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ABSTRACT

This report discusses a program called DANCIR that was developed to model semiconductor 
devices. DANCIR, which stands for Device and Circuit Simulator, enables the user to compute 
the steady-state solution to the drift-diffusion equations for a single semiconductor device. The 
drift-diffusion equations that describe carrier motion in a semiconductor device can be used to 
compute operating characteristics for a semiconductor device. This allows the engineer to design 
different devices and predict the behavior of these devices without resorting to the time-consuming 
process of building many prototypes.
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DANCIR: A THREE-DIMENSIONAL STEADY-STATE 
SEMICONDUCTOR DEVICE SIMULATOR

1. Introduction

Integrated circuits today are primarily designed by building and testing prototypes. Even 
though this methodology is a reliable way of assessing a circuit’s performance, it is a slow and 
expensive way to produce a design. As a result, the design and production of semiconductor 
devices take several years and cost millions of dollars. An alternative is to design a semiconductor 
device by using mathematical models and computer simulations, coupled with a much reduced 
verification and testing program. This strategy has the potential of reducing the time needed to 
design and produce an integrated chip to as little as one year.

In the past, semiconductor device simulation has been used only as a secondary design tool 
because it was always easier to build and test a prototype than to build and validate a simu­
lator. Integrated circuits based on bipolar device technology were commercially available in the 
late 1950’s, but it was not until 1964 that Gummel obtained the first numerical solution of van 
Roosbroeck’s three nonlinear partial differential equations describing a one-dimensional bipolar 
transistor [8]. Shortly after the first one-dimensional calculations had been perfected in the early 
1970’s, advances in process technology made high density MOS circuits feasible. These devices 
were soon modeled with two-dimensional device simulators, but limitations in computing power 
made realistic simulations impractical [7]. Today time-dependent, two-dimensional simulations 
are routine. One such example, is the two-dimensional simulator PISCES II which is still widely 
used in the United States [11,12]. As devices became smaller and more complex it became ev­
ident that three-dimensional effects needed to be incorporated in a device simulator. The first 
three-dimensional simulator appears to be the FIELDAY program announced by IBM in 1981 [1], 
Toshiba Corporation announced its own three-dimensional simulator, TOPMOST, in 1982 [15]. In 
marked contrast to the FIELDAY program, a stream of research reports followed, indicating that 
significant engineering analyses were being undertaken with the aid of the TOPMOST program 
[16,17,18,19]. Hitachi Corporation announced its three-dimensional simulator, CADDETH, in 1985 
[9,21] which is reportedly used hundreds of times monthly on dedicated Hitachi supercomputers 
[22].

Although much of the early device simulation work was performed in the United States, today 
most of the engineering applications of three-dimensional modeling axe done in Japan. Starting in 
the early 1980’s, the Japanese computer manufacturers undertook three-dimensional modeling ef­
forts and by the mid 1980’s had achieved dominance in the crucial semiconductor memory market. 
Because of this intense Japanese effort, the United States quickly lost its edge in the semicon­
ductor industry and in related crucial technologies. Our position has been recognized by several 
governmental studies, including ones by the FCCSET (Federal Coordinating Council on Science,
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Engineering, and Technology) committee [4], and the Department of Defense Critical Technolo­
gies Plan [2]. Many reasons have been given for this phenomenon, one of which is that existing 
science and technology programs do not recognize the new market-driven model of innovation. 
Even though the United States clearly has the technical expertise to generate innovative ideas, the 
Japanese have dominated the crucial markets by quickly bringing to market new products based 
on ideas originated in the United States. The use of device simulators by the Japanese in their 
production cycle is clearly an important factor in the speed of their design process.

This report discusses the program DANCIR that was developed to model semiconductor devices. 
DANCIR, which stands for Device and Circuit Simulator, is a full three-dimensional simulator capa­
ble of computing the steady-state solution of the drift-diffusion equations for a single semiconductor 
device. Section 2 discusses the drift-diffusion equations, that are used to model a semiconductor 
device. Section 3 briefly discusses the numerical algorithms used to solve the drift-diffusion equa­
tions. Section 4 describes the input data required to run a typical simulation and includes a simple 
example.

2. The Drift-Diffusion Equations

The drift-diffusion model consists of a set of three, coupled, nonlinear partial differential equa­
tions: the potential equation plus two continuity equations, one each for the electron and hole 
current densities.

The potential or Poisson equation is given by

eV-E = -eV3^ = p, (2.1)

where e is the scalar permittivity of the semiconductor, xj) is the electric potential, and E = —Vxj) 
is the electric field. The total electric charge density, p, is given by

p = q(p - n + ND - Na), (2.2)

where q is the elementary charge, n is the density of free electrons, p is the density of holes, Nj) is 
the density of donor impurities, and NA is the density of acceptors.

The continuity equations for the electron and hole currents can be stated as

—R = 0 (2.3)
at q

fE + iv./,-*.#, (2.4)

where Jn is the electron current density, Jp is the hole current density, and R is a term that accounts 
for the recombination and generation of electrons and holes. The recombination-generation term 
is a nonlinear function of the electric field and the bulk material temperature T.
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In the drift-diffusion model, the movement of carriers is modeled by a drift term due to the 
acceleration of carriers by an external electric field and by a diffusion term due to a concentration 
gradient:

Jn = qHnnE + qDnVn, (2.5)
Jp — qpippE - qDpVp, (2.6)

where pn and pp are the electron and hole mobilities respectively, and Dn and Dp are the diffusion
coefficients.

At low electric fields, the mobilities may be thought of as simply a constant of proportionality 
between a carrier’s drift velocity and the electric field, that is,

Vd = pE. (2.7)

The diffusion coefficients can in turn be related to the mobilities by the Einstein relation,
kT kT

Dn = Pn-J’ DP = AV-p (2.8)

where k is the Boltzmann constant.
Substitution of equations (2.5-2.6) into (2.3-2.4) and rearranging leads to

Qjl
™ - V.(pnnE + DnVn) - R = 0, (2.9)

Qn
-± + V-{pppE-DpVp)-R = Q. (2.10)

Equations (2.1) and (2.9-2.10), along with suitable boundary conditions, constitute the drift- 
diffusion equations. This set of equations can also be rigorously derived from the Boltzmann 
transport equation; however this section is only meant as a brief overview. For a more complete 
derivation of the equations the reader can consult a variety of references, for example [10,14,20].

3. Numerical Methods

The numerical solution of the drift-diffusion equations involves many issues. In this section, we 
briefly outline the numerical methods used in the DANCIR code for the solution of the steady-state, 
drift-diffusion equations. The numerical methods employed in the DANCIR code can be divided 
into three areas: 1) the spatial discretization of the nonlinear partial-differential equations, 2) the 
solution of the resulting nonlinear equations, and 3) the solution of the linear equations arising in 
the solution of the nonlinear system of equations. An added issue which must be addressed is the 
question of scaling. The particular scaling used in a simulator will impact the numerical methods 
used; therefore we will discuss the scaling issues involved in the solution of the drift-diffusion 
equations first.
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Scaling of Variables.
The wide range in magnitude of both the dependent and independent variables creates dif­

ficulties in the numerical solution process. Independent variables such as the concentrations of 
impurity dopings Nd and Na range from 1013 to 1019 carriers per cubic centimeter. Dependent 
variables such as the carrier densities n and p range from virtually 0 to 1019 carriers per cubic cen­
timeter. The difficulties associated with the wide range in the magnitude of the dependent variables 
can be circumvented somewhat by employing different variables. The most popular formulations 
recast the drift-diffusion equations by expressing the carrier concentrations n and p in terms of 
either the quasi-Fermi potentials, <f>n and <^p,

n = nieexp » (3-n)

p = nie exp i

or the Slotboom variables, u and v,

n = nie exp u, (3.13)

P = nie exp V, (3.14)

where n,e is the effective intrinsic carrier concentration.
Polak [13] notes that changing variables amounts to trading high variability in the dependent 

variables for increased nonlinearity in the equations. For example, the quasi-Fermi potentials have a 
small range of magnitude, but the current densities are exponential functions of them, which makes 
the solution of the resulting nonlinear system more difficult. The Slotboom variables have an 
enormous range of magnitude, but the current continuity equations assume the form of Poisson or 
potential equations facilitating both the mathematical analysis and the numerical solution process.

In the DANCIR code, we chose to scale the variables by using the Slotboom variables. Using
this scaling the current densities can be written as

Jn = kTjj,nnieexp(qifi/kT)'Vv,, (3.15)
Jp = —kTppUie cxp(—qip/v. (3.16)

The resulting steady-state, drift-diffusion equations can then be expressed as

^ [n;ee^u - n,'ee*ru + Ad - Aa] = 0, (3.17)

/2(V>, u,v) = V- [&I>nrciee*r Vtt] + R = 0, (3.18)

/3(V>, u, v) = V • jfcT/ipnieeTr1 V v] + R = 0, (3.19)
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Spatial Discretization.
DANCIR uses a control volume discretization in the spatial domain. This technique is 

widely used in fluid dynamics whenever conservation properties are important. In the special case 
of a uniform, rectangular grid this method can be shown to be equivalent to a centered difference 
approach [5].

Nonlinear Equations.
DANCIR uses Gummel’s method to solve the nonlinear equations arising from the discretiza­

tion of the drift-diffusion equations. If /i,/2, and /s are defined by equations (3.17-3.19) then the 
nonlinear system of equations arising from the spatial discretization of the drift-diffusion equations 
can be written as

F(ip,u,v) =
( h\

h
\h )

0. (3.20)

There are many techniques available in the literature for solving systems of nonlinear equations. 
Gummel [8] proposed a solution method where each one of the equations /i,/2, and /s is linearized 
by holding two of the three variables fixed. This method is known in the numerical analysis 
literature as the nonlinear Gauss-Seidel method. Specifically the method consists of the following 
algorithm:

Algorithm: Gummel Iteration.
Compute Initial Estimates ^°, u°, u°
For & = 0,1,2,...

Solve ,uk,vk) — 0 for
Solve /2(^fc+1,Mfc+Vfc) = 0 for uk+1.
Solve /3(^fc+1, wfc+1, vk+1) = 0 for vk+1.
Check for convergence.

Gummel’s method has the advantage of only having to solve three linear systems at each 
iteration. The disadvantage is that convergence can be quite slow in certain circumstances, for 
example in high voltage situations.

In practice, the solution of the steady-state, drift-diffusion equations is accomplished by solving a 
series of continuation steps where each continuation step is in turn a steady-state problem. The first 
steady-state problem solved is that of the device with no external voltages applied. The potential 
at the contacts is then incremented until the desired voltage is reached at the contacts. Future 
work will concentrate on developing more efficient techniques utilizing quasi-Newton methods (see 
for example [3]).
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The initial estimate for the potential is computed by solving a nonlinear potential equation. 
DANCIR uses a Newton method for this calculation because the Jacobian is symmetric in this case 
thereby not incurring any extra expense for storage over the Gummel iteration.

Linear Equations.
The final step in the solution of the drift-diffusion equations consists of solving the linear 

systems arising in the Gummel iteration. As we mentioned above, the use of the Slotboom variables 
has the effect of transforming the continuity equations for the electron and hole currents into a set 
of self-adjoint partial-differential equations. In practice this means that the linear systems resulting 
from the discretization are symmetric so that any of a number of techniques for solving symmetric 
linear systems could be used in the solution process. The particular method used in DANCIR is a 
preconditioned conjugate gradient method with an incomplete Cholesky factorization used as the 
preconditioner [6].

4. User Input Data Sets

There are two data sets the user will need to supply to run a simulation. The first data set 
consists of a device definition file which specifies the geometry of the device and certain operating 
parameters. The second data set the user must provide is a subroutine which computes the doping 
profile for the device of interest.

The device definition file format is designed to be user-friendly. The input for DANCIR has a 
structure similar to a high-level language and can be broken down into a hierarchy of nested blocks. 
Each block is started by a particular keyword and terminated by the same keyword prefixed by 
the string end. Within each block the input consists of a sequence of alphanumeric keywords 
along with a numerical value specifying a particular parameter. For example, the top-most block 
is started with a line containing the keywords steady version 2.0 and should be terminated by the 
keywords end steady. Within the main block the input can be divided into 5 sub-blocks:

1. Operating environment characteristics.

2. Definition of a device.

3. Writing of a device for restart purposes.

4. Reading of a device for restart purposes.

5. Parameters for the solution of the steady state.

In the following sections, the characters a,i, x in an input specification stand for alphanumeric, 
integer, and real values required from the user. Any line which starts with the character ! is 
considered a comment. A sample input data set is given in Appendix A for the purposes of 
illustration.
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Specify the operating environment.
This block is started with the keywords: specify the operating environment. Valid 

keywords within this block include:

print level = i
Specifies the amount of print output. A print level = 0 will produce 
the mininai amount of output. Large numbers will increase the amount 
of output.

specify the scratch file
Specifies parameters for the scratch file used on the Cray version.
Allowed parameters include:

maximum number of blocks = x 
maximum number of words = x 

physical device number = i
Specifies the device number for the solid state device.
This keyword is only used on the Cray version.

Define a device.
This block is started with the keywords: define a device. Valid keywords within this block 

include:

name of device = a
Name of the device enclosed in quotes.

doping routine = a
Name of the doping routine that DANCIR will call to determine 
the doping profile of the device, 

number of contacts = i
Number of device contacts, 

name of contact i — a
The name of contact i. There must be one name for each contact 
specified above, 

name of axis i = a
A name for axis i (for example x, y, z).

dielectric constant of a = a:
The dielectric constant of either the insulator or the semiconductor 
is set to x. The character string a must be either “insulator” 
or “semiconductor”.
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Construct a grid.
DANCIR has the capability to easily construct a rectangular grid based on some user- 

supplied data. Either a uniform grid or a nonuniform grid may be constructed. If the user does 
not specify a grid for a particular axis then DANCIR will generate a unicell grid for that axis. A 
uniform grid is fairly easy to specify, requiring a minimum of input, but for any realistic device 
a nonuniform grid will be required to generate accurate results. The generation of a nonuniform 
grid can also be accomplished through the specification of a few simple criteria. DANCIR will read 
the user input and attempt to generate an optimal nonuniform grid through the use of a rather 
complicated algorithm. To generate either a nonuniform or a uniform grid the user should have a 
line of the form: construct a [non]uniform grid for axis i, where the axis is either 1, 2, or 3. 
Valid keywords for a uniform grid include:

boundary at x
A boundary point is set at the point x. 

step from zj to X2 = Z3
The step size used in the interval [zi, Z2]

Valid keywords for a nonuniform grid include:

default maximum step = z
The default maximum step allowed in the generation of a 
nonuniform grid.

default maximum step ratio = x
The maximum step ratio allowed between adjoining cells in the 
generation of a nonuniform grid, 

default step at boundaries = z
The step used at the boundaries in the generation of a nonuniform grid, 

default maximum step = z
The maximum step allowed in the generation of a 
nonuniform grid.

maximum step from Zi to Z2 = Z3
The maximum step allowed in the interval [zi, Z2] in the 
generation of a nonuniform grid, 

maximum step ratio from x\ to Z2 = Z3
The maximum step ratio allowed between adjoining points in the interval 
specified by zi and Z2 

boundary at z with default step
A boundary point is set at z. A cell is then centered about that 
point with a step give by the default step size.
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boundary at xi with step = X2

A boundary point is set at x\. A cell is then centered about that 
point with a step give by step x^-

Write the device.
This block is started with the keywords: write the device. Valid keywords within this 

block include:

name of file = a
Name of the file to write. This file will be created if it doesn’t exist, 

number of block in file = i 
File number to write, 

append block to file = a
Append current block to end of file a. 

remark = a
Any identifying comments (must be enclosed in quotes).

Read a device.
This block is started with the keywords: read a device. Valid keywords within this block 

include:

name of file = a
Name of the file to read. This file must already exist, 

number of block in file = i 
File number to read.

Determine steady state.
This block is started with the keywords: determine steady state. Valid keywords within 

this block include:

potential of contact a — x
The potential of contact a is set to the value of x. There
should be one line for each contact specified in the define device block.

maximum change to contact potentials = x
The maximum change to the contact potentials between 
continuation steps.

maximum number of gummel steps = i

15



The maximum number of Gummel steps to take before 
stopping execution.

accuracy of potential from gummel method = x
Convergence tolerance for the potential in the gummel method, 

maximum number of newton steps = i
The maximum number of Newton steps to take before 
stopping execution. Newton’s method is only used in the computation 
of the initial estimate of the potential for the Gummel iteration, 

accuracy of potential from newton method = x
Convergence tolerance for the potential in Newton’s method, 

level of fill in iccg factorization = i
The level of fill-in in the Incomplete Cholesky factorization 
used as the preconditioner for the conjugate gradient method.
Larger numbers will speed up the convergence rate of the 
conjugate gradient method at the expense of greater storage 
requirements. Value must be > 0. 

maximum number of iccg steps = i
The maximum number of ICCG steps to take before 
stopping execution.

sufficient relative residual from iccg = x
Convergence tolerance for the conjugate gradient method, 

write the contact data
Flag specifying that DANCIR should write out the contact data.

Doping Routine.
DANCIR is setup to call one of 10 subroutines named dopeOO - dope09 for the calculation 

of the doping profile. The user must specify in the input data set the name of one of these doping 
routines. DANCIR calls the specified doping routine once for each set of coordinates. The doping 
routine should return the doping level for both acceptors and donors at that coordinate point. In 
addition, the subroutine should also return values indicating whether that point is part of a contact 
and what type of material it is. The calling sequence for the doping routine is:

subroutine dopeOO(error, text, contac, coordl, coord2,
+ coord3, nd, na, mtrl)

The parameters are:

error Output Logical. Error flag
text Input Integer. File number for error messages

16



contac Output Integer. Contact number
coordl Input Rea!*8. Coordinate number 1 (usually x)
coord2 Input Real*8. Coordinate number 2 (usually y)
coordS Input Real*8. Coordinate number 3 (usually z)
nd Output Real*8. Doping level of donors in 

units of carriers/cm3
na Output Realms. Doping level of acceptors in 

units of carriers/cm3
mtrl Output Real*8. Material number

semiconductor = 0.0 
insulator = 1.0

A sample doping routine for a 2D model of an abrupt p-n junction diode is given in Appendix 
B as a guideline to developers.

Using the sample input data set given in Appendix A along with the doping routine in Appendix 
B we computed the steady state solution for a p — n junction diode at 1 volt. Figures 1-2 display 
the electron and hole concentrations computed by DANCIR. Figure 3 is a plot of the potential at 
1 volt. Figure 4 is a plot of the current through the diode as a function of the contact voltage 
applied.
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Appendix A. Sample Input Data Set

! Input data set for 2D pn junction diode
i
steady version 2.0

specify the operating environment 
print level = 2 

end specify environment

define a device
j
! Supply the name of the doping routine
j

name of device = "abruptpn" 
doping routine = dopeOO 
number of contacts = 2 
name of contact 1 = left 
name of contact 2 = right 
name of axis 1 = x 
name of axis 2 = y

i
! Define the mesh
i

construct a nonuniform grid for axis 1 
default maximum step =0.1
default maximum step ratio = 2.0 
boundary at 0.00 with step 0.01
boundary at 0.475 with step 0.0025
boundary at 0.525 with step 0.0025
boundary at 1.00 with step 0.01
maximum step from 0.475 to 0.525 = .0025 

end construct grid

construct a uniform grid for axis 2 
boundary at 0.00
boundary at 1.00
step from 0.0 to 1.00 = 0.25 

end construct grid
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end define device

Compute the steady state solution at equilibrium

determine the steady state
accuracy of potential from gummel method = 1.0e-9 
level of fill in iccg factorizations = 1
maximum change to contact potentials = 1.00
maximum number of gummel steps = 200
maximum number of iccg steps = 500
sufficient relative residual from iccg = 1.0e-9 
potential of left = 0.00 
potential of right = 0.00 

end determine

Write out a restart file

write the device
name of file = pndiode 
number of block in file = 1 
remark = "diode example" 
remark = "in equilibrium" 

end write

Compute the steady state solution at V = 1.0

determine the steady state
accuracy of potential from gummel method = 1.0e-9 
level of fill in iccg factorizations = 1 
maximum change to contact potentials =0.05 
maximum number of gummel steps = 500 
maximum number of iccg steps = 1000 
sufficient relative residual from iccg = 1.0e-9 
potential of left = 1.0 

end determine

Write out a restart file
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write the device
name of file = pndiode 
number of block in file = 2 
remark = "left contact at 1.0" 

end write 
end steady
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Appendix B. Sample Doping Routine

subroutine dopeOO(error, text, contac, coordl, coord2, 
+ coordS, nd, na, mtrl)

c------------------------------------------------------------------------------------------------------

c dopeOO
c
c Purpose
c Supply doping profiles for DANCIR
c
c Parameters
c error <------ Logical error flag
c text ------ > Integer file number for error messages
c contac <------ Integer contact number
c coordl ------ > Real*8 coordinate number 1 (usually x)
c coord2 ------ > Real*8 coordinate number 2 (usually y)
c coordS ------ > Real*8 coordinate number 3 (usually z)
c nd <------ Real*8 doping level of donors in
c units of carrier/cc
c na <------ Real*8 doping level of acceptors in
c units of carriers/cc
c mtrl <---- - Real*8 material number
c semiconductor =0.0
c insulator = 1.0
c Notes
c For flexibility the doping profiles are read in
c
c—

from a user supplied file

character id*9 
integer contac, text 
logical error
real*8 coordl, coord2, coordS, nd, na, mtrl,

parameter (id = ’dopeOO: ’)
parameter (zinsul = 1.0, zsemic = 0.0) 
parameter (iuser = 88)

integer i, iregion
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logical first
data first /.true./

common /dopegrd/ xO, xn, xl(5), xr(5), ndu(5), nau(5), nmtrl 
real*8 xO, xn, xl(5), xr(5), ndu(5), nau(5)
integer nmtrl

save first 
save /dopegrd/

x = coordl 
y = coord2

if (first) then
open(unit=iuser,file=’user.dat’,status=’old’)
read(iuser,*) xO, xn
read(iuser,*) nmtrl
write(text,8801) xO, xn, nmtrl
write(text,8802)
do 5 i=l.nmtrl

read(iuser,*) xl(i), xr(i), ndu(i), nau(i) 
write(text,8803) xl(i), xr(i), ndu(i), nau(i)

5 continue
first = .false. 

endif

if (x .It. xO .or. x .gt. xn) then
write(text,*) ’dopeOO: coordinates out of bounds’
write(text,*) ’xO, xn, x = ’, xO, xn, x 
go to 99999 

endif

: FIND THE REGION THAT (X,Y) IS IN AND SET THE DOPING.

mtrl = zsemic 
nd = 0.0 
na = 0.0

do 100 i=l,nmtrl
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if (x .ge. xl(i) .and. x .le. xr(i)) then 
iregion = i 
goto 101 

endif 
100 continue

iregion = 0
write(text,*) ’dopeOO: x not in any region.’ 
write(text,*) ’ doping set to zero.’
goto 99999

101 continue

nd = ndu(iregion) 
na = nau(iregion) 

c
c SET THE CONTACTS.
c 1 => left contact
c 2 => right contact
c 0 => no contact
c

if (x .eq. xO) then 
contac = 1

else if (x .eq. xn) then 
contac = 2 

else
contac = 0 

end if

8801 format(/»’ 
&
&
&

8802 format(8x,
8803 format(lx, 

99999 continue
return
end

dopeOO: Doping Profile for 2D Test Problem’,/, 
xO = ’, lpel2.4,/, 
xn = ’, lpel2.4,/, 
number of regions = ’, i2)
’xleft’, t20, ’xright’, t32, ’Nd’, t44, ’Na’) 
4(lpel2.4))

-
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