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Abstract

The acquisition of parallel processors in the scientific community is increasing, but the difficulties of 
programming parallel machines persist. Two approaches have emerged: automatic parallelizing compilers 
for extant languages, and new languages that provide an easier-to-use and cleaner parallel programming 
model. Unfortunately most new languages have acquired a reputation for inefficiency because of their 
semantics. This paper compares the performance of SISAL 1.2, an applicative language for parallel nu­
merical computations, and FORTRAN using the Livermore Loops. We show that applicative programs 
when compiled using a set of powerful yet simple optimization techniques can achieve execution speeds 
comparable to FORTRAN, and can effectively exploit shared memory multiprocessors.

1 Introduction

The acquisition of parallel processors in the scientific community is increasing, but the difficulties 

of programming parallel machines persist. Most parallel programming languages in use today 

thwart programmer productivity and hinder analysis. They fail to separate problem specification 

and implementation, fail to emphasize modular design, and inherently hide data dependencies. 

In response, researchers are developing new languages of both conventional and novel design [7,9] 

that provide an an easier-to-use and cleaner parallel programming model. One such language is 

SISAL 1.2, an applicative language for parallel numerical computations. Regrettably, applicative 

languages have acquired a reputation for inefficiency because of their single-assignment semantics.

This paper illustrates that with some simple yet powerful compilation techniques, applicative 

languages can compete with conventional languages on shared memory multiprocessors. To this 

end, we compare the execution performance of SISAL 1.2 [7] and FORTRAN on a Sequent Balance 

21000* 1 using the Livermore Loops [8]. The Loops are a set of 24 computational kernels found

"This work was supported (in part) by the Applied Mathematical Sciences subprogram of the Office of Energy 
Research, U.S. Department of Energy, and by Lawrence Livermore National Laboratory under contract No. W- 
7405-Eng-48 to the U.S. Department of Energy.

1 Sequent Balance is a trademark of the Sequent Computer Corporation. MASTER
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frequently in large-scale scientific applications and have been used for many years to benchmark 

computer system performance.

In the next section we briefly highlight the attributes of applicative languages and expound 

their inefficiencies. Then we present an overview of how the SISAL compiler successfully elim­

inates these inefficiencies. Next we present the comparisons, analyze the results, draw some 

conclusions, and introduce future work.

2 Applicative Computation

An applicative program is a collection of function definitions and applications, where a function 

defines a side effect free correspondence between members of its domain and members of its range.

The merits of this simple programming model are far reaching [5,15]. First, programs are 

inherently modular, hence easier to write, debug, and maintain. Second, programs describe 

data dependence graphs; thus compilers can spend more time restructuring programs and less 

time unraveling their behavior. Third, programs are determinate. If they run correctly on one 

processor, they run correctly, without exception, on multiple processors—programmers need not 

debug parallel execution or understand its complexities. Without optimization, however, the 

overhead of applicative computation can be high. Implementations that adhere religiously to 

applicative semantics must copy data when deriving new values. For languages like SISAL, which 

support arrays, this copying can severely degrade performance and make the use of applicative 

languages infeasible.

Most copying results from operations that build new aggregates and operations that modify 

extant aggregates. Consider the SISAL for expression shown in Figure 1, which returns an array 

of 100 elements (A). In unoptimized form, this expression builds 99 intermediate arrays, each 

one element larger than the previous, and requires 100 memory allocation requests, 99 memory 

deallocation operations, and 4950 double precision move operations. On the other hand, our 

compiler preallocates an array of 100 elements and stores each element directly into memory, 

thus eliminating the intermediate arrays and all the associated operations. Now consider the 

expression A[5: O.OdO], which changes the 5’th element of A to zero. Even though this is the 

last use of A, strict adherence to applicative semantics would require us to build an entirely new 

array. Our compiler recognizes that this is the last use of A and generates code to update it
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function Build( returns OneD ) 
let

A := for I in 1, 100 
returns array of

sqrt( double_real( I ) ) 
end for 

in
A[5: O.OdO] 

end let 
end function

Figure 1: A SISAL function constructing an array.

type double = double_real;
type OneD = array[double];

in-place.

An additional source of inefficiency in SISAL 1.2, although not a product of its applicative 

semantics, is its representation of n-dimensional arrays as arrays of arrays. This can cause 

excessive storage allocation and deallocation requests, and overhead when dereferencing columns 

or planes.

3 The SISAL Compiler and Run Time System

In this section we present a brief overview of the SISAL compiler and run time system. For a 

detailed discussion see [1] and [11]. Figure 2 depicts the SISAL compilation process. First, a front 

end translates SISAL source into IF1 [12], an intermediate form defining data flow graphs. The 

compiler then forms a monolithic IF1 program (linking all separately compiled files) and runs a 

machine independent optimizer to expand function calls, move invariant code, eliminate common 

subexpressions, fuse loops, fold constants, and remove dead code [14].

Next a build-in-place analyzer inserts code to preallocate array storage where analysis or ex­

pressions executed at run time can calculate array sizes [10]. During this analysis, the compiler 

translates the IF1 monolith into IF2 [16]. Since IF2 includes explicit memory management op­

erations, the compiler can now optimize these operations. Additionally, IF2 provides artificial 

dependence edges to constrain execution order and reference count operations to control storage
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Figure 2: SISAL language processing.

reclamation.

After inserting code to preallocate memory, the compiler identifies those operations that 

can directly modify arguments without corrupting program semantics [1,3,4,13]. The analysis 

proceeds in three phases. Phase one inserts explicit copy operations to decouple copy logic from 

aggregate modifiers, and adds reference count operations to decouple storage management from 

all aggregate read and write operations. Phase two inserts artificial dependence edges to promote 

early execution of aggregate read operations and to delay execution of copy operations. Then 

it eliminates all unnecessary reference count operations. Phase three eliminates the unnecessary 

copy operations and tags those that require run time analysis for copy avoidance. The analysis 

considers iteration, handles nested aggregates, and crosses function boundaries.

Finally, the compiler translates the optimized program into C, and inserts calls to the run time 

library to support parallelism. We chose the C programming language as an intermediate form to 

expedite compiler development, increase compiler portability, and allow manual experimentation 

with various optimizations. Unfortunately the local C compiler can dictate final performance. For 

the Sequent Balance we wrote a simple machine dependent optimizer, working at the assembly 

language level, to improve register utilization and reduce code size.

The SISAL run time system is a. microtasking kernel tuned for the parallel execution of loops 

[11]. After execution begins, the kernel creates and assigns a worker process to each participating
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processor. The workers then spin wait for loops to appear in a global loop pool. When a loop 

appears, each worker grabs a slice of the loop2, acquires a run time stack from the memory 

management subsystem (unless one is already owned), executes the slice, and returns to the pool. 

If during execution the slice must wait for completion of a storage request or the results of another 

loop selected for parallel execution, the governing worker will save its hardware state and record 

the outstanding event on the appropriate list. When the event completes, a worker will restore 

the slice and continue its execution. By default, the system breaks each loop into n slices, where 

n is the number of participating processors.

The current SISAL run time system does not spawn user functions as separate tasks; instead 

we expand all functions calls. We have found on medium-grain machines like the Sequent that 

we rarely recover the cost of a spawn, and on coarse-grain machines like the Cray-XM/P that the 

overhead often hurts performance [6].

4 FORTRAN versus SISAL

The Livermore Loops [8] are a set of 24 scientific kernels from production codes run at Lawrence 

Livermore National Laboratory. They encompass a variety of computational structures, including 

independent parallel processes, recurrent processes, wavefronts, and pipelines [2]. For many years 

scientists have used the Loops to benchmark high performance computers. Here we use the Loops 

to compare the execution speed of SISAL 1.2 and FORTRAN on a Sequent Balance 21000.

We ran the FORTRAN loops without change. The FORTRAN compiler provided on the 

Sequent folded constants, allocated registers across subroutines and basic blocks, and optimized 

array index computations within DO loops.

We wrote the SISAL to reflect the computational nature of each Loop, and did not tailor the 

algorithms for either the compiler or run time system. In general, if the Loop was inherently se­

quential, we used SISAL’s for initial expression. If the Loop was inherently parallel, we used for 

expressions. In certain instances, however, foreknowledge of input size did influence our coding. 

For example, we wrote sequential implementations of Loops 2, 4, 6, and 23 because their input 

data sizes were too small to warrant parallel execution. In comparison to the FORTRAN codes

2A slice is an autonomous computational unit comprised of one or more consecutive loop iterations.
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function Loopl( nrinteger; Q,R,I:double; Y,Z:0neD returns OneD ) 
for K in l,n

X := Q + (Y[K] * (R * Z[K+10] + T * Z[K+11])) 
returns array of X 
end for 

end function

function MainC rep,n:integer; Q,R,T:double; Y,Z:0neD returns OneD ) 
for i in 1, rep

X := LoopK n, Q, R, T, Y, Z ); 
returns value of X 
end for 

end function

type double = double.real;
type OneD = array [double];

Figure 3: SISAL code for Livermore Loop 1.

we changed from column-order to row-order to help compensate for the lack of true rectangular 

arrays in SISAL and, where ever possible, maintained a similar output structure. For more ac­

curate measurement of both the SISAL and FORTRAN codes, we executed each Loop 300 times 

(Loop 4 is so thin that we had to execute it 4000 times). As an example, Figure 3 gives the 

complete SISAL source for Loop 1.

Table 1 shows the performance results, where execution times are in kiloflops. Table 2 sum­

marizes the data in Table 1, showing minimum and maximum kiloflop rates, and the arithmetic 

and harmonic means. For FORTRAN we only report single processor rates, but for SISAL we 

report achieved kiloflops on one and five processors. The letters P and S in Table 1 show whether 

the SISAL algorithm was parallel or sequential, respectively. The complexity column shows the 

dimensionality of the arrays referenced in each Loop. Note we did not have to recompile the 

SISAL codes to run on five processors; we simply increased the number of participating workers. 

This epitomizes the advantages of applicative programming.

For the single processor runs, 11 of the SISAL Loops ran faster than, or within 1% of FOR­

TRAN; 6 of the SISAL Loops ran within 20% of FORTRAN; and 2 of the SISAL Loops ran 

within 34% of FORTRAN. The remaining 5 (Loops 8, 10, 18, 23, and 24) did not fare as well. In 

general, this shows that sequential SISAL and sequential FORTRAN performance is comparable.
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Table 1: Kiloflop rates on the Sequent Balance for the Livermore Loops.

Loop
number

array
complexity

algorithm
type

FORTRAN
1 processor

SISAL
1 processor

SISAL
5 processors

1 ID P 70 76 333
2 ID S 58 58 58
3 ID P 54 70 281
4 ID s 42 42 42
5 ID s 49 49 49
6 ID s 50 49 49
7 ID p 88 83 395
8 3D p 36 16 33
9 2D p 85 74 252
10 2D p 45 39 91
11 ID s 37 47 47
12 ID p 37 34 131
13 ID,2D s 12 13 13
14 ID p 28 44 101
15 2D p 59 44 136
16 ID p 75 13 38
17 ID s 53 45 45
18 2D p 77 29 55
19 ID s 45 51 51
20 ID s 86 90 90
21 2D p 56 54 224
22 ID p 46 45 177
23 2D s 74 42 42
24 ID p 50 27 101

Table 2: Summary of kiloflop rates on the Sequent Balance for the Livermore Loops.

key FORTRAN SISAL 1 processor SISAL 5 processors
minimum 12 13 13
maximum 88 90 395

arithmetic mean 55 47 118
harmonic mean 45 36 60
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The parallel SISAL implementations achieved an average speedup of about 3.4 on five processors. 

In general, the SISAL compiler eliminated 97% of the reference count operations and all the 

copying. For the multidimensional problems, however, the costs for referencing arrays of arrays 

was evident.

4.1 The Sequential Loops

Of the sequential SISAL Loops, only Loop 23 did not yield performance similar to FORTRAN. 

The 34% increase in execution time was the direct result of SISAL’s representation of two dimen­

sional arrays; that is, its inability to traverse columns efficiently.

Loops 2, 4, 6, and 23 have parallel implementations in SISAL, but we chose to use their 

sequential implementations as problem size did not justify run time overhead. The parallelism was 

in innermost loops. Also we chose not to use the parallel implementations of Loops 5, 11, and 19, 

which require recursive doubling to expose parallelism [2]. Recursive doubling is 0(Log n) in time, 

but requires 0(n Log n) computations, whereas the equivalent sequential algorithm requires O(n) 

computations, but is 0(n) in time. In trial runs, the parallel SISAL implementations ran much 

slower than the sequential codes, regardless of the number of participating processors. However, 

they did achieving reasonable speedup. SISAL’s implementation of recursive doubling requires 

array concatenations and subarray selections. The compiler was able to preallocate memory for 

the former, but was not able to build all sections of the arrays in-place. We are not sure whether 

the degradation in execution times resulted from the copying or the extra computations intrinsic 

to recursive doubling, but it is our general impression that recursive doubling on medium-grain 

and coarse-grain shared memory multiprocessors is not an appropriate technique.

4.2 The Parallel Loops

Despite incurring the overhead of parallel constructs, the SISAL implementations of Loops 1, 

3, 7, 9, 10, 12, 14, 21, and 22 produced kiloflop rates equivalent to, or better than FORTRAN 

on one processor and, except for Loop 14, showed good speedup on 5 processors. The parallel 

performance of Loop 14 was not the result of SISAL semantics or compiler deficiencies. Loop 14 

comprises two adjacent loops, one inherently parallel and one with carried dependencies prevent­

ing parallel execution. The parallel loop showed good speedup, but the sequential loop amortized
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function Loop24( n:integer; X:0neD returns integer ) 
let

1 := for y in X
returns value of least y 
end for 

in
for y in X at i returns 
value of least i when y = 1 
end for 

end let 
end function

function Main( rep,n:integer; X:0neD returns integer ) 
for i in 1, rep

vl := Loop24( n, X ); 
returns value of vl 
end for 

end function

Figure 4: SISAL code for Livermore Loop 24.

type double = double.real;
type OneD = array[double];

the gains. Consequentially, five processors only doubled the kiloflop rate.

On one processor, the SISAL implementation of Loop 24 executed 80% slower than FOR­

TRAN, but immediately overtook it on two processors and doubled its kiloflop rate on five 

processors. This Loop finds the location of the first minimum in an array. Figure 4 shows the 

SISAL implementation. The FORTRAN version only requires a single loop, but the SISAL al­

gorithm requires two for expressions. SISAL’s limited repertoire of reduction operations (sum, 

product, minimum, maximum, and catenate) and lack of user-defined reductions prevented use 

of a single expression. SISAL 2.0 will include user-defined reductions.

The SISAL implementation of Loop 16 is 100% parallelizable, but it could not out-perform 

FORTRAN. This Loop searches for a particle in a two-dimensional grid of zones subdivided 

into groups. The FORTRAN Loop sequentially searches each group, one at a time, and quits 

as soon as it finds the particle. The SISAL version examines all the groups in parallel, but 

searches the entire space because the language does not support asynchronous broadcasts—-the 

processor finding the particle cannot broadcast the event and stop the other processors. The lack
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of asynchronous broadcasts is a characteristic of determinate languages.

Loops 8, 15, and 18 did not do well, yet each is parallel and comprises considerable work. Loop 

8 manipulates three-dimensional arrays, and the other two manipulate two-dimensional arrays. 

Using a profile facility built into the SISAL run time kernel, we observed that Loop 8 spent 46% 

of its time (and Loop 18 spent 18% of its time) allocating and deallocating array storage (that 

is, builting arrays during Loop execution and recycling them between repetitions). The profile 

also showed that memory requests were idling processors. Although the memory subsystem can 

handle simultaneous storage requests, some sections require atomic access to shared data. In 

general, the lack of true multidimensional arrays contributed to the timing discrepancies for all 

three loops. SISAL 2.0 will support true multidimensional arrays in the spirit of FORTRAN. 

The allocation and deallocation of such structures will be as efficient as that for one-dimensional 

arrays in the current implementation.

5 Conclusions

In this paper we have shown that applicative languages can compete with conventional languages, 

and are a viable tool for exploiting shared memory multiprocessors. The scientific community 

should not consider applicative languages inefficient, or ignore their potential. Given the ex­

pressive and easy-to-use parallel programming model they provide, these languages represent an 

attractive alternate to conventional programming languages on shared memory multiprocessors.

We are currently revising the definition of SISAL to eliminate its known deficiencies. First we 

are adding true rectangular arrays. The overhead of arrays of arrays is just too high, as seen in 

this paper. Second, to enhance expressive power, we are adding parameterized types, modules, 

high-order functions, and user defined reductions. We are also merging the two loop forms. We 

plan to implement the revised language on both shared and distributed memory multiprocessors.
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