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CHAPTER 7

THE STOCHASTIC FIAMELET MODEL OF TURBULENT PREMIXED COMBUSTION*

ABSTRACT

A new stochastic model is presented and used to calculate the properties of turbulent
premixed flames in the flame-sheet regime. The flame sheet is represented statistically by
infinitesimal flamelets, each of which is characterized by its position, its unit normal vector,
and its (infinitesimal) area. The evolution of the position and normal are completely
determined by the fluid velocity and its spatial derivatives following the flamelet, which are
modelled by stochastic processes. The flamelet area changes by stretching caused by
velocity gradients, by the propagation of cusps, and because of curvature. An additional
model is developed to account for the latter two mechanisms.

The Stochastic Flamelet Model is used in conjuncton with the joint pdf approach to
make calculatons of non-stationary, statistically-plane turbulent premixed flames. These
calculations demonstrate the practicality of the method and illustrate its attributes. Because
it contains a natural and comprehensive statistical description of the flame sheet, the model

allows the essential physical processes to be incorporated in a straightforward manner.
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INTRODUCTION

Both in spark ignition engines and in laboratory flames, turbulent premixed
combustion most often occurs in the flame-sheet regimel-3. A thin flame sheet (thinner
than the Kolmogorov scale) forms a surface 4.5 — possibly highly corru gated — that
separates reactants from products (see Fig. 1). This flame surface is convected, bent and
strained by the turbulence® and propagates (relative to the reactants ahead) at a speed that
can depend on the local conditions.

A wide variety of modelling approaches has been applicd to turbulent premixed
flames in the flame-sheet regime. Some (e.g. refs. 7-9) aim at calculating global
quantities — turbulent flame speed, overall mass-burning rate, etc. — while others (e.g.,
refs. 10-14) are more comprehensive in that they attempt to describe the temporal and
;bétiai vananons of st;;iétics through the flame. Both the Bray-Moss-Libby model10.11and
the pdf method12-14 (which are in the latter category) have been successful in accounting
for Asome of the e:;perimental observations related to counter-gradient diffusion and flame-
generated turbulence!l.14, But both models have shortcomings in determining the local
burning rate. In the Bray-Moss-Libby model the local burning rate is not determined at
allll, and so the turbulent flame speed is required as an input to the calculation rather than
emerging as a calculated result. In the pdf method the local burning rate is calculated, but
not in an entirely satisfactory manner: the burning rate is (implicitly) assumed to be
inversély proportional to the turbulent time scale12:15, and the incorporation of the
influence of the laminar flame speed is ad hocl3.

The Stochastic Flamelet Model, presented here, provides a method for determining
the local burning rate. It does so by explicitly representing the flame sheet and the
processes that affect its evolution. The numerical implementation of the model is a Monte
Carlo method in which the flame sheet is represented by large numbers of flame elements,
or flamelets. Each flamelet has a position, an orientation and an (infinitesimal) area, which

evolve according to stochastic models.

P
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The Stochastic Flamelet Model is used in conjunction with the pdf method!5, there
being a two-way coupling between the two methods. A modelled equation is solved for the
joint pdf of velocity, dissipation and reaction progress variable, the local mean reaction rate
being supplied by the flamelet model. The pdf method determines the mean fields —
velocity, progress variable etc. — required by the flamelet model.

The model.is described in the next section. Calculations have been performed for
the idealized case of an initially plane flame sheet in constant-density, stationary, isotropic
turbulence. These calculations, reported in the third section, prove the practicality of the
model and illustrate the influence of the laminar flame speed. Conclusions are drawn in the

final section.

THE STOCHASTIC FLAMELET MODEL
An infinitesimal flame element — or, flamelet — has position X(t), area dA(t), and
unit normal N(t) (pointing into the reactants). By definition, as it evolves, the flamelet

remains part of the flame sheet by its position changing according to the equation
X®=U®+wNQO . (1)

Here U(t) is the fluid velocity just ahead of the flame, and w is the local propagation speed
of the flame-sheet realtive to the reactants. In the present work we take w to be a constant
— the laminar flame speed — but there is no difficulty in allowing for a dependence on the
local strain rate.

In the variable-density case, the Eulerian velocity u(x,t) is discontinuous at the

flame sheet>. Hence, since U(t) and w are defined with respect to the reactants, we have

U) = lim uX(®) + lyl N(©),1) . )
y—o0

In the constant-density case considered here u(x,t) is continuous, and Eq. (2) reduces to

U = uXI[tl,1).
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The initial condition for Eq. (1) is of great importance. Let S, denote the flame
surface at the initial ime t,. Then the initial flamelet position X, = X(ty) is a random
variable uniformly distributed on S,. Let A, be the expectedinitial surface area, and let
dA, be the initial (infinitesimal) area of the flamelet (i.e. dA(ty) = dA,). We define

A@)=dA(/dAo, 3

to be the area amplification of the flamelet.
~ From these definitions and a knowledge of the flamelet properties much useful

information can be obtained®. The total expected surface area is

Ag(t) = Ag<A(D)>, . 4)
and, most importantly, the expected surface-to-volume ratio is

Z(x.t) = Ao<A(DB(x-X(1)> . o : (%)

The importance of the surface-to-volume ratio stems from the following expression
for the local expected burning rate «(x,t) (volurfxe burned per unit volume per unit time):

o(x,t) =w Z(x,t) . 6)
Referring to Fig. 1, this formula can be understood by considering the volume V centered
on the point x. On a given realization let A(t) be the area of the surface within V at time t.
(Ay(t) may well be zero.) In the infinitesimal time interval dt, the volume of fluid burned
by the propagating surface within V i§ wAydt. Hence the volume-average burning rate is

wA,/V. Equation (6) is then obtained as

o(x,t) = im <wA/V>
v—0

=w Z(x,t) .
In addition to the equation for X(t) (Eq. 1), evolution equations for N(t) and A(t)

can be derived from first principles6. They are:

Nl NleNkUj,k NJUJJ ’ (7)

TIf the initial flame sheet varies from one realization to the next, S, is a random surface,
and A, is a random variable. :
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Figure 1: Sketch of a Flame Sheet.
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_ and A=-ANNU;-Ar, : ®)

where Uj j denotes the velocity derivative du;/0x; in the reactants just ahead of the flamelet.
The initial condition N(t,) is determined by the initial orientation of the flamelet, while we |
have (from Eq. 3) A(ty) = 1. The term AR is discussed at length below. For the moment
we just observe® that it is zero for the case of a material surface (w=0).

It is worth mentioning that the equations obtained depend on few assumptions:

Egs. (1-3) are definitions; while Eqgs. (4-8) are obtained purely from geometry6 with the
assumption that the propagation speed w is constant.

We now turn our attention to the case of a material surface (w=0) which is of great
theoretical interest, and is the starting point for the development of the Stochastic Flamelet
Model. With w=o, a "flamelet" becomes an infinitesimal material surface element, and X(t)
becomes the location of a fluid particle.

Since AR is zero (for w=0), Egs. (1), (7) and (8) can be integrated to determine the
flamelet properties if U(t) and Uj j(t) are known. Hence the first components of the model
are stochastic models for these Lagrangian time series.

Space does not allow a full description of these models. Briefly U(t) is simulated
by a diffusion process15.16in which the diffusion coefficient depends on the dissipation &(t)
following the fluid particlel?. The logarithm of the dissipation is modelled as an Ornstein-
Uhlenbeck stochastic process16. The velocity gradients are modelled as the product of
€12(t) and a linear combination of Gaussian stochastic processes. The linear combination
is chosen so as to satisfy all constraints appropriate to homogeneous isotropic turbulencel8,
The coefficients in all these models are approximately kmatched to correlation functions (e.g.
<U;j j(t+s)Ux K(1)>) obtained from direct numerical simulations!9of isotropic turbulence at a
Taylor-scale Reynolds number of about 40.

For the initially plane, infinite, material surface Xj(t,) = 0, the surface-to-volume

ratio X(x,t) depends solely on x1 and t: initially it is 2.(x1,t) = 8(x1). The stochastic
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model for U(t) causes X(t) to disperse in accord with Taylor's theory20: X(t) is
Gaussian with zero mean, and its standard deviation increases first linearly with time, but
ultimately as V't. Thg sotchastic model for the velocity gradients is independent of U and
X, and hence so also is A(t). Consequently, the profiles of Y(x1,t) have a Gaussian shape,
their width increasing from zero first linearly with time, and later as t.

The model for U; j() correctly results in <A(t)> being zero initially; but after a few
Kolmogorov time scales <A(t)> increases exponentially with time in accord with
Batchelor's supposition2l. Hence the peak value Y(o,t) — infinite initially — first
decreases as the surface disperses (but stretches little), and then increases as stretching
becomes dominant, eventually increasing as et/\t.

A flame sheet (w>0) differs in three ways from the material surface considered
above: the flamelet does not follow a fluid particle; the density jump across the flame sheet
influences U and U; j (through the associated pressure fields!); and, the term AR in Eq. (8)
is non-zero. In this initial study we concentrate on the third effect — area reduction caused
by propagation. We consider the constant-density case (thus eliminating the second effect),
and use the models for U and Uj j described above even for w > 0. (Direct numerical
simulations are in progréss to investigate the effect of non-zero w on these time series.)
The flamelet motion (relative to the fluid) is correctly accounted for by Eq. (1).

Two mechanisms are responsible for the area-reduction term ;\R- Let H be the
mean curvature of the surface, which is positive if the flame sheet is convex towards the
reactants. Then one contribution to AR is 6 2wHA. The second contribution is due to
cusps which can form either by the curvature becoming infinite, or by the flame-sheet
propagating into itself. However caused, as cusps propagate, they tend to reduce the
flame-sheet area4:9 — leading to a positive contribution to Ag. |

We model both contributions together by

AR() = CRWA(t) SX[,HmE)/bXILLD) , ©)
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where CR is a model constant, b(x,t) is the mean volume fraction of reactants, and 1n(t) is

an orientation factor defined below. This, we claim, is the simplest possible model that has

the correct qualitative behavior. With the exception of the orientation factor it is the same as
that proposed by Marble & Broadwell22 in the context of turbulent diffusion ﬂames.

One justification for the form of the model of AR (Eq. 9) is that it accurately
describes the rate of area change of a diversity of geometrically simple surfaces. We cite
three examples.

1) Consider the (disconnected) flame-sheet consisting of many infinite, plane, parallel
surfaces separated by slabs of reactants and products. If the thickness of the reactant
slabs is uniformly distributed (in some finite interval) then the rate of area reduction is
given by Eq. (9) with Crn =%.

u) Consider the (disconnected) flame-sheet consisting of many equal-size spherical
surfaces surrounding pockets of reactants. Then Eq. (9) with Crn = %—correctly gives

the rate of area reduction. The same result (but with Crn = %) holds for circular

cylindrical pockets of reactants.

iii) Similar to ii), if the reactant pockets are equal-size regular polyhedra (e.g. cubes) then
Eq. (9) holds again with Crn = %; or for cylinders of regular polygonal cross-section

we find Crn = %

While these examples bear little resemblance to the geometry of turbulent flame
sheets, they nevertheless illustrate that different shapes and mechanisms lead to the same
formula, i.e. Eq. (9). Note that in i) the area is reduced by the mutual anihilation of
colliding flame sheets; in ii) the area reduction is solely due to curvature; and, in iii) it is
solely due to cusps.

As well as arising automatically in the above examples, the factor bl in Eq. (9) is
suggested by a realizability condition: in the statistically homogeneous case, as reaction

nears completion, X and b must vanish together. If, as assumed, AR is linearly
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proportional to Y, then this realizability condition requires (as b tends to zero) that AR be
proportional to b-1. For the homogeneous case the model then predicts that ¥ and b vanish
together in finite time.

In the examples cited, the flame sheets are randomly orientated, and Eq. (9) holds
with a constant value of Crn. But the further example of a single, plane flame-sheet
illustrates the need for the orientation factor 1n(t). For this case there are no cusps or self-
intersections, and the curvature is zero everywhere. Thus AR is zero. Butit may be
deduced (by a limiting process) that Eq. (9) (with Crn being of order unity) implies that
AR is infinite. This problem is remedied by introducing the orientation factor n(t).

For the plane flame, a flamelet (with propertiés X,A,N) has the same orientation as
any other flamelet (with properties X',A',N'). Thus NeN' is unity. In general, if two
flamelets (separated by a distance uniformly distributed in a finite interval L) are on a

collision course, then the probability of their colliding in the time interval dt is
dP = V2 w dt (1-NeN")1/2/L . (10)

This follows from simple geometric considerations. For the case of a plane flame, the two

flamelets collide at infinity and hence Eq. (10) correctly yields dP = 0, since NeN' is unity.
In the Stochastic Flamelet Model, the oﬁcntation factor 1\(t) is based on the factor

(1-NeN")1/2 appearing in Eq. (10). To be precise, n(t) is the conditional expectation of

this factor, for N' being any other flamelet at the same location (on a different realization):
n(1) = <(1-N@OeN')) /21 X'(1) = X(1)> . (11)

For the statistically isotropic case (randomly orientated flamelets) the orientation factor is
unity.

We have described the area-reduction model as a deterministic process: at the rate
AR, the flamelet's area decreases smoothly and deterministically. This is the appropriate

physical model if the area reduction is due to curvature. Alternatively the model could be
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implemented as a stochastic point process: in the time interval dt, with probability ARdt,
the flamelet is anihilated (i.e. A(t+dt)=0), while with probability I-AR'dt the flamelet area is
unchanged. This is the appropriate physical model if the area reduction is due to cusps. As
far as single-time statistics are concerned, the result is the same however the model is
implemented. The deterministic implementation is chosen since it results in smaller
statistical errors in the Monte Carlo solution algorithm.

To summarize the model: stochastic processes are used to simulate the velocity U(t)
and its derivative U j(t) following the flamelet. Equations (1) and (7) are integrated to
determine the position X(t) and orientation N(t) of the flamelet, while the area amplification
A(t) is obtained by integrating Eq. (8). The first term in Eq. (8), on average, causes an
area increase, while the second is an area reduction due to curvature, cusps and self-
intersections. This area reduction term is given by Egs. (9) and (11). From the flamelet
properties the surface-to-volume ratio Y(x,t) can be determined (Eq. 4), and hence the local
burning rate w(x,t) (Eq. 6) is obtained.

We have described the model for a single representative flamelet. To implement the
model numerically we consider an ensemble of N = 13,000 such flamelets. The
expectations — such as are required to determine Y (x,t) — are approximated by ensemble
averageﬁ.

The burning rate w(x,t) obtained from the f:lamelct model is used in the solution of
the modelled transport equation!5for the joint pdf of velocity, dissipation, and reaction
progress variable,c. The Monte Carlo solution of the joint pdf equation amounts to
simulating the evolution of velocity, dissipation and ¢ of an ensemble of Np = 35,000 fluid
particles. For velocity and dissipation, exactly the same stochastic models are used as for
the flamelets. At (x,t), the mean rate at which reactants (c=o0) burn (i.e. change to c=1) is
simply @(x,t). From the joint pdf calculation, the mean volume fraction of reactants b(x,t)

= 1-<c(x,t)> is obtained and supplied to the Stochastic Flamelet Model.
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RESULTS

The Stochastic Flamelet Model in combination with the joint pdf method has been
used to simulate the idealized case of an initially plane flame. The flow is statistically-
stationary, homogeneous, isotropic turbulence with zero mean velocity. The turbulent
kinetic energy k and the mean dissipation rate <> are taken to be unity: hence the
turbulence intensity is u' = v2/3. The Taylor-scale Reynolds number is 40, and the
Kolmogorov time scale is 0.064.

At the initial time (t=t,=0) a plane flame sheet at x;=(0 separates reactants
(c=0,x1>0) from products (c=1, x1<0). We investigated two laminar flame speeds:
w=0.01 and w=1.0 (or w/u' = 0.0122 and w/u' = 1.22).

For the smaller laminar flame speed (w=0.01) Fig. 2 shows the total flame sheet
area AT (per unit initial area) as a function of time. It may be seen that for large times (t>2,
say) AT asymptotes to a value of about 300. At these times thc‘ area generation by
stretching (the first term in Eq. 8) is balanced by the area reduction AR. But at early times
(t<0.5, say), because w2 is small, AR is small. Thus the flame sheet behaves much like a
material surface: after a small transient (0 <t < 0.1, say), AT increases exponentially with
time.

Figure 3 shows the loci of the constant concentration points in the flame: xq(t) is

defined such that
<c(X] = Xgtl, )>=a. (12)

Thus xg.5(t) is the locus of the center of the flame, and xg.;(t) and xg 9(t) are taken to mark
the front and back of the flame, respectively.

It may be seen that initially (t<0.5, say) the flame barely moves (xg s = 0), and its
width xg,1-x0.9 grows linearly in time. Again, this is because the slowly propagating flame
sheet behaves (initially) like a material surface: there is little combustion. But as time

progresses and AT grows, burning becomes significant, and the flame begins to move. At
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Figure 2: Natural Logarithm of Flame Sheet Area (Per Initial Area) Against Time.
Propagation Speed w=0.01.



231

10 T T T T T T T
8 I- -
w = 0.01
6 - -
4 - _
2 F —
Xo.1
Xo.5
0 -
Xo.9
| ) | | | ) !
0 1.0 2.0 3.0 4.0
t

Figure 3: Loci of Points xg 1(t), Xp.5(t), X0.9(t) at Which the Mean Progress Variable is
0.1, 0.5 and 0.9 Respectively. Propagations Speed w=0.01.
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large times (t>2,say) the turbulent flame speed uT = dxg_s/dt (or wAT) adeopts a constant
value of about 3.0, and the constant width X0.1-X0.9 is about 1.2.

The same plots for the fast laminar flame speed (w=1.0) are shown on Figs. 4 and
s Initially AT decreases to a minimum of 0.95, then increases rapidly, and more slowly
asymptotes to a value of 3.4. The initial decrease is physically impossible and is a defect
— perhaps a small one — in the model. Even with the inclusion of the orientation factor,
11(t), at small (non-zero) times an initially plane flame develops positive area reduction «‘.\R
faster than it is stretched by the turbulence.

In contrast to the case w=0.01, Fig. 5 shows that with w=1.0, significant burning
starts immediately. The asymptotic value of the turbulent flame speed uT is 3.4, while the
~ thickness is again about 1.2.

An interesting statistic is <Nj(t)> — the component of the normal in the x;-
direction, averaged over the flame sheet. Initially it is unity. For the slow flame speed
(w=0.01), and for a material surface (w=0), after about one time unit <N;> asymptotes to
zero as the flamelets loose memory of their initial orientation. But for the faster flame
speed (w=1.0) the asymptotic value is 0.32. This is because flamelets moving backwards
(negative Nj) or sideways (N = 0) suffer greater area reduction than those moving
forward (N1>0).

Figure 6 shows profiles of the mean reaction progress variable <c(x,t)>, and the
surface-to-volume ratio X(x,t), in the asymptotic state of the flame with w=1.0. (For the
flame with w=0.01 the shapes of the profiles are similar, but 3 is larger by a factor of
about 100.) The profile shapes are quite different at the front and back of the flame. At the
front both ¥ and <c> have long tails, while at the back . and b (=1-<c>) vanish quite
abruptly. At the front, because b is small, area reduction is small, and the flame area grows
by turbulent straining. Towards the center of the flame, as b becomes significant, area

reduction begins to dominate causing X to decrease.
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Figure 4: Natural Logarithm of Flame Sheet Area (Per Initial Area) Against Time.
Propagation Speed w=1.0.
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Figure 5: Loci of Points xg,1(t), X0.5(t), x0.9(t) at Which the Mean Progress Variable is
0.1, 0.5 and 0.9 respectively. Propagations Spccd w=1.0.
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Figure 6: Profiles of Mean Progress Variable and Surface-to-Volume Ratio. (The Origin
of x has been Shifted.)
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DISCUSSION AND CONCLUSIONS

In this work we have described and demonstrated the Stochastic Flamelet Model for
turbulent premixed flames in the flamelet regime. The sample Monte Carlo calculations
presented in the previous section, confirm that the model and numerical algorithm provide a
tractable calculation procedure for non-stationary, inhomogeneous flames. Each of the
calculations reported required about 150 CPU minutes on a minicomputer which is
equivalent to 2 CPU minutes on a CRAY XMP.

As mentioned in the Introduction, existing models — the Bray-Moss-Libby
model10.11, or the joint pdf method!2-15, for example — have difficulty in determining the
local rate of burning. Perhaps this is inevitable, since these models contain no information
about the flame sheet that is responsible for the fuel consumption. The Stochastic Flamelet
Medel; on the other hand, contains a rather natural and complete statistical description of
the flame sheet — its position, orientation and area. Because of this, the essential physical
processes are readily incorporated in a natural manner. Most important among these are the
straining of the flame sheet, the influence of the laminar flame speed, and the area reduction
caused by curvature and cusps. '

This first effort leaves many improvements and extensions ahead. The models of
velocity U(t) and its gradient U () following a flamelet require further development and
validation, in particular with regard to their dependence on Reynolds number and the
laminar flame speed. Direct numerical simulations will provide invaluable information for
this purpose. ;

The essential extension of the model to the variable-density case holds both
difficulty and promise. The principal difficulty is that the velocity field — especially in the
vicinity of the flame sheet — is affected by the flame sheet's propagation. Hence U and
Ui j are no longer purely turbulence quantities, but are directly affected by the flame sheet
itself. Modelling aside, there is no difficulty in extending the calculation procedure to
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variable-density flow: indeed previous pdf calculations of premixed flames13.14 have
~ incorporated realistic density ratios.

The promise is that the additional information contained in the flamelet model may
lead to improvements in the modelling of the effect of combustion on the turbulence. A
major uncertainty in both the Bray-Moss-Libby model10.1and the joint pdf method!4is that
the pressure fluctuations due to combustion are ignored. As observed by Popel, some of

these pressure effects can be directly related to flame-sheet processes.

NOMENCLATURE

A(t) - flamelet area amplification factor

Ay - initial expected surface area

AR - rate of area reduction due to cusps and curvature
Ag(t) - total expected surface area

At - total expected surface area per unit initial area
Ay - flamelet area within volume V

b(x,t) - mean volume fraction of reactants

CrR - model constant for area reduc;tion

c(x,t) - reaction progress variable

dA(t) - flamelet area

dA, - initial flamelet area

H - mean curvature

H(f) - unit normal vector into reactants

So - initial surface

t - time

to - initial time

U - velocity of a flamelet

C
fut
[ -

~~

Z
[

velocity derivative duj/dx; following a flamelet



238

\' - volume

ux,t) - Eulerian fluid velocity field

w - surface propagation speed (here equals laminar flame speed)
X(@®) - flamelet position

X, - initial flamelet position

X - position (independent variable)

8(x) - three-dimensional Dirac delta function at x

g(t) - | dissipation rate

n{®) - orientation factor

>(x,t) - surface to volume ratio

o(x,t) - local mean ﬁbumingr Tate (volume burnt per unit volume per unit time)
<> - mean

ACKNOWLEDGMENTS

This work was supported by the Department of Energy under contract number DE-
ACS 02-83ER 13038, Dr. Oscar Manley contract manager. The Direct Numerical
Simulations!9used in the model development were supported by the Air-Force Office of
Scientific Research (Grant number AFOSF-85-0083), and were performed at the Cornell
National Supercomputer Facility which is supported in part by the National Science
Foundation, New York State and IBM Corporation.

REFERENCES
1. Pope, S.B.: Ann. Rev. Fluid Mech. 19, 237 (1987).
2. Abraham, J., Williams, F.A. and Bracco, F.V.: SAE paper 850345 (1985).

3. Bray, K.N.C.. in Turbulent Reactive Flows, ed. Libby, P.A. and Williams, F.A.,
Springer-Verlag, 1980.

4. Karlovitz, B., Denniston, D.W. Jr., Knappschaefer, D.H. and Wells, F.E.: Fourth
Symposium (International) on Combustion, p. 613, Williams and Wilkins, Baltimore,
1953.



10.
11.
12.

13.

14.
15.
16.

17.
18.
19.

20.
21.
22.

239

Markstein, G.M.: Non-Steady Flame Propagation, Macmillan, New York, 1964,
Pope, S.B.: The Evolution of Surfaces in Turbulence, Int. J. Eng'ng. Sci. (1988), in

press.

Tabaczynski, R.J., Trinker, F.H. and Shannon, A.S.: Combust. Flame, 39, 111
(1980).

Clavin, P. and Williams, F.A.: J. Fluid Mech. 90, 589 (1979).
Thomas, A.: .Combust. Flame, 63, 291 (1986).

Bray, K.N.C. and Moss, J.B.: Acta Astronautical 4, 291 (1977).
Libby, P.A.: Prog. Energy Combust. Sci. 11, 83 (1985).

Pope, S.B. and Anand, M.S.: Twentieth Symposium (International) on Combustion,
p. 403, Combustion Institute, Pittsburgh, 1984.

Pope, S.B. and Cheng, W.K.: Twenty-First Symposium (International) on
Combustion, p. 1473, Combustion Institute, Pittsburgh, 1986.

Anand, M.S. and Pope, S.B.: Combust. Flame 67, 127 (1987).
Pope, S.B.: Prog. Energy Combust. Sci. 11, 119 (1985).

Karlin, S. and Taylor, H.M.: A Second Course in Stochastic Processes, Academic,
New York, 1981.

Pope, S.B. and Chen, Y-L.: Bull. Amer. Phys. Soc. 31, 1734 (1986).
Hinze, J.O.: Turbulence, McGraw Hill, New York, 2nd. Ed., 1979.

Yeung, P.K., Girimaji, S. and Pope, S.B.: Eulerian and Lagrangian Statistics from a

High-Resolution Direct Si tion of Statio Homogeneous Turbulence, Cornell
University Report, FDA-88-02, 1988. ’

Taylor, G.I.: Proc. London Math. Soc. 20, 196 (1921).
Batchelor, G.K.: Proc. Roy. Soc. A 213, 349 (1952).

Marble, F.E. and Broadwell, J.E.: Th herent Flam f Turbulent Chemical
Reactions, TRW Report, 1977.





