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ABSTRACT

This report discusses a program called DANCIR that was developed to model semiconductor
devices. DANCIR, which stands for Device and Circuit Simulator, enables the user to compute
the steady-state solution to the drift-diffusion equations for a single semiconductor device. The
drift-diffusion equations that describe carrier motion in a semiconductor device can be used to
compute operating characteristics for a semiconductor device. This allows the engineer to design
different devices and predict the behavior of these devices without resorting to the time-consuming
process of building many prototypes.
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DANCIR: A THREE-DIMENSIONAL STEADY-STATE
SEMICONDUCTOR DEVICE SIMULATOR

1. Introduction

Integrated circuits today are primarily designed by building and testing prototypes. Even
though this methodology is a reliable way of assessing a circuit’s performance, it is a slow and
expensive way to produce a design. As a result, the design and production of semiconductor
devices take several years and cost millions of dollars. An alternative is to design a semiconductor
device by using mathematical models and computer simulations, coupled with a much reduced
verification and testing program. This strategy has the potential of reducing the time needed to
design and produce an integrated chip to as little as one year.

In the past, semiconductor device simulation has been used only as a secondary design tool
because it was always easier to build and test a prototype than to build and validate a simu-
lator. Integrated circuits based on bipolar device technology were commercially available in the
late 1950’s, but it was not until 1964 that Gummel obtained the first numerical solution of van
Roosbroeck’s three nonlinear partial differential equations describing a one-dimensional bipolar
transistor [8]. Shortly after the first one-dimensional calculations had been perfected in the early
1970’s, advances in process technology made high density MOS circuits feasible. These devices
were soon modeled with two-dimensional device simulators, but limitations in computing power
made realistic simulations impractical [7]. Today time-dependent, two-dimensional simulations
are routine. One such example, is the two-dimensional simulator PISCES II which is still widely
used in the United States [11,12]. As devices became smaller and more complex it became ev-
ident that three-dimensional effects needed to be incorporated in a device simulator. The first
three-dimensional simulator appears to be the FIELDAY program announced by IBM in 1981 [1].
Toshiba Corporation announced its own three-dimensional simulator, TOPMOST, in 1982 [15]. In
marked contrast to the FIELDAY program, a stream of research reports followed, indicating that
significant engineering analyses were being undertaken with the aid of the TOPMOST program
[16,17,18,19]. Hitachi Corporation announced its three-dimensional simulator, CADDETH, in 1985
[9,21] which is reportedly used hundreds of times monthly on dedicated Hitachi supercomputers
[22].

Although much of the early device simulation work was performed in the United States, today
most of the engineering applications of three-dimensional modeling are done in Japan. Starting in
the early 1980’s, the Japanese computer manufacturers undertook three-dimensional modeling ef-
forts and by the mid 1980’s had achieved dominance in the crucial semiconductor memory market.
Because of this intense Japanese effort, the United States quickly lost its edge in the semicon-
ductor industry and in related crucial technologies. Our position has been recognized by several
governmental studies, including ones by the FCCSET (Federal Coordinating Council on Science,



Engineering, and Technology) committee [4], and the Department of Defense Critical Technolo-
gies Plan [2]. Many reasons have been given for this phenomenon, one of which is that existing
science and technology programs do not recognize the new market-driven model of innovation.
Even though the United States clearly has the technical expertise to generate innovative ideas, the
Japanese have dominated the crucial markets by quickly bringing to market new products based
on ideas originated in the United States. The use of device simulators by the Japanese in their
production cycle is clearly an important factor in the speed of their design process.

This report discusses the program DANCIR that was developed to model semiconductor devices.
DANCIR, which stands for Device and Circuit Simulator, is a full three-dimensional simulator capa-
ble of computing the steady-state solution of the drift-diffusion equations for a single semiconductor
device. Section 2 discusses the drift-diffusion equations, that are used to model a semiconductor
device. Section 3 briefly discusses the numerical algorithms used to solve the drift-diffusion equa-
tions. Section 4 describes the input data required to run a typical simulation and includes a simple
example.

2. The Drift-Diffusion Equations

The drift-diffusion model consists of a set of three, coupled, nonlinear partial differential equa-
tions: the potential equation plus two continuity equations, one each for the electron and hole
current densities.

The potential or Poisson equation is given by

€V-E = —eV?y) = p, (2.1)

where € is the scalar permittivity of the semiconductor, % is the electric potential, and £ = -~V
is the electric field. The total electric charge density, p, is given by

p=q(p—n+ Np— Ny, (2.2)

where ¢ is the elementary charge, n is the density of free electrons, p is the density of holes, Np is
the density of donor impurities, and N4 is the density of acceptors.
The continuity equations for the electron and hole currents can be stated as

on 1

a — "q‘V‘Jn - R - 0 (2’3)
op 1 _

B + EV.JP - R=0, (2.4)

where J, is the electron current density, Jj, is the hole current density, and R is a term that accounts
for the recombination and generation of electrons and holes. The recombination-generation term
is a nonlinear function of the electric field and the bulk material temperature 7.



In the drift-diffusion model, the movement of carriers is modeled by a drift term due to the
acceleration of carriers by an external electric field and by a diffusion term due to a concentration
gradient:

Jn = quunE +qD,Vn, (2.5)

Jp = quppE — qDpVp, (2.6)
where yu,, and p, are the electron and hole mobilities respectively, and D, and D, are the diffusion
coefficients.

At low electric fields, the mobilities may be thought of as simply a constant of proportionality
between a carrier’s drift velocity and the electric field, that is,

vy = k. (2.7)
The diffusion coefficients can in turn be related to the mobilities by the Einstein relation,
kT kT
D, = /J'n"q—', Dp = Np—q_> (2‘8)

where k is the Boltzmann constant.
Substitution of equations (2.5-2.6) into (2.3-2.4) and rearranging leads to

%% = V-(pnnE + D,Vn)—- R =0, (2.9)
p
N + V-(uppE — D,V p)— R = 0. (2.10)

Equations (2.1) and (2.9-2.10), along with suitable boundary conditions, constitute the drift-
diffusion equations. This set of equations can also be rigorously derived from the Boltzmann
transport equation; however this section is only meant as a brief overview. For a more complete
derivation of the equations the reader can consult a variety of references, for example [10,14,20].

3. Numerical Methods

The numerical solution of the drift-diffusion equations involves many issues. In this section, we
briefly outline the numerical methods used in the DANCIR code for the solution of the steady-state,
drift-diffusion equations. The numerical methods employed in the DANCIR code can be divided
into three areas: 1) the spatial discretization of the nonlinear partial-differential equations, 2) the
solution of the resulting nonlinear equations, and 3) the solution of the linear equations arising in
the solution of the nonlinear system of equations. An added issue which must be addressed is the
question of scaling. The particular scaling used in a simulator will impact the numerical methods
used; therefore we will discuss the scaling issues involved in the solution of the drift-diffusion
equations first.



Scaling of Variables.

The wide range in magnitude of both the dependent and independent variables creates dif-
ficulties in the numerical solution process. Independent variables such as the concentrations of
impurity dopings Np and N4 range from 10! to 10'® carriers per cubic centimeter. Dependent
variables such as the carrier densities n and p range from virtually 0 to 10® carriers per cubic cen-
timeter. The difficulties associated with the wide range in the magnitude of the dependent variables
can be circumvented somewhat by employing different variables. The most popular formulations
recast the drift-diffusion equations by expressing the carrier concentrations n and p in terms of
either the quasi-Fermi potentials, ¢, and ¢,,

N = M exp (-q—(%——%éﬁ) , (3.11)
P = micexp (W) : (3.12)
or the Slotboom variables, 4 and v,
I w
n = M exp (kT) u, (3.13)
P = MNieexp (-%%?—) v, (3.14)

where n;. is the effective intrinsic carrier concentration.

Polak [13] notes that changing variables amounts to trading high variability in the dependent
variables for increased nonlinearity in the equations. For example, the quasi-Fermi potentials have a
small range of magnitude, but the current densities are exponential functions of them, which makes
the solution of the resulting nonlinear system more difficult. The Slotboom variables have an
enormous range of magnitude, but the current continuity equations assume the form of Poisson or
potential equations facilitating both the mathematical analysis and the numerical solution process.

In the DANCIR code, we chose to scale the variables by using the Slotboom variables. Using
this scaling the current densities can be written as

Jo = kTpnnicexp(qy/kT)Vu, (3.15)
Jp = —kTppnicexp(—qy/kT)Vv. (3.16)

The resulting steady-state, drift-diffusion equations can then be expressed as

fi(,u,v) = €V 4 g [n,-ee:k%ﬂv - niee%u + Np — NA] =0, (3.17)
fu0) = V- [kTpanieef V] + R=0, (3.18)
fa(®%,u,0) = V- [kTppnice ™ Vo] + R =0, (3.19)
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Spatial Discretization.

DANCIR uses a control volume discretization in the spatial domain. This technique is
widely used in fluid dynamics whenever conservation properties are important. In the special case
of a uniform, rectangular grid this method can be shown to be equivalent to a centered difference
approach [5].

Nonlinear Equations.

DANCIR uses Gummel’s method to solve the nonlinear equations arising from the discretiza-
tion of the drift-diffusion equations. If f1, fo, and f3 are defined by equations (3.17-3.19) then the
nonlinear system of equations arising from the spatial discretization of the drift-diffusion equations
can be written as

fi
Fp,u,v)=1 f3 | =0. (3.20)
f3

There are many techniques available in the literature for solving systems of nonlinear equations.
Gummel [8] proposed a solution method where each one of the equations fi, f2, and f3 is linearized
by holding two of the three variables fixed. This method is known in the numerical analysis
literature as the nonlinear Gauss-Seidel method. Specifically the method consists of the following
algorithm:

Algorithm: Gummel Iteration.
Compute Initial Estimates 4°, u0, v°
Fork=0,1,2,...
Solve fi(**1, u* v*) = 0 for yF+,
Solve fo(yF+t, uk+1 o*) = 0 for uF+1,
Solve fa(y*+1, uk+l pF+1) = @ for ¥+
Check for convergence.

Gummel’s method has the advantage of only having to solve three linear systems at each
iteration. The disadvantage is that convergence can be quite slow in certain circumstances, for
example in high voltage situations.

In practice, the solution of the steady-state, drift-diffusion equations is accomplished by solving a
series of continuation steps where each continuation step is in turn a steady-state problem. The first
steady-state problem solved is that of the device with no external voltages applied. The potential
at the contacts is then incremented until the desired voltage is reached at the contacts. Future
work will concentrate on developing more efficient techniques utilizing quasi-Newton methods (see
for example [3]).
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The initial estimate for the potential is computed by solving a nonlinear potential equation.
DANCIR uses a Newton method for this calculation because the Jacobian is symmetric in this case
thereby not incurring any extra expense for storage over the Gummel iteration.

Linear Equations.

The final step in the solution of the drift-diffusion equations consists of solving the linear
systems arising in the Gummel iteration. As we mentioned above, the use of the Slotboom variables
has the effect of transforming the continuity equations for the electron and hole currents into a set
of self-adjoint partial-differential equations. In practice this means that the linear systems resulting
from the discretization are symmetric so that any of a number of techniques for solving symmetric
linear systems could be used in the solution process. The particular method used in DANCIR is a
preconditioned conjugate gradient method with an incomplete Cholesky factorization used as the
preconditioner [6].

4. User Input Data Sets

There are two data sets the user will need to supply to run a simulation. The first data set
consists of a device definition file which specifies the geometry of the device and certain operating
parameters. The second data set the user must provide is a subroutine which computes the doping
profile for the device of interest.

The device definition file format is designed to be user-friendly. The input for DANCIR has a
structure similar to a high-level language and can be broken down into a hierarchy of nested blocks.
Each block is started by a particular keyword and terminated by the same keyword prefixed by
the string end. Within each block the input consists of a sequence of alphanumeric keywords
along with a numerical value specifying a particular parameter. For example, the top-most block
is started with a line containing the keywords steady version 2.0 and should be terminated by the
keywords end steady. Within the main block the input can be divided into 5 sub-blocks:

1. Operating environment characteristics.
2. Definition of a device.

3. Writing of a device for restart purposes.
4. Reading of a device for restart purposes.

5. Parameters for the solution of the steady state.

In the following sections, the characters a,:,z in an input specification stand for alphanumeric,
integer, and real values required from the user. Any line which starts with the character ! is
considered a comment. A sample input data set is given in Appendix A for the purposes of
illustration.
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Specify the operating environment.
This block is started with the keywords: specify the operating environment. Valid
keywords within this block include:

print level = ¢
Specifies the amount of print output. A print level = 0 will produce
the mininal amount of output. Large numbers will increase the amount

of output.
specify the scratch file
Specifies parameters for the scratch file used on the Cray version.

i

Allowed parameters include:
maximum number of blocks = =
=z

maximum number of words

physical device number = 1
Specifies the device number for the solid state device.
This keyword is only used on the Cray version.

Define a device.
This block is started with the keywords: define a device. Valid keywords within this block

include:
name of device = a
Name of the device enclosed in quotes.
doping routine = a
Name of the doping routine that DANCIR will call to determine
the doping profile of the device.

number of contacts = ¢
Number of device contacts.

name of contact i = a
The name of contact 7. There must be one name for each contact

specified above.
name of axis i = a
A name for axis ¢ (for example x, y, z).

dielectric constant of a = 2
The dielectric constant of either the insulator or the semiconductor
is set to . The character string ¢ must be either “insulator”

or “semiconductor”.
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Construct a grid.

DANCIR has the capability to easily construct a rectangular grid based on some user-
supplied data. Either a uniform grid or a nonuniform grid may be constructed. If the user does
not specify a grid for a particular axis then DANCIR will generate a unicell grid for that axis. A
uniform grid is fairly easy to specify, requiring 2 minimum of input, but for any realistic device
a nonuniform grid will be required to generate accurate results. The generation of a nonuniform
grid can also be accomplished through the specification of a few simple criteria. DANCIR will read
the user input and attempt to generate an optimal nonuniform grid through the use of a rather
complicated algorithm. To generate either a nonuniform or a uniform grid the user should have a
line of the form: construct a [nonjuniform grid for axis i, where the axis is either 1, 2, or 3.
Valid keywords for a uniform grid include:

boundary at z

A boundary point is set at the point z.
step from z; to 2o = z3

The step size used in the interval [z, z2]

Valid keywords for a nonuniform grid include:

default maximum step = z
The default maximum step allowed in the generation of a
nonuniform grid.
default maximum step ratio = z
The maximum step ratio allowed between adjoining cells in the
generation of a nonuniform grid.
default step at boundaries = z
The step used at the boundaries in the generation of a nonuniform grid.
default maximum step = z
The maximum step allowed in the generation of a
nonuniform grid.
maximum step from z; to zo = z3
The maximum step allowed in the interval [z, z;] in the
generation of a nonuniform grid.
maximum step ratio from z; to z; = z3
The maximum step ratio allowed between adjoining points in the interval
specified by z; and z,
boundary at z with default step
A boundary point is set at z. A cell is then centered about that
point with a step give by the default step size.

14



boundary at z; with step = 2z,
A boundary point is set at z;. A cell is then centered about that
point with a step give by step z.

Write the device.
This block is started with the keywords: write the device. Valid keywords within this
block include:

name of file = ¢
Name of the file to write. This file will be created if it doesn’t exist.
number of block in file = ¢
File number to write.
append block to file = a
Append current block to end of file a.
remark = a
Any identifying comments (must be enclosed in quotes).

Read a device.
This block is started with the keywords: read a device. Valid keywords within this block
include:

name of file = a

Name of the file to read. This file must already exist.
number of block in file = ¢

File number to read.

Determine steady state.
This block is started with the keywords: determine steady state. Valid keywords within
this block include:

potential of contact ¢ = z

The potential of contact a is set to the value of z. There

should be one line for each contact specified in the define device block.
maximum change to contact potentials = z

The maximum change to the contact potentials between

continuation steps.
maximum number of gummel steps = ¢

15



The maximum number of Gummel steps to take before
stopping execution.
accuracy of potential from gummel method = 2z
Convergence tolerance for the potential in the gummel method.
maximum number of newton steps = ¢
The maximum number of Newton steps to take before
stopping execution. Newton’s method is only used in the computation
of the initial estimate of the potential for the Gummel iteration.
accuracy of potential from newton method = z
Convergence tolerance for the potential in Newton’s method.
level of fill in iccg factorization = i
The level of fill-in in the Incomplete Cholesky factorization
used as the preconditioner for the conjugate gradient method.
Larger numbers will speed up the convergence rate of the
conjugate gradient method at the expense of greater storage
requirements. Value must be > 0.
maximum number of iccg steps = ¢
The maximum number of ICCG steps to take before
stopping execution.
sufficient relative residual from iccg = z
Convergence tolerance for the conjugate gradient method.
write the contact data
Flag specifying that DANCIR should write out the contact data.

Doping Routine.

DANCIR is setup to call one of 10 subroutines named dope00 — dope09 for the calculation
of the doping profile. The user must specify in the input data set the name of one of these doping
routines. DANCIR calls the specified doping routine once for each set of coordinates. The doping
routine should return the doping level for both acceptors and donors at that coordinate point. In
addition, the subroutine should also return values indicating whether that point is part of a contact
and what type of material it is. The calling sequence for the doping routine is:

subroutine dopeOO(error, text, contac, coordl, coord2,
+ coord3, nd, na, mtrl)

The parameters are:

error Output Logical. Error flag
text Input Integer. File number for error messages

16



contac
coordl
coord?2
coord3
nd

na

mtrl

A sample doping routine for a 2D model of an abrupt p —n junction diode is given in Appendix
B as a guideline to developers.

Using the sample input data set given in Appendix A along with the doping routine in Appendix
B we computed the steady state solution for a p — n junction diode at 1 volt. Figures 1-2 display
the electron and hole concentrations computed by DANCIR. Figure 3 is a plot of the potential at
1 volt. Figure 4 is a plot of the current through the diode as a function of the contact voltage

applied.

Output
Input
Input
Input
Output

Output

Output

Integer.
Real*8.
Real*8.
Real*8.
Real*8.

Real*8.

Real*8.

Contact number

Coordinate number 1 (usually x)
Coordinate number 2 (usually y)
Coordinate number 3 (usually z)
Doping level of donors in

units of carriers/cm?

Doping level of acceptors in
units of carriers/cm?

Material number

semiconductor = 0.0

insulator = 1.0
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Appendix A. Sample Input Data Set

{
! Input data set for 2D pn junction diode
]
steady version 2.0
specify the operating environment
print level = 2
end specify environment

define a device

! Supply the name of the doping routine
name of device = "abruptpn"
doping routine = dope00
number of contacts = 2
name of contact 1 = left
name of contact 2 = right
name of axis 1 = x
name of axis 2 = y
! Define the mesh
axis 1
0.1
2.0

construct a nonuniform grid for
default maximum step =
default maximum step ratio =

boundary at 0.00
boundary at 0.475
boundary at 0.525
boundary at 1.00

maximum step from 0.475 to O.

end construct grid

with step
with step
with step
with step

0.01
0.0025
0.0025
0.01

525 = .0025

construct a uniform grid for axis 2

boundary at 0.00
boundary at 1.00

step from 0.0 to 1.00 = 0.25

end construct grid
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end define device
{

! Compute the steady state solution at equilibrium
{

determine the steady state

accuracy of potential from gummel method = 1.0e-9
level of fill in iccg factorizatioms =1
maximum change to contact potentials = 1.00
maximum number of gummel steps = 200
maximum number of iccg steps = 500
sufficient relative residual from iccg = 1.0e-9

potential of left = 0.00
potential of right = 0.00
end determine

! Write out a restart file
write the device

name of file = pndiode
number of block in file = 1

remark = "diode example"
remark = "in equilibrium"
end write

! Compute the steady state solution at V = 1.0

determine the steady state
accuracy of potential from gummel method = 1.0e-$
level of fill in iccg factorizations = 1
maximum change to contact potentials = 0.05
maximum number of gummel steps = 500
maximum number of iccg steps = 1000
sufficient relative residual from iccg = 1.0e-9
potential of left = 1.0

end determine

{

{ Write out a restart file
]
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write the device
name of file = pndiode
number of block in file = 2
remark = "left contact at 1.0"
end write
end steady
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Appendix B. Sample Doping Routine

subroutine dopeOO(error, text, contac, coordl, coord2,
+ coord3, nd, na, mtrl)

Purpose
Supply doping profiles for DANCIR

Parameters
error <---- Logical error flag
text ----> Integer file number for error messages
contac <---- Integer contact number
coordl ----> Real*8 coordinate number 1 (usually x)
coord2 ----> Real*8 coordinate number 2 (usually y)
coord3  ----> Real*8 coordinate number 3 (usually z)
nd <-=--~  Real*8 doping level of donors in
units of carrier/cc
na <----  Real*8 doping level of acceptors in
units of carriers/cc
mtrl <----  Real*8 material number
semiconductor = 0.0
insulator = 1.0
Notes

For flexibility the doping profiles are read in
from a user supplied file
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character id*9

integer contac, text

logical error

real*8 coordi, coord2, coord3, nd, na, mtrl,

parameter (id = ’dope00: )
parameter (zinsul = 1.0, zsemic = 0.0)

parameter (iuser = 88)

integer i, iregion
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logical first
data first /.true./

common /dopegrd/ x0, xn, x1(5), xr(5), ndu(5), nau(5), nmtrl
real*8 x0, xn, x1(5), xr(5), ndu(5), nau(s)
integer nmtrl

save first
save /dopegrd/

coordl
coord2

X
y

if (first) then
open(unit=iuser,file=’user.dat’,status=’old’)
read(iuser,*) x0, xn
read(iuser,*) nmtrl
write(text,8801) x0, xn, nmtrl
write(text,8802)
do 5 i=1,nmtrl
read(iuser,*) x1(i), xr(i), ndu(i), nau(i)
write(text,8803) x1(i), xr(i), ndu(i), nau(i)
continue
first = .false.
endif

if (x .1t. x0 .or. x .gt. xn) then
write(text,*) ’dope00: coordinates out of bounds’
write(text,*) ’x0, xn, x = *, x0, xn, X
go to 99999

endif

FIND THE REGION THAT (X,Y) IS IN AND SET THE DOPING.

mtrl = zsemic
nd = 0.0
na = 0.0

do 100 i=1i,nmtrl
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if (x .ge. x1(i) .and. x .le. xr(i)) then
iregion = i
goto 101
endif
100 continue

iregion = 0

write(text,*) ’dope00: x not in any region.’
write(text,*) ? doping set to zero.’
goto 99999

101 continue

nd
na

ndu(iregion)

nau(iregion)

SET THE CONTACTS.

1 => left contact

2 => right contact
0 => no contact

a0 00 00

if (x .eq. x0) then
contac = 1

else if (x .eq. xn) then
contac = 2

else
contac = O

end if

8801 format(/,’ dope00: Doping Profile for 2D Test Problem’,/,

& » x0 = 7, 1pel2.4,/,
& ’ xn = ’, 1pel2.4,/,
& * number of regions = 7, i2)

8802 format(8x, ’xleft’, t20, ’xright’, t32, ’Nd’, t44, ’Na’)
8803 format(ix, 4(ipel2.4))
99999 continue
return
end
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