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MEA- OF CONVECTIVE CELL SPECTRA AND 

THE RESULTANT CALCULATED VORTEX DIFFUSION COEFFICIENT 

+ A. Butcher Ehrhardt and R.S. Post 

University of Wisconsin, Madison, Wisconsin, 53706, U.S.A. 

ABSTRACT 

The presence of convective cells in a purely poloidal field Levitated 

112 Octupole has been associated with diffusion that scales as Dv OC (T*/n) , 

independent of B, where T* is an "effective temperature," T* a T. 

The electric field spectrum of the convective cells can be used to 

estimate the magnitude of T* and D . The results are in reasonable 
v 

agreement with previous measurements of cross-field transport, and agree 

qualitatively with theoretical models of vortex diffusion. 

+current address: Johns fIopkins University, Applied Physics Labotatory, 
Laurel, M), 20810. 
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Floating potential structure has been measured in many experimental plasma 

d e v i c e ~ l - ~ .  In the Wisconsin Levitated Octupole a correlation was noted 

between the presence or absence of these convective cel ls  or vortices and 

5 
the type of diffusLon needed t o  explain particle losses . In the parameter 

regimes where classical diffusion was measured there was l i t t l e  potential 

structure. In the parameter reglmes where use of a vortex diffusion coefficient 

correctly predicted the scaling of the diffusion with density and magnetic f ield 

strength, pachine-sized potential cel ls  were measured (+-0.3 KT/e). 

We are interested in  comparing convective cel ls  and spectra in a 

5 6 
collisional (X <<L ) and a collisionless (A >>L ) plasma with observed mfp c mfp c 

diffusion /AmfD i s  the particle mean free path and L is the connection 
C 

length). The p r o m e  evolution studiessy6 of diffusion in  the Octupole with 

a purely poloidal f ield can a l l  be explained within the framework of vortex 

diffusion: 

2 
L ,  e - l + %  

Dv B 2 '  (1) 
W 

c i  

noting that classical collisional viscosity and diffusion are always present, 

and w i l l  dominate the transport a t  sufficiently low fields for  a collisional 

plasma. 

2 
The collisional plasma exhibits classical diffusion (DclzDon/B ) a t  low 

pw?'" q5 . . f ields ,(BSlOOG). A s  B i s  increased, there is a transition t o  vortex diffusion 
..-<<'-,,-,.&k. . . . . 

:: L '  h c a l i n g  with I? >> 1. D is proportional to  (~*/n)l"  and independent of B, and r..: ~ ' ..~ - . .: 



* 4 
dominated by vo r t ex  d i f f u s i o n  wi th  T ~ 1 0  eV 6 .  A s  pred ic ted  by equat ion  ( I ) ,  

- 1 
t h e  s c a l i n g  becomes independent of d e n s i t y ,  and is p ropor t iona l  t o  B , a s  t h e  % 

dens i ty  i s  reduced t o  t h e  point  where t h e  d i e l e c t r i c  c o e f f i c i e n t  approaches 

un i ty .  

Recent t h e o r e t i c a l  work has been done on two-dimensional plasmas. The 

importance of t h e  theory f o r  t h e  Octupole l i e s  i n  t h a t ,  wi th  a few modifi- 

c a t i o n s  and ex tens ions ,  2-D f l u i d  theory  can be used t o  p r e d i c t  bo th  vo r t ex  

d i f f u s i o n  and macroscopic vo r t ex  s t r u c t u r e ,  remarkably l i k e  t h a t  observed i n  
.._ 

t h e  Octupole. J .  B.  ~ a ~ l o r ~  has shown t h a t  '3-D systems have c o n t r i b u t i o n s  

t o  d i f f u s i o n  from both vo r t ex  modes and from c o l l i s i o n s .  The vo r t ex  con- 

t r i b u t i o n  w i l l  dominate i f  t h e r e  is s u f f i c i e n t  energy i n ,  t h e  k -0 modes. With I I -  
a purely po lo ida l  f i e l d  t h e  p o t e n t i a l  is co:stant a long a f i e l d  l i n e 8 ,  a l l  of 

t h e  vo r t ex  energy i s  i n  t h e k  I I =O modes , 
and we w i l l  expect  t o  s e e  vo r t ex  

d i f f u s i o n  except  f o r  very dense, cold plasmas i n  low magnetic f i e l d s ,  o r  f o r  

plasmas where t h e  vor tex  spectrum has  damped away. 

We have . s tud ied  t h e  plasma regimes where t h e  d i f f u s i o n  s c a l e s  l i k e  vo r t ex  

d i f f u s i o n ,  D a (T /n) and independent 0 f . B .  The vo r t ex  d i f f u s i o n  
v 

c o e f f i c i e n t  can be derived i n  s e v e r a l  ways. ' Okuda and DAwson9 c a l c u l a t e d  . 
; 

t h e  d i f f u s i o n  c o e f f i c i e n t  f o r  a 2-D thermal plasma from t h e  l i n e a r i z e d  two- 

f l u i d  equat ions  t o  ob ta in  

independent of B. 

Taylor and ~c~amara ' '  i nves t iga t ed  t h e  2-D e l e c t r o s t a t i c  guidinp-center 

plasma and found D' f o r  an a r b i t r a r y  e l e c t r i c  f i e l d  spectrum, 



I n  thermal equi l ibr ium t h e  energy per  k-mode i s  T/2. Okuda and Dawson 

' . have shown. t h a t  a  f r a c t i o n  1 / ~  of t h i s  energy is  a s soc i a t ed  wi th  t h e  low 

frequency vo r t ex  modes. The e l e c t r i c  f i e l d  energy i n  t h e  vor tex  

2  2 modes is thus  (EE k / 8 ~ ) ' R  2 where 21 1 and 2 a r e  t h e  l eng ths  p a r a l l e l  and 
1 1 1 9  1 

6 
t r a n s v e r s e  t d  t h e  f i e l d  l i n e s  . For .  a non-thermai plasma we can d e f i n e  an  

* 
e f f e c t i v e  temperature T  analogously as 

* 2 
and e s t i m a t e  t h e  va lue  of T  by measuring E (k ) ,  n ,  and B. 

The Okuda-Dawson d i f f u s i o n  c o e f f i c i e n t  p r e d i c t s  t h e  c o r r e c t  s c a l i n g  f o r  

t h e  d i f f u s i o n  b u t  is t o o  smal l  t o  exp la in  t h e  observed d i f f u s i o n  i n  t h e  

Octupole by s e v e r a l  o r d e r s  of magnitude i f  t h e  thermodynamic ternperaturc is 

used. The e f f e c t i v e  temperatures  ca l cu la t ed  from t h e  t o r o i d a l  e l e c t r i c  

f i e l d  s p e c t r a  presented i n  t h i s  paper a r e  much l a r g e r  than  t h e  thermodynamic 

temperatures ,  and a r e  l a r g e  enough ' to  account f o r  t h e  observed vo r t ex  

d i f f u s i o n .  

11. CALCULATION OF A DIFFUSION COEFFICIENT 

Taylor  and ~ c ~ a m a r a "  ca l cu la t ed  t h e  d i f f u s i o n  c o e f f i c i e n t  f o r  t h e  guiding- 

. cen ter  plasma.. Di f fus ion  comes about when t h e  e l e c t r i c  f i e l d s  i n  t h e  plasma 

become uncorre la ted ;  i n  an equi l ibr ium plasma t h i s  is  due t o  s t a t i s t i c a l  

f  l u c t q a t i o n s  about t h e  ' ensemble average. The express ibn  obtained by Taylor  

and McNamara is  



where R( t )  i s  t h e  mean d i spe r s ion  of a group of d i f f u s i n g  p a r t i c l e s .  For very 

long times R( t )  i s  unbounded, and D i s  given by equat ion  ( 3 ) .  

Equation (5) i s  a t enso r  equat ion,  r ep re sen t ing  f o u r  s e p a r a t e  equat ions  

coupled by t h e  exponent ia l  term. To so1ve: this  equat ion  completely we need t o  

expand t h e  e l e c t r i c  f i e l d  i n  e igenfunct ions  s u i t a b l e  f o r  t h e  Octupole,  and theh  

s o l v e  t h e  four  coupled equat ions  s imultane6usly.  The Octupole coord ina tes  

perpendicular  t o  B a r e  $ and 8 .  Eigenfunct ions i n  t h e s e  coord ina tes  can be  

found by cons ider ing  Poisson ' s  equat ion.  Using t h e  d i f f e r e n t i a l  ope ra to r s  

i n  t h e  appendix, i t  can be shown t h a t  Poisson ' s  equat ion is  sepa rab le  i n  

Octupole coord ina tes .  The e igenfunct ions  i n  8 a r e  t h e  t o r o i d a l  e igenfunct ions ,  

eike; t h e  p o t e n t i a l  s t r u c t u r e  can be Fourier-transformed i n  8 t o  o b t a i n  t h e  

ampli tudes of t h e  t o r o i d a l  modes. 

We a r e  i n t e r e s t e d ' i n  t h e  n e t  d i f f u s i o n  ac ros s  a $-surface ( t h e  n e t  

d i f f u s i o n  i n  8 i s  ze ro ) ,  so  we need only t h e  s o l u t i o n s  t o  t h e  equat ions  f o r  

2 2 2 2 
d R / d t  and d R / d t  . The exponent ia l  i n  (5 ) ,  i n  Octupole coo rd ina t e s ,  is  

$$ $8 

2 2 
exp [-2 (k R - k k (R + R ) + k R ) ]  ee $ 8  $8 e$ 8 '44 

The f i r s t  assumption we w i l l  make i s  t h a t  D >>D 
$$ $9. 

The second assumption 

2 
is  t h a t  t h e  exponent ia l  is dominated by t h e  term k R 

8 $*' 
These assumptions 

imply t h a t  t h e  d i f f u s i o n  i s  caused by t h e  energy i n  t h e  azimuthal e l e c t r i c  

f i e l d s .  Not enough i s  known about t h e  <E E > amd <I? E > c o r r e l a t i o n s  y e t  t o  
$ 8 $ $  

prove d e f i n i t e l y  t h a t  t h i s  0 r d e r i n g . i ~  c o r r e c t  because of t h e  l a c k  of s p a t i a l  



r e s o l u t i o n  with t h e  c a r t  probe ( s e e  Sec t ion  111);  however, t h e r e  should be  no 

d i f f u s i o n  ac ros s  a $-surface due t o  vo r t ex  modes u n l e s s  t h e r e  a r e  azimuthal  

p o t e n t i a l  g rad ien t s .  

With t h e s e  assumptions, equat ion  (5) reduces t o  

2 
d R 2 3 = 1 1 <E (k)> exp (-2ki R,,,$) 

d t  2~~ k 0 

This  equat ion  is  very  s i m i l a r  t o  Taylor and McNamara's express ion  f o r  
. . 

2 2 
d R/dt (Ref. l o ) ,  wi th  t h e  except ion t h a t  it emphasizes t h a t  t h e  t o r o i d a l  

spectrum and eigenmodes should be  used t o  determine d i f f u s i o n  (D=dR / d t )  i n  
$$ 

' t h e  $ d i r e c t i o n .  To e s t i m a t e  t h e  n e t  d i f f u s i o n  a c r o s s  a $-surface we 

i n t e g r a t e  (6) on t h e  c losed  f l u x  su r f ace .  . S u b s t i t u t i n g  t h e  express ions  f o r  

0,  E8, and v i n  Octupole coord ina tes  given i n  t h e  appendix i n t o  the  
$ 

equat ion  f o r  D we o b t a i n  

Averaging t h e  f l u x  ove r  a $-surface, we can d e f i n e  D($), 

D($j c o n s i s t s  of a func t ion  F($) which i s  independent of 8 ,  and a 

geometr ica l  f a c t o r  ~ ( $ ) l l .  . To put  t h e  d i f f u s i o n  c o e f f i c i e n t  i n  u n i t s  

a p p r o p r i a t e  t o  compare wi th  r ,  we mul t ip ly  anla$ by t h e  average va lue  of 2mB'  

over  t h e  .$-surface. 



To ,use  t h i s  equat ion  we need t h e  c o r r e l a t i o n  of t h e  v e l o c i t y  f i e l d  .over 

an  ensemble; i t  i s  e s p e c i a l l y  important i f , t h e  number of 'most probable 

s t a t e s '  i s  large--and they  a r e  s u b s t a n t i a l l y  d i f f e$en t .  This  i s  t h e  c a s e  i f  

t h e  energy is  concentrated i n  small  v o r t i c e s  which f i t  i n t o  t he  'box' i n  

many ways. However, when t h e  most probable s t a t e s  a r e  few o r  i n d i s t i n g u i s h -  

a b l e  ( a s  i n  t h e  case  where t h e  s t r u c t u r e  tends towards a  l a r g e  vor tex ,  o r  

p a i r  of v o r t i c e s ,  which can f i t  i n  t h e  box i n  only  one o r  two ways), t h e  most 

probable s t a t e  should be t h e  same a s  t h e  a c t u a l  s t a t e  of t h e  system. The 

observed vo r t ex  s t r u c t u r e  i n  t h e  Octupole corresponds t o  t h e  l a t t e r  case-- 

t h e  . sho r t e r  wavelength c e l l s  have smal l  ampli tudes,  and' t h e  s t r u c t u r e - o f  t h e  

l a r g e  v o r t i c e s  is  reproducib le .  Therefore,  t h e  assumption i s  made t h a t  t h e  

reproducib le  s t r u c t u r e  measured i n  t h e  Octupole r ep re sen t s  t h e  most probable 

s t a t e ,  and t h a t  t h e  ensemble average can be  replaced by t h e  measured s p e c t r a .  

The d i f f e r e n t i a 1 , e q u a t i o n  was solved numerical ly  using a  pred'ictor- 

2  
c o r r e c t o r  a lgori thm, wi th  an approximation f o r  smal l  k  R t o  s t a r t  t h e  

s o l u t i o n .  Because t h e  spectrum i s  peaked a t  t h e  lowest mode, i t  was n o t  

found necessary t o  inc lude  modes h ighe r  than  k=30 i n  t h e  s o l u t i o n .  

The d i e l e c t r i c  c o e f f i c i e n t  depends on n / ~ ~  f o r  o 2./oci2 5 1, and i s  
p i  

l a r g e  nea r  t h e  d e n s i t y  peak r e l a t i v e  t o  i t s . v a l u e  nea r  t h e  Octupole w a l l s .  

2 6 
I f  T* a EE i s  a  cons tan t  i n  t h e  plasma a s  t h e  t r a n s p o r t  s t u d i e s  sugges t ,  

then  we expect t h e  e l e c t r i c  f i e l d  spectrum t o  vary i n  4, a s  is .ob 'served.  

The Wisconsin Levi ta ted  Octupole has  been ex tens ive ly  descr ibed  

elsewhere 12-15. It i s  a  pulsed machine; t h e  f o u r  i n t e r n a l  hoops a r e  t h e  



secondary of a 90-to-1 t ransformer.  The magnetic f i e l d  l i n e s  a r e  shown i n  

Fig.  1. The average magnetic f i e l d  i n  t h e  p r i v a t e  f l u x ,  Rave, 
6 

is def ined  a s  

one-half of t h e  average f i e l d  s t r e n g t h  on t h e  s u r f a c e  of t h e  l a r g e  major 

r a d i u s  r i n g ;  t h e  average f i e l d  s t r e n g t h  f o r  t h e  inne r  hoops i s  roughly - twice  

a s  l a r g e  a s  t h e  va lue  f o r  t h e  o u t e r  hoops. 

Data t o  be presented was a l l  taken wi th  t h e  f i e l d  crowbarred a t  25 msec, 

s l i g h t l y  a f t e r  peak f i e l d .  The.L/R decay t i m e  f o r  t h e  magnetic f i e l d  v a r i e s  

16 
from - 95 msec near  t h e  r i n g s  t o  - 165 msec near  t h e  c e n t e r  of t h e  machine . 
This  a l lows  experiments t o  b e  done i n  a slowly-varying magnetic f i e l d .  A 

h igh  c u r r e n t  SCR and s o l i d  s t a t e  diode1' a l low ope ra t ion  wi th  a crowbarred 

f i e l d  even a t  very  low bank vo l t ages .  

The p o t e n t i a l  depends only on 8 (azimuthal angle)  and $ ( f l u x  s u r f a c e ) .  

Therefore,  t o ' o b t a i n  a 3-D p i c t u r e  of t h e  f l o a t i n g  p o t e n t i a l  s t r u c t u r e ,  0 i s  

measured at' one p o s i t i o n  on each f i e l d  l i n e  as a func t ion  of 8. D r .  J . R .  

  rake'^ designed a c a r t  wi th  a movable probe t o  measure $($,8). The c a r t  w a s  

mounted on r a i l s  on t h e  bottom l i d ,  a t  a r a d i u s  s l i g h t l y  g r e a t e r  than  t h e  

lower i n n e r  hoop ( a t  R-l.lm). The c a r t  could be  moved through a n  azimuthal  

ang le  of 350°, from -90°, p a s t  t h e  gap ( a t  0 ° ) ,  through 240'. The c a r t  was 

i n s u l a t e d  from t h e  rails and t h e  machine by Teflon wheels,  and c a r r i e d  

min ia tu re  c o a x i a l  cab le s  f o r  s i g n a l s  from up t o  fou r  Langmuir probes. The 

probes '  frequency response was l i m i t e d  t o  5 1 kHz by t h e  cab le  capac i tance .  

A s  shown i n  Fig.  1, t h e  probe can b e  r o t a t e d  through a n  ang le  a of 

approximately 100' s o  a s  t o  sweep through po r t ions  of t h e  lower l i d  mid- 

c y l i n d e r . s i d e  of t h e  p r i v a t e  f l u x  of both lower hoops. The probe has  t h e  

gene ra l  shape ind ica t ed  i n  Fig.  1, wi th  a shal low bend . in  t h e  middle. This  

enables  access  q u i t e  c l o s e  t o  t h e  inne r  w a l l  and inner  r i ng  ( p o s i t i o n  A ) ,  

and a l lows  t h e  probe t o  avoid h i t t i n g  t h e  microwave mi r ro r s ,  e t c . ,  on t h e  



9 

lower l i d  ( p o s i t i o n  B ) .  The probe t i p s  were 2 mrn and 3 mm gold b a l l s  mounted 

on 1/32" ceramic s t a l k s ;  t h e  probe body is  of 118" ceramic. The probes had 

e i t h e r  1 o r  2 t i p s  a t  t h e  bend and 2 t i p s  a t  t h e  end. 

The Octupole was operated on a 1-112 minute cyc le ;  during t h i s  t ime t h e  

experimenter could examine t h e  d i g i t i z e d  s i g n a l s  from t h e  c a r t  and monitor 

probes,  and a "movie" showing @(€I) f o r  the 'cur ren t  $-surface scan .  F loa t ing  

p o t e n t i a l  contours  were p l o t t e d  by repea t fng  t h i s  procedure f o r  s e v e r a l  

va lues  of $ t o  cons t ruc t  a 2-D g r i d .  Typica l ly  4 t o  6 ps i -sur faces  per  t i p  

were scanned; t h e  g r i d  s t e p  s i z e  i n  8 va r i ed  from about .4' t o  6' depending 

8 
on the  experiment . 

Fig.  7 shows t y p i c a l  c e l l  p l o t s .  The magnetic f i e l d  w i l l  b e  normal t o  

t h e  p l o t s ,  and f o r  a given p l o t  w i l l  be  e i t h e r  i n t o ,  o r  ou t  o f ,  t h e  page, 

bu t  no t  both.  The phys i ca l  dimensions f o r  t h e  f u l l  range of va lues  i n  . 

$(0-10 Dories)  a r e  on t h e  o rde r  of 10-50 cm, and f o r  360' i n  0 ,  ~ I T R  - 21~(1.4 m) 

-9 m. 1 f ' t h e  p l o t s  were done i n  r e a l  space they would be s e c t o r s  of 

a t h i n  annulus,  and i f  shown more n e a r l y  t o  s c a l e ,  t h e  contour  p l o t s  would be 

long and t h i n .  

A f i xed  Langmuir probe was used t o  monitor t h e  r e p r o d u c i b i l i t y  of t h e  

gun plasmas. The changes i n  V f o r  a f i xed  p o s i t i o n  of t h e  c a r t  probe d id  
f 

not  c o r r e l a t e  wi th  changes i n  V a t  the.  monitor probe, making i t  impossible  
f 

t o  normalize t h e  d a t a  us ing  t h e  monitor probe. Ins tead  a norm was def ined  a s  

t h e  a r e a  under t h e  curve f o r  t h e  monitor s i g n a l ,  and a n  accepance c r i t e r i o n  ' 

was def ined  about t h e  nom--shots i n  which t h e  monitor was o u t s i d e  of t h i s  

percentage were r e j e c t e d .  The acceptance range was 10% about t h e  norm f o r  

t h e  high d e n s i t y  plasma ( t h i s  plasma tends  t o  be very  reproducible--most 

s h o t s  f e l l  w i t h i n  5%), and 15% f o r  t h e  1ow.dens i ty  plasma. Gun plasmas i n  t h e  

Octupole have uniform temperatures 14,17; t h e r e f o r e  f l o a t i n g  p o t e n t i a l  contours '  

have been used t o  i n f e r  t h e  e l e c t r i c  f i e l d s  i n  t h e  plasma. 



I V .  EXPERxNENTAL OBSERVATIONS 

C o l l i s i o n a l  Plasma. 

An experiment performed with t h e  c o l l i s i o n a l  plasma i n  which contours  

were p l o t t e d  f o r  a  range of magnetic f i e l d  s t r e n g t h s  w a s  repor ted  i n  Ref. 5. 

The r e s u l t s  of t h a t  experiment can be  summarized as fol lows:  a t  h igh  f i e l d s  

(Bave 
,800 G), where Dv > Dcl, macroscopic v o r t i c e s  were p re sen t ,  and d i d  no t  

I damp away during t h e  experimental  per iod .  I n  t h e  t r a n s i t i o n  regime 

(Bave 
,300 G) v o r t i c e s  were observed t o  damp on an  ion  v iscous  damping t i m e  

s c a l e .  A t  very low f i e l d s  (Bave-.180 G) t h e  c e l l  s t r u c t u r e  is much smal le r  than  

a t  h igh  f i e l d s  by t h e  e a r l i e s t  t ime observed (7  ms.ec a f t e r .  i n j . ec t ion )  due t o  

a ' sho r t e r  v i scous  damping time..  

I n  a  second experiment wi th  t h e  c o l l i s i o n a l  plasma t h e  t o r o i d a l  spectrum 

of @(k) was measured f o r  a  s i n g l e  $-surface ($=3.4) i n  t h e  p r i v a t e  f l u x  of 

t h e  lower o u t e r  hoop. Fig.  2  shows $(k) v s  k f o r  B -600 G,  and Fig. 3 ave 

shows @(k) f o r  B -180 G. The s p e c t r a  a r e  p l o t t e d  a t  2 msec, 10 msec, and 
ave 

20 msec a f t e r  i n j e c t i o n .  Both show t h a t  @(E) is  a decreas ing  func t ion  of k ;  

t h e  e l e c t r i c  f i e l d  spectrum f o r  t h e  low-field c a s e  drops o f f  f a s t e r  w i th  

inc reas ing  k than t h e  h igh- f ie ld  case .  

D($,t)  ob ta ined  from $(k)  a n d e q . 7  is p l o t t e d  i n  F igs .  4  and 5 f o r  t h e  two 

cases .  The e l e c t r i c  f i e l d  spectrum i s  smal le r  i n  amplitude f o r  t h e  low-field 

c a s e  (Fig.  6 ) ;  however, D($) obtained is  an  o rde r  of magnitude l a r g e r .  We . , 

can  c a l c u l a t e  D f o r  bo th  cases17, using 
c  1 

2 
With n - 2 x lo", T 0.2 eV ,  we f i n d  D (B -600 G) = 200 cm / sec  f o r  t h e  

e  c l  ave 
..2 

h i g h  f i e ld -case ,  and f o r  t h e  low-field case ,  Dcl = 1200 cm / sec .  The r a t i o  



D ~ / D ~ ~  is  - 25 f o r  t h e  h igh  f i e l d  case .  For t h e  lower f i e l d  c a s e  t h i s  r a t i o  

is  reduced ( t o - 8 ) .  The r a t i o  D /D - 1 occurs  a t  about 100 G f o r  t h i s  
v  c l  

3 
plasma . Taking i n t o  account t h a t  D c a l c u l a t e d  from t h e  e l e c t r i c  f i e l d  

v  

spectrum i s  a  rough e s t i m a t e  which t ends  t.0 be  somewhat h ighe r  than  t h e  va lues  

c a l c u l a t e d  by p r o f i l e  matching, t h e  d a t a  presen ted  h e r e  i s  c o n s i s t e n t  w i th  

t h e  d a t a  i n  Ref. 5. 

I n  a  t h i r d  experiment wi th  t h e  c o l l i s i o n a l  plasma a 3600 scan  of s i x  

$-surfaces  i n  t h e  p r i v a t e  f l u x  of t h e  lower i n n e r  hoop w a s  made wi th  B -240 G .  ave 

The contour  p l o t s  a r e  shown i n  Fig.  7. The c e l l  p a t t e r n  i s  very 

c l e a r .  T h e r e a r e  two l a r g e  c e l l s :  a  p o s i t i v e  c e l l  cen te red  a t  $ = 2.75, 

8 = 250°, and a  nega t ive  c e l l  cen te red  a t  $ = 4.5, 

8 = 70°, halfway around t h e  machine i n  8 from t h e  p o s i t i v e  c e l l .  The c e l l  

s t r u c t u r e  does n o t  l o s e  i t s  i d e n t i t y  i n  th'e 70 msec obse rva t ion  pe r iod ,  

a l though i t  decays i n  ampli tude by about a  f a c t o r  of 2 over  t h e  same per iod .  

2  
The power spectrum f o r  t h e  s i x  +-surfaces ,  E (k), is  shown i n  Fig.  8a-f 

8 

( 3  msec a f t e r '  i n j e c t i o n )  and F ig .  9a-f (7 msec) . The p l o t s  show t h a t  E~ 

2 
is  a  decreas ing  func t ion  of k.  The E power spectrum i s  a  s t r o n g  func t ion  

of p o s i t i o n  i n  +. The s e p a r a t r i x  has  l i t t l e  s t r u c t u r e ;  t h e  ampli tude of t h e  

2 
s t r u c t u r e  i nc reases  towards t h e  r i n g .  CE (k) i s  p l o t t e d  i n  F ig .  10  - for  t h e  

s i x  +-surfaces measured, a t  4 t i m e s .  The e a r l i e s t  t i m e  p l o t t e d  i s  10  msec 

a f t e r  i n j e c t i o n  ( a t  e a r l i e r  t i m e s  t h e  s t r u c t u r e  i s  n o t  r ep roduc ib l e ) .  W e  

2 
have used t h e  E d a t a  t o  e s t i m a t e  t h e  d i f f u s i o n  c o e f f i c i e n t  f o r  t h i s  plasma 

a s  a  func t ion  of $-surface and t i m e .  The r e s u l t s  a r e  presen ted  i n  F ig .  11. 

2 
Because of t h e  *dependence of  E , t h e  d i f f u s i o n  c o e f f i c i e n t  is  a l s o  

+-dependent, w i th  t h e  s e p a r a t r i x  r eg ion  having t h e  s m a l l e s t  va lues  of D . The 
v  

d i f f u s i o n  i n c r e a s e s  dur ing  t h e  f i r s t  5-10 msec and then  becomes cons t an t ,  

except  f o r  t h e  two +-surfaces c l o s e s t  t o  t h e  r i n g .  D is  lowest near  t h e  
v 

2 
s e p a r a t r i x ,  where i t  h a s  a  va lue  500 cm /set. The magnitude of D f o r  t h i s  v  



12 

plasma i s  i n  reasonable agreement wi th  t h e  r e s u l t s  shown i n  Ref. 5 ,  and t h e  

-112 
shape of Dv($) i s  roughly what would be  expected f o r  D n  ( see ,  f o r  

v  ' 

. . 
example, Ref. 14 ,  Fig.  3.21).  

B . =  240G x  2 We can e s t ima te  T*(k) from equat ion (4) us ing  n  , 10 /cm , 
7 

( f o r  t h e  inner  hoop),  and E(k=l) = .02 V/m, which l e a d s  t o  T*(k=l) = 5,.6 x 10 eV. 

6 
This i s  c o n s i s t e n t  wi th  the  average T* , 10  eV quoted i n  Ref. 5 f o r  a  T* 

independent of k.  

C o l l i s i o n l e s s  Plasma. 

The f l o a t i n g  p o t e n t i a l  contours  f o r  a  360° scan  of t h e  lower inne r  hoop 

a r e  given i n  F ig .  12a-d ( p r i v a t e  f l u x ) .  This d a t a  shows the  c h a r a c t e r i s t i c  

c e l l  p a t t e r n  f o r  a  c o l l i s i o n l e s s  plasma wi th  t h e  machine supported: t h e  t h r e e  

inne r  suppor ts  a r e  c l e a r l y  v i s i b l e  i n  t h e  p r i v a t e  f l u x  con tou r s . '  The c e l l  

s t r u c t u r e  i s  s t a t i o n a r y  i n  space;  although t h e  f i e l d  l i n e s  a r e  soaking i n t o  

t h e , r i n g s  and w a l l s ,  t h e  c e l l s  do not  move wi th  them. 

The t o r o i d a l  spectrum of t h e  e l e c t r i c  f i e l d  is  shown i n  F igs .  1 3  and 14 

f o r  two ps i - sur faces  i n  t h e  p r i v a t e  f l u x  of t h e  lower inne r  hoop ($=4.09 and 

4.52).  The f i g u r e s  show t h a t  t h e  energy spectrum of t h e  t o r o i d a l  vo r t ex  modes 

i s  a  r a p i d l y  decreas ing  func t ion  of k ,  and decays i n  t ime. The t o r o i d a l  

spectrum (Figs.  1 3  and 14 ) '  i s  enhanced i n  amplitude over  a  thermal  

spectrum, and has  t h e  shape of an inve r se  cascade i n  c o n t r a s t  t 0 . a  .thermal 

1 1 
spectrum which is f l a t  from k  = - 

L 
t o  k  = -. X' 

The va lue  of t h e  d i f f u s i o n  c o e f f i c i e n t  Dv.(t) ca l cu la t ed  from t h e  s p e c t r a  

i n  F igs .  1 3  and 14 f o r . t h e  two $-surfaces i n  t h e  LIH p r i v a t e  f l u x  i s  p l o t t e d  . ' . 

4 2  i n  Fig.  15. The computed D i s  on t h e  o rde r  of 10  ,cm / sec  5 msec a f t e r  v 
2 

i n j  e c t i o i ,  decreases  t o  .. 2.5-3 .5x103 cm / sec  by 20 msec, and then  l e v e l s  b f f  , 

and begins '  t o  climb very ,slowly. The behavior  of D( t )  ag rees  i n  genera l  wi th  



6 
t h e  p r o f i l e  evolut:I.on r e s u l t s  : i n i t i a l l y ,  T* decays r a p i d l y ,  and because 

D a (T*/n) l I2 ,  D w i l l  a l s o  decrease ;  a f t e r  30 msec, T* is  cons t an r ,  bu t  n  i s  

s t i l l  decaying, so  t h a t  D w i l l  i n c r e a s e  i n  t ime. The magnitude of Dv 

c a l c u l a t e d  from t h e  s p e c t r a  a f t e r  20 msec is  l a r g e r  by a  f a c t o r  of 2-5 t han  

2 t h e  800 cm. / s ec  quoted i n  Ref. 6 ,  Fig .  2. This  i s  remarkably good agreement 

cons ider ing  t h a t  our  r e s u l t s  a r e  from a r e l a t i v e ' l y  crude ca l c .u l a t i on  made on 
l i m i t e d  d a t a .  

The enhanced temperature  T* can be  es t imated  from equat ion  (4) us ing  

2 2 2 
t h e  va lue  of E (k=l )  = .075 V /m a t  25 msec from Fig .  1 3  (+=4.1); wi th  

7 3 4 5 n =  2 x 10 I c m ,  B - 2 kG, V = 8  x 10 cm3, we f i n d  T*(k=l) = 2.4 x 10 eV. 

Th i s  e s t ima te  is very  rough, bu t  i t  shows t h a t  t h e r e  is  enough energy i n  t h e  

vo r t ex  spectrum t o  account f o r  t h e  observed d i f f u s i o n .  

V.  DISCUSSION 

The contour  p l o t s  and s p e c t r a  a r e  s i m i l a r  t o  t hose  ob ta ined  i n  numerical  

s imu la t i ons  of t h e  gu id ing  c e n t e r  plasma18. The equa t ions  of motion of t h e  

2-D e l e c t r o s t a t i c  guiding-center  plasma a r e  formal ly  i d e n t i c a l  t o  t h e  

equa t ions  of motion f o r  2-D i n v i s c i d  Navier-Stokes f l u i d  t u rbu lence  i f  t h e  

charge d e n s i t y  p i s  i d e n t i f i e d  wi th  t h e  v o r t i c i t y  r ;  p o t e n t i a l . c o n t o u r s  

correspond t o  s t r eaml ines .  I n  t h i s  model energy and v o r t i c i t y  a r e  conserved,  

and t h e  non-l inear  i n t e r a c t i o n  between t h e  modes l e a d s  t o  an i n v e r s e  cascade:  

a s  energy i s  t r a n s f e r r e d  t o  s h o r t e r  wavelengths a  corresponding amount must 

be  t r a n s f e r r e d  t o  longer  wavelength modes t o  conserve t h e  v o r t i c i t y .  Spec t r a  

from t h e  Octupole and from t h e  s imu la t i ons  a r e  peaked a t  t h e  l onges t  s p a t i a l  

wavelengths.  

Boundary cond i t i ons  a l s o  determine t h e  shape of t h e  contours .  The . 

highest-energy mode shown i n  t h e  Octupole s p e c t r a  is  t h e  k = 1 mode. Th i s  

i n d i c a t e s  t h a t  t h e  suppor t s  a r e  r e l a t i v e l y  unimportant i n  determining t h e  



shape of t h e  s p e c t r a ;  however, it appears  t h a t  t h e  suppor ts  a r e . t h e  source of 

t h e  bump on t h e  s p e c t r a  i n  F igs .  8 and 14,  and a f f e c t  mafnly t h e  h igher  modes 

8 
on the.  s p e c t r a  . 

Montgomery and Joyce l9 y 2 0  have examined t h e  s t a t i s t i c a l  mechanics of t h e  

2-D systems and have shown t h a t ,  i f  t h e  energy is  h igh  enough, t h e  equi l ibr ium 

s o l u t i o n  t o  t h e  equat ions  of motion c o n s i s t s  of two l a r g e  coun te r ro t a t ing  

v o r t i c e s  f i l l i n g  t h e  box ( t h i s  s o l u t i o n  corresponds t o  a nega t ive  

tempera ture) .  I n  t h e  spectrum f o r  t h i s  ca se ,  t h e  longes t  mode has  a l a r g e  . 

f r a c t i o n  of t he  a v a i l a b l e  energy. D i rec t  comparison of t h e  s p e c t r a  from t h e  

Octupole wi th  s imula t ion  r e s u l t s  i n  Ref. 18  is  n o t  enough t o  determine 

whether t h e  experimental plasmas have a nega t ive  temperature i n  t h e  sense  of 

Ref. 20; however, i t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  Octupole contours  i n  

Fig.  7 f o r  t h e  c o l l i s i o n a l  plasma show a rough double-vortex p a t t e r n  t h a t  is  

s i m i l a r  t o  s imula t ion  contours  w i t h  a nega t ive  temperature.  

The shape of t h e  spectrum i n  k-space, i n  a d d i t i o n  t o  t h e  t o t a l  amount of 

vo r t ex  energy a v a i l a b l e ,  is  important i n  determining t h e  magnitude of t h e  

d i f f u s i o n :  t h e  d i f f u s i o n  is  dominated by t h e  longes t  wavelength modes un le s s  

2 2 2 
E (k) i nc reases  f a s t e r  than  k . The d a t a  from t h e  Octupole shows E (k)  

decreas ing  f o r  i nc reas ing  k; t h i s  means t h a t  t h e  f i r s t  few modes a r e  t h e  

most damaging t o  confinement. A s i m i l a r  r e s u l t  was obtained i n  a numerical 

simulat ' ion by Okuda and ~awson'  i n  which they  a r t i f i c i a l l y  removed t h e  

sma l l e s t  k-modes and found t h a t  d i f f u s i o n  was g r e a t l y  reduced, even through 

t h e  energy i n  t h o s e  modes was a smal l  f r a c t i o n  of t h e  t o t a l  energy. Taylor 
. . 

and ~ c ~ a m a i a "  a l s o  pointed out  t h a t  t h e  longes t  wavelength f l u c t u a t i o n s  a r e  

t h e  s lowest  t o  d i s p e r s e . . '  

The macroscopic v o r t i c e s  i n  Ref. 18  a r e  a n  equi l ibr ium s o l u t i o n  f o r  an 

i n v i s c i d  system. . The a d d i t i o n  of v i s c o s i t y  t o  t h i s  system a f f e c t s  t h e  



process  of e q u i l i b r a t i o n .  There a r e  two time s c a l e s ,  one f o r  t h e  approach 

to .  ( i n v i s c i d )  equi l ibr ium,  and t h e  o t h e r  f o r  t h e  thermal iza t ion  (which depends 

on t h e  v i s c o s i t y  and any o t h e r  d i s s i p a t i v e  mechanisms which can r.emove 

energy from t h e  convect ive c e l l s ) .  I f  t h e  f i r s t  t ime cons tan t  i s  s h o r t ,  o r  i f  

, t h e  system i s  c l o s e  t o  inv isc id- type  equi l ibr ium i n i t i a l l y ,  t hen  t h i s  type  of 

vo r t ex  s t r u c t u r e  w i l l  be  observed. This  is  t h e  case  f o r  t h e  Octupole,  a s  t h e  

i n j e c t i o n  process  f o r  gun plasmas5 pu t s  energy i n i t i a l l y  i n t o  long-wavelength 

modes The vo r t ex  modes i n  t h e  c o l l i s i o n a l  plasma a r e  damped on an ion  

v iscous  damping t ime s c a l e ,  a s  shown i n  t h e  contours  i n  Ref. 5. 

V I .  CONCLUSIONS 

There i s  a one-to-one c o r r e l a t i o n  between t h e  presence of c e l l s  i n  t h e  

Octupole and vo r t ex  d i f f u s i o n :  c e l l s  a r e  present  when t h e  d i f f u s i o n  

( ca l cu la t ed  from t h e  p r o f i l e  evolu t ion  and c o l l e c t o r  measurements) s c a l e s  a s  

and much reduced i n  amplitude when D <D The t o r o i d a l  s p e c t r a  have 
v- c l '  

, b e e n  used t o  e s t ima te  D and T* from t h e  p o t e n t i a l  s t r u c t u r e ,  and t h e  r e s u l t s  
v 

a r e  i n  reasonable agreement wi th  t h e  r e s u l t s  ob ta ined  i n  t h e  t r a n s p o r t  

Since t h e  s p e c t r a  from t h e  t h e o r e t i c a l  models a r e  geometry and 

boundary cond i t i on  dependent, a d e t a i l e d  comparison between theory  and 

experiment can probably be obtained only i n  a s impler  magnetic f i e l d  geometry; 

I however, reasonable q u a l i t a t i v e  agreement was obtained.  . I - 
' . 

The phys i ca l  model t h a t  emerges from t h e  d a t a  and t h e  theory  i s  a s .  

fol lows:  t h e  i n i t i a l  i n j e c t i o n  process  c r e a t e s  a plasma wi th  a l a r g e  amount 

of energy (from charge sepa ra t ion )  i n  t u rbu len t  vo r t ex  modes. During t h e  

f i r s t  few mi l l i seconds ,  t h i s  i n i t i a l ,  non-reproducible d i s t r i b u t i o n  evolves 

i n t o  a reproducib le  s t r u c t u r e  wi th  t h e  energy concent ra ted  a t  t h e  longes t  

wavelengths. The spectrum then  r e t a i n s  t h i s  shape, and decays on a much 
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longer  t i m e  s c a l e  than  t h e  one requi red  t o  produce t h e  long-wavelength 

d i s t r i b u t i o n . .  Di f fus ion  i s  caused by t h e  v o r t e x  modes when t h e  e l e c t r i c  

f i e l d a  become uncorre la ted .  The magnitude of D depends on both t h e  magnitude 
v 

of t h e  e l e c t r i c  f i e l d s ,  and t h e  c o r r e l a t i o n  t imes.  

This  i n t e r p r e t a t i o n  a l s o  accounts f o r  t h e  enhanced magnitude of D 
v 

obta ined  i n  t h e  t r a n s p o r t  s t u d i e s  over t h e  Okuda-Dawson d i f f u s i o n  c o e f f i c i e n t  

w i th  a thermal spectrum, while  preserv ing  t h e  s c a l i n g .  
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APPENDIX 

DIFFERENTIAL OPERATORS I N  OCTUPOLE COORDINATES 

i k e  
Using t h e  t o r o i d a l  eigenmodes e , we can exp re s s  $, EO, and v , a s  

l$ 

The d e n s i t y  g r a d i e n t  is  

For a  pu re ly  p o l o i d a l  f i e l d  i n  t h e  Octupole t h e  d e n s i t y  i s  a  f u n c t i o n  only  of 

$, and t h e  g rad i en t  reduces t o  t h e  f i r s t  term. 
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1 9  . A. ~ u t c h e r  Ehrhardt, R. S. Post 

Fig. 1. Cross 'section of the Octupole showing the movable ca r t  probe and the 

access t o  the flu surfaces. 
1: 

Fig. 2.' The floating potential spectrum for 2 msec., 10 msec., and 20 msec. 

a f t e r  injection. The data is fo?a coll is ional  He plasma, supported 

rings, in the private flux of the lower outer ring. B p  ave = 600G. 

Fig. 3. The floating potential spectrum @ (k) as in Fig. 2 . ,  but for Bp ave=lOOG. 

Fig. 4. The calculated vortex diffusion coefficient Dv using data from Fig. 3. 

= 100G). (Bp ave 

Fig. 5. The calculated vortex diffusion coefficient Dv using data from Fig. 2. 

= 600G). (Bp ave 
. . 

2 Fig. 6. The to ta l .  energy C@ (k) as  a function of time using data from Figs. 2. 

and 3. (collisional He plasma) . . 

Fig. 7. Floating potential contours i n  the +-8 plane a t  several times af ter  injec- 

tion. Collisional He plasma, supported rings. Data taken in the private 

flux of the lower inner ring; Bp ave = 480G. 

2 Fig. 8. E (k) vs. k a t  3 msec. a f te r  injection of a coll is ional  He plasma, for  

various flux surfaces. Data taken in the private flux of the lower inner 

ring (supported) with B 
p ave 

= 480G. 

Fig. 9. Same as Fig. 8. but 7 msec. a f te r  injection. 

2 Fig.. 10. CE (k) vs . 9 for  several  times a f t e r  injection. Data measured. for a He 
8 

plasma in  the private flux of thelower outer ring. Bp ave= 100G. 

Fig. 11. Spatial and temporal dependence of D, for  a coll is ional  He. plasma. Data 

taken in the private flux of the lower ring. Bpave = 480G. 



zu A. Butcher Ehrhardt, R. S. Post 

Fig. 1 2 .  Floating potential contours in the I)-8 plane for  several times a f te r  

injection. The plasma is a collisionless H plasma. Data taken in the 

private flux of the lower ring (supported). The ring supports (levators) 

are  indicated as OL (outer levator) and I L  (inner levator) . 
2 Fig. 13. The spectrum E (k3 for  the collisionless H plasma for  several times a f te r  

injection. D a t a t a k e n i n t h e p r i v a t e f l u x , l o w e r o u t e r r i n g ,  supported. . '  

$ ave = 2kG, J, = 4.09. 

. . 
Fig. 14. Same as Fig. 13. but for  J, = 4.5. 

Fig. 15. The calculated diffusion coefficient vs. time for  the data of Figs. 13. 

and 14. 
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