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MORE ON THE OVERLAP KNOCKOUT RESONANCES IN THE SSC 
A. Chao and C.W. Leemann

Introduction

Steve Myers^ has pointed out that the overlap knockout resonances are 

potentially harmful to the stability of two beams with different revolution 
periods. In this note we present a follow-up study of this effect for the 
SSC.

One possible reason for the two beams to have different revolution periods 
is operation at different energies, especially at injection. The velocity 
difference then translates into a difference in revolution periods. Another 
case is when the two beams have different horizontal orbit distortions (even 
when they have the same energy), which in turn makes the circumferences dif­
ferent. A third possible cause is when there is a circumference difference 
due to survey errors during construction. As pointed out in Ref. 1, these 
effects can in principle be compensated by adjusting the RF frequencies, but 
this is done at the cost of aperture and ought to be avoided if possible.

1. The model

Consider one interaction region between s = -L and s = L. A test particle 
passes through this interaction region, encountering the particle bunches of 
the on-coming beam. The encounters occur at locations spaced by a distance 
d/2, where d is the spacing between bunches. The total number of encounters 
is therefore about 4L/d. For the SSC, L is about 100 m, d is about 15 m, and 
the number of encounters per passage is about 26.

At each encounter, the test particle receives a kick from the on-coming 
beam bunch. The bunches are regarded as unperturbed by the test particle. We 
assume that in the interaction region the two beams are by a fixed distance r.

Let AC be the difference in path length of the two beams (or equivalently 
AC = CAT, with AT the difference in revolution periods) between two adjacent
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Interaction regions. As the test particle passes through the next interaction 
region, the encounter locations will be shifted by a distance AC/2 relative 
to the locations at the previous passage.

The pattern of the encounter locations repeats after d/AC passages. This 
is equivalent to saying that this beam-beam perturbation is modulated at the 
frequency (in tune units) of AC/d. Since the betatron tune is «/6 between 
passages (assuming 6 evenly distributed interaction regions), there is a reso­
nance whenever

v/6 - n = k AC/d 

where n and k are integers.

(1)

If AC comes from operating the two 
of AC is about 1 cm per superperiod if 
higher beam energy is much higher than 
closely spaced tunes

v = 6n + 0.004 k

beams at different energies, the value 
the lower beam energy is 1 TeV and the 
1 TeV. The resonances occur at the

(2)

In the next section, we will present an analytic calculation of the 
strength of these resonances for the special case when L is an integral multi­
ple of d/2. A numerical simulation is then given in the following section, 
yielding more general results. Finally, in the last section we discuss the 
results.

2. Analytic calculation

For each passage through the interaction region, the net accumulated kick 
received by the test particle can be described by an effective single kick at 
the center of the interaction region (s =0). This effective kick is modu­
lated at a tune of 6d/AC. The kick contains a time-independent component 
which causes a static orbit distortion which is not of interest to us. The 
modulation component drives the resonances.

In case L is an integral multiple of d/2, the modulation component has a 
simple sawtooth behavior. The modulation component of the effective kick is a 
net displacement at s = 0. The peak value of the sawtooth modulation of this 
effective displacement is

Axeff = ±©L (3)
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where e 1s the kick received by the test particle at each encounter location. 
We have assumed 8 is a fixed value given by

8 =
2Nro
yr (4)

where N is the number of particles per bunch, rQ is the classical radius of 
proton, and r is the constant separation between the two beams.

Near the kth sideband resonance given in Eqn. (1), the relevant part of 
the sawtooth modulation is its kth Fourier component. For the mth passage the 
effective displacement is then

Ax eff
= 81^- sin(2irmk ~) 

irk d (5)

If we now follow the test particle for M passages, the accumulated orbit 
distortion at s = 0 due to these beam-beam kicks is

M
Ax* = 81 -£• y sin(2irmk cos(mp) 

m=o

where y is the betatron phase advance between interaction regions
( p = 2ir v/6) .

Near the resonance given in Eqn. (1), i.e.

p . ACf— -n = k— +6 2ir d

with 6 « l, Eqn. (6) gives approximately

Ax* 01
2_ sin?(Mir4) 
irk 2irA

(6)

(7)

(8)

The kicks also give approximately

2 sin(Mir6)C0S(Mir6) 
91 irk8* 2tfA (9)

where 8* is the beta function at s = 0. For the SSC, 8* = 1 m.

From Eqns. (8) and (9), we find that the emittance growth due to the 
resonant driving is
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sin(Mff<S) ,2
2ir6 J (10)

The emittance growth needs to be much less than the natural emittance of the 
beam.

In this model, the driven beam moves collectively. A feedback system can 
thus in principle be used to damp the emittance growth. More will be said 
about this in the discussion section.

3. Numerical calculations

A simulation program has been written to simulate the overlap knockout 
resonance effects. The numbers used are

beam separation r = 5 mm
L = 97.5 m
d = 15 m

-8e = 0.8x10 rad
number of passages M = 10000, or the nearest number for maximum Ac

The distance L is chosen such that it is an integral multiple of d/2, and the 
analytical calculation of the previous section applies.

Figure 1 shows the emittance growth as a function of the tune « in the 
neighberhood of o = 84, which is a multiple of 6. As expected, the reso­
nances are spaced 0.004 apart. A closer inspection shows that the behavior 
near the resonances agrees very well with the expected (Eqn. (10)).

Figure 2 shows what happens if L is changed to 100.1 m. The sawtooth 
modulation no longer holds. The Fourier decomposition is then different from 
Eqn. (5). In particular, the higher order sidebands no longer become weaker 
as the resonance order increases in the simple way as Figure 1 shows. Never­
theless, the resonance strengths are basically the same.

Note that the tails of resonance are not negligible. If the tune is 
chosen to be in the range shown in Figures 1 and 2, for example, the emittance 
growth even "away from" resonances is larger than the natural beam emittance 
at 1 Tev (1xl0~9m).
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4. Piscussion

We have made an attempt to study quantitatively the strength of the over­
lap knockout resonances. We found that these resonances are closely spaced 
(0.004 spacing in tune units). If uncorrected, there will be intolerable 
emittance growth if the tune is close to a multiple of 6. By choosing the 
tune far enough away from 84 so that we are dealing only with very high order 
sidebands, however, the resonance strengths decrease algebraically. The back­
ground emittance growth "away from" resonances will at least become acceptable. 
In addition, the resonances are weak enough that perhaps a wide-band feedback 
system can cure most of the problem. The needed strength is of the order of a 
few gauss-meter.

We have not exhausted the study in this note. In particular, there are a 
few unanswered questions, as listed below:

1. We have not studied the effects of a betatron tune spread. The tune 
spread can in fact easily be wider than the resonance spacing of 
0.004.

2. During operation, there may be a need to cross a large number of 
these resonances. If the resonances are caused by the different 
energies of the two beams, resonance crossings will occur when the 
lower energy beam is accelerated. This effect has also not been 
studied.

3. We have studied only a dipole motion of the driven beam. The higher 
modes are also driven by the overlap knockout mechanism. Although 
the strengths will be much weaker, they cannot be easily damped by 
feedback.

We would like to thank Steve Myers and Jack Peterson for useful 
discussions.
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Fig. 1. The effective emittance growth due to overlap knockout 
resonance effects as a function of tune (v) near v = 84, for 
L = 97.4 m ( = 13 d/2).
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Fig. 2. The effective emittance growth due to overlap knockout 
resonace effects as a function of tune (v) near v = 84, for 
L = 100.1 m ( = 13.35 d/2).
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