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ABSTRACT
Bunched, charged particle beams lose energy when they traverse cavities or
other structures which can be described by resonator impedances. The
calculation of this loss is extended to arbitrary quality factors by using
known approximations for the sums of infinite series. For low Q-values, these
expressions agree with those obtained by replacing the sums by integrals. The

loss power in SSC is calculated using these expressions.



1. Introduction

The calculation of the energy loss of a Gaussian bunch transversing a

resonator impedance has recently been refined in a number of SSC reports.'™?

In a circular machine, the energy loss per revolution or loss power of a bunch

in general is given by

«

I ReZ(po )T (pw )%, (1

P =
loss pm—o

where w,= 2%/T is the (circular) revo]ution frequency, and I(w) the Fourier

transform of the beam current
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Since the current in a bunch must vanish outside its rf bucket, the limits
of integration can be extended to t o,

Assuming a Gaussian bunch, the current can be written
-~ 12
I (t) =1 exp(- —) » 3
b( ) p( 26,) (3)

where T = IH(0) is the peak current, and o the rms bunch length in time-units

(o = oz/c). The average bunch current is

T/2 ~ 5
_ T o/exw
I Ib(t)dt =1 T - (4)
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The Fourier transform is obtained from Eq. (2) with extended limits
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where we have introduced the average bunch current defined in Eq. (4). The

loss power for a (single) Gaussian bunch thus is given by

P =1

ne~8

2 2 2 2
loss b ReZ(puo) exp(-p w o ). (6)

p=—
For large accelerators with short bunches, the value of wo = aZ/radius can
be very small and the exponential factor then falls off only for rather high
values of the summation index p. If the impedance varies slowly, one can
approximate the sum by an integral, but for impedances with narrow peaks this

is not permissible.

2. Multibunch Case

Most accelerators are operated with more than one bunch circulating, and
for the SSC there are even some 17,000 bunches foreseen. Usually one attempts
to have equally spaced identical bunches, but sometimes gaps are left in an
otherwise uniform bunch train, or a bunch-to-bunch spread in population is
introduced on purpose in order to damp coherent oscillations. We shall
therefore treat the general case first and specialize to equally spaced
identical bunches only in the last stage.

Equations (1) and (2) are correct for any current distribution. We study

a current distributed over M - in general different - Gaussian bunches. Each

bunch is characterized by a peak current Tk, an rms bunch-length o, and'a

position ti
(t-t,)?

M
I(t) = } Ikexp -
k=1

K)

- (1)
thk
The average current Io is found to be the sum of the average currents in each

bunch

1, =1, - X (8)




which is seen to depend only on the product of the peak current and the rms
width.
The Fourier transform of Eq. (7) is found from Eq. (2), with limits

extended to t «

- (t—tk)
M w 242 .
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Since dek = Ipk T/v2w, we can simplify this as
. M mza:
I(w) = kX Ibkexp(- - - jwtk)
=1
" - (10)
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i.e., the Fourier transform of the total beam current is the sum of the
Fourier transforms of each bunch, multiplied by phase factors depending on
their positions tk.

From now on we assume that all bunches are identical (Ibk = Ib’ o = O
and hence Tbk = Tb) and equally spaced (tx = kT/M, with k = 1,2,...M).

Then _ kol

~ ~ M M
I(w) = Ib(w) ] e 1)
k=1

. . _ 2w
and in particular for © = meE=

M .



The sum over the p-th power of all n-th roots of unity vanishes except

when p is a multiple of M, then each term is one and the sum thus simply M.

We thus have T(poo) = 0 except for p = nM, where n is an integer,
’f(nmo) = M’fb(nmo) , (13)

i.e., only multiples of the "bunch-frequency" W, = Mwo appear in the
spectrum. The power loss of M equally spaced, identical bunches can thus be
written as ©

=M 3 ReZ(puy) T (pup)i® . (14)

p=—w

P'Ioss

However, since the sum is only over each M-th multiple of © it will be
M times smaller than the sum over all lines for slowly varying impedances. We

shall therefore split the factor M? and write the power loss as

12 . (15)

P Toss'b

Toss = M

The effective loss impedance for Gaussian bunches is defined by
@

=M I ReZ(pwy)exp[-(pw,o)”] (16)

p=—

z1oss

and can be easily generalized to other distribution functions.

3. Resonator Impedance

The interaction of a charged particle beam with its surroundings is .
usually described by impedances. In accelerators or storage rings, the major
contributors to the overall impedance are often the rf cavities or other
unavoidable cross-section variations of the vacuum chamber. These can be
approximated quite well by a number of (parallel) resonator impedances, each
characterized by a resonant frequency wr/Zw, a shunt impedance R, and a
quality factor Q (or, alternatively, by the bandwidth Aw = mr/Q). The

complex impedance (assuming a time variation ert) can be written



(o) = R - . (17
1430 (-0
r

It is often more convenient to expand this expression by partial fraction

decomposition R w ©,
2(w) = 33 ((M,1 - El , (18)
where S = v4Q~-1 (19)
d °r
an = L (3
© 2= 20 (j £59) (20)

are the (complex) poles of the impedance.

To calculate the power loss, we need the impedance evaluated at multiples

of the bunch frequency W, = Mo

(o]

R v v

2pwy) = Tc (—— - —>) (21)
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with Via T —;:- = Ea(jts). (22)
wr wr
where Pp = ;; = Mo (23)
[e]

is the ratio of resonant and bunch frequencies.
In order to evaluate Eq. (16) for the loss impedance, we need the sums of

infinite series of the form

F(a,v) = % (24)

p=—o

where a = ©, o is real, but v in general complex.



This series converges only very slowly for small values of a, but then it
can be summed analytically to very high accuracy.® Indeed, the first
neglected term in the derivation is of the order of exp(-«>/a?), which for
~1000 ~ 1 0-4001

a = 1/10 approaches e

This sum is given by the expression

F(a,v) = ju {w(av) - e_az“z[l—j.cot (wv )13, (25)
where w(z) is the complex error function.® We thus obtain the general
expression for the loss impedance of k equally spaced, identical Gaussian
bunches traversing a resonator with any value of @ Rs’ Q

2

R o [Wwe) — e * (1-j.cot wv.)]
a1 cl J . v1

Loss = @ oS
o

-3 .
—a, [w(az) - e (1-j.cot wvz)]} . (26)
In Eq. (26), we have introduced

W o

a = av =§%—(jtS). (27)

1,2 1,2

which are independent of the number of bunches, which appears only in the

arguments ™o of the cotangent.

’

4. Broad-band Resonator

For single bunches it is often advantageous to replace the large number of
(sharp) resonances of real structures by a single one with broad bandwidth.
These impedances are equivalent if they have the same wake potential over the

length of the bunch.



A broad bandwidth corresponds to a small quality factor. When Q is small

compared to pr = wr/wb’ the imaginary part of the poles Vo, becomes very

large. Since the cotangent of complex argument can be written

_2y
_.2y

2jx .

T+e e

cot(x+jy) = -j (28)

1-e2d% -

e
one finds cot z » -j for y >> 1. Then the expression in square brackets in
Eq. (25) vanishes and one gets simply

F(a,v) = jw w(av) (29)
which is exactly the same result as that obtained when the infinite series is
replaced by an integral.?

The broad-band loss-impedance becomes to a very good approximation

BB _ _=R _
Loss = w oS [alw(al) azw("",)] (30)

and does thus not depend on the number of bunches.*

i) For Q > 1/2, the quantity S = v4Q2-1 is real and hence v, = —v,*.

Since furthermore w(-z*) = w*(z), we find that the loss impedance is purely
resistive

zzg Rl w(x )] (31)

BB 9> 1/2) =

z1oss w
o

ii) For Q < 1/2, S is imaginary and so is @ , = j.y1 2 with

wrd
R TR v1-4Q%) (32)

1,2

* This justifies including the factor M in the definition of the loss
impedance Eq. (16)



The complex error function of imaginary argument is purely rea]s)

2

w(jy) = e erfc (y) (33)
where erfc(y) = 1 - erf(y) is the "complementary error function." Then the
loss impedance is again resistive

2

[« 3 [« 1
=R

BB [« e *erfc(a ) - a e 2erfc(e )] (34)
w o v1-40* * : 2 2

loss

A (Q <1/72) =

and is also independent of the number of bunches.

iii) In the limit ¢ » 1/2, both expressions (31) and (34) become
indeterminate. Taking the limit ¢ » 0 for Q = 1/2 + ¢ in Eqs. (31) or
(34) yields

BB

Zloss

2
(Q = 1/2) = 2eR[(1+2a%)e® erfc(a) - ‘%% 1, (35)
where o = w0 for short.

5. Narrow-band Resonators

For resonances with bandwidths of the order of or smaller than the bunch
frequency, it is no longer permitted to replace the sum by an integral. The
resonances of (metallic) cavities usually have quality factors of some tens of

thousands, and the situation Q > py = wp/Mw, is often encountered. Since

for all Q > 1/2: v, = -v,*, we can rewrite Eq. (26) in any case as
_ 2
z = 24R Re {a [wW(a )-e Q‘1(1—,]' cot wv )]} (36)
loss woaS 1 1 ) 1 :



The loss impedance is again purely resistive, but now the cotangent term may
become important. Since its argument is complex it will always remain finite
as can be seen from another form of the cotangent of a complex variable

cot (x + jy) = % sin2x - j sinh 2y , (37)

sin®*x + sinh®y

where the denominator is a sum of squares which does not vanish for y # 0.
However, the loss impedance will depend strongly on the resonator
frequency, which is often varying with temperature and/or small deformations
of the vacuum chamber wall. In this case it is indicated to search for the
maximum loss impedance, which is easily done numerically by changing the

resonant frequency in small steps.

6. Analytic Approximations

For short bunches such that Ia1 2| = w0 K 1, we can approximate the

complex error function by the lowest terms of its power series expansion

L1 -z 2
w(z) =1 V= z° + v (38)

For a broad-band resonator impedance with Q > 1/2, one obtains then from

Eq. (31)

“r R 2 “r°
=1r;; 6[]+71F "Q_+...] (39)

88

Z1oss

As can be shown from Eq. (34), this expression actually holds also for
Q < 1/2 if the stronger condition @0 << Q is fulfilled.
For very long bunches, on the other hand, for which |a1 2| = w9 >> 1,

we can use the lowest terms of the asymptotic expansion of the complex error

. 5
function

16



wz) == [ 2o k) (40)

vw 2 222 4z°
to obtain from Eq. (31)
— /o
BB vt “r’%% R 3 )
2 =— — = - —

The loss impedance in seen to decrease with the cube of the bunch length

when it is larger than the (reduced) wavelength of the resonator (A\/2r).

Already for wpro = 1, the long bunch expression is a factor 2vaQ smaller than
the short bunch 1imit: The power loss of long bunches is thus seen to be
considerably less than for short ones, and excessive power loss in

accelerators can be alleviated by lengthening the bunches.

7. Enerqy Loss of SSC Bunches

According to present plans for the SSC, almost every sixth rf bucket will
be filled with bunches from the HEB booster. There will be 15 batches of 1130
bunches each, separated by 14 small gaps of 10 empty locations and a longer
one of 190 empty locations for the abort kicker. A total of 16950 bunches
will thus occupy most of the 17280 possible places. The spectrum will
therefore contain mainly multiples of the bunch frequency (62.5 MHz), while
the revolution frequency harmonics will stay below the 1% level (see Appendix
for the er]ution of the bunch spectrum during injection).

At top energy (20 TeV), the bunch length is expected to be 7.3 cm rms for
the rf voltage of 20 MV at 375 MHz. During acceleration, the bunches are

slightly shorter but should remain above 6 cm rms.

iR



The impedances are less well known. In a circular accelerator, the major
contributors to energy loss are usually the rf cavities.\ There are a total of
40 cells foreseen for SSC, with a design to be scaled down from the 358 MHz
PEP cavities.® The higher mode frequencies should scale approximately in
proportion to the fundamental frequency, while the R/Q values remain the same
if the geometric proportions are not changed. The Q-values should change with
the square root of the frequencies, which is close enough to unity to be
neglected.

However, the exact frequencies of the higher modes will be spread over a
certain range due to construction tolerances and temperature differences in
the 40 cells. Assuming a variation of 5.107*, the frequency spread occupies a
bandwidth corresponding to a resonance with a quality factor of 2000. The
unloaded quality factor of the fundamental resonance is about 40,000, and the
Q-values of the higher modes will be reduced by the same factor 20.

This reduction does not apply to the fundamental resonance, however, which
must be kept fixed by tuners. The power loss into the fundamental mode,
however, is taken into account as "beam loading" in the design of the rf
system, and thus will be excluded here.

The power loss of the strongest higher modes of the scaled rf cavities are
shown in Figs. 1-6 as a function of detuning over a full bunch-frequency
interval. Figure 7 shows the sum over all 18 higher (longitudinal) modes
trapped in the cavity (assuming a cut-off frequency corresponding to a
proportionally scaled beam pipe). As can be seen from the figures, the power

loss is extremely low near the center frequencies and becomes large only for a

12



detuning of nearly 30 MHz. At the peak of the second harmonic, the loss may
increase as much as 4 orders of magnitude. This has to be taken into account
in the detailed design of the rf cavities which should avoid higher modes at
muitiples of the bunch frequency.

During injection, only part of the circumference of the accelerator is
filled with bunches, and the revolution frequency harmonics will be stronger.
This is compensated partially by the reduced current, but because of the
narrow spacing of lines there will be a much higher probability of falling
exactly onto one or more resonances. The power loss during injection could
thus be larger than at full current, but would be 1imited to a period less
than the injection time of some 20 minutes. The evolution of the loss during

injection is discussed in the Appendix.

8. Conclusions

The energy loss of bunches in the SSC traversing the rf cavities is
strongly reduced by the fact that the spectrum of a train of evenly spaced,
identical bunches contains only multiples of the bunch frequency. 0Due to the
large number of bunches in the SSC, the bunch frequency is very high (62.5
MHz). Then all higher modes in the rf cavities could be sufficiently far from
integer multiples of the bunch frequency that the energy loss is strongly
reduced over that calculated by a simple broad-band model. However, this must
be taken into account in the design of the rf cavities, as the resonant loss
at the shortest higher modes may be larger by up to 4 orders of magnitude,

surpassing by far the loss calculated with the broad-band model.

13



During injection, the circumference of the machine is only filled
partially, and the revolution frequency harmonics are excited more strongly.
The energy loss may thus be increased over the injection period, but remains

limited as also the current is only building up to its full value.
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Appendix: Energy Loss During Injection

Injection into the SSC is presently planned in "box-car" fashion, filling
N = 15 batches of n = 1130 bunches each from the HEB booster. Ten small gaps
of 10 empty places, and a bigger one of 190 are left between those batches. A
total of 16950 bunches is thus injected into the M = 17280 possible spaces
(corresponding to each sixth rf bucket). For simplicity, we shall neglect
this small difference and assume that each batch contains n = M/N = 1152
bunches.

We also assume that the batches are injected from the booster at equal
time-intervals AT. Then the total energy loss during injection is obtained-
by summing over all states containing from one to N adjacent batches

N ©

T ~
BE == I I Re Z(pwy) 1T (o)1, (A1)
k=1 p=-w
nk .
where T (o) = T, (0) ¥ JoRT/M (A2)
k b
=1
i) Summing this geometric series for "non-harmonics" p(modM) = 0 yields
« 2
~ 2_ w2 sin”(wnkp/M)
1T, (pog) | = Tp(poy) : (A3)

sin?(wp/M)

Inverting the order of summation, we obtain the contribution of the spectral

lines between bunch-frequency harmonics

AT T; ( Py, ) N 2
AE1 =N o Y sin“(wnkp/M) , (A4)

' Re Z({pw ) —
p=— sin®(wp/M) k=1

nhe~8

where ¥' means that multiples of M are excluded from the sum.
Using the identity sin®ak = (1-cos2ek)/2, we find that the constant term

contributes N/2 to the sum over k, while the p-dependent term vanishes

22



exactly. Thus .

TS I;(p”o)

5 I Re Z(puy) ———— (A5)
sin“(wp/M)

p=—w

|>

AE =
1

ii) For harmonics of the bunch frequency wp = Mmo, all the terms in Eq. (A2)

are in phase and simply add up, so

and T (Pup) = nkIp(puy) , (A6)
N T 2 2N 2
kz1 I T, (P 1™ = 1, (pwp)n k§1 k (A7)
With the identity
Y K2 - N(Ne1) (201 (A8)

k=1

one finds the "harmonic" contribution (with M = Nn) to the energy loss

aE, = AL (mn)(2mm) 3 Re Z(poy) T2 (pu,) - (A9)

p=—oo
Adding the two contributions (A5) and (A9), one obtains the total energy loss

during injection

AT . ~2 (M+n) (2M+n)
Af = > Y Re Z(pmb) Ib (pwb) 3
p=-e
(A10)
M-1 Rez(po, + qo.) T2 (po. + qu.)
‘3 b 0 b b 0
g=1 sin®(wq/M)

where we have regrouped the "non-harmonic" terms. The denominator in that
latter part is small only either for q << M or for M-q << M, where the sine
can be replaced by its argument. The non-harmonic terms thus are large only

near the bunch-frequency harmonics.
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If the impedance does not vary rapidly (see below), we can replace the
last term by [ﬂ;l]
2 2

o, = AT ﬂz- I Z(poy) T (po) I 1; . (A11)
T p=-o q=1 q

Since M is much larger than unity, we can replace the sum over q by the zeta

function Z(2) = »%/6.

The total energy loss becomes then approximately

aTM? O =
8E = 53 F I Rel (Pa,) 1; (Pop) &
p:-co
(A12)
where

= n n_
F=(1+ M)(1 + 2M) +1/2 .

The first term is the contribution of the bunch-frequency harmonics and is
close to unity for M >> n. The contribution of the "non-harmonic" lines is
about one half and is thus a non-negligible part of the losses during
injection even for the case of a "slowly" varying impedance (the bunches are
always shorter than a bucket, so the single-bunch spectrum Tb(w) will not vary

significantly over a bunch-frequency interval.

For resonant impedances which are much narrower than the width of the
“non-harmonic" tails of the spectrum, i.e., a few times a revolution
frequency, this approximation will no longer hold. The "non-harmonic"
contribution could then become much larger if a spectral line just falls.onto
a resonant peak.

For the rf cavity of the SSC, higher modes have frequencies between 500
MHz and about 2GHz, and Q values of the order of 5 x 10*. Hence their band
width is between 10 and 40 kHz, corresponding to 3 to 12 times the revolution

frequency. The assumption of "slowly varying" impedance is thus only

24



makgina]]y fulfilled. However, the Q-values have been reduced by a factor of
20 to approximate the frequency spread’ of the rf cavity cells. Under this
assumption, the resonances are wide enough for Eq. (A-12) to hold, and the
energy loss during injection is only about half of the energy loss of the

machine with all bunches filled.
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