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ABSTRACT

Bunched, charged particle beams lose energy when they traverse cavities or 

other structures which can be described by resonator impedances. The 

calculation of this loss is extended to arbitrary quality factors by using 

known approximations for the sums of infinite series. For low Q-values, these 

expressions agree with those obtained by replacing the sums by integrals. The 

loss power in SSC is calculated using these expressions.



1. Introduction

The calculation of the energy loss of a Gaussian bunch transversing a 

resonator impedance has recently been refined in a number of SSC reports.1-3 

In a circular machine, the energy loss per revolution or loss power of a bunch 

in general is given by

Ploss= 1 ReZ(p«o)|T (pa>o)r
P=—CO

(1)

where «0= 2ir/T is the (circular) revolution frequency, and I(w) the Fourier 

transform of the beam current

+T/2I(«) =1 T I(t)e"jo>tdt . 
1 -T/2

(2)

Since the current in a bunch must vanish outside its rf bucket, the limits 

of integration can be extended to ± «>.

Assuming a Gaussian bunch, the current can be written

I (t) = I exp(- , 
D £0

(3)

where I = lb(0) is the peak current, and a the rms bunch length in time-units 

(o = az/c). The average bunch current is

T/2lb - } T Ib(t)dt - I ^ .
D I _T/2 D

The Fourier transform is obtained from Eq. (2) with extended limits

co 2

Tb(«) = f / exP(—~ - j«t) dt
-co 2a

(4)

(5)
2 2 

(<> a

= I • e b
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where we have introduced the average bunch current defined in Eq. (4). The 

loss power for a (single) Gaussian bunch thus is given by

00
pioss = lb 1 ReZ(P“0) exp(-pW). (6)

P=—oo

For large accelerators with short bunches, the value of a>oo = oz/radius can 

be very small and the exponential factor then falls off only for rather high 

values of the summation index p. If the impedance varies slowly, one can 

approximate the sum by an integral, but for impedances with narrow peaks this 

is not permissible.

2. Multibunch Case

Most accelerators are operated with more than one bunch circulating, and 

for the SSC there are even some 17,000 bunches foreseen. Usually one attempts 

to have equally spaced identical bunches, but sometimes gaps are left in an 

otherwise uniform bunch train, or a bunch-to-bunch spread in population is 

introduced on purpose in order to damp coherent oscillations. We shall 

therefore treat the general case first and specialize to equally spaced 

identical bunches only in the last stage.

Equations (1) and (2) are correct for any current distribution. We study 

a current distributed over M - in general different - Gaussian bunches. Each

bunch is characterized by a peak current I^, an rms bunch-length and a 

position tfc
M

I(t) = l T.exp 
k=l K

(t-y
2 a,

(7)

The average current I 

bunch

is found to be the sum of the average currents in each

I bk
a, /2ir k

T (8)
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which is seen to depend only on the product of the peak current and the rms 

width.

The Fourier transform of Eq. (7) is found from Eq. (2), with limits 

extended to ± »

!(<*>) =
M

T ^
1 k=l

GO

I

(t-y
2a,3

e-jwtdt

2 2 G) a.
V2* 5 t -2 -J-tk

= I e ®
i k=1 k x

Since T//2ir, we can simplify this as

(9)

M 2 2 co ak
!(<*>) = 2 Ibkexp^_ ~T~ ~ ^^k5

k—1

M
2 ^bk^“^ e

-jwt.

k=l

(10)

i.e., the Fourier transform of the total beam current is the sum of the 

Fourier transforms of each bunch, multiplied by phase factors depending on 

their positions t^.

From now on we assume that all bunches are identical (1^ = 1^, = o

and hence = !&) and equally spaced (t^ = kT/M, with k = 1,2,...M).

Then
H

?(<*>) = th(w) 2 ®
0 k=l

O Pkand in particular for too= pc^.p-

 .ikcoT 
M (ID

M
Upu ) = Ih(P« ) 2 e° b ° k=l

-2-irjpk/M
(12)
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The sum over the p-th power of all n-th roots of unity vanishes except 

when p is a multiple of M, then each term is one and the sum thus simply M.

We thus have T(pw0) = 0 except for p = nM, where n is an integer.

I(nHwo) = MIb(nMwo) , (13)

i.e., only multiples of the "bunch-frequency" c,>b = Ho>q appear in the

spectrum. The power loss of H equally spaced, identical bunches can thus be

written as «®
pioss - X ReZ(p«b)|Tb(pu,b)|2 . (14)

P=—CO

However, since the sum is only over each H-th multiple of o , it will beO
M times smaller than the sum over all lines for slowly varying impedances. We 

shall therefore split the factor M2 and write the power loss as

Ploss - M Zloss^ • (15)

The effective loss impedance for Gaussian bunches is defined by

Zloss = H E ReZ(p«b)exp[-(p«ba) ]
P=-CO

(16)

and can be easily generalized to other distribution functions.

3. Resonator Impedance

The interaction of a charged particle beam with its surroundings is 

usually described by impedances. In accelerators or storage rings, the major 

contributors to the overall impedance are often the rf cavities or other 

unavoidable cross-section variations of the vacuum chamber. These can be 

approximated quite well by a number of (parallel) resonator impedances, each 

characterized by a resonant frequency wr/2ir, a shunt impedance R, and a 

quality factor Q (or, alternatively, by the bandwidth Au = «r/Q). The 

complex impedance (assuming a time variation eJwt) can be written

5



Z(o>) =
1 ♦ iKj- - ?>

r

(17)

It is often more convenient to expand this expression by partial fraction

decomposition D « o
Z(o>) = (—^ - —) ,' 7 IS C0-<012

(18)

where

and

S = /4Q -1

<*>i, a 2Q ^ ± S)

(19)

(20)

are the (complex) poles of the impedance.

To calculate the power loss, we need the impedance evaluated at multiples 

of the bunch frequency = M&>o

z<p“b> ■ it

with

where
(O <>>______r___r_

pr " ” Mg>b o

(21)

(22)

(23)

is the ratio of resonant and bunch frequencies.

In order to evaluate Eq. (16) for the loss impedance, we need the sums of 

infinite series of the form

F(a,») - 1 .
P=-CO ^

(24)

where a = is real, but v in general complex.
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This series converges only very slowly for small values of a, but then it 

can be summed analytically to very high accuracy.4 Indeed, the first 

neglected term in the derivation is of the order of exp(-ir2/aa), which for 

a = 1/10 approaches e~1000 * 10_4O°!

This sum is given by the expression

2 2
F(a,v) = j* (w(av) - e-a w [1-j.cot (m, )]} , (25)

where w(z) is the complex error function.5 We thus obtain the general 

expression for the loss impedance of k equally spaced, identical Gaussian 

bunches traversing a resonator with any value of «r, Rs, Q

loss
■irR

u oS o
{<*x Cwta^^) (1-j.cot irvi)]

2

-a [w(a ) - e”*2 (1-j.COt irv )]} . (26)
2 2 2

In Eq. (26), we have introduced

a
1.2

av
1.2

u a
=2Q-(^±S)' (27)

which are independent of the number of bunches, which appears only in the

arguments irv of the cotangent.
1.2

4. Broad-band Resonator

For single bunches it is often advantageous to replace the large number of 

(sharp) resonances of real structures by a single one with broad bandwidth. 

These impedances are equivalent if they have the same wake potential over the 

length of the bunch.
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A broad bandwidth corresponds to a small quality factor. When Q is small

compared to p = u /«., the imaginary part of the poles v becomes very r* r* d i > 2
large. Since the cotangent of complex argument can be written

1+e2jx • e‘2ycotfx+jy) - -j ^2jx--.-^y (28)

one finds cot z -» -j for y » 1. Then the expression in square brackets in 

Eq. (25) vanishes and one gets simply

F(a,v) * j* w(av) (29)

which is exactly the same result as that obtained when the infinite series is 

replaced by an integral.2

The broad-band loss-impedance becomes to a very good approximation

Z BB
loss

irR
u aSo

[ot W(a ) — a w(a ) ] 11 2 2 (30)

and does thus not depend on the number of bunches.*

i) For 0 > 1/2, the quantity S = /4Q2-1 is real and hence va = -vx*.

Since furthermore w(-z*) = w*(z), we find that the loss impedance is purely 

resistive

Z“L1/2>-;7SReKw(“l)1 <31>
O

ii) For Q < 1/2, S is imaginary and so is a = j-y . with1,2 1,2

*1.2 = ^ (1 1 (32)

* This justifies including the factor M in the definition of the loss 
impedance Eq. (16)
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The complex error function of imaginary argument is purely real5^

2
w(jy) = ey erfc (y) (33)

where erfc(y) = 1 - erf(y) is the "complementary error function." Then the 

loss impedance is again resistive

a2 2
z!B (Q < 1/2) = -----*3=^ [a e 1erfc(a ) - a e 2erfc(a )] (34)

loss ' ^ .n2 L 1 1 2 ' 2/J v 'ct> a vi-41) o
and is also independent of the number of bunches.

iii) In the limit Q -* 1/2, both expressions (31) and (34) become 

indeterminate. Taking the limit e -» 0 for Q = 1/2 ± e in Eqs. (31) or 

(34) yields

Zloss (Q = 1/2) = 2irR[(l+2a2)ea erfc(a) - ^ , (35)

where a = q o for short, r

5. Narrow-band Resonators

For resonances with bandwidths of the order of or smaller than the bunch 

frequency, it is no longer permitted to replace the sum by an integral. The 

resonances of (metallic) cavities usually have quality factors of some tens of 

thousands, and the situation Q i pr = G>r/M«0 is often encountered. Since 

for all 0 > 1/2: va = -v^, we can rewrite Eq. (26) in any case as

2

Zloss = ZrS Re O-j-cot irvj]} . (36)
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The loss impedance is again purely resistive, but now the cotangent term may 

become important. Since its argument is complex it will always remain finite 

as can be seen from another form of the cotangent of a complex variable

cot (x + jy) 1 sin2x - .i sinh 2v 
sin2x + sinh2y

(37)

where the denominator is a sum of squares which does not vanish for y * 0.

However, the loss impedance will depend strongly on the resonator 

frequency, which is often varying with temperature and/or small deformations 

of the vacuum chamber wall. In this case it is indicated to search for the 

maximum loss impedance, which is easily done numerically by changing the 

resonant frequency in small steps.

6. Analytic Approximations

For short bunches such that |a | = w o « 1, we can approximate the1,2 r
complex error function by the lowest terms of its power series expansion

w(z) * 1 - ^ - z2 + - ... (38)

For a broad-band resonator impedance with Q > 1/2, one obtains then from 

Eq. (31)

Z BB
loss

<<) a
(39)

As can be shown from Eq. (34), this expression actually holds also for

Q < 1/2 if the stronger condition oyj « Q is fulfilled.

For very long bunches, on the other hand, for which |a | = w o » 1,1,2 r
we can use the lowest terms of the asymptotic expansion of the complex error 

function5
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W(z) « [1 + -1- +
Z 2z2 4z4

(40)

to obtain from Eq. (31) 

-.BB ✓ir r o K
loss 2 (a, «)3 Q2 [1 + (u>o) 2 ^ ~ 2Q2 ^ + '' ‘ (41)

The loss impedance in seen to decrease with the cube of the bunch length 

when it is larger than the (reduced) wavelength of the resonator (\/2ir).

Already for o>>ro = 1, the long bunch expression is a factor 2/¥Q smaller than 

the short bunch limit: The power loss of long bunches is thus seen to be 

considerably less than for short ones, and excessive power loss in 

accelerators can be alleviated by lengthening the bunches.

7. Energy Loss of SSC Bunches

According to present plans for the SSC, almost every sixth rf bucket will 

be filled with bunches from the HEB booster. There will be 15 batches of 1130 

bunches each, separated by 14 small gaps of 10 empty locations and a longer 

one of 190 empty locations for the abort kicker. A total of 16950 bunches 

will thus occupy most of the 17280 possible places. The spectrum will 

therefore contain mainly multiples of the bunch frequency (62.5 MHz), while 

the revolution frequency harmonics will stay below the 1% level (see Appendix 

for the evolution of the bunch spectrum during injection).

At top energy (20 TeV), the bunch length is expected to be 7.3 cm rms for 

the rf voltage of 20 MV at 375 MHz. During acceleration, the bunches are 

slightly shorter but should remain above 6 cm rms.
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The impedances are less well known. In a circular accelerator, the major 

contributors to energy loss are usually the rf cavities. There are a total of

40 cells foreseen for SSC, with a design to be scaled down from the 358 MHz

PEP cavities.6 The higher mode frequencies should scale approximately in 

proportion to the fundamental frequency, while the R/Q values remain the same 

if the geometric proportions are not changed. The Q-values should change with 

the square root of the frequencies, which is close enough to unity to be 

neglected.

However, the exact frequencies of the higher modes will be spread over a 

certain range due to construction tolerances and temperature differences in 

the 40 cells. Assuming a variation of 5.10-4, the frequency spread occupies a 

bandwidth corresponding to a resonance with a quality factor of 2000. The 

unloaded quality factor of the fundamental resonance is about 40,000, and the 

Q-values of the higher modes will be reduced by the same factor 20.

This reduction does not apply to the fundamental resonance, however, which

must be kept fixed by tuners. The power loss into the fundamental mode, 

however, is taken into account as "beam loading" in the design of the rf 

system, and thus will be excluded here.

The power loss of the strongest higher modes of the scaled rf cavities are 

shown in Figs. 1-6 as a function of detuning over a full bunch-frequency 

interval. Figure 7 shows the sum over all 18 higher (longitudinal) modes 

trapped in the cavity (assuming a cut-off frequency corresponding to a 

proportionally scaled beam pipe). As can be seen from the figures, the power 

loss is extremely low near the center frequencies and becomes large only for a

12



detuning of nearly 30 MHz. At the peak of the second harmonic, the loss may 

increase as much as 4 orders of magnitude. This has to be taken into account 

in the detailed design of the rf cavities which should avoid higher modes at 

multiples of the bunch frequency.

During injection, only part of the circumference of the accelerator is 

filled with bunches, and the revolution frequency harmonics will be stronger. 

This is compensated partially by the reduced current, but because of the 

narrow spacing of lines there will be a much higher probability of falling 

exactly onto one or more resonances. The power loss during injection could 

thus be larger than at full current, but would be limited to a period less 

than the injection time of some 20 minutes. The evolution of the loss during 

injection is discussed in the Appendix.

8. Conclusions

The energy loss of bunches in the SSC traversing the rf cavities is 

strongly reduced by the fact that the spectrum of a train of evenly spaced, 

identical bunches contains only multiples of the bunch frequency. Due to the 

large number of bunches in the SSC, the bunch frequency is very high (62.5 

MHz). Then all higher modes in the rf cavities could be sufficiently far from 

integer multiples of the bunch frequency that the energy loss is strongly 

reduced over that calculated by a simple broad-band model. However, this must 

be taken into account in the design of the rf cavities, as the resonant loss 

at the shortest higher modes may be larger by up to 4 orders of magnitude, 

surpassing by far the loss calculated with the broad-band model.

13



During injection, the circumference of the machine is only filled 

partially, and the revolution frequency harmonics are excited more strongly. 

The energy loss may thus be increased over the injection period, but remains 

limited as also the current is only building up to its full value.
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Appendix: Energy Loss During Injection

Injection into the SSC is presently planned in "box-car" fashion, filling 

N = 15 batches of n = 1130 bunches each from the HEB booster. Ten small gaps 

of 10 empty places, and a bigger one of 190 are left between those batches. A 

total of 16950 bunches is thus injected into the M = 17280 possible spaces 

(corresponding to each sixth rf bucket). For simplicity, we shall neglect 

this small difference and assume that each batch contains n = M/N = 1152 

bunches.

We also assume that the batches are injected from the booster at equal 

time-intervals AT. Then the total energy loss during injection is obtained 

by summing over all states containing from one to N adjacent batches

AE = l l Re Z(p«0) |Tk(po>0)|2, (Al)
k=l p=-®

where ejwftT/M
a=i

(A2)

i) Summing this geometric series for "non-harmonics" p(modM) * 0 yields

|Ik(P«o)l 2= Tb<P“0> sin2(irnkp/H)
sina(irp/M)

(A3)

Inverting the order of summation, we obtain the contribution of the spectral 

lines between bunch-frequency harmonics

AT “ N
AE = S' Re Z(pwJ -S----- 9------- l sin2(irnkp/M) , (A4)

1 N p=-. 0 sin2(irp/M) k=l

where X' means that multiples of M are excluded from the sum.

Using the identity sin2ak = (1-cos2ak)/2, we find that the constant term 

contributes N/2 to the sum over k, while the p-dependent term vanishes
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exactly. Thus
00AT " Ib(p"0)AEx = f1 I Re Z(p»0) -----

P=-
sin (trp/M)

(A5)

ii) For harmonics of the bunch frequency = Ma>0, ail the terms in Eq. (A2) 

are in phase and simply add up, so

and :k<P“b> ■ ""W •

N N
I I Tk (P«-h)|2 = Ih(P<*>h)na X k2 

k=l ^ D D ° k=1

With the identity

" k* = W(N+1) (2N^1)

(A6)

(A7)

(A8)

one finds the "harmonic" contribution (with M = Nn) to the energy loss

AE2 = 6 (M+n)(2M+n) ^ Re z(P“b) *b (pwb) • (A9)
P=-a>

Adding the two contributions (A5) and (A9), one obtains the total energy loss 

during injection

AE Re Z(pa>b) T2 (po>b) (M+n)(2M+n)
3

(A10)
M 1 ReZ(pwb + qa>0) Tb (p«b + qwQ) 

q=l sin2(irq/M)

where we have regrouped the "non-harmonic" terms. The denominator in that 

latter part is small only either for q « M or for M-q « M, where the sine 

can be replaced by its argument. The non-harmonic terms thus are large only 

near the bunch-frequency harmonics.
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If the impedance does not vary rapidly (see below), we can replace the

last term by

(All)

Since M is much larger than unity, we can replace the sum over q by the zeta 

function f(2) = ir2/6.

The total energy loss becomes then approximately

(A12)
where

F = (1 + g)d + + 1/2 .

The first term is the contribution of the bunch-frequency harmonics and is 

close to unity for M » n. The contribution of the "non-harmonic" lines is 

about one half and is thus a non-negligible part of the losses during 

injection even for the case of a "slowly" varying impedance (the bunches are 

always shorter than a bucket, so the single-bunch spectrum Ib(«) will not vary 

significantly over a bunch-frequency interval.

For resonant impedances which are much narrower than the width of the 

"non-harmonic" tails of the spectrum, i.e., a few times a revolution 

frequency, this approximation will no longer hold. The "non-harmonic" 

contribution could then become much larger if a spectral line just falls onto 

a resonant peak.

For the rf cavity of the SSC, higher modes have frequencies between 500 

MHz and about 2GHz, and Q values of the order of 5 x 104. Hence their band 

width is between 10 and 40 kHz, corresponding to 3 to 12 times the revolution 

frequency. The assumption of "slowly varying" impedance is thus only
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marginally fulfilled. However, the Q-values have been reduced by a factor of 

20 to approximate the frequency spread1 of the rf cavity cells. Under this 

assumption, the resonances are wide enough for Eq. (A-12) to hold, and the 

energy loss during injection is only about half of the energy loss of the 

machine with all bunches filled.
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