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THE THEORY OF CONTRIBUTON TRANSPORT

by

J. W. Painter, S. A. W. Gerstl
and
G. C. Pomraning

ABSTRACT

A general discussion of the physics of contributon transport is
presented. To facilitate this discussion, a Boltzmann~like transport
equation for contributons is obtained, and special contributon cross
sections are defined. However, the main goal of this study is to
identify contributon transport equations and investigate possible
deterministic solution techniques, Four approaches to the deterministic
solution of the contributon transport problem are investigated. These
approaches are an attempt to exploit certain attractive properties of
the contributon flux, y = ¢¢+, where ¢ and ¢+ are the solutions to the
forward and adjoint Boltzmann transport equations. The first approach
involves the derivation of a quasi-linear differential equation for
Y. The order of the resulting differential equation is shown to depend
upon § and s+, the source terms, including scattering, in the forward
and adjoint Boltzmann equations. Some simple pure absorber problems
are solved analytically. Attempts at numerical solutions for a more
general class of problems indicate that when spatial discontinuities
exist in § or 5%, the difference equations are susceptible to numerical
instability with respect to the size of the spatial mesh intervals.

The second approach involves the derivation of an explicitly nonlinear
differential equation for Y. This equation is a generalization to
scattering media of a similar equation,which was previously obtained
for a pure absorber. This approach has not been actively pursued in
detail. The third approach involves iterating between a differential
equation that contains only { and 4% and a differential equation

that contains only Yy and ¢. A multiple-grid approach, in which a
coarser mesh is used for Y than for ¢ and ¢+ in those- regions where

Y varies more slowly than ¢ and ¢T, is investigated. When the multiple
grid is used, it is found that contributon flux distortions, which are
indicative of inconsistencies among the difference equations, are
introduced into the converged solutions. The problem of consistency is
studied in detail for the case of slab geometry. The final approach
involves writing a linear integral equation for a generalized contributon
flux. However, this approach has not been actively pursued in detail.

1. INTRODUCTION L In these equations ¢ is the forward angular flux,
Linear neutral particle transport™ can be de- ¢+ 1s the adjoint angular flux, Q is the forward
scribed by either the forward Boltzmann equation, source distribution, R 1s the detector response func-

tion and adjoint source, L is the forward tramspor:c
ww=Q , (1) operater, and Lt is the adjoint transport operator
defined such that
or the adjoint Boltzmann equation,
" <¢”,Lp> = et e . ®»
L¢ =R . (2



The two descriptions are equivalent in the sense that

any integral response is given by
+
I = <R, $> =<Q,¢°> , %)

where <,> indicates an integral over all phase space,
that is, over all spatial positions r, directions Q,
and energies E.

The standard approach to obtaining I involves
solving either Eq. (1) or Eq. (2) and then using the
appropriate integral in éq. (4). However, a new ap-
proach, namely the contributon approach, has recently

»3

been suggested.z In this approach a contributon

angular flux is defined as
PERE) = (B¢ (LR ().

and the integral response 1s calculated from

I =/f/(’z‘uq-g)\p(£,g_,n)dxdgus (5a)
L.

Q

or

I =:///(£R-g)¢(£,gl.n)dnds_us . (5b)
SR

where SQ is any surface that encloses the source but
not the detector, SR is any surface that encloses
the detector but not the source, and ﬁQ and ER are
the outward-directed unit normal vectors on the sur-
faces, SQ and SR, respectively. If surfaces SQ (or
SR) are chosen such that they are described by the
same unit normal vector ﬁQ(or ﬁR). the surface in-
tegrals in Eqs. (5a) and (5b) can be replaced by a
volume integtal.4 For example, in slab geo'etrﬁll

could be calculated from

x2 1
2
1= ——‘—_‘xz 1_’ % /ﬁlﬂ(x.u,E)dEdudx , (5¢)
where
u= AQ.& (or —ﬁR.g) (5d)

and the region, x, < x < X,s lies between the source
and detector. This function ¥ provides not only suf-
ficient information to calculate I but also informa-
tion on transport paths, in that peaks in y correspond
to preferred transport paths in phase space between
the source and detector. This interpretation of
is possible because contributons constitute the sub-
set of source particles which actually reach the
detector and contribute to the response, and it finds
applications in channel theory analysis as described
in Ref. 3.

One approach which has been used to compute
is to separately calculate ¢ and ¢+ and then to use
the definition of ¥ in Eq. (5).3 The other approach,2
however, involves solving for Y directly and is the
approach documented in this report. In deep-penetra-
tion Monte Carlo calculations, where considerable
effort is expended in tracking source particles which
never reach the detector, the contributon approach
has produced a significant reduction in effort by
reducing the number of wasted histories.4 In the
deterministic approach, the goal is the reduction
in effort which might be obtained from solving for
one unknown, |, rather than two unknowns, ¢ and ¢+.
In addition, { 1s expected to vary more slowly than
¢ and ¢+ over much of the system, so coarse meshes
might be employed in those regions where this is
true. This slow variation is a direct consequence
of the conservation law for { derived in Ref. 2.

Two approaches to the solution of the contributon
problem are presented in Ref. 2. One involves the
solution of a linear complex differential equation in

the unknown
¥ =0+ 16" (6)

but this obviously produces no reduction in effort.
The second approach involves the solution of a non-
linear real differential equation in ¥. This equa-
tior was obtained for the special case of a pure
absorber with constant cross section, source, and
detector response. However, no boumdary conditions
were specified and no attempt was made to solve this
nonlinear equation.

The present report describes the physics of con-
tributon transport and some of the approaches consid-
ered for the determiaistic solution of the contributon



transport problem. In the next section of this re~

port, a contributon transport equation, identical
in form to the Boltzmann equation, is derived. From
this equation, considerable insight intc contributon
transport is gained. The derivation of this trans-
port equation requires the introduction of a special
contributon scattering cross section, and the prop-
erties of this cross section are described in the

third section of this report. The fourth section

contains detailed descriptions of four approaches to
the solution of the contributon transport problem.

The final section presents conclusions and recom-

mendations for the contributon approach in

provides: additional ingight into the nature of the

contributon transport problem.

II. THE CONTRIBUTON TRANSPORT EQUATION

In this section a transport equation for con-~
tributons will be derived. In so doing, new cross
sections which describe the scattering and absorp-
tion of contributons will be introduced. This new
trangport equation will then be interpreted, and
general boundary conditions for the contributon flux
will be discussed.

A. Derilvation of tne Contributon Transport Equation

In deriviang the contributon transport equation,

we bapin with the steady-state forward Boltzmann

general.
equation,
2-9¢(r,2,E) + o(r,E)$(z.2,E) =/ﬁs(r;2',ﬁ'*9_.ﬂ)¢(;,g',E')dé?_'dE' + Q(r.2,E) , 7
and the steady-state adjoint Boltzmann equation,
2-94*(2,2,8) + 0(r,E30%(z,2,E) =/[05(1;8_,E*Q',E‘)¢+(_§,§2_',E')dg'dE' + R(z.2,E) » (8)

A brief description of tha four solution ap-
proaches will now be presented. The first involves
solving a quasi-linear third-order differential equa-
tioﬁ for V. This equation is a reformulation of the
transport process described by the forward. adjoint,
and contributon transport equations. The second ap-
proach involves solving a nonlinear differential
equation for ¥. This equation is just a generaliza-
tion of the nonlinear equation described in Ref. 2.
The third approach involves iterating between trans-
formed forward and adjoint Boltzmann equations.
These two equations have been transformed to take
advantage of the slow variation of certain functions.
A consistency analysis, which proved to be necessary
for this approach, ylelded a set of consistent dis~
crete-ordinates balance equations and supplementary
equations for ¢, ¢+, and Y. The supplementary equa-
tions are a generalization of the exponential sup-
plementary equations of Barbucci and D:I.Pasquantonio.5
The final approach involves solution of an integral

equation for a generalized contributon flux and

where 0(r,E) = macroscopic total cross section,

os(g;gf,a'»g,s) = macroscopic differential scattering
cross sectjon, and the remaining quantities have been
previously defined. These two equations are combined
in the usual manner by multiplying Eq. (7) by ¢+ and
Eq. (8) by ¢ and subtracting the second result from

the first to obtain

R:99(r,Q,E) +/[as(£;s_z_.s-g' JE')ST (.27 EN)¢ (x,2,E)dD " dE”

=ffc,(;;g' JE'Q,E)0 (2, Q°E" )¢ (r,2,E)dR " dE"
+ QLREN (1.0,E) - R(,2,E)6(r,2.B) . (9)

At this point, a contributon differential "scat-

tering" cross section, defined to be

- 97 (£.2,E)
US(L;QI,EV..(l,E) = GS(AE;Q_.E‘_Q;E) _;_____ ] (10)
% (r,2',E")

is introduced. With this definition, the two scat-

tering integrals become



[ / 0, (T, B £ (1,2 B (2, ) AE' = 7 (£.2,E)(r,2,E) an

and

//o,m&'.i'*&.z)ﬂs-ﬂ_' E (g, e -/[Esg;g-,s'ag,m(;,g-,E-)ayax- . 2)

where the contributon scattering cross section
0 (L, RE) ia

0, (x2,E) -j]c?’(g;&,ﬁ*g'.li')d}_'dﬁ' . (13)

The cross section 5;(541,5) becomes a function of
2 since ¢°(£,2,E) and [fo_(£:R,B0°,E"¢" (£,2",E")
+dR'dE’ will not, in general, have the same func-
tional dependence on 2. This treatment of E;(Eéz,s)
as a direction dependent function is supported by
numerical experiments, which will be described in
detail in another section.

It is also possible to define contributon "ab-

sorption" and "total" cross sections. The contribu-

ton absorption cross section is defined to be

o (r,2,E) = ——— (14)

and the contributon total cross section is defined

to be

o(r,2,E) = o, (r.2,E) + 0, (r.2,E) . (15)
The definition (14) of the contributon absorption
cross section is consistent with the definition of
contributons as the subset of source particles which
contribute to the detector response. Since contribu-
tons must contribute to the response, they can he
removed from the system only by absorption in the
detactor.

When Eqs. (11)-(15) are used in Eq. (9), the
contributon transport equation,

of the corresponding terms are similar for the two
equations. However, in interpreting Eq. (16) in a
Boltzmann-like manner, it must be remembered that
the contributon is a fictitious particle. Unlike

the neutron, each contributon has units associated
with it, namely, the units of the expected contribu-
tion of the contributon to the detector response.

The result is that the contributon flux is not purely
a particle flux. For example, if the integral re-
sponse I is a dose rate in units of rem/s, then the
contributon flux can be viewed as a dose flux with
the units of ren/cn2 - § = ST - MeV.

Thus far nothing has been said to justify the
interpretation of E; as a scattering cross section.
From Eq. (12), the integral term in the contributon
transport equation is formally the source of con-
tributons due to the scattering of forward particles.
However, the formal identity between the contributon
trangport Eq. (16} and the forward Boitzmann equation
might at this point be justification enough for in~
terpreting 5; as a scattering cross section. If 5;
is so interpreted, then the integral in Eq. (16) can
be interpreted as the source of contributons due to
the scattering of contributons. As a final note,
with 5; as the contributon scattering cross section,
the contributon transport problem reduces to a pure
scattering problem ocutside the detector region, because
in regions where R = 0, the contributon absorption
cross section, as defined in Eq. (14), vanishes, and
the contributon total cross section, as defined in
Eq. (15), reduces to the total contributon scattering

cross section; that is

2 TH(ERE) + S5, EV(E.Q,E) = f / 3, (00" B ENN(ERT ENR'EE + Q2. E06T (2B (16)
results. This equation is identical in form to the

forward Boltzaann equation, and the interpretations



o(r.2,E) =o_(r,2,E) an

whenever R{r,2,E) is zero.

B, General Boundary Conditions for the Contributon
Flux

For problems with no purely absorbing regions,
all the boundary conditions for Y can be determined

+
directly from the boundary conditions for ¢ and ¢ .

When purely absorbing regions are present, however,
it appears that, except for certain special cases,
at least one of the boundary conditions for { must
be obtained by solving the forward or adjoint Boltz-
marn equation in the pure absorber regions. For the
present, only those boundary conditions which can be
easily obtained from the. boundary conditions on ¢ and
¢+ will be considered.

Consider first the boundary conditions at a non-
reentrant vacuum boundary. If there is no neutron
source outside the boundary, then for all positions

r, on the boundary surface,

b

$(r,.0,E) =0 if nQ <O , (18)

where n is the outward-dirccted unit normal on the
boundary surface. If there is no detector outside
the boundary, then for all positions Eb on the

boundary surface,
+' ~
¢ (_Eb,s_z,E) =0 if n-Q >0 . (19)

Thus, the boundary condition on ¥ for every position

I, on the boundary surface 1is just
w(gb,g,E) =0 forallQ . (20)

The direction @ for which E-g = 0 is included in Eq.

(20) even for a planar surface since

_ lim P(r,,2,E) =, lim ¥{r, ,2,E) = 0 . (21)
n+>ot I nes0- P

Consider now an internal material interface
where ¢(r,Q,E) and ¢+(£,Q,E) are continuous in r,
except possibly at a planar interface in those di-
rections § for which E-g = 0. The boundary condi-
tion on Y at a material interface is then ¥(r,2,Z)

is continucus in r for every (1,E), except possibly

at a planar interface in those directions ! for
which nQ = 0.
Finally consider the case of a reflecting bound-

ary, for which

0(_1'_,&1’5) = ¢(_r.lg.2:E) (22)
and
2790 ~ 6728 (23)

where 3-&1 = -ﬁ-gz and 2, # -2,. Then the boundary

condition on ¥ at such a boundary is

V(x,2;.8) = u;(_r_,gz,}:) . (24)

In Sec. IV, other boundary conditions on ¥ con-
structed from boundary conditions on ¢ and ¢+ wiil
be encountered in connection with particular solution
techniques. However, before possible techniques for
solving the contributon problem are considered, the
contriburon scattering cross section will be examined

in more detail.

III. THE CONTRIBUTON SCATTERING CROSS SECTION

In the previous chapter, several contributon
cross sections were introduced to aid in the descrip-
tion of the transport of contributons. The defini-
tions of these cross sections wiil now be used to
determine some of the physics of contributon trans-
port. Then an integro-differential equation for the
contributon scattering cross + “tion will be derived,
and some approximate solutiar . to this equation will
be obtained in slab geometry.

A, The Physles of Contributon Transport

The formal identity between the contributon
transport equation [Eq. (16)] and the forward Boltz-
mann equation [Eq. (7)] implies that contributons,
like neucrons.l travel in straight lines between
According to Eq. (15)
there are only two types of contributon interactionms,

From the definition of

interactions with the medium.

scattering and absorption.
the contributon absorption cross section in Eq. (14),
it can be seen that contributons are absarbed only

in the detector.



From the previous chapter, the definition of

the differential cross section for contributon scat-

tering is

0 (5:Q',E™Q,E) = 0 (£;@",E"R,E)

The ratio ¢+(£,QJE)/¢+(£,&’,E') in this definition
implies that contributons are preferentially scat-
tered from directions ' and energies E' of less
importance to directions Q and energies E of greater
relative importance.

In addition, a;(E;Q'E‘*QJE) can be infinite
when ¢+(£,Q',E') is zero. Since an infinite E; cor-
responds to a zero mean-free path for scattering,
any surface on which ¢+(5,g',£') is zero acts as a

perfect reflector of contributons. A nonreentrant

vacuum boundary is a prime example of such a surface.

Since ¢+(5,&',E') is zero for outgoing directions
Qf(ﬁ'g' > 0) an a vacuum boundary, contributons are
effectively prevented from leaving the system. How-
ever, despite the fact that 3; becomes infinite, it
can be seen from Eqs. (11) and (12) that

M 3¢ a: 2y [o(x) - Us(x,u)]¢+(x,u) = R(x,u) .
(26)

For isotropic scattering, Eq. (11) yields

_ . 1 Gso(x) +
0, (1)$ (x,1) = 2w rraalll MCRUSTUY
~1
+
= cso(x)¢°(x). 27)
where we chose
' Uso(x)
Os(x;u"u Y~ =53 (28)
ané
1
6500 = 3 /¢+(x.u')du' . (29)
~1

0 (2.2, E)(r.,E) andffEs(g;x_z',s'*g.n)wg.g'.z')d_z'dz'

are bounded if ¢ and ¢+ are bounded.
One final comment is in order concerning the
contributon scattering cross section. It should be

noted that the biasing,

ot (.20

6" (r,2' ,EM)

of the real scattering cross section as in Eq. (25)
is similar to the zero variance biasing in Monte
This sug~
gests a possible equivalence between the contributon

Carlo importance sampling techniques.6

method and Monte Carlo importance s.lpling.7

B. An Integro-Differential Equation for the Con-
tributon Scattering Cross Section

In the following analysis, only the case of
monoenergetic transport in slab peometry with iso-
troplc scattering is considered. The adjoint trans-
port equation 1s first rewritten by the use of Egs.

{10) and (13) to give

Thus, from Eq. (27) we obtain

+
o (x)¢ (x)
SO [o] (30)

¢+(x;u) = —
Gs(x.u)

and from inserting Eq. (30) into Eq. (25) we obtain

) Es(x.u’)

as(x;u'*u) == . {31)

5;(x.u)

Consequently, if scattering is isotropic, the dif-
ferential contributon scattering cross section can
be evaluated once 5;(x.u) is known, and Eg(x.u) can
be computed through Eq. (27) if a solution for the
adjoint flux is available.

If R(x,u) = 0, Eq. (26) can be rewritten as



o) -5 (xm) = u 521n Fxan]

3 oso(xM:(x)
v 5 1|
cs(x.u)

=it o1 - usdin £ a1,

(32)
where
- Es(x:u)
Es(x,u) T 0 (33)
so

and where Eq. (27) has been utilized. Combining the
adjoint equation [Eq. (26)) with Eq. (30), we obtain

for R = 0 the result,

3t o) _

— 8" o)

a(x) -a_{xm)
u

o (x) -o_(x,u)
= [—_——-—s————] o, (0% ()
u as(X.u)

alx) =
oso(x) Es(x.u) +
bl e E——— oso(x)¢°(x) . (34)
uzs(x.u)

and after integrating over all dirvections u, we

obtain
12T k)
d + 1 / 950 x) S
“dnd (x))=a__ (x)7 —_— du' .
dx [ so 2 . '
4y u'L_(xu') (35>

If Eq. (35) is used to eliminate ¢>:(x) from Eq. (32),

1

we obtain
3= . - a(x) 1
bl Gea) ] = 0 o 60 [T 0om) = 25+ up
1
. - _ _a(x) JE N f Y
cso(x) Zs(x'u) ) [1 \-(x)]
so
where
1 8x) T (x,u")
1 = l,cso(x) cuotx) 8™ '
v(xj 2 o(x) e - oD

1 u. fs(xnu!)

To relterate, Eq. (36) is an exact integro-dif-
ferential equation for fq(x.u) assuming isotfropic
neutron scattering and is valid only in those

regions where R(xyu) = 0.

C. Approximation for the Contributon Scattering
Cross Section

In order to determine additional properties of

g (xw) or I _(xu), the ONETRAN code® has been used
to generate the necessary adjoint fluxes for the

geometry shown in Fig. 1. A number of different

SN orders (2 < N € 16) and scattering-to-rotal
ratios (0.1 ¢ asola < 1.0) were used.

a plor of c_fs(x,u) obrained from Eq. (27) for the 5,

Figure 2 is
approximation and a scattering-to-total ratio of
0.5. The most important observation is the near
constancy of Eg(x,u) in the spatial variable x in
the central region which lies outside the detector
region and is more than one mean-free path from the
vacuum boundaries. Another important observation
is the backward dominance of Es(x,u) in the direction
variable u outside the detector region. These two
properties were also observed for the other SN orders
and scartering-to~total ratios used, although slightly
more curvature was observed in a;(x,u) for scattering-
to-total ratios near one.

The near constancy of Eg(x,u) in the central
region is due to the near separability in x and p
of ¢+(x,u) in this region. The backward dominance
of E;(x,u) outside the detector region can be
explained in the following way. Contributons must
reach the detector region in order to contribute to
the response. Since contributons traveling in di-

rections with u < D are traveling away from the

a(x)

- T _(x,u")
So(x) s du.]

u 'fs(x.u ")

(36)

detector in this problem, they must undergo a scat-
tering interaction with the medium if they are to

reach the detector. However, contributons traveling
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Fig. 1. Geometry for ONETRAN calculation of ¢+.
toward the detector need not interact with the me~
dium in order to reach the detector. This trans-
lates into a greater probability of contributon
scattering for directions with U < 0 than for
directions with # > 0 in this sample problem.

The observation of the near constancy of
a;(x,u) in the central region will now be used to
obtain an approximation for os(x,u) in that region.
If Os(x.u) is assumed to be constant, then Eq. (36)
in a region of uniform material properties {i.e.,

a.S(x.u) = Eg(u), g(x) = 0, and V(x) = V] reduces to
-~ H
o ) =0l -3 (38)

and Eq. (37) with the use of Eqs. (33) and (38)

becomes

a
v du'
23] = E —=1 . (39
-1

Thus, V is just the discrete eigenvalue given by
Case's met,hod.9 In fact, it can easily be shown
that the constancy of 5;(x,u) is equivalent to the
adjoint flux being completely described by the
dominant asymptotic eigenfunction; that is,

ox/v

) ~ S (40)

T
Since this dominance by one of the two asymptotic
terms becomes less pronounced as the scacterihg-:o—
total ratio approaches ane, E;(x.u) exhibits more
curvature and the approximation given by Eq. (38)
becomes poorer as this ratio approaches one.

In the discrete-ordinates approximation, the
integral in Eq. (29) is replaced by a discrete sum,

namely

8

b T T Y T
wl -
-
z
[
=
E S
X '
-
' -
4 = ~0.57738
o = 057735
. L S 1 1
-] 2 4 [ § 10

SPATIAL POSITION X (M.F.P.)

Fig. 2. E;(x,u) for the S, approximation and

csolc = 0.5.

2

M/2 v
so m
Z—G_z :—_—u—)—z:l (mgxluml <v<® ,  (41)
=11 - (=
m )
where
M
w =1
2 : m
m=}

vy = quadrature weight for direction m,
M = number of discretre directions,

and where the quadrature set is symmetric. Figure
3 is a plot of 1/V vs the scattering-to-total ratio
for the case of continuous g and for the S2 and S4
approximations. Also shown are data points for 1fv
at the slab center based upon the previously described
ONETRAN calculations. The agreement of the ONETRAN
results with the approximation curves is very good
for Usoﬁu< 0.9, but a deviation occurs for 050/0 >

0.9, as expected from the foregoing discussion.



IV. APPROA T T T P
CHES TO THE SOLUTION OF THE CONTRIBUTON L s, TueoneTcaL

TRANSPORT PROBLEM s TICAL
e $, THEORETICA

Four different approaches to solving the con- . & CONTINUIOUS ; THECRETICAL
tributon problem are considered. The first involves ‘\\ o0 ACTUAL

) . S A S, acTuaL -

the solution of a quasi-linear differential equation ~

in the unknown ¢(r,2,E). This equation is obtained ~
+
by eliminating ¢ and ¢ from the contributon balance s, ~

equation. The second appreach involves the solution

. . . - 1. P
of a nonlinear differential equation in the unknown I CONTINUOUS 4 ~

y(r.2,E). The third approach involves iterating N
between a transformed forward Boltzmann equation
and a transformed adjoint Boltzmann equation. These B
equations have been transformed to exploit the slow
variation of certain functions. The final approach

involves solving an integral equation for a gener-

L 1 i 1
[ 5] LX) os os 1.0

alized contributon flux to be defined later. Only N

the first and third approaches have been actively %50
pursued in detail, but the others also provide some SCATTERING-TO-TOTAL RATIO —7
insight into the contributon transport problem. Fig. 3. 1/v vs scattering-to-total ratio.

A. _Quasi-linear Differential Equation for ¥

This approach involves eliminating explicit
. = 44
occurrences of ¢ and ¢~+ from the contributon trans- BV +cp=5 , (4%)
port equation to obtain a differential equation in
-6t + 06" = st (45)
the unkaown P(r,Q,E). The order of the resulting —= i ’

equation depends upon the characteristics of the 4
an

forward source,
+ + 4

QVY =8 -5¢ . (46)
s 2.0 =ff o @ Ea.meE.g’ B e et
Explicit occurrences of ¢ and ¢)+ will now be elimi
X 1Cl1l ccu £ -
+ Q(r,2,E) , ) (42) 3 2
nated. Of course, ¢ and ¢ still occur implicitly
. + . .
and the adjoint source, in § and S, and this is the reason why we call the
resulting differential equations for ¢ "quasi-linear."

1. Derivation of Differential Equations for

* +
s*(r,2,8) =ffa (r:2,E0",E")¢ " (£,2" ,Edg" dE"
s Consider first the contributon censervation
+
+ R(r,9,E) 43) equation [Eq. (46)]. Obviously, if both S and S
- are zero, both ¢ and ¢+ are eliminated. Consequently,

irst-order differ ~1i
Therefore, the following region designations are the result is the first-order differential equa*ion,

introduced:

+ QW =0 , (r.2,E) e 0 . (47)
(1) 0 region, in which S(x,$,E) = 0 and S(r,2,E) = 0,
+ -
(2) I region, in which §(r,2,E) # 0 and S(r,R,E) = 0, To determine when a second-order equation is
+ . . - + -
(3) L' region, in which 5(r,2,E) = 0 and 5(r,Q,E) # 0, suitable, E3. (46) is first differentiated to give
and
+
(4) ol region, in which S(zr,Q,E) #0 and S (zr,2,E) #0. (Q-V)Zw = ¢%0:vs + 094" - nevst Sstoeve .ol

In terms of S and S+, the forward and adjoint

Boltzmann equations and the contributon balance, or A linear combination of .his equation and Eqs. (44)-
conservation, equation are (46) is formed to give



aQ-02y + BR-7y + s + st = (-ag-w* - st + co)o + (AR-VS + BS + Do) 4t

+ (-asT + ©) .76 + (AS -~ DI-VE

where the quantities A, B, C, and D are to be deter-
mined so that the coeff!rients of o, 6*,_g-v¢, and
Q-Vd+ are zero as a necessary condition that Eq.
(49) reduces to an equation in i alone. The fol-

lowing system of equations results:

Lg-vs*’ st [*] 0 !- A ro
QB s 0 o B 0
st 0 1 o ¢ 0
S 0 0 -1 D )]
e J 3 J - J
(50)

Since this system of equations [Eq. (50)] is
homogeneous, a nontrivial solution exists only if
the determinant A, of the coefficient matrix is

2
zero, that is,

+
By = 5Q:78" - §70u0s - 2085" = 0 . (51)
A2 will be zeruv if
(sso,
@st=a,
(3) s =0 and st=0 ,
or

) s@ovst - 570w - 20857 =0 with s 4 0
and st # 0

The last condition is unlikely to be satisfied
since S, S+, and o are independent. If both S and
S+ are zero, the first-order differential equation
should be used. Thus, only the first two conditions
need to be considered.

If the first condition is considered and A is
arbitrarily set to one, only three of the equations
in the system of Eqs. (50) remain independent. The

residual system of independent equations,

st ¢ 0 B awt
1 o - stl, 2
0 -1 0

10

(49)

is solved for B, C, and D, and the results are sub-
stituted into Eq. (49) to yield the second-order

differential equation,
@n¥+ ©@-Lovshaw=-o ,
s
+
(r,2,E)eL” . (53)

If the second condition is considered and A is

arbitrarily set to one, the system of independent

equations,
s 0 B - Vs
0o 1 0 c = 0 s (54)
0 0 -1 L D -s

is obtained. If the resulis for B, iC, and D from

Eq. (54) are used in Eq. (49), the rasult is the

second-order differential equation,
2 1
QN - (o + §Q'VS)E'V¢ =0,
(r,2E)eL . (55)
To obtain a third-order equation for V¥, Egs.
(48), (44), and (45) are first differentiated to
give

@93y = ¢ enls + 202-%)2-7¢ + s(2-97¢"

- wanZst - 202-WH 00 - sTiRn?e, (56

(@0% + 0p-ve + 9R-Vo=:VS , (s7)
and
-@ 24t + vt + ¢TaT0 = geust . (58)

A linear combination of Eqs. (56)-(58), (48), and
(44)-(46) is formed with arbitrary coefficients A-G
to give



a@ )Y + BRV)% + crevy + s + BT + F-Vs + @ Vst = [-a@-V) %t - B-Vs* - ¢t + po + F-TO7
+ [A@-V)2S + BQSTS + €S + Eo + GoV016T + (~242-Vs' - BS* + D + FO)R-VH + (2AR°VS + BS - E + GoIQ-VH
+ (a5t + D@D+ (s - @D . (59)

If the quantities A~G are chosen so that the coef-
ficients of ¢, ¢, R+Vp, 2967, @ N%6, and @ DI
are zero, we obtain a necessary condition for the
existence of a third-order equatidn for ¢, IfA=1,
the following system of equations results:

- . . - -
r-govs* st o 0o gw 0 B @0t
NS S 0 o] 0 QYo [o _(g-V)zs
st o 1 o o 0 D 20-7s+
= . (60)
s 0 0 -1 0 a E -29+Vs
0 o o o 1 0 F st
0 o o0 o o -1 G i s

Comparing Eq. (60) with Eq. (50), we note that the

determinant of the coefficient matrix of Eq. {(60)
is

By (e

but if A2 1s zero, then the first- or second-order
differential equation for Y results. Therefore, we

consider only the case Aﬁ # 0, which will occur only

equations [Eqs. (53) and (55)] are appropriate for
pure absorber regions where either Q or R is zero,
and the first-crder equation [Eq.(47)] is appropriate
for pure absorber regions where both Q and R are
zero. Table I summarizes the conditions under which
the first-order, §econd—order, or third-order quasi-
linear differential equations for ¥ derived in this
section describe the contributon transport problem.

In analogy to calling the Boltzmann equation a

in a ZZ+ region. The system of equations [Eq. (60)]
can then be solved for the quantities B-G. If these transport equation for neutral particles, we may
results are then substituted into Eq. (59), we obtain

the third-order differential equation,

@0 - Fem)en’y+ —L1; 1s'29s + ossNHs@ Nt - 2050-95" - s5'2:70 + o%ss*)
= 8y a,s8" = = . -

2

-(s@s95* ~ ossh) [sT(@M % + 205"V + ss'peVo + o?ssT]) Qeww

+ 3g-v(ss+)-% ss”g-va2 =0 , (r,2,B)esst | (62
b2

The third-order equation [Eq. {62)] must be used
call Eqs. (47), (53), (55) and (62) transport equations

for contributons.

in pure absorber regions where both Q and R are non-
zero and in scattering regions, since both S and S+

are nonzero in such regions. The second-order

11



TABLE I

CONDITIONS FOR APPROPRIATE FORMS OF
QUASI-LINEAR CONTRIBUTON TRANSPORT EQUATIONS

Transport Equation Yorm by Region Type

=0) rszo,sT40 ztsro, stro

0s=0,8 =0 i(sfo,s
Pure Absorber 1 ZB
Scattering Medium - -
1 3 first-order Eq. (47)
2, ¢ gecond-oider Eq. (53)
ZB % gecond-order Eq. (55)
3 % third-order Bq. (62)

It will be shown in a later section that the
first two integrations of Eq. (62) are equivalent
to solving for ¢ and ¢+ from the Boltzmann eqﬁations
and the final integration gives Y. In other words,
the three first-order equations [Eqs. (44)-(46)] have
- merely been replaced by the one third-order equatiorn
[Eq. (62)].

2. Boundary Conditions for ¥

In this section, only problems with extermal

vacuum boundaries are considered. Obviously, for
the third-order differential equation, three exter-
nal boundary conditions are required. As it turns
out, however, there arc four to choose from, but
only three are independent. According to Eqs. (18)-
(20), two of these are given by

W(Eb,Q,E) =0 for every (,E) (63)

on the vacuum boundary r = I

Two additional boundary conditions for ¥ can
be constructed in the following manner. Since the
third-order differential equation for ¥ and deriv-
atives of that equation are satisfied at evéry
position, we seek a boundary condition on wlwhich
involves derivatives of § no higher than second
order. A suitable starting point for deriving such
a condition is provided by Eq. (49), namely

2A 3

- 3

Since A3, and consequently Az, as defined by Eq.
(51), must be nonzero if the third-order equation
for ¥ is to be valid, we nannot solve for all four
of the quantities A-D as was done in deriving the
second-order equations [Egs. (53) and (55)1. We
can, however, choose A-D so that either the coef-
ficients of ¢ and 2°V¢ are zero or the coefficients
of ¢+ and Q}V¢+ are zero.

’ If the coefficients of ¢ and Q+Vd are required
to be zero in Eq. (64) and if A 1s arbitrarily set

to one, then the system of ayuations,

st o B qeust

= +1 (64a)

0 1 C S

results. If. Eq. (64a) is solved for B and C and
the results are used in Eq. (64}, the result is

@N4 + © - S p-vshp-vy + ss”
S
= [2:7s + S0 - = 2:75) 16" + sp-v”
S

ot - ssT | (65)

-

2@y + mevy + 05 + b5t = (ag-usT ST o) + (-AST + C)RVS + (MTS + BS + Do)et + (as - DIa-VeY .

12
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or
2 1 + + By gt
@V + (0 - 3 RVSHRAV + 2557 = - 247 . (66)
s s

+
Use of the vacuum boundary conditions for ¢ then

gives
@-V)zw + (0 - —i g-Vs+)£l_-V¢ + 255" =0
s
for n*R > 0 (67)

on the vacuum boundary surface. 1If the coefficients
+ -

of ¢ and 2'V¢" are required to be zero, then a

similar analysis using the boundary conditions for

¢ gives the boundary condition
(Q-V)Z‘b - (o + % QeVS)QVY + 258t = 9

for neQ < 0 (68)
on the vacuum boundary surface.

One additional benefit of this analysis is a

set of equations for ¢ and ¢+ in terms of  for a
+

£Z region, namely

b === @0y - 6+ 1 9-vs)g-vp + 2571 (69
2

and

+ st 2 1 + +

¢ = - SLQ DY+ (0 - -3 V)Y + 25571 ,
2 s

(70)

which are obtained from Eq. (66) and the correspond-
that leads to Eq. (68). These two

. +
equations permit us to evaluate ¢ and ¢ , and con-

ing equation

sequently S and S+, in an iterative solution of Eq.
(62), as described at the end of Sec. IV.A.7. These
results also allow us to specify the boundary con-

ditions at internal material interfaces, namely that
Y(x,2,.E) is continuous in r,

S 2 1 +

Z;[(Q-V) ¢~ (o + E—Q-VS)Q°Vw + 2858'] is continuous

in r, and

+
St@eni + © - L 9.vsh)a.v¢ + 255"1 15 continuous
2 S

in r.

It should be noted that expressions for ¢ and ¢+ in
terms of ¥ can be obtained for £ and Phl regions
from the contributon conservation equation [Eq. (46}].
When an 0 region exists, it is apparently im-
possible to completely specify the boundary condi-
tions on § without effectively solving the forward
or adjoint Boltzmann equatiun in the 0 region. This
difficulty is attributed specifically to the fact
that only in an O region is it apparently impossible
to express ¢ and ¢+ in texrms of Y and its derivatives.
Consider, for example, the pure absorber problem
shown in Fig. 4. The appropriate contributon trans-
port equation for P is second-order in the I and
Z+ regions and first-order in the O region. There-~
fore, five boundary conditions are required for ¥.
Two of these are the external vacuum boundary con-
ditions,

Yo, = P(c,) = 0 for every 1, 71)

and two are the internal continuity conditions,

WaT,w = W&t (72)
and for every Ul (except possibly

u = 0).
R QR ) (73)

For the final condition, it appears that either

the forward or the adjoint Boltzmann equation must

I REGION O REGION Z* meGion
. Q,

O, ) = == Olx, ul =0 Qix, u} = 0

Rix, 4h =0 Rix, z) =8

Rix, i) = 0 t, 1) b, = &,

VACUUM REGION

VACUUM REGION

[ olud = 5, l

» 3
SPATIAL POSITION X

Fig. 4. Geometry for pure absorber problem 1,
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be solved in the O region when such a region exists.
The necessity of obtaining ¢ or ¢+ in order to
specify the boundary condition on ¢ has also been
recognized by Gand:lni11 based on heuristic argu-
ments. In the present formulation, we choose to
solve for ¢+. From the contributon balance equa-

tion [Eq. (46)] we obtain in slab geometry

w20 - o et e (74)
and
+
L R R I (75

Solving the adjoint equation [Eq. (45)] in the O
regilon yields

0, - a)/u

ot @) = ¢ b,u)e . (76)

Multiplying together corresponding sides of Eqs.
(74) and (75) and using Eq. (76) give the fifth

boundary condition for the pure absorber problem,

(69y. If
this expression for ¢ is then substituted iqéo the
forward Bolczmann equation [Eq. (44)] thenvéhe
third-order equation {Eq. (62)] results.

¢n rhe other hand, the contributor. balance
equation [Eq. (46)] could be solved for ¢ and this

expression for ¢ theu substituted into the forward

be solved for ¢ to give the result in Eq.

Boltzmann equation to give, after use of the adjoint

equation [Eq. (45)], tha result,

@n%+ (o - L awshooy + 2sst - -2 g
s S
(80

This equation can be solved for ¢+ to give the re-
sult in Eq. (70), and if this expression for ¢+
1s then substituted into the adjoint Boltzmann
Eq. (45), the same third-order equation [Eq. (62)]
results.

Although a single third-order differential
equation for Y results whether it is obtained by

-0, (b

" et E +.l
w2 (gx 28 (baxu +Qla” 1) RO W Gbme A

-~ a)/u
(77)

This is a nonlinear mixed boundary condition, which
will be referred to as the bridging condition for
obvious reasons.

3. __An Alternative Derivation of the Third-
Oxrder Equation for ¥

Instead of obtafning the third-order equation
for ¢ by forming a linear combination of a set of
differential equations, another approach, which
The
contributon balance equation [Eq. (46)] is solved

gives some useful insight, will now be taken.

for ¢+ to give

¢t = 2@ + 5%y . a8

v

This result is substituted into the adjoint Boltz-
mann equation [Eq. (45)] to give, after use of the
forward Boltzmaun squation [Eq. (44)]}, the resule,

A
@D% - © + Lo.vsigwy + 285t = - 2,

S a9

where A

2 is defined in Eq. (51).

This equation can

14

inserting the expression for ¢ into the forward
Boltzmann equation or by inserting the expression
for ¢+ into the the adjoint Boltzmann equation, it
appears that a single integration of this third-
order equation cannot yield both ¢ and ¢+. Indeed,
if boundary condition [Eq. (68)] is used, the in~
tegration is ea:ivalent to solving for ¢, and if
boundary condition [Eq.' (67)] is used, the integra-
tion is equivalent to solving for ¢+. Since ¢ and
¢+ are related in the contributon balance equation
[Eq. (46)]) by 2V and since a single integration
of the third-order equation will not give Q°V{, at
least two integrations of Eq, (62) are required to
effectively obtain both ¢ and ¢+. P is then obtained
either by integrating = third time or by multiplying
the results for ¢ and ¢ together according to Eq.
(5).

The following observation is made based upon
Eqs. (53), (55), (69), and (70).
since S ¥ 0 and A2 = 0, the quantity in brackets

In a Z regtion,



in Eq. (69) must be zero if ¢ 1is to be bounded in
such 4 region. Since S+ = 0 in a Z region, the
quantity in brackets reduces to the left side of
Eq. (55), the differential equation for ¥ in a X
region. Thus, the existence of the second-order
differential equation, Eq. (55), for ¢ in a I re-
gion is a necessary condition for ¢ to be bounded
in such a region. On the other hand, since S+ 40
and Az =01in a hid region, thi quantity in brackets
in Eq. (70) must be zero if ¢ 48 to be bounded in
such a region., Since S £ 0 in a Z+ region, the
quantity in brackets in Eq. (7C) reduces to the
left side of Eq. (53), the differential equation
for ¥ in a E+ region. Thus, the existence of the
second-order differential equation , Eq. (53), for
Y in a Z+ regi u 1s a necessary condition for ¢+
to be bounded in such a region.

4. Analytical Solutlon of Pure Absorber
Problem 1

The pure absorber problem in Fig. 4 will now

be solved analytically. To summarize, the equa-

tions for this problem are

P
uz%l*cyﬁ%%l,q,o< x<a; (8l)
3%

ua—‘&ax-,‘(g—)=0 a< x<b ; (82)

and

2 azgggx,]gz By lxu) _

u 3 +tou ™ =0,
3x

b x< ¢ . (83)

The bouadary conditions are

$04) =ple) =0 , (84)
P@E ) =glatw) (85)
PO W) =k, (86)
and
Oa

- +
2 3¢(a ,p) awib ,u) . 1
u ax —%TZL*- 4n QoRow(b’u) e

The general solution to Eqs. (81)-(83) is

OAx/u
Bl(u)+A1(u)e , Osxga
) ={B, W), 2< x<b
-oAx/u
83(11) + A3(u)e , b<gx<ec, (88)
where Al, A3, Bl, Bz, and 53 are arbltrary integra-

tion constants. The use of the first three boundary

conditions [Eqs. (84)-(86)] shows that

a , x/u
eA -1

Bz(u) U/“-l’ 0<x<a
e

Y (k) =1B, ) a<x<b (89)

e-ch/u B e-oAclu

BW| ——————], b<x<cc ,

2 e-o Ab/u j e-cAclu

and the use of the final boundary condition [Eq.

(87)], i.e., the bridging condition, gives

g, or

By(w) =} QR 0 ,ali - ,b/u —ch/u .
-3 e - 1){e - e
4mo (90)

Two solutions occur for Bz(u) because the nonlineariry
of the bridging condition results in a second~degree
algebraic equation for Bz(u).

To insure proper choice of Bz(u), the contri-

buton balance equation,

w 2L - g6 ) - ROGESGN) L (91)

is evaluated at x = 0. Inserting the solution for
Y from Eq. (89) and wsing the vacuum boundary

(b - a)/u

=0 . (87

15



+
condition [Eq. (19)]} for ¢ yield

>0, B> 0
o,B, ()
A2 a1 +
W a7 %P (0,1 (92)
e -1
t= 0, u<o0.
Thus,
QR, cAa/u —aAbu -aAc/u ,
7 |e = 1]le -e
4ﬂ0A
u>20
Bz(u) =
0 , u< 0 , (93)
and the complete solution for this problem is
(ono o x/u -0,b/u -0,c/u
— e - 1){e -ea b4
4ncA
u>0,08x<a
‘Q R . o,alu -g,b/u -0 c/u
Y (x,p) = _O_CZ)(eA _1)(e A e A );
4noA
U>0.ac<xshb
QR aAa/u -ch/u —oAc/u
z(e - lyé - e );
4ﬂGA \
H>0,bpbsx<c
\0 3 p<0,0sxsc. (94)

5.  Numerical Solution of Pure Absorber
Problem 1

This section is included to illustrare how the

nonlinearity introduced by the bridging condition
[Eq. (87)] is handled in the numerical solution of

the pure absorber problem. TFigure 5 shows how the

I region (0 < x < a) is divided into spatial cells.
The typical difference equation for this region is
obtained by integrating Eq. (81), rewritten in the
form

3 -oAx/‘u P (x,u)
=le 9x (95}

= 0 ,

from xi_% to xt+% to yield

16
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x=0 Xy Mey2 %

SPATIAL POSITION X

*nvz %oy *,™

I region spatial cell structure for the
pure absorber problem 1.

Fig. 5.

. VL DD ) e-chi__,&/u Wlxy )

Ix x =0.
(96)
12
Use of the central difference approximation for the

slopes in this equation gives the typical difference

equation,
"AA"Q/“ "AA"Q/”

zpi_l(u) - (1 +e )wi(u) + wm(u) =0 ;

i=2, ..., I - 2. (97>

Integrating Eq. (95) from x_ = a and

to x
L1—3/2 I1
using the central difference approximation yield

~(¥2)3,Bx v Wl W)

wll_z(u) - wll_l(u) = —AxQe -

(98)

The vacuum boundary condition at x = 0 gives the final
equation for this region, namely
wl(u) =0 . (99)

The ©¥ region (b < x < ¢), for which the differ-
ential equation [Eq. (83)] can be rewritten as

(100)

g [ Oax/u 3=y _ 4
35;{2 9% ] '

is divided into spatial cells, as shown in Fig, 6.



Through the use of the central difference approxi-
mation, the typical difference equation for this

region is

o,Ax_/u
o, Ax_/u AP R co.
b ) - e A RN M) L Uypp (1) =03

i=1I,+1, ..., I,=-1. (101)

2 3

Integrating Eq. (100) from x12 =b to x12 . Blves
B (xr ) b 0 - b ()
1.’ (1/2)o Ax_fuf "I +1 I
2 AR 2 2
—_ = @ —_—, (]_02)
ax AxR

which is substituted into the bridging ccndition
{Eq. (B7)] to yield

1 'GA(XIZ - xll) /u ) (1/2)0prRlu a‘i’(xllau)
-— Q R e -u e * —_——
41 o' o Ix

The vacuum boundary condition at x = ¢ gives the

final equation for this rvegion, namely

I W@ =90 . (104}
3

If the differential equation in the 0 region

(a < x<b),

Wlow o (105)

is integrated from X, > ate x; =bh, the result is
1 2

106)

Vi W) - Yy (W) =0 ;
1 2

that is, |y is spatially constant over the entire 0
One final equation is needed to couple the
This is obtained

region.
equations of the I and 0 regions.

by integrating Eq. (95) from x to x. = a and
1 1—15 I

1

using the central difference approximation to give

_(1/2)oAAxQ/ua‘l'("11'“)
b ) =9 0+ bx, e ™ .
1 1
(107)

Equations (97)-(99) are collected into one sys-—
tem of equations, the I system, and Egs. (101), (103),
(104), and (106) are collected into another system
of equations, the f+ system. If the discrete-ordi-~
nates approximationl is used, then these systems of

equations are .5 f-.llows:

wlz(u) +u e 5%

, (1/2)0,8% fu 3¢(”11'“)
] m) =0 .
12+1

(103)

1
F""""""""""":E

1

w2 N Tz Ter - e

l.;i % _q

SPATIAL POSITION X

+
Fig. 6. I region spatial cell structure for the
pure absorber problem 1.
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wn,l =0
g bx /u g, Ax /u
AQ " m - AQ =0 ; =2, ..., =2
I system ¢ € n,1-1 (L+e )W.I M W.,1+1 03 1 1
/D0 px . Vatr)
Ym,1-2 Vo,1,-1 7 8% ™ (108)

and

¥ _¥ -
m,I, - 'm,1, =0

< (x. -x_ )
A I2 I1 m

1
[ﬁﬂ QoRoAxR € um €
}:+ systemd

a AAxR/u.

og,0x_/u
ATK "m
VYp,g-1 ~ (L * e i ¥ © Vo, 141

(
» 2o bx fu Ma "11)] L2 Doy 1
m,I
**2

- W] )

3x 'm, 1,41

dx m

=0 ;4= Iz +1, ..., 13 -1

(109)

It will be noted that the I system is inhomogeneous
but that the quantity dwn(x;l)/ix in the source vec-
tor is unknown. However, thé I system is homogene-
ous, so d&m(x; )/dx mast have a particular value if
this system islto have a nontrivial solution. Thus,
dwm(x; )/dx is chosen so that the determinant of the
coeffiéient matrix of the Z+ system is zero, and
with dwm(x; )/dx known, the I system can be solved.
The couplin& condition [Eq. (107)] is then used to
couple the I and z+ systens, and the Z+ system is
then solved. It should be noted that this approach
is not applicable for those directions Vg in which
wn(x) = 0.

The solution to this pure absorber problem for
the 516 approximation is plotted in Fig. 7. The im-
portant parameters used in this calculation are
Q(x,u) = 1/4xw neutrons/cm3-sr—s, R(x,1t) = 1 response-

s/m, 5, =1 cal,a=1cm,b=9cn, andc =10

A
cm. The curves for y < 0.61787 do not appear since
¥ for those directions is essentially zero compared

to y for y 2 0.61787.
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Fig. 7. Solution for pure absorber problem 1 in the
516 approximation.
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6. Analytrical Solution of Pure Absorber
Problem 2

Consider now the pure absorber problem with
Q(x,4), R(x,H), and GA(X) positive and uniform in x

in the domain x€(-a,a) and with vacuum boundaries

at x = a and x = -a, Since Q and R are nonzero
throughout the system, the third-order equation for
Y is applicable. For this problem, the third-order

equation {Eq. (62)} for ¥ reduces to

-—-a<x<a.

3

3 %0 | 2, A |

H 2l O T ¢,
x

(110)

To simplify tis solution of this problem, we

introduce the new function,

W (x,u)

f(x,u) = U—a?’-— . (111)
Equation (110) then becomes
2 0% _ 2
il ————El—— -0 f(x,0) =0 , -—-a<x<a.
3 A
x
(112)

Equations (67) and (68) provide the fecllowing vacuum
boundary conditions for f(x,u):

w2ECEBM 5 geau) = -200)RM)

u >0
y Bf(axu) +0,E(a,u) = -2Qu)Ru)
(113)
and
" Bf(;:,g) +0,£(=a,u) = -20(IR()
u<o0.
y 2!&%;&1 - 0, E(a,n) = -2Q()R(W)
(114

The general solution to Eq. (112) 1is just

aAXIu ﬂqu/u
f(x,1u) = A(p)e + B(pe N (115)

and the boundary conditions give the rollowing re-

sults for the solution coefficients:

-0,a/ |y
A = - (U;R( ) A (116)
A
and
-0, a/|ul
e A Qain

QO RM)
B(u) = g—?&r—

Thus, the complete solution for Eq. (112) with bound-
ary conditions given by Eqs. (113) and (114) is

a/|ul a,x

-
e A sinh—:—. (118)

ECx,u) = - Zgﬂg)n(u)
A

Through the use of Eqs. (69), (70), (111), and
(118), the quantities ¢ and ¢+ are found to be

- a x
. 0,2+ %
$Cx,1) = %—f—“—)-ll e AT T ] (119)
A
and
<, 3 - B
ot = Eéﬂl [1 —e AlWi W | - (120)
A

Thus, solving Eq. (112) with the boundary conditions
given by Eqs. (113) and (114) is equivalent to solv-
ing for ¢ and ¢+. At this point ¥(x,U) can be ob-
tained either by multiplying these results for ¢ and
¢+ together or by solving equation (111) with the
boundary conditions,

y(-a,u) =0 , u>0

and
Y(a,u) =0 , HW<o0 .

In either case, the result is

- ,a/lul v,a a,x
e (cosh _U - cosh —U ) .

2Q(UIR(W)
‘P(X-u) = oAz
(121)
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Ture absorber problem 1 can also be solved by
means of the third-order equation for ¥. The asso-

ciated problem with

Q
-5%>0 . D<x<a
Q(x,u) = (122)
Ql 0 < x <
H> » a x [
and
R1>0 » 0<x<b
R(x,p)- (123)
R >0 , b<x<c¢
[}

is first solved. The appropriate differential equa-
tion is

bed ‘\2
ut SR oif(x,u) =0 , (124)

sz

aud the boundary conditions at the external vacuum

boundaries are

2EC0,M) _ -l
H 9x UAE(O'u) 2 Qoll
u >0 (125)
9af(c,u) - L
u T + uAf(c,u) I QR
and
AE(0 ) .1
u Ix +UAf(O'u) 2n onl.
u < 0,(126)

NETIC0 NPT

Ix o

The boundary conditions at the interfaces, x = a and
x = b, are obtained by requiring continuity of ¢ and

20

¢+ and are

ug-g;—x'ﬁ-of(a W)+ o QR

-u—f—‘—'—ﬂ‘-——u £, + 5 QR ,  (127)
Bf(a_,u) - 1
u ox + “Af(a M)+ 2n onl
i[ ﬁg‘u—)+of(+u)+—l-QR]
Q u 3x artd s 2n 11 ’
(128)
y 2E(T 1) - 1
A U i =R LY
R +
1, 3f(b ,u) _ + 1
=~z [u o oAf(b ,u) + 5o QIROI N
{129)
and
(L ,u)
___._l._.
u + g f(b M)+ o 2n QlR1
_Eik_;u_ +a f(b a0+ == Ql SRR G &)

Once the solution f(x,y) to this associated problem
is obtained, the limit is taken as Q1+ 0 snd Rl + 0.
The result is identical to the result obtained in
Sec. IV.A.4 of this report.

7. Numerical Solution of the Third-Order Con-
tributon Transport Equation

To study possible implications associated with
the numerical solution of the third-order differential
equation for Y(x,n) for a more general class of prob-
lems, we implement in this section a numerical algo-
rithm to solve Eq. (62) in slab geometry using a
discrete~ordinates avproach. With the definition

£(x,u) = U iﬂ;_;ul . 1)

the third-order equation in slab geometry can be

written



u? gl[A(x,u) 35134311 + B(x, W £(x,u) = D(x,}) ,
X X

T R (RN LI URD IR YERT BETDY

where At+an internal boundary, x = t, continuity of ¢ and
¢ = gives the conditions,
1

Ao = W - - AE(t,w) - - -

A(t ,u)s(t ,w[u T matt Lmice L - b(t 41
2
* b(x,W) [alx,m) + cx,w] °* (133
BOG = - ey {uz A 2Ok 2A(x.u)a(X.u)b(x,u)c(x,u)} . 13w

D(x. 1) = ——“—TIZT % {A(x u) [b(x, u)]m}

{b(x,u)}
(135)
) - 35 (x,u)
a{x,u) S u) [u-—-—'—— +o(x)S(x,u)}1 ,
(136)
b(x,m) = -28(x,1m) stx 137
and
e(x,M) = =~ -y ?—S-%Pl 6 (st (x )]
st (x,u) (138
L3Oy

Fron Eqs. (67} and (68), the boundary conditions on

f(x,u) at the vacuum boundaries, x = 0 and x = 2 > 0,

are obtained:

w QM a0 myec0.m) = b0

u §££g;EL + ¢(0,1) EL0,u) = d(O,u)

u 'B‘E‘%‘,'gyl + c(R,)f,1) = b{g,u)

and

y H>0
(139)

» <0
(140)

» >0
(141)

+
= act st EELL ot £etm
- beetanl (143)

and

A st W —-—'——f(‘ E 4 o) £ & 00 b

+
= acctst o EES 4 et
- b(t+|u)) . (144)

We now discretize these equations in the spatial
variable. The spatial mesh used for f(x,u) is similar
to that in Fig. 5. If Eq. (132) is then integrated

from X5 to LI the result is
kg G0F, @)+ (B @ + k@) + k@)
x €00 - kL GF, G0 =D ) axT L (145)
where
K, ) = -uA, ()
1+ i+
and the following assumptions have been used:

(1) a uniform spatial mesh with interval Ax
in a uniform material regionm,

(2) B(x,H)f{x,u) = Bi(u)fi(U) in the interval
(xi-;!. xi“’!) 3
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(3) D(x,n) = Di(u) in the interval (xi-k'xi+kj' vhere the subscript L indicates that quantities are
and to be evaluated at x = t . Integration over the

(4) the central difference approximation for half-cell to the right of the interface ylelds

3 b
3x Kyadg

Equation (145) holds if X i3 not the location
of an external boundary or a spatial discontinuity
in § or st (for example, at a material interface).
1f Xy is an external boundary, then Eq. (132) is in-
tegrated over the half-cell adjacent to the boundary.
For example, at the left-hand vacuum boundary x " 0,

this integration gives

2 2
Ax o p (A% IE(0,1)
[Bl(u) 7 * k3/2(u)]f1(u) - k3/2(u)f2(u) Dl(") 3 = kl(u)Ax el (146)

If Eqs. (139) and (140) are solved for af(gxu and

the results are used in Eq. (146}, the result is

] sz a, {u)Ax sz bl(u)Ax
B, (W) =5~ + k3/2(u) + m kl(u)lfl(u) - k3,2(u)f2(u) = Dl(u) -5 - —ﬁ—'kl(“) , HW>0 (147)
and
Ax2 c. (U)Ax Ax2 bl(ulﬁx
[Bl(u) 5+ k3/2(u) - m kl(u)]fl(u) - k3/2(u)f2(u) =0, =5~ — kla.) » n<0 . (148)

Similarly, at the right-hand vacuum boundary X = L,
integration of Eq. (132) and use of Egqs. (141) and
(142) yield

er (Wax Ax2  bp(wiax
— k) - kpg (e, ) = D) S F =

m kI(u) , >0, (149)

lB()——A"2+k W) +
' 2 1-%
and

sz bI(u)Ax

a_(nax :
kpWIELG0 = Ky, 0Ep () = Do) Tp- + ——— k), u< 0. (150)

[B()Q‘iu W -
L) 1=l " u

The situation at an interface, x = t, where S
or S+ is spatially discontiruous, is somewhat more
complicated since f can be spatially discontinuous.
Integration of Eq. (132) over the half-cell to the
left of the interface gives
2

2 A -
A
3,00 85 4k 016,00 - kg, GDE,_ () = D, G) =% + K (ax, LEM sy
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axk af(et,w
(B () —= R4k rasg M E 1) = K +,i(u)f W) = (W) 5= -AkR(u)AxR—-——a—;——_. (152)

where the svbscript R indicates that quantities are

to be evaluated at x = t'. A cuick look at Eqs. (145), (147)-(L50), (154), and
The determinant Al(u) of the coefficient matrix (155) shows that the coefficiert matrix for the sys-
of the vector, tem of equatfons is tridiagonal. However, the coef-

ficient matrix will be symmetric only if AxL = AxR
- at each internal boundary.

u 2£L£5;EL If Al(u) of Eq. (153) vanishes, thzn it is io-
possible to solve Egqs. (143) and (144) for the de-

3f(t+ W) rivatives of f at the interface, and another approach

- ax must be employed. If the contributon balance equa-
tion [Eq. (46)] is rewritten in terms of f(x,u) on
the two sides of the interface at x = L, then we

for the system consisting of Eqs. (143) and (l44) is
obtain the equations.

+ +
A @) =s (W) s ) -5 (WS (W) , (153) - -
t L LR £ = seeT et e - st e (1572

where the subscripts, R and L, have the interpreta- and
tion just described. If A,(k) # 0, then Egs. (143) . + + .+
+ = - L
and (l44) can be solved for Bf(talp) 3f(t5;Hl £(t,u)= St ,u)¢ (t,u) - S (t ,)¢(t,u) .(157b)
and the results can then be substituted into Egs.
(151) and (152) to yield
2
AxL kL(u)Ax quL AXL k. (u)A
L _ - L HRE,
L (u)fL 10+ [B (] +k &(u) AT I 0 - 5y T £ =D, () M Ta by (W)
(154)
and
quR Ax 2 kR(u)Ax AxR kR(u)AxR
-3 (u\ £, + (B0 5= R4 ko Q0 +—u——— FaG) £ () - kR-H:(U)lel( =D (W 5 - — b},
(155)
where
N R If Eq. (157a) is multiplied by S(t*,u) and Eq. (157b)
E ) -
E Q) = 5, (Spa () + Spa0s (06 4 (156)  is multiplied by S(t7,u) and the second result is
L AI(U) subtracted from the first, then we obtain
and )
f
R(u) 3 (u) £ (U) N (158)
S (u)S ya () + 5 (u)S e )
F (u) = . .
R Al(u) where the subscripts, L and R, again have the previ-

157
(157 ously described interpretation. 1If Eq. (158) and

Eq. (153) with Al(u) = 0 are used in Eq. (143), then

a second condition at the interface is
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afgt AL(M)SL(M) af g 2

3 ~ b (l-l) + —Ak‘z_—)s (l-l

If Eqs. (158) and (152) are then used in Egqs. (151)
and (152), the results are
2

A
(3,0 =& 4k G016, () = g GE_ () - ko Gt 2ECL o p gy

and

2
AxR

aR(u)cL(u) - aL(u)cR(u) kR(u)Ax

ag(We, (W) - a (Wep (1) 8 ™

(B (1) 5= + kpyp () + a G0 + & W

S, (W) -
LM 3 (e g
+ ke (D Ax, END) - R 3 -

bL(l-l)] + [ aL(u) + c (u) J S (u) f,_(u) . (159)

A 2
(160)

s
] 5, (u) L(u) (u)fRﬂ(u)
k., (u)Ax kL(u)Ax [ (u)
R ,

- R(u) —5— § (l-l) bL(L) . (161)

Examination of Eqs. (145), (147)-(150), (160), and
(161) =s a complete set of difference equations
shows that the coefficient matrix is no longer tri-
diagonal when Al(u) =0,

The set of difference equations consisting of
Eqs. (145), (147)-(150), (154), and (155) has been
employed to solve some simple problems in slab geom-
etry using the discrete-ordinates approach. The
first set of problems consisted of the two pure
absorber problems described im Sec. IV.A.6:

(1) pure absorber problem 2, in which the
source distribution @, detector dis-
tribution R, and the absorption cross
section wera spatially uniform, and

(2) the modified pure absorber problem 1,
in which the source and detector dis~
tributions were discontinuous, as
described by Eqs. (122) and (123),
and the thickness (b - a) of the
central region was set to zero.

The numerical results indicate that, when spatial
discontinuities exist in Q or R, these difference
equations are susceptible to numerical instability.
This instability is manifested in the fact that the
contributon flux solution may be extremely sensitive
to the choice of the size of the spatial mesh interval
Ax for a specific range of Ax values. It is shown in
Appendix A for a simple case thact when Q and R satisfy
certain conditions, there is at least one critical
value,Axc > 0, for which the determinant of the

- coefficient matrix of the system of difference equa~

tions vanishes. The solution £(x,u), and consequently

24

Y (x,1), will be extremely sensitive to the choice
Ax, when Ax is near this critical value, Axc. When
source discontinuities were nonexistent, no such
problem with numerical instability was observed.

The second set of problems consisted of problems
with scattering. The coefficients in the difference
equations for these problems were calculated from
source distributions, S and S+, which were generated
from forward and adjoint fluxes computed with the
discrete-ordinates code, ONETRAN, for the finest mesh
studied. The distributions, S and S+, for coarser
meshes were also obtained from these fine-mesh data,
through interpolation where necessary. For the

purpose of these calculations, a special 0' region

" is defined to be a scattering region in which both

Q and R are identically zero. The geometry for the
typical scattering problem is shown in Fig. 8 for
the deepest penetration studied, namely 50 mean-free
paths in the central 0' region. The corresponding
problem for a penetration of 20 mean-free paths was
also investigated. 1In both sets of calculations, a
variety of scattering-to-iotal ratios (050/0 = 0.2,
0.6, and 1.0) was employed, and the results of these
calculations are summarized in Tables II and III,
where the integral response I has been computed from
Eq. (5¢).
tion indicate that the difference equations may be

The results for problems with some absorp-~

susceptible to the same type of numerical instability
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observed in the pure absorber problems.
extremely coarse spatial meshes, the inregral re-
sponse is seen to be relatively insensitive to the

mesh size for the particular values of Ax used.

VACUUM REGION

However, for

This

is not to say that regions of instability do not
exist for coarse spatial meshes, because these re-
gions of instabllity may have been missed by fortu—
itous choice of Ax values. On the other hand, the
results for the pure scattering problem Ousolo =
1.0) do not indicate any instability, but they do
show the effect of using too coarse a mesh for
problems with considerable spatial curvature in
£(x,1).

The difficulty encountered in solving the con-
tributon difference equations for problems with
source discontinuities is not totally unexpected,
since the unknown f(x,u) is discontinucus at the
location of discontinuities in S(x,U) and S+(x,lJ).13
In the set of difference equations, it is the equa-
tions for the cells in the immediate vicinity of
source discontinuities that show the greatest tend-
ency toward causing loss of diagonal dominance in

the coefficient matrix of the system of difference

TABLE II

SENSITIVITY OF THE INTEGRAL RESPONSE I FROM THE QUASI-~LINEAR CONTRIBUTCN
APPROACH TO THE MESH SIZE IN THE CENTRAL O’ REGION
(50 MEAN~FREE PATHS PENETRATION)

Integral Response 1?

0' Region g
obx -82 . 0.2
(m.£.p) a B
-26b
Reference 7.15 x 10
0.390625 3.51 x 10728
0.78125 2,38 x 10720
. 1.5625 4.14 x 10728
3.125 6.13 x 10720
6.25 7.28 x 10728
12.5 7.70 x 10728
-26
25 7.87 x 10

2 Integral response I calculated from Eq. (S5¢)

Q

g

so _ 80 _
< = 0.6 5 1.0
_21b R -9C
2.51 x 10741 7.34 % 1072
-20 -2
1.97 x 10 7.59 x 10
-22 -2
3,00 x 10 7.79 x 10
-21 -2
1.81 x 10 8.09 x 10
~21 -2
2,06 x 10 7.94 x 10
-21 -2
2.28 x 10 5.73 x 10
2.39 x 1072% -1.76 x 1072
2.44 x 10721 ~2.91 x 107}

b

Refetence'response using the iterative contributon approach described in Sec. IV.C with gAx =
0.05 in 0' region. The corresponding responses using ONETRAN forward and adjoint fluxes cem-
puted with oAx = 0,1553125 in the 0' region are 5.73 x 10-26 for cso/c = 0.2 and 2.22 x 10-21

for osoﬂu = 0.6. These ONETRAN results probably exhibit a larger remaining error than the

iterative contributon results quoted in the Table because a much coarser spatial mesh had

to be used.

[
Reference response using ONETRAN forward and adjoint fluxes computed with 0Ax = 0,390625 in the

0' region..
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TABLE TIX

SENSITIVITY OF THE INTEGRAL RESPONSE 1 FROM THE QUASI-LINEAR CONTRIBUTON
APPROACH TO THE MESH SIZE IN THE CENTRAL 0' REGION
(20 MEAN-FREE PATHS PENETRATION)

Integral Response 12

0' Region 5
ohx 58 _ 0.2
(m.£.p.) - A
~11b
Reference 2.21 x 10
0.15625 7.29 x 10711
0.3125 1.43 x 1071
0.625 ~2.53 x 1077
1.25 1.67 x 10711
2.5 5.76 x 10712
5 3.48 x 1071
_11
10 3.91 x 10

aIntegral response I calculated from Eq. (5c).

[o]
20 - 0.6 2 =10
2.62 x 107" 1.68 x 1072
-6.77 x 1078 1.78 x 107%
1.52 x 1078 1.80 x 107!
1.28 x 107° 1.83 x 10°%
2.84 x 1077 1.90 x 1071
3.21 x 1077 1.93 x 10°%
3.58 x 1077 1.65 x 107}
3.75 x 1070 ~4.04 x 1072

bReference response using ONETRAN forward and adjoint fluxes computed with olx = 0.07125 in the O'

region.

The corresponding responses using the iterative contributon approach described in Sec. IV.C

with OAx = 0.02 in the 0' region are 2.24 x 10-1l for USO/U = 0.2 and 2.64 x 1079 for USOIU = 0.6.

equations. Thus, the solution of the differential
equotion, Eq. (132), in the vicinity of source
discontinuities requires more thorough investigation.

The solution of Eq. (132) by iteration on the
sources, S(x,u) and S+(x,u), has also been studied.
An iteration is defined by the following algorithm
used within each iteration k:

(1) evaluate A(k-l)(x,u), B(k-l)(x,u),

V6, a®D e, & D e,

(k_l)(x,u) from the source dis-

tributions, S(k-l)(x.u) and S+(k-1)(x

of the previous iteration by use of
Egs. (133)-(138);

(2) solve Eq. (132) for f(k)(x,u) using
the quantities, A(k-l), B(k_l), D(k~1)
a(k_l), b(k_l), and c(k—l)
calculated;

(3) evaluate ¢(k)(x,u) and ¢+(k)(x,p) from
£, s VW, and sTED )

by use of Egs. (69) and (70), written
in terms of f, S, and S+; and

and ¢

sH),

» just

(4) evaluate new source distributions,
S(k)(x,u) and S+(k)(x,u), from ¢(k)(x,u)
and 67 (x,1) via Eqs. (42) and (43).
Since Eq. (132) is valid only for a oot region, the
initial guesses, S(o)(x,u) and S+(°)(x,u), for the

source distributions must be nonzero throughout the

26

system. For our sample case we arbitrarily chose
s(°) and S+(°)by assuming that the ¢ and ¢  in Egs.
(42) and (43) were uniformly 1.9.

When this algorithm was utilized for some simple
problems with scattering, the c.nvergence character-—
istics varied greatly. In moderate~ and deep-pene-
tration problems (penetrations of 6, 20, and 50 mean—
free paths) the iterations diverged for all discrete
mesh sizes applied in the 0' region. In a small-
penetration problem (penetration of two mean-free
paths) convergence was obtained, but the source it-
eration produced poorly damped oscillations in suc-
cessive response iterates. The amplitude of these
oscillations and the magnitude of the amplitude
damping factor (i.e., the ratio of the amplitudes
of the oscillations measured in successive iterations)
were sensitive to the discrete~ordinates quadrature.

For an S, qQuadrature after 15 iterations, the ampli-

tude of ihe oscillations was lO—SZ and the amplitude
damping factor was 0.70, whereas the corresponding
values for an 84 quadrature were 10_12 and 0.70.
For the 54 quadrature after 100 iterations, the_a
amplitude of the oscillations had dropped to 10 %,
but the damping factor had increased to 0.95.

The source of the convergence problems has not

yet been determined, but possibilities include:



(1) lack of ronsistency between the con-
tributon difference equations and the
forward and adjoint difference equa-
tions, in the sense described in
Sec. IV.C.4,

(2) errors introduced into ¢ and ¢+ by
replacing the derivatives in Egs. (69)
and (70) by numerical approximations,
and

(3) an interaction between the previously
described numerical instability and
changes in the shapes of § and §* in
successive iterations.
It is felt that the first two, which may not be to=-
tally unrelated to each other, are the most probable
of the three possibilities. The third possibility,
although remote, is an interesting one, but it is
not an obvious one since Ax 1s not varied in suc-
cessive iterations. What can happen, however, is
that the values Axc, for which the determinant of
the coefficient matrix vanishes, will vary from it-
eration to iteration. This occurs since the elements
of the coefficient matrix are computed from the dis-
(k-1) +(k-1)
S and S

tributions, , and these distribu-

tions vary with iteration. Thus, in successive it-
erations, the values of Axc can move toward or away
from the actual value Ax being used for the calcu-
lation. If such shifting in the values of Axc should
place Ox in a region of large solution sensitivity,
the result could be an interference with the iterative
convergence.

B. A Nonlinear Contributon Transport Equation

A generalization of Eq. (23) in Ref. 2 is easily
obtained for a EZ+ region (S, st # 0) by multiplying
the expressions (69) and (70) for ¢ and ¢+ together

to give the second-order nonlinear differential

on the boundary surface. Possible boundary condi-

tions at a material interface are

¥(z,0,E) is continuous in r ,

Ai[(Q-V)zw ~ (o + lg-VS)g-w; +235%) 1s
2

continuous in r , and

+
2—2[ @D% + © - 2 29O W + 255%] s
continuous in r .

According to Eqs. (69) and (70) these correspond to
continuity in ¢, ¢, and ¢+, respectively, so at most
two will be independent when used with Eq. (162).
Because of the obvious difficulty involved in solving
Eq. (162), this approach was pursued no further at
this time.

C. An Iterative Solution to the Contributon

Transport Problem

This approach involves transforming the forward

and adjoint Boltzmann 2>quations in such a way that
tihe terms which appear in the new equations are
slowly varying in the spatial variable over much of
the system. The hope is that a coarser mesh can be
used for the numerical solution of such equations
than could have been used for the original equations.

1. Derivation of the Transformed Equaticns

We begin with the forward Boltzmann equation

QT +op =85 . (164)

equation,

2
@Dy + 4ss"@n - 2, 2-vs" + 2 evepvi@w)?] - © - 225D 0 + Lo @w)?

4,)?

- 2¢sp-vst + st qevs)newy - —quz—q; +4sst. =0

(r,2,B)ezzt | (162)

For I, £+, and O regions, the linear differential
equations [Egs. (47}, (53), and (55)] are still ap-
propriate. For the case of a pure absorber with
uniform external sources, Eq. (162) reduces in slab
geometry to Eq. (23) of Ref. 2.

The external vacuum boundary condition for Eq.

(162) is

¢(5b,Q,E) = 0 for all (Q,E) (16™)

The quantity ¢ is replaced by the product fi¥, where

¥ will become the primary unknown and will depend

upon the, as yet, unspecified function £. If this
replacement is made, Eq. (164) becomes
1 S
Qv + (0 + Fg-vs)w =% (165)
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Ir the contributon transport problem, we iden-

ti£y 1 as the contributon flux, so that

£z %+ , (166)
and Eq. (165) becomes
Qv + @ - 34 2.9y - sot . (167)

U

Since Eq. (167) is obtained from the forward Boltz-
nann equation [Eq. (164)] by replacing ¢ with ¢/¢+,
the function ¢/¢+ satisfies the forward Boltzmann

equation., However, the identity,

Yoz

= (168)

where ¢ is the forward flux, holds only if %4 satis~-
fies the boundary conditions appropriate for the
forward flux ¢. Since ¢+ is the adjoint flux, this
means that in solving Eq. (167) for Y we must require
Y to satisfy the same boundary conditions as ¢ (for
example, § = O for incoming directions at a vacuum
boundary). We note, however, that the complete set of
boundary conditions for Y can be determined from the
independent boundary conditions on ¢ and ¢+, as dis-
cussed in Sec. II.B, This means that we have used
only half the contributon flux boundary conditions
in solving Eq. (167) for ¥, namely those obtained
from the boundary conditions for ¢. The fact that
P also satisfies the complete set of contributon
flux boundary conditions and is the contributon
flux, ¢ = ¢¢+, is guaranteed by the relationship in
Eq. (168) only because ¢+ is the adjoint flux.

The corresponding transformation of the adjoirc
Boltzmann equation [Eq. (45)] in the contributon ap-
proach is made by replacing ¢+ with /¢ to give

-0V + (0 + %g-wﬁ -5 . (169)

Thus, the function ¥ satisfies the adjoint Boltzmann

equation, but the identity,

¢+

1

(170)

¥
¢

where ¢+ is the adjoint flux, holds only if %-satis-
fies the boundary conditions appropriate for the
adjoint flux ¢+. Since ¢ is the forward flux, this
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means that in solving Eq. (169) for § we must re-
quire $'to satisfy the same boundary conditions as
¢+ (for example, § = 0 for outgoing directions at a
vacuum boundary). Again we have used only half the
contributon flux boundary conditions in solving

Eq. (169) for ¥, namely those obtained from the
boundary conditions for ¢7. The fact that ¥ also
satisfies the complete set of contributoa boundary
conditions and is the contributon flux, W=¢¢+, is
guaranteed by the relationship in Eq. (170) only
because ¢ is the forward flux.

In obtaining Eq. (167) from the forward Boitz-
mann equation [Eq. (164)] it is not necessary that
¢+ be the adjoint flux, but ¥ is not the contributon
flux unless ¢+ is the adjoint flux. Nevertheless,
for any well-behaved function ¢+, Eq. (168) is still
valid for the forward flux % if %+ satisfies the
boundary conditions appropriate for ¢. On the other
hand, in obtaining Eq. (169) from the adjoint Boltz-
mann equation [Eq. (45)), it is not necessary that
¢ be the forward flux, but @lis not the contributon
flux unless ¢ is the forward flux. Nevertheless,
for any well-behaved function ¢, Eq. (170) is still
valid for the adjoint flux ¢' if g— satisfies the
boundary conditions appropriate for ¢+. If, however,
we do identify the ¢+ in Eq. (167) as the adjoint
flux, then the adjo. 1t Boltzmann equation [Eq. (45)]
can be used to reduce Eq. (167) to

st +
QW+ P =856 . (171)
¢

If we identify the ¢ in Eq. (169) as the forward
flux, then the forward Boltzmann equation [Egq. (164)]
can be used to reduce Eq. (169) to

- 2% + (%)J =s% .

(172)
TUnlike Eq. (167), which is valid for any well-
behaved function ¢+, it is imperative that the ¢+
in Eq. (171) satisfy the adjoint Boltzmann equation
with source S+, and unlike Eq. (169) which is valid
for any well-behaved function ¢, it is imperative
that the ¢ in Eq. (172) satisfy the forward Boltz-
mann equation with source 5. This is because ¢ no
longer appears in Eqs. (171) and (172), so the only
way the solutions, P and ¥, can be influenced by ©
is through the proper relationships being established

between S and ¢ and between s+ and ¢+.



2. The Iterative Algorithm and Its Properties

The intention is to iterate between the equa-

tions,

and
+
2w + 2y = st
= +
$
where the ¢ in Eq. (173) must satisfy
QY +0d =5
and the ¢+ in Eq. (174) must satisfy

- 00" + oot = 5T

(173)

(174)

a7s)

(176)

to insure that ¥ and E are forced to converge to the

contributon flux.

will be used:

(1)

+
(1) obtain an estimate ¢ satisfying

- geget

v gt (D) _ g+

with the usual adjoint flux boundary
+(1)
’
¢(1)

conditions on 9%

(2) obtain an estimate satisfying

W), @ . ©

RV + 0¢

with the usual forward flux boundary

) ;

conditions on ¢

(3) set k = 2;

Thus, the following algorithm

(177)

(178)

(4) solve
— (k-2) _ _ _
'Q'Vll’(k) + [E(_k__l_)w(k) - gt (k-1
¢ (179)
with adjoint flux boundary conditiomns
—(k),
on ;
(5) set
—=(k)
O BT
¢ S (180)

(6) solve

+{k-1) _
2@ 4 [ +(6__w(k) - s0DGHK) (5
¢
with forward flux boundary conditions
on 0.
n P
(7) se-
k)
(k)
¢ = —— s (182)
¢+(k)

(8) increase k by 1; and

(9) if a specified convergence criterion for
¢ is not satisfied, return to step (4);
otherwise stop.

The convergence properties of this scheme are
easily determined. Due to the rature of the trans-

formation, ¢(k> is the solution to

2.7 4 g (k) o g{k-D) (183)
and ¢+(k) is the solution to

- Qeupt R gt (K) _ (k1) (184)
Consequently, the convergence of ¢(k) and ¢+(k) in-

dependently 1s the same as in the unaccelerated
Neumann series solut:ion.l4 There should be no great
difficulty in accelerating the scheme by applying a
standard acceleration techriy .- to Egqs. (183) and
(184).

scheme could he accelerated by applying some

What is not clear, however, is whether the

acceleration technique directly to Eqs. (179) and
(181).

3. The Numerical Execution of the Iterative
Approach - The Problem of Consistency

Because the contributon balance equation [Eq.
(46)] is just a combination of the forward and ad-
joint Boltzmann equations [Egqs. (44) and (45)], only
two of these three transport equations are independent.
Since the three flux solutions, ¢, ¢+, and Y, are
related according to Eq. (5), only two of these three
flux solutions are independent. It is, thus, pos-
sibie to obtain all three flux distributions by
solving for any two using the appropriate pair of
transport equations in which the third flux distri-
This third flux can

then be obtained from the two known flux solutions

bution has been eliminated.
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through use of Eq. (5). When the flux distributions
are treated as continuous functions of the phase-
space variables, the three flux solutions obtained
in this manner are conaistent; that is, they are in~
dependent of which pair of transport equations are
solved. However, when these transport equations are
differenced in the space and direction variables,
this consistency may be lost unless care is
taken in the differencing. & simple example will
suffice to demonstrate the necessity of a consistent
set of difference equations.

Consider the transformed adjoint equation [Eq.

(179)] in slab geometry and assume that diamond
Then for cell i and direc-
(k)

differencing is applied-

tion m, the center-point flux w

.
2u w(k)+k + S+(k 1)¢(k 1)A
, U >0
S(k-z) m
mi
2um+ =1y l\xi
(k) Fni (185)
¢mi =1
- w;ki_% + S+(k—-1)¢(k-1)A x,
(k—Z) T <0 .
mi
-2um + NTSH) Axi
L mi
+)
Since ¢ = -1y * we obtain its discretized
value, ¢
[ 'd,(k-z
m, 1 +(k) +(k-1)
i |G | ®mt st S A%y -
Pmi
L&D s My >0
mi
2um+ _—¢(k—1) Axi
mi
¢:§k) 4 (186)
- +(k) +(k-1)
Ay D) Poioi F Smr 0%
s(k‘z): > Hp< 0.
mi
; Zum + -1) Axi
mi

If diamond differencing is applied to the forward

Boltzmann equation [Eq. (183)] with k replaced by

k-1, then
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(k-Z)

N 2u -~ g A
¢(k-l) m i ¢(k ~1)

ni
- (187)
¢(k—l) Zum
and
(k—2)
s - mi
o k1) 2, + 10y ¢(k-l) b=y
‘m,1i-%
. (188)
¢(k-1) ZHm

If these results are then used in Eq. (186), ¢+(k) is
given by
[ = r00 | e,
2, ¢m 15 sm1 *1
> < 0
Zum + UiAxi
ot - (189)
ml
+(k) +(k 1)
2u£¢m 1414+ S
2 Um < 0 *
-2 um + ciAxi
where
[~ (k-2)
TS 1 pu >0
m 2 ¢(k-l) ’ m
o= 9 (190)
[ (k—z)
1 u <0 .
F“ + 5 |9 ;TE—IT Ax . m
L mi

The expressions for ¢ (k) in Eq. (189) are the usual
diamond difference results except for the direction
cosines ﬁ;. Since, in general,

(k-2)

(191)

¥ o,
(k—l) ’
¢mi

the directions with cosines ﬁ; will not be the same

as the directions with cosines Wy unless Axi = 0.



Thus, an error has apparently been introduced by
inconsistent differencing.

Our numerical results support the above conclu-
sion. In these calculations, diamond differencing
was used for the y, ¥, ¢, and ¢+ equations.

tially, the convergence was similar to that of the

Ini~
unaccelerated Neumann series iteration. However,

a slight error, apparently introduced by the incon-
sistency, persisted. This error was of the order of
3% in the contributon angular flux P for a problem
with a scattering-to-total ratio of 0.} and a dis-
tance of 5.0 mean-free paths between source ané
detector, and it aﬁpeared as a nonsymmetry in the
spatial distribution of ¢ for a symmetris problem.
Since the contributon problem is effectively a pure
scattering problem, outside the detector region, it
might be expected that the errcr in ¢ would consist
of two parts, a rapidly decaying part characteristic
of the unaccelerated Neumann series iterations and
an extremely slowly decaying part characteristic of
pure scattering problems. However, since the flux
distortion remained unchanged after 3000 iterations,
it is felt that the problem is not a general lack
of convergence but rather that the distorted flux
is the true sclution to an inconsistent set of dif-
ference equations. Numerical results show that when
the difference equations are made perfectly consist-
ent, as described in the next section, the persistent
error is not introduced.

4, The Mumerical Execution of the Iterative
Approach ~ A Consistent Set of Difference

Equations

A general analysis of the discrete~ordinates

difference equatiods corresponding to Eqs. (173)-(176)
will now be presented to show how consistency can be
obtained. Throughout the analysis strict identity
is required whenever two results are required to be
the same. However, this restriction could be
relaxed somewhat without destroying consistency.
Consider first the problem of calculating a new
(k) (k-1) and ¢+(k)
by the use of the transformed forward equation [Eq.

(174) 1.
which correspond to Eqs. (174)-(176) are:

iterate ¢ from known values of §

The discrete-ordinates balance equations

W L0 g,

(k) _ (k-l)
um[¢m,i+% m,i~% Ax

O3%ni = Smt i

(192)

ST A TR Ml T JC W IE W o TR
(193)
and
s+(k-1)
(k) (k) +(k) (k)

H lwm ity - Wm 1—1] Ymi - +(k) ]wmi Axi

(k) (k-1 +(k)

Yomi m‘ ¢ Ax N (194)

where y ~nd Y* are as yet zrbitrary weight factors

which must be determined to insure consistency. 1In

these three equations ¢(k) +fk), .(f 1’, nd §+(k'1)
wt (k) +rk§
are C?S—averaged quantities, and ¢m,i£¢:’ ,bm;ii'}i'
are cell boundary fluxes. Additional

and A
" IJJm,lt’ﬁ
equations which must be consistent are the defini-

tions of the contributon flux,

k) _ (k) +(k) =
LA =& b (195)
from the cell-averaged quantities and
k) _ &) L+
l,Jm,i:l-lg m,i¥ls m,itls (126)

from the cell-boundary values. It should be noted
that ¢( ) is not the cell-averaged contributon flux
but is merely, as the equation states, the product

of the cell-averaged quantities, ¢;§) nd ¢+(k)

In other words, Eq. (195) is consistent with the
statement that the center-point value of y is the
product of the center-point values of ¢ and ¢+.
Finally, since the discrete-ordinates balance cqua-
tions, Ecs, (192)-(194), contain too many unknown

flux values, we must introduce a set of discrete~
ordinates supplementary equations which express the
cell-averaged flux value in terms of the cell~boundary
flux values, and we require that these 3lsoc be con-
sistent. TFor these supplementary equations, we use
very general weighted-difference equations in which
the weights are allowed to be functions of §, ¢, and
¢+. The supplementary equations for the forward and

adjoint balance equations are, respectively,

8 (k) a2k

(k) (k) , (k)
i ¢m i+ + bmi ¢

m, ik s

31



and

I | 0 gH | H0 )
¢Ii mi ¢m,i+’i + b ¢u 1-%

(198)

For ¥ it is possible co obtain two supplementary
equations, one from multiplying Eq. (197) by ¢ (k)
and the second from multiplying Eq.

These two equations are

(198) by ¢£k)

+( ( )
k) (k) (k) (k) (k)
::1 4mi [+(k) ]“bm,i#i mi ¢+(k) m,i-k
¢m 1+ m,1-%
and
¢(k) ( ; +(k)
(k) +(k) (k) +(k
- .
m, 1+ 134 ™
Equations (192) and (197) give, after multiplica-
tion by ¢} (k)
[ b0y 0
mi | Pmi (K k=1) + k)
% [1 * (k)] SH Yo,i-% " Smi O mi 0%y
2 m,1i~%
(k) +0 Ax
k) _ 2ni
Wni <
(k) ¢+(k) ( D) ()
mi mi k) k-1) +(k
n [“ (k)Lm:) L Bl Wit
ﬂi m,i
ull
- N toybx
L mi

But Eqs. (194) and (199) give
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un <0

(199)

(200)

(201)



(k) +(k)

(k) o (k-1)  +(k)
bpi ®m,it% (k) +vy',°s $ Ax
[ )Jm [l +—--—(k) Tz——k)—} n, ik mi “mi mi i
Ani m, i~Ls u >0
¢+(k) +(k-1) * m
Uy myity | (k) |Tmi ax,
&+ T Ymi e
2ni ¢m,i-!§ mi
(k) _ l 202
wmi B ¢ )
(k) +(k) (
®mi myi-ts] (k) (k) g(k-1) + %)
“Hn [l + (k) ¢+(k) ]U‘ 1+5 + Yrn1 mi mi Bx i
mi m,its u <0
o +(k) s+(k'1) ’ ™
n m,is (k) Tmi Ax
L R ) mi ¢+(k) i
m1 m, i¥s mi
. . (k)
From these two different expressions for wmi
we can derive a quantitative requirement for con-
sistency by requiring the identity of both expres-
sions. Two conditions emerge for all direccions m:
+(k) +(k) (k) +(k) (k) ,+(k) _ ), (k) (k) +(k 1)
i LU MRS I E v M T S v M LE S At Chng Is 7 bx (203)
and
in Eq. (204) gives
OICS (k) +(k)
Y(k) _ 1 2ni ¢ m,i-s + bmi :bmiiﬂ»i
mi (k) (k) +(k)
a_ .’ + b [ (k) _ 1 +(k)
mi i (204 Ypi = —————(k) = . (208)
i m1
Since we wish the ¢+(k) which 1s used in Eq. (194) Since ¢+(k) also satisfies Eq. (198) and since
to be the solution to the adjoint difference equa- Eq. (200) was obtained from Eq. (198), Eqs. (199) and
tion [Eq. (193)], we also obtain (200) are required to be identical, Thus,
+(k) - (k)
) =g (205) 2 00%mi | +00]fm
m1 +(k) mi (k)
¢m.1+!1 ‘¢m,i+ls
(k) _ _+(k)
bmi = ami , (206) ®)
= 0;) L?k_f;i_} (209)
m
and '¢m,i+15
w1 o7 [, )2 5100
Vond RO +(k)
%ni b = byy ¢(k) ¢(k) l°+(k)

m, i+ m, i35 m, il
from the requirement that Eqs. (203) and (193) be (k) +{)
identical. The use of Eqs. (205), (206), and (198) RS [0n ! i

mi (k) ¢(k) l +(1<) J

P, 1437m, 15 ) L O, 10
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A similar analysis of these equations shows

or
2 that
(683 [¢*“"
(210)
(k) (k) +(k) +(k) +(k) (k-1)
¢,n 1+;i¢m i_;i ¢m i+;i¢ Li ani = bll » (220)
Up to this point we have considered only the b+(k) (k-1)
mi - %mi , {221)
solution of the transformed forward Boltzmann equa-
tion. We now consider the problem of calculating a
new iterate ¢+(k) from known values of st-1) 4 ) _ +(k) 1 222
RSN Bmi "By IO (222)
vy use of the transformed adjoint equation as + b
[Eq. (173)]. The discrete-ordinates equations which
are required to be consistent are
and
o oD 2 (k) ;2
(k-1) k-1) (k 1) (k-2) (o1 (e 1
um[¢m,i+4§ m i-lg 1+0 ¢ A Smi bx (223)
¢(k-1) ¢(k—1) ¢+(k) ¢+(k)
m,itk'm,i-%  m,i+%m,1-%
(211)
From Eqs. (210) and (223), we see that
+(k) +(k) +(k) +(k-1)
Ml 1w T On,io ] FObny Axg < Sy A
(212)
(k-2)
. k) ~(k) (k) (k) +(k) +(k-1) (k-1
H [wm »iHy wm,i"%] + B [EGT)] “b = B ( ) mi(. ¢( )A ’ (213)
-(k) (k 1), +(k)
Vs T i ¢m1 ’ (214)
2
(%) 1 rolk-D)y 2200
—(k k-1 (k) W - D), (k-1) °
lbn(,,)iﬂ! = ¢1§,iﬂi ;fﬁj’ > (215) Ou, 1430, 14 d’-,1+'s¢’n i-%
(k-1) _ (k-1),(k-1) b (k1) (ik=1)
i mi Omying *Pmi Omig 0 (310D M(k)]
that is, the quantity (k)i (k) must be independent
4 1+‘i ®,i-%
k k k n, »i-
o) = a0 P e L @n etk s,
+(k)
=0, et | -qo (k1) s 100 1
‘P i i {_——_] ] b "(k) . (218)
™ n ¢:(l;3.) m 1+!5 +(k) m, 1k
ﬂ,i‘%
and
N ® (k-1) ¢(k-l)
=(k + (k) + (k)| Tmi =(k)
Ut = i [ (k-l)]“’m,ws + Pos [ 17 | Y, 1% a19)
m;‘-'*"i ¢l,i—'
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2
[¢(k)] [¢+(k)
LL = ¢ (225)
4’(l\) ¢(k) ¢(k (k) mi
m, §4+37m, 1=1 m, 1+5 m, i-%
where cmi is independent of k. However, since all

the fluxes on the ieft-hand side of Eq. (225) are

vnknown, C = 1s also unknown. To implement the it-

mi

erative solution technique, Cmi must be predetermined

in some manner. One possibility is to assume a flux
shape within the spatial cell and then to determine
Cmi by inserting these fluxes into Eq. (225). Since
we do not know the exact flux solution a priori, we
must attempt to make the best possible assumption

for the flux shape within the cell. {205),
(206), (220), and (221), we see that the quantities,
ami =b { ani bmi = a;i, are also Independent of k.

LiKewise,

From Eqs.

vy=yT-=-8=8", (225a)

independent of k.
The consistent forms of the transformed forward

and transformed adjoint equations can now be deter-

+(k) +(k)
ui (k) Pui (k)

Mo |30 Vo,itk ~ ) Vm,i-%
m,i+k ¢n,i~%
+(k) +(k) +(k 1)
+ um[¢n,i+% k] + S Axi ¢(k)
+(k) mi
¢ni

(k'1)¢+(k)Ax

Sni (230)

Through the use of Eq. (193), this transformed for-

ward equation becomes

+(k) +(k)

mi , (k) ¢ui (k)
bl () m, 145 T L H(K) Ym,i-%
m, i+ m,i~%
vo Wy = s G0, (231)
mi mi
which is just ¢;§k) times the forward difference

(k)

equation [Eq. (192)]). This result insures that ¢

satisfies the forward difference equations no matter

mined. From Egqs. (197), (198), (220), and (221), we (%)
obtain what ¢ is. Thus, Eq. (231) is more accurately
the difference equation corresponding to Eq. (167).
A similar analysis shows that the consistent
o ap o) LK) (226) . . L
mi m, {4+ mi'm,i-) mi transformed adjoint difference equation is
and
(k-1) (k-1)
“fmi oz 7
+(k) +(ky _ o+ (k) (k=1) "m,i¥s (k~1) m,i-k
ami¢m.i—% + bmi¢m,i+% ¢mi ) (221 m, i+ om.i-%
Cross multiplication of these equations shows that
+(kl% ¢+(k)
&  _ K m, i k) _ "mi (x)
R TLAAYE O Mg o) 0 a7 @ Yo i (228)
i m,i-%
and
¢+(k) ¢+(§)%
(k) (k) - mi (k) _ 'm,1-% (k)
P Wy, 14ty = Vi, 1% ORI V1 (229)
m, i+ mi
If these results and Eq. (208 fory andY+ are
o om — () +l-1), (k
inserted into Eq. (194), the result is + ciWL. Axi =5 e ;‘I)Ax (232)
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which is just ¢£t‘1) times the adjoint difference

Eq. [Eq. (193)].
tion to be used with Eq. (231) is

The consistent supplementary equa-

k) (k)

0 ,?
P AR A ST U

(233)

and the suppiementary equation to be used with Eq.

(232) 1s

& —(k) (k)

(k)
[W Cmi wm,1+5 m,1i-%

. (234)
A number of comments are in order concerning
the supplementary equations for the forward and

adjoint difference equations, namely

(k) (k)
i -

(k)
mi'm, i+3¢m,i—3 (235)

+(k) +(k)

2
+(k) 2
[0gy "1 = Cm1¢m,i+%¢m,i—k ) (236)

These equations are a generalization of the geo-
metric mean, or exponential, supplementary equa-
tions.5 It is shown in Appendix C to this report
that allowing Cmi # 1 is necessary for consistency
between the discrete-ordinates balance equation and
its corresponding supplementary equation. Indeed,
the accuracy of the solution can be sensitive to the
choice of Cmi
Obviously, the supplementary equations [Egs.

(233)-(226)] are invalid for certain directions in

» as shown later,

a cell adjacent to a vacuum boundary. A consistency
analysis has been carried out for the special case
of a vacuum boundary. Unlike the case of an interior
cell, the requirement of consi:rtency between the two
forms of the ¥ (or @) weighted-difference equations
imposes no additional constraints, and the following
supplementary equations are obtained:

(1) for a left boundary cell,

rb+ ¢£ki+k u. >0
(k) - td » ™
2y (237)
(k) +b ¢(k) , u <0

ani®u, 145 ¥ Puitm,1-k -
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and
+(k) +(3)
¢m i+k mi¢m 1y My 0
gH00 L
mi
+(k) .
R -i¢- i+ Yo <0 (238)
and
(2) for a right boundary cell,
(k) (k)
n1¢m,i+5 b d>m il 0 M 0
+(k)
d>rni =
(k)
¢m 1y o W <0 (239)
and
+(k)
ami¢m,i-k ’ M >0
+(k) _
¢mi
F oot + ) ¢+(") L <0 . (240)

m,i-% * m

1'm,iHs

As before, the transformed forward equation is just
+(k)
¢

ol (ie-1)
transformed adjoint equation is just ¢mi times

times the forward difference equation, and the

the adjoint difference equation.
5. Numerical Results for the Iterative Approach
The intention with this iterative approach is to

use coarser spatial meshes for { and $'thnn for ¢

+
and ¢ based upon the expected slower variation of ¥
and .

ation is assumed to be available for ¢
¢+(k-1)

At the beginning of each iteratipn %, inform-
vk-1) and

on a fine spatial mesh. Then the E'equation
is solved on a coarse mesh in those regions where E
is expected to vary more slowly than ¢ and ¢+ (and
on the fine wesh in the remaining regions). The so-
lution $'on the coarse mesh and the information
¢(k-1) on the fine mesh are then used to obtain a
¢+(k) The approxima-

new iterate on the fine mesh.

tion used in obtaining ¢+(k) in this manner is that
$ varies exponentially across the coarse-mesh cell,
which is consistent with the supplementary equation
for ¥, Eq. (234).
similar approach is then taken with the P equation

To complete the iteration k, a

and the calculation of the ney iterate ¢
Every attempt has been uade to maintain con-

sistency among the equations. This is easily done



when the coarse and 7ine meshes coincide, and for
such a case the convergence of the iterations is
similar to that of the unaccelerated Neumann series
iterations. However, when the coarse and fine meshes
do not coincide, an inconsistency and its accompany-
ing persistent error are introduced again. Thus,
some modification of this technique appears Lo be
necessary in the future if the slow variation in ¢

is to be exploited without loss of consistency.

The resultS for a simple scattering problem will
now be described, since they provide additional in-
sight into the physics of contributon transport. 1In
these firs: calculations, the iterative appzoach
described in the previous sections has been employed
with coinciding fine and coarse meshes. The geometry
and important parameters for this problem are shown
in Fig. 9, and a plot of Y(x,u) for the S, approxi-~
mation is shown in Fig. 10. The interesting details
in this plot are the appearance of the peaks in the
source and detector regions for u < 0 and the be~
behavior of Y in the central region.

In the central region of the slab the angular
contributon flux distritution Y varies for each of
the two directions in such a way that the difference
between the Y values remains constant. This is a

direct consequence of the conservation law,2

j]]g-vw;,g,smgaaav =3 ,

v

(241)

where V is any volume which does not include the

source or detector. Eq. (241), when applied to our
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Fig. 9. Geometry for model scattering problem.

special S, problem and integrated over any volume

2
in the 0' region becomes

Wlxgay) - Ulxgaly) = Bl au,) - Wlxpam))

(242)

where x and x, are any two spatial positions in the

0' region and the two direction cosines are related

by

My = o- iy . (243)

Thus, in this simple two-direction case, any con-
tributon picked up by a contributon “packet” ctravel-
ing in one direction must be lost by the contributon
"packet" traveling in the other direction.

The peaks in the source and detector regions
are due mainly to the presence of cthe source and
detector and to the fact that the vacuum boundaries
act as perfect reflectors of contributans. In the
source region, ‘ite packet of contributons with p >
0 picks up contributons produced by the source,
causing the rise in Y after the packet enters the
source region. However, all the contributons in
the packet must be scattered into the direction
with ¥ > 0 before the vacuum boundary is encountered,
and this results in the decrease in |y as the vacuum
boundary is approached. 1In the detector region, the
situation is reversed. There the packet of contribu-
tons with ¥ < 0 picks up contributons scattered from
the direction with u > 0 in the vicinity of cthe
vacuum boundary. This causes the rise in ¥ as the
packet moves away from the vacuum boundary. The
detector, on the other hand, acts as a gink for
contributons and causes the decrease in { as the
0' region is approached. Although it is not evident
from this semi-logarithmic plot, ¥ (x,:) does go to
zero a* the two vacuum boundaries for all directions.

When a multiple grid is used and a certain value

is specified for Cm in the fine-mesh cells, the

i
question arises of what value to assign to ij for

the coarse-mesh cells. From the disc.ssion in Ap-
pendix C, it is easily seen that ij nmay differ

significantly from Cm" Two approaches were tried

1
in the calculations for the problem described in

Fig. 9. Method 1 consisted of evaluatiag C.j by
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use of Eq. (225) from the fine-mesh forward and ad-
joint flux data in each coarse-mesh cell in only the
first iteration after the relative error between suc-
cessive iterates of the integral response I, com-
puted from Eq. (52), fell below 0.1. Method 2 con-
sisted in evaluating ij in'a similar manner after
every iteration for k > 2. Figure 11 is a plot of
the integral response I vs the size of the coarse-
mesh cell in the 0' region. The fine-mesh cell
width used with Methods 1 and 2 was 0.1 mean-free
paths in the 0' region and 0.05 mean-free paths in
the source and detector regions. The value assigned
to Cmi for all fine-mesh cells was one and a coarse
mesh was used only in the 0' region. A comparison
calculation has also been made for each of the
coarse-mesh choices where only this particular
coarse mesh was employed as a single spatial grid
with Cmi = 1. As can be seen, considerable improve-
ment in the integral response is obtained by employ-
ing multiple-grid Method 2, in which ij in the
coarse~mesh cells is evaluated from the fine-mesh
flux data after each iteration.

As previously stated, the use of multiple grids
introduces distortions into the flux solutions. For

the problem described in Fig. 9, the contributon
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total flux should be symmetric. Therefore, one

measure of such distortion would be the tilt in the
contributon total flux, where the tilt is defined

to be

ER
TILT = }J1 - =

) (244)
Yq

and Eé and ER are the average Integrated contributon
fluxes in the source and detector regions. As in-
dicated in Fig. 12, the flux distortion increases
with increasing coarse-mesh cell width in the 0'
region but remains below about 20% for ghAx < 2.5.
Figure 13 presents an extreme example of a distorted
contributon angular flux for the case of only two
coarse-mesh cells in the entire 0' region (oAx = 2.5).
For comparison, the corresponding reference solution
on the finest mesh 1s also plotted, The multiple-
grid solution was obtained by using Method 2, and
the locations of the coarse-mesh cell boundaries
in the 0' region are readily apparent in the plot
of the distorted flux. The relative error, Iw -

wEXACT!/@EXACT in this disterted contributon angular



1°° T T T flux is plotted in Fig. 14 and remains telow 12%.
For comparison, the relative crror when five coarse-
mesh cells are used in the 0' region 1is also plotted.

There 1s a rather dramatic improvement in the accuracy

~1
A of the selution due to the increase in the number of

// coarse-mesh cells. In order to trace these distor-
. . +

MULTIPLE-GRID tions in Y back to errors in ¢ or ¢ , we plot in

METHOD 2
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METHOD 1

Fig. 15 the relative errors in ¢ and d>+ as they re-

02 f— i i
/ main in the fine-mesh results after the iterative
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Ve process is converged to a relative error of 10
2l | . .
Ty -1 [ between successive iterates of the integral response

I. From Figs. 14 and 15, a fairly interesting ob-
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The source of the flux distortions in the mul-
tiple~-grid approach is in all probability an incon-
sistency between the discrete-ordinates equations
for the fine spatial mesh and the discrete~ordinates
equations for the coarse-spatial mesh. However, the
nature of this inconsistency is not known at this
time, and consequently, it has not been possible to
eliminate the flux distortions in the multiple-grid
approach.

D, An Integral Equation Approach to the Contributon

Transport Problem

This apprcach involves the solution of an inte-

gral equation with a generalized contributon flux as
the unknown. This approach is not being sericusly
congidered at this time and is included here only
because it provides some insight into the informa-
tion required to solve the contributon transport
problem.

The integral form of the forward Beltzman equa-

tion can be wri:cenl

P(x) - M(x,x")p(x") = N(x,x")(x,x') , (245)

40

where

x = the phase-space vector (x,2,E),

' = the phase-space vector (r-s'Q,2',E'),

% - 50 (e-5"R,E)ds"
M(x,x') =fe °

[+]

ﬂ°s<z - S'QRT,E" + 2,E)d "B ds’

= the multiple-collision integral operator,

(246)

S s' U "
- [7 a(r - s"Q,E)ds
N(x,x') = fe ° ds’ (247)
o
= the noncollision integral operator,
ane
Q(x,x') = Q(r - s'Q,2,E) (248)

= external source distribution along the
direction vector { passing through the

spatial position r.

The quantaties, s' and s", are scalar path length

variables. Likewise the integral form of the adjoint

Boltzmann equation is

¢+():) - H+(1.):')¢+(1') = N+(x.x')R(z,x'). (249)
where
¥ = the phase-space vector (p,u,e),

'= the phase-space vector (p + t'w,n’,e'),
¥ L w,n

o

+ - ft'c(_p_+t"g,e)dt"
M (y,y") -=fe °

[]

(250}

',[[%GL + tlww,e o e do'de'de’



N @ -7 t'o (Q+t"g,e)dt"

N (y,y') = fe ° ac' (251)
[+]

and

R(y,y') = R(p + t'w,w,e) (252)

= detector response function along the direc-
tion vector w passing through the spatial
position p.
Again the quantities, t' and t", are scalar path
length variables.
A generalized contributon flux is now defined
to be
+
Y(x,y) = ¢(x)¢ () - (253)
If the corresponding sides of Eqs. (245) and (249)
are multiplied together and the definition in Eq.

(253) is used, the result is

+ -1
¢ (x) = A () (256)
and A is constant in the spatial variable x. Since

the exponent of ¢ will be of importance to the re-

mainder of the discussion, we also write

ot (257)

o (x)

and

P® = A’ = AL (258)
We can also define a fourth distribution function
$r(x), where Pp(x) is just a spatial reflection of
¢(x) about the center plane x = x, of the slab 0
region.* Since this function ¢R(§) is related to
¢(x) for this special case by the eguation

$px) = o e (259)

¥Y(x,y) = M(x,x")¥(",y) + M+():,1')‘i’(§,x') - M(g,g‘)M+(z,x‘)‘i’(5' ')+ N(z,z')Q(z,z')N+(z,,\1_')R();.z') .

The ordinary contributon flux, as defined in Eq. (5),
is just

V® = ¥x0 = 606 . (255)

Although it may appear that the amount of con-
tributon information has been squared by the intro-
duction of ¥, such 1s not the case. From its defi-
nition in Eq. (253), it follows that ¥(x,y) can be
completely described by just two independent dis-
tributions. Any two of the three functions, ¢(x),
¢+(§), and P(x), are such independent distributilons.
We now ask whether it is possible to find another
distribution ¥(x), such that P(x) and x(x) are in-
dependent, completely determine ¥(x,y), and vary
more slowly in r than ¢(x) and ¢+(§) over a portion
of the system.

To determine how x(x) might be found, consider
the special case of a pure absorber 0 region in slab

geometry, for which

(254)

the functiom ¢R(§) {{(5) is related to ¢(x) by

W@ = A7 - (260)
1f ¥(x,y) consists of discrete information
with respect to the various phase-space variables,
this information could be arranged in a matrix in
which the x-dependent information is arranged by
rows and the y~dependent information is arranged by
columns. Consider now only a submatrix of this in-
formation for a specific Jirection 80 and a specific
energy E . We also denote the location of the
center of the 0 region by X =Y Figure 16 shows
an arrangement in this submatrix of the discrete
information for ¥(x,2 ,E ;x,Q ,E).¥(x.8,,E 3

Yo s o)),

* -
Since the normalized forward flux is ¢(x) = e—u(x xo)

in an 0 region, a reflection of ¢{x) about x = x
gives ¢R(x) = ¢(2xo -z} = e¥(XXo) = p=1(x).

41



y-

(xy) = {0.0) by,) 10, Yopne ™ Zpman?
w N
)
(=] <o
P z Qe
% = Y
o % A
.1:.- w’ hos 1‘(‘?7
+ K} Qs /L
Noo Gl ISUA RN ]
g _,._‘ .2 “o
. S
L]
x Wix, 2 €, v ) - $ix, 2, E M6 (0.2, E ) ; A
4 I:o.o) Koo Ynan ™ Xman
HNEEATENY
o '
ol ¥.9 .6,
)
N 4 v
12 ] . LA
2 - 2\&.
©s 3t e N5
o8 x *%
g?, > 60
- \'fl
)
B 1% s o) (X Yrman ™ *ua?

Fig. 16. Information storage for ¢, ¢+, ¥, and ¢R§+ in submatrix of Y matrix.

Y0 LB 3y,Q B ), and Yy - y,8 sEgiv8.E ), Comparison of Eqs. (261)-(264) with Fig. 16
where x and y vary between 0 and X oax’ From the shows the following:
definition in Eq. (253) of the generalized contri- (1) the spatial variation of ¥ is slowest

along the main diagonal, where ¥ = § =

buton flux and from Eqs. (256)-(258) and (260), it
A(Q ,E )b (x, ,E ) = constant with
—o’ o ~o” o

can be seen that
respect to X3

. - + 1 iation of ¥ is most rapid
¥(x,2 ,E x,0 ,E ) = Q LE Q (2) the spatial variation ! p.
0’70’ =00 ¢ (x ~0 o)¢ (x’—O’Eo) along the other diagonal, where ¥ = ¢R¢
~2
= A@@ ,E )$ “(y,R ,E ); and
= (.2 ,E) = AQ ,E )¢°(x,Q ,E 261 =o’o o't
YOl Ey Qlo °)¢ (x 80’ 0) » (261 (3) the spatial variation of % iies midway

between that of VY and ¢R¢+ along the
1 vertical line through y = Yoo where
. - + - L+ 1
‘P(x,go,Eo,yo.go,Eo) ¢ (xR E )% ¥R 5E) Y24 (y,.R,E )¢ (x,go,zo), and along
(262) the horizontal line through x = x ,
-1
. where ¥ = A(gojno)¢(xo,go,Eo)¢ (7,2 -E.)-
W(XO,QO,EO:LQO:EO) = ¢(x°)QOIE°)¢ (Y,QO,EO)
1 The conclusion which may be drawn from this is that
= A(QO:EO)¢(xO’Q°,E°)¢ @8 E )y (263) a function X, in order to vary more slowly than ¢
and ¢+, should be represented by data that lies on

and

- . - - +
\V(ymax Y9Q°,EO|Yy'E°:E°) ¢(ymax Y.QO ’E°)¢ (Y:_s_)o:Eo)

= 0572 E )8 (7,0 B )

-2
= AQE D) (R ED - (264)
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some curve which falls entirely within the upper
left and lower right quadrants of the submatrix fn
Fig. 16.

curve canpnt coincide with the main diagonal, where

Since x and { must be independent, this
¥ = ¢ is spatially a constant. The ideal function
X might, therefore, be a perturbed contributon flux,
namely,
X=¥+6p , (265)

where [8y] << y.
found, then it might be possible to reformulate the

If such a quantity X could be

forward and adjoint problems in terms of two new
functions, ¥ and x, which vary more slowly than ¢
and ¢+ over much of the system. Since ¢(x) is
roughly exponential in a scattering medium which is
free of external sources and detectors (i.e., an Q'
region), this discussion can also serve as a guide
for choosing ¥ in the more general problem with
scattering. The details of determining a specific

function ¥ have not been carried out to date,

however.

V. SUMMARY AND CONCLUSIONS

There were three main goals in this research on
contributon transport. The first was to more fully
describe the physics of contributon transport. To
accomplish this we have written for the contributon
angular flux ¥ a Boltzmann-like tramsport equationm,
which has an interpretation similar to that of the
Boltzmann transport equation for the forward flux ¢.
In writing this equation for ¥, special contributon
scattering and absorption cross sections were intro-
duced, and examination of the definitions of these
cross sections has revealed some of the peculiar pro-~
perties of contributon interactions with the medium
and vacuum boundaries.

The second and third goals were to identify con-
tributon transport equations and their boundary con-
ditions and then to identify possible approaches to
solving these equations deterministically. TFour such
equations were obtained, but only two were actively
investigated with a view toward deterministic solu-
tions. The solution approaches were designed to ex-
ploit the fact that § varies more slowly than ¢ and
¢+ over much of the system.

The first transport "equation” obtained for Y is

actually a set of four differential equations, namely

a linear first-order equation, two linear second-
order equations, and a nonlinear third-order equa-
tion. The appropriate egquatiun for Y from this set
is determined on a region-by-region basis from the
forward and adjoint source distributioms, S and S+,
in that region. The first and second-order equations
are applicable in pure absorber regions only, and the
third-order equation is applicable in scattering re-
gions and certain pure absorber reglons. It has been
possible to completely specify all boundary condi-
tions on ¥, without having to solve first for ¢ and
¢+, except for problems containing source and detec-
tor-free pure absorber regions. For such regions
the contributon transport problem is degenerate,
and a complete set of boundary conditions cannot be
specified without solving the forward or adjoint
Boltzmann transport equation in the degenerate re-
gions. However, this poses no real difficelty,
since the forward and adjoint Boltzmann equations
are easily solvable analytically in such regions.
The nonlinearity of the third-order equation intro-
duces only a minor complication. The iterative ap-
proach that would normally be used because of the
nonlinearity is formally equivalent to the source
iteration usually employed in solving the forward and
adjoint Boltzmanm equations in the discrete-ordinates
approximation. For this reason, the third-order
equation for Y has been referred to as quasi-iinear.
Some problems described entirely by the first and
second-order equations have been solved both analyti-
cally and numerically with no difficulty, and some
simple pure absorber problems described by the third-
order eguation have also been solved analytically.
However, attempts to solve the third-order equation
numerically by the discrete-ordinates method indicate
that the difference equations are susceptible to
numerical instability when source discontinuities
are present, and this problem is still unresolved.

The second transport equation obtained for ¥
is a generalization of the nonlinear equatiomn of
Ref. 2 to general phase-space coordinates and to
scattering media. A set of boundary conditions was
postulated for this equation, but because of the
obvious difficulty involved in solving this equation,
it was investigated no further at this time.

The third transport "equation" obtained for Y
consists of a pair of differential equations. These

contributon equations were obtained by transforming
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the forward and adjoint Boltzmann equations in such
a way that the resulting equations contain only
quantities which vary slowly in the spatial variable
over much of the system. These contributon equations
are colved numerically by iterating between the two
equations. However, it has been found that unless
the contributon difference equations are consistent
with the forward and adjoint difference equations, a
distortion is introduced'into the solution for V.
Consistency can be obtained when the same spatial
grid is used for y, ¢, and ¢+, but there is no com-
putational benefit over solving separately for ¢

and ¢+ when a single grid is used. To obtain any
benefit from this method, it is necessary to use a
multiple grid (acoarse grid for ¥ and a finer grid
for ¢ and ¢+).
employed, an inconsistency is again introduced, the
effects of which have not yet been eliminated,

However, when such a multiple grid is

The final transport equation obtained for Y is
an integral equation for a generalized contributon
flux.
equation, the approach has been useful in describing

Although no attempt was made to solve this

a method of attacking the general contributon trans-
port protlem. This approach indicates that instead
of solving for 4§ and ¢+, one might solve for two
other unknown functions, namely the contributon flux
Y and a perturbed contributon flux ), where ¥ must

be independent of ¢ in describing the transport prob-
lem. Any computational advantage im such an approach
would stem from the fact that one would be s0lving
for two functions, Y and ¥, which vary more slowly
that ¢ and ¢+ in the spatial variables over much of
the system.

Although the goal of solving the contributon
transport problem deterministically has not been ful-
ly attained, progress has been made in that direction.
At this point, two approaches, the quasi-linear
third-order approach and the iterative approach, of-
fer the most potential as deterministic solution
techniques. The third-order approach is promising
if the stability problem, which is probably related
to the singularities at source discontinuities, can
be resolved. The multiple-grid form of the iterative
approach is promising if the inconsistencies can be

eliminated or minimized.
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APPENDIX A

CRITICAL VALUES OF Ax FOR THE COEFFICIENT MATRIX IN THE
NUMERICAL SOLUTION OF THE THIRD-ORDEPR. QUASI-LINEAR
CONTRIBUTON TRANSPORT EQUATION

The numerical method, described in Section
IV.A.7, “or solving the third-order quasi-linear
contrib«ton transport equation by first solving the
associated second-order differencilal equation for
£(x,n), is susceptible to numerical instability in
the form of extreme sensitivity of the solution
f(x,1) to the choice of the spatial cell width Ax.
It is postulated that this instability is due to the
existence of critical values of Ax for which the de-
terminant of the coefficient matrix of the system of
difference equation vanishes. In this appendix, it
will be demonstrated by a simple example that such
critical values Axc can, in fact, exist.

Consider a pure absorber problem in slab geo-
metry with a uniform absorption cross section GA and

with the source and detector distributions,

rQl>0,0<x<t:
Qx, 1) = (a1)
Q2 >0 , t<x<2t
and
(Rl >0 ,0<x<t¢
R(x, 1) = { (a2)
RZ >0 , t<x<2t

where QlRZ # QZRI' To simplify the analysis, the
fewest possible spatial mesh points (four) will be
used. Two of these mesh points, * =0 and X, = 2t,
are located at the external boundaries, and the

, - +
other two mesh points, X, = t and xq = t, are lo-
cated at the internal boundary, x = t If the ex-
ternal boundaries are vacuum boundaries, then Egs.

(147) and (149) for u >0 reduce to

u UAAx2+ UAAX,_E o
QR & 21 n 2] R

quRle £,00) = (a3)

and

u u
T 2q,RAx £,00 + Q2R2Ax[(

.f4(u) = -

where Ax =

boundary, x = t, become

and

Eqgs.

Y

2Q 2q,R A% £, +3 R Bx

+

%

UAAx
2u

QR *QRy
QR - R,

0
T QR 1’Q1 2

QR -4k,

9, Ax

R

ZQZRZAx 4

ZU

£,(0) +

QR
QR

£

£ QJ)

L

QZRZAX

2GRy

) =

OAAx)Z

2y

[ g, Ax\2

{

R)+

174 R

a

1

2

) %]f (w)

AAx 2
2n

} f3(u)

We now define the following quantities:

and

B = QR -4R, £ 0,

U

1 QlRle .

L s

2 Q2R2Ax
a,fx

ns= s

d

(a4)

(154) and (155) for the internal

(A5)

(A6)

(a7)

(a8)

(a9)

(a10)

(Al1)

45



With these definitions the system of difference
equations (A3)-(A6) can be written as

- HARE
sy -3 0 0 £ 1
Q. R g
1 172 A
-3% 61(Y+2"'Ti—') B 0 fa -
o QR
A 12 1
0 7= 52(y+z 3 )-»2-62 £, 1
0 0 - %62 8, £, -1
i Jrel L
(412)

The determinant of the coefficient metrix im Egq.
(Al12) is easily found to be

R, %a

A= (8182 [vz + (Zr. 2 +_B_——’5_5')Y —%]
12

Jr-1].

If A is to vanish, then one of the two conditions,

(A13)

QR g
2 12 A 1
¥ +(2n g +B/S_6')Y-4 0 (a14)
172
or
Q,R a
2 172 A
m =2 - -1 15
Y +<n B m;T_Z—)Y a , (A)

must be satisfied since 61 and 62 ara both non-zero
for u # 0. If Eqs. {(A8)-(410) are used in Eqs. (Al4)
and (Al5), then the two conditions become

2

2n T 1
Y+ g @&, + /qlqlekz)y-z= 0 (A16)
and
2420 R - AARRE)Y-2=0 a17)
Y g QR; - YRR Y - g .

I1f Egs. (A7) and (All) are then used in Eqs. (Al6)
and (4l17), we obtain for the two conditions

3 2 1
n{n™ + & tEM+5E )=0 (A18)
and

nn’ +Enf+En+ie =0, (a19)
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where
QR ( \ / Qle)
£o=2 =211 +\[]—==.
+ B QR

Since we wish to demonstrate the existence of
criticzl values Axc > 0, for which A of Eq. (413)

(A20)

vanishes, it suffices to show for u > 0 that at

least one of the two equations, (Al8) or (Al9), has
a solution n. > 0. Thus, we ignore the solution,
n = 0, and consider only the remaining solutions

to Eq. (Al8) and (A19}, that is, the solutions to

.3 2 1
F (M En" +En"+En+3E =0 (A21)
and
F(m 2n+Enf+En+26 =0 . (a22)

It is first noted that, for large n > 0, both F+(n)
and F_(n) are asymptotic to n3; that is,
F (n} ~ n3 >0 forn> 0. (A23)

Thus, there must be at least one nc > 0 if either
F,(0) < 0 or F_(0) < 0. From Eqs. (A21) and (A22),

o
F+(0) = % £+ = ._._Sik_l__. (A24)
QR - "Ry
and
N
1 271
FA(0) =58 = —om—pe . (A25)
- 27 R+ AR,

From Eqs. (A24) and (A25), F_(0) is always greater
<

than zero, but if Q;R, > Q,R,, then F+(0) [

and F+(n) has at least one zero, i.e., F+(nc) =0

for n. > 0.

there is at least one critical cell size, Axc >0,

Consequently, for W > 0 and Q1R2 > QZRP
for which the determinant A vanishes. It is pos-
sible to continue this analysis and determine the
precise number of critical values Axc, but this is

not necessary to the demonstration of existence.



APPENDIX B

THE TRANSFORMED FORWARD BOLTZMANN TRANSPORT EQUATION

If the flux ¢ in the forward Boltzmann trans-~
port equation is replaced by £J, then as shown in
Section IV.C.1l, the result is the transformed for-

ward equation,

QW+ @+iavny-3, (81)

=

where no restrictions are imposed on either f or {
at this stage. If the goal is to solve Eq. (Bl) for
a function ¥ which 1s slowly varying in the spatial
variable r, then the ideal choice for f is the
one which would make { satisfy the equation,
Q=0 . (B2)
When Eq. (B2) 1s inserted into Eq. (3l1), we see that
the ideal f should satisfy
Q-Vf +0f = 5, (83)
which is just the forward Boltzmann eguation with
¢ replaced by f. This result implies that an ideal

chaice for f is

£f=¢ (B4)
Since per definition

v-1, (85)
the choice of f according to Eq. (B4) gives

Pp=1. (B6)

In an iterative solution scheme for the forward

Boltzmann transport equation, one generally knows

(k-1)

only the latest iterate ¢ and not the converged

flux ¢. Consequently, In an iterative solution, we
choose f(k_l) to be
f(k~l) = ¢ (k=-1) (B7)

and w(k) to be

(k)
k)Y _
¥ ) = 9(1(_1) s (B8)
¢
where ¢(k) satisfies the forward Boltzmann equation,

(B9)

276 4 gp() 50D

in each iteration k. Though the use of Egqs. (B7)~

(B9), Eq. (B1l) becomes
(k-2) (k-1)
(k) S (k) _ s
LI+ [¢(k-l)] - oD (B10)

for iteration k. The vacuum boundary condition for

$(k) is chosen to be
(k-1)
(k) _ s ~
’ ) S(k—Z) for i-Q < 0, (B11)

since this is the only value af ¢(k) for which
Q’Vw(k) can be bounded for incoming directions. This

is easily seen when Eq. (Bll) is inserted into Eq.
(B10). 1In view of Egs. (B8) and (B1l), $(k)
verges to ¥ = 1 throughout phase space when ¢(k) con-—

con-

verges to ¢.

The approach defined by Eqs. (B7) - (Bll) is
just one in a class of approaches based upon the
possible choices for f in Eq. (Bl). Another is the
contributon approach as discussed in Section IV.C,
in which £ is chosen to be 1/¢t. The above exercise
provides the following insight: If f is chosen as ¢
then J in Eq. (Bl) is constant throughout phase
space. However, if § is to be interpreted as the
contributon flux, § = ¢¢%, the solution ¥ = A = const.
implies that ¢ = 4/6. This relationship between
forward and adjoint flux holds only in special cases,
e.pg., in a source and detector-free region of a pure
absorber problem ("'O~region™). On the other hand, if
a problem contains scattering sources, its solution
for the contributon flux ¥ is most nearly constant in
regions where only very little scattering occurs,

<< 1. In these cases a solution

oT
method for the appropriate contributon transport equa-

i.e., where cslcT

tion which exploits the slow variation of ¥ is ex-

pected to be beneficial.
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APPENDIX C

THE IMPORTANCE OF CIli

The discrete-ordinates transport equation for

the forward flux ¢ in slab geometry is

En[%m,i+¥ - ¢m,i-lg] + ci¢miAx1 = SmiAxi, (c1)

and the consistent supplementary equation for ¢ is

¢ 2
mi 2

= C . (c2)
¢m,i+ﬁ¢m,i~k =i

In these equations, ¢ is the cell~averaged flux

mi

and ¢m 13k are the cell boundary fluxes. If the flux
.1

is assumed to have an exponential shape across the

(<) 5

¢ satisfies
mi

[¢(c) 2
~L“‘i -1 . (€3

¢m R i+l§°m y 1=l

cell, then the cell center flux ¢

Thus, taking the ratio of corresponding sides of Egs.
(C2) and (C3) shows that

x
——t— Mg (xdx (c4)
{c) mi
¢mi Axi b
1k
1f the flux ¢mi(x) has an exponential shape across
the cell. If the flux shape within cell i ia given by

L

mi
Cat = RO
mi

() O vy
ni © s ()]

b (0 = ¢
it is easily shown by inserting Eq. (C5) into Eq.

e Pm
mi ciAxi

zvmi

C4) that 0
( O

C (c6)

where vm* is an, as yet, unspecified cell parameter.
From equation (C6), it can be seen that there
is a basic inconsistency if ¢m1(x) is assumed to have

an exponential shape and if Cm = 1, unless ¢ni =

g, Ax 1
(c) 174
¢mi or 55— = 0. Indeed, the accuracy of the solu-
ui

tion can be very sensitive to the value chosen for
Cni’ especially for deep-penetrztion prcblems with
large GiAxi' To demonstrate this sensitivity, the

results for a simple monoenergetic deep-penetration
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IN THE SUPPLEMENTARY EQUATIONS

problem (50 mean free paths) are presented. The
geometry and parameters for this problem are shown
in Figure 8 and the results are presented in
Figure 17 for the 56 approximation. The quantity
plotted is the ratio of the integral response I,
computed from Eq. (5¢), for a constant mesh size
GAx.= 1.0 in the O' region to the "exact" integral
response obtained with GAx = 0.05 in the 0" region.
The scattering-to-total ratio is varied from zero
to 0.9.

pond to the different values used for Cmi' namely:

The various curves im Figure 17 corres-

(@Y cmi =1 ,

g ix

. i i
sinh ZHm
(2) Cm1 = ——~B;Z;;—— , the correct value of Cmi for
u a source-free pure absorber
m

region, in which the exact
flux solution in the O'- re-

gion is given by Eq. (C5)

with Vmi il

g
3 4
[ L]
1L
a4
Lle ]
™
§ -
-3
-
<
I3
] -
w
=
z
o
W s Coi™ Zm .
pr] o,ax,
3 %,
«
2 02 |- -
01 1 [ i )
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0..
SCATTERING-TO-TOTAL '
Fig. 17. Sensitivity of Integral Response to

the choice of C_,.
mi



and
aiAxi
»c - sinh 5y
mi 0.8%, *
ii
2v

where v is the discrete Case eigenvalue9 appropr iate

for the quadrature set being used; that is, v is the

solution to

a M/Z w
2825 B __ -

O =1 1 %a ¥ ’ (c7)
v

where max|p | < v < »,
m'm
Figure 17 shows the extreme sensitivity of the
accuracy of the solution to the choice of Cmi' As
might be expected, le = 1 is more appropriate for
problems with little absorption (close to a pure

scatterer), and it is not surprising that I is in-

creasingly overestimated as more absorption is in-

troduced into the problem. The second choice for

Mo is more appropriate for pure

absorber problems, so it is not surprising that I

C ., withv =
mi mi

is increasingly underestimated as more scattering
is introduced into the problem. Since setting
equal to the discrete Case eigenvalue closely ap-
proximates the exact solution, it is nnt surprising
that the best results for T are obtained with the
third choice for Cmi'

These results do nat show how to choose vmi for
regions that contain external sources, since this
Case eigenvalue method does not apply in such re-
gions. The results do show, however, the need to
study methods for choosing Cmi’ since the accuracy
of the solution is extremely sensitive to the choice

of C ..
mi
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