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THE THEORY OF CONTRIBUTON TRANSPORT

by

J. W. Painter, S. A. W. Gerstl
and

G. C. Pomraning

ABSTRACT

A general discussion of the physics of contributon transport is
presented. To facilitate this discussion, a Boltzmann-like transport
equation for contributions is obtained, and special contributon cross
sections are defined. However, the main goal of this study is to
identify contributon transport equations and investigate possible
deterministic solution techniques. Four approaches to the deterministic
solution of the contributon transport problem are investigated. These
approaches are an attempt to exploit certain attractive properties of
the contributon flux, <Ji « <W*", where <J> and <J>+ are the solutions to the
forward and adjoint Boltzmann transport equations. The first approach
involves the derivation of a quasi-linear differential equation for
I|I. The order of the resulting differential equation is shown to depend
upon S and S+, the source terms, including scattering, in the forward
and adjoint Boltzmann equations. Some simple pure absorber problems
are solved analytically. Attempts at numerical solutions for a more
general class of problems indicate that when spatial discontinuities
exisC in S or S+, the difference equations are susceptible to numerical
instability with respect to the size of the spatial mesh intervals.
The second approach involves the derivation of an explicitly nonlinear
differential equation for <p. This equation is a generalization to
scattering media of a similar equation, which was previously obtained
for a pure absorber. This approach has not been actively pursued in
detail. The third approach involves iterating between a differential
equation that contains only IJJ and <f+ and a differential equation
that contains only IJJ and <j>. A multiple-grid approach, in which a
coarser mesh is used for iji than for <> and (j>+ in those- regions where
i(i varies more slowly than <p and $+» is investigated. When the multiple
grid is used, it is found that contributon flux distortions, which are
indicative of inconsistencies among the difference equations, are
introduced into the converged solutions. The problem of consistency is
studied in detail for the case of slab geometry. The final approach
involves writing a linear integral equation for a generalized contributon
flux. However, this approach has not been actively pursued in detail.

I. INTRODUCTION In these equations $ is the forward angular flux,

Linear neutral particle transport can be de- $ + is the adjoint angular flux, Q is the forward

scribed by either the forward Boltzmann equation, source distribution, R is the detector response func-

tion and adjoint source, L is the forward transpoic

W • Q . (1) operator, and L is the adjoint transport operator

defined such that

or the adjoint Boltzmann equation,

<$+,U>> - <I.V\<f» . (3)
L+i)>+ - R . (2)



The two descriptions are equivalent in the sense that

any integral response is given by

where <,> indicates an integral over all phase space,

that is, over all spatial positions jr, directions ft,

and energies E.

The standard approach to obtaining I involves

solving either Eq. (1) or Eq. (2) and then using the

appropriate integral in Eq. (4). However, a new ap-

proach, namely the contributon approach, has recently

been suggested. ' In this approach a contributon

angular flux is defined as

) * i)> (£^i_, E) ij> (£,n,E) , (5).

and the integral response is calculated from

'III <"Q*->*(->Q- (5a)

"J J] :r,n,E)dEdMS (5b)

where S is any surface that encloses the source but

not the detector, S_ is any surface that encloses
K

the detector but not the source, and n and n_ are

the outward-directed unit normal vectors on the sur-

faces, S and SR, respectively. If surfaces S. (or

SR) are chosen such that they are described by the

sane unit normal vector n_(or fL), the surface in-

tegrals in Eqs. (5a) and (5b) can be replaced by a
4

voluae integral. For example, in slab geometry I
could be calculated from

C(fW(x,u,E)dEdydx , (5c)

where

(5d)

and the region, x < x < x 2'
 l i e* between the source

and detector. This function i|» provides not only suf-

ficient information to calculate I but also informa-

tion on transport paths, in that peaks in i> correspond

to preferred transport paths in phase space between

the source and detector. This interpretation of <(i

is possible because contributons constitute the sub-

set of source particles which actually reach the

detector and contribute to the response, and it finds

applications in channel theory analysis as described

in Ref. 3.

One approach which has been used to compute if)

is to separately calculate $ and $ and then to use
3 2

the definition of iji in Eq. (5). The other approach,

however, involves solving for \l> directly and is the

approach documented in this report. In deep-penetra-

tion Monte Carlo calculations, where considerable

effort is expended in tracking source particles which

n e v e reach the detector, the contributon approach

has produced a significant reduction in effort by

reducing the number of wasted histories. In the

deterministic approach, the goal is the reduction

in effort which might be obtained from solving for

one unknown, iji, rather than two unknowns, if and <t> .

In addition, i|> is expected to vary more slowly than

$ and <f> over much of the system, so coarse meshes

might be employed in those regions where this is

true. This slow variation is a direct consequence

of the conservation law for i|i derived in Ref. 2.

Two approaches to the solution of the contributon

problem are presented in Ref. 2. One involves the

solution of a linear complex differential equation in

the unknown

(6)

but this obviously produces no reduction in effort.

The second approach involves the solution of a non-

linear real differential equation in 4i. This equa-

tioc was obtained for the special case of a pure

absorber with constant cross section, source, and

detector response. However, no boundary condition*

were specified and no attempt was made to solve this

nonlinear equation.

The present report describes the physics of con-

tributon transport and some of the approaches consid-

ered for the deterministic solution of the contributon



transport problem. In the next sect ion of t h i s re -

port , a contributon transport equation, ident ica l

In form to the Boltzmann equation, i s derived. From

th i s equation, considerable ins ight into contributon

transport i s gained. The derivation of th i s trans-

port equation requires the introduction of a spec ia l

contributon scat ter ing cross s e c t i o n , and the prop-

e r t i e s of th i s cross sec t ion are described in the

third sect ion of th i s report. The fourth sect ion

contains detai led descript ions of four approaches to

the solut ion of the contributon transport problem.

The f inal sect ion presents conclusions and recom-

mendations for the contributon approach in

general.

,S2,E) - I l o ^ B 1 .E'-fl

and the steady-state adjoint Boltzmann equation,

O(r,E)4i+(r,fi,E) =

provides, addit ional ins ight into the nature of the

contributon transport problem.

I I . THE COHTRIBUTON TRANSPORT EQUATION

In th is sect ion a transport equation for con-

tributions w i l l be derived. In so doing, new cross

sec t ions which describe the scat ter ing and absorp-

tion of contributons w i l l be introduced. This new

transport equation w i l l then be interpreted, and

general boundary conditions for the contributon f lux

w i l l be discussed.

A. Derivation of tne Contributon Transport Equation

In deriving the contributon transport equation,

we begin with the s teady-s tate forward Boltzmann

equation,

Q(r,n,E) (7)

(8)

A brief description of the four solution ap-

proaches will now be presented. The first involves

solving a quasi-linear third-order differential equa-

tion for i>. This equation is a reformulation of the

transport process described by the forward, adjoint,

and contributon transport equations. The second ap-

proach involves solving a nonlinear differential

equation for V». This equation is just a generaliza-

tion of the nonlinear equation described in Ref. 2.

The third approach involves iterating between trans-

formed forward and adjoint Boltzmann equations.

These two equations have been transformed to take

advantage of the slow variation of certain functions.

A consistency analysis, which proved to be necessary

for this approach, yielded a set of consistent dis-

crete-ordinates balance equations and supplementary

equations for $, <P y and <f>. The supplementary equa-

tions are a generalization of the exponential sup-

plementary equations of Barbucci and DiPasquantonio.

The final approach involves solution of an integral

equation for a generalized contributon flux and

where a(j:,E) = macroscopic total cross section,

as(r_;fi',E'-»{2,E) = macroscopic differential scattering

cross section, and the remaining quantities have been

previously defined. These two equations are combined

in the usual manner by multiplying Eq. (7) by <fi and

Eq. (8) by $ and subtracting the second result from

the first to obtain

•dE'

Q(r,n,E)<|>T(.r,n,E) - R(£^., . (9)

At this point, a contributon differential "scat-

tering" cross section, defined to be

(
cr (£;£/,E'-»ft,E) - a (r;n'E'-»n,E)
S S' * +(

' (10)

is introduced. With this definition, the two scat-

tering integrals become



and

ffo (r-V EM, W(r.Q. E.)*+(^ « « • « • - ffa (r«>-1 / as ££ ,E «£.- * r.fl ,E • r^J.E « dE -yy ag r ^ :r,nt,E')dn'dE1 ,

(11)

(12)

where Che contributor! scattering cross section
aB(r,R,E) Is

- / / og(r;£,E-»n1,El)d[L'dE1 (13)

The cross section a (r,ft,E) becomes a function of

Q. since $ (x.d>E) and /Ar^fr^I.E-^l'.E'W (£,(}',E')

•dn/dE' will not, in general, have the same func-

tional dependence on fi. This treatment of o (r,fl,E)

as a direction dependent function is supported by

numerical experiments, which will be described in

detail in another section.

It is also possible to define contributon "ab-

sorption" and "total" cross sections. The contribu-

ton absorption cross section is defined to be

ca(r.,Q.,E)
R(r_,n,E)

(14)

and the contributon total cross section is defined

to be

a<r,£L,E) - o\ (r,n,E) + a (r,$l,E) (15)

The definition (14) of the contributon absorption

cross section is consistent with the definition of

contributons as the subset of source particles which

contribute to the detector response. Since contribu-

tons mist contribute to the response, they can be

removed from the system only by absorption in the

detector.

When Eqs. (11)-(15) are used in Eq. (9), the

contributon transport equation,

of the corresponding terms are similar for the two

equations. However, in interpreting Eq. (16) in a

Boltzmann-like manner, it must be remembered that

the contributon is a fictitious particle. Unlike

the neutron, each contributon has units associated

with it, namely, the units of the expected contribu-

tion of the contributon to the detector response.

The result is that the contributon flux is not purely

a particle flux. For example, if the integral re-

sponse I is a dose rate in units of retn/s, then the

contributon flux can be viewed as a dose flux with

the units of rem/cm - s -• sr - MeV.

Thus far nothing has been said to justify the

interpretation of a as a scattering cross section.

Fron Eq. (12) , the integral term in the contributon

transport equation is formally the source of con-

tributons due to the scattering of forward particles.

However, the formal identity between the contributon

transport Eq. (16) and the forward Boltzraann equation

might at this point be justification enough for in-

terpreting 0 as a scattering cross section. If <J

is so interpreted, then the integral in Eq. (16) can

be interpreted as the source of contributons due to

the scattering of contributons. As a final note,

with cr as the contributon scattering cross section,

the contributon transport problem reduces to a pure

scattering problem outside the detector region, because

in regions where R * 0, the contributon absorption

cross section, as defined in Eq. (14), vanishes, and

the contributon total cross section, as defined in

Eq. (15), reduces to the total contributon scattering

cross section; that is

-// < '£»B1»E')dntdEt (16)

results. This equation is identical in fora to the

forward Boltzaann equation, and the interpretations



a(r,fi,E) - a (r,S),E) (17)

whenever R(jr,fl,E) is zero.

B. General Boundary Conditions for the Contributor!
Flux

For problems with no purely absorbing regions,

all the boundary conditions for <l> can be determined

directly from the boundary conditions for $ and $ .

When purely absorbing regions are present, however,

it appears that, except for certain special cases,

at least one of the boundary conditions for t|i must

be obtained by solving the forward or adjoint Boltz-

truir.n equation in the pure absorber regions. For the

present, only those boundary conditions which can be

easily obtained from the.boundary conditions on ij> and

$ will be considered.

Consider first the boundary conditions at a non-

reentrant vacuum boundary. If there is no neutron

source outside the boundary, then for all positions

r^ on the boundary surface,

at a planar interface in those directions Q_ for

which n'fl_ » 0.

Finally consider the case of a reflecting bound-

ary, for which

^(r.flj.E) - ,Ji<r,n2,E) (22)

and

$ (r£, ,E) • <J (r_,n,,£) , (23)

where n«J2, = -n-Q,, and fl, t -ft-. Then the boundary

condition on * at such a boundary i s

(24)

0 if n-Q. < 0 (18)

In Sec. IV, other boundary conditions on <f> con-

structed from boundary conditions on 4> and <f will

be encountered in connection with particular solution

techniques. However, before possible techniques for

solving the contributon problem are considered, the

contribution scattering cross section will be examined

in more detail.

where n is the outward-directed unit normal on the

boundary surface. If there is no detector outside

the boundary, then for all positions r, on the
—o

boundary surface,

(r^.S.E) - 0 if n-n > 0 . (19)

Thus, the boundary condition on lji ̂ or every position

r on the boundary surface is just

,n,E) = 0 for a l l SJ . (20)

The direction H for which n-fî  « 0 is included in Eq.

(20) even for a planar surface since

lim i^(r ,fi,E) - lira i()(r. ,«,E) « 0 . (21)

Consider now an internal material interface

where iJ>(r,fi,E) and ij> (_r,n,E) are continuous in jr,

except possibly at a planar interface in those di-

rections Ŝ  for which n*££ * 0. The boundary condi-

tion on iji at a material interface is then l|i(r,8t2)

is continuous in r for every (Q_,E), except possibly

III. THE CONTRIBUTON SCATTERING CROSS SECTION

In the previous chapter, several contributon

cross sections were introduced to aid in the descrip-

tion of the transport of contrlbutons. The defini-

tions of these cross sections will now be used to

determine some of the physics of contributon trans-

port. Then an integro-differential equation for the

contributon scattering cross •' -tion will be derived,

and some approximate solutioi . to this equation will

be obtained in slab geometry.

A. The Physics of Contributon Transport

The formal identity between the contributon

transport equation lEq- (16)] and the forward Boltz-

mann equation [Eq. (7)] implies that contributons,

like neutrons, travel in straight lines between

interactions with the mediun. According to Eq. (15)

there are only two types of contributon interactions,

scattering and absorption. Fro» the definition of

the contributon absorption cross section in Eq. (14),

it can be seen that contributons are absorbed only

in the detector.



From the previous chapter, the definition of

the differential cross section for contributon scat-

tering is

" ' • " " ) . (25)

•T(r,0.',E')

The ratio 4>+Cr,^,E)/*+(r_,fi' ,E') in this definition

implies that contributons are preferentially scat-

tered from directions ft' and energies E' of less

importance to directions Q_ and energies E of greater

relative importance.

In addition, 5" (r;fi'E'-»ft,E) can be infinite

when 4> (r.fl'.E1) is zero. Since an infinite a cor-
— — s

responds to a zero mean-free path for scattering,

any surface on which $ (r_,ft',E') is zero acts as a

perfect reflector of contributons. A nonreentrant

vacuum boundary is a prime example of such a surface.

Since 4> (r,Q/,E') is zero for outgoing directions

fi'(n'R1 > 0) on a vacuum boundary, contributons are

effectively prevented from leaving the system. How-

ever, despite the fact that a becomes infinite, it

can be seen from Eqs. (11) and (12) that

R(x,u) .

(26)

For isotropic scattering, Eq. (11) yields

f
1 O (x)
-52— ^(x.y^du*

(27)

where we chose

a s o ( x )
(28)

(29)

II cr (r;ii' ,E'->fl,E)tfi(r,n' ,E')dS5'dE'JJ ,-- - --and

are bounded if <t> and <S> are bounded.
One final connent is in order concerning the

contributon scattering cross section. It should be
noted that the biasing.

Thus, from Eq. (27) we obtain

(30)

* (r,n',E')

of the real scattering cross section o" in Eq. (25)

is similar to the zero variance biasing in Monte

Carlo importance sampling techniques. This sug-

gests a possible equivalence between the contributon

method and Monte Carlo importance sampling.

B. An Integro-Dlfferential Equation for the Con-
tributon Scattering Cross Section

In the following analysis, only the case of

monoenergetic transport in slab geometry with iso-

tropic scattering is considered. The adjoint trans-

port equation is first rewritten by the use of Eqa.

(10) and (13) to give

and from inserting Eq. (30) into Eq. (25) we obtain

(31)

Consequently, if scattering is isotropic, the dif-

ferential concributon scattering cross section can

be evaluated once O (x,u) is known, and o (x,M) can

be computed through Eq. (27) if a solution for the

adjoint flux i» available.

If R(x,y) « 0, Eq. (26) can be rewritten as



o(x) -o (x,u) -u r^[

3l ln

(32)

where

<J (x,p)
(33)

and where Eq. (27) has been utilized. Combining the

adjoint equation [Eq. (26)] with Eq. (30), we obtain

for R - 0 the result,

- a (x,u)l ,

fg(x) -os(x,p)]
= 1 a (X)0Q(X)

L y a (x,y) J s o

(x.,1)
, (34)

and after integrating over all directions y, we

obtain

If Eq. (35) is used to eliminate <J> (x) from Eq. (32),

we obtain

To reiterate, Eq. (36) is an exact integro-dif-

ferential equation for£ (xji) assuming isosropic

neutron scattering and is valid only in those

regions where R(XJJ ) « 0.

C. Approximation for the Contributon Scattering
Cross Section

In order to determine additional properties of

— — R
O (x,u) orE (xii), the ONETRAN code has been used
to generate the necessary adjoint fluxes for the
geometry shown in Fig. 1. A number of different
S,, orders (2 < N < 16) and scattering-to-total
ratios (0.1 i a la < 1.0) were used. Figure 2 is

_ so -
a plot of a (x,p) obtained from Eq. (27) for the S2

approximation and a sc.attering-Co-total ratio of
0.5. The most important observation is the near
constancy of a (x,y) in the spatial variable x in
the central region which lies outside the detector
region and is more than one mean-free path from the
vacuum boundaries. Another important observation
is the backward dominance of Oi_(x,u) in the direction
variable v outside the detector region. These two
properties were also observed for the other S orders
and scattering-to-total ratios used, although slightly
more curvature was observed in o (x,u) for scattering-
to-total ratios near one.

The near constancy of 0 (x,li) in the central
region is due to the near separability in x and y
of cf (x,y) in this region. The backward dominance
of 0 (x,p) outside the detector region can be
explained in the following way. Contributons must
reach the detector region in order to contribute to
the response. Since contributons traveling in di-
rections with V < 0 are traveling away from the

(36)

where

v(x) 2 o(x)
dp-

detector in this problem, they must undergo a scat-
tering interaction with the medium if they are to
reach the detector. However, contributons traveling



1

Fig.

VATIAL POSITION, NOT OHAWN TO SCALE (M.F.P.)

1 . Geometry for ONETRAN c a l c u l a t i o n o f

coward the detector need not interact with the rae-

dlum in order to reach the detector. This trans-

lates into a greater probability of contributon

scattering for directions with u < 0 than for

directions with u > 0 in this sanple problem.

The observation of the near constancy of

U (x,u) in the central region will now be used to

obtain an approximation for a (x,y) in that region.

If 0s(x,U) is assumed to be constant, then Eq. (36)

in a region of uniform material properties [i.e.,

a (x,y) » 0 (u), a(x) - a, and v(x) - v] reduces tos s

(38)

and Eq. (37) with the use of Eqs. (33) and (38)

becomes

s o V_ f du' ,
o ZJ v - u ' " 1 • (39)

- 1

Thus, V is just the discrete eigenvalue given by
q

Case's method. In fact, i t can easily be shown

that the constancy of os(x,u) is equivalent to the

adjoint flux being completely described by the

dominant asymptotic eigenfunction; that i s ,

•+<x,u) -
ax/v

(40)
1 -

Since this dominance by one of the two asymptotic

terms becomes less pronounced as the scattering-to-

total ratio approaches on«, (7 (x,)j) exhibits more

curvature and the approximation given by Eq. (38)

becomes poorer as this ratio approaches one.

In the discrete-ordtnates approximation, the

integral in Eq. (39) is replaced by a discrete SUB,

namely

I t

a.

H - -0.S773S

ft - 0.57735

Z 4 «

SPATIAL POSITION X (M.F.P.)

Fig. 2. a (x,u) for the S_ approximation and

a s o / o 0.5.

( r a ™ x i u J

where

M

Vw -1 ,
f , m

v - quadrature weight for direction m,

M » number of discrete directions,

and where the quadrature set is syimietric. Figure

3 Is a plot of 1/u vs the scattering-to-total ratio

for the case of continuous u and for the S_ and S,
2 4

approximations. Also shown are data points for 1/v

at the slab center based upon the previously described

ONETRAN calculations. The agreement of the ONETRAN

results with the approximation curves is very good
for o /a < 0.9, but a deviation occurs for o fa >

so so
0.9, as expected from the foregoing discussion.

8



IV. APPROACHES TO THE SOLUTION OF THE COHTRIBUTON
TRANSPORT PROBLEM

Four different approaches to solving the con-

tributor* problem are considered. The first involves

the solution of a quasi-linear differential equation

in the unknown i|i(r,S2,E). This equation is obtained

by eliminating $ and $ from the contributon balance

equation. The second approach involves the solution

of a nonlinear differential equation in the unknown

t(/(r,fl_,E). The third approach involves iterating

between a transformed forward Boltzmann equation

and a transformed adjoint Boltzmann equation. These

equations have been transformed to exploit the slow

variation of certain functions. The final approach

involves solving an integral equation for a gener-

alized contributon flux to be defined later. Only

the first and third approaches have been actively

pursued in detail, but the others also provide some

insight into the contributon transport problem.

A. Quasi-linear Differential Equation for 'P

This approach involves eliminating explicit

occurrences of $ and <j> from the contributon trans-

port equation to obtain a differential equation in

Che unknown i|/(r,Ŝ ,E). The order of the resulting

equation depends upon the characteristics of the

forward source.

Or.SJ.E) =JT as(xjn' ,E')dn'dE'

Q(r,n,E)

and the adjoint source,

(42)

R(r,j2,E) (43)

Therefore, the following region designations are

introduced:

(1) 0 region, in which S(r.,fi,E) = 0 and sV.S.E) = 0 ,

(2) E region, in which S(r.fi.E) + 0 and S+(r_,n,E) E 0,

(3) Z+ region, in which S(t,n,E) = 0 and S+(r,£,E) * 0 ,

and

(4) EE+ region, in which S(r,ft,E) ̂ Oand S+(r_,g,E) * 0 .

In terms of S and S +, the forward and adjoint

Boltzmann equations and the contributon balance, or

conservation, equation are

——— «, TKOMETCAL

~ «4 THEORETICAL

— CONTINUOUS* TMEC«ETICAL

O * , ACTUAL

A * , ACTUAL

CONTINUOUS Ji

I
• «.2 0.4 a§ I

SCATTERING-TO-TOTAL RATIO - p -

Pig. 3. l/\> vs scattering-to-total ratio.

S>V<fi + crcp = S ,

s+ ,

and

(45)

(46)

Explicit occurrences of if and 4> will now be elimi-

nated. Of course, 0 and if still occur implicitly

in S and S , and this is the reason why we call the

resulting differential equations for ̂ "quasi-linear."

1. Derivation of Differential Equations for -̂

Consider first the contributon conservation

equation [Eq. (46)]. Obviously, if both S and S

are zero, both <J> and $ are eliminated. Consequently,

the result is the first-order differential equa-ion,

* o e 0 (47)

To determine when a second-order equation is

suitable, Eq. (46) is first differentiated to give

A linear combination of ihis equation and Eqs. (44)-

(46) is formed to give



AC.fJ-V>2lJJ CS + DS + - B S + (AB-VS + BS

(-AS+ + on»vi> + (AS - (49)

where the quantities A, B, C, and D are to be deter-
mined so that the coefficients of (p, <j> , j}*V<(>, and
JJ'V$ are zero as a necessary condition that Eq.
(49) reduces to an equation in ip alone. The fol-
lowing system of equations results:

s+

s

0

0

a

0

1

0

0

0

0

- 1

A

B

C

0

0

0

(50)

Since this system of equations [Eq. (50)] is

homogeneous, a nontrivlal solution exists only if

the determinant A, of the coefficient matrix is

zero, that is.

= sg.ys+ - s+n-vs - 2oss+
(51)

A, w i l l be zero i f

(1) S = 0 ,
(2) S+ = 0 ,
(3) S = 0 and S+ = 0 ,

(4) - S+n-7S - 2oSS+ - 0 with S |< 0

and S+ * 0 .

is solved for B, C, and D, and the results are sub-
stituted into Eq. (49) to yield the second-order
differential equation,

(£2-7) 2<|/ + (a - — n-VS+)B"v<|i - 0 ,
S

(53)

If the second condition is considered and A is

arbitrarily set to one, the system of independent

equations,

s
0

0

0

1

0

a

0

- 1

B

C

D -s

(54)

- (a + i JJ«Vs)S>

is obtained. If the results for B, iC, and D from
Eq. (54) are used in Eq. (49), the rasult is the
second-order differential equation,

(55)

To obtain a third-order equation for ip, Eqs.
(48), (44), and (45) are first differentiated to
give

The last condition is unlikely to be satisfied
since S, S , and a are independent. If both S and
S are zero, the first-order differential equation
should be used. Thus, only the first two conditions
need to be considered.

If the first condition is considered and A is
arbitrarily set to one, only three of the equations
in the system of Eqs. (50) remain independent. The
residual system of independent equations,

a 0
1 0
0 -1

B

C

D

- S +

0

, (52)

, (56)

(57)

and

A linear combination of Eqs. (56)-(58), (48), and

(44)-(46) is formed with arbitrary coefficients A-G

to give

10



DS + ES+

+ [Affi-V)2S + Bfl'VS + CS + Eo" + + (-2Aft'VS+ - BS+ + D +

(-AS+ (AS -

- CS + DCT + p£*v o] V

+ (2A?2''S + BS - E + Ga)B-V<}>

(59)

If the quantities A-G are chosen so that the coef-

f ic ients of <p, <j>+, C-7*. fi-V<f>+, (fl-V)2*, and (J2-V)V"

are zero, we obtain a necessary condition for the

existence of a third-order equation for <l>. If A = 1,

the following system of equations results:

re
vs

s+

s

0

0

-s
s

0

0

0

0

a

0

l

0

0

0

0

a

0

- 1

0

0

fi-Va

0

a

0

1

0

0

«-7a

0

0

0

- 1

B

C

D

E

F

G

Comparing Eq. (60) with Eq. (50), we note that the

determinant of the coeff ic ient matrix of Eq. (60)

is

A , - -A, (61)

but if (L is zero, thea the first- or second-order

differential equation for if/results. Therefore, we

consider only the case ^ ^ 0, which will occur only

in a EZ region. The system of equations [Eq. (60)J

can then be solved for the quantities B-G. If these

results are then substituted into Eq. (59), we obtain

the third-order differential equation,

(£
- ( S

-2

?)

V)

V
2s

vs
+

vs

s+

-s

(60)

equations [Eqs.(53) and (55)] are appropriate for

pure absorber regions where either Q or R is zero,

and the first-order equation [Eq.(47)J is appropriate

for pure absorber regions where both Q and R are

zero. Table I summarizes the conditions under which

the first-order, second-order, or third-order quasi-

linear differential equations for i* derived in this

section describe the contributon transport problem.

In analogy to calling the Boltzmann equation a

transport equation for neutral particles, we may

—^r | (S+J2'VS + OSS+) [S(S>V)2S+ - 2asn-VS+ - SS+S>
SS+ I

<J2SS+]

aSS+)[s+(n«V)2S a 2 s s + j

n 7 A ,
- 2

The third-order equation [Eq. (62)] must be used

in pure absorber regions where both Q and R are non-

zero and in scattering regions, since both S and S

are nonzero in such regions. The second-order

(62)

ca l l Eqs. (47), (53) , (55) and (62) transport equations
for contributons.

11



TABLE I

CONDITIONS FOR APPROPRIATE FORMS OF
QUASI-LINEAR CONTRIBUTOR TRANSPORT EQUATIONS

Transport Equation Form by Region Type

0(S 5 0, S* = 0) E(S

Pure Absorber

Scattering Medium

0, S* = 0) H Q, S + 0) 0, S + 0)

1 = first-order Eq. (47)

2, a second-order Eq. (53)

2. a second-order Eq. (55)
o

3 = third-order Eq. (62)

It will be shown in a later section that the

first two integrations of Eq. (62) are equivalent

to solving for $ and $ from the Boltzmann equations

and the final integration gives 1|>. In other words,

the three first-order equations [Eqs. (44)-(46)] have

merely been replaced by the one third-order equation

[Eq. (62)].

2. Boundary Conditions for j>

In this section, only problems with external

vacuum boundaries are considered. Obviously, for

the third-order differential equation, three exter-

nal boundary conditions are required. As it turns

out, however, there arc four to choose front; but

only three are independent. According to Eqs. (18)-

(20), two of these are given by

Since A,, and consequently A as defined by Eq.

(51), must be nonzero if the third-order equation

for "Ji is to be valid, we rannot solve for all four

of the quantities A-D as was done in deriving the

second-order equations [Eq?. (53) and (55)]. We

can, however, choose A-D so that either the coef-

ficients of

of <fi

and S>V4> are zero or the coefficients

and fl>V<£ are zero.

If the coefficients of <j> and Q_'V$ are required

to be zero in Eq. (64) and if A is arbitrarily set

to one, then the system of aquations,

fr:] [:] • H (64a)

!/>(r. ,Q.,E) - 0 for every (£2,,E) (63)

on the vacuum boundary r » r. .

Two additional boundary conditions for tfi can

be constructed in the following manner. Since the

third-order differential equation for i1 and deriv-

atives of that equation are satisfied at every

position, we seek a boundary condition on i> which

involves derivatives of tf> no higher than second

order. A suitable starting point for deriving such

a condition is provided by Eq. (49), namely

CS + DS+ - (-«J.«7S+-BS+

results. If. Eq. (64a) is solved for B and C and

the results are used in Eq. (64), the result is

(n-v)2* + (a - — sj-vs+)n-v<|) + ss+

s

- [fl'VS + S(a - - £ fl-V
s

(65)

(-AS+ BS Do)<f>+ + (AS - D)«'

(64)

12



+ (O- - -±- £•
5

+ 2SS+
. (66)

Use of the vacuum boundary conditions for 41 then
gives

s

for n'ft > 0 (67)

on the vacuum boundary surface. If the coefficients
of <!> and £"V<j> are required to be zero, then a
similar analysis using the boundary conditions for
<f> gives the boundary condition

(n-v)2'ji - (o + ^ s>vs)n-vi|; + 2ss+ = o

for n>K < 0 (68)

on the vacuum boundary surface.
One additional benefit of this analysis is a

set o£ equations for <j> and $ in terms of ij; for a
££ region, namely

(69)

and

(a - - j 2ss+]

(70)

which are obtained from Eq. (66) and the correspond-

ing equation that leads to Eq. (68). These two

equations permit us to evaluate § and <Ji , and con-

sequently S and S , in an iterative solution of Eq.

(62), as described at the end of Sec. IV.A.7. These

results also allow us to specify the boundary con-

ditions at internal material interfaces, namely that

jJi(r,|2iE) * s continuous in r_,

~-l(Q-V)2<l> - (a + j

in r_, and

n«VV + 2SS+] is continuous

f-[GL'V)2<fi + (0 - -— fi'VS+)SJ>V4i + 2SS+] i s continuous
2 S

in r>

It should be noted that expressions for <j> and <(> in

terms of $ can be obtained for t and 2 regions

from the contributon conservation equation [Eq. (46)].

When an 0 region exists, it is apparently im-

possible to completely specify the boundary condi-

tions on if> without effectively solving the forward

or adjoint Boltzmann equation in the 0 region. This

difficulty is attributed specifically to the fact

that only in an 0 region is it apparently impossible

to express <t> and <J> in terms of iff and its derivatives.

Consider, for example, the pure absorber problem

shown in Fig. 4. The appropriate contributon trans-

port equation for ^ is second-order in the E and

£ regions and first-order in the 0 region. There-

fore, five boundary conditions are required for \j).

Two of these are the external vacuum boundary con-

ditions,

iKO, U) » ^(c.p) = 0 for every u, (71)

and two are the internal continuity conditions,

.l.t ~ ..X . A.I _ " * " . . \

and

<Kb~,u)

(72)

for every V (except possibly
U = 0).

(73)

For the final condition, it appears that either

the forward or the adjoint Boltzmann equation must

s

£ REGION

«-.•<>•£•

0 REGION

O(«. H l - 0
*<«,(!>-0

I * REGION

O<.,MI-O

SPATIAL POSITION X

Fig. 4. Geometry for pure absorber problen 1.

13



be solved In the 0 region when such a region exists.

The necessity of obtaining $ or $ In order to

specify the boundary condition on <i> has also been

recognized by Gandini based on heuristic argu-

ments. In the present formulation, we choose to

solve for $ . From the contributon balance equa-

tion [Eq. (46)1 we obtain in slab geometry

(74)

and

(75)

Solving the adjoint equation [Eq. (45)] in the 0

region yields

+(a,M) - * (b,H)e
-o (b - a)/M

(76)

Multiplying together corresponding sides of Eqs.

(74) and (75) and using Eq. (76) give the fifth

boundary condition for the pure absorber problem,

be solved for <f> to give the result in Eq. (69!j. If

this expression for $ is then substituted into the

forward Bolczmann equation [Eq. (44)] then/the

third-order equation [Eq. (62)] results.

Cn '"he other hand, the contributor, balance

equation [Eq. (46)] could be solved for <j> and this

expression for 4> then substituted into the forward

Boltznann equation to give, after use of the adjoint

equation [Eq. (45)J, tha result,

(a - -\ n«vs+)a-
s

2ss+ » - ~
s

(80)

This equation can be solved for $ to give the re-

sult in Eq. (70), and if this expression for <f>

is then substituted into the adjoint Boltzmann

Eq. (45), the same third-order equation [Eq. (62)]

results.

Although a single third-order differential

equation for ifi results whether it is obtained by

Q(a ,U) R(b ,y)^(b,)J)e
- a)/u

'77)

This is a nonlinear mixed boundary condition, which

will be referred to as the bridging condition for

obvious reasons.

3. An Alternative Derivation of the Third-
Order Equation for ifr

Instead of obtaining the third-order equation

for IJJ by forming a linear combination of a set of

differential equations, another approach, which

gives some useful insight, will now be taken. The

contributon balance equation [Eq. (46)] i s solved

for 4> to give

S+cfi) (78)

This result is substituted into the adjoint Boltz-

mann equation [Eq. (45)] to give, after use of the

forward Boltzmann aquation [Eq. (44)1, the result,

- (a + ij 2SS+ --f*. (79)

where A. Is defined in Eq. (51). This equation can

inserting the expression for <p into the forward

Boltzmann equation or by inserting the expression

for <(i into the the adjoint Boltzmann equation, it

appears that a single integration of this third-

order equation cannot yield both <fi and <f> . Indeed,

if boundary condition [Eq. (68)] is used, the in-

tegration is equivalent to solving for <]>, and if

boundary condition [Eq.- (67)] is used, the integra-

tion is equivalent to solving for $ . Since $ and

$ are related in the contributon balance equation

[Eq. (46)] by £2-Vi|( and since a single integration

of the third-order equation will not give Q;Vty, at

least two integrations of Eq. (62) are required to

effectively obtain both 4> and • . • Is then obtained

either by integrating a third time or by multiplying

the results for <j> and $ together according to Eq.

(5).

The following observation is made based upon

Eqs. (53), (55), (69), and (70). In a Z region,

since S ̂  0 and A- " 0, the quantity in brackets

14



in Eq. (69) must be zero If 4> i s to be bounded in

such a region. Since S = 0 in a Z region, the

quantity in brackets reduces to the left side of

Eq. (55), the differential equation for H n a J

region. Thus, the existence of the second-order

differential equation, Eq. (55), for i|> in a I re-

gion is a necessary condition for <)> to be bounded

in such a region. On the other hand, since S 4 0

and A » 0 in a Z region, the quantity in brackets

in Eq. (70) must be zero if <t> i s to be bounded in

such a region. Since S = 0 in a Z region, the

quantity in brackets in Eq. (70) reduces to the

left side or Eq. (53), the differential equation

for ip in a £ region. Thus, the existence of the

second-order differential equation , Eq. (53), for

i> in a Z regJ u is a necessary condition for <p

to be bounded in such a region.

4. Analytical Solution of Pure Absorber
Problem 1

The pure absorber problem in Fig. 4 will now

be solved analytically. To summarize, the equa-

tions for this problem are

2

(82)

and

b < x < c

The boundary conditions are

!ji (a ,y ) - if) (a ,u ) ,

,(j) - ijj (b ,y) ,

(83)

(84)

(35)

(86)

B,(M) +

The general solution to Eqa. (81)-(83) is

, 0 -S. x i a

3 < x £ b

, b < x <. c , (88)

, and B. are arbitrary integra-

A3(u)e
-o.x/u

where A^, A y hy B2» 3

tion constants. The use of the first three boundary

conditions [Eqs. (84)-(86)] shows that

, 0 < x <. a

B2(U) , a < x i b (89)

. b 1 x < c

and the use of the final boundary condition [Eq.

(87)], i.e., the bridging condition, gives

0 , or

B2(v) =

(90)

Two solutions occur for B (u) because the nonlinearity

of the bridging condition results in a second-degree

algebraic equation for B_(u).

To insure proper choice of B_fti), the contri-

butor balance equation,

(91)

is evaluated at x * 0. Inserting the solution for

ip from Eq. (89) and using the vacuum boundary

and

- a)/y
(87)
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condition [Eq. (19)] for <j> yield

> 0 , u > 0

- 1

(92)

- 0 , u < 0 .

Thus,

QoRo

u > 0

SPATIAL POSITION X

Fig. 5. E region spatial cell structure for the
pure absorber problem 1.

0 , u < 0 , (93)

and the complete solution for this problem is

4m,

Q R

3x 3x

(96)

Use of the central difference approximation for the

slopes in this equation gives the typical difference

equation,

a.a/ii

-o b/u -a c/u
|e - e A j ;

-0Ac/u

a Ax /u

i = 2, ....

0 ;

(97)

V >
Integrating Eq. (95) from x, , to x, = a and

r 3' 2 hy < 0 , 0 £ x £ c . (94) using the central difference approximation yield

5. Numerical Solution of Pure Absorber
Problem 1

This section is included to illustrate how the

nonlinearity introduced by the bridging condition

[Eq. (87)] is handled in the numerical solution of

the pure absorber problem. Figure 5 shows how the

£ region (0 < x < a) is divided into spatial cells.

The typical difference equation for this region is

obtained by Integrating Eq. (81), rewritten in the

form

_2
(u) " 3x

(98)

The vacuum boundary condition at x - 0 gives the final

equation for this region, namely

0 . (99)

a x/'u 3lKx.u)
9* (95)

from x± to x1+!j to yield

The E region (b < x < c), for which the differ-

ential equation [Eq. (83)] can be rewritten as

f [eV/P ̂ ^ 1 " ° • <«0)

is divided into spatial cells, as shown in Fig. 6.

16



Through the use of the central difference approxi-

mation, the typical difference equation for this

region is

using the central difference approximation to give

i - I2 + 1, .... I3 - 1 . (101)

i M " *I - I 0 0

W

(107)

Integrating Eq. (100) from x » b to x ,̂ gives

- (102)

which is substituted into the bridging condition

[Eq. (87)] to yield

Equations (97)-(99) are collected into one sys-

tem of equations, the £ system, and Eqs. (101), (103),

(104), and (106) are collected into another system

of equations, Che E system. If the discrete-ordi-

nates approximation is used, then these systems of

equations are «s fallows:

The vacuum boundary condition at x - c gives the

final equation for this region, namely

(l/2)0AAxR/y

(103)

i|<T (y ) = o .
3

If the differential equation in the 0 region

(a < x < b) ,

0 , (105)

is integrated from xT » a to x = b, the result is
I I 2

ijiT (y) - ip (y) - 0 ;
1 2

(106)

that is, ifi is spatially constant over the entire 0

region. One final equation is needed to couple the

equations of the £ and 0 regions. This is obtained

by integrating Eq. (95) from x , to x - a ind

»- A.

SPATIAL KtSITION X

Fig. 6. E region spatial cell structure for the
pure absorber problem 1.
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£ system V2

(108)

and

I system

ri 0 R Axn4ir vo o R

It will be noted that the L system is inhonogeneous

but that the quantity diji (xT )/dx in the source vec-
a xl +

tor is unknown. However, the Z system is homogene-

ous, so di|; (x )/dx must have a particular value if

this system is to have a nontrivial solution. Thus,

difj (x )/dx is chosen so that the determinant of the

coefficient matrix of the I system is zero, and

with difi (x. )/dx known, the E system can be solved.

The coupling condition [Eq. (107)] is then used to

couple the X and I systems, and Che E system is

then solved. It should be noted that this approach

is not applicable for those directions y in which
<f> (x) = 0.
n

The solution to this pure absorber problem for

the Slg approximation is plotted in Fig. 7. The im-

portant parameters used in this calculation are

Q(x,u) " l/4ir neutrons/cm -sr-s, R(x,u) » 1 response-
s/cm, JA - 1 cm'

-1
1 cm, b x 9 cm, and c - 10

cm. The curves for \i < 0.61787 do not appear since

iff for those directions is essentially zero compared

to i|< for y i 0.61787.

dx

(109)

3
*

fl.HHO

B-0.*M57

• •.MSB

P-I.7SSW

SPATIAL POSITION X (M.F.P.)

Fig. 7. Solution for pure absorber problem 1 in the
S.,, approximation
lo
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6. Analytical Solution of Pure Absorber
Problem 2

Consider now the pure absorber problem with

Q(x,p), R(x,M), and 0A(x) positive and unifon in x

in the domain xe(-a,a) and with vacuum boundaries

at x * a and x " -a. Since Q and R are nonzero

throughout the system, the third-order equation for

i> is applicable. For this problem, the third-order

equation [Eq. (62)} for 4> reduces Co

< x < a .

and the boundary conditions give the following re-

sults for the solution coefficients:

A(M) - - (116)

and

(117)

(110)

To simplify L'ns solution of this problem, we

introduce the new function,

Thus, the complete solution for Eq. (112) with bound-

ary conditions given by Eqs. (113) and (114) is

f(x.u) s i n h

f(x,u)

Equation (110) then becomes

x , x < a .

(112)

Through the use of Eqs. (69), (70), (111), and

(118), the quantities $ and $ are found to be

(119)

and

Equations (67) and (68) provide the following vacuum

boundary conditions for f(x,y): (120)

and

8x
-2Q(U)R(U)

-2Q(U)R(U)

V > 0

(113)

Thus, solving Eq. (112) with the boundary conditions

given by Eqs. (113) and (114) is equivalent to solv-

ing for <j> and <j> . At this point $(X,JJ) can be ob-

tained either by multiplying these results for $ and

<J> together or by solving equation (111) with the

boundary conditions,

<p(-a,u) - 0 , u > 0

- -2Q(u)R(r)

- aAf(a,y) - -2Q(p)R(p)

< 0 .

(114)

The general solution to Eq. (112) is just

a.x/|i -o.x
f(x.u) - A(u)e + B(u)e (115)

and

- 0 < 0

In either case, the result is

.i./- ..•» , 2Q(w)ROO " V ' 1 " '

"A2
(cosh — cosh -j-j—) .

(121)
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1'ure absorber problem 1 can alto be solved by
•can* of thai third-order equation for #. The i n o -
elated problem with

Q<x,u)

-7̂ . >o , 0 < x < a

a < x < c

(122)

and are

U27)

and

Rx > 0 ,

R > 0 ,
o

0 < x < b

b < x < c

(123)

(128)

id first solved. The appropriate differential equa-

tion Is

(129)

0 . (124) and

aud the boundary conditions at the external vacuum-

boundaries are

,p > 0 (125)

and

H < 0.(126)

The boundary condition* at the Interfaces, x • a and
x " b, are obtained by requiring continuity of 4 *nd

Once the solution f(x,Vi) to this associated problem

is obtained, the limit is taken as Q,-* 0 end R. •* 0.

The result is identical to the result obtained in

Sec. IV.A.4 of this report.

7. Huaerlcal Solution of the Third-Order Con-
trlbuton Transport Equation

To study possible implications associated with

the numerical solution of the third-order differential

equation for iMx.u) for a aore general class of prob-

lems, we implement in this section a numerical algo-

rithm to solve Eq. (62) in slab geometry using a

discrete-ordinatei approach. With the definition

(131)

the third-order equation in slab geometry can be
written
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V2 ~[A<x,p) B(x,M)f(x,u) - D(x,u) ,

(132)

U 3f(3^-~- - a(4,u)f(i,y) - bOt.u) , u < 0 .

(142)

where
At an internal boundary, x « t, continuity of $ and

$ gives the conditions,

b(x,P)[a(x,u) + c(x,u)] • (133)

A(t~,u)s(t~,u - a(t",y)f(t",u) - b(t~,u)J

B(x,U) - -
1 fl 3

~ - T - -̂ M rHA(x,|j) (134)

D(x,U) =
fb(x.u)]1/2

g| JA(x,U)[b(x,M)]3/2|,

(135)

(136)

A(

- b(t+,M)]

and

- a(t+,p)

(143)

and

,u) S+(x,u) , (137)

3x

3f(

c(t",u)f (t'.y)- b(t",JJ>]

c(t+,u)f(t+,p)

CJ(x)S+(x,U)] -

0.38)

Frnn Eq^. (67) and (68), the boundary conditions on

f(x,u) at the vacuum boundaries, x = 0 and x " i. > 0,

are obtained:

- b(t+,u (144)

We now discretize these equations in the spatial

variable. The spatial mesh used for f(x,u) is similar

to that in Fig. 5. If Eq. (132) is then integrated

from x. , to x , , the result is
1—2 IT3!

b(O,p) > 0 ;

(139) (145)

b(O,u) p < 0 ;

(140)

wheie

and

u > 0 ;

(141)

and the following assumptions have been used:

(1) a uniform spatial aesh with interval Ax
in a unifom material region,

(2) B(x,M)f(x,U) a B±(p)fi(M) in the interval
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(3) D(x,}J) = in the Interval

and

(4) the central difference approxlsation for

=— at x....

vhere the subscript L indicates that quantities are

to be evaluated at x - t . Integration over the

half-cell to the right of the interface yields

Equation (145) holds if x. is not f.tte location

of an external boundary or a spatial discontinuity

in S or S (for example, at a material Interface).

If x. is an external boundary, then Eq. (132) is in-

tegrated over the half-cell adjacent to the boundary.

For example, at the left-hand vacuum boundary x^ « 0,

this integration gives

A-2
y) - k3.2(y)f2(u) - Dj^u) (146)

If Eqs. (139) and (140) are solved for 3 f ^ M * and

the results are used in Eq. (146), the result is

a lu)Ax 2 b (U)ix
" k3/2(u)f2(U) - D1(w) S| U > 0 (147)

and

Ax
^ ~ + k3/2 ( y ) '

<u)Ax 2 b (u)ixf V < 0 (148)

Similarly, at the right-hand vacuum boundary x » I,

integration of Eq. (132) and use of Eqs. (141) and

(142) yield

c (u)Ax 2 b (w)Ax
0 , (149)

and

. 2

2

a (u)Ax 2 b (u)Ax
0 . (150)

The situation at an interface, x « t, where S

or S is spatially discontinuous, is soaewhat sore

complicated since f can be spatially discontinuous.

Integration of Eq. (132) over the half-cell to the

left of the interface gives

(151)
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[BRfil) (152)

where the subscript R indicates that quantities are

to be evaluated at x • t .

The determinant

of the vector,

of the coefficient matrix

3x J

for the system consisting of Eqs. (143) and (144) is

S R ( y ) S L ( U ) " S L ( y ) S R ( p ) »

A e,uick look at Eqs. (145), (147)-(150), (154), and

(155) shows that the coefficient matrix for the sys-

tem of equations is tridiagonal. However, the coef-

ficient matrix will be symmetric only if Ax = AxR

at each internal boundary.

If Ajftj) of Eq. (153) vanishes, than it is in-

possible to solve Eqs. (143) and (144) for the de-

rivatives of f at the interface, and another approach

must be employed. If the contributon balance equa-

tion [Eq. (46)] is rewritten in terms of f(x,)i) on

the two sides of the interface at x = t, then we

obtain the equations.

S(t",p)*+(t,u) - (157a)

where the subscripts, R and L, have the interpreta-

tion just described. If A (Vi) jt 0, then Eqs. (143)

and (144) can be solved for and 3x
and the results can then be substituted into Eqs.

(151) and (152) to yield

and

Axf

-r

and

f(t+,p)=

^ 2

.(157b)

(154)

[(U) + [BR(U>^UkR+Ss(u)+- v

k (p)hx

(155)

where

and

S (u)S*(u)C. ()J)

SL(u)SR(u)cR(u)

(157)

If Eq. (157a) is multiplied by S(t ,u) and Eq. (157b)

is multiplied by S(t ,u) and the second result is

subtracted from the first, then we obtain

sR00
(158)

where the subscripts, L and R, again iiave the previ-

ously described interpretation. If Eq. (158) and

Eq. (153) with A J ^ M ) - 0 are used in Eq. (143), then

a second condition at the interface is
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- a (li)c (y) S(u)
(159)

If Eqs. (158) and (159) are then used In Eqs. (151)

and (152), the results are

. 2

(160)

and

Ax* a (U)c (u) - a (u)c (u) kB(U)ix S
+ a(u) + cS) V̂ 1

(y)

sL(u) kR(U)AxR

(161)

Examination of Eqs. ( U 5 ) , (147)-(150), (160), and

(161) as a complete set of difference equations

shows that the coefficient matrix is no longer trl-

diagonal when A-fti) - 0.

The set of difference equations consisting of

Eqs. (145), (U7)-(150), (154), and (155) has been

employed to solve some simple problems in slab geom-

etry using the discrete-ordinates approach. The

first set of problems consisted of the two pure

absorber problems described in Sec. IV.A.6:

(1) pure absorber problem 2, in which the
source distribution Q, detector dis-
tribution R, and the absorption cross
section were spatially uniform, and

(2) the modified pure absorber problem 1,
in which the source and detector dis-
tributions were discontinuous, «•
described by Eqs. (122) and (123),
and the thickness (b - a) of the
central region was set to zero.

The numerical results indicate that, when spatial

discontinuities exist in Q or R, these difference

equations are susceptible to numerical instability.

This instability is manifested in the fact that the

contributon flux solution may be extremely sensitive

to the choice of the size of the spatial mesh interval

Ax for a specific range of Ax values. It is shown in

Appendix A for a simple case that when Q and R satisfy

certain conditions, there is at least one critical

value, Ax > 0, for which the determinant of the

coefficient matrix of the system of difference equa-

tions vanishes. The solution f(x,u), and consequently

l//(x,y), will be extremely sensitive to the choice

Ax, when Ax is near this critical value, Axc- When

source discontinuities were nonexistent, no such

problem with numerical instability was observed.

The second set of problems consisted of problems

with scattering. The coefficients in the difference

equations for these problems were calculated from

source distributions, S and S , which were generated

from forward and adjoint fluxes computed with the

discrete-ordinates code, ONETRAN, for the finest mesh

studied. The distributions, S and S , for coarser

meshes were also obtained from these fine-mesh data,

through interpolation where necessary. For the

purpose of these calculations, a special 0' region

is defined to be a scattering region in which both

Q and R are identically zero. The geometry for the

typical scattering problem is shown in Fig. 8 for

the deepest penetration studied, namely 50 mean-free

paths in the central 01 region. The corresponding

problem for a penetration of 20 mean-free paths was

also investigated. In both sets of calculations, a

variety of scattering-to-total ratios (<Tg /O = 0.2,

0.6, and 1.0) was employed, and the results of these

calculations are summarized in Tables II and III,

where the integral response I has been computed from

Eq. (5c). The results for problems with some absorp-

tion indicate that the difference equations may be

susceptible to the same type of numerical instability
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'Fig. 8. Geometry for deep-penetration problem.

observed in the pure absorber problems. However, for

extremely coarse spatial meshes, the imagral re-

sponse is seen to be relatively insensitive to the

mesh size for the particular values of Ax used. This

is not to say that regions of instability do not

exist for coarse spatial neshes, because these re-

gions of instability may have been missed by fortu-

itous choice of Ax values. On the other hand, the

results for the pure scattering problem (c Q/c =•

1.0) do not indicate any instability, but they do

show the effect of using too coarse a mesh for

problems with considerable spatial curvature in

f(x,U).

The difficulty encountered in solving the con-

tributon difference equations for problems with

source discontinuities is not totally unexpected,

since the unknown f(x,p) is discontinuous at the

location of discontinuities in S(x,y) and S (x,u).

In the set of difference equations, it is the equa-

tions for the cells in the immediate vicinity of

source discontinuities that show the greatest tend-

ency toward causing loss of diagonal dominance in

the coefficient matrix of the system of difference

TABLE II

SENSITIVITY OF THE INTEGRAL RESPONSE I FROM THE QUASI-LINEAR CONT^IBUTON
APPROACH TO THE MESH SIZE IN THE CENTRAL 0" REGION

(50 MEAN-FREE PATHS PENETRATION)

Integral Response I

0' Region
aAx

(m.f.p)

Reference

0.390625
0.78125
1.5625
3.125
6.25
12.5
25

/ T

U

-f- = 0 . 2
7.15 x 10
3.51 x 1O"26

2.38 x 10"26

4.14 x 10"26

6.13 x 10"26

7.28 x lO"26

7.70 x 10"26

7.87 x 10"26

= 0.6

2.51 x 10

1.97 x 10

3.01 x 10

1.81 x 10

2.06 x 10

2.28 x 10'

2.39 x 10'

2.44 x 10

,-20

-22

I"21

f21

r21

r21

-21

= 1.0

7.34 x 10'.-2
C

7.59 x 10

7.79 x 10

8.09 x 10'

7.94 x 10

5.73 x 10

—2

-2

r2

r2

-2

-1.76 x 10

-2.91 x 10

f2
-1

Integral response I calculated from Eq. (5c).

Referencetresponse using the iterative contributon approach described in Sec. IV.C with 0Ax =
0.05 in 0 region. The corresponding responses using ONETRAN forward and adjoint fluxes com-
puted with aAx = 0.15^3125 in the 01 region are 5.73 x 10"26 for 0 /a » 0.2 and 2.22 x 10"21
for a

S0
/'CT = °-6" T h e s e 0 N E T R A N results probably exhibit a larger remaining error than the

iterative contributon results quoted in the Table because a much coarser spatial mesh had
to be used.

Reference response using ONETRAN forward and adjoint fluxes computed with cAx - 0.390625 in the
0' region.
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TABLE III

SENSITIVITY OF THE INTEGRAL RESPONSE I FROM THE QUASI-LINEAR CONTRIBUTON
APPROACH TO THE MESH SIZE IN THE CENTRAL 0' REGION

(20 MEAN-FREE PATHS PENETRATION)

Integral Response I

0' Region

(m.f.p.)

Reference

0.15625

0.3125

0.625

1.25

2.5

5

10

so
a

0.2

2.21 x 10

7.29 x 10

1.43 x 10'

-2.53 x 10'

1.67 x 10

5.76 x 10

3.48 x 10

3.91 x 10'

,-llb

f11

I " 1 1

f9

r11
f12

r11

so
a

0.6

2.62 x 10

-6.77 x 10

1.52 x 10'

1.28 x 10

2.84 x 10'

3.21 x 10'

3.58 x 10

3.75 x 10'

_9b

f8

r8

r9
r9

r9

r9
-9

so
a

1.0

1.68 x 10"

1.78 x 10'

1.80 x 10'

1.83 x 10'

1.90 x 10'

1.93 x 10'

1.65 x 10'

-4.04 x 10

r1
r1
r1
r1
r1
r1
-2

Integral response I calculated from Eq. (5c).

Reference response using ONETRAN forward and adjoint fluxes computed with aix = 0.07125 in the 0'
region. The corresponding responses using the iterative contributon approach described in Sec. IV.C
with aAx = 0.02 in the 0f region are 2.24 x 10"H for a /a = 0.2 and 2.64 x 10~9 for a /a = 0.6.

equations. Thus, the solution of the differential

equation, Eq. (132), in the vicinity of source

discontinuities requires more thorough investigation.

The solution of Eq. (132) by iteration on the

sources, S(x,p) and S (x,u), has also been studied.

An iteration is defined by the following algorithm

used within each iteration k:

(1) evaluate A ( k" 1 )(x,u), B(k"1)(x,U),

n<fc-1)(x.u),.<k-1>(x.l,).b<
k-1J(,<u),

(k-1)

and c (x,p) from the source dis-

tributions, S ^ ' ^ x . u ) and S+(k"1)(x,>4),

of the previous iteration by use of

Eqs. (133)-<138);

(2) solve Eq. (132) for f(k)(x,u) using

the quantities, A * " " , B ^ 1 ' D0*""

calculated;

(3) evaluate 0<

, and c * " " , just

(x,^) and $+(k)(x,ji) from

by use of Eqs. (69) and (70), written
in terms of f, S, and S+; and

(4) evaluate new source distributions,

SCk)(x,y) and S + ( k )(x,y), from <|>(k)(x,u)

and (f (x,u) via Eqs. (42) and (43).

Since Eq. (132) is valid only for a It* region, the

initial guesses, S(O)(X,IJ) and S + ( o )(x,u), for the

source distributions must be nonzero throughout the

system. For our sample case we arbitrarily chose

S ' and S by assuming that the cj> and $ in Eqs.

(42) and (43) were uniformly 1.0.

When this algorithm was utilized for some simple

problems with scattering, the c invergence character-

istics varied greatly. In moderate- and deep-pene-

tration problems (penetrations of 6, 20, and 50 mean-

free paths) the iterations diverged for all discrete

mesh sizes applied in the 01 region. In a small-

penetration problem (penetration of two mean-free

paths) convergence was obtained, but the source it-

eration produced poorly damped oscillations in suc-

cessive response iterates. The amplitude of these

oscillations and the magnitude of the amplitude

damping factor (i.e., the ratio of the amplitudes

of the oscillations measured in successive iterations)

were sensitive to the discrete-ordinates quadrature.

For an S_ quadrature after 15 iterations, the ampli-

tude of the oscillations was 10 % and the amplitude

damping factor was 0.70, whereas the corresponding

values for an S, quadrature were 10 % and 0.70.

For the S, quadrature after 100 iterations, the

amplitude of the oscillations had dropped to 10 %,

but the damping factor had increased to 0.95.

The source of the convergence problems has not

yet been determined, but possibilities include:
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(1) lack of ronsistency between the con-
tributon difference equations and the
forward and adjoint difference equa-
tions, in the sense described in
Sec. IV.C.4,

(2) errors introduced into if and <f> by
replacing the derivatives in Eqs. (69)
and (70) by numerical approximations,
and

(3) an interaction between the previously
described numerical instability and
changes in the shapes of S and S + in
successive iterations.

It is felt that the first two, which may not be to-

tally unrelated to each other, are the most probable

of the three possibilities. The third possibility,

although remote, is an interesting one, but it is

not an obvious one since Ax is not varied in suc-

cessive iterations. What can happen, however, is

that the values Ax , for which the determinant of

the coefficient matrix vanishes, will vary from it-

eration to iteration. This occurs since the elements

of the coefficient matrix are computed from the dis-

tributions, s^" 1 5 and S4"^"15, and these distribu-

tions vary with iteration. Thus, in successive it-

erations, the values of Ax can move toward or away

c

from the actual value Ax being used for the calcu-

lation. If such shifting in the values of Ax should

place Ax in a region of large solution sensitivity,

the result could be an interference with the iterative

convergence.

B. A Nonlinear Contributon Transport Equation

A generalization of Eq. (23) in Ref. 2 is easily

obtained for a £E region (S, S ^ 0) by multiplying

the expressions (69) and (70) for <j> and (f> together

to give the second-order nonlinear differential

equation, _

on the boundary surface. Possible boundary condi-

tions at a material interface are

i(/(r,fi,E) is continuous in r_

|-[

-7)2!// - (0 +ifiVS)fl
S ~

continuous in r , and

-?)2ij) + (a - | + n

continuous in r

2SS+] is

2SS+] is

According to Eqs. (69) and (70) these correspond to

continuity in IJJ, <|>, and $ , respectively, so at most

two will be independent when used with Eq. (162).

Because of the obvious difficulty involved in solving

Eq. (162), this approach was pursued no further at

this time.

C. An Iterative Solution to the Contributon
Transport Problem

This approach Involves transforming the forward

and adjoint Boltzmann equations in such a way that

the terms which appear in the new equations are

slowly varying in the spatial variable over much of

the system. The hope is that a coarser mesh can be

used for the numerical solution of such equations

than could have been used for the original equations.

1. Derivation of the Transformed Equations

We begin with the forward Boltzmann equation

+ a* (164)

L(Q.'V) > ] ) (a + | fl-VS) (Q-

(162)

For S, Z , and 0 regions, the linear differential

equations [Eqs. (47), (53), and (55)] are still ap-

propriate. For the case of a pure absorber with

uniform external sources, Eq. (162) reduces in slab

geometry to Eq. (23) of Ref.. 2.

Th" external vacuum boundary condition for Eq.

(162) is

0 for all (fl,E) (16")

The quantity $ is replaced by the product fij>, where

$ will become the primary unknown and will depend

upon the, as yet, unspecified function f. If this

replacement is made, Eq. (164) becomes

(CT + j (165)
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Ir che contributon transport problem, we iden-

tify 'Ji as the contributon flux, so that

and Eq. (165) becomes

(a - 9 ~

(166)

(167)

Since Eq. (167) is obtained from the forward Boltz-

mann equation [Eq. (164)] by replacing <J> with 4>/4' ,

the function ip/<j> satisfies the forward Boltzmann

equation. However, the identity,

|+ = 9 , (168)

ill

where 9 is the forward flux, holds only if -r+ satis-

fies the boundary conditions appropriate for the

forward flux <t>. Since $ is the adjoint flux, this

means that in solving Eq. (167) for if we must require

l/> to satisfy the same boundary conditions as <f (for

example, <JJ « 0 for incoming directions at a vacuum

boundary). We note, however, that the complete set of

boundary conditions for \p can be determined from the

independent boundary conditions on 9 and 9 , as dis-

cussed in Sec. II.B. This means that we have used

only half the contributon flux boundary conditions

in solving Eq. (167) for ty, namely those obtained

from the boundary conditions for 9. The fact that

\f> also satisfies the complete set of contributon

flux boundary conditions and is the contributon

flux, i|» - ((19 , is guaranteed by the relationship in

Eq. (168) only because 9 is the adjoint flux.

The corresponding transformation of the adjoiri:

Boltzmann equation [Eq. (45)] in the contributon ap-

proach is made by replacing $ with 4*/$ to give

means that in solving Eq. (169) for ip we must re-

quire ty to satisfy the same boundary conditions as

<(i (for example, i|i - 0 for outgoing directions at a

vacuum boundary). Again we have used only half the

contributon flux boundary conditions in solving

Eq. (169) for iji, namely those obtained from the

boundary conditions for <f> . The fact that $ also

satisfies the complete set of contributon boundary

conditions and is the contributon flux, ij)=$$ , is

guaranteed by the relationship in Eq. (170) only

because $ is the forward flux.

In obtaining Eq. (167) from the forward Boltz-

mann equation [Eq. (164)] it is not necessary that

<fi be the adjoint flux, but i// is not the contributon

flux unless <J> is the adjoint flux. Nevertheless,

for any well-behaved function d> , Eq. (168) is still

valid for the forward flux $ if ¥•+ satisfies the

boundary conditions appropriate for (j>. On the other

hand, in obtaining Eq. (169) from the adjoint Boltz-

mann equation [Eq. (45)], it is not necessary that

<j> be the forward flux, but i|i is not the contributon

flux unless <j) is the forward flux. Nevertheless,

for any well-behaved function <j>, Eq. (170) is still

valid for the adjoint flux <j> if ? satisfies the

boundary conditions appropriate for $ . If, however,

we do identify the <j> in Eq. (167) as the adjoint-

flux, then the adjo.it Boltzmann equation [Eq. (45)]

can be used to reduce Eq. (167) to

(4p)i|i = S<f>+ (171)

If we identify the <(p in Eq. (169) as the forward

flux, then the forward Boltzmann equation [Eq. (164)]

can be used to reduce Eq. (169) to

- fi'Vip + (§)i£ =- S+<f> • (172)

(0 + i (169)

Thus, the function -jr satisfies the adjoint Boltzmann

equation, but the identity,

(170)

where $ is the adjoint flux, holds only if £ satis-

fies the boundary conditions appropriate for the

adjoint flux 9 . Since 9 is the forward flux, this

TJnlike Eq. (167), which is valid for any well-

behaved function $ , it is imperative that the <J>

in Eq. (171) satisfy the adjoint Boltzmann equation

with source S , and unlike Eq. (169) which is valid

for any well-behaved function $, it is imperative

that the <|> in Eq. (172) satisfy the forward Boltz-

mann equation with source S. This is because a no

longer appears in Eqs. (171) and (172), so the only

way the solutions, i|> and <\>, can be influenced by o

is through the proper relationships being established

between S and <J> and between S and cf> .
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2. The Iterative Algorithm and Its Properties

The intention is to iterate between the equa-

tions,

- n-Vip + A ? = S+(J> (173)

and

(6) solve

s+
7+/

where the $ in Eq. (173) must satisfy

= s

and the (j) in Eq. (174) must satisfy

(174)

(175)

(176)

to insure that i> and <l> are forced to converge to the

contributon flux. Thus, the following algorithm

will be used:

(1) obtain an estimate <j> satisfying

- n-VA+(x) + a*+(1) = s+ < 0 )

with the usual adjoint flux boundary

conditions on $ ,

(2) obtain an estimate <(> satisfying

with the usual forward flux boundary

conditions on (J> ;

(3) set k = 2;

(4) solve

(177)

(178)

(179)

with adjoint flux boundary conditions

o n * " " ;

(5) set

A+00
((,(k-l) '

(180)

(181)

on

(7) se*

with forward flux boundary conditions

00.

(182)Jk)

(8) Increase k by 1; and

(9) if a specified convergence criterion for
•fi is not satisfied, return to step (4);
otherwise stop.

The convergence properties of this scheme are

ed. Due to the natu

formation, i|)v'v' is the solution to

easily determined. Due to the nature of the trans-
k(k)

a n d <f> is the solution to

(183)

(184)

(k)
Consequently, the convergence of <J> and <|i

dependently is the same as in the unaccelerated
14

Neumann series solution- There should be no great

difficulty in accelerating the scheme by applying a

standard acceleration technii) • to Eqs. (183) and

(184). What is not clear, however, is whether the

scheme could be accelerated by applying some

acceleration technique directly to Eqs. (179) and

(181).

3. The Numerical Execution of the Iterative
Approach - The Problem of Consistency

Because the contributon balance equation [Eq.

(46)] is just a combination of the forward and ad-

joint Boltzraann equations [Eqs. (44) and (45)], only

two of these three transport equations are Independent.

Since the three flux solutions, ij>, <J> , and TJJ, are

related according to Eq. (5), only two of these three

flux solutions are independent. It is, thus, pos-

sible to obtain all three flux distributions by

solving for any two using the appropriate pair of

transport equations in which the third flux distri-

bution has been eliminated. This third flux can

then be obtained from the two known flux solutions
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through use of Eq. (5). When the flux distributions

are treated as continuous functions of the phase-

space variables, the three flux solutions obtained

in this manner are consistent; that is, they are in-

dependent of which pair of transport equations are

solved. However, when these transport equations are

differenced in the space and direction variables,

this consistency may be lost unless care is

taken in the differencing. A simple example will

suffice to demonstrate the necessity of a consistent

set of difference equations.

Consider the transformed adjoint equation [Eq.

(179)] in slab geometry and assume that diamond

differencing is applied- Then for cell i and direc-
—(k)tion m, the center-point flux iliv. is
mi

, we obtain its discretized

(185)

(186)

(187)

and

(188)

+ fk)
If these results are then used in Eq. (186), A . is

mi
given by

mi

s
mi2)1 + a .Ax.

m l i

. i + S . Ax.
i-is m i i

V < 0

(189)

-2
%< ° •

where

(190)

+(k)
The expressions for $ ^ in Eq. (189) are the usual

diamond difference results except for the direction

cosines u . Since, in general,

=(k-2)

If diaaond differencing is applied to the forward

Boltzmann equation [Eq. (183)] with k replaced by

k-1, then

(191)

the directions with cosines w will not be the same
m

as the directions with cosines y unless Ax. » 0.
m i
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Thus, an error has apparently been introduced by

inconsistent differencing.

Our numerical results support the above conclu-

sion. In these calculations, diamond differencing

was used for the I|J, ty, $, and $ equations. Ini-

tially, the convergence was similar to that of the

unaccelerated Neumann series iteration. However,

a slight error, apparently introduced by the incon-

sistency, persisted. This error was of the order of

3% in the contributon angular flux i> for a problem

with a scattering-to-total ratio of 0.1 and a dis-

tance of 5.0 mean-free paths between source and

detector, and it appeared as a nonsymmetry in the

spatial distribution of <(i for a symmetric problem.

Since the contributon problem is effectively a pure

scattering problem, outside the detector region, it

might be expected that the error in iji would consist

of two parts, a rapidly decaying part characteristic

of the unaccelerated Neumann series iterations and

an extremely slowly decaying part characteristic of

pure scattering problems. However, since the flux

distortion remained unchanged after 3000 iterations,

it is felt that the problem is not a general lack

of convergence but rather that the distorted flux

is the true solution to an inconsistent set of dif-

ference equations. Numerical results show that when

the difference equations are made perfectly consist-

ent, as described in the next section, the persistent

error is not introduced.

4. The Numerical Execution of the Iterative
Approach - A Consistent Set of Difference
Equations

A general analysis of the discrete-ordinates

difference equations corresponding to Eqs. (173)-(176)

will now be presented to show how consistency can be

obtained. Throughout the analysis strict identity

is required whenever two results are required to be

the same. However, this restriction could be

relaxed somewhat without destroying consistency.

Consider first the problem of calculating a new

iterate 4>(k) from known values of S(k~15 and (}i+(k)

by the use of the transformed forward equation [Eq.

(174)]. The discrete-ordinates balance equations

which correspond to Eqs. (174)-(176) are:

mi
S
mi

(193)

and

,(k)

(k) (k-1) +(k)&
Ymi mi 'mi i (194)

where y ~nd y are as yet arbitrary weight factors

which must be determined to insure consistency. In

S ( k~°, and S+fk

mi { k ) mi
these three equations ^k), <f>+<k),

mi ' mi {

are cell-averaged quantities, and <J>

and \Ji .,, are cell boundary fluxes. Additional
m,i:Hj

equations which must be consistent are the defini-

tions of the contributon flux,

(195)
•"ml vmi Ymi

from the cell-averaged quantities and

.,.00 _ Ak)

from the cell-boundary values. It should be noted
(k)

that I)J . is not the cell-averaged contributon flux

but is merely, as the equation states, the product
(k) +Gc)

of the cell-averaged quantities, d> . and * . .
mi mi

In other words, Eq. (195) is consistent with the

statement that the center-point value of \Jj is the

product of the center-point values of ij> and $ .

Finally, since the discrete-ordinates balance equa-

tions, Eos. (192)-(194), contain too many unknown

flux values, we must introduce a set of discrete-

ordinates supplementary equations which express the

cell-averaged flux value in terms of the cell-boundary

flux values, and we require that these also be con-

sistent. For these supplementary equations, we use

very general weighted-difference equations in which

the weights are allowed to be functions of <|i, $, and

<fi . The supplementary equations for the forward and

adjoint balance equations are, respectively,

(192) Tmi a

mi
b

mi
(197)
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and

<»•>

For t it is possible to obtain two supplementary

equations, one from multiplying Eq. (197) by ij> ; '

and the second froa multiplying Eq. (198) by ((p

These two equations are

(X99)

and

Pmi
b
mi

(200)

Equations (192) and (197) give, after multiplica-

tion by f )

ami

bmi

> o

(201)

V < 0

But Eqs. (194) and (199) give

32



bmi

ami

(k)
a .
mi

-Vra
b(k)
mi

•+ Y.+00
mi

Ax,

aCk)

bOO ^(k) l^.i Y s
'mi mi

+ Y
mi

mi

From these two different expressions for .00

we can derive a quantitative requirement for con-

sistency by requiring the iuentity of both expres-

sions, two conditions emerge for all directions m:

JJ > 0

< 0

(202)

-u r*. i1 mi vm,i-% (203)

and

in Eq. (204) gives

Y ( k )
'mi (k) (k) = Y

a . + b . mi
(208)

Since we wish the ij> y ' which is used in Eq. (194)

to be the solution to the adjoint difference equa-

tion [Eq. (193)], we also obtain

a ( k )

ml

mi

b

mi

mi

and

v+0i) =
'mi a(k) + b(k)

a

ml
b

ml

(205)

(206)

(207)

from the requirement that Eqs. (203) and (193) be

identical. The use of Eqs. (205), (206), and (198)

+(k)
Since <!> also satisfies Eq. (198) and since

Eq. (200) was obtained from Eq. (198), Eqs. (199) and

(200) are required to be identical. Thus,

mi

r.+(k) i , (k) ,
[*•! - +O')f*mi_ I
.+(k) mi (k)lK±W L*miV

mi

(209)
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Ak) .+(k) .+(10
(210)

A similar analysis of these equations shows

that

+00 .(k-1)
a " b

(220)

Up to this point we have considered only the

solution of the transformed forward Boltzmann equa-

tion. We now consider the problem of calculating a

new iterate <t> from known values of S and
(k—1)

0 by use of the transformed adjoint equation

[Eq. (173)]. The discrete-ordinates equations which

are required to be consistent are

.+(k) (k-1)
bmi * a » i

(k)
mi +00 b+(k)

ai ai

(221)

(222)

and

.(k-1) , ( k - l ) ,

(211)

From Eqs. (210) and (223), we see that

(223)

*mi
'mi

mi

(212)

B j, s ;
mi ml

'fii, (213)

(214)

(k-1) +(k) (215)
(224)

^(k-1) ^ a(k-l)())(k-l) + b(k-l)())(k-l)

rml ~ ami *m,i-Hi
+ bmi ym,i-!j '

, (216) 2

that i s , the quantity . .? pj-r—Bust be independent

(217) of k. Thus,

"mi + b (k-1)
mi

and

'*(k) (218)

T(k> - +00
*'ml "mi [

,(k-1) ,
^mi

(k-1)
V.i+sjJ

(k-1)

b
bml

-(k) (219)

34



(•«, f*;rj
mi

(225)

where C is independent of k. However, since all

the fluxes on the .Left-hand side of Eq. (225) are

unknown, C is also unknown. To implement the it-
ml

erative solution technique, C . must be predetermined
mi

in some manner. One possibility is to assume a flux

shape within the spatial cell and then to determine

Cmi by inserting these fluxes into Eq. (225). Since

we do not know the exact flux solution a priori, we

must attempt to make the best possible assumption

for the flux shape within the cell. From Eqs. (205),

(206), (220), and (221), we see that the quantities,
a . = b . and b . = a ., are also independent of k.
mi mi , mi mi
Likewise,

Y + = S (225a)

s

mi
I

(230)

Through the use of Eq. (193), this transformed for-

ward equation becomes

m,i+!S

i mi
S
mi mi

(231)

independent of k.

The consistent forms of the transformed forward

and transformed adjoint equations can now be deter-

mined. From Eqs. (197), (198), (220), and (221), we

obtain

..00
vmi

(226)

and

a $ . i ̂  b .$ • i = $ • (227)

Cross multiplication of these equations shows that

A+(k> +(k)
vmi

*mi *m,i-i5

,.00 ..(k)
amil*m,i+Ji % , i - V A+(k) *mi -̂ '

(k)

which is just
mi

times the forward difference
k(k)equation [Eq. (192)]. This result insures that

satisfies the forward difference equations no matter

what $> is. Thus, Eq. (231) is more accurately

the difference equation corresponding to Eq. (167).

A similar analysis shows that the consistent

transformed adjoint difference equation is

(228)

and

rmi

If these results and Eq. (208'' fory . andy . are
mi mi

inserted into Eq. (194), the result is

(229)

(232)
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which is just $ ? tiwes the adjoint difference

Eq. [Eq. (193)]. The consistent supplementary equa-

tion to be used with Eq. (231) is

2

[«lk)l " C* *ikL#lkJ , , (233)

and

> o

< 0 (238)

and the supplementary aquation to be used with Eq.

(232) is

C
mi

(234)

A number of comments are in order concerning

the supplementary equations for the forward and

adjoint difference equations, namely

and

c2 t + ( k l4 + ( k l

(235)

(236)

and

(2) for a right boundary cell,

and

rt,
mi*m,i-Ss

VI < 0

p > 0
m

(239)

These equations are a generalization of the geo-

metric mean, or exponential, supplementary equa-

tions. It is shown in Appendix C co this report

that allowing C ^ + 1 is necessary for consistency

between the discrete-ordinates balance equation and

its corresponding supplementary equation. Indeed,

the accuracy of the solution can be sensitive to the

choice of C , as shown later,
ml

Obviously, the supplementary equations [Eqs.

(233)-(236)] are invalid for certain directions in

a cell adjacent to a vacuum boundary. A consistency

analysis has been carried out for the special case

of a vacuum boundary. Unlike the case of an interior

cell, the requirement of consistency between the two

forms of the <(i (or iji) weighted-difference equations

imposes no additional constraints, and the following

supplementary equations are obtained:

(X) for a left boundary cell,

00

(237)

+ b u < 0

As before, the transformed forward equation is just
+(k

I
+(k)
I times the forward difference equation, and the

(k-1)(k-1)transformed adjoint equation i s just <{> times
ml.

the adjoint difference equation.

5. Numerical Results for the Iterative Approach

The intention with this iterative approach is to

use coarser spatial meshes for ip and ty than for $

and <t> based upon the expected slower variation of ty

and if. At the beginning of each iteration !:, inform-

tion Isation Is assumed to be available for »v ^ and

on a fine spatial mesh. Then the fi equation

is solved on a coarse mesh in those regions where iji

is expected to vary more slowly than $ and ij> (and

on the fine mesh In the remaining regions). The so-

lution <|i on the coarse mesh and the information

<f> on the fine mesh are then used to obtain a

new iterate $ on the fine mesh. The approxima-

tion used in obtaining <(> in this manner is that

<f> varies exponentially across the coarse-mesh cell,

which is consistent with the supplementary equation

for V, Eq. (234). To complete the iteration k, a

similar approach is then taken with the i|> equation
(k)

and the calculation of the new iterate $ .

Every attempt has been ioade to maintain con-

sistency among the equations. This is easily done
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when the coarse and .Cine meshes coincide, and for

such a case the convergence of the iterations is

similar to that of the unaccelerated Neumann series

iterations. However, when the coarse and fine meshes

do not coincide, MI inconsistency and its accompany-

ing persistent error are introduced again. Thus,

some modification of this technique appears to be

necessary in the future if the slow variation in iji

is to be exploited without loss of consistency.

The results for a simple scattering problem will

now be described, since they provide additional in-

sight into the physics of contributon transport. In

these firs: calculations, the iterative approach

described in the previous sections has been employed

with coinciding fine and coarse meshes. The geometry

and important parameters for this problem are shown

in Fig. 9, and a plot of iKx.u) for the S? approxi-

mation is shown in Fig. 10. The interesting details

in this plot are the appearance of the peaks in the

source and detector regions for p < 0 and the be-

behavior of î  in the central region.

In the central region of the slab the angular

contributon flux distribution <}> varies for each of

the two directions in such a way that the difference

between the 4> values remains constant. This is a

direct consequence of the conservation law,

n-Vifi(r,n,E)dfidEdV = 3 (241)

where V is any volume which does not include the

source or detector. Eq. (241), when applied to our

t
a
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K

U

£ REGION

1
Otxjll r ~ CIT

R(x.u) - 0

o(x) >

0' REGION

Qltjil ' 0

R(xjl) • 0
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OIJJJ) - 0
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INTEGRAL RESPOND I ""g-J J JiiHx.fi) dfidx

Fig. 9. Geometry for model scattering problem.

special S problem and integrated over any volum

in the 0' region becomes

(242)

where x and x_ are any two spatial positions in the

0' region and the two direction cosines are related

by

- u . (243)

Thus, in this simple two-direction case, any con-

tributon picked up by a contributon "packet" travel-

ing in one direction must be lost by the contributon

"packet" traveling in the other direction.

The peaks in the source and detector regions

are due mainly to the presence of the source and

detector and to the fact that the vacuum boundaries

act as perfect reflectors of contributons. In the

source region, • lie packet of contributons with u >

0 picks up contributons produced by the source,

causing the rise in ijj after the packet enters the

source region. However, all the contributons in

the packet must be scattered into the direction

with VI > 0 before the vacuum boundary is encountered,

and this results in the decrease in y as the vacuum

boundary is approached. In the detector region, the

situation is reversed. There the packet of contribu-

tons with U < 0 picks up contributons scattered from

the direction with U > 0 in the vicinity of the

vacuum boundary. This causes the rise in ii as the

packet moves away from the vacuum boundary. The

detector, on the other hand, acts as a sink for

contributons and causes the decrease in ̂  as the

0* region is approached. Although it is not evident

from this semi-logarithmic plot, <!>(x,y) does go to

zero ar the two vacuum boundaries for all directions.

When a multiple grid is used and a certain value

is specified for C . in the fine-mesh cells, themi '
question arises of what value to assign to C for

mj

the coarse-mesh cells. From the discussion in Ap-

pendix C, it is easily seen that C . may differ

significantly from C .. Two approaches were tried

in the calculations for the problem described in

Fig. 9. Method 1 consisted of evaluating C . by
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Fig. 10. Solution for model scattering problem in
the Sj approximation.

use of Eq. (225) from the fine-mesh forward and ad-

joint flux data in each coarse-mesh cell in only the

first iteration after the relative error between suc-

cessive iterates of the integral response I, com-

puted from Eq. (5c), fell below 0.1. Method 2 con-

sisted in evaluating C . in a similar manner after

every iteration for k > 2. Figure 11 is a plot of

the integral response I vs the size of the coarse-

mesh cell in the 0' region. The fine-mesh cell

width used with Methods 1 and 2 was 0.1 mean-free

paths in the 0' region and 0.05 mean-free paths in

the source and detector regions. The value assigned

to C m i for all fine-mesh cells was one and a coarse

mesh was used only in the 01 region. A comparison

calculation has also been made for each of the

coarse-mesh choices where only this particular

coarse mesh was employed as a single spatial grid

with C j ' l . As can be seen, considerable improve-

ment in the integral response is obtained by employ-

ing multiple-grid Method 2, in which C . in the
mj

coarse-mesh cells is evaluated from the fine-mesh

flux data after each iteration.

As previously stated, the use of multiple grids

introduces distortions into the flux solutions. For

the problem described in Fig. 9, the contributon

I

SINGLE-GRID SOLUTION/
ON THE COARSE
MESH

0 0.5 1.0 1.5 Z0 2.5

0' REGION COARSEMESH CELL WIDTH (M.F.P.)

Fig. 11 . So i n t eg ra l response for the model
8

sca t t e r i ng problem.

t o t a l flux should be symmetric. Therefore, one

measure of such d i s t o r t i on would be the t i l t in the

contributon t o t a l f lux, where the t i l t i s defined

to be

TILT (244)

and i|/ and ij; are the average integrated contributon

fluxes in the source and detector regions. As in-

dicated in Fig. 12, the flux distortion increases

with increasing coarse-mesh cell width in the 0'

region but remains below about 20% for aAx < 2.5.

Figure 13 presents an extreme example of a distorted

contributon angular flux for the case of only two

coarse-mesh cells in the entire 0' region (ffAx = 2.5).

For comparison, the corresponding reference solution

on the finest mesh is also plotted. The multiple-

grid solution was obtained by using Method 2, and

the locations of the coarse-mesh cell boundaries

in the 0' region are readily apparent in the plot

of the distorted flux. The relative error, [<p -

*EXACT'AEXACT i n t h i s d i s t o r t e d eontributon angular
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flux is plotted in Fig. U and remains below 122.

For comparison, the relative error when five coarse-

mesh cells are used in the 0' region is also plotted.

There is a rather dramatic improvement in the accuracy

of the solution due to the increase in the number of

coarse-mesh cells. In order to trace these distor-

tions in \l> back to errors in <f> or ij> , we plot in

Fig. 15 the relative errors in <j> and $ as they re-

main in the fine-mesh results after the iterative

process is converged to a relative error of 10

between successive iterates of the integral response

I. From Figs. 14 and 15, a fairly interesting ob-

servation can be made. Most of the distortion in

the contributon flux is due to th€! distortion in

the fine-mesh adjoint flux. The forward flux is

fairly accurate for -.11 spatial positions, with

errors on the order of 1% or less.

Fig. 12. S g contributon-flux distortion in multiple-

grid solution of model i ottering problem.

1 2 3 4 5 6 7

SPATIAL POSITION X (M.F.P.)

Fig. 13. Comparison of distorted contributon angular
flux with reference solution to model
scattering problem for VI - 0.960.

I I I I I I
2 COABSE MESH CELLS IN O' REGION

5 COARSE MFSH -".ELLS IN O' REGION

SPATIAL POSITION X (M.F.P.)

Fig. 14. Error in Sg multiple-grid contributon
flux solution to model scattering
problem for u = 0.960.
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The source of the flux distortions in the mul-

tiple-grid approach is in all probability an incon-

sistency between the discrete-ordinates equations

for the fine spatial mesh and the discrete-ordinates

equations for the coarse-spatial mesh. However, the

nature of this inconsistency is not known at this

time, and consequently, it has not been possible to

eliminate the flux distortions in the multiple-grid

approach.

D. An Integral Equation Approach to the Contributon
Transport Problem

This appTCich involves the solution of an inte-

gral equation with a generalized contributon flux as

the unknown. This approach is not being seriously

considered at this time and is included here only

because it provides some insight into the informa-

tion required to solve the contributon transport

problem.

The integral form of the forward Boltzman equa-

tion can be written

x » the phase-space vector (i:,Ŝ ,E),

x?« the phase-space vector (r-s'fl.,nf ,E'),

OD

M(JC,X') - / e

r <J(r-s'R,E)ds"
o — —

(246)

the multiple-collision integral operator,

(£ - s"n,E)ds"
N(x,x') = / e ° ds' (247)

the noncollision integral operator,

Q(x.x') = Q(x - s'fi,fl,E) (248)

— external source distribution along the

direction vector !̂  passing through the

spatial position r_.

The quantities, s' and s", are scalar path length

variables. Likewise the integral form of the adjoint

Boltzmann equation is

where

£ « the phase-space vector (ĝ ,(̂ ,e),

y_' » the phase-space vector (p_ + t'to.to1 ,e') ,

'- /t'cj(p_+t>,e)dt"

(250)



-;tla(e+t"u,e)dt"
: ° ~ dt1 , (251)

and

A* (256)

and A is constant in the spatial variable x. Since

the exponent of (j> will be of importance to the re-

mainder of the discussion, we also write

.i') = R(e. + t'(o,u,e (252) <fi(x) E <{> (x) (257)

= detector response function along the direc-

tion vector to passing through the spatial

position Q_.

Again the quantities, t' and t", are scalar path

length variables.

A generalized contributon flux is now defined

to be

and

<K*)4> (253)

If the corresponding sides of Eqs. (245) and (249)

are multiplied together and the definition in Eq.

(253) is used, the result is

x) = A<|> (x) = A (258)

We can also define a fourth distribution function

(fj(x), where $R(X) is just a spatial reflection of

<j>00 about the center plane x = x of the slab 0

region.* Since this function <)>D(>0 is related to

<Kx_) f ° r tnis special case by the equation

* (x) = ̂ ( x ) , (259)

The ordinary contributon flux, as defined in Eq. (5),

is just

x . x ) = <|>(x)<f> ( x ) . (255)

Although it may appear that the amount of con-

tributon information has been squared by the intro-

duction of ¥, such is not the case. From its defi-

nition in Eq. (253), it follows that YOc.v.) can be

completely described by just two independent dis-

tributions. Any two of the three functions, $(x) ,

ij> 0 0 , and i|)(3c), are such independent distributions.

We now ask whether it is possible to find another

distribution x(x), such that ty(x) and x(x) are in-

dependent, completely determine "P(jc,y_), and vary

more slowly in r̂  than <J>00 and <}> (JC) over a portion

of the system.

To determine how xC*) "light be found, consider

the special case of a pure absorber 0 region in slab

geometry, for which

(254)

the function ij)B(x) <J> 6 0 i s r e l a t ed to <J>(x) by

(j, (x) = Aiji (x) . (260)

If ¥(x,£) consists of discrete information

with respect to the various phase-space variables,

this information could be arranged in a matrix in

which the jc-dependent information is arranged by

rows and the y_-dependent information is arranged by

columns. Consider now only a submatrix of this in-

formation for a specific direction H and a specific

energy E . We also denote the location of the

center of the 0 region by x - y • Figure 16 shows

an arrangement in this submatrix of the discrete

information for K x . S ^ E ^ x . ^ . E ^ ̂ (x.S^.E^

y tfl ,E ) ,'o'-o' o *

Since the normalized forward flux is <Kx) » i
in an 0 region, a reflection of <Kx) about x

a(xx) 1

-a(x-x )

gives <|> (x) $(2xo - x) »



- (o.o)

(»„.»>

ta.v.) <•• * « « • "«.«'

iff
I".-*».-«—)

F i g . 1 6 . I n f o r m a t i o n s t o r a g e f o r <j>, $ , lj), and <f> <J> i n submatrix o f ¥ m a t r i x .
R

where x and y vary between 0 and x . From the
max

definition in Eq. (253) of the generalized contri-

buton flux and from Eqs. (256)-(258) and (260), it

can be seen that

' O —O O
,E ,E

(261)

(262)

Comparison of Eqs. (261)-(264) with Fig. 16

shows the following:

(1) the spatial variation of y is slowest
along the main diagonal, where V = if =

A(J2 ,E )<j)°Cx,fJ ,E ) * constant with
~o o -*o o

respect to x;

(2) the spatial variation of V is most rapid
along the other diagonal, where ¥ = <P-JP*

= AC^.E^^fy.S^.E^; and

(3) the spatial variation of 'i iies midway
between that of ij; and li>R

<tl+ along the

vertical line through y « y , where

¥ = <|>+(yo,no,Eo)1).
1(x,Bo,Eo)° and along

the horizontal line through x - xo,

where * - A^.E^-Kx^.E^-^

A<so.y*cvs0.v*"
The conclusion which may be drawn from this is that

(263) a function x, in order to vary more slowly than $

and if , should be represented by data that lies on

(264)
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some curve which falls entirely within the upper

left and lower right quadrants of the submatrix in

Fig. 16. Since X and i// must be independent, this

curve canmt coincide with the main diagonal, where

1/ = <j> is spatially a constant. The ideal function

X might, therefore, be a perturbed contributon flux,

namely,

X = 1(1 + Sty , (265)

where \Si>\ « I|I. If such a quantity X could be

found, then it might be possible to reformulate the

forward and adjoint problems in terms of two new

functions, it and x. which vary more slowly than <f>

and <(> over much of the system. Since <Kx) is

roughly exponential in a scattering medium which is

free of external sources and detectors (i.e., an 0'

region), this discussion can also serve as a guide

for choosing x in the more general problem with

scattering. The details of determining a specific

function x have not been carried out to date,

however.

V. SUMMARY AND CONCLUSIONS

There were three main goals in this research on

contributon transport. The first was to more fully

describe the physics of contributon transport. To

accomplish this we have written for the contributon

angular flux ty a Boltzmann-like transport equation,

which has an interpretation similar to that of the

Boltzmann transport equation for the forward flux <f>.

In writing this equation for if), special contributon

scattering and absorption cross sections were intro-

duced, and examination of the definitions of these

cross sections has revealed some of the peculiar pro-

perties of contributon interactions with the medium

and vacuum boundaries.

The second and third goals were to identify con-

tributon transport equations and their boundary con-

ditions and then to identify possible approaches to

solving these equations deterministically. Four such

equations were obtained, but only two were actively

investigated with a view toward deterministic solu-

tions. The solution approaches were designed to ex-

ploit the fact that if; varies more slowly than $ and

<j> over much of the system.

The first transport "equation" obtained for l|i is

actually a set of four differential equations, namely

a linear first-order equation, two linear second-

order equations, and a nonlinear third-order equa-

tion. The appropriate equation for 4> fiom this set

is determined on a region-by-reglon basis from the

forward and adjoint source distributions, S and S ,

in that region. The first and second-order equations

are applicable in pure absorber regions only, and the

third-order equation is applicable in scattering re-

gions and certain pure absorber regions. It has been

possible to completely specify all boundary condi-

tions on i|/, without having to solve first for ej> and

$ , except for problems containing source and detec-

tor-free pure absorbei regions. For such regions

the contributon transport problem is degenerate,

and a complete set of boundary conditions cannot be

specified without solving the forward or adjoint

Boltzmann transport equation in the degenerate re-

gions. However, this poses no real difficulty,

since the forward and adjoint Boltzmann equations

are easily solvable analytically in such regions.

The nonlinearity of the third-order equation intro-

duces only a minor complication. The iterative ap-

proach that would normally be used because of the

nonlinearity is formally equivalent to the source

iteration usually employed in solving the forward and

adjoint Boltzmann equations in the discrete-ordinates

approximation. For this reason, the third-order

equation for iji has been referred to as quasi-linear.

Some problems described entirely by the first and

second-order equations have been solved both analyti-

cally and numerically with no difficulty, and some

simple pure absorber problems described by the third-

order equation have also been solved analytically.

However, attempts to solve the third-order equation

numerically by the discrete-ordinates method indicate

that the difference equations are susceptible to

numerical instability when source discontinuities

are present, and this problem is still unresolved.

The second transport equation obtained for i|)

is a generalization of the nonlinear equation of

Ref. 2 to general phase-space coordinates and to

scattering media, k set of boundary conditions was

postulated for this equation, but because of the

obvious difficulty involved in solving this equation,

it was investigated no further at this time.

The third transport "equation" obtained for ij;

consists of a pair of differential equations. These

contributon equations were obtained by transforming
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the forward and adjoint Boltzmann equations In such

a way that the resulting equations contain only

quantities which vary slowly In the spatial variable

over much of the system. These contributon equations

are solved numerically by iterating between the two

equations. However, it has been found that unless

the contributon difference equations are consistent

with the forward and adjoint difference equations, a

distortion is introduced into the solution for i>.

Consistency can be obtained when the same spatial

grid is used for <p, §, and $ . but there is no com-

putational benefit over solving separately for if

and <f> when a single grid is used. To obtain any

benefit from this method, it is necessary to use a

multiple grid (a coarse grid for fy and a finer grid

for <f and <f> ). However, when such a multiple grid is

employed, an inconsistency is again introduced, the

effects of which have not yet been eliminated.

The final transport equation obtained for if) is

an Integral equation for a generalized contributon

flux. Although no attempt was made to solve this

equation, the approach has been useful in describing

a method of attacking the general contributon trans-

port problem. This approach Indicates that instead

of solving for $ and <j> , one might solve for two

other unknown functions, namely the contributon flux

$ and a perturbed contributon flux x. where x must

be independent of I|I in describing the transport prob-

lem. Any computational advantage in such an approach

would stem from the fact that one would be solving

for two functions, i|J and Xi which vary more slowly

that ij> and <Ji in the spatial variables over much of

the system.

Although the goal of solving the contributon

transport problem deterministically has not been ful-

ly attained, progress has been made in that direction.

At this point, two approaches, the quasi-linear

third-order approach and the iterative approach, of-

fer the most potential as deterministic solution

techniques. The third-order approach is promising

if the stability problem, which is probably related

to the singularities at source discontinuities, can

be resolved. The multiple-grid form of the iterative

approach is promising if the inconsistencies can be

eliminated or minimized.
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APPENDIX A

CRITICAL VALUES OF Ax FOR THE COEFFICIENT MATRIX IN THE

NUMERICAL SOLUTION OF THE THIRD-ORDER QUASI-LINEAR

CONTRIBUTON TRANSPORT EQUATION

The numerical method, described in Section

IV.A.7, -jr solving the third-order quasi-linear

contrib.iton transport equation by first solving the

associated second-order differential equation for

f(x,p), is susceptible to numerical instability in

the form of extreme sensitivity of the solution

f(x,U) to the choice of the spatial cell width Ax.

It is postulated that this instability is due to the

existence of critical values of Ax for which the de-

terminant of the coefficient matrix of the system of

difference equation vanishes. In this appendix, it

will be demonstrated by a simple example that such

critical values Ax can, in fact, exist,
c

Consider a pure absorber problem in slab geo-

metry with a uniform absorption cross section a. and

with the source and detector distributions,

and

Q(x,u)

R(x,D) =

Q 1 >

Q2 >

R 2 >

0 < x < t

t < x < 2t

0 < x < t

t < x < 2t

(Al)

(A2)

where Q, R~ f Q^i • To simplify the analysis, the

fewest possible spatial mesh points (four) will be

used. Two of these mesh points, x. =0 and x, = 2t,

are located at the external boundaries, and the

other two mesh points, x, = t and x, = t , are lo-

cated at the internal boundary, x = t. If the ex-

ternal boundaries are vacuum boundaries, then Eqs.

(147) and (149) for \i > 0 reduce to

o As

m
f4(U) (A4)

where Ax = t. Eqs. (154) and (155) for the internal

boundary, x = t, become

2u
j f2(u)

f3(u) = -1 (A5)

and

Q2R2Ax

(A6)

We now define the following quantities:

ul

"2 Q2R2Ax

n =

(A7)

(A8)

(A9)

(A10)

and

f2(u) (A3) and

/0AAx\2 oAAx
=V 2p / + "nr (All)

n2 + n + k



With these definitions the system of difference

equations (A3)-(A6) can be written as

V

where

0

0

2 2

f l

f 2

f 3

1

- 1

1

- 1

(A12)

The determinant of the coefficient matrix in Eq.

(A12) is easily found to be

If A is to vanish, then one of the two conditions,

- i = 0 (A14)

- f - 0 (A15)

must be satisfied since 6̂  and 6, are both non-zero

for p * 0. If Eqs. (A8)-(A10) are used in Eqs. (A14)

and (A15), then the two conditions become

• /Q 1Q 2
R
1
R
2

and

| Q C Q 1 R 2 -

( A 1 6 )

( A 1 7 >

If Eqs. (A7) and (All) are then used in Eqs. (A16)

and (A17), we obtain for the two conditions

("#)•
(A20)

Since we wish to demonstrate the existence of

critical values Ax > 0, for which & of Eq. (A13)

vanishes, it suffices to show for p > 0 that at

least one of the two equations, (A18) or (A19), has

a solution n > 0. Thus, we ignore the solution,

ri - 0, and consider only the remaining solutions

to Eq. (A18) and (A19), that is, the solutions to

F+(n) = n
3 C+n

2

and

F_(n) = n3 + £_n2 + £_n + i c_

(A2i)

(A22)

It is first noted that, for large o > 0, both F(o)
3 +

and F (n) are asymptotic to T\ ; that is,

F+(n) - n > 0 for n » 0 (A23)

Thus, there must be at least one n > 0 if either
c

F±(0) < 0 or F_(0) < 0. From Eqs. (A21) and (A22),

F+(0) = i 5 +

and

(A24)

(A25)

From Eqs. (A24) and (A25), F_(0) is always greater

than zero, but if QJ^RJ > C^Rj. t h e n f+(0) < 0

and F+(n) has at least one zero, i.e., F+(nc) " 0

for n > 0. Consequently, for U > 0 and QjR2 >

there is at least one critical cell size, Ax > 0,

for which the determinant A vanishes. It is pos-

sible to continue this analysis and determine the

precise number of critical values Ax , but this is

not necessary to the demonstration of existence.

n(n3 - o (A18)

and

n(n3 + C_n2 \ 5_)- o (A19)



APPENDIX B

THE TRANSFORMED FORWARD BOLTZMANN TRANSPORT EQUATION

If the flux <fi in the forward Boltzmann trans-

port equation is replaced by fip, then as shown in

Section IV.C.I, the result is the transformed for-

ward equation,

+ (a + j n-vf)$ - | , (Bl)

where no restrictions are imposed on either f or $

at this stage. If the goal is to solve Eq. (Bl) for

a function \[> which is slowly varying in the spatial

variable r_, then the ideal choice for f is the

one which would make \(i satisfy the equation,

o (B2)

When Eq. (B2) is inserted into Eq. (31), we see that

the ideal f should satisfy

B-Vf + af = S , (B3)

which is just the forward Boltzmann equation with

<J> replaced by f. This result implies that an ideal

choice for f is

f 5 <t> .

Since per definition

$ = | ,

the choice of f according to Eq. (B4) gives

$ = 1 .

(B4)

(B5)

(B6)

In an iterative solution scheme for the forward

Boltzmann transport equation, one generally knows
(fc-1)only the latest iterate (j> and not the converged

flux <J>. Consequently, in an iterative solution, we

choose f to be

(B7)

.,<» = ,00
(B8)

w h e r e <J>(k) satisfies the forward Eoltzmann equation,

;)
 + a$

( k ) = S ( k- X ) , (B9)

in each iteration k. Though the use of Eqs. (B7)-

(B9), Eq. (Bl) becomes

(k) ,(k-1)

Jk-1) (BIO)

for iteration k. The vacuum boundary condition for

$ is chosen to be

r.(k)
,(k-l)

for n-fi < 0 (BID

(k)

and to be

since this is the only value of $ for which
(k)

£2* Vip can be bounded for incoming directions. This

is easily seen when Eq. (Bll) is inserted into Eq.

(BIO). In view of Eqs. (B8) and (Bll), $ ( k ) con-

verges to if 5 1 throughout phase space when <Jr ' con-

verges to <J).

The approach defined by Eqs. (B7) - (Bll) is

just one in a class of approaches based upon the

possible choices for f in Eq. (Bl). Another is the

contributon approach as discussed in Section IV.C,

in which f is chosen to be l/4>+- The above exercise

provides the following insight: If f is chosen as <j>

then if in Eq. (Bl) is constant throughout phase

space. However, if iji is to be interpreted as the

contributon flux, ip = $<t>+, the solution if = A = const,

implies that <p = A/<p. This relationship between

forward and adjoint flux holds only in special cases,

e.g., in a source and detector-free region of a pure

absorber problem ("0-region"). On the other hand, if

a problem contains scattering sources, its solution

for the contributon flux $ is most nearly constant in

regions where only very little scattering occurs, """

i.e., where a / a « 1. In these cases a solution

method for the appropriate contributon transport equa-

tion which exploits the slow variation of if is ex-

pected to be beneficial.
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APPENDIX C

THE IMPORTANCE OF C IN THE SUPPLEMENTARY EQUATIONS

The discrece-ordinates transport equation for

the forward flux 4> in slab geometry is

., i+h (CD

and the consistent supplementary equation for <t> is

(C2)

In these equations, 0 , is the cell-averaged flux

and <f> ... are the cell boundary fluxes. If the flux

is assumed to have an exponential shape across the

cell, then the cell center flux $ , satisfies
ni

(C3)

Thus, taking the ratio of corresponding sides of Eqs.

(C2) and (C3) shows that

Trai

Tmi
(x)dx

if the flux <t> (x) has an exponential shape across

the cell. If the flux shape within cell i i3 given by

* m i ( x ) * *mi e ' ( C 5 )

it is easily shown by inserting Eq. (C5) into Eq.

(C4) that
sinh

2V
mi

mi
(C6)

2vmi

where V ^ is an, as yet, unspecified cell parameter.

Fron equation (C6), it can be seen that there

is a basic inconsistency if <f . (x) is assumed to have

an exponential shape and if C = 1 . unless <b . «

mi
0. Indeed, the accuracy of the solu-

tion can be very sensitive to the value chosen for

C ., especially for deep-penetration problems with
Bl

large tfjAxj. To demonstrate this sensitivity, the

results for a simple aonoenergetic deep-penetration

problem (50 mean free paths) are presented. The

geometry and parameters for this problem are shown

in Figure 8 and the results are presented in

Figure 17 for the S^ approximation. The quantity

plotted is the ratio of the integral response I,

computed from Eq. (5c), for a constant mesh size

Cfix.« 1.0 in the O 1 region to the "exact" integral

response obtained with cAx - 0.05 in the 0' region.

The scattering-to-total ratio is varied from zero

to 0.9. The various curves in Figure 17 corres-

pond to the different values used for C ., namely:
mi

sinh

<2) Cmi * " a T
2H.

, the correct value of C . for
ml

a source-free pure absorber

region, In which the exact

flux solution in the 0'- re-

gion is given by Eq. (C5)

W l t h Vmi ' ^m '

SCATTERING-TO-TOTAL - —

Fig. 17. Sensitivity of Integral Response to
the choice of C ^ .



and

sinh -f—
(3) C . - - r ^ -

a.ix.

2V

9
where u is the discrete Case eigenvalue appropiiate

for the quadrature set being used; that is, v is the

solution to

a M / 2 w
1 , (C7)

where maxlu I < V < <*>.
m ' m'

Figure 17 shows the extreme sensitivity of the

accuracy of the solution to the choice of C .. As
mi

might be expected, C . = 1 is more appropriate for
mi

problsms with little absorption (close to a pure

scatterer), and it is not surprising that I is in-

creasingly overestimated as more absorption is in-

troduced into the problem. The second choice for

C ., with v . = (j is more appropriate for pure
ml mi m

absorber problems, so it is not surprising that I

is increasingly underestimated as more scattering

is introduced into the problem. Since setting J

equal to the discrete Case eigenvalue closely ap-

proximates the exact solution, it is r.nt surprising

that the best results for 1 are obtained wich the

third choice for C ..
ml

These results do not show how to choose v . for
mi

regions that contain external sources, since this

Case eigenvalue method does not apply in such re-

gions. The results do show, however, the need to

study methods for choosing C ., since the accuracy

of the solution is extremely sensitive to the choice
of C ..

mi


