 (s.taus_1 3, fjqgrs.
tauss_1 4 (s.taus_1_ 4 fjgrs.
tauss_1 5 (s.taus_1 5/ fjqrs.
tauss_1 6 (s.taus_1 6, fjgrs.
tauss_1 7 (s.taus_1 7, fjqgrs.
tauss_2 1 (s taus_2 1, fjgrs.
tauss_2 2 (s.taus_2 2 fjgrs.
tauss_2 3 (s taus_2 3, fjgrs.
tauss_2 4 (s taus_2 4, fjqgrs.
tauss 2 5 (s.taus 2 5, fjgrs.
tauss_2 6 (s.taus_2 6,6 fjqgrs.
tauss_2 7 (s . taus_2 7/ fjqgrs.
tauss_3 1 (s .taus_3 1 fjgrs.
tauss 3 2 (s.taus_3 2 fjgrs.
tauss_3 3 (s taus_3 3, fjqgrs.
tauss_3 4 (s.taus_3 4, fjqgrs.
tauss 3 5 (s. taus_3 5/ fjqrs.
tauss__ 3 6 (s.taus_3 6, fjqgrs.
tauss__ 3 7 (s taus_3_ 7, fjqgrs.
tauss_4_ 1 (s.taus_4_1, fjgrs.
tauss_4_ 2 (s.taus_4_ 2 fjgrs.
tauss_4_3 (s.taus_4_3 fjgrs.
tauss_4_ 4 (s.taus_4_ 4, fjgrs.
tauss_4_5 (s taus_4_5, fjgrs.

input

( _6_
(h.uc_6_7 mp mproduct, ucé6  x6)

matrix*/
taus_1 1)
taus_1 2)
taus_1 3)
taus_1 4)
taus_1 5)
taus_1_6)
taus_1_7)

taus_2 1)
taus_2 2)
taus_2 3)
taus_2 4)
taus_2 5)
taus_2_ 6)
taus_2 7)

taus_3 1)
taus_3 2)
taus_3 3)
taus_3 4)
taus_3 5)
taus_3_6)
taus_3 7)

taus_4 1)
taus_4_2)
taus_4_3)
taus_4_4)
taus_4_5)

Figure 6. (cont.)
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input tauss_4_ 6 (s taus_4_ 6, fjgrs taus_4_6)
input tauss_4_ 7 (s taus_4_7 fjgrs taus_4_7)

input tauss_5 1 (s . taus_5_1 fjgrs taus_5 1)
input tauss_5 2 (s . taus_5_2 fjgrs taus_5_2)
input tauss_5 3 (s . taus_5_3 fjgrs taus_5_ 3)
input tauss_5 4 (s.taus_5_4,fjgrs.taus_5_4)
input tauss_5 5 (s . taus_5_5/ fjgrs . taus_5_5)
input tauss_5_6 (s taus_5_6, fjgrs taus_5_6)
input tauss_5 7 (s taus_5_7 fjgrs taus_5 7)

input tauss_6_1 (s . taus_6_1 fjgrs taus_6_1)
input tauss_6_2 (s taus_6_2 fjgrs taus_6_2)
input tauss 6 3 (s.taus_6_3, fjgrs. taus_6_3)
input tauss__ 6 4 (s.taus_6_4/ fjgrs. taus_6_4)
input tauss__ 6 5 (s taus_6_5 fjgrs . taus_6_5)
input tauss__ 6 6 (s . taus_6_6, fjgrs . taus_6_6)
input tauss 6 7 (s . taus_6_7, fjgrs taus_6_7)
input tauss_7_1 (s taus_7_1 fjgrs taus_7_1)
input tauss_7_ 2 (s.taus_7_2 fjgrs . taus_7_2)
input tauss 7_ 3 (s.taus_ 7 3, fjgrs  taus_7_3)
input tauss 7 4 (s. taus 7 _4, fjgrs taus_7_4)
input tauss_ "7 5 (s . taus_ "7 _5 fjgrs  taus_7_5)
input tauss_7 "6 (s. taus__ 7 _6, fjgrs  taus_7_6)
input tauss_7_7 (s.taus_ 7 7 fjgrs taus_7_7)

/*Special long wave transmittance matrix*/

input tausl_1 1(l.taus_1 1,fjgrl.taus_1 1)
input tausl_1 2 (1. taus_1_ 2, fjgrl taus_1 2)
input tausl_1 3 (1. taus 1 3, fjarl taus 1 3)
input tausl_1 4 (1. taus 1 4]/ fjgrl taus__ 1 _4)
input tausl__ 1 5 (1. taus_l_5/ fjgrl. taus_l_5)
input tausl__ l 6 (1. taus_1_ 6, fjqrl .taus_1_6)
input tausl_l_7 (1. taus_1_ 7, £jgrl taus_1 7)
input tausl 2 1 (1. taus_2 1/ fjgrl taus_2 1)
input tausl_. 2 2 (1. taus_2 2, fjgrl taus_2 2)
input tausl 2 3 (1. taus_2 3, £jgrl taus_2 3)
input tausl 2 4 (1. taus_2 4, £jgrl taus_2 4)
input tausl_. 2 5 (1. taus_2 5, £jgrl taus_2 5)
input tausl_. 2 "6 (1. taus_2 6, £jgrl taus_2 6)
input tausl 2 7 (1. taus_2 7/ £jqrl .taus_2 7)
input tausl 3 1 (1. taus_3_ 1/ £jgrl taus_3 1)
input tausl_3 2 (1. taus_3_ 2, fjgrl taus_3_2)
input tausl 3 3 (1. taus_3 3, f£jgrl taus_3_3)
input tausl 3 4 (1. taus_3 4, £jgrl taus_3_4)
input tausl__ 3 5 (L. taus_3 5, £jgrl taus_3 5)
input tausl__ 3 6 (1. taus_3_ 6 fjgrl taus_3_6)
input taus1 3 7 (1. taus_3_ 7. £jgqrl taus_3_7)

input tausl_4 1 (1. taus_4_1, £jgrl taus_4 1)
input tausl 4 2 (1 taus_ 4_2 fijgrl taus_4_ 2
input tausl_4_3 (1. taus_4_3, £jgrl taus_4_ 3)

Figure 6. (cont.)
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input
input
input
input

input
input
input
input
input
input
input

input
input
input
input
input
input
input

input
input
input
input
input
input
input

/*Short
link
link
link
link
link
link
link

tausl_4_ 4(l.taus_4_4 fjgrl.
tausl 4 5 (1.taus_4_5/fjqgrl.
tausl_4 6(l.taus_4_6, fjgrl.
tausl_4 7(l.taus_4_7 fjgrl.

tausl 5 1(l.taus_5_1, fjgrl.
tausl_5 2(l.taus_5 2,fjgrl.
tausl 5 3(l.taus_5_ 3,fjgrl.
tausl_5_4 (1. taus_5_4, £jgrl
tausl 5 5(l1.taus_5_ 5/fjqrl.
tausl_5 6(l.taus_5_6,fjgrl.
tausl 5 7(l.taus_5_7,fjgrl.

tausl_6 _1(l.taus_6_1,fjqgrl.
tausl_6 2(l.taus_6_2,fjgrl.
tausl_6_3(1,taus_6_3/fjqrl.
tausl_6_4(l.taus_6_4,fjgrl.
tausl_6_5(l.taus_6_5 fjgrl.
tausl _6_6(l.taus_6_6,fjgrl.
tausl_6_7(l.taus_6_7,fjqgrl.

tausl_7_1(l.taus_7_1, fjgrl.
tausl_7_2(l.taus_7_2,fjgrl.
tausl_7_ 3 (1. taus_7_3 fjgrl
tausl_7_4 (1. taus_7_4, £jgrl
tausl_7_5(l.taus_7_5,fjqgrl.
tausl_7_6(l.taus_7_6,fjgrl.
tausl_7_7(l.taus_7_7, £jgrl.

wave irradiation*/

fijs_1(s.£fj_1,fjqgrs.
fijs_2(s.£fj_2,fjgrs.
fis_3(s.£fj_3,fjgrs.
fis_4(s.fj_4,fjqgrs.
fjs 5(s.fj_5/fjqgrs.
fis_6(s.£fj_6,fjgrs.
£fis_7(s.£3j_7,fjqrs.£35_7, £is.£3_7)

/*Long wave irradiation*/

link
link
link
link
link
link
link

£31 1(1.£j_1,fjqgrl.£j 1,£31.£5 1)
£31_2 (1. £5_2/fjqrl £j_2, £51 £j_2)
£31.
£51.
£51.
£51.
£51.

£51 3 (L.
£31_4 (1.
£31 5 (1.
£31_6 (1.
£51_7 (1.

£3_3,
£3_4,
£3_5,
£3_6,
£3_7,

figrl.
fjgrl.
fijgrl.
fjgrl.
figrl

£5_1, £3s.£5_1)
£5_2, £3s.£5_2)
£j_3,fjs.£j_3) [£3s3]
£5 4, £3s.£5_4)
£5_5, £5s.£3_5)
£F£-5=s.£fj_6)[£js6]

£5_3,
£5_4,
£3_5,
£j_e6,
£3_7,

/*Temperatures in fahrenheits*/

link
link
link
link
link
link

t 1 (k£1 £,h.t 1) [T]
t 2 (kf2. £ h t_2) [T]
t_3 (kf3. £,h.t_3) [T]
t_4 (kf4. £,h. t_4) [T]
t 5 (k£5. £,h.t_5) [T]
t 6 (kf6.f,h.t 6 hp db) [T]

taus_4_4)
taus_4_5)
taus_4_6)
taus_4_7)

taus_5_1)
taus_5_2)
taus_5_3)
taus_5_4)
taus_5_5)
taus_5_6)
taus_5_7)

taus_6_1)
taus_6_2)
taus_6_3)
taus_6_4)
taus_6_5)
taus_6_6)
taus_6_7)

taus_7_1)
taus_7_2)
taus_7_3)
taus_7_4)
taus_7_5)
taus_7_6)
taus_7_7)

[£jsl1]
[£3s2]

[£3s4]
[£3s5]

[£3s7]

[£511]
[£312]
fj_3) [£513]
fj_4) [£514]
£j_5) [£315]
fj_6) [£5'6]
£3_7) [£317]

Figure 6. (cont.)

33



Mar 12 18:09 1990 m _ed light7_3.ps.new Page 7

input

t 7 (kf7. £ h. t_7 hr db)

/*Temperatures in kelvins*/
tk_1 (kfl.k ebl t)
tk_2 (kf2 .k, eb2 . t)
tk_3 (kf3 .k, eb3. t)
tk_4(kf4.k,eb4d.t)
tk_5(kf5.k,eb5.t)
tk_6 (k£6.k,eb6.t)
tk_7(k£f7.k/eb7.t)

link
link
link
link
link
link
link

/*Net short wave radiant heat

link
link
link
link
link
link
link

gqr_s_1 (fjgrs.
qr_s_2 (fjgrs.
gqr_s_3 (fjgrs.
gr_s_4(fjgrs.
gqr_s_5 (fjgrs.
gqr_s_6 (fjgrs.
gqr_s_7 (fjgrs

gr®, grl.
qr_2,gr2.
gr_3, qr3.
gr_4,9r4.
gr_5/qr5.
gr_6,9r6 .

.qr_7/qr7.

[T]

transfer*/

ini h.qr_s 1)
inl/h.qr_s_2)
ini h.gr_s 3)
ini h.gqr_s 4)
ini/h.qgr_s_5)
ini h.gr_s_6)
inl/h.c[r_s_7)

/*Net long wave radiant heat transfer*/

link
link
link
link
link
link
link

gr 1 1 (fjgrl
gr 1 2 (fjqgrl
gqr_1 3 (fjgrl.

qr_1 4 (fjqrl .
qn_L1_.

gr 1 6 (fjgrl
gr (f£jgrl .

/*Source power input

input q0_1(h.g0_1)

input g0 _2(h.g0_2,rr.ini)

input q0_3(h.gq0_3)

input q0_4 (h.q0_4)

input q0_5(h.g0_5)

input g0_6(h.g0_6) [g06]

link q0_7 (h.g0_7yhroom.q) [q07]
/*Total net radiant heat transfer on each node*/
link gqr_1 (grl sum)

link gr_2 (gr2.sum)

link gr_3 (gr3. sum)

link gqr_4 (gr4 sum)

link gr_5 (gr5 sum)

link gr_6 (qr6 . sum)

link gr_7 (gr7 .sum)

/*Short wave radiosity source vector = 0 except for lamp
input jOs_1(s.j0_1)

input jOs_2(s.j0_2)

input jOs_3(s.j0_3)

input jOs_4(s.j0_4)

input jO0s_5 (s.j0_5)

input jOs_6 (s.j0_6)

input jO0s_7 (s.30_7)

qr_1, grl.
gr_2,9r2 .
qr_3/gr3.
qr_4/qr4.

gr_6,9r6 .

4

n 5 (f£jgrl gr_5, gr5.
6
7

gr_7/gr7

in2 h.cjr_1 1)
in2 /h.gqr_1 2)
in2 ,h.gqr_1 3)
in2,h.qr 1 4)
in2 h.qr_1_5)
in2 /h.qr_1_6)

in2 h.gr_1 7)

= 0 except on lamp*/

Figure 6. (cont.)
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/*Long wave radiosity source vector — blackbody emission*/
link jO1_1(1.30_1,ebl.eb)

link jol_2(1.j0_2,eb2.eb)
link jOl_3(1.j0_3,eb3.eb)
link jOl_4(1.j0_4,eb4.eb)
link jO01l_5(1.30_5/eb5.eb)
link jOl_6(1.j0_6,eb6.eb) [eb]
link joO1l_7(1.30_7,eb7.eb) [eb]

/*Stefan Boltzmann constant*/
input sigma (ebl.sigma,eb2.sigma,eb3.sigma,eb4.sigma,eb5.sigma,eb6.sigma, eb

/*Short wave radiosities*/

link Js_1(s.j_1,fj3s.j_1,£fjgrs.j_1)

link Js_2(s.j_2,£fjs.j_2,£fjgrs.j_2)

link Js_3(s.j_3,£fj3s.j_3,£fjgrs j_3)

link Js_4(s.j_4,fjs.j_4,£fjgrs.j_4)

link Js_5(s.j3_5,£f3s.j_5,fjgrs.j_5)

link js_6(s.j_6,f)s.j_6,£fjgrs.]j_6)

link Js_7(s.3_7,£f3s.3_7,£fjgrs.j_7)
/*Long wave radiosities*/

link j1_1(1.3_1,£31.3_1,fjqgrl.j_1) [jll]
link Jl1_2(1.3_2,£f31.3_2,£39rl.j_2) [jl2]
link jl1 _3(1.3_3, £31. j_3, £iqgrl. j_3) [3jl3]

link 31 4 (1.3 4, £51.j_4, £qrl j_4) [jl4]
link 31 5 (1.3 5, £31.j_5, £jgrl j_5) [jl5]
link 31_6 (1. j_6, £31.j_6, £jqrl j_6) [JL6]
link j1 7 (1.3 7, £31. 5_7, £3qrl. 5_7) [§17]

/¢Enthalpies. The strange "outs" and "ins" are due to the fact that q0_6
*and g0_7 are source power inputs to the nodes, and thus are calculated
*the opposite way as is usually done in heat_add object.*/

/¢Thus g0_7=m(h_O0-h_7)*/

link h 0 (hs .h, hroom h_out)

link h_6 (hp .h, conv76 .h_out)

link h:7 (hr h hroomh_in, conv76 h_in)
link q76 (conv76.q,rr.product)
link r(rr.in2)

/¢Supply temperature*/
link t 0 (hs.db)

/¢Humidities*/

input w_0 (hs w,wroomh_in)

link w_6 (hp.w,wplenum.h _out)

link w_7 (hr .w, wroom.h_out, wplenum.h in)

/#Humidity source*/
input wroom_added (wroom.q)
input wplenum_ added(wplenum.q)

Figure 6. (cont.)
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Figure 7. SPANK steady-state simulation results for case (1), room air temperature
fixed at 75F (left-hand graphs), and case (2), supply air temperature fixed
at 70F (right-hand graphs), as a function of air flow rate.
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/*SPANK simulation file for 1lighting problem*/

/*SPANK file dyn m ed light7_2 .ps*/

/*Short wave are indicated by sw, long wave by lw*/

/*The problem is the following: we have a ceiling and a floor,
*both insulated, with a plenum with lamps in it below the ceiling,
*A translucent lens allows air flow between room and plenum¥*/

/*We have 5 nodes for radiative heat transfer node 1 is ceiling,

*2 is lamp, 3 is top of lens, 4 is bottom of lens and 5 is floor*/

/*Node 6 is plenum air and node 7 is room air*/

/*Same as ed_light5, except that air nodes are put into the node
*list*/

/*Units are Btu,hrs,lb,ft,kelvin (for tk's) and fahrenheit
* (anywhere else)*/

/*Includes mass flow*/

/*Difference with m_ed light7 is that it is DYNAMIC*/

/'Difference with dyn m ed light7 is that the room
‘temperature is input and the
‘outside air temperature is calculated,

‘unlike in dyn m ed light7 where it is the

‘contrary*/
declare radiosity macro s,l; / ‘Short wave and Long wave simulation*/
declare ax_macro fijs,£31; /*EJ vectors, E shape factor, J radi
declare net_radiation_macro fjgrs,£jqgrl; /‘Net radiation in each band
declare dyn_energy_balance macro h; /‘Heat balance on each node*
declare blackbody ebl ,eb2,eb3,eb4,eb5,eb6,eb7;
declare degkdegf kfl kf2,kf3,kf4 kf5,kf6,kf7;
declare sum qgrl, gr2,qr3, qr4, qr5, qré, qr7;
declare heat_add q_6_7,
declare sum q2_6_7;
declare mprod mp;
declare msumé6 ucl,uc2,uc3,uc4d,uc5,uc6,uc7;
declare heat_add hroom;
declare heat_add wroom, wplenum;
declare hdbw hr hp hs;

/‘Time step*/
=>input dt (h.dt) [TIME]

/ ‘Heat capacitances*/
input m_ 1 (hm_1)
input m_2 (h.m_2)
input m_ 3 (hm_3)
input m_4 (
input m 5(h.m_5)
input m_6 (

/‘Mass flow and specific heat of air*/
input m (mp. ini,hroom.m, wroom.m, wplenum.m, q_6_7 .m)
input cp (mp.in2)

/ ‘Reflectances*/
input rs_1l(s.r_1)
input rs_2(s.r_2)

Figure 8. Problem specification file for dynamic problem, case (1): fixed room air tem-
perature. The network that describes the problem is formed by linking
together macro objects that represent system component models and by
assigning input quantities. Arrows indicate input lines that are different

from the steady-state case, Fig. 6.
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input
input
input
input
input

input
input
input
input
input
input
input

dyn m ed light7_2.ps.new Page 2

rs_3(s.r_3)
rs_4(s.r_4)
rs_5(s.r_5)
rs_6(s.r_6)
rs_7(s.x_7)

rl 1(1.r 1)
rl 2(l.r_2)
rl 3(1l.r_3)
rl 4(l.r_4)
rl 5(1.r_5)
rl 6(1.r_6)
rl 7(1.xr_7)

/*Short wave transmittances*/
taus_1(fjgrs.tau_l)
taus_2 (fjgrs.tau_2)
taus_3 (fjgrs.tau_3)

taus_4(fjgrs.tau_4)

taus_5(fjgrs.tau_5)
taus_6(fjgrs.tau_6)
taus_7(£fjgrs.tau_7)

input
input
input
input
input
input
input

/*Long wave transmittances*/
taul_1(fjgrl.tau_1)
taul_ 2 (fjgrl.tau_2)
taul_3 (fjgrl.tau_3)
taul_4 (fjgrl.tau_4)
taul_5(fjgrl.tau_5)
taul_6(fjgrl.tau_6)
taul_7 (f£fjgrl.tau_7)

input

input

input

input

input

input

input

/*Areas*/

input a 1(fjgrs

input a 2(fjgrs

input a_ 3(fjgrs

input a_4(fjgrs

input a_ 5(fjgrs

input a_6(fjgrs

input a_7(fjgrs

/*Shape factors*/
input £ 1 1(£fjs
input £f 1 2(fjs
input £ 1 3 (fjs
input £f 1 4(fjs
input £f 1 5(fjs
input £ 1 6(fjs
input £ 1 7(£fjs
input £f 2 1(fjs
input £f 2 2(fjs
input f 2 3(f)s
input f 2 4(fjs
input f 2 5(fjs
input f 2 6(fjs

a 1,fjgrl.a 1)
a 2/fjqgrl.a_2)
a_3, £jgrl a_3)
a_4, £jgrl a_4)
a 5, £jgrl a_5)
a_6, £fjgrl. a_6)
a_7, fijqrl .a_7)

£1 1. £51.£ 1 1)
£ 1 2 fjl-£ 1 2)

173, £51. £ 1_3)
£ 1 4, £j1. £ 1_4)
f—1—5, £51.£_1_5)
£1 6, £§1-£_1_6)
£=1—7, £j1. £ 1_7)

£ 2 1 £f31£ 2 1)

£ 2 2 fjl. £2 2)
£ 2 3, £fj1. £ 2 3)
£ 2 4,£fj1. £ 2 4)
£ 2 5 £31. £ 2 5)
£ 2 6 £3j1. £ 2_6)

Figure 8. (cont.)
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input £ 2 7 (fjs.£.2 7, £51. £ 2 7)

input £ 3 1 (fjs. £ 3_1, £fj1. £ 3 1)
input £ 3 2 (fjs. £ 3 2 £j1. £ 3 _2)
input £ 3 3 (fjs. £ _3_3, £j1. £ 3_3)
input £ 3 4 (fjs. £ 3 4, £j1. £ _3_4)
input £ 3 5 (fjs'£_3_5 £j1. £ 3_5)
input £ 3 6 (fjs. £ _3_6 £j1. £ 3_6)
input £ 3 7 (£js.£_3_7.£j1. £ 3_7)

input f 4 1(fjs. £ 4 1 .£j1. £ 4 1)
input £ 4 _2(fjs. f 4 _2,f31.£ 4
input £f 4 3(fjs. f 4 3 £j1.£f 4
(£is. f_4_4f]1 £ 4 4)

input £f 4 2 4
input f 45 (fjs £ 4 5f£fjl. £ 4 5)
input f 4 6 (fjs. £ 4 6.£j1. £ 4_6)

input £ 4_7 (fjs. £_4_7fjl. £ 4_7)

input £f 51 (fjs. £ 5 1f£fjl. £ 5 1)
input £f 52 (fjs. £ 5 2 .£j1. £ 5 2
input f£f 53 (fjs £ 5 3fjl. £ 5 3
input £f 54 (fjs. £ 5 _4f£fjl. £ 5 4
input f 5 5(fjs. £ 5 5.£j1. £ 5 5)
input f 5 6 (fjs. £ 5 6.£fjl. £ 5 6)
input £f 5 7 (fjs. £ 5 7 .£j1. £ 5_7)

input f 61 (fjs £ 6_1f£fjl. £ 6_1)

input f 6 2 (fjs £ 6_2 fjl. £ 6_2)
input f 6 3 (fjs. £ _6_3fjl. £ 6_3)

input f 6 4 (fjs. £ _6_4fjl. £ 6_4)

input f 65 (fjs £ 6_5£fjl. £ 6 5)
input f 6 6 (fjs. £ 6_6£fj1. £ 6_6)
input f 6 7 (fjs. £ _6_7,£j1. £ 6_7)
input £f 71 (fjs £ 7_1£j1. £ 7_1)
input £f 7 2(fjs.£_ 7 2 £31. £ 7_2)
input £ 7 3 (fjs. £_ 7 3 £j1. £ 7 3

input £ 7 (£is. f_7_4 £j1. £ 7 4

input £ 7 7

(£js . £ _7_6.£j1. £

4
5 (£js. £_7_5 £j1.f
6

7 (fjs. £_7_7. £j1. £

input £ '7—
input f_7

/*Generalized conductance convectance matrix*/
link uc_1l 1 (huc_1_ 1 ucl msum)

input uc_1l 2(h.uc_1 2,ucl xl)

input wuc_1 3(h.uc_1_ 3,ucl.x?)

input uc_1 4(h.uc_1 4.ucl.x3)

input uc_1l 5 (huc_1_ 5 ucl x4)

input uc__ 1 6 (h uc_ l 6, ucl x5)

input uc__ 1 _7 (h.uc_ l 7,ucl .x6)

input uc_2 1l (h.uc_2 1,uc2.xl)
link uc_: . 2 2 (h.uc__ 2 _ 2. uc2 .msum)
input uc__. T2 3 (h.uc__ 2 3 uc2  x2)
input uc__. 2 4 (h.uc__ 2 4 uc2.x3)
input uc__. " 2 5 (h.uc__ "2 5 uc2.x4)

Figure 8. (cont.)
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input uc_2 6(h.uc_2 6,uc2.x5)
input uc_2 7 (h.uc_2 7,uc2.x6)
input uc_3_ 1 (h.uc_3_1,uc3.xl1)
input uc_3 2 (h.uc_3_ 2,uc3.x2)
link uc_3_ 3 (h.uc_3_3,uc3.msum)
input uc_3_ 4 (h.uc_3_4,uc3.x3)
input wuc_3_ 5(h.uc_3_5,uc3.x4)
input uc_3_ 6 (h.uc_3_6,uc3.x5)
input uc_3_ 7 (h.uc_3_7,uc3.x6)
input uc_4 1l (h.uc_4_1,uc4.x1)
input uc_4_ 2 (h.uc_4_2,uc4.x2)
input uc_4_ 3 (h.uc_4_3,uc4.x3)
link uc_4_ 4 (huc_4_4 uc4 msum)
input uc_4 5(h.uc_4_5,uc4.x4)
input uc_4_6 (h.uc_4_6,uc4.x5)
input uc_4_7 (h.uc_4_7,uc4.x6)
input uc_5 1 (h.uc_5_1,uc5.x1)
input uc_5 2(h.uc_5_2,uc5.x2)
input uc_5 3 (h.uc_5_3,uc5.x3)
input uc_5 4 (h.uc_5_4,uc5.x4)
link uc_5 5 (h.uc_5_5 uc5 msum)
input uc_5_ 6 (h.uc_5_6,uc5.x5)
input uc_5_ 7 (h.uc_5_7,uc5.x6)
input uc_6_1l(h.uc_6_1,uc6.x1)
input uc_6_2(h.uc_6_2,uc6.x2)
input uc_6_3(h.uc_6_3,uc6.x3)
input uc_6_4 (h.uc_6_4,ucé6.x4)
input uc_6_5(h.uc_6_5,uc6.x5)
link uc_6_6 (h.uc_6_6 uc6 msum)
link uc_6_7 (h.uc_6_7 mp.mproduct,ucé6.x6)
input uc_7_1l(h.uc_7_1,uc7.x1)
input uc_7_2 (h.uc_7_2,uc7.x2)
input uc_7_3 (h.uc_7_3,uc7.x3)
input uc_7_4 (h.uc_7_4,uc7.x4)
input uc_7_5(h.uc_7_5,uc7.x5)
input uc_7_6(h.uc_7_6,uc7.x6)
link uc_7_7 (h.uc_7_7,uc7.msum)

/*Special short wave transmittance

input tauss_1 1(s.taus_1 1,fjgrs.
input tauss_1 2(s.taus_1_ 2,fjgrs.
input tauss_1 3(s.taus_1_ 3,fjgrs.
input tauss_1 4(s.taus_1 4/fjqgrs.
input tauss_1 5(s.taus_1_5,fjgrs.
input tauss_1 6(s.taus_1 6/fjqgrs.
input tauss_1 7(s.taus_1_ 7/fjqgrs.
input tauss_2 1l(s.taus_2 1,fjqgrs
input tauss_2 2(s.taus_2 2,fjgrs.
input tauss_2 3(s.taus_2 3/fjqgrs.
input tauss_2 4 (s.taus_2 4/fjqgrs.

matrix*/
taus_1 1)
taus_1 2)
taus_1 3)
taus_1_4)
taus_1_5)
taus_1_6)
taus_1_7)

.taus 2 1)

taus_2 2)
taus_2 3)
taus_2 4)

Figure 8. (cont.)
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input
input
input

input
input
input
input
input
input
input

input
input
input
input
input
input
input

input
input
input
input
input
input
input

input
input
input
input
input
input
input

input
input
input
input
input
input
input

tauss_2 5 (s.
tauss_2 6(s.
tauss_2 7 (s.

tauss_3_1(s.
tauss_3 2(s.
tauss_3_ 3(s.
tauss_3_ 4 (s.
tauss_3_ 5(s.
tauss_3_6(s.
tauss_3_ 7 (s.

tauss_4_1(s.
tauss_4_ 2(s.
tauss_4_3(s.
tauss_4_4(s.
tauss_4_5(s.
tauss_4_6(s.
tauss_4_7 (s.

tauss_5_1(s.
tauss_5_2(s.
tauss_5_3(s.
tauss_5_ 4 (s.
tauss_5_5(s.
tauss_5_6(s.
tauss_5_7 (s.

tauss_6_1(s.
tauss_6_2(s.
tauss_6_3(s.
tauss_6_4(s.
tauss_6_5(s.
tauss_6_6(s.
tauss_6_7 (s.

tauss_7_1(s.
tauss_7_2(s.
tauss_7_3(s.
tauss_7_4(s.
tauss_7_5(s.
tauss_7_6(s.

taus 2 5/ fjqgrs.
taus_2 6, £jgrs.
taus_2 7, £jgrs.

taus_3 1,fjgrs.
taus_3 2, £jgrs.
taus_3 3/fjqgrs.
taus 3 4/fjqgrs.
taus_3 5, £jgrs.
taus_3 6,fjgrs.
taus_3 7,fjqgrs.

taus_4_ 1, f£jgrs.
taus_4_2,fjgrs.
taus_4_ 3 fjgrs.
taus_4_ 4, fjgrs.
taus_4_ 5, fjgrs.
taus_4_6,fjgrs.
taus_4 7, £jgrs.

taus 5 1/fjqgrs.
taus_5_2, £jgrs.
taus_5_3/fjqgrs.
taus_5 4,fjgrs.
taus_5_ 5/ f£fjgrs.
taus_5 6.fjgrs.
taus_5_ 7, £jgrs.

taus_6_1, £jgrs.
taus_6_2, fjgrs.
taus_6_3, fjgrs.
taus_6_4,f]jqgrs.
taus_6_5,fjgrs.
taus_6_6,fjgrs.
taus_6_7, £jgrs.

taus_7_1,fjgrs.
taus_7_2, £jgrs.
taus_7_3/fjqgrs.
taus_7_4,fjgrs.
taus_7_5, f£jgrs.
taus_7_6, fjgrs.

tauss_7_7(s.taus_7_7, f£jgrs.

dyn jiL ed light7 2 .ps .new Page 5

taus_2 5)
taus_2_ 6)
taus_2_7)

taus_3_1)
taus_3_2)
taus_3_3)
taus_3_4)
taus_3_5)
taus_3_6)
taus_3_7)

taus_4 1)
taus_4_2)
taus_4_3)
taus_4_4)
taus_4_5)
taus_4_6)
taus_4_7)

taus_5 1)
taus_5_2)
taus_5_3)
taus_5_4)
taus_5_5)
taus_5_6)
taus_5_7)

taus_6_1)
taus_6_2)
taus_6_3)
taus_6_4)
taus_6_5)
taus_6_6)
taus_6_7)

taus_7_1)
taus_7_2)
taus_7_3)
taus_7_4)
taus_7_5)
taus_7_6)
taus_7_7)

/*Special long wave transmittance matrix*/
tausl_1 1(l.taus_1 1,fjgrl.taus_1_1)

input
input
input
input
input
input
input

input
input

tausl_1 2(1.
tausl_ 1 3(1.
tausl 1 4(1.
tausl_ 1 5(1.
tausl_1_6(1.
tausl 1 7(1.

tausl 2 1(1.
tausl 2 2(1.

taus_1 2,fjgrl.
taus_1_ 3/fjqgrl.
taus_1 4, fjgrl.
taus_1 5/ £jqgrl.
taus_1_ 6, £jqgrl.
taus_1 7/ £jqgrl.

taus_2 1, fjqgrl.
taus 2 2/ £fjqgrl.

taus_1_ 2)
taus_1_3)
taus_1_4)
taus_1_5)
taus_1_6)
taus_1_7)

taus_2 1)
taus_2 2)

Figure 8. (cont.)
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input tausl 2 3(l.taus_2 3/fjgrl.taus_2 3)
input tausl 2 4(l.taus_2 4/fjqgrl.taus_2 4)
input tausl_2 5 (1. taus_2 5, fjcjrl taus_2 5)
input tausl 2 6 (1. taus_2_ 6, fjc[rl taus_2_ 6)
input tausl 2 7(l.taus_2_ 7,f]jqgrl.taus_2 7)
input tausl_3 1(l.taus_3_1,fjgrl.taus_3 1)
input tausl 3 2(l.taus_3_2,fjgrl.taus_3 2)
input tausl 3 3(l.taus_3_3,fjgrl.taus_3_3)
input tausl_3 4(l.taus_3_4,fjgrl.taus_3 4)
input tausl_3 5(1.taus_3 5/fjgrl.taus_3_5)
input tausl_3 6(l.taus_3_6,fjgrl.taus_3 6)
input tausl_3 7(l.taus_3_7,fjgrl.taus_3 7)
input tausl_4 1(l.taus_4_1,fjgrl.taus_4_1)
input tausl_4 2(l.taus_4_2,fjgrl.taus_4_2)
input tausl_4 3(l.taus_4_3,fjgrl.taus_4_3)
input tausl_4 4 (l.taus_4_4,fjgrl.taus_4_4)
input tausl_4 5(l.taus_4_5,fjgrl.taus_4_5)
input tausl 4 _6(l.taus_4_6,fjgrl.taus_4_6)
input tausl 4 7(l.taus_4_7,fjgrl.taus_4_7)
input tausl 5 1(l.taus_5_1,fjgrl.taus_5 1)
input tausl 5 2(l.taus_5_2,fjgrl.taus_5_ 2)
input tausl_5 3(l.taus_5_3,fjgrl.taus_5_3)
input tausl 5 4(l.taus_5_4,fjgrl.taus_5 4)
input tausl 5 5(l.taus_5_5,fjgrl.taus_5_5)
input tausl:5_6 (1.taus_5_6,fjgrl.taus_5_6)
input tausl 5 7(l.taus_5_7,fjgrl.taus_5_7)
input tausl _6_1(l.taus_6_1,fjgrl.taus_6_1)
input tausl_6_2(l.taus_6_2,fjgrl.taus_6_2)
input tausl_ 6_3(l.taus_6_3<fjgrl.taus_6_3)
input tausl_6_4(l.taus_6_4,fjgrl.taus_6_4)
input tausl_6_5(l.taus_6_5,fjgrl.taus_6_5)
input tausl_6_6(l.taus_6_6,fjgrl.taus_6_6)
input tausl_6_7(l.taus_6_7,fjgrl.taus_6_7)
input tausl_7_1(l.taus_7_1,fjgrl.taus_7_1)
input tausl_7_2(l.taus_7_2,fjgrl.taus_7_2)
input tausl_7_3(l.taus_7_3,fjgrl.taus_7_3)
input tausl_7_4(l.taus_7_4,fjgrl.taus_7_4)
input tausl_ 7 5(l.taus_7_5,fjgrl.taus_7_5)
input tausl_7_6(l.taus_7_6,fjgrl.taus_7_6)
input tausl_7_7(l.taus_7_7,fjgrl.taus_7_7)

/‘Short wave irradiation*/

link fjs_1(s.£fj_1,fjqrs.£j_1,fjs.£j_1) [£jsl]
link fis_2(s.fj_2,fjqgrs.£j_2,£fjs.£j_2) [£js2]
link fjs_3(s.fj_3,fjqrs.£fj_3,fjs.£fj_3) [£js3]
link fis_4(s.fj_4,fjqrs.£j_4,fjs.£j_4) [£js4]
link fjs_5(s.fj_5,fjqrs.£j_5,fjs.£j 5) [£js5]
link fjs_6(s.fj_6,fjqrs.£j_6,£fjs.£j_6) [£js6]
link £is_7(s.£3j_7,fjqrs.£5_7,£js.£5_7) [£5sT]

Figure 8. (cont.)
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/*Long wave irradiation*/
link £31 1(1.£] 1,£3jqrl.£3j 1, £51.£5_1) [£j11]

link £31_2(1.£3_ 2/qurl £j_2,£31.£5_2) [£j12]
link £51 3 (1. £j_3/fjqgrl £j_3, £j1. £3j_3) [£j13]
link £51_4 (1. £5_4, £iqrl. f£3_4, £31 £j_4) [£jl4]

link £j1 5 (1. £5_5, £igrl. f£j_5, £§1 £j_5) [£j15]
link Ar(1.fj.e.fjgrl.£j.e~jl.£5.G) [£j16]
link £51_7(1.£3_7, £iqrl. £3j_7, £51. £5_7) [£317]

/*Temperatures in fahrenheits*/

link t_1(k£1l.£/h. t 1)
link t_2 (k£2.£/h.t_2)
link t_3 (k£3. £,h. t_3)
link t_4 (kf4 £,h. t_4)
link t_5 (k£5 £,h.t_5)
link t_6 (k£6 . £,h. t_6,hp.db) [T]
input t_7 (kf7. £, h.t_7 hr.db) [T]

/* Temperature derivatives*/

> link tdot 1 (h tdot 1)
> 1link tdot_2 (h. tdot_2)
> link tdot_3 (h.tdot_3)
>1 ink tdot_4 (h.tdot_4)
> 1link tdot_5 (h.tdot_5)
> link tdot_6 (h. tdot_6)

/¢Temperature history*/
> history t_1 h (h t_1 hist)

> history t 2 h (h t_2 hist)

history t_3 h (h t_3 hist)
“~ history t_4 h (h t_4 hist)
“history t 5 h (h t_5 hist)
> history t 6 h (h.t 6 hist)

/¢Temperatures in kelvins*/
link tk_1 (kfl .k, ebl. t)
link tk_2 (kf2 .k, eb2 . t)
link tk_3(k£f3.k,eb3.t)
link tk_4(kf4.k,eb4.t)
link tk_5 (k£f5 .k, eb5 . t)
link tk_6 (kf6 .k, eb6 .t)
link tk_7(kf7.k,eb7.t)

/#Net short wave radiant heat transfer*/

link gr_s_ 1 (fjgrs . gr_1l/grl ini h gqr_s_1)
link gqr_s_2 (fjgqrs .qr_2, qr2 . ini h gr_s_2)
link gqr_s_3 (fjgrs .qr_3(gr3. inl/h.qr_s_3)

link gqr_s_4 (fjgrs .gr_4, gqr4d ini h.gr_s_4)
link gr_s 5 (fjgrs .gqr_5/q9r5.inl,h. qr_s_5)
link qgqr_s 6 (fjgrs.qr_6/qr6.ini . h.qr_s_6)
link qgqr_s_7 (fjgrs .qr_7, gqr7 ini h.gr_s_7)

/#Net long wave radiant heat transfer*/
link gr_1 1(fjgrl.gr_1,grl.in2,h.qr_1 1)
link gr_1 2 (fjgrl .qr_2,q9r2 in2 h.gr_1_ 2)

Figure 8. (cont.)
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link gr_1 3(fjgrl,qr 3/gr3.in2,h.qr_1 3)
link gr_1 4(fjgrl.qr_4,9r4.in2 h.qr_1_4)
link gr_1 5(fjgrl.qr_5/gr5.in2,h.qr_1 5)
link gr 1 6 (fjgrl .gqr_ 6, qr6 .in2 h.gr_1_6)
link gr 1 7 (fjgrl. gr_7,9r7 .in2 h.qgr_1_7)
/*Source power input = 0 except on lamp¥*/

input gq0_1(h.q0_1)

input gO0_2(h.q0_2)

input q0_3 (h.q0_3)

input gO_4(h.q0_4)

input gO_5 (h.q0_5)

input q0_6 (h.g0_6,g2_ 6_7.ini) [q06]

link gq0_7(h.q0_7/hroom.q,q2_ 6_7.in2) [q07]
/*Load*/

link load(g_6_7.9)

link load2 (g2_6_7.sum)

/*Total net radiant heat transfer on each node*/
link gr_1(grl.sum)

link gr_2 (gr2.sum)

link gqr_3 (gr3 sum)

link qr_4 (gr4 sum)

link gqr_5 (gr5. sum)

link gqr_6 (gr6. sum)

link gqr_7 (gr7. sum)

/*Short wave radiosity source vector = 0 except for lamp (node 2)*/

input jO0s_1(s.jo0_1)
input jOs_2(s.j0_2)
input jO0s_3 (s.j0_3)
input jOs_4(s.j0_4)
input jO0s_5(s.30_5)
input jOs_6(s.j0_6)
input jOs_7(s.j0_7)

/*Long wave radiosity source vector = blackbody emission*/
link jOl1_1(1.j0_1,ebl.eb)

link jol_2(1.3j0_2,eb2.eb)

link jO1l_3(1.j0_3.eb3.eb)

link jO1l_4(1.30_4/eb4.eb)

link jOl_5(1.30_5/eb5.eb)

link jO1l_6(1.j0_6,eb6.eb) [eb]

link jO0l_7(1.j0_7,eb7.eb) [eb]

/*Stefan Boltzmann constant*/
input sigma (ebl.sigma.eb2.sigma.eb3.sigma,eb4.sigma,eb5.sigma,eb6 .sigma,eb

/*Short wave radiosities*/

link Js_1(s.j_1,£fjs.3_1,£fjgrs.j_1)
link Js_2(s.j_2,£fjs.j_2,£fjgrs.j_2)
link Js_3(s.j_3,fjs.j_3,fjgrs.j_3)
link Js_4(s.j_4,f3s.j_4,£fjgrs.j_4)
link Js_5(s.j_5,fj)s.j_5,£fjgrs.j_5)
link Js_6(s.j_6,fjs.j_6,fjgrs.j_6)

Figure 8. (cont.)
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link js_7 (s.3_7, £3s.3_7, £ijgrs . j_T7)

/*Long wave radiosities*/

link 31_1(1.3j_1,£31.3_1,£f3jqrl.j_1) [jl1]
link j1_2 (1.3_2, £31. j_2/ £jqrl. j_2) [jl2]
link j1 3 (1. j_3/£31 j_3/£3jgrl. j_3) [jl13]
link j1_4 (1.3_4, £51. 3_4/ £3qrl. j_4) [jl4]
link j1_5(1.3_5, £31.3_5, £3qrl j_5) [j15]
link j1_6(1.3_6,£31.j5_6,£jqgrl.j_6) [j16]
link 31 7(1.3_7, £31.3_7, £jqrl. 3_7) [317]

/ ‘Enthalpies. The strange "outs" and "ins" are due to the fact that
*q0_7 is source power input to the nodes, and thus is calculated
*the opposite way as is usually done in heat_add object.*/

/ Thus qO0_7=m(h_O0-h_7)*/

link h 0 (hs .h,hroom.h out, g _6_7 .h_in)

link h 6 (hph g 6_7 h_out)

link h 7 (hr h hroomh_ in)

/ ‘Supply temperature*/
link t_O (hs.db)

/ ‘Humidities*/

input w_0 (hs.w,wroom.h_in)
link w_6 (hp.w, wplenum.h out)
link w_7 (hr .w, wroom.h_out, wplenum.h_ in)

/ ‘Humidity source*/
input wroom_added (wroom.q)
input wplenum_ added(wplenum.q)

Figure 8. (cont.)
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Figure 9. SPANK dynamic simulation results for case (1), room air temperature fixed
at 75F (left-hand graphs) and case (2), supply air temperature fixed at
70F (right-hand graphs), as a function of air flow rate.
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