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ABSTRACT. The properties of deuterium plasmas in experimental tokamaks 
heated and fueled oy intense neutral-bean injection are evaluated with a 
Fokker-Planck/radial transport code coupled with a Monte Carlo neutrals 
treatment illustrative results ere presented for the Poloidal Oivertor 
Experiment at PPPi as a function of bean power anc plasms recycling coef­
ficient, R c. when Pj,^-,.5 8 MW at EH = 60 keV, and ?.c «= C.2, then <n h o t/n e> •• 0.5, [2/3 '-Ei0n-j = 22 feV - 6<T t>, and the 0-0 neutron inten­sity is 10^ 6 n/'sec. 

1. INTRODUCTION 
In several large tokamak experiments now in operation or under con­

struction, the injected neutral beats power will far exceed the ehstic 
heating power. By control3tn§ the wann-icn density by gettering or by a 
magnetic divertor, it is possible to operate in th'res cifferen**rt-actor-
plasma regimes [1]: (1) The energetic-ion regime, where the average ion 
energy greatly exceeds tne electron enerqy, the plasma recycling coefficient 
R c « 1, n„ 0./n o > 0.2, and the dominant fusion production is by reactions between the energetic ions; {2} The TCT regime, wnere n ^ / n * ? 0.1, and the 
dominant fusion production is fey beets-tercet reactions; (!} the ottsi'ttrivm 
thermonuclear recirce, wfcere nHoVr'e « 0.1, end the aoainarst fusion produc­
tion is by thermonuclear react sons. 

For smaller tefcaeaks with injected ptwers in the I to IS *&' rsn^e &: 
<0 to 60 keV, the energetic-iofi reeiae provides the largest neutron inten­
sity [l]. « specific eaacste «f :fte "enerestic-isf," regime is the CS7 
{eotmterstrc'fcr.ins-'ioi-, torus). K M C R is established $y be»s injeetier. parg's-
lel and esjipar*! ij-j ts tne rytoaetic to is |21. This traasitit-s recios 
beiweeft the CI" fifid TCT re$i<s«s it p&-mp% eerc- aeeessTBtFT^sTTsTVeswl is 
in intense fttSigfi-ni-s.'SrsK- urssJactien. JK either cess the ifc.*et;sd Uea^s 
serve sieuiteneeasly to ft*e 1 : « pl&sea, to h e n electrons *»*JS «err 
ions, w d to produce r»st of ;r.e fujisn pe*er. 

In order to predict a«d interim accsrgtel; ih« pU*£* character-
IStiCS and fusion eutpwt 0? iftMuttel? t«*»«srii<efi tOfc*ffi*fc plajstil, tfee tts* 
evolution of the ¥elecUy-sp*« <Sistri&;ttan functions ©f the entrgttie 
species csust be e*le»t«led using the ««ss$«eis norJisefcr fo&ker-^lenjfc 
operator. This paper describes ccs^uuticftel stadias that «**e ass of 
the Fofcker-?{*ft£k/Tr#nse»rt cede I??*} developed at t^e K*tie*i*l Kinetic 
Fusion Clergy C e n t e r Center &i liweerar* p j . "his ccife fts* been 
integrated with « Hsnu €*rl» nsutr*H tr*fisp*rt treussent {&}, * sel'-
consistent frefls) ctagwsisisft cede JJ), *sd *» tepurity ri&ut'.e*! sssdel £6]. 
Illustrative ressSss «sr* presented fer the Peloids} 8ivener txperie&ti 
(POX) now neariag cospletion »t W . . 
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2. COMPUTATIONAL MODEL 

The FPT Code utilizes an arbitrary number of Maxwellian plasma spe­
cies which an described by their individual densities n a(p,t) and by a 
common temperature profile Tj(p,t), where p is the average radius of a 
flux surface. The electrons are described by a separately computed tem­
perature profile T e(o,6). An "rbitrary number of energetic ion species 
are represented by distribute functions of the form f n(v,S,5.t), where 
v is speed and 9 is pitch angle. 

Neutral bean deposition is computed self-consistently using a Monte 
Carlo Code [5] that follows fast neutrals from injectors of specified 
dimensions and focal pro->arties. The injected energetic ions form a hot-
ion velocity distribution determined separately for each radial position. 
The evolution of fj,{v) is described by 

3t \3t / c IggPce * l o s s e s { , ) 

The co l l is ion operator { j f f . / « t ) c is that of Sosenbluth, et al [ / ] , where 
the "Rosens'iutn Potentials"' $ f e and h & take into account Coulosib col l is ions 
among «2X charged species. 7ns loss terts include charge exchange, fusion 
bum-up, and transfer to the wars-ion papulation. The hot ions are as­
sumed to Se perfect ly confined un t i l they decelerate to an energy Zmin » 
3/2 T e . 

The transport of neutrals in the plasisa is deterainee by a Monte 
Carlo cade [«*]• "«« soarces of neutrals include charge-eschange trapping 
of the injected iwass, recycling frss the K a i l , and -jas puff ing. A Pax-
well ian wars-ion papulation is fersed frass: {'.} deceleration of hoc ions. 
{ i i j char;*«e«Safi'39 of ?sot tens, ( i i i ) ionization of wars neutrals forced 
during neutral-seae? zn^piitq, Civ) toni'istien of neutrals -ecycled from 
the wa l l . The transport s ta t i ons for the «arai lens and electrons j ra 

5* " - I •* <*V * Sla * ha «> 

f t ^ P a V ° - H < ^ * V 4 ( 4 ) 

where tho transport f'wzt &r$ a r i t tes as l inear «sbinat icns of the den­
s i ty and t3e!?sr*:«nf gradients and tss toroidal e lect r ic f i e l d . The 
source (S) atsd IOJS (C) terss include phenomena sues as Seas heating, ion-
electron unsr^/ transfer. Chsic hsst inf , racist sen loss, ionization and 
charge eachanse. "he radiat'er. less ters , anient is due ts a ffjted density 
of impurity Sons, is detarstincd by nwserical f i t s to the carves of Scfs. 
[6 ] * Although a sapMstfcatec neoclassical transport scdel say ie ir«1e-
sientec*, the p rese t study «ses a simpler sodel based c* empirical f a n s -
port coeff ic ients: 

r a a W f e {5> 
% * 5' 2 ?e I zara * W V * { 6 ) 



Qi 5/2 TJ Z 
1 a 

Ki rigST^/oo (7) 

The magnitudes and dependences for D, Ki, and ICe are taken to be 
the same as those observed in present-day tokamak plasmas, such as TFP. [8] 
and PLT [ S ] ; namely, D = 1 - 10 3[1 + 9(r /a)2j cm^/s, Ke = (5 * l O ^ / n J an2/s, 
K< = 1 x 10** cm2/s. The parabolic D(r) turns out to be roughly equivalent to 
D{r) « ng" 1 . These transport coeff icients are a l l independent of,temperature. 
At the l imi ter radius ( r = a ) , we f i x n̂ , = 0, n p = 3.5 * 1 0 l 2 cm* 3 , and 
T e = T| = 0,3 
For a l l cases reported herein, 
of 3 x lo'O cm--' is specif ied. 

rift " u , i i e 

keV. f.'eutrals are reflected fron-. tne wall with 20 eV energy, 
an iron impurity with a uniform f ixed density 

spe 
Fusion reaction rates are ac- , 

curately computed via a f i ve- fo ld ! Table 1. Reference POX Parameters. 
velocity-space integral of the fusionj f .< a j 0 r r a ( j i u s 
cross-section over the reacting dis- ipiasir.s radius 
t r ibut ion functions [ lO j . Steady-
state solutions for a l l plasma par­
ameters and the fusion-neutron pro­
duction rate are presented in the 
following sections. 

4. EFFECT OF RECYCLING 
COEFFICIENT 

The numerical isodel has been 
applied to circular plasnas in the 
PDX device p i ] whose principal par­
ameters are given in Table i . In 
PDX the recycling coeff ic ient Rc of 
the plasms car. in principal be con­
trol led by the poloidal magnetic di­
ver tor. (p. c i s defined as the ratio 
of the rate of cold neutral inflow 
to the rate of warm-ion outflow.) 
Figure 1 shows how several impor­
tant parameters vary with fic when 
the 0* injection power of S fW at 
60 fceV is held constant. Steady-
s tate solutions ere shown. As ft- in­
creases fro* 0 tc 1.0, the relat ive 
hot-ion density decreases !>y a factor 
of 3 , and <£$«„.*•• tne average enercy 
of a l l hot and warm ions, decreases 
by a factor of 2.4. The fvsion power 
nul t ip l icat ion , Q p , and neutron in­
tensity decrease ey a factor of 3 .6 . 
[Here Qp • (fusion power/injected 
power), end does not include otenic 
heating (- 0.5 fci).} Additional 
influx of gas into the f^traa froR 
the beam lines would cause a further 
decrease in Qp for a given R c. 

Table 2 gives parameters for 
the case of J^ » 0 . 2 , where 5<3" of 
the fusion power production i s due to 
reactions between the energetic ions, 
and 40!.' i s due to beam-target reac­
t ions . Figure 2 shows the ion velo-

Field at plasma 
Plasnsa current 
Neutral-beam energy 
Neutral-beam power 

Beam pulse length 
Injection angles 

Uhis study) 

!.40 m 
0.42 m 
2.5 T 
500 kA 
40 to 60 keV 
2 to 12 W (D<) 
85* at f u l l energy 
155 at half energy 
1.0 s 
50« co-inject ion 
50', counter-inj. 

6<>£—r ' i i 

02 0« Ci OS 
*EC«tl9iO e0t*f>Ci£!.'T 

Fig. 1. Variation of spatially-
averaged plasms parameters and fusion 
power gain C p with plastaa recycling coefficient, for Eh » 60 keV and 

8 I*. (78-335?) beam 
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city distribution. Note that Cou­
lomb collisions between ions injec­
ted in the same beam cause disper­
sion to velocities well above the 
injection velocity. 

The accessibility of this 
CIT/TCT operation requires (1) 
that R c « 1, (2) that the fast ions 
slow down classically, and {3} that 
the energetic ions remain close to 
their magnetic surfaces o," birth 
while slowing down, a time that is 
of the order of 1.5 times the par­
ticle confinement time Tp. Charge-
exchange loss, however, reduces the 
average hot-ion lifetime. 

cm 

Table 2. Illustrative Enerqet1c-Ion 
Regime. 

Beam energy 60 keV (0°) 
Beam power 8 MM 
Recycling coef. 0.20 ,, 
n e(0) 3.0 x 1 0 1 3 

^ h o t ' V 0.51 
<Zeff> 1.7 (iron) 
T e(0) S.l keV 
T,{0) . 13.9 keV 
2/3 x E i o n ( 0 ) 24.6 keV 
n e(0)r E e 3.9 * 10 1* 
Hot-ion lifetime 75 ms - 1.2 
<S> 0.041 
Neutron Production (0-
Qp l 
Tnermonuclear 6 
Seam-Target (TCTj 4 
Energetic-Ion ; 
Total intensity 1 

cnr3sj 
EEi I 

II 
46 x 10" 3 

1 * 10j* n/s 
0 * 10,]? n/s 

10]; n/s 
10'° n/s 

5. RADIAL PROFILES 
Figure 3 shows the radial pro-

Hies of various plasma parameters 
for the cases R c = 0.01 and 0.99. 
For R c = 0.01, the neutral popula- i — 
tion at r < 30 cm originates mainly from charge-exchange trapping of the 
neutral beams, while for R c = 0.99, the neutral population is 2 to 3 times 
larger, and originates mainly by inward $iff„„ion from the plasma boundary. 
Surprisingly, n e is nearly the same for the two cases: for 3 C » 0.01, the 
hot-ion lifetime 1s much longer, and these ions are assumed rnz to undergo 
radial diffusion; the much larger warm-ion population for R c a Q.99 under­
goes relatively rapid diffusion. The average ion energy for R c • 0.01 is 
about twice that for R c

 a 0.99, and results in several times higher 3p (see 
Fig. 1). The fairly steep density profile but relatively shallow T* pro­
file are characteristic of plasmas with divertors operating in the "unload* 
mode. 
6. VARIATION W!7K SEAM POHER 

Figure 4 shows the variation 
of species temperatures and neu­
tron intensity, ' n , with beam 
power, when Rc = 0.20. St is fcund 
that ~ 
<T*>, 

Qp is B5arly proportional to 
wnich increases more rapidly 

at'lower valuesy$f pbea«3' ^ n u S Fn 
Increases as ̂ l&ftn ^ Icwyrpcwers, 
but only linearly "with Pg^o at 
higher powers. These large neu­
tron production rates are achieved 
with very seal I <n:rsrft, namely J 
to 1.5 * 10'- ca-Ss/out atjh very 
large average ion energy £^ - 25 
to 35 key. '{vers Tr 5 is the ratio 
of the total electron «r.%rqj to 
the sum of the rates of electron 
energy lof-5 by diffusion and rad­
iation; diffusion is dostinant.} At 
higher P b e a m the predicted fcsjta-
values are near the largest chat 

J* *M 
V, ftO*ta/tf 

a.* «J 

Fig. 2. Steady-state ion velocity 
distribution in ?D5 f-sr co- And 
counter-injection at E»> • SO Ms1.*, 
with P ^ ^ » S m mi a c * 0.2. £«-
ersettc ions W-er w&rs*&axs«eUij0 
tt'E * 3/2 T* »e- ;?s-3i65) 



Fig. 3. Redisl variation of steady-
state plasma w e l t e r s for recyc­
ling coef. S5C » C.01 (solid line) and*Kc • 0.?? Csesned line). (7&-S3S5; 
can ir. theory b& sustained in 6 circular PD>: plasr.s. Acou: £: , of the 
plasma pressure- n due to the ions, end 60'- fs due ::• ;he energetic tons 
*lone. Th£ reduced fusion production rats e.:. it. = i: k»V is cue tc a smaller 
beae-terfs: ruction rate and increased cneroe-Ixcnarxe less. 

If the bulk plasng tesperature could be attained bv scse rears other 
than by reset in; ceas injection, F n would he s facto?- of 10 te J" IOK*.-. 
furthemare, u s property <?<? - 3<Te> *'s dependent cc 5 great extent cr. 
beam f«olsne. |f < 7 ^ and <Te:- were cosipara»le, as expected to be the case with other heating methods, ther. F n {and Q ?) would fce of the order cf 1/100 of the values obtained in searo-driven eaeroetic-icr. operation. Fin­
ally, we note that parallel-antiparalle! injection is not essential for 
producing large neutron intensities. For example, if approximately half 
the bewas ere injected tangential!? and half perpendicularly, it is fo-.-nd 
that the fusion-neutron production is reduced by at rost a factor of 1.5. 
M U t no opposing counter-injection, it should be possible for the co-
injected beam* l\t drive the plastaa current [12], with relatively little 
penalty in neutron production. 
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7. SUMMARY 
Plasmas with average ion energy exceeding 25 keV can be attained in 

medium-sized tokamak devices (i.e., B ta - 1 T-m) with intense neutral-beam injection, provided that plasma recycling is minimized by a magnetic 
divertor or getter assembly, and that essentially all fueling is performed 
by the beams. The energetic-ion density is then of the order 0.5 n e, and the warm-ion temperature is 2 to 3 Tfl. In PDX-sized plasmas with 4 to 
10 MW of beam injection at C^ = 40 to 60 keV, D-D fusion-neutron intens­
ities in the range 1 0 1 5 to 1 0 1 6 n/s are attainable in this energetic-ion 
mode of operation. The electron energy confinement time need satisfy only 
< n e > T E e ~ 1 to 2 x io 1 2 cnr 3s. 

Initial beam-injection experiments in PLT at the 1-MW level [13] have 
demonstrated several features of the hot-ion/warm-electron plasmas that 
our analysis predicts for PDX. When n e(0) < 5 x 1 0 1 3 cm* 3 with 1 MW of 
38-keV D° injection, jt is reported that nh 0t/n e i °- 2 a t t n e center of the 
plasma, T-j > T e and E-j(O) = 8 keV. With co-injection alone, or co-
and counter-injection together, the fast-ion slowing-down rate appears to 
be classical (~s - 0.5 T 0 ) , with little radial drift of the fast ions [13, 
14], thus justifying critical basic assumptions of the present analysis. 
The largest fusion-neutron intensity is obtained at lower densities, where 
gas influx and recycling are minimized, and up to 302 of the neutron pro­
duction is due to reactions between energetic ions [14], However, neutron 
intensities of the order of those calculated in this paper will be attain­
able only by eliminating gas influx entirely, and by minimizing recycling 
with an effective magnetic divertor or large-area getter pumping system. 
Acknowledgment. This work was supported by the United States Department of 
Energy, Office of Fusion Energy. 
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