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CHAPTER 7

THE STOCHASTIC FLAMELET MODEL OF TURBULENT PREMIXED COMBUSTION*

ABSTRACT

A new stochastic model is presented and used to calculate the properties of turbulent 

premixed flames in the flame-sheet regime. The flame sheet is represented statistically by 

infinitesimal flamelets, each of which is characterized by its position, its unit normal vector, 

and its (infinitesimal) area. The evolution of the position and normal are completely 

determined by the fluid velocity and its spatial derivatives following the flamelet, which are 

modelled by stochastic processes. The flamelet area changes by stretching caused by 

velocity gradients, by the propagation of cusps, and because of curvature. An additional 

model is developed to account for the latter two mechanisms.

The Stochastic Flamelet Model is used in conjunction with the joint pdf approach to 

make calculations of non-stationary, statistically-plane turbulent premixed flames. These 

calculations demonstrate the practicality of the method and illustrate its attributes. Because 

it contains a natural and comprehensive statistical description of the flame sheet, the model 

allows the essential physical processes to be incorporated in a straightforward manner.
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INTRODUCTION

Both in spark ignition engines and in laboratory flames, turbulent premixed 

combustion most often occurs in the flame-sheet regime1-3. A thin flame sheet (thinner 

than the Kolmogorov scale) forms a surface 4»5 — possibly highly corrugated — that 

separates reactants from products (see Fig. 1). This flame surface is convected, bent and 

strained by the turbulence6 and propagates (relative to the reactants ahead) at a speed that 

can depend on the local conditions.

A wide variety of modelling approaches has been applied to turbulent premixed 

flames in the flame-sheet regime. Some (e.g. refs. 7-9) aim at calculating global 

quantities — turbulent flame speed, overall mass-burning rate, etc. — while others (e.g., 

refs. 10-14) are more comprehensive in that they attempt to describe the temporal and 

spatial variations of statistics through the flame. Both the Bray-Moss-Libby model10*1 land 

the pdf method12-14 (which are in the latter category) have been successful in accounting 

for some of the experimental observations related to counter-gradient diffusion and flame­

generated turbulence11*14. But both models have shortcomings in determining the local 

burning rate. In the Bray-Moss-Libby model the local burning rate is not determined at 

all11, and so the turbulent flame speed is required as an input to the calculation rather than 

emerging as a calculated result. In the pdf method the local burning rate is calculated, but 

not in an entirely satisfactory manner: the burning rate is (implicitly) assumed to be 

inversely proportional to the turbulent time scale12*15, and the incorporation of the 

influence of the laminar flame speed is ad hoc13.

The Stochastic Flamelet Model, presented here, provides a method for determining 

the local burning rate. It does so by explicitly representing the flame sheet and the 

processes that affect its evolution. The numerical implementation of the model is a Monte 

Carlo method in which the flame sheet is represented by large numbers of flame elements, 

or flamelets. Each flamelet has a position, an orientation and an (infinitesimal) area, which 

evolve according to stochastic models.
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The Stochastic Flamelet Model is used in conjunction with the pdf method15, there 

being a two-way coupling between the two methods. A modelled equation is solved for the 

joint pdf of velocity, dissipation and reaction progress variable, the local mean reaction rate 

being supplied by the flamelet model. The pdf method determines the mean fields — 

velocity, progress variable etc. — required by the flamelet model.

The model is described in the next section. Calculations have been performed for 

the idealized case of an initially plane flame sheet in constant-density, stationary, isotropic 

turbulence. These calculations, reported in the third section, prove the practicality of the 

model and illustrate the influence of the laminar flame speed. Conclusions are drawn in the 

final section.

THE STOCHASTIC FLAMELET MODEL

An infinitesimal flame element — or, flamelet — has position X(t), area dA(t), and 

unit normal N(t) (pointing into the reactants). By definition6, as it evolves, the flamelet 

remains part of the flame sheet by its position changing according to the equation

X(t) = U(t) + w N(t) . (1)

Here U(t) is the fluid velocity just ahead of the flame, and w is the local propagation speed 

of the flame-sheet realtive to the reactants. In the present work we take w to be a constant 

— the laminar flame speed — but there is no difficulty in allowing for a dependence on the 

local strain rate.

In the variable-density case, the Eulerian velocity n(x,t) is discontinuous at the 

flame sheet5. Hence, since I2(t) and w are defined with respect to the reactants, we have

il(t) = lim ii(X(t) + lyl N(t),t). (2)
y—»o

In the constant-density case considered here ii(x,t) is continuous, and Eq. (2) reduces to 

iI(t) = u(X[t],t).
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The initial condition for Eq. (1) is of great importance. Let 50 denote the flame 

surface at the initial time to. Then the initial flamelet position Xq = X(to) is a random 

variable uniformly distributed on SQ. Let A0 be the expected-’'initial surface area, and let 

dAo be the initial (infinitesimal) area of the flamelet (i.e. dA(to) = dAo). We define

A(t) = dA(t)/dAo, (3)

to be the area amplification of the flamelet.

From these definitions and a knowledge of the flamelet properties much useful 

information can be obtained6. The total expected surface area is

As(t) = A0<A(t)> , (4)

and, most importantly, the expected surface-to-volume ratio is

£&t)=Ao<A(t)5(2c-2C(t)». (5)

The importance of the surface-to-volume ratio stems from the following expression 

for the local expected burning rate co(x,t) (volume burned per unit volume per unit time):

co(2c,t) = w Z(x,t). (6)

Referring to Fig. 1, this formula can be understood by considering the volume V centered 

on the point x. On a given realization let Av(t) be the area of the surface within V at time t. 

(Av(t) may well be zero.) In the infinitesimal time interval dt, the volume of fluid burned 

by the propagating surface within V is wAvdt. Hence the volume-average burning rate is 

wAv/V. Equation (6) is then obtained as

G)(£,t) = lim <wAv/V> 
v—»o

= w X(x,t).

In addition to the equation for 2£(t) (Eq. 1), evolution equations for £I(t) and A(t) 

can be derived from first principles6. They are:

Nj = NiNjNkUj,k - NjUjj , (7)

tlf the initial flame sheet varies from one realization to the next, SQ is a random surface, 
and Ac is a random variable.
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Figure 1: Sketch of a Flame Sheet.
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and A= - A NiNjUij - Ar (8)

where Uy denotes the velocity derivative 3uj/8xj in the reactants just ahead of the flamelet. 

The initial condition N(to) is determined by the initial orientation of the flamelet, while we 

have (from Eq. 3) A(to) = 1. The term Ar is discussed at length below. For the moment 

we just observe6 that it is zero for the case of a material surface (w=o).

It is worth mentioning that the equations obtained depend on few assumptions:

Eqs. (1-3) are definitions; while Eqs. (4-8) are obtained purely from geometry6 with the 

assumption that the propagation speed w is constant.

We now turn our attention to the case of a material surface (w=0) which is of great 

theoretical interest, and is the starting point for the development of the Stochastic Flamelet 

Model. With w=o, a "flamelet" becomes an infinitesimal material surface element, and X(t) 

becomes the location of a fluid particle.

Since Ar is zero (for w=o), Eqs. (1), (7) and (8) can be integrated to determine the 

flamelet properties if IJ(t) and Uy(t) are known. Hence the first components of the model 

are stochastic models for these Lagrangian time series.

Space does not allow a full description of these models. Briefly IJ(t) is simulated 

by a diffusion process15>16in which the diffusion coefficient depends on the dissipation e(t) 

following the fluid particle17. The logarithm of the dissipation is modelled as an Omstein- 

Uhlenbeck stochastic process16. The velocity gradients are modelled as the product of 

e1/2(t) and a linear combination of Gaussian stochastic processes. The linear combination 

is chosen so as to satisfy all constraints appropriate to homogeneous isotropic turbulence18. 

The coefficients in all these models are approximately matched to correlation functions (e.g. 

<Ui j(t+s)Uk/t)>) obtained from direct numerical simulations19of isotropic turbulence at a 

Taylor-scale Reynolds number of about 40.

For the initially plane, infinite, material surface Xi(to) = 0, the surface-to-volume 

ratio Z(i,t) depends solely on xi and t: initially it is L(xi,to) = 5(xi). The stochastic
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model for U(t) causes Xi(t) to disperse in accord with Taylor's theory20: Xi(t) is 

Gaussian with zero mean, and its standard deviation increases first linearly with time, but 

ultimately as VI The sotchastic model for the velocity gradients is independent of ]i and 

X, and hence so also is A(t). Consequently, the profiles of X(xi,t) have a Gaussian shape, 

their width increasing from zero first linearly with time, and later as VI
The model for Uij(t) correctly results in <A(t)> being zero initially; but after a few 

Kolmogorov time scales <A(t)> increases exponentially with time in accord with 

Batchelor's supposition21. Hence the peak value X(o,t) — infinite initially — first 

decreases as the surface disperses (but stretches little), and then increases as stretching 

becomes dominant, eventually increasing as eVVI

A flame sheet (w>o) differs in three ways from the material surface considered 

above: the flamelet does not follow a fluid particle; the density jump across the flame sheet 

influences U and Uij (through the associated pressure fields1); and, the term Ar in Eq. (8) 

is non-zero. In this initial study we concentrate on the third effect — area reduction caused 

by propagation. We consider the constant-density case (thus eliminating the second effect), 

and use the models for IJ and Uij described above even for w > 0. (Direct numerical 

simulations are in progress to investigate the effect of non-zero w on these time series.)

The flamelet motion (relative to the fluid) is correctly accounted for by Eq. (1).

Two mechanisms are responsible for the area-reduction term Ar. Let H be the 

mean curvature of the surface, which is positive if the flame sheet is convex towards the 

reactants. Then one contribution to Ar is 6 2wHA. The second contribution is due to 

cusps which can form either by the curvature becoming infinite, or by the flame-sheet 

propagating into itself. However caused, as cusps propagate, they tend to reduce the 

flame-sheet area4*9 — leading to a positive contribution to Ar.

We model both contributions together by

AR(t) = CRwA(t) X(X[t],t)Ti(t)/b(X[t],t), (9)



226

where Cr is a model constant, b(x,t) is the mean volume fraction of reactants, and rj(t) is 

an orientation factor defined below. This, we claim, is the simplest possible model that has 

the correct qualitative behavior. With the exception of the orientation factor it is the same as 

that proposed by Marble & Broadwell22 in the context of turbulent diffusion flames.

One justification for the form of the model of Ar (Eq. 9) is that it accurately 

describes the rate of area change of a diversity of geometrically simple surfaces. We cite 

three examples.

i) Consider the (disconnected) flame-sheet consisting of many infinite, plane, parallel

surfaces separated by slabs of reactants and products. If the thickness of the reactant

slabs is uniformly distributed (in some finite interval) then the rate of area reduction is 

given by Eq. (9) with CrT) = j.

ii) Consider the (disconnected) flame-sheet consisting of many equal-size spherical
2surfaces surrounding pockets of reactants. Then Eq. (9) with Crti = correctly gives 

the rate of area reduction. The same result (but with Crtj = j) holds for circular

cylindrical pockets of reactants.

iii) Similar to ii), if the reactant pockets are equal-size regular polyhedra (e.g. cubes) then
2

Eq. (9) holds again with CrT) = ^ or for cylinders of regular polygonal cross-section 

we find Crtj =

While these examples bear little resemblance to the geometry of turbulent flame 

sheets, they nevertheless illustrate that different shapes and mechanisms lead to the same 

formula, i.e. Eq. (9). Note that in i) the area is reduced by the mutual anihilation of 

colliding flame sheets; in ii) the area reduction is solely due to curvature; and, in iii) it is 

solely due to cusps.

As well as arising automatically in the above examples, the factor b'1 in Eq. (9) is 

suggested by a realizability condition: in the statistically homogeneous case, as reaction 

nears completion, X and b must vanish together. If, as assumed, Ar is linearly
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proportional to X. then this realizability condition requires (as b tends to zero) that Ar be 

proportional to b'1. For the homogeneous case the model then predicts that X and b vanish 

together in finite time.

In the examples cited, the flame sheets are randomly orientated, and Eq. (9) holds 

with a constant value of CrT). But the further example of a single, plane flame-sheet 

illustrates the need for the orientation factor T|(t). For this case there are no cusps or self- 

intersections, and the curvature is zero everywhere. Thus Ar is zero. But it may be 

deduced (by a limiting process) that Eq. (9) (with CrU being of order unity) implies that 

Ar is infinite. This problem is remedied by introducing the orientation factor T|(t).

For the plane flame, a flamelet (with properties X.A.N) has the same orientation as 

any other flamelet (with properties X’,A',N'). Thus N«N’ is unity. In general, if two 

flamelets (separated by a distance uniformly distributed in a finite interval L) are on a 

collision course, then the probability of their colliding in the time interval dt is

dP = V2 wdt(l-N*N’)1/2/L. (10)

This follows from simple geometric considerations. For the case of a plane flame, the two 

flamelets collide at infinity and hence Eq. (10) correctly yields dP = 0, since is unity.

In the Stochastic Flamelet Model, the orientation factor T\(t) is based on the factor 

(1-H#H')1/2 appearing in Eq. (10). To be precise, ri(t) is the conditional expectation of 

this factor, for N' being any other flamelet at the same location (on a different realization):

Tl(t) = <(l-N(t)»N’(t))1/2 I X’(t) = X(t)> . (11)

For the statistically isotropic case (randomly orientated flamelets) the orientation factor is 

unity.

We have described the area-reduction model as a deterministic process: at the rate 

Ar, the flamelet’s area decreases smoothly and deterministically. This is the appropriate 

physical model if the area reduction is due to curvature. Alternatively the model could be
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implemented as a stochastic point process: in the time interval dt, with probability ARdt, 

the flamelet is anihilated (i.e. A(t+dt)=0), while with probability 1-ARdt the flamelet area is 

unchanged. This is the appropriate physical model if the area reduction is due to cusps. As 

far as single-time statistics are concerned, the result is the same however the model is 

implemented. The deterministic implementation is chosen since it results in smaller 

statistical errors in the Monte Carlo solution algorithm.

To summarize the model: stochastic processes are used to simulate the velocity 12(t) 

and its derivative UyCt) following the flamelet. Equations (1) and (7) are integrated to 

determine the position X(t) and orientation £J(t) of the flamelet, while the area amplification 

A(t) is obtained by integrating Eq. (8). The first term in Eq. (8), on average, causes an 

area increase, while the second is an area reduction due to curvature, cusps and self- 

intersections. This area reduction term is given by Eqs. (9) and (11). From the flamelet 

properties the surface-to-volume ratio 2(s,t) can be determined (Eq. 4), and hence the local 

burning rate co(x,t) (Eq. 6) is obtained.

We have described the model for a single representative flamelet To implement the 

model numerically we consider an ensemble of Nf» 13,000 such flamelets. The 

expectations — such as are required to determine £(*,1) — are approximated by ensemble 

averages.

The burning rate co(x,t) obtained from the flamelet model is used in the solution of 

the modelled transport equation 15for the joint pdf of velocity, dissipation, and reaction 

progress variables. The Monte Carlo solution of the joint pdf equation amounts to 

simulating the evolution of velocity, dissipation and c of an ensemble of Np * 35,000 fluid 

particles. For velocity and dissipation, exactly the same stochastic models are used as for 

the flamelets. At (x,t), the mean rate at which reactants (c=o) bum (i.e. change to c=l) is 

simply co(x,t). From the joint pdf calculation, the mean volume fraction of reactants b(x,t)

= l-<c(x,t)> is obtained and supplied to the Stochastic Flamelet Model.
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RESULTS

The Stochastic Flamelet Model in combination with the joint pdf method has been 

used to simulate the idealized case of an initially plane flame. The flow is statistically- 

stationary, homogeneous, isotropic turbulence with zero mean velocity. The turbulent 

kinetic energy k and the mean dissipation rate <e> are taken to be unity: hence the 

turbulence intensity is u' = V2/3. The Taylor-scale Reynolds number is 40, and the 

Kolmogorov time scale is 0.064.

At the initial time (t=to=0) a plane flame sheet at xi=0 separates reactants 

(c=o,xi>0) from products (c=l, xi<0). We investigated two laminar flame speeds: 

w=0.01 and w=1.0 (or w/u' = 0.0122 and w/u' = 1.22).

For the smaller laminar flame speed (w=0.01) Fig. 2 shows the total flame sheet 

area Aj (per unit initial area) as a function of time. It may be seen that for large times (t>2, 

say) At asymptotes to a value of about 300. At these times the area generation by 

stretching (the first term in Eq. 8) is balanced by the area reduction Ar. But at early times 

(t<0.5, say), because w£ is small, Ar is small. Thus the flame sheet behaves much like a 

material surface: after a small transient (0 < t < 0.1, say), Aj increases exponentially with 

time.

Figure 3 shows the loci of the constant concentration points in the flame: xa(t) is 

defined such that

<c(xi = xa[t], t)> = a. (12)

Thus xo.5(t) is the locus of the center of the flame, and xo.i(t) and xo.9(t) are taken to mark 

the front and back of the flame, respectively.

It may be seen that initially (t<0.5, say) the flame barely moves (xo.s - 0), and its 

width xo.i-xq.9 grows linearly in time. Again, this is because the slowly propagating flame 

sheet behaves (initially) like a material surface: there is little combustion. But as time 

progresses and At grows, burning becomes significant, and the flame begins to move. At
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H 100

Figure 2: Natural Logarithm of Flame Sheet Area (Per Initial Area) Against Time. 
Propagation Speed w=0.01.
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w = 0.01

Figure 3: Loci of Points xo.i(t), xo.5(t), xo.9(t) at Which the Mean Progress Variable is 
0.1, 0.5 and 0.9 Respectively. Propagations Speed w=0.01.
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large times (t>2,say) the turbulent flame speed ut = dxo.s/dt (or wAt) adopts a constant 

value of about 3.0, and the constant width xo.i*xo.9 is about 1.2.

The same plots for the fast laminar flame speed (w=1.0) are shown on Figs. 4 and 

5. Initially At decreases to a minimum of 0.95, then increases rapidly, and more slowly 

asymptotes to a value of 3.4. The initial decrease is physically impossible and is a defect 

— perhaps a small one — in the model. Even with the inclusion of the orientation factor, 

Ti(t), at small (non-zero) times an initially plane flame develops positive area reduction Ar 

faster than it is stretched by the turbulence.

In contrast to the case w=0.01. Fig. 5 shows that with w=1.0, significant burning 

starts immediately. The asymptotic value of the turbulent flame speed uj is 3.4, while the 

thickness is again about 1.2.

An interesting statistic is <Ni(t)> — the component of the normal in the xi- 

direction, averaged over the flame sheet. Initially it is unity. For the slow flame speed 

(w=0.01), and for a material surface (w=0), after about one time unit <Ni> asymptotes to 

zero as the flamelets loose memory of their initial orientation. But for the faster flame 

speed (w=1.0) the asymptotic value is 0.32. This is because flamelets moving backwards 

(negative Ni) or sideways (Ni = 0) suffer greater area reduction than those moving 

forward (Ni>0).

Figure 6 shows profiles of the mean reaction progress variable <c(xi,t)>, and the 

surface-to-volume ratio Z(xi,t), in the asymptotic state of the flame with w=1.0. (For the 

flame with w=0.01 the shapes of the profiles are similar, but Z is larger by a factor of 

about 100.) The profile shapes are quite different at the front and back of the flame. At the 

front both Z and <c> have long tails, while at the back Z and b (=l-<c>) vanish quite 

abruptly. At the front, because b is small, area reduction is small, and the flame area grows 

by turbulent straining. Towards the center of the flame, as b becomes significant, area 

reduction begins to dominate causing Z to decrease.
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log At

Figure 4: Natural Logarithm of Flame Sheet Area (Per Initial Area) Against Time. 
Propagation Speed w=1.0.
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w = 1.0

Figure 5: Loci of Points xq i(t), xo.5(0, xo.9(t) at Which the Mean Progress Variable is
0.1,0.5 and 0.9 respectively. Propagations Speed w=1.0.
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Figure 6: Profiles of Mean Progress Variable and Surface-to-Volume Ratio. (The Origin 
of x has been Shifted.)
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DISCUSSION AND CONCLUSIONS

In this work we have described and demonstrated the Stochastic Flamelet Model for 

turbulent premixed flames in the flamelet regime. The sample Monte Carlo calculations 

presented in the previous section, confirm that the model and numerical algorithm provide a 

tractable calculation procedure for non-stationary, inhomogeneous flames. Each of the 

calculations reported required about 150 CPU minutes on a minicomputer which is 

equivalent to 2 CPU minutes on a CRAY XMP.

As mentioned in the Introduction, existing models — the Bray-Moss-Libby 

model10*11, or the joint pdf method12*15, for example — have difficulty in determining the 

local rate of burning. Perhaps this is inevitable, since these models contain no information 

about the flame sheet that is responsible for the fuel consumption. The Stochastic Flamelet 

Model, on the other hand, contains a rather natural and complete statistical description of 

the flame sheet — its position, orientation and area. Because of this, the essential physical 

processes are readily incorporated in a natural manner. Most important among these are the 

straining of the flame sheet, the influence of the laminar flame speed, and the area reduction 

caused by curvature and cusps.

This first effort leaves many improvements and extensions ahead. The models of 

velocity ]J(t) and its gradient Ui j(t) following a flamelet require further development and 

validation, in particular with regard to their dependence on Reynolds number and the 

laminar flame speed. Direct numerical simulations will provide invaluable information for 

this purpose.

The essential extension of the model to the variable-density case holds both 

difficulty and promise. The principal difficulty is that the velocity field—especially in the 

vicinity of the flame sheet — is affected by the flame sheet's propagation. Hence ]J and 

Uij are no longer purely turbulence quantities, but are directly affected by the flame sheet 

itself. Modelling aside, there is no difficulty in extending the calculation procedure to
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variable-density flow: indeed previous pdf calculations of premixed flames13-14 have 

incorporated realistic density ratios.

The promise is that the additional information contained in the flamelet model may 

lead to improvements in the modelling of the effect of combustion on the turbulence. A 

major uncertainty in both the Bray-Moss-Libby model W^and the joint pdf method14is that 

the pressure fluctuations due to combustion are ignored. As observed by Pope1, some of 

these pressure effects can be directly related to flame-sheet processes.

NOMENCLATURE

A(t) - flamelet area amplification factor

Aq - initial expected surface area
•
Ar - rate of area reduction due to cusps and curvature

As(t) - total expected surface area

Ax - total expected surface area per unit initial area

Av - flamelet area within volume V

b(x,t) - mean volume fraction of reactants

Cr - model constant for area reduction

c(x,t) - reaction progress variable

dA(t) - flamelet area

dAo * initial flamelet area

H - mean curvature

N(t) - unit normal vector into reactants

SQ - initial surface

t - time

to - initial time

il(t) - velocity of a flamelet

Ujj(t) - velocity derivative 3uj/8xj following a flamelet
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V - volume

U(2t,t) - Eulerian fluid velocity field

w - surface propagation speed (here equals laminar flame speed)

2£(t) - flamelet position

' initial flamelet position 

x - position (independent variable)

500 - three-dimensional Dirac delta function at x

e(t) - dissipation rate

Tl(t) - orientation factor

I(x,t) - surface to volume ratio

G>(x,t) - local mean burning rate (volume burnt per unit volume per unit time) 

< > - mean
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