
*
Received k'jrj^L^

. >. -V^vv.'rt '

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

"\

APPLIED SCIENCE
DIVISION

Presented at the Society for Computer Simulation
Multiconference, San Diego, CA, January 17-19, 1990,
to be published in the Proceedings

Radiant Transfer due to Lighting: An
Example of Symbolic Model Generation
for the Simulation Problem Analysis Kernel

E.F. Sowell, J.-M. Nataf, and F. Winkelmann

January 1990

NUl stiHUli*
h v

APPLIED SCIENCE
DIVISION

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

WSfRIOUTIfl.V Cr THIS DOCUMENT IS VKUKiTEti

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

DISCLAIMER

This document was prepared as an account of work sponsored
by the United States Government. Neither the United States
Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products process, or
service by its trade name, trademark, manufacturer, or other­
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof, or The Regents of the University of Cali­
fornia. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the
University of California and shall not be used for advertising or
product endorsement purposes.

4

€

Lawrence Berkeley Laboratory is an equal opportunity employer.

Presented at the Society for
Computer Simulation Multiconference,
San Diego, CA Jan 17-19, 1990

LBL—28273

DE90 013360

Radiant Transfer due to Lighting:
An Example of Symbolic Model Generation
for the Simulation Problem Analysis Kernel

Edward F. Sowell
Department of Computer Science

California State University, Fullerton
Fullerton, CA 92634

Jean-Michel Nataf and Frederick Winkelmann
Applied Science Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, CA 94720

January 1990

Abstract
The Simulation Problem Analysis Kernel (SPANK) is a simulation environment under
development at Lawrence Berkeley Laboratory. A principal departure from other simula­
tion environments is that system models are constructed from submodel objects that are
defined without prescribed input or output interfaces, yielding greater modeling flexibil­
ity. Also, graph theoretic techniques are employed to determine the solution sequence,
including reduction of the iterative problem size. In this paper we show one role of sym­
bolic manipulation in SPANK processing, namely automatic generation of submodels
using the MACSYMA™ package. This is demonstrated in the context of steady state
radiant and convective heat transfer in a room with a fluorescent lighting system, and
then in the corresponding dynamic context. Submodel definition and generation are
described, followed by the solution of several interesting problems defined with the sub­
models.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings and Community
Systems, Building Systems Division of the U. S. Department of Energy, under Contract No. DE-AC03-76SF00098.

MASTER /
WSTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Introduction
Contemporary modeling environments, e.g., ACSL [MG75], require the modeler to
describe a particular problem by interconnection of component models, either defined by
the user or selected from a library, which have prescribed inputs and outputs. Such sub­
models are called "algorithmic" or "assignment-based" because the output variables are
calculated from the inputs by a prescribed procedure, and each output variable is
assigned a value. This approach imposes several limitations on modeling flexibility. Pri­
mary among these is the fact that the algorithmic models limit the class of problems
that can be defined and solved by their interconnection. For example, assume that we
have two components modeled algorithmically as:

component A: x := f(y,z)

component B: z := g(x)

Then we can easily solve the problem "given y, find x and z" by iteration on either of the
unknowns. Such iteration is automatically performed by programs such as ACSL. How­
ever, if the problem statement is changed only slightly, such as "given z, find x and y,"
difficulties are encountered because we have an unneeded algorithm for z and no algo­
rithm for y. As a result the modeler must either formulate a new component model by
inverting A, i.e.,

component A": y := fl(x,z),

or resort to the introduction of fictitious "implicit elements" with attendant numerical
difficulties. We see that the modeler is forced to revise component models and recon­
struct the system, and/or introduce non-physical "components" and become involved in
the intricacies of numerical analysis.

The above difficulties are fundamentally related to the ad hoc development of current
simulation environments, which were greatly influenced by analog computation methods,
and to the widely held belief that physical "causality" should be reflected in the system
model. More recent developments [Mat88,Mat89,SS89] suggest that a different set of
model structuring principles is more appropriate. Among these principles is that com­
ponent models should be equation-based rather than assignment-based. That is, the
models above should be seen by the modeler as:

component A: f(x,y,z) = 0

component B: g(x,z) = 0

with the understanding that the environment will find a solution procedure that will
enforce the equalities. Simulation environments that employ equation-based component
models eliminate the difficulties seen above. The Simulation Problem Analysis Kernel
(SPANK) is one such environment currently under development. Another, using an
alternate approach, is IDA (formerly MODSIM) [Sah88].

2

The SPANK environment is based on the intuition that:

(a) there should be a single "model" for a particular component,

(b) the system model should be defined once, yet be capable of solving any well-
posed problem involving the system variables, and

(c) the environment software should select the appropriate solution sequence,
including necessary iteration, in a manner transparent to the modeler.

The underlying principles making this realizable for static (i.e., algebraic) systems have
been described [SBEW86], and extended to handle dynamic (i.e., differential-algebraic)
systems [SB88]. These ideas are described in terms of the object-oriented paradigm in
[SBN89].

Briefly summarized, SPANK is a nonlinear equation solver with an object-oriented inter­
face and with automatic equation system reduction. SPANK manipulates objects that
are equations, and macro objects that are collections of equations. The task of the user
is to generate the objects and their related software equivalent, and to link them together
in the appropriate way to take into account the variables common to different objects.

A diagram of the current SPANK environment is shown in Fig. 1. In addition to the
main SPANK program, utilities are available that include automatic object generation
using MACSYMA (discussed further in the following sections), automatic library archiv­
ing of newly-created objects and functions, checking of some aspects of the well-
posedness of the problem, graphical output for dynamic simulations, graphical sensitivity
analysis for steady-state simulations, generation of MACSYMA code for evaluating
reduced system Jacobian eigenvalues, graphical representation of the convergence of
iteration variables, and automatic report generation.

Step by step, the procedure that SPANK users follow in setting up and running a simu­
lation is as follows:

(1) Draw a schematic showing the physical components of the system and how they
are connected.

(2) Write the mathematical equations, such as energy balances, mass balances, flux
balances, etc., that describe the system. These equations are the basic objects that
SPANK manipulates.

(3) Run the SPANK MACSYMA preprocessor to generate the C code and associated
functions for the equations (objects) in (2).

(4) Using the SPANK Network Specification Language (NSL) or the MACSYMA
preprocessor, link the objects in (3) into macro objects (sets of equations) that describe
system components or processes.

(5) Using NSL, create a problem specification file in which macro objects are linked
together into a network describing the entire system. (An interactive graphical editor is
being developed that will simplify this step.) >From this file SPANK will then automat­
ically create an executable simulation program for solving the network.

3

(6) Specify input values and starting values, and, for dynamic simulation, start
time, stop time, and time step.

(7) Run the simulation.
(8) Plot results.

The Need for Symbolic Manipulation

Because SPANK development is still embryonic, there have been many limitations
preventing a meaningful comparison with the existing conventional environments. One
such limitation is that the SPANK component models (called objects) reported in earlier
publications had been "hand crafted." That is, the component modeler in need of com­
ponent A above would have to write computer code such as:

/* SPANK Component Object Model */
/* Stored in comp_A.obj */

define comp_A(x, y, z)
double x,y,z;
{ x = fl(y, z);

y = f2(x, z);
z = f3(x, y);

}
The understanding here is that the component model has three interface variables x, y,
and z. Normally, an inverse is given for each interface variable so that the solver can
select the most appropriate for a particular problem (although inverses known to be
problematical can be suppressed).
Because SPANK objects represent a single equation, definition of an entire problem in
terms of objects can be tedious. For convenience and hiding of unnecessary detail when
defining problems, a macro facility is available. With this facility, for example, we could
combine the preceding two objects into a macro object with the code:

/* SPANK macro object definition */
/* Stored in macro_A_B.obj */

macro
declare comp_A A;
declare comp_B B;
link x(A.x, B.x);
link y(A.y);
link z(A.z, B.z);

Macros are declared in problem definitions (or in other macros) exactly as objects are
declared.

By "hand crafted", above, we mean that the macro definitions, object definitions, and the
inverse functions fl, }2, and fS had to be manually coded as functions in the C computer

4

language. This is clearly an unnecessary burden on the component modeler, since
software systems such as MACSYMA [MIT83] are available that can accept an equation
such as f(x, y, z) = 0 and return the needed inverses as compilable code. The same pro­
gram can be used to generate macro and object files of the kind shown above. The prin­
cipal aim of this paper is to demonstrate this approach.

It should be noted that automatic generation of macros, objects, and inverses represents
one form of symbolic manipulation in simulation. Another possibility, not explored here,
is generation of derivative formulas. In general, the aim is to perform symbolic manipu­
lation as a pre-step in order to reduce the level of numeric work during the simulation
while affording maximum flexibility to the modeler in defining problems.

In the sections that follow we demonstrate the use of MACSYMA to automatically gen­
erate the SPANK macro object and object definitions, and the required inverse functions
as C code. This is done in the context of a problem from building physics, namely deter­
mination of the transport of lighting energy by convection and multi-band radiation in a
room. While the physical problem is over simplified, the model goes beyond previously
published SPANK example problems [SBEW86; SBN89] in two important respects.
First, its definition requires vector interface variables, where the vector length is problem
dependent. That is, the number of elementary interfaces for a particular object depends
on the number of other interacting objects. Since neither SPANK objects nor macro
objects admit to variable interfaces, the needed flexibility is implemented at the
MACSYMA input level. The second interesting aspect of the problem is that it yields a
highly interconnected set of equations as a result of radiative transfer. As a result, the
ratio of the number of total problem variables to the number of iteration variables
(called the reduction ratio) is not as large as we find for previously studied flow system
simulations [SBN89].

Problem Description
The problem studied is shown in Fig. 2. Lighting is provided by fluorescent lamps in the
plenum space of a 10,000-ft“ room. A translucent ceiling lens separates the plenum from
the room below. Supply air enters the room, mixes with the room air, then exhausts to
the plenum through small openings in the ceiling lens. Input power leaves the lamp by
shortwave (visible) and longwave (infrared) radiation and by convection to the plenum
air. The radiative portion undergoes interreflection and transmission, and is ultimately
absorbed by surfaces in the plenum and the room. If the plenum air temperature is
greater than the room temperature, some or all of the convective portion can also escape
the plenum by conduction through the transparent ceiling to the room air. Ultimately,
all lamp power must be removed by the airstream after convective transfer from the
various solid surfaces in the room and plenum. We wish to determine the surface and air
temperatures, and the heat removal rate in the room and plenum. Naturally, these will
be functions of the mass flow rate of air and the supply air temperature.

Geometric, radiative and convective data for the problem are shown in Tables 1 through
5. Lamp power (120,000 Btu/hr or 3.5 W/ft“) and lamp area have been chosen so as to
yield typical illumination at the floor with normal fluorescent lamp brightness. The

5

lamp diameter to spacing ratio is

D_ _ 0 0477
^ floor

It can be shown that the lamp-set self view factor is (approximately)

F (lamp ,lamp) = = 0.0304

For simplicity, we assume that the dimensions in the horizontal plane are large relative
to room and plenum height, thus making losses through walls negligible. The floor to
ceiling view factor is then assumed to be 1.0. Other view factors can then be determined
by reciprocity and conservation (see Table 4). It is assumed that the floor and ceiling are
adiabatic, i.e., that no heat transfer occurs between the ceiling and the room above or
the floor and the plenum below.

The convective heat transfer coefficients shown in Table 3 assume free convection
[ASH89] and are taken to be constant. A straightforward improvement to the model
would be to make these conductances a function of air flow rate and surface-to-air tem­
perature difference.

Formulation and SPANK Representation
The above problem can be formulated as an n-node network in which each node is
viewed as a surface that can emit, absorb, reflect, and transmit radiant energy in the
short and long wave bands. Also, nodes can interact through surface-to-air convection,
and through bulk flow convection. The system variables include node temperatures,
short and long wave radiosities and irradiations at each node. The basic physical laws
governing the system are those of diffuse radiative transfer, convective heat transfer, and
conservation of energy and mass. See [8073] for details of this formulation.

The equations that describe the problem are as follows:

1. Object "blackbody"
This is the blackbody radiation equation, with eb being the blackbody radiance, a the
Stefan-Boltzmann constant and t the absolute temperature:

eb=(Jt4

2. Object "radiosity" and macro object "radiosity_macro"
This equation gives the radiosity Jk of a node k in terms of the other node irradiations,
FJj, the generalized transmittance matrix, F k j and the node source radiosity J°k and
reflectance rk.

6

Jk-^k-rkFh-Y.l'k.jFJj
y-i

The above is valid for node k. The macro object radiosity_macro corresponds to the sys­
tem of the above equations with k running from 1 to 7.

3. Object "a.x" and macro object "a.x_macro"
This equation yields, for a node k, the irradiation FJk in terms of all the radiosities Jj
of the nodes exchanging radiation with k and the related shape factors Fk y:

FJk = 'bFk,jJj

y-i
The above is valid for node k. The macro object a.x_macro corresponds to a system of
the above equations with k running from 1 to 7.

4. Object "net_radiation" and macro object "net_radiation_macro"
This equation gives the net radiant heat transfer qrk for a node k in terms of all the irra­
diations FJj of the nodes exchanging radiation with the considered node k, the general­
ized transmittance matrix t3 k j, and the k node area ak, radiosity Jk, irradiation FJk
and transmittance Tk:

(lrk 7

ak ; = 1
The above is valid for node k. The macro object net_radiation_macro corresponds to a
system of the above equations with k running from 1 to 7.

5. Object "energy_balance" and macro object "energy_balance_macro"
This equation gives the energy balance at the node k in terms of the node’s source term
q°k, net short wave radiant heat transfer qrs k, net long wave radiant heat transfer qrl k,
the generalized conductance matrix uc k j (which accounts for conduction and convection)
and the node temperatures tj:

90A-9r%-V* = i>%,y*y
y=i

The above is valid for node k. The macroobject energy_balance_macro corresponds to a
system of the above equations with k running from 1 to 7.

The object energy_balance is the only one that has to be changed to switch from steady-
state to dynamic simulation. All that is required is to add a derivative term with heat
capacity, leading to an object dyn_energy_balance.

A diagram of the system without bulk air flow is shown in Fig. 3 (the complete system
diagram is only slightly more complicated). The blocks in this diagram are the SPANK
macro objects described above. The dashed lines show vector- or array-valued (e.g. JO or

7

tau) system variables, some of which are designated as input data. Lines connecting two
or more macro object interface ports indicate that a single (vector- or array-valued) sys­
tem variable is identified with the corresponding macro object variables. (In addition to
the equation-based macro objects there is an "adaptor" object, TAP, that allows us to
"tap into" a vector in order to specify only some of its elements as problem inputs.)

Because long and short wave diffuse radiative transfer are governed by the same laws, we
can use the same macro object class for both. The geometric data — areas A and view
factor matrix F — are the same for both bands, but the reflectance R and transmittance
tau are different. Also note that the long wave radiative transfer is coupled to the heat
balance (through the black_body macro object) because long wave emission JOL is a func­
tion of node temperature. On the other hand, because we are ignoring the temperature
dependence of short wave emission from the lamps, the short wave emission JOS is
involved only in the short wave transfer; the net short wave radiation vector Qrs con­
nects only to the energy balance.

Figure 3 represents the system model. By virtue of designation of particular system vari­
ables as "inputs," it also represents a particular "problem." One problem that can be
represented (which corresponds to case (1), below) is:

Given:
All geometric and property data, and convection coefficients.
The short wave emission at each surface, JOS.
The source energy addition/removal rates at all surface nodes and plenum air node,
Q0(l)-Q0(6).
The temperature at the room air node, T(7).

Find:
The temperatures at all surface nodes and plenum air node, T(l)—T(6).
The heat addition/removal rate at the room air node, Q0(7).
The short and long wave radiosities and irradiations at each node.
The short and long wave net radiant transfer rates at each node.

However, an important feature of SPANK is that different problems on the same system
can be specified without structural changes in the model. For example, if we wished to
specify a surface temperature and solve for the required heat addition/removal rate we
could simply designate a different input set.

The MACSYMA Interface to SPANK

MACSYMA is a symbolic language allowing manipulation of equations. We have writ­
ten a program in this language that allows the user to enter equations or systems of
equations in natural form. MACSYMA then generates all of the corresponding object
files, macro object files, and function files for a SPANK problem. As an example, the
object, macro object and function files (approximately 35 files in all) needed for the
SPANK simulation of the above problem will be generated.

8

Only two types of commands are needed (others are available for general macro object
generation, simulation and input file generation, and component merging):

makespank(eq, name, list): Creates the object name.obj and associated functions
corresponding to equation eq. Equation eq can be piecewise defined or can be a single
relationship covering the full range of its variables. Finally, list is the list of variables
that we don’t want to solve for by inverting eq (so-called "bad inverses" [SS89]).

writegenericnetmacro(N, macroname, name, fl[k], f2[k,j], list): Creates the
macro macroname, obj that corresponds to the equation system

/ 1[&]=X) /2[fc,y] , for k=l to N.
y=i

Because all equations of this system are similar, writegenericnetmacro generates only
one elementary object called name.obj defined as

/i_i=E/2-i_i
y=i

and then instantiates it N times, filling the variables’ slots with the correct global vari­
able name. Again, list is the list of variables for which we choose not to invert the above
equation.

Using these commands we create the SPANK files for the example with the following
sequence (Fig. 4):

(1) Create the blackbody emissivity object blackbody.obj and a Fahrenheit-to-Kelvin
conversion object degkdegf.obj:

makespank([eb=sigma*U4, eb>0, sigma>0, t>0], "blackbody", [sigma]);

makespank(f=1.8*k-459.67, "degkdegf", []);

Observe that above we have created blackbody.obj as an elementary object instead of
a macro object in order to demonstrate the makespank tool. In Fig. 3 we use the
equivalent macro that handles vectors instead of scalars.

(2) Create the radiosity macro object, radiosity_macro. obj, which is the system describ­
ing the radiosity vector in terms of itself, the surfaces properties, the shape factor
matrix and the surfaces’ source radiosities (which are zero except for the lamps).
We also created the elementary object radiosity. obj, which is the equation relating to
one surface only. It is used within the radiosity_macro. obj macro:

writegenericnetmacro(7, "radiosity_macro", "radiosity",
J[k]-jO[k]-r[k]*fj[k], taus[k,j]*fj[j]), [];

As an example, Fig. 5 shows (a) the macro object file radiosity_macro.obj, (b) the
elementary object file radiosity.obj, and (c) some C functions generated by this com­
mand. Note that in the above expression j means that j is to be taken literally to

9

represent radiosity, whereas the j in [j] is a summation index.

(3) Create the macro ax.macro.obj, which is a generic matrix-vector multiplication
object, used here to obtain the irradiation vector from the shape factor matrix and
the radiosity vector:

writegenericnetmacro(7, "ax_macro", "ax", fj[k], j [j]), [];

(4) Create the macro net_radiation_macro.obj, which gives the net radiant heat transfer
vector in terms of the radiosities, irradiations, shape factors, surfaces, etc:

writegenericnetmacro(7, "net_radiation_macro", "net_radiation",
qr[k]/a[k]-j[k]+(l.-tau[k])*fj[k], -taus[k,j]*fj[j]), [];

(5) Create the macro energy_balance_macro.obj, which performs an energy balance on
each surface:

writegenericnetmacro(7, "energy_balance_macro", "energy_balance",
qO[k]-qr_s[k]-qr_l[k], uc[k,j]*t[j]), [];

The SPANK Steady State Simulation
The steady state simulation program created by SPANK was used to carry out a
parametric study of the effect of air flow rate on surface temperatures and heat removal
rates in the plenum and room. Two cases were analyzed:

Case (1): The room air temperature was fixed at 75F; the supply air temperature and
other variables were calculated. This corresponds to an air conditioning system in which
the room air temperature is maintained at a constant value by varying the supply air
temperature at fixed flow rate.

Case (2): The supply air temperature was fixed at 70F; the room air temperature and
other variables were calculated.

The SPANK problem specification input file for case (1) is shown in Fig. 6. There are 86
equations and 86 unknowns. The SPANK reduction process [SBEW86] leads to an itera­
tion set of 21 variables consisting of all the temperatures (except ceiling and room air),
the ceiling long wave radiosity, and all of the short wave radiosities. The reduction ratio
is 86/21, or 4.1. A solution was obtained after five iterations.

The problem specification file for case (2) (not shown) is obtained very simply from that
of case (l) by changing the room air temperature, t_7, from an input to an unknown
(i.e., to a link variable), and by changing the supply air temperature, t_0, from an unk­
nown to an input. For case (2) there are also 86 equations and 21 iteration variables.

The simulation results are given in Fig. 7, which shows calculated temperatures and heat
gains for values of air flow from 50 to 400 Ib/hr/luminaire (1.0 to 8.0 cfm/ft“). Case (l)
results appear on the left side of this figure and case (2) results on the right. As
expected, we observe a decrease in surface temperatures with increasing airflow. Also

10

shown is the the fraction of the heat from lights that is picked up by the air stream as it
passes through the plenum.

The SPANK Dynamic Simulation
To demonstrate that SPANK can be used for dynamic as well as steady-state simulation,
we have run time-dependent simulations of cases (1) and (2) to determine the transient
effects of going from a lights-off condition to a lights-on condition. This simulation takes
into account the thermal lag due to the heat capacity of the floor, ceiling, and other
nodes (as specified in Table 6). The dynamic SPANK problem specification file for case
(1) is shown in Fig. 8. The differences between this file and its steady-state counterpart
in Fig. 6 are very few and have been indicated by arrows.

The simulation results are shown in Fig. 9. For this study the air flow rate was set at 50
Ib/hr/luminaire (1.0 cfm/ft“), the lowest of the parametric values used in the steady-
state simulation. A run period of 200 hours was chosen, with a time step of 6 minutes.
Initially, all of the node temperatures are near the steady-state lights-on condition.
Then, at time zero, the lights are turned off and remain off for 50 hours. The lights are
then switched on with an input power of 120,000 Btu/hr (3.5 W/ft2), the same value
that was used in the steady-state runs.

The general behavior observed in Fig. 9 is an initial decrease in temperatures, followed
by an asymptotic approach to equilibrium lights-off values, then a relatively rapid
increase at 50 hours when the lights are turned on, followed by an asymptotic approach
to equilibrium lights-on values. The initial decrease is due to the fact that the tempera­
ture starting values chosen for the simulation were above the equilibrium lights-off
values.

As a check on the physical consistency and reasonableness of the results, we note that, as
would be expected:
(a) With lights off, all of the surface temperatures for case (1) approach 75F, the fixed

room air temperature. For case (2) they approach 70F, the fixed supply air tempera­
ture. The load approaches zero.

(b) With lights on, the surface temperatures for both cases approach those given by the
steady-state calculation at minimum air flow (Fig. 7). The load approaches the
lamp input power.

Conclusions
We have demonstrated that complex SPANK objects and macro objects can be created
automatically with available symbolic manipulation tools. The MACSYMA package
was used although other less sophisticated packages would likely serve as well. Two
MACSYMA-based programs were demonstrated. One, makespank, accepts a general
equation as an argument string and generates the corresponding SPANK object, as well
as the required inverses expressed as C function modules. The other,

11

writegenericnetmacro, creates a SPANK macro object (and all supporting macros,
objects, and C functions) that represents a set of equations of the kind encountered in
network modeling. This macro generator was shown to be general enough to
create a vector-matrix product, a linear solver, and a complex radiative, convective
and conductive heat transfer problem in a room. While space did not permit
thorough description of the symbolic techniques employed, it has been shown
that these techniques extend the SPANK methodology to an important class of prob­
lems in system simulation. The ease of switching inputs and unknowns to create
different simulation problems without reprogramming was demonstrated. Finally, an
example of SPANK dynamic simulation was presented as a natural extension of the
corresponding steady state problem.

Acknowledgment
We thank Daniel Sander of the National Research Council of Canada for for carefully
reviewing this paper and providing many valuable comments.

References

[ASH89] Handbook of Fundamentals. American Society of Heating, Refrigerating
and Air-conditioning Engineers, Inc., Atlanta, GA., Ch 3.

[Mat88] Mattsson, S.E. 1988. "On Model Structuring Concepts," Proceedings of
the fth IF AC Symposium on Computer Aided Design of Control Sys­
tems, Beijing, China.

[Mat89] Mattsson, S.E. 1989. "Concepts Supporting Reuse of Models," Proceed­
ings of Building Simulation ’89, Vancouver, British Columbia. Interna­
tional Building Performance Simulation Association, P.0. Box 282,
Orleans, Ontario, KlC 1S7, Canada, pp. 175-180.

[MG75]

[MIT83]

[Sah88]

[SB88]

Mitchell and Gauthier Asso. 1975. Advanced Continuous Simulation
Language (ACSL) User Guide!Reference Manual. P.O. Box 685, Con­
cord, MA 01742.

MIT 1983. MACSYMA Reference Manual, version 10, Mathlab Group,
Laboratory for Computer Science, Massachusetts Institute of Technol­
ogy, Cambridge, MA.

Sahlin, P. 1988. "MODSIM, a Program for Dynamical Modeling and
Simulation of Continuous Systems," Report from the Institute of
Applied Mathematics. P.O. Box 26300, S-100 41 Stockholm, Sweden.

Sowell, E.F. and W.F. Buhl 1988. 'Dynamic Extension of the Simula­
tion Problem Analysis Kernel (SPANK)," Proceedings of the USER-1

12

[SBEW86]

[SBN89]

[8073]

[SS89]

Conference, Ostend, Belgium. Society for Computer Simulation, La
Jolla, CA.

Sowell, E.F., W.F. Buhl, A.E. Erdem, and F.C. Winkelmann 1986. "A
Prototype Object-based System for HVAC Simulation," Proceedings of
the Second International Conference on System Simulation in Buildings
(Liege, Belgium December). Univ. of Liege, Laboratory of Thermo­
dynamics, B-4000 Liege, Belgium.

Sowell, E.F., W.F. Buhl, and J-M Nataf, 1989. "Object-oriented Pro­
gramming, Equation-based Submodels, and System Reduction in
SPANK," Proceedings of Building Simulation ’89, Vancouver, British
Columbia. International Building Performance Simulation Association,
P.O. 282, Orleans, Ontario, KlC 1S7, Canada (June), pp. 141-146.

Sowell, E.F. and P.F. O’Brien 1973. "The Transport of Lighting
Energy," ASHRAE Transactions, Pt. 2.

Sahlin, P. and E.F. Sowell. 1989. "A Neutral Format for Building Simu­
lation Models," Proceedings of Building Simulation ’89, Vancouver,
British Columbia. International Building Performance Simulation
Association, P.O. 282, Orleans, Ontario, KlC 1S7, Canada, pp. 147-
154.

13

Table 1

Radiation in Fluorescent Band
0.30 to 0.80 microns

Node Reflect- Transmit-
ance tance

Ceiling 0.7 0.0
Lamp 0.9 0.0
Lens Top 0.05 0.92
Lens Bottom 0.05 0.92
Floor 0.5 0.0

Table 2

Radiation in Thermal Band
1.0 to 200 microns

Node Reflect- Transmit-
ance tance

Ceiling 0.05 0.0
Lamp 0.05 0.0
Lens Top 0.05 0.92
Lens Bottom 0.05 0.92
Floor 0.05 0.0

Table 3

Film Coefficients/Conductances
Btu /hr
ft2 °F

From To

Ceiling Plenum Air 0.26
Lamp Plenum Air 1.09
Lens Top Plenum Air 0.51
Lens Bot Room Air 0.42
Floor Room Air 0.74
Lens Top Lens Bot 11.20

Table 4

View Factors

From To

Ceiling Lens Top 0.92728
Ceiling Lamp 0.07272
Lens Top Ceiling 0.92728
Lens Top Lamp 0.07272
Lens Bot Floor 1.0
Floor Lens Bot 1.0
Lamp Ceiling 0.4848
Lamp Lens Top 0.4848
Lamp Lamp 0.0304

Node

Table 5

Area/Source Input

Area (/i2) Q(Btu/hr)

svr
Btu /hr

ft2

Ceiling 10000. 0. / 0.
Lamp 1500. 120000. / 20.
Lens Top 10000. 0. / 0.
Lens Bot 10000. 0. / 0.
Floor 10000. 0. / 0.

Table 6

Heat Capacities
Node Capacitance (Btu/°F)

Ceiling 40000
Lamps 1000
Lens Top 1200
Lens Bottom 1200
Floor 40000
Plenum Air 1000
Room Air 1000

14

Equations

Run-Time
Input

SPANK Output

(Macro)Objects

No Self No Missing
Interface

Organizer

No Double
Link

Executable Simulation Program

Iterated
Jacobian
Matrix

Determinant,
Eigenvalues

Sensitivity
Analysis
Graphics

Problem Specification File

Cut Set
Variables

Convergence
Graphics

Report

Generation

Translation
to

Symbolics

Checker

Convergence

Properties

Sensitivity

Analysis

Dynamic

Graphics

SPANK

MACSYMA
SPANK
Interface

"macspank"

Figure 1. The SPANK! simulation environment. From objects representing the
mathematical equations of a physical system, SPANK! creates an executable
program that can be run to determine the steady-state or time-dependent
behavior of the system. Auxiliary programs include automatic generation of
C code for objects (MACSYMA/SPANK Interface), library archiving of
objects (Organizer), consistency checking (Checker), results display (Dynamic
Graphics), and parametric analysis (Sensitivity Analysis Graphics).

15

Insulated

Lamps - Node 2 £> Plenum
O O G............

W
Lens Top - Node 3

■O Air- O
Node 6

O

Lens Bottom - Node 4

♦*

Room Air - Node 7

Air Flow

t00
0

0

Floor - Node 5

Insulated

Figure 2. Schematic of the lighting heat transfer problem: vertical section through
room and plenum.

16

Rs
tauss

JOs

p
taus
JO
J

Radiosity

FJ (Short Wave)

At

tans --

R1
tausl •

Qr

taul ■■

P
A.XX

A

J

Net
Radiation
(Short Wave)

FJ
A
tau
taus

Q06 Q07

Q01

Q05
TAP

Qrs

R

Radiosity
(Long Wave)

taus
T“

FJ
TO

sigma T6T7

. sigmr
• JO

J01

Black
Body

TAP

QO

: : : r- p
i i ,----- X A.Xi i | | A

• i i i i i

J

Net
Radiation
(Long Wave)

FJ
A
tau
taus
Qr

Qrl

QO
- Qrs Energy

T
- Qrl
- Uc

Balance

Uc

Figure 3. Block diagram showing macro objects. Dashed lines show either inputs or
system variables shared by macro objects.

17

/***/
/***MACSYMA COMMANDS FOR SPANK OBJECT GENERATION********/
//***y
batch("/ul/nataf/vaxima/mysolve.mac")$
batch("/ul/nataf/vaxima/rad/radnet .mac") $
makespank([eb=sigma*t~4/eb>0,sigma>0,t>0] /’blackbody", [sigma])$
makespank(f=l.8*k-459.67,"degkdegf") $
makespank (sum=xl+x2+x3,"sum3") $
writegenericnetmacro(7,"radiosity_macro",

"radiosity",
’ j [k]-J0[k]-r[k]*fj [k],
taus [k, j] *f j [j] , []) $

writegenericnetmacro (7,"ax_macro",
"ax",
fj M,
f[k, j]*,j[J3, □)$writegenericnetmacro(7,"net_radiation_macro",
"net_radiation",
qr [k] /a [k] - ’ j [k] + (1. -tau [k]) * f j [k] ,
-taus [k, j] *f j [j] , [])$

writegenericnetmacro (7,"energy_balance_macro",
"energy_balance",
qO [k] -qr_s [k] -qr_l [k] ,
uc[k, j]*t[j], [])$

writegenericnetmacro (7,"lumped_radiosity_macro",
"lumped_radiosity",
ua[k, j]*jO[j], [])$
uc[k,j]*t [j])$*/

/***DYNAMIC EXTENSION******************************/
/*total heat balance(+ non radiative)*/
writegenericnetmacro(7,"dyn_energy_balance_macro",

’1 dyn_ener gy_ba1ance11,
qO [k] -qr_s [k] -qr_l [k] - ’m[k] *tdot [k] ,
uc[k, j]*t[j], [])$

Figure 4. Input file of MACSYMA commands for automatically generating SPANK
objects.

18

Feb 15 17:38 1990 radiosity_macro.obj Page 1

/*SPANK
macro
declare
declare
declare
declare
declare
declare
declare
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link
link

macroobject radiosity_macro*/
radiosity
radiosity
radiosity
radiosity
radiosity
radiosity
radiosity

radiosity_l;
radiosity_2;
radiosity_3;
radiosity_4;
radiosity_5;
radiosity_6;
radiosity_7;

j 0_1(radiosity_l.j 0_1)
j 0_2(radiosity_2.j 0_1)
j 0_3(radiosity_3.j 0_1)
j 0_4(radios!ty_4.j 0_1)
j 0_5(radios!ty_5.j 0_1)
j 0_6(radiosity_6.j 0_1)
j 0_7(radiosity_7.j 0_1)
r_l(radiosity_l.r_l)
r_2(radiosity_2.r_l)
r_3(radiosity_3.r_l)
r_4(radios!ty_4.r_l)
r_5(radiosity_5.r_l)
r_6(radiosity_6.r_l)
r_7(radiosity_7.r_l)
j_l(radiosity_l.j_l)
j_2(radiosity_2.j_l)
j_3(radiosity_3.j_l)
j_4(radiosity_4.j_l)
j_5(radiosity_5.j_l)
j_6(radiosity_6.j_l)
j_7(radiosity_7.j_l)
fj_l(radiosity_l.fj_l,radiosity.
radiosity_4.fj_4,radiosity_5.fj_
fj_2(radiosity_l.fj_2,radiosity.
radiosity_4.fj_2,radiosity_5.fj.
fj_3(radiosity_l.fj_3,radiosity.
radiosity_4.fj_3/radiosity_5.f j.
fj_4(radiosity_l.fj_4,radiosity.
radiosity_4.fj_l,radiosity_5.fj_
fj_5(radiosity_l.fj_5,radiosity.
radiosity_4.fj_5,radiosity_5.fj.
fj_6(radiosity_l.fj_6,radiosity.
radiosity_4.fj_6,radiosity_5.fj.
fj_7(radiosity_l.fj_7,radiosity.
radiosity_4.fj_7,radiosity_5.fj.
taus_l_l(radiosity_l.taus_l_l)
taus_2_l(radiosity_2.taus_l_2)
taus_3_l(radiosity_3.taus_l_3)
taus_4_l(radiosity_4.taus_l_4)
taus_5_l(radiosity_5.taus_l_5)
taus_6_l(radiosity_6.taus_l_6)
taus_7_l(radiosity_7.taus_l_7)
taus_l_2(radiosity_l.taus_l_2)
taus_2_2(radiosity_2.taus_l_l)
taus_3_2(radiosity_3.taus_l_2)
taus_4_2(radiosity_4.taus_l_2)

.2 . f j_2, radiosity.

.5, radiosity_6 . f j.

.2 . f j_l, radiosity.

.2, radiosity_6 . f j.

.2 . f j_3, radiosity.

.3, radiosity_6 . f j.
2 . f j_4, radiosity.
.4, radiosity_6 . f j.
.2 . f j_5, radiosity.
1,radiosity_6.fj.
.2 . f j_6, radiosity.
.6, radiosity_6 . f j.
.2 . f j_7, radiosity.
7,radiosity_6.fj.

.3. f j_3,

.6, radiosity_7 . f j_7)

.3 • f j_2,

.2, radiosity_7 . f j_2)

.3 • f j_l,

.3, radiosity_7 . f j_3)

.3. f j_4/
4,radiosity_7.fj_4)
.3. f j_5,
.5, radiosity_7 . f j_5)
.3 • f j_6,
1, radiosity_7.fj_6)
.3. f j_7,
7,radiosity_7.fj_l)

Figure 5a. MACSATvlA-generated file for the macro object radiosity_macro.

19

F ig u re 5a . (cont.)

p.
 p

.
p.
 p

.
p.

p.
 p

.
M

M
M

M
M

M
h-

'l—
‘M

M
p.
 p
.

p.
 p

.
p.
 p

.
p.
 p

.
p.
 p
.

p.
 p

.
p.
 p

.
p.
 p

.
p.
 p

.
M

M
M

M
M

M
M

M
M

p.
 p

.
p.
 p

.
p.
 p

.
p.
 p

.
p.

rt
r+

r+
f+

rt
rt

rt
rt

ft
f+

rt
rt

ft
rt

r+
r+

f+
rt

r+
rt

ft
rt

rt
r+

ct
rt

r+
rt

rt
r+

rt
r+

cl
’r

tr
+

rt
rt

rt
W

W
CU

!D
ED

!D
D)

!D
tD

(D
D)

B)
D)

tU
(D

CU
O)

CU
[U

W
(D

O)
Q)

W
£D

Q)
[D

W
CD

[D
W

W
!D

0)
0)

0)
!D

CD

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

'J
c
n

c
n

tf
.c

jN
ji

-*
^

ic
r
>

c
n

^
o

jN
ji

-‘
^

ic
^

u
i^

o
jK

J
H

'O
c
n

c
n

(^
O

J
b

o
H

^
ic

n
c
n

^
o
J
ts

j(
-j

^
ic

r>
u

i
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
'j

-j
--

j'
j'

j'
j'

O
a
'c

ri
cr

i<
T

ic
n

cr
ia

>
in

u
ic

n
in

in
in

in
(£

>
£
>

tf
>

>
£
t£

>
£
h

£
»
W

G
o
c<

J
to

o
J
G

J
C

J
t'

J
ts

jt
N

j

0
)B

)[
U

B
)B

)t
U

D
J£

U
[l

!D
)!

l)
lD

&
)!

U
0

)!
l)

0
)!

l)
D

)(
U

&
)D

)!
U

C
U

D
)D

)£
U

tU
IU

tt
)(

l)
0

)D
)!

U
B

)D
)(

U
D

)
aQ

-d
(1

0-
D

-Q
.£

lD
.Q

.G
-£

lD
.0

.0
-0

-£
l£

l£
l(

l&
C

i.£
lQ

.D
.C

ID
.C

ia
!i

!1
0.

!i
D

-C
lC

l(
l&

H*
 H

-
H-
 H

-
H-
 H

-
H-

H-
 M

-
H-
 H

-
H-
 P

-
H-
 H

-
H-
 K

 P
-

P-
 P

-
P-
 P

-
P-
 P

-
P-
 P

-
P-
 P

‘
P-
 P

-
P-
 P

-
P-
 P

-
P-
 P

-
P-

O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O

M
M

t/
IW

M
M

M
W

W
M

M
W

M
W

M
W

M
M

t/
lW

M
M

W
W

W
W

W
W

W
M

M
W

M
M

M
W

W
W

p.
 p

.
p.
 p

.
p.
 p

.
p.

 p
.

p.
 p

.
p.
 H

. p
.
H.
 p

.
p.
 H

. p
.

p.
 p

.
H.
 p

.
H.
 H

. H
. p

.
H

. H
. p

.
p.
 p

.
p.
 p

.
p.
 p

.
p.
 p

.
p.

'J
c
r
ic

n
^

c
J
M

H
'4

(T
\c

n
4
iU

)t
o
h

-‘
-o

c
r
iC

n
^

o
jN

jH
'j

c
r
ic

n
^

c
jM

i-
‘

'O
a
ic

n
i^

(>
J
N

ji
-‘

^
]c

n
u

i

ft
rt

rt
(-

tr
tr

tf
+

ft
rt

rt
r+

ft
rt

rt
r+

rt
r+

rt
rt

rt
rt

rt
r+

rt
rt

rt
ft

r+
r+

r+
(i

’(
i'r

+
rt

r+
r+

r+
r+

tD
O

JC
D

W
O

JO
JW

O
Jt

D
W

W
W

tU
W

tU
W

S
D

C
D

W
W

W
W

ID
W

D
JI

D
tD

ID
ID

tD
E

U
E

U
C

D
tD

W
W

O
JD

)

i
i i

i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

I—
‘

I—
‘

(-‘
H

I—
‘

I—
‘

I—
‘
H

‘
I—
‘

I—
‘

I—
‘

H
h

-'
t—

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

!
I

I
I

I
I

I
I

I
I

h-
‘
^

j-
j-

j^
i'

j^
jc

r
ii

-‘
cn

a'
iT

>
C

T
'0

>
cn

cn
i-
‘

C
n

u
ic

n
cn

4
i

^
ff
s

i-
‘

>
t>

>
^

^
C

JC
iJ

C
oO

Jh
-‘

G
J

O
J

to
to

to

tpFeb 15 17:38 1990 radiosity_macro.obj Page

Mar 12 16:46 1990 radiosity. obj Page 1

/*SPANK object file radiosity.obj*/
/*equation [[-fj_l*r_l+j_l-j0_1 = fj_7*taus_l_7+fj_6*taus_l_6
* + f j _5 * t aus_l_5+ f j _4 * t aus_l_4+ f j _3 * taus_l_3+ f j _2 * t aus_l_2+f j _1
taus_l_l]]/define radiosity (j0_l, j_l, f j_l, r_l, taus_l_l, f j_2, taus_l_2, fj_3/

taus_l_3, f j_4, taus_l_4, f j_5, taus_l_5/ fj_6,
taus_l_6,fj_7 ytaus_l_7)

double j0_l;
double j_l;
double fj_l;
double r_l;
double taus_l_l;
double fj_2;
double taus_l_2;
double fj_3;
double taus_l_3;
double fj_4;
double taus_l_4;
double fj_5;
double taus_l_5;
double fj_6;
double taus_l_6;
double fj_7;
double taus_l_7;

j 0_1=j 0_l_radiosity (j_l, f j_l, r_l, taus_l_l, f j_2, taus_l_2,
f j_3, taus_l_3, f j_4, taus_l_4, f j_5, taus_l_5/ f j_6, taus_l_6, fj_7,
taus_l_7);

j_l=j_l_radiosity (j 0_1, fj_l, r_l, taus_l_l, f j_2, taus_l_2,
f j_3, taus_l_3, f j_4, taus_l_4/ f j_5, taus_l_5, f j_6, taus_l_6, f j_7/
taus_l_7);

f j_l=f j_l_radiosity (j 0_1, j_l, r_l, taus_l_l, f j_2, taus_l_2,
f j_3, taus_l_3, f j_4/taus_l_4< f j_5, taus_l_5, f j_6, taus_l_6/ f j_7/
taus_l_7)*/;

r_l=r_l_radiosity (j 0_1, j_l, f j_l, taus_l_l, f j_2, taus_l_2,
f j_3, taus_l_3, f j_4, taus_l_4, f j_5, taus_l_5, f j_6, taus_l_6, f j_7,
taus_l_7) ;

taus_l_l=taus_l_l_radiosity (j0_l, j_l, fj_l,r_l, f j_2, taus_l_2,
f j_3, taus_l_3< f j_4, taus_l_4, f j_5, taus_l_5, f j_6, taus_l_6/
f j_7, taus_l_7) ;

f j_2=f j_2_radiosity (j0_l, j_l, f j_l, r_l, taus_l_l, taus_l_2,
f j_3, taus_l_3, f j_4, taus_l_4, f j_5/taus_l_5, f j_6, taus_l_6, fj_7/
taus_l_7)*/;

taus_l_2=taus_l_2_radiosity (j 0_1, j_l, f j_l, r_l, taus_l_l, f j_2,
f j_3/ taus_l_3, f j_4, taus_l_4/ f j_5, taus_l_5, f j_6, taus_l_6,
f j_7, taus_l_7) ;

f j_3=f j_3_radiosity (j0_l, j_l, f j_l, r_l, taus_l_l, fj_2,
taus_l_2, taus_l_3, f j_4, taus_l_4, f j_5, taus_l_5/ f j_6/ taus_l_6, f j_7
taus_l_7)*/;

taus_l_3=taus_l_3_radiosity (j 0_1, j_l, f j_l, r_l, taus_l_l, f j_2,
taus_l_2, fj_3, f j_4, taus_l_4, f j_5/taus_l_5/ f j_6, taus_l_6,
f j_7, taus_l_7) ;

f j_4=f j_4_radiosity (j0_l, j_l, f j_l, r_l, taus_l_l, fj_2,
taus_l_2, f j_3, taus_l_3, taus_l_4/ f j_5, taus_l_5/ f j_6/ taus_l_6, f j_7
taus_l_7)*/;

Figure 5b. MACSYMA-generated file for the elementary object radiosity.

21

taus_l_4=taus_l_4_radiosity (jO-l, j-l, f j_l, r_l, taus_l_l, fj_2,
taus_l_2,fj_3,taus_l_3/fj_4/fj_5,taus_l_5/fj_6/taus_l_6/
fj_7/taus_l_7);

f j_5=f j_5_radiosity (jOJ, j_l, f j_l, r_l, taus_l_l, fj_2,
taus_l_2/fj_3,taus_l_3, fj_4, taus_l_4,taus_l_5,fj_6,taus_l_6,f j_7
taus_l_7)*/;

taus_l_5=t;aus_l_5_radiosity (j 0_1, j_l, f j_l, r_l, taus_l_l, fj_2,
taus_l_2/ f j_3, taus_l_3, f j_4, taus_l_4, f j_5, f j_6, taus_l_6,
f j_7, taus_l_7) ;

f j_6=f3_6_radiosity (jO_l, j_l/ f j_l, r_l, taus_l_l, fj_2/
taus_l_2, f J_3, taus_l_3, f j_4, taus_l_4, f j_5, taus_l_5/ taus_l_6, fj_7
taus_l_7) */;

taus_l_6=t;aus_l_6_radiosit;y (j 0_1, j_l, f j_l, r_l, taus_l_l, f j_2,
taus_l_2, f j_3/taus_l_3/ f j_4, taus_l_4, fj_5/taus_l_5, fj_6,
f j_7, taus_l_7) ;

f j_7=f j_7_radiosity (j 0_1, j_l, f^l, r_l, taus_l_l, fj_2,
taus_l_2,fj_3,taus_l_3/fj_4/taus_l_4,fj_5,taus_l_5,fj_6,taus_l_6
taus_l_7)*/;

taus_l_7=taus_l_7_radiosity (j0_1, j_l, f ,r_l, taus_l_l, fj_2,
taus_l_2/ f j_3, taus_l_3, f j_4, taus_l_4, f j_5/taus_l_5/ fj_6,
taus_l_6,fj_7);

}

Figure 5b. (cont.)

22

Eeb 15 17:42 1990 fj_l_radiosity.c Page 1

/*SPANK function file fj_l_radiosity
#include "val.h"
#inc1ude <math.h>
#include <stdio.h>

c*/

#define
#define
#define
#deflne
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
VAL
f j_l_radiosity (args)
VAL args [] ;
{ VAL result;

fj_l = -1.0*pow(taus_l_l+r_l/-1.0) *(fj_7*taus_l_7+fj_6*taus_l_6
+ f j _5 * taus_l_5+fj _4 * taus_l_4+ fj_3 * taus_l_3 + fj _2 * taus_l_2-
1.0*j_l+j0_1);

return (result);
>

j0_l args[0].dval
j_l args[l].dval
fj_l result.dval
r_l args [2].dval
taus_l_l args[3].dval
fj_2 args [4].dval
taus_l_2 args[5].dval
fj_3 args[6].dval
taus_l_3 args[7].dval
fj_4 args[8].dval
taus_l_4 args[9].dval
fj_5 args [10] .dval
taus_l_5 args[11].dval
fj_6 args [12] .dval
taus_l_6 args[13].dval
fj_7 args[14].dval
taus_l_7 args[15].dval

Figure 5c. MACSYMA-generated C functions for the elementary object radiosity.

23

Feb 15 17:42 1990 j0_l_radiosity.c Page 1

/*SPANK function
#include
#include
#include

file jO_l_radiosity*/
"val.h"
<math. h>
<stdio.h>

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

j0_l result.dval
j_l args[0].dval
fj_l args [1]. dval
r_l args[2].dval
taus_l_l args[3].dval
fj_2 args[4].dval
taus_l_2 args[5].dval
f j_3 args [6]. dval
taus_l_3 args [7].dval
fj_4 args[8].dval
taus_l_4 args[9].dval
fj_5 args[10].dval
taus_l_5 args [11] .dval
fj_6 args[12].dval
taus_l_6 args[13].dval
fj_7 args [14] .dval
taus_l_7 args [15] .dval

VAL
j 0_l_radiosity(args)
VAL args [] ;
-C VAL result;

J0_1 = -1.0*fj_7*taus_l_7-1.0*fj_6*taus_l_6-1.0*fj_5*taus_l_5
-1.0*fj_4*taus_l_4-l.0*fj_3*taus_l_3-l.0*fj_2*taus_l_2-
1.0*fj_l*taus_l_l-l.0*fj_l*r_l+j_l;

return(result);

Figure 5c. (cont.)

24

Feb 15 17:42 1990 j_l_radioslty.c Page 1

/*SPANK
#include
#include
#include

function file j_l_radiosity.c*
"val.h"
<math.h>
<stdio.h>

/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

j0_l args [0].dval
j_l result.dval
fj_l args[1].dval
r_l args [2] .dval
taus_l_l args[3].dval
fj_2 args [4] .dval
taus_l_2 args[5].dval
fj_3 args[6].dval
taus_l_3 args[7].dval
fj_4 args[8].dval
taus_l_4 args[9].dval
fj_5 args[10].dval
taus_l_5 args[11].dval
fj_6 args [12] .dval
taus_l_6 args[13].dval
fj_7 args [14] .dval
taus_l_7 args[15].dval

VAL
j_l_radiosity(args)
VAL args [] ;
< VAL result;

j_l — fj_7*taus_l_7+fj_6*taus_l_6+fj_5*taus_l_5+fj_4*taus_l_4
+ f j _3 * taus_l_3+fj _2 * taus_l_2 + fj _1* taus_l_l+f3 _1* r_l+ 3 0_1;

return(result);
>

Figure 5c. (cont.)

25

Feb 15 17:43 1990 r_l_radiosity.c Page 1

/*SPANK
#include
#include
#include

function file r_l_radiosity.c*
"val.h"
<math. h>
<stdio.h>

/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
VAL
r_l_radiosity(args)
VAL args [] ;
{ VAL result;

r_l = -1.0* (fj_7*taus_l_7+fj_6*taus_l_6+fj_5*taus_l_5
+fj_4*taus_l_4+fj_3*taus_l_3+fj_2*taus_l_2+fj_l*taus_l_l-l.0*
j—1+3 0_1)/fj_l;return(result) ;

>

j 0_1 args[0].dval
j_l args [1].dval
fj_l args [2].dval
r_l result.dval
taus_l_l args[3].dval
fj_2 args[4].dval
taus_l_2 args[5] .dval
fj_3 args [6]. dval
taus_l_3 args[7].dval
fj_4 args[8].dval
taus_l_4 args[9].dval
fj_5 args[10].dval
taus_l_5 args[11] .dval
fj_6 args [12] .dval
taus_l_6 args[13] .dval
fj_7 args[14].dval
taus_l_7 args[15].dval

Figure 5c. (cont.)

26

Eeb 15 17:43 1990 taus_l_l_radiosity.c Page 1

/*SPANK
#include
#include
#include

function file taus_l_l_radiosity.c
"val.h"
<math.h>
<stdio.h>

V

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

J0_1
J-l
fj-1
r_l
taus_l_l
f j—2taus_l_2
f j—3taus_l_3
fj-4taus_l_4
fJ-5taus_l_5
fJ-6taus_l_6
fj-7taus_l_7

args[0].dval
args[1].dval
args [2] .dval
args[3].dval

result.dval
args [4] . dval

args[5].dval
args[6].dval

args[7] .dval
args[8].dval

args[9] .dval
args[10].dval

args[11].dval
args[12].dval

args[13].dval
args[14].dval

args[15] .dval
VAL
taus_l_l_radiosity(args)
VAL args [] ;
{ VAL result;

taus_l_l = -1.0* (fj_7*taus_l_7+ fj_6*taus_l_6+fj_5*taus_l_5
+fj_4*taus_l_4+fj_3*taus_l_3+fj_2*taus_l_2+fj_l*r_l-l.0*
j_l + j0_l)/fj_l;

return(result) ;
>

Figure 5c. (cont.)

27

Mar 12 18:09 1990 m_ed_light7_3.ps.new Page 1

/*SPANK simulation file for lighting problem*/
/*SPANK file m_ed_light7_3.ps*/
/*Short wave are indicated by sw, long wave by lw*/
/*The problem is the following: we have a ceiling and a floor,
*both insulated, with a plenum with lamps in it below the ceiling,
A translucent lens allows air flow between room and plenum/

/*We have 5 nodes for radiative heat transfer:node 1 is ceiling,
2 is lamp,3 is top of lens, 4 is bottom of lens and 5 is floor/

/*Node 6 is plenum air and node 7 is room air*/
/*Same as ed_light5, except that air nodes are put into the node
list/

/*Units are Btu,hrs,lb,ft,kelvin (for tk's) and fahrenheit
(anywhere else)/

/*Includes mass flow*/
/♦Difference with m_ed_light7_2 is that there is no hplenum.
/♦Outside temperature t_0 is an unknown, room temperature t_7 is an input*/
/♦MAIN SIMULATION FOR STEADY STATE SIMULATION*/
declare
declare
declare
declare
declare
declare
declare
declare
declare

radiosity_macro s,l; /*Short wave and Long wave simulation*/
ax_jnacro fjs,fjl; /*FJ vectors, F shape factor, J radi
net_radiation_jnacro fjqrs,fjqrl; /*Net radiation in each band
heat_balance_macro h; /*Heat balance on each node*/
blackbody ebl,eb2,eb3,eb4,eb5,eb6,eb7;
degkdegf kfl,kf2,kf3,kf4,kf5,kf6,kf7;
sum qrl, qr2, qr3, qr4, qr5, qr6, qr7;
irprod np;
msum6 ucl,uc2,uc3,uc4,uc5,uc6,uc7;

declare heat_add
declare prod
declare heat_add
declare hdbw

hroom,conv76;
rr;
wroom,wplenum;
hr,hp,hs;

/♦Mass flow and specific heat of air*/
input m(np.ini,hroom.m, wroom.m,wplenum.m,conv76 .m)
input cp(mp.in2)
input rs_l(s.r_l)
input rs_2(s.r_2)
input rs_3(s.r_3)
input rs_4(s.r_4)
input rs_5(s.r_5)
input rs_6(s.r_6)
input rs_7(s.r_7)
input rl_l(l.r_l)
input rl_2(l.r_2)
input rl_3(1.r_3)
input rl_4(1.r_4)
input rl_5(1.r_5)
input r1_6(1.r_6)
input r1_7(1.r_7)
/♦Short wave transmittances*/
input taus_l(fj qrs.tau_l)
input taus_2(fj qrs.tau_2)

Figure 6. Problem specification file for steady-state problem, case (1): fixed room air
temperature. The network that describes the problem is formed by linking
together macro objects that represent system component models and by
assigning input quantities.

28

Mar 12 18:09 1990 m_ed_light7_3 .ps .new Page 2

input taus_3(fjqrs.tau_3)
input taus_4(fj qrs.tau_4)
input taus_5(fjqrs.tau_5)
input taus_6(fj qrs.tau_6)
input taus_7(fj qrs.tau_7)
/*Long wave transmittances*/
input taul_l(fjqrl.tau_l)
input taul_2(fjqrl.tau_2)
input taul_3(fjqrl.tau_3)
input taul_4(fjqrl.tau_4)
input taul_5(fjqrl.tau_5)
input taul_6(fjqrl.tau^6)
input taul_7(fjqr1.tau_7)
/*Areas*/
input a_l(fjqrs.a_l, fjqrl.a_l)
input a_2(fjqrs.a_2,fjqrl.a_2)
input a_3(fjqrs.a_3,fjqrl.a_3)
input a_4(fjqrs.a_4,fjqrl.a_4)
input a_5(fj qrs.a_5,fj qr1.a_5)
input a_6 (f jqrs.a_6, f jqrl .a_6)
input a_7 (f jqrs.a_7, f jqrl.a_7)
/*Shape factors*/
input f_1_1(fj s.f_1_1,fj1.f_1_1)
input f_l_2(fj s.f_1_2,fj1.f_l_2)
input f_l_3(fj s.f_l_3,fj1.f_l_3)
input f_l_4(fj s.f_l_4,fj1.f_l_4)
input f_l_5(fj s.f_l_5,fj1.f_l_5)
input f_l_6(fj s.f_l_6,fj1.f_l_6)
input f_1_7(fj s.f_1_7,fjl.f_l_7)
input f_2_l(fj s.f_2_l,fj1.f_2_l)
input f_2_2(fjs.f_2_2,fj1.f_2_2)
input f_2_3(fjs.f_2_3,fjl.f_2_3)
input f_2_4(fj s.f_2_4,fj1.f_2_4)
input f_2_5(fj s.f_2_5,fj1.f_2_5)
input f_2_6(fj s.f_2_6,fj1.f_2_6)
input f_2_7(fjs.f_2_7,fjl.f_2_7)
input f_3_l(fjs.f_3_l.fj1.f_3_l)
input f_3_2(fj s.f_3_2,fj1.f_3_2)
input f_3_3(fj s.f_3_3,fj1.f_3_3)
input f_3_4(fj s.f_3_4,fj1.f_3_4)
input f_3_5(fj s.f_3_5,fj1.f_3_5)
input f_3_6(fj s.f_3_6,fj1.f_3_6)
input f_3_7(fj s.f_3_7,fjl.f_3_7)
input f_4_l(fj s.f_4_1,fjl.f_4_l)
input f_4_2(fj s.f_4_2,fj1.f_4_2)
input f_4_3(fjs.f_4_3,fj1.f_4_3)
input f_4_4(fj s.f_4_4,fj1.f_4_4)
input f_4_5(fj s.f_4_5,fj1.f_4_5)
input f_4_6(fj s.f_4_6,fj1.f_4_6)
input f_4_7(fj s.f_4_7,fjl.f_4_7)

Figure 6. (cont.)

29

Mar 12 18:09 1990 m_ed_light7_3.ps.new Page 3

input f_5_l(fjs.f_5_l,fj1.f_5_l) input f_5_2(fj s.f_5_2,fj1.f_5_2) input f_5_3(fj s.f_5_3,fjl.f_5_3) input f_5_4(fj s.f_5_4.fj1.f_5_4) input f_5_5(fjs.f_5_5,fj1.f_5_5) input f_5_6(fj s.f_5_6,fj1.f_5_6) input f_5_7(fj s.f_5_7,fjl.f_5_7)
input f_6_l(fj s.f_6_l,fjl.f_6_l)
input f_6_2(fj s.f_6_2,fj1.f_6_2)
input f_6_3(fj s.f_6_3,fj1.f_6_3)
input f_6_4 (f j s . f_6_4, f j 1. f_6_4)
input f_6_5(fj s.f_6_5,fjl.f_6_5)
input f_6_6(fj s.f_6_6,fj1.f_6_6)
input f_6_7(fj s.f_6_7,fj1.f_6_7)
input f_7_l(fj s.f_7_l,fjl.f_7_l)
input f_7_2(fj s.f_7_2,fjl.f_7_2)
input f_7_3(fj s.f_7_3,fjl.f_7_3)
input f_7_4(fj s.f_7_4,fjl.f_7_4)
input f_7_5(fj s.f_7_5,fjl.f_7_5)
input f_7_6 (f j s . f_7_6, f j 1. f_7_6)
input f_7_7(fj s.f_7_7,fj1.f_7_7)
/*Generalized conductance convectance matrix*/
1ink uc_l_l(h.uc_l_l,ucl.msum)
input uc_l_2(h.uc_l_2,ucl.xl)
input uc_l_3(h.uc_l_3,ucl.x2)
input uc_l_4(h.uc_l_4,ucl.x3)
input uc_l_5 (h. uc_l_5, ucl. x4)
input uc_l_6(h.uc_l_6,ucl.x5)
input uc_l_7(h.uc_l_7,ucl.x6)
input uc_2_l(h.uc_2_l,uc2.xl)
1ink uc_2_2(h.uc_2_2,uc 2.msum)
input uc_2_3 (h.uc_2_3, uc2 . x2)
input uc_2_4(h.uc_2_4,uc2.x3)
input uc_2_5(h.uc_2_5,uc2.x4)
input uc_2_6(h.uc_2_6,uc2.x5)
input uc_2_7(h.uc_2_7,uc 2.x6)
input uc_3_l(h.uc_3_l,uc3.xl)
input uc_3_2(h.uc_3_2,uc3.x2)
1ink uc_3_3(h.uc_3_3,uc3.msum)
input uc_3_4(h.uc_3_4,uc3.x3)
input uc_3_5(h.uc_3_5,uc3.x4)
input uc_3_6(h.uc_3_6,uc3.x5)
input uc_3_7(h.uc_3_7,uc3.x6)
input uc_4_l(h.uc_4_l,uc4.xl)
input uc_4_2(h.uc_4_2,uc4.x2)
input uc_4_3(h.uc_4_3,uc4.x3)
1ink uc_4_4(h.uc_4_4,uc4.msum)
input uc_4_5(h.uc_4_5,uc4.x4)
input uc_4_6(h.uc_4_6,uc4.x5)

Figure 6. (cont.)

30

Mar 12 18:09 1990 m_ed_light7_3.ps.new Page 4

input uc_4_7(h.uc_4_7,uc4. x6)
input uc_5_l(h.uc_5_l,uc5. xl)
input uc_5_2(h.uc_5_2,uc5. x2)
input uc_5_3 (h. uc_5_3, uc5. x3)
input uc_5_4(h.uc_5_4,uc5. x4)
1 ink uc_5_5 (h. uc_5_5, uc5. msum)
input uc_5_6 (h. uc_5_6, uc5. x5)
input uc_5_7(h.uc_5_7,uc5 . x6)
input uc_6_l (h. uc_6_l, uc6 . xl)
input uc_6_2 (h. uc_6_2, uc6 . x2)
input uc_6_3 (h. uc_6_3, uc6 . x3)
input uc_6_4 (h. uc_6_4, uc6 . x4)
input uc_6_5(h.uc_6_5,uc6. x5)
1 ink uc_6_6 (h. uc_6_6, uc6. msum)
1 ink uc_6_7 (h. uc_6_7, mp. mproduct, uc6 . x6)
input uc_7_l (h. uc_7_l, uc7 . xl)
input uc_7_2(h.uc_7_2.uc7 .x2)
input uc_7_3 (h. uc_7_3, uc7 . x3)
input uc_7_4 (h. uc_7_4, uc7 . x4)
input uc_7_5 (h. uc_7_5, uc7 . x5)
input uc_7_6(h.uc_7_6,uc7 . x6)
1 ink uc_7_7 (h. uc_7_7, uc7 . msum)
/*Special short wave transmittance matrix*/
input tauss_l_l (s . taus_l_l, f jqrs. taus_l_l)
input tauss_l_2 (s . taus_l_2, f jqrs. taus_l_2)
input tauss_l_3 (s . taus_l_3, f jqrs . taus_l_3)
input tauss_l_4 (s . taus_l_4, f j qrs . taus_l_4)
input tauss_l_5 (s . taus_l_5/ f jqrs . taus_l_5)
input tauss_l_6 (s . taus_l_6, f jqrs . taus_l_6)
input tauss_l_7 (s . taus_l_7, f jqrs . taus_l_7)
input tauss_2_l (s. taus_2_l, f jqrs. taus_2_l)
input tauss_2_2 (s . taus_2_2, f jqrs . taus_2_2)
input tauss_2_3 (s. taus_2_3, f j qrs . taus_2_3)
input tauss_2_4 (s. taus_2_4, f jqrs . taus_2_4)
input tauss_2_5 (s . taus_2_5, f jqrs . taus_2_5)
input tauss_2_6 (s . taus_2_6, f jqrs . taus_2_6)
input tauss_2_7 (s . taus_2_7/ f jqrs . taus_2_7)
input tauss_3_l (s . taus_3_l, f jqrs. taus_3_l)
input tauss_3_2 (s. taus_3_2, f jqrs. taus_3_2)
input tauss_3_3 (s. taus_3_3, f jqrs. taus_3_3)
input tauss_3_4 (s . taus_3_4, f jqrs . taus_3_4)
input tauss_3_5 (s . taus_3_5/ f jqrs . taus_3_5)
input tauss_3_6 (s. taus_3_6, f jqrs . taus_3_6)
input tauss_3_7 (s. taus_3_7, f jqrs . taus_3_7)
input tauss_4_l (s . taus_4_l, f jqrs . taus_4_l)
input tauss_4_2 (s . taus_4_2, f jqrs . taus_4_2)
input tauss_4_3 (s . taus_4_3, f jqrs . taus_4_3)
input tauss_4_4 (s . taus_4_4, f jqrs . taus_4_4)
input tauss_4_5 (s. taus_4_5, f j qrs. taus_4_5)

Figure 6. (cont.)

31

Mar 12 18:09 1990 m_ed_light7_3 .ps .new Page 5

input tauss_4_6 (s . taus_4_6, f j qrs . taus_4_6)
input tauss_4_7 (s . taus_4_7, f jqrs . taus_4_7)
input tauss_5_l (s . taus_5_l, f jqrs . taus_5_l)
input tauss_5_2 (s . taus_5_2, f jqrs . taus_5_2)
input tauss_5_3 (s . taus_5_3, f jqrs. taus_5_3)
input tauss_5_4(s.taus_5_4,fj qrs.taus_5_4)
input tauss_5_5 (s . taus_5_5/ f jqrs . taus_5_5)
input tauss_5_6 (s . taus_5_6, f j qrs . taus_5_6)
input tauss_5_7 (s . taus_5_7, f j qrs . taus_5_7)
input tauss_6_l (s . taus_6_l, f jqrs. taus_6_l)
input tauss_6_2 (s . taus_6_2, f jqrs . taus_6_2)
input tauss_6_3 (s . taus_6_3, f jqrs . taus_6_3)
input tauss_6_4 (s . taus_6_4/ f jqrs. taus_6_4)
input tauss_6_5 (s . taus_6_5, f jqrs . taus_6_5)
input tauss_6_6 (s . taus_6_6, f jqrs . taus_6_6)
input tauss_6_7 (s . taus_6_7, f jqrs . taus_6_7)
input tauss_7_l (s. taus_7_l, f jqrs. taus_7_l)
input tauss_7_2 (s . taus_7_2, f jqrs . taus_7_2)
input tauss_7_3 (s . taus_7_3, f jqrs . taus_7_3)
input tauss_7_4 (s . taus_7_4, f j qrs . taus_7_4)
input tauss_7_5 (s . taus_7_5, f j qrs . taus_7_5)
input tauss_7_6 (s . taus_7_6, f j qrs . taus_7_6)
input tauss_7_7 (s . taus_7_7, f j qrs . taus_7_7)

/*Special long wave transmittance matrix*/
input tausl_l_l(1.taus_l_l,fjqrl.taus_l_l)
input tausl_l_2 (1. taus_l_2, f jqrl. taus_l_2)
input tausl_l_3 (1. taus_l_3, f jqrl .taus_l_3)
input tausl_l_4 (1. taus_l_4/ f jqrl. taus_l_4)
input tausl_l_5 (1. taus_l_5/ f jqrl. taus_l_5)
input tausl_l_6 (1. taus_l_6, f jqrl .taus_l_6)
input tausl_l_7 (1. taus_l_7, f jqrl. taus_l_7)
input tausl_2_l (1. taus_2_l/ f jqrl. taus_2_l)
input tausl_2_2 (1 . taus_2_2, f jqrl. taus_2_2)
input tausl_2_3 (1. taus_2_3, fjqrl. taus_2_3)
input tausl_2_4 (1. taus_2_4, fjqrl. taus_2_4)
input tausl_2_5 (1. taus_2_5, fjqrl. taus_2_5)
input tausl_2_6 (1. taus_2_6, fjqrl. taus_2_6)
input tausl_2_7 (1. taus_2_7/ fjqrl .taus_2_7)
input tausl_3_l (1. taus_3_l/ fjqrl. taus_3_l)
input tausl_3_2 (1. taus_3_2, fjqrl. taus_3_2)
input tausl_3_3 (1. taus_3_3, fjqrl. taus_3_3)
input tausl_3_4 (1. taus_3_4, fjqrl. taus_3_4)
input tausl_3_5 (1. taus_3_5, fjqrl. taus_3_5)
input tausl_3_6 (1. taus_3_6, fjqrl. taus_3_6)
input t aus 1_3_7 (1. taus_3_7. fjqrl. taus_3_7)
input tausl_4_l (1. taus_4_l, fjqrl. taus_4_l)
input taus 1_4_2 (1 . taus_4_2, fjqrl. taus_4_2)
input tausl_4_3 (1. taus_4_3, fjqrl. taus_4_3)

Figure 6. (cont.)

32

Mar 12 18:09 1990 m_ed_light7_3.ps.new Page 6

input taus1_4_4(1.taus_4_4, fjqrl.taus_4_4)
input tausl_4_5 (1.taus_4_5/fjqrl.taus_4_5)
input taus1_4_6(1.taus_4_6, fj qr1.taus_4_6)
input taus1_4_7(1.taus_4_7, fj qr1.taus_4_7)
input taus1_5_1(1.taus_5_l, fj qr1.taus_5_l)
input taus1_5_2(1.taus_5_2,fj qr1.taus_5_2)
input tausl_5_3(1.taus_5_3,fjqrl.taus_5_3)
input tausl_5_4 (1. taus_5_4, fjqrl. taus_5_4)
input tausl_5_5(1.taus_5_5/fjqrl.taus_5_5)
input taus1_5_6(1.taus_5_6,fjqrl.taus_5_6)
input tausl_5_7(1.taus_5_7,fjqrl.taus_5_7)
input tausl_6_l(1.taus_6_l,fjqrl.taus_6_l)
input tausl_6_2(1.taus_6_2,fjqrl.taus_6_2)
input tausl_6_3(1,taus_6_3/fjqrl.taus_6_3)
input taus1_6_4(1.taus_6_4,fj qr1.taus_6_4)
input taus1_6_5(1.taus_6_5, fj qr1.taus_6_5)
input tausl_6_6(1.taus_6_6,fjqrl.taus_6_6)
input tausl_6_7(1.taus_6_7,fjqrl.taus_6_7)
input taus1_7_1(1.taus_7_l, fj qr1.taus_7_l)
input tausl_7_2(1.taus_7_2,fjqrl.taus_7_2)
input tausl_7_3 (1. taus_7_3, fjqrl. taus_7_3)
input tausl_7_4 (1. taus_7_4, fjqrl. taus_7_4)
input tausl_7_5(1.taus_7_5,fjqrl.taus_7_5)
input taus1_7_6(1.taus_7_6,fjqrl.taus_7_6)
input tausl_7_7(1.taus_7_7, fjqrl.taus_7_7)

/*Short wave irradiation*/
link fjs_l(s.fj_l,fjqrs.f j_l, fjs.fj_l) [fjsl]
link fjs_2(s.fj_2,fjqrs.fj_2, fjs.fj_2) [fjs2]
link fjs_3(s.fj_3,fjqrs.fj_3,fjs.fj_3)[fjs3]
link fjs_4(s.fj_4,fjqrs.f j_4, fjs.fj_4) [fjs4]
link fjs_5(s.fj_5/fjqrs.f j_5, fjs.fj_5) [fjs5]
link fjs_6(s.fj_6,fjqrs.ffjs.fj_6)[fjs6]
link fjs_7(s.fj_7,fjqrs.fj_7, fjs.f j_7) [fjs7]
/*Long wave irradiation*/
link fjl_l(l.fj_l,fjqrl.fj_l,fjl.fj_l) [fjll]
link fjl_2 (1. fj_2/fjqrl. fj_2, fjl. fj_2) [fjl2]
link f jl_3 (1. fj_3, fjqrl. fj_3, fjl. fj_3) [fjl3]
link f jl_4 (1. fj_4, fjqrl. fj_4, fjl. fj_4) [fjl4]
link f jl_5 (1. fj_5, fjqrl. fj_5, fjl. fj_5) [fjl5]
link f jl_6 (1. fj_6, fjqrl. fj_6, fjl. fj_6) [fj!6]
link fj 1_7 (1. fj_7, fjqrl. fj_7, fjl. fj_7) [fjl7]

/*Temperatures in fahrenheits*/
link t_l (kfl. f,h.t_l) [T]
link t_2 (kf2 . f, h. t_2) [T]
link t_3 (kf3. f,h.t_3) [T]
link t_4 (kf4. f,h. t_4) [T]
link t_5 (kf5. f,h.t_5) [T]
link t_6 (kf6 . f,h. t_6, hp. db) [T]

Figure 6. (cont.)

33

Mar 12 18:09 1990 m_ed_light7_3.ps.new Page 7

input t_7 (k f 7 . f, h. t_7, hr. db) [T]
/*Temperatures in kelvins*/
1 ink tk_l (kf 1.k, ebl. t)
link tk_2 (kf2 .k, eb2 . t)
link tk_3 (kf3 .k, eb3. t)
link tk_4(kf4.k,eb4.t)
link tk_5(kf5.k,eb5.t)
link tk_6(kf6.k,eb6.t)
link tk_7(kf7.k/eb7.t)
/*Net short wave radiant heat transfer*/
link qr_s_l (f jqrs . qr^, qrl. ini,h.qr_s_l)
link qr_s_2 (f jqrs.qr_2, qr2 . inl/h.qr_s_2)
link qr_s_3 (f jqrs . qr_3, qr3 . ini, h. qr_s_3)
1 ink qr_s_4(fj qrs.qr_4,qr4.ini,h.qr_s_4)
link qr_s_5 (f jqrs.qr_5/qr5.ini/h.qr_s_5)
link qr_s_6 (f jqrs. qr_6, qr6 . ini,h. qr_s_6)
link qr_s_7 (f jqrs .qr_7/ qr7 . inl/h.c[r_s_7)
/*Net long wave radiant heat transfer*/
link qr_l_l (fjqrl. qr_l, qrl. in2, h. cjr_l_l)
link qr_l_2 (fjqrl. qr_2, qr2 . in2 ,h. qr_l_2)
link qr_l_3 (fjqrl. qr_3/ qr3. in2 ,h.qr_l_3)
link qr_l_4 (fjqrl .qr_4/qr4.in2,h.qr_l_4)
link qn_l_5 (fjqrl. qr_5, qr5 . in2, h. qr_l_5)
link qr_l_6 (fjqrl. qr_6, qr6 . in2 /h.qr_l_6)
link qr_l_7 (fjqrl .qr_7/ qr7 . in2, h. qr_l_7)
/*Source power input = 0 except on lamp*/
input q0_l(h.q0_l)
input q0_2(h.q0_2,rr.ini)
input q0_3(h.q0_3)
input q0_4(h.q0_4)
input qO_5(h.qO_5)
input q0_6(h.q0_6) [q06]
link q0_7 (h.q0_7yhroom.q) [q07]
/*Total net radiant heat transfer on each node*/
link qr_l (qrl. sum)
link qr_2(qr2.sum)
link qr_3 (qr3. sum)
link qr_4 (qr4. sum)
link qr_5 (qr5. sum)
link qr_6 (qr6 . sum)
link qr_7 (qr7 . sum)
/*Short wave radiosity source vector = 0 except for lamp (node 2)*/
input j0s_l(s.j0_l)
input j0s_2(s.j0_2)
input j0s_3(s.j0_3)
input j 0s_4(s.j 0_4)
input j 0s_5 (s.j 0_5)
input j 0s_6 (s.j 0_6)
input j 0s_7 (s.j 0_7)

Figure 6. (cont.)

34

Mar 12 18:09 1990 m_ed_light7_3.ps.new Page 8

/*Long wave radiosity source vector — blackbody emission*/
link j01_l(1.j0_l,ebl.eb)
link j01_2(1.j0_2,eb2.eb)
link j01_3(1.j0_3,eb3.eb)
link j01_4(1.j0_4,eb4.eb)
link j01_5(1.j0_5/eb5.eb)
link j01_6(1.j0_6,eb6.eb) [eb]
link j01_7(1.j0_7,eb7.eb) [eb]
/*Stefan Boltzmann constant*/
input sigma(ebl.sigma,eb2.sigma,eb3.sigma,eb4.sigma,eb5.sigma,eb6.sigma, eb
/*Short wave radiosities*/
link js_l(s.j_l,fjs.j_l,fjqrs.j_l)
link js_2(s.j_2,fjs.j_2,fjqrs.j_2)
link js_3(s.j_3,fjs.j_3,fjqrs. j_3)
link js_4(s.j_4,fjs.j_4,fjqrs.j_4)
link js_5(s.j_5,fjs.j_5,fjqrs.j_5)
link js_6(s.j_6,fjs.j_6,fjqrs.j_6)
link js_7(s.j_7,fjs.j_7,fjqrs.j_7)
/*Long wave radiosities*/
link jl_l(l.j_l,fjl.j_l,fjqrl.j_l) [jll]
link j1_2(1.j_2,fjl.j_2,fjqrl.j_2) [jl2]
link jl_3(l.j_3, fjl. j_3, fjqrl. j_3) [jl3]
link jl_4 (1. j_4, fjl. j_4, fjqrl. j_4) [jl4]
link jl_5 (1. j_5, fjl. j_5, fjqrl. j_5) [jl5]
link jl_6 (1. j_6, fjl. j_6, fjqrl. j_6) [J16]
link j 1_7 (1. j_7, f j 1. j_7, f jqr 1. j_7) [jl7]
/♦Enthalpies. The strange "outs" and "ins" are due to the fact that q0_6
*and q0_7 are source power inputs to the nodes, and thus are calculated
the opposite way as is usually done in heat_add object./

/♦Thus q0_7=m(h_0-h_7)*/
link h_0 (hs .h, hroom. h_out)
link h_6 (hp .h, conv76 .h_out)
1 ink h_7 (hr . h, hroom. h_in, conv76 . h_in)
link q76(conv76.q,rr.product)
link r(rr.in2)
/♦Supply temperature*/
link t_0(hs.db)
/♦Humidities*/
input w_0 (hs. w, wroom. h_in)
1ink w_6(hp.w,wplenum.h_out)
link w_7 (hr .w, wroom.h_out, wplenum.h_in)
/♦Humidity source*/
input wroom_added(wroom.q)
input wp1enum_added(wp1enum.q)

Figure 6. (cont.)

35

(d
eg
F)

t_
1

(d
eg
F)

t_
0

(d
eg
F)

75

T emp e r oSupply Air

m (Ib/hr/luminoire)
86.5

CeiIing T emp e r o t u r e86.0

85.5

85.0

84.5

m (Ib/hr/luminoire)
130.0

129.8 T emp e r a t u r e
129.6

129.4

129.2

129.0

128.6

128.2

m (Ib/hr/luminoire)

71.0

70.5

^ 70.0
U_ cn 0)“o
O

\ 69.5

69.0

CeiIing T emp era

m (lb/hr/luminaire)

T empe r a u r e

m (Ib/hr/luminoire)

J--------- 1---------1______i______i______i i

Supply Air Iemp e r a t u r e

0 50 100 150 200 250 300 350 400

m (Ib/hr/luminaire)

Figure 7. SPANK steady-state simulation results for case (1), room air temperature
fixed at 75F (left-hand graphs), and case (2), supply air temperature fixed
at 70F (right-hand graphs), as a function of air flow rate.

36

(d
eg
F)

t_
4

(d
eg
F)

t_
3

(d
eg
F)

(Ib/hr/luminoire)

m (Ib/hr/luminoire)

m (Ib/hr/luminoire)

m (Ib/hr/luminaire)

(Ib/hr/Iumi noire) m (Ib/hr/luminaire)

Figure 7. (cont.)

37

(d
eg
F)

l_
6

(d
eg
F)

79.5

m (Ib/hr/luminoire)

m (Ib/h r/Iumino i re)

m (Ib/hr/luminoire)

m (Ib/hr/luminaire)

m (Ib/hr/luminoire) m (Ib/hr/1uminoire)

Figure 7. (cont.)

38

V
 V

V
Y

V
V

Mar 12 18:12 1990 dyn_m_ed_light7_2 .ps .new Page 1

/*SPANK simulation file for lighting problem*/
/*SPANK file dyn_m_ed_light7_2 .ps*/
/*Short wave are indicated by sw, long wave by lw*/
/*The problem is the following: we have a ceiling and a floor,
*both insulated, with a plenum with lamps in it below the ceiling,
A translucent lens allows air flow between room and plenum/

/*We have 5 nodes for radiative heat transfer: node 1 is ceiling,
2 is lamp, 3 is top of lens, 4 is bottom of lens and 5 is floor/

/*Node 6 is plenum air and node 7 is room air*/
/*Same as ed_light5, except that air nodes are put into the node
list/

/*Units are Btu,hrs,lb,ft,kelvin (for tk's) and fahrenheit
(anywhere else)/

/*Includes mass flow*/
/*Difference with m_ed_light7 is that it is DYNAMIC*/
/‘Difference with dyn_m_ed_light7 is that the room
‘temperature is input and the
‘outside air temperature is calculated,
‘unlike in dyn_m_ed_light7 where it is the
‘contrary*/

declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

radiosity_macro s,l; /‘Short wave and Long wave simulation*/
ax_macro fjs,fjl; /*EJ vectors, E shape factor, J radi
net_radiation_macro fjqrs,fjqrl; /‘Net radiation in each band
dyn_energy_balance_macro h; /‘Heat balance on each node*
blackbody ebl,eb2,eb3,eb4,eb5,eb6,eb7;
degkdegf kf1,kf2,kf3,kf4,kf5,kf6,kf7;
sum qrl, qr2, qr3, qr4, qr5, qr6, qr7;
heat_add q_6_7;
sum q2_6_7;
mprod mp;
msum6 ucl,uc2,uc3,uc4,uc5,uc6,uc7;

declare heat_add
declare heat_add
declare hdbw

hroom;
wroom, wplenum;
hr,hp,hs;

/‘Time step*/
>input dt(h.dt)[TIME]
/‘Heat capacitances*/
input m_l(h.m_l)
input m_2(h.m_2)
input m_3 (h. m_3)
input m_4 (h. m_4)
input m_5(h.m_5)
input m_6 (h. m_6)

/‘Mass flow and specific heat of air*/
input m (mp. ini,hroom.m, wroom.m, wplenum.m, q_6_7 .m)
input cp (mp.in2)
/‘Reflectances*/
input rs_l(s.r_l)
input rs_2(s.r_2)

Figure 8. Problem specification file for dynamic problem, case (1): fixed room air tem­
perature. The network that describes the problem is formed by linking
together macro objects that represent system component models and by
assigning input quantities. Arrows indicate input lines that are different
from the steady-state case, Fig. 6.

39

Mar 12 18:12 1990 dyn_m_ed_light7_2.ps.new Page 2

input rs_3(s.r_3)
input rs_4(s.r_4)
input rs_5(s.r_5)
input rs_6(s.r_6)
input rs_7(s.r_7)
input rl_l(1.r_l)
input rl_2(l.r_2)
input rl_3(1.r_3)
input r1_4(1.r_4)
input rl_5(1.r_5)
input rl_6(1.r_6)
input rl_7(1.r_7)
/*Short wave transmittances*/
input taus_l(fjqrs.tau_l)
input taus_2(fjqrs.tau_2)
input taus_3(fjqrs.tau_3)
input taus_4(fj qrs.tau_4)
input taus_5(fj qrs.tau_5)
input taus_6(fj qrs.tau_6)
input taus_7(fjqrs.tau_7)
/*Long wave transmittances*/
input taul_l(fjqrl.tau_l)
input taul_2(fjqrl.tau_2)
input taul_3(fjqrl.tau_3)
input taul_4(fjqrl.tau_4)
input taul_5(fjqrl.tau_5)
input taul_6(fjqrl.tau_6)
input taul_7(fjqrl.tau_7)
/*Areas*/
input a_l(fj qrs
input a_2(fjqrs
input a_3(fj qrs
input a_4(fj qrs
input a_5(fj qrs
input a_6(fj qrs
input a_7(fjqrs
/*Shape factors*/
input f_l_l(fjs
input f_1_2(fj s
input f_1_3 (f j s
input f_1_4(fj s
input f_l_5(fj s
input f_1_6(fj s
input f_l_7(fjs
input f_2_l(fjs
input f_2_2(fjs
input f_2_3(fj s
input f_2_4(fj s
input f_2_5(fj s
input f_2_6(fj s

a_l,fjqrl.a_l)
a_2/fjqrl.a_2)
a_3, fjqrl. a_3)
a_4, fjqrl. a_4)
a_5, fjqrl. a_5)
a_6, fjqrl. a_6)
a_7, f jqrl .a_7)

f_l_l. fjl.f_l_l)
f_l_2, f j 1 - f_l_2)
f_l_3, fjl. f_l_3)
f_1_4, fjl. f_l_4)
f—1—5, fjl.f_l_5)
f_l_6, fjl - f_l_6)
f—1—7, f j 1. f_l_7)
f_2_l, fjl • f_2_l)
f_2_2, f j 1. f_2_2)
f_2_3, f jl. f_2_3)
f_2_4, f j 1. f_2_4)
f_2_5, fjl. f_2_5)
f_2_6, fjl. f_2_6)

Figure 8. (cont.)

40

Mar 12 18:12 1990 dyn_m_ed_light7_2 .ps .new Page 3

input f_2_7 (f js . f_2_7, f jl. f_2_7)
input f_3_l (f j s. f_3_l, f j 1. f_3_l)
input f_3_2 (f j s . f_3_2, f j 1. f_3_2)
input f_3_3 (f j s . f_3_3, f j 1. f_3_3)
input f_3_4 (f j s . f_3_4, f j 1. f_3_4)
input f_3_5 (f j s • f_3_5, f j 1. f_3_5)
input f_3_6 (f j s . f_3_6, f j 1. f_3_6)
input f_3_7 (f j s . f_3_7 .fjl. f_3_7)
input f_4_l (f j s . f_4_l .fjl. f_4_l)
input f_4_2(fj s.f_4_2,fj1.f_4_2)
input f_4_3(fj s.f_4_3,fj1.f_4_3)
input f_4_4 (f j s . f_4_4, f j 1. f_4_4)
input f_4_5 (f j s . f_4_5, f j 1. f_4_5)
input f_4_6 (f j s . f_4_6 .fjl. f_4_6)
input f_4_7 (f j s . f_4_7, f j 1. f_4_7)
input f_5_l (f js . f_5_l, f j 1. f_5_l)
input f_5_2 (f j s . f_5_2 .fjl. f_5_2)
input f_5_3 (f j s . f_5_3, f j 1. f_5_3)
input f_5_4 (f j s . f_5_4, f j 1. f_5_4)
input f_5_5 (f j s . f_5_5 .fjl. f_5_5)
input f_5_6 (f j s . f_5_6 .fjl. f_5_6)
input f_5_7 (f j s . f_5_7 .fjl. f_5_7)
input f_6_l (f j s . f_6_l, f j 1. f_6_l)
input f_6_2 (f j s . f_6_2, f j 1. f_6_2)
input f_6_3 (f j s . f_6_3, f j 1. f_6_3)
input f_6_4 (f j s . f_6_4, f j 1. f_6_4)
input f_6_5 (f j s. f_6_5, f j 1. f_6_5)
input f_6_6 (f j s . f_6_6, f j 1. f_6_6)
input f_6_7 (f js . f_6_7, f j 1. f_6_7)
input f_7_l (f j s. f_7_l, f j 1. f_7_l)
input f_7_2(fj s.f_7_2.fj1. f_7_2)
input f_7_3 (f j s . f_7_3 .fjl. f_7_3)
input f_7_4 (f j s . f_7_4, f j 1. f_7_4)
input f_7_5 (f j s . f_7_5, f j 1. f_7_5)
input f_7_6 (f j s . f_7_6 .fjl. f_7_6)
input f_7_7 (f j s . f_7_7. f j 1. f_7_7)
/*Generalized conductance convectance matrix*/
1 ink uc_l_l (h. uc_l_l. ucl. msum)
input uc_l_2(h.uc_l_2,ucl. xl)
input uc_l_3(h.uc_l_3,ucl.x2)
input uc_l_4(h.uc_l_4.ucl.x3)
input uc_l_5 (h. uc_l_5, ucl. x4)
input uc_l_6 (h. uc_l_6, ucl. x5)
input uc_l_7(h.uc_l_7,ucl.x6)
input uc_2_l(h.uc_2_l,uc2.xl)
link uc_2_2 (h. uc_2_2. uc2 .msum)
input uc_2_3(h.uc_2_3,uc2 . x2)
input uc_2_4(h.uc_2_4,uc2.x3)
input uc_2_5(h.uc_2_5,uc2.x4)

Figure 8. (cont.)

41

Mar 12 18:12 1990 dyn_m_ed_light7_2.ps.new Page 4

input uc_2_6(h.uc_2_6,uc2.x5)
input uc_2_7(h.uc_2_7,uc2.x6)
input uc_3_l(h.uc_3_l,uc3.xl)
input uc_3_2(h.uc_3_2,uc3.x2)
1 ink uc_3_3(h.uc_3_3,uc3.msum)
input uc_3_4(h.uc_3_4,uc3.x3)
input uc_3_5(h.uc_3_5,uc3.x4)
input uc_3_6(h.uc_3_6,uc3.x5)
input uc_3_7(h.uc_3_7,uc3.x6)
input uc_4_l(h.uc_4_l,uc4.xl)
input uc_4_2(h.uc_4_2,uc4.x2)
input uc_4_3(h.uc_4_3,uc4.x3)
1 ink uc_4_4 (h. uc_4_4, uc4. msum)
input uc_4_5(h.uc_4_5,uc4.x4)
input uc_4_6(h.uc_4_6,uc4.x5)
input uc_4_7(h.uc_4_7,uc4.x6)
input uc_5_l(h.uc_5_l,uc5.xl)
input uc_5_2(h.uc_5_2,uc5.x2)
input uc_5_3(h.uc_5_3,uc5.x3)
input uc_5_4(h.uc_5_4,uc5.x4)
1 ink uc_5_5 (h. uc_5_5, uc5 . msum)
input uc_5_6(h.uc_5_6,uc5.x5)
input uc_5_7(h.uc_5_7,uc5.x6)
input uc_6_l(h.uc_6_l,uc6.xl)
input uc_6_2(h.uc_6_2,uc6.x2)
input uc_6_3(h.uc_6_3,uc6.x3)
input uc_6_4(h.uc_6_4,uc6.x4)
input uc_6_5(h.uc_6_5,uc6.x5)
1 ink uc_6_6 (h. uc_6_6, uc6 . msum)
1 ink uc_6_7(h.uc_6_7,mp.mproduct,uc6.x6)
input uc_7_l(h.uc_7_l,uc7.xl)
input uc_7_2(h.uc_7_2,uc7.x2)
input uc_7_3(h.uc_7_3,uc7.x3)
input uc_7_4(h.uc_7_4,uc7.x4)
input uc_7_5(h.uc_7_5,uc7.x5)
input uc_7_6(h.uc_7_6,uc7.x6)
1 ink uc_7_7(h.uc_7_7,uc7.msum)
/*Special short wave transmittance matrix*/
input tauss_l_l(s.taus_l_l,fjqrs.taus_l_l)
input tauss_l_2(s.taus_l_2,fjqrs.taus_l_2)
input tauss_l_3(s.taus_l_3,fjqrs.taus_l_3)
input tauss_l_4(s.taus_l_4/fjqrs.taus_l_4)
input tauss_l_5(s.taus_l_5,fj qrs.taus_l_5)
input tauss_l_6(s.taus_l_6/fjqrs.taus_l_6)
input tauss_l_7(s.taus_l_7/fjqrs.taus_l_7)
input tauss_2_l(s.taus_2_l,fjqrs.taus_2_l)
input tauss_2_2(s.taus_2_2,fjqrs.taus_2_2)
input tauss_2_3(s.taus_2_3/fjqrs.taus_2_3)
input tauss_2_4(s.taus_2_4/fjqrs.taus_2_4)

Figure 8. (cont.)

42

Mar 12 18:12 1990 dyn_jiL_ed_light7_2 .ps .new Page 5

input tauss_2_5 (s . taus_2_5/ f jqrs . taus_2_5)
input tauss_2_6(s.taus_2_6, fjqrs.taus_2_6)
input tauss_2_7(s.taus_2_7, fjqrs.taus_2_7)
input tauss_3_l(s.taus_3_l,fjqrs.taus_3_l)
input tauss_3_2(s.taus_3_2, fjqrs.taus_3_2)
input tauss_3_3(s.taus_3_3/fjqrs.taus_3_3)
input tauss_3_4(s.taus_3_4/fjqrs.taus_3_4)
input tauss_3_5(s.taus_3_5, fjqrs.taus_3_5)
input tauss_3_6(s.taus_3_6„fjqrs.taus_3_6)
input tauss_3_7(s.taus_3_7,fjqrs.taus_3_7)
input tauss_4_l(s.taus_4_l, fjqrs.taus_4_l)
input tauss_4_2(s.taus_4_2,fjqrs.taus_4_2)
input tauss_4_3(s.taus_4_3, fj qrs.taus_4_3)
input tauss_4_4(s.taus_4_4, fjqrs.taus_4_4)
input tauss_4_5(s.taus_4_5, fj qrs.taus_4_5)
input tauss_4_6(s.taus_4_6,fjqrs.taus_4_6)
input tauss_4_7(s.taus_4_7, fjqrs.taus_4_7)
input tauss_5_l(s.taus_5_l/fjqrs.taus_5_l)
input tauss_5_2(s.taus_5_2, fjqrs.taus_5_2)
input tauss_5_3(s.taus_5_3/fjqrs.taus_5_3)
input tauss_5_4(s.taus_5_4,fj qrs.taus_5_4)
input tauss_5_5(s.taus_5_5/ fjqrs.taus_5_5)
input tauss_5_6(s.taus_5_6.fjqrs.taus_5_6)
input tauss_5_7(s.taus_5_7, fjqrs.taus_5_7)
input tauss_6_l(s.taus_6_l, fjqrs.taus_6_l)
input tauss_6_2(s.taus_6_2, fj qrs.taus_6_2)
input tauss_6_3(s.taus_6_3, fjqrs.taus_6_3)
input tauss_6_4(s.taus_6_4,fjqrs.taus_6_4)
input tauss_6_5(s.taus_6_5,fj qrs.taus_6_5)
input tauss_6_6(s.taus_6_6,fjqrs.taus_6_6)
input tauss_6_7(s.taus_6_7„ fjqrs.taus_6_7)
input tauss_7_l(s.taus_7_l,fjqrs.taus_7_l)
input tauss_7_2(s.taus_7_2, fjqrs.taus_7_2)
input tauss_7_3(s.taus_7_3/fjqrs.taus_7_3)
input tauss_7_4(s.taus_7_4,fj qrs.taus_7_4)
input tauss_7_5(s.taus_7_5, fjqrs.taus_7_5)
input tauss_7_6(s.taus_7_6, fj qrs.taus_7_6)
input tauss_7_7(s.taus_7_7, fjqrs.taus_7_7)

/*Special long wave transmittance matrix*/
input taus1_1_1(1.taus_l_l,fj qr1.taus_l_l)
input taus1_1_2(1.taus_l_2,fj qr1.taus_l_2)
input tausl_l_3(1.taus_l_3/fjqrl.taus_l_3)
input tausl_l_4(1.taus_l_4, fj qr1.taus_l_4)
input tausl_l_5(1.taus_l_5/ fjqrl.taus_l_5)
input taus1_1_6(1.taus_l_6, fjqrl.taus_l_6)
input tausl_l_7(1.taus_l_7/ fjqrl.taus_l_7)
input tausl_2_l(1.taus_2_l, fjqrl.taus_2_l)
input tausl_2_2(1.taus_2_2/ fjqrl.taus_2_2)

Figure 8. (cont.)

43

Mar 12 18:12 1990 dyn_m_ed_light7_2.ps.new Page 6

input tausl_2_3(1.taus_2_3/fjqrl.taus_2_3)
input tausl_2_4(1.taus_2_4/fjqrl.taus_2_4)
input tausl_2_5 (1. taus_2_5, f jcjrl. taus_2_5)
input tausl_2_6 (1. taus_2_6, f jc[rl. taus_2_6)
input tausl_2_7(1.taus_2_7,fjqrl.taus_2_7)
input tausl_3_l(1.taus_3_l,fjqrl.taus_3_l)
input tausl_3_2(1.taus_3_2,fjqrl.taus_3_2)
input tausl_3_3(1.taus_3_3,fjqrl.taus_3_3)
input tausl_3_4(1.taus_3_4,fjqrl.taus_3_4)
input tausl_3_5(1.taus_3_5/fjqrl.taus_3_5)
input tausl_3_6(1.taus_3_6,fjqrl.taus_3_6)
input tausl_3_7(1.taus_3_7,fjqrl.taus_3_7)
input tausl_4_l(1.taus_4_l,fjqrl.taus_4_l)
input tausl_4_2(1.taus_4_2,fjqrl.taus_4_2)
input tausl_4_3(1.taus_4_3,fjqrl.taus_4_3)
input tausl_4_4(1.taus_4_4,fjqrl.taus_4_4)
input tausl_4_5(1.taus_4_5,fjqrl.taus_4_5)
input taus1_4_6(1.taus_4_6,fj qr1.taus_4_6)
input taus1_4_7(1.taus_4_7,fj qr1.taus_4_7)
input tausl_5_l(1.taus_5_l,fjqrl.taus_5_l)
input tausl_5_2(1.taus_5_2,fjqrl.taus_5_2)
input tausl_5_3(1.taus_5_3,fjqrl.taus_5_3)
input tausl_5_4(1.taus_5_4,fjqrl.taus_5_4)
input tausl_5_5(1.taus_5_5,fjqrl.taus_5_5)
input tausl_5_6(1.taus_5_6,fjqrl.taus_5_6)
input taus1_5_7(1.taus_5_7,fj qr1.taus_5_7)
input taus1_6_1(1.taus_6_l,fj qr1.taus_6_l)
input taus1_6_2(1.taus_6_2,fj qr1.taus_6_2)
input tausl_6_3(1.taus_6_3<fjqrl.taus_6_3)
input tausl_6_4(1.taus_6_4,fjqrl.taus_6_4)
input tausl_6_5(1.taus_6_5,fjqrl.taus_6_5)
input tausl_6_6(1.taus_6_6,fjqrl.taus_6_6)
input tausl_6_7(1.taus_6_7,fjqrl.taus_6_7)
input tausl_7_l(1.taus_7_l,fjqrl.taus_7_l)
input tausl_7_2(1.taus_7_2,fjqrl.taus_7_2)
input tausl_7_3(1.taus_7_3,fjqrl.taus_7_3)
input tausl_7_4(1.taus_7_4,fjqrl.taus_7_4)
input tausl_7_5(1.taus_7_5,fjqrl.taus_7_5)
input tausl_7_6(1.taus_7_6,fjqrl.taus_7_6)
input taus1_7_7(1.taus_7_7,fj qr1.taus_7_7)

/‘Short wave irradiation*/
link fjs_l(s.fj_l,fjqrs.fj_l,fjs.fj_l)[fjsl]
link fjs_2(s.fj_2,fjqrs.fj_2,fjs.fj_2)[fjs2]
link fjs_3(s.fj_3,fjqrs.fj_3,fjs.fj_3)[fjs3]
link fjs_4(s.fj_4,fjqrs.fj_4,fjs.fj_4)[fjs4]
link fjs_5(s.fj_5,fjqrs.fj_5,fjs.fj_5) [fjs5]
link fjs_6(s.fj_6,fjqrs.fj_6,fjs.fj_6)[fjs6]
link fjs_7(s.fj_7,fjqrs.fj_7,fjs.fj_7)[fjs7]

Figure 8. (cont.)

44

Mar 12 18:12 1990 dyn_m_ed_light7_2.ps.new Page 7

/*Long wave irradiation*/
link fjl_l(1.f]_l,fjqrl.fj_l, fjl.fj_l) [fjll]
link fjl_2(l.fj_2/fjqrl.fj_2,fjl.fj_2) [fjl2]
link f jl_3 (1. fj_3/fjqrl. fj_3, fjl. fj_3) [fjl3]
link f jl_4 (1. fj_4, fjqrl. fj_4, fjl. fj_4) [fjl4]
link fjl_5 (1. f j_5, fjqr 1. fj_5, fjl. fj_5) [fjl5]
link ^^(l.fj.e.fjqrl.fj.e^jl.fj.G) [f j 16]
link fjl_7(l.fj_7, fjqrl. fj_7, fjl. fj_7) [fjl7]

/*Temperatures in fahrenheits*/
link t_l(kfl.f/h. t_l)
link t_2(kf2.f/h.t_2)
link t_3 (kf3. f ,h. t_3)
link t_4 (kf4. f ,h. t_4)
link t_5 (kf5. f ,h.t_5)
link t_6 (kf6 . f ,h. t_6,hp.db) [T]
input t_7 (k f 7. f, h. t_7, hr. db) [T]
/* Temper ature derivatives*/

> 1 ink tdot_l (h. tdot_l)
> 1 ink tdot_2 (h. tdot_2)
> 1 ink tdot_3(h.tdot_3)
>1 ink tdot_4(h.tdot_4)
> 1 ink tdot_5(h.tdot_5)
> link tdot_6 (h. tdot_6)

/♦Temperature history*/
> history t_l_h (h. t_l_hist)
> history t_2_h (h. t_2_hist)

history t_3_h (h. t_3_hist)
^ history t_4_h (h. t_4_hist)
^history t_5_h (h. t_5_hist)
> history t_6_h (h.t_6_hist)

/♦Temperatures in kelvins*/
link tk_l (kfl .k, ebl. t)
link tk_2 (kf 2 .k, eb2 . t)
link tk_3(kf3.k,eb3.t)
link tk_4(kf4.k,eb4.t)
link tk_5 (kf5 .k, eb5 . t)
link tk_6 (kf6 .k, eb6 . t)
link tk_7(kf7.k,eb7.t)
/♦Net short wave radiant heat transfer*/
link qr_s_l (f jqrs . qr_l/ qrl. ini, h. qr_s_l)
link qr_s_2 (f jqrs .qr_2, qr2 . ini, h. qr_s_2)
link qr_s_3 (f jqrs .qr_3< qr3 . inl/h.qr_s_3)
link qr_s_4 (f jqrs . qr_4, qr4 . ini, h. qr_s_4)
link qr_s_5 (f jqrs . qr_5/ qr5 . inl,h. qr_s_5)
link qr_s_6(fjqrs.qr_6/qr6.ini.h.qr_s_6)
link qr_s_7 (f jqrs .qr_7, qr7 . ini, h. qr_s_7)
/♦Net long wave radiant heat transfer*/
link qr_l_l(fjqrl.qr_l,qrl.in2,h.qr_l_l)
link qr_l_2 (fjqrl .qr_2,qr2 . in2, h. qr_l_2)

Figure 8. (cont.)

45

Mar 12 18:12 1990 dyn_m_ed_light7_2.ps.new Page 8

link qr_l_3(fjqrl,qr_3/ qr3.in2,h.qr_l_3)
link qr_l_4(fjqrl.qr_4,qr4.in2,h.qr_l_4)
link qr_l_5(fjqrl.qr_5/ qr5.in2,h.qr_l_5)
link qr_l_6 (fjqrl .qr_6, qr6 . in2, h. qr_l_6)
link qr_l_7 (fjqrl. qr_7, qr7 . in2, h. qr_l_7)
/*Source power input = 0 except on lamp*/
input q0_l(h.q0_l)
input q0_2(h.q0_2)
input q0_3(h.q0_3)
input q0_4(h.q0_4)
input q0_5(h.q0_5)
input q0_6(h.q0_6,q2_6_7.ini)[q06]
link q0_7(h.q0_7/hroom.q,q2_6_7.in2)[q07]
/*Load*/
link load(q_6_7.q)
link load2(q2_6_7.sum)
/*Total
link
link
link
link
link
link
link

net radiant heat transfer on each node*/
qr_l(qrl.sum)
qr_2(qr2.sum)
qr_3 (qr3. sum)
qr_4 (qr4. sum)
qr_5 (qr5. sum)
qr_6 (qr6. sum)
qr_7 (qr7. sum)

/*Short
input
input
input
input
input
input
input

wave radiosity source vector = 0 except for lamp
j0s_l(s.j0_l)
j0s_2(s.j 0_2)
j0s_3 (s . j 0_3)
j0s_4(s.j0_4)
j 0s_5(s.j0_5)
j0s_6(s.j0_6)
j 0s_7(s.j 0_7)

(node 2)*/

/*Long wave radiosity source vector = blackbody emission*/
link j01_l(1.j0_l,ebl.eb)
link j01_2(1.j0_2,eb2.eb)
link j01_3(1.j0_3.eb3.eb)
link j01_4(1.j0_4/eb4.eb)
link j01_5(1.j0_5/eb5.eb)
link j01_6(1.j0_6,eb6.eb)[eb]
link j 01_7(1.j 0_7,eb7.eb) [eb]
/*Stefan Boltzmann constant*/
input sigma(ebl.sigma.eb2.sigma.eb3.sigma,eb4.sigma,eb5.sigma,eb6 .sigma,eb
/*Short wave radiosities*/
link js_l(s.j_l,fjs.j_l,fjqrs.j_l)
link js_2(s.j_2,fjs.j_2,fjqrs.j_2)
link js_3(s.j_3,fjs.j_3,fjqrs.j_3)
link js_4(s.j_4,fjs.j_4,fjqrs.j_4)
link js_5(s.j_5,fjs.j_5,fjqrs.j_5)
link js_6(s.j_6,fjs.j_6,fjqrs.j_6)

Figure 8. (cont.)

46

Mar 12 18:12 1990 dyn_m_ed_light7_2 .ps .new Page 9

link js_7 (s . j_7, f js . j_7, f jqrs . j_7)
/*Long wave radiosities*/
link jl_l(l.j_l,fjl.j_l,fjqrl.j_l) [jll]
link j 1_2 (1. j_2, fjl. j_2/ fjqrl. j_2) [jl2]
link jl_3 (1. j_3/fjl. j_3/fjqrl. j_3) [jl3]
link j 1_4 (1. j_4, f j 1. j_4/ fjqrl. j_4) [jl4]
link j 1_5 (1. j_5, fjl. j_5, fjqrl. j_5) [jl5]
link j1_6(1.j_6,fjl.j_6,fjqrl.j_6)[jl6]
link jl_7(l.j_7, fjl. j_7, fjqrl. j_7) [jl7]
/‘Enthalpies. The strange "outs" and "ins" are due to the fact that
*q0_7 is source power input to the nodes, and thus is calculated
the opposite way as is usually done in heat_add object./

/‘Thus q0_7=m(h_0-h_7)*/
link h_0 (hs .h,hroom.h_out, q_6_7 .h_in)
1 ink h_6 (hp. h, q_6_7 . h_out)
1 ink h_7 (hr . h, hroom. h_in)
/‘Supply temperature*/
link t_0(hs.db)
/‘Humidities*/
input w_0(hs.w,wroom.h_in)
link w_6 (hp.w, wplenum.h_out)
link w_7 (hr .w, wroom.h_out, wplenum.h_in)
/‘Humidity source*/
input wroom_added(wroom.q)
input wp1enum_added(wp1enum.q)

Figure 8. (cont.)

47

Tempe r a tu r eSupply Air

lime (Hours)

Cei I ing Temperature

time (Hours)

no _

no _

100 _

L amp T emp e r o t u r e

ime (Hours)

Figure 9. SPANK dynamic simulation
at 75F (left-hand graphs)
70F (right-hand graphs), a

71.0

Supply Air Temperature70.5

70.0

69.5

69.0

time (Hours)

Ceiling Temperature

time (Hours)

120 _

no _

100 _

Lamp Temperoture

time (Hours)

results for case (l), room air temperature fixed
and case (2), supply air temperature fixed at

s a function of air flow rate.
48

(d
eg
F)

t_
4

(d
eg
F)

[-i

 (
de

5F
)

T emp e r a t u r eLensUpper

time (Hours)

Lower Lens Temperature

time (Hours)

Temper

time (Hours)

Cna>“O

I

CT>O)T)

T emp e r o t u r e

time (Hours)

Lower Lens T emp e r o t u r e

time (Hours)

Floor Tempe r o t u re

time (Hours)

Figure 9. (cont.)

49

(d
eg
F)

t_
6

(d
eg
_F
)

TcmperoturePIenum Ai

time (Hours)
76.0

75.5

75.0

74.5 T emp e r a t u r eRoom Air

74.0

time (Hours)
140000

120000

100000

eoooo

60000

40000

D 20000

20000

time (Hours)

time (Hours)

time (Hours)

time (Hours)

Figure 9. (cont.)

50

(JH
/niB) l

O
b

140000

120000

100000

80000

60000

40000

Powe r20000

time (Hours)

140000

120000

100000

80000

3 60000

CM 40000

Powe r20000

time (Hours)

Figure 9. (cont.)

51

