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Abstract

FEigenanalysis is a critical component of structural dynamics which is essential for determin-
ing the vibrational response of systems. This effort addresses the development of numerical
algorithms associated with scalable eigensolver techniques suitable for use on massively paral-
lel, distributed memory computers that are capable of solving large scale structural dynamics
problems. An iterative Lanczos method was determined to be the best choice for the applica-
tion. Scalability of the eigenproblem depends on scalability of the underlying linear solver. A
multi-level solver (FETI) was selected as most promising for this component. Issues relating
to heterogeneous materials, mechanisms and multipoint constraints have been examined, and
the linear solver algorithm has been developed to incorporate features that result in a scalable,
robust algorithm for practical structural dynamics applications. The resulting tools have been
demonstrated on large problems representative of a weapon’s system. -
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1. Introduction

Structural dynamics analysis is critical to applications in weapons, non-proliferation,
space sensors and computational manufacturing. These applications require modeling
and simulation which become the building blocks for design optimization, model valida-
tion and virtual testing for weapons and other defense programs. While several codes
are currently used for structural analysis, these codes lack a crucial component required
for large scale applications: a scalable, parallel eigensolver. Without a high performance
eigensolver that takes advantage of the computational power and memory of MP sys-
tems, a number of encouraging new structural analysis directions will not be realized.
This document details the development of this eigensolver and its integration with a
parallel structural dynamics code.

A number of technical thrusts are demanding far greater structural dynamics analysis
capabilities than are currently available. Two extremely important emerging activities
are model based design and advanced manufacturing simulations with optimization and
probabilistic analysis procedures. In agile manufacturing, it is necessary to understand
and analyze many different designs (so that a number of different manufactured parts can
be realized) before producing any hardware. In optimization and probabilistic design,
we must solve many structural dynamics problems to find the best possible design, and
account for hardware and loading variability.

‘Within these broad areas, numerous examples can be found of specific applications
requiring substantial eigensolver capabilities. Even relatively small component’s appli-
cations might require large finite element models with greater than a million degrees
of freedom and can exceed current technology limits. For example, photo-lithography
applications used for manufacturing electronic structures can result in large finite ele-
ment models particularly when manufacturing details necessary for optimization of the
fabricated part are included. Larger component assemblies (such as Sandia’s STARS mis-
sile) require even bigger models which can only be currently addressed in a limited way
through very costly model reduction techniques. Further, when these problems are em-
bedded within an automatic optimization procedure, the computational effort increases
dramatically. To successfully analyze these problems, scalable sparse eigenvalue soft-
ware and algorithm advances are needed that take full advantage of current and future
computer architectures.

Sandia is well positioned for development of a parallel eigensolution capability for
structural dynamics. We have expertise in sparse eigensolver algorithms, parallel algo-
rithms, and structural mechanics. Further, we can leverage existing Sandia software: a
partitioning package, Chaco (which is combined into a general purpose partitioning tool



— Nemesis), and a general purpose parallel finite element analysis code, Salinas. The
first package has been used to reduce the parallelization and the linear solvers effort
as well as enable quick porting to new parallel hardware platforms. The integration of
the eigensolver with Salinas yields a sophisticated structural mechanics package. This
package has been used to ensure that the solver is robust and performs well for real en-
gineering applications. Additionally, the integrated code allows benchmark comparisons
with existing methods. The software is tailored to the ASCI Option Red platform, but
has also been ported to a parallel SGI Origin 2000. We have focused on development of
portable and scalable software that is applicable to a variety of parallel platforms.

This effort has initiated a very strong relationship with the department of aerospace
structures at the University of Colorado. Their solver team has been a leader in the field
of multilevel linear solvers for use on massively parallel architectures. They have been
extremely successful in applying this technology to structural problems.

This Lab Directed Research and Development (LDRD) effort focuses on develop-
ment of a massively parallel eigensolver for structural dynamics analysis. The largest
single challenge is integration with a robust, scalable and accurate linear solver. Mul-
tilevel solvers require especially tight integration of the numerical and finite element
analysis fields. Throughout the effort, numerical analysts and structural dynamicists
have worked together to insure that the resulting software meets the needs of the finite
element applications.

The goal of the study is develop the tools for robust eigensolution of realistic struc-
tural dynamics problems. The solvers must be portable and scalable, showing good
performance on a variety of platforms. They must be robust enough to be applicable to
a general purpose structural dynamics application. The target platforms are distributed
memory systems with many (thousands) of compute nodes, and include large clusters of
workstations.




2. Selection of Methods

A primary computational task of the Salinas package is to compute many of the
lowest vibrational modes of structural finite element models. Finite element discretization
leads to a sparse symmetric semi-definite generalized eigenvalue problem. The most effi-
cient class of algorithms for these problems are sparse iterative eigensolvers (e.g. Lanczos)
applied to a transformed (e.g. shifted and inverted) eigenvalue problem. The computa-
tional bottleneck is this transformation, and in the overall solution method, is realized
through the solution of a sequence of sparse linear systems. This section describes the
linear solver and eigensolver developed for use in Salinas.

A linear solver was selected based on the criteria of robustness, accuracy, scalability
and efficiency. Direct methods based on sparse Gaussian elimination were considered
first. Sequential direct solvers are robust, accurate, and have high performance BLAS3
implementations. Parallel direct solvers are accurate and achieve high performance,
but are not scalable. Ironically, the greatest defect of the parallel direct solvers known
to the authors is their poor robustness on platforms, such as ASCI Option Red, with
fast communication, many processors, and limited per processor memory. The existing
.parallel direct solvers use non-blocking communication without attention to the total
volume of information that has to be buffered (stored) on a given processor. Core dumps
due to overflowed message buffers are routine. To factor large matrices, the user must
manually set the message buffers to an enormous size determined by trial and error.
Direct solvers were rejected due to their poor robustness and lack of scalability.

General purpose iterative solvers, such as the implementation of the preconditioned
conjugate gradient method with over-lapping Schwarz preconditioner available in Aztec,
were also evaluated. These methods converged too slowly for the linear systems obtained
from the discretization of structures by high order plate and shell elements. In this case
the underlying partial differential equation is the fourth order biharmonic equation for
which special purpose iterative solvers are necessary. General purpose iterative solvers
were also rejected due to their poor robustness and scalability.

We selected a multi-level domain decomposition method, Finite Element Tearing
and Interconnect (FETI), that is the most successful parallel solver known to the authors
for the linear systems applicable to structural mechanics. FETI is a mature solver, with
some versions used in commercial finite element packages such as ANSYS. For plates and
shells, the singularity in the linear systems has been traced to the subdomain corners. To
solve such linear systems, an additional coarse problem is automatically introduced that
removes the corner point singularity. FETI is scalable in the sense that as the number
of unknowns increases and the number of unknowns per processor remains constant,



the time to solution does.not increase. Further, FETI is accurate in the sense that the
convergence rate does not deteriorate as the iterates converge. Finally the computational
bottleneck in FETI, a sparse direct subdomain solve, is amenable to high performance
solution methods.

An eigensolver was selected for Salinas based on the same criteria; robustness, ac-
curacy, scalability and efficiency. We evaluated both a Lanczos-based solver and subspace
iteration. The Lanczos algorithm solves the minimal number of linear systems required
to approximate a set of modes to a given accuracy, and Lanczos-based methods are sig-
nificantly more efficient than subspace iteration. Subspace iteration is a comparatively
simple algorithm that is believed to be somewhat less sensitive to linear solver accuracy
than Lanczos-based methods. Structural models are known for which the FETI solver
does not converge, but in these cases the accuracy is too low for either subspace itera-
tion or Lanczos-based methods to compute accurate modes. We selected the PARPACK
Lanczos-based solver because the memory usage is minimal, the software is reliable, and
the number of linear systems solved per mode is nearly minimized. PARPACK is scalable
and achieves BLAS?2 performance.



3. Development of Current Selections

The capabilities of the eigensolver package as outlined above are limited by several
factors. As a result of research done under this LDRD, it was determined that the
Nemesis domain decomposition package had to be modified to generate (face) connected
subdomains and to minimize subdomain geometric aspect ratio. The versatility and
robustness of the FETT linear solver required further development in several ways.detailed
below. Many enhancements to the eigensolver are also possible, though at present linear
solver issues are more critical to extending the range of applicability of these tools. In
this section, the robustness and versatility of FETI are discussed. The section concludes
with a sketch of possible enhancements to the eigensolver.

Heterogeneous materials

The FETI linear solver is not robust if applied to models that consist of highly
heterogeneous materials (with stiffnesses that vary by factors of one million). FETI uses
both a Dirichlet preconditioner and a coarse grid correction. The Dirichlet preconditioner
captures the local response of the system and the coarse grid correction captures the
global response. On a subdomain with highly heterogeneous materials, a force applied
at a point in the stiff material results primarily in a displacement of the soft materials.
This nonlocal behavior causes Dirichlet preconditioning to fail. Two solutions to this
problem were proposed and researched during the LDRD. The @ projector method and
stiffness scaling both scale the problem by the relative stiffness of the elements at the
interface. They have different implementations and results. Both methods provide some
improvement over standard methods for very inhomogeneous models, but both are only
partial solutions. The iteration count (and solution times) almost always increase for
these more complicated structures.

The @ projector method, is used to improve the approximation to the stiffness matrix
on the coarse grid. This method is detailed in Appendix A. The method effectively scales
the solution in the coarse grid problem to improve the matrix conditioning and improve
solution time.

The second solution is to normalize the material heterogeneity in the linear system
by stiffness scaling. This method uses the diagonal terms of the stiffness matrix to scale
the entire problem (coarse grid and subdomain levels). This is discussed in Appendix B.

Modifications to the partitioning software (Nemesis/Chaco) to partition the model
based on material blocks has been shown to be very effective in reducing the effects of
material nonlinearity. However, this solution is somewhat model dependent because par-



titioning by material blocks can be overconstraining. This can result in many partitions
that span a major portion of the structure and have poor aspect ratios. Since convergence
of the FETI method depends upon the aspect ratio of the subdomain, the improvement
gained to overcome inhomogeneous materials may be offset by increased iterations due
to poor aspect ratios.

A large demonstration problem was developed which has characteristics of many
structural dynamics applications. The model consists of a re-entry vehicle structure
with materials and geometry somewhat similar to those found in practice. Stiff, heavy
materials are found next to foams. The shell consists of layers of aluminum, glue and
phenolics. The overall model size was over one million degrees of freedom - significantly
larger than current capabilities at Sandia for eigensolution of problems of this type.

With the improvements in material homogeneity mentioned above, this model was
solved using Salinas and the eigensolvers and linear solvers developed in this LDRD. The
solution required 512 processors on the ASCI Option Red platform and was completed
in under 8 hours of computation.

Multi-point constraints

Multi-point constraints (or MPCs) are important in most structural dynamics ap-
plications. MPCs provide an algebraic link between different degrees of freedom in the
model. They are used to build rigid elements, to apply boundary conditions and to
combine resultants. They are especially important in connecting dissimilar meshes. Par-
allel solution of systems containing MPCs is particularly difficult because they introduce
global communication requirements that are independent of the element connectivity.
We have evaluated a number of approaches for implementing MPCs within FETI. These
are detailed in Appendix C. Here it is shown that there are natural ways to implement
these constraints in a manner similar to the corner point constraints developed to improve
performance for shell models. These methods have been demonstrated in development
tools, but have not been fully implemented in parallel.

Mechanisms

The linear solver, FETI, is quite dependent on the subdomain rigid body modes
because they provide the basis to communicate global information throughout the system.
In some automatic decomposition schemes it is quite common to produce subdomains
which are not well connected. These subdomains may be only connected at a corner or
an edge, which can lead to additional zero energy modes (or mechanisms). Elimination of
these mechanisms can significantly improve the performance of the linear solver. We have
developed tools to detect and eliminate these spurious zero energy modes. These methods
have been included in Nemesis, guaranteeing mechanism free automatic decomposition.
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Other Issues

This LDRD identified several needed developments to the FETI solver that were
implemented based on the results of this research only after the LDRD ran out. The
subdomain rigid body modes, which are used to construct the coarse grid, are now
determined directly from the finite element mesh. Because many structures of interest
at Sandia National Labs are unconstrained, Salinas and FETI have been developed to
model floating structures. This modification was natural because the structural rigid
body modes are determined in the FETI method in terms of a reduced model. A high
performance (BLAS3) sparse frontal solver developed by Esmond Ng (NERSC) has been
added for the subdomain solves, though this is fully implemented only for positive definite
systems.

The eigensolver used in Salinas still needs improvements, though as mentioned
above, none are critical. In the next release of PARPACK, a feature will be available
that reduces the likelihood that modes are missed (e.g. that the ten computed modes
are not the ten smallest modes). Including the same feature in Salinas will enhance the
robustness of the eigensolver. The cost of orthogonalization may become a bottleneck
for very large systems with many eigenvalues. This cost can be reduced by a factor
of about six by modifying the code to maintain only semi-orthogonality as is done in
MSC/NASTRAN and the PLANSO package developed at NERSC. These topics are
discussed in more detail in Appendix B. '

This research has also contributed to the development of Anasazi, a high perfor-
mance parallel eigensolver which is less dependent on the accuracy of the underlying linear
solves. The Anasazi eigensolver uses a block method, and achieves high BLAS3 perfor-
mance compared to the BLAS2 performance of PARPACK. An interface from Salinas
to Anasazi will be developed when the solver is sufficiently mature. Anasazi also uses
Cayley transformations instead of shift-invert transformations, and this leads to linear
systems that are often simpler to precondition. Another class of eigensolvers based on
on inexact solves will also be included in Anasazi. In these methods the accuracy of the
computed modes is independent of the linear solver accuracy.

11




4. Conclusions

This effort has shown that iterative eigensolver methods can be successfully applied
to large scale structural dynamics problems on MP platforms. The approach taken
involves a special purpose, multi-level linear solver, FETI, with characteristics which tune
it for structural dynamics applications. :

The linear solver has been developed with capabilities required for structural dy-
namics problems. Special effort has been made to provide the capabilities to treat het-
erogeneous materials, poor aspect ratios, and structural mechanisms. The framework for
support of multi-point constraints has also been established. Robustness has been im-
proved using geometric methods for the solution of rigid body modes of the substructure.
The solver is robust, scalable and accurate.

Eigensolver technology has utilized the FETT linear solver framework. We have shown
conclusively that the accuracy of the iterative linear solver is sufficient for determina-
tion of the lowest eigenmodes using a Lanczos method. Studies indicate that subspace
iteration would be another viable eigensolver technique for these architectures.

Both the eigensolver and the linear solver show outstanding scalability and perfor-
mance on realistic structural dynamics problems. Scalability has been demonstrated for
thousands of processors on the ASCI Option Red supercomputer. The appendices include

further details on several technical developments resulting from the research supported
by this LDRD.
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Abstract

. We report on the application of the one-level FETT method to the solution of a class of
substructural problems associated with the Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI). We focus on numerical and parallel scalability issues, and
on preliminary performance results obtained on the ASCI Option Red supercomputer
configured with as many as one thousand processors, for problems with as many as 5
million degrees of freedom.

Keywords: ASCI, FETI, scalability, domain decomposition, structural heterogeneities
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1. Introduction

In 1996, the US Department of Energy announced its Accelerated Strategic
Computing Initiative (ASCI) aimed at creating predictive simulation and virtual
prototyping capabilities, and accelerating the development of high-performance
computing far beyond what might be achieved in the absence of a focused initia-
tive. More specifically, ASCI’s vision is to shift promptly from test-based methods
to computational-based methods of ensuring the safety, reliability, and perfor-
mance of the US nuclear weapons stockpile. An initial result of this initiative
was the installation in 1997 at the Sandia National Laboratories of an Intel 1.8-
Teraflops (trillion floating-point operations per second) peak massively parallel
system known as the ASCI Option Red supercomputer. Two additional Teraflop
systems known as the ASCI Blue Pacific and ASCI Blue Mountain machines were
subsequently sited at the Livermore and Los Alamos National Laboratories, re-
spectively. Harnessing the power of these ASCI computers and exploiting their
full potential requires the development of scalable numerical algorithms, which
for many applications is a significant challenge.

Part of the ASCI initiative is the development at Sandia of Salinas, a mas-
sively parallel implicit structural dynamics code aimed at providing a scalable
computational workhorse for highly accurate structural dynamic models. Such
large-scale finite element models require significant computational effort, but pro-
vide important information including, vibrational loads for components within
larger systems, design optimization, frequency response information for guidance
and space systems, modal data necessary for active vibration control, and char-
acterization data for structural health monitoring.

As in the case of many other ASCI software research and development
projects, the success of Salinas hinges on its ability to deliver scalable perfor-
mance results. However, unlike many other ASCI computational efforts, Salinas
is an implicit code and therefore requires, among others, a scalable equation solver
in order to meet its objectives. Because all three ASCI machines are massively
parallel computers with thousands of processors, our definition of scalability here
is the ability of an algorithm implemented on an ASCI system to solve an n-times
larger problem using an n-times larger number of processors in a nearly constant
CPU time. Achieving such a scalability requires not only a parallel hardware with
relatively inexpensive interprocessor communication costs, but most importantly
an equation solver that is (a) numerically scalable — that is, with an arithmetic
complexity that grows almost linearly with the problem size, and (b) amenable
to a scalable parallel implementation — that is, which can exploit as large a
number of processors as possible while incurring relatively small interprocessor
communication costs. Such a stringent definition of scalability rules out sparse
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direct solvers because their arithmetic complexity is a nonlinear function of the
problem size. Furthermore, for large-scale three-dimensional structural problems
with tens of millions of degrees of freedom (d.o.f.), the memory requirements of
sparse direct solvers can overwhelm even the largest of the current ASCI ma-
chines. This is rather unfortunate because sparse direct methods offer otherwise
a robustness that is not matched by any iterative algorithm. On the other hand,
several multilevel [1] iterative schemes such as multigrid [2-4] algorithms and
domain decomposition methods with coarse auxiliary problems [5] can be char-
acterized by a nearly linear arithmetic complexity, or an iteration count that
depends only weakly on the size of the problem to be solved. Such algorithms
are prime candidates for a scalable equation solver. For Salinas, the Finite Ele-
ment Tearing and Interconnecting (FETI) [6—12] solver was chosen because of its
underlying mechanical concepts, as well as its potential for delivering a scalable
performance.

FETI is a domain decomposition based iterative method with Lagrange mul-
tipliers. In its simplest form, it is also known as the one-level FETI method, and
can be described as a two-step preconditioned conjugate gradient (PCG) algo-
rithm where subdomain problems with Dirichlet (displacement) boundary con-
ditions are solved in the preconditioning step, and related subdomain problems
with Neumann (traction) boundary conditions are solved in a second step. The
one-level FETT method incorporates a relatively small size auxiliary problem that
is based on the subdomain rigid body modes. This coarse problem propagates
the error globally during the PCG iterations and accelerates convergence.

For second-order elasticity problems discretized by plane stress/strain and/or
solid elements, the condition number of the FETI interface problem precondi-
tioned by the Dirichlet preconditioner [8] grows asymptotically as

k=0 (+log (1)) (1)

where h denotes the mesh size, and H denotes the subdomain size (Fig. 1).
Note that h, H, and h/H are indirect measures of the problem size, the num-
ber of subdomains, and the subdomain problem size, respectively. Hence, the
condition number estimate (1) establishes the numerical scalability of the FETI
method with respect to both the problem size and the number of subdomains.
In particular, it proves that in theory, when the mesh discretization is refined,
and the number of subdomains is increased as to maintain a constant number of
elements per subdomain, the number of FETI iterations required for convergence
remains asymptotically constant. This theoretical result has been demonstrated
in practice for numerous applications [8-10]. The parallel scalability of the FETI
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method has also been demonstrated on various parallel computers with a num-
ber of processors ranging between 2 and 128 [13,14]. For fourth-order plate and
shell problems, the condition number estimate (1) also holds when the rigid body
based coarse problem is enriched by the subdomain corner modes [11,12]. In that
case, the FETI method is transformed into a genuine two-level algorithm known
as the two-level FETI method.
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Fig. 1. Mesh size and subdomain size

An important issue in multilevel methods that pertains to parallel scalabil-
ity is the solution of the lowest level problem, which for domain decomposition
methods corresponds to the coarse problem. The size of this coarse problem in-
creases with the number of subdomains. Initially, it was advocated to solve the
FETI coarse problems iteratively, using a CG algorithm that is optimized for the
solution of problems with repeated right hand-sides [20,21]. That approach was
motivated by the fact that the CG method requires only matrix-vector products
that can be performed in parallel at the subdomain level, and which necessitate
only short range communication between neighboring subdomains. For small
mesh partitions and therefore small size coarse problems, it was shown that such
a strategy is computationally efficient and allows both one-level and two-level
FETTI solvers to achieve parallel scalability [10,12]. However, the modified CG
algorithm described in [20,21] is not numerically scalable with respect to the the
size of the coarse problem, and therefore is not suitable for problems involving a
large number of subdomains. Given that the most practical way for implement-
ing domain decomposition methods on distributed memory parallel processors is
to generate and assign one or several subdomains to each processor, it follows
that the specific iterative solution strategy described in [20,21] is not suitable for
ASCI computational platforms. When the given problem is partitioned into a
large number of subdomains, it was shown in [14] that for shared memory multi-
processors, solving the FETI coarse problems by a direct method is computation-
ally efficient. Hence, a first objective of this paper is to revisit this issue in the
context of the Salinas code, ASCI structural problems, and ASCI computational
hardware.

Strictly speaking, the condition number estimate (1) holds for uniform mesh
discretizations, uniform mesh partitions with a perfect subdomain aspect ratio,
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and homogeneous problems — for example, structural problems with a single ma-
terial, or different materials but with similar constitutive properties. However, it
was shown in [15] that in practice, the numerical scalability of the FETI method
holds for irregular discretizations and arbitrary mesh partitions, as long as the
subdomains have reasonable aspect ratios. Algorithms for generating subdomains
with reasonable aspect ratios can be found in [15-17]. For heterogeneous prob-
lems — for example, structural problems involving materials whose constitutive
properties differ by several orders of magnitude — an improved coarse problem
was proposed in [9] for preserving the numerical scalability of the FETI method.
This alternative coarse problem was further investigated in [18] for model struc-
tural applications. More recently, a simple and virtually no-cost extension of the
FETI preconditioner was proposed in [19] for addressing highly heterogeneous
structural problems, but was also mainly verified on academic applications. Since
ASCI structural problems are typically heterogeneous, a second objective of this
paper is to construct a general strategy that combines both developments exposed
in [9] and [19] for addressing the treatment by FETI of structural heterogeneities,
and validate it for a realistic ASCI application problem.

Finally, a third objective of this paper is to report on preliminary perfor-
mance results obtained on a thousand-processor configuration of the ASCI Op-
tion Red supercomputer, by the Salinas code equipped with the FETI solver, for
various ASCI benchmark and real problems.

For this purpose, the remainder of this paper is organized as follows. In
Section 2, we overview the one-level FETI method as our initial effort focuses
on three-dimensional solid structures. In Section 3, we discuss a revised strat-
egy for solving the subdomain rigid body mode based FETI coarse problem on
a massively parallel processor. We also report some scalability results of the
FETI method on the ASCI Option Red machine configured with as many as one
thousand processors, for benchmark problems with as many as 5 million d.o.f.
In Section 4, we consider the issue of structural heterogeneities and present a
strategy for addressing them when using the FETI solver. In Section 5, we ap-
ply the FETI method to the finite element analysis on the ASCI Option Red
supercomputer of a reentry vehicle, and in Section 6 we conclude this paper.

2. Overview of the one-level FETI method

Stress analyses, implicit linear and a large class of implicit nonlinear dynamic
analyses, and vibration (eigenvalue) analyses lead to the solution of one or several
systems of equations of the form

Ku = f (2)
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where K is in general a symmetric positive definite matrix, u is a vector of
generalized displacements, and f a vector of generalized forces. In the FETI
method, the structure’s computational domain 2 is partitioned into N non-
overlapping subdomains Q%) and Lagrange multipliers A are introduced at the
subdomain interfaces to enforce the compatibility of the subdomain generalized
displacement field u®). Consequently, Eq. (2) above is transformed into the
equivalent set of equations

K(S)u(s) — f(S) — B(S)TA 5 = 17 ... NS
N, | 3
ZB(S)H(S) =0 @)

s=1

where for each subdomain (), K®) denotes its generalized stiffness matrix, £)
its vector of generalized forces, and B®) the signed Boolean matrix that extracts
from a subdomain vector v{*) its signed (&) restriction to the subdomain interface
boundary. The first of Eqs. (3) expresses the local equilibrium of the subdomains
Q). and the second of Egs. (3) the continuity of the subdomain generalized
displacement fields across the subdomain interfaces.

The general solution of the first of Egs. (3) can be written as
u®) = KO (£~ BO) + ROl (4)

where K" denotes the inverse of K®) if Q(*) has sufficient Dirichlet boundary
conditions to prevent K® from being singular, or a generalized inverse of K® if
Q) is a floating subdomain. In the latter case, the columns of R(®) represent the
rigid body (or more generally the zero energy) modes of Q(%), i.e. R®) = kerK®,
and a(®) is the set of amplitudes that specifies the contribution of the null space
R to the solution uf®). These coefficients can be determined by requiring that
each subdomain problem be mathematically solvable — that is, each floating
subdomain be self-equilibrated — which can be written as

RO (f<s) - B<S>T,\) —0 (5)

Substituting Eq. (4) into the compatibility equation and exploiting the solvability
condition (5) transforms problem (3) into the interface problem

e 0] a)= 15 ©
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N,
F; = Y BOKO'BE"

s=1

N,
d = Y BOKO"
s=1

(7)
G; = [GS}) Gng)] — [B(l)R(l) B(Nf)R(Nf)}
a = [a(l)T ... a(Nf)T]T -
e = [(TR® . g RONT

and where Ny denotes the number of floating subdomains.

The above indefinite interface problem (6) can be transformed into a semi-
definite system of equations as follows. Let Q be any symmetric matrix for which
the product GCIFQG 1 is invertible. The self-equilibrium condition G?A = e can
be eliminated from Egs. (6) by introducing the splitting

A=A +PQA (8)

where A° is a particular solution of GT A = e of the form

A’ =QG(G7QGy) e (9)

and P(Q) is a projector of the form

P(Q) =1- QG (GTQG)'GT (10)

Note that P satisfies
P> =P GIP = 0 (11)

Substituting Eq. (8) into the first of Eqs. (6) and premultiplying that equation
by PT transforms the indefinite interface problem (6) into the projected interface
problem

(PTF;P) A = PT(d-F;)\) (12)

which is symmetric positive semi-definite for any given matrix Q.

The one-level FETI method consists in transforming the original global prob-
lem (2) into the symmetric positive semi-definite interface problem (12), and solv-
ing the latter system of equations by a PCG algorithm. Note that the projector
P contains the matrix (G?QG 1)~ !, which is symmetric when Q is symmetric.
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In general, each subdomain has at most 6 rigid body modes, and therefore the
dimension of G?QG 7 is at most equal to 6 N;. Hence, this matrix defines an aux-
iliary coarse problem that couples all the subdomain computations, and which
was proved to propagate the error globally and accelerate convergence [8,22].

Two preconditioners have been proposed in the literature for the FETI

. . . . . =D"! .
method: the mathematically optimal Dirichlet preconditioner PF; PT intro-
duced in [8], and the computationally economical even if not numerically scalable

. =Lt . .
lumped preconditioner PF; P7 proposed in earlier works [6,7]. If each subdo-
main generalized stiffness matrix is partitioned as

: K K
K = | o7 (13)
Kib Kbb

where the subscripts ¢ and b designate the subdomain interior and interface
-1

. =D . .
boundary d.o.f., respectively, then the component F;  of the Dirichlet pre-
conditioner can be written as

D o [0 0 r
7= Y wWEB® [0 s,ﬁ;)}B“’ —
o=t (14)
where
T -t s
Sty = Kfy —K§ K KJ

=L o ‘ .
and the component F;  of the lumped preconditioner can be written as

N

—=L?! : 10 0 T <xr(s

F, = ZW(S)B()[O ng)]B“ wis) (15)
s=1

. =Dt =L . . . .
In the above expressions of F; and F; , W) is a diagonal “scaling” matrix.

In its simplest form, W) stores in each of its entries the inverse of the multi-
plicity of the corresponding interface node — that is, the inverse of the number
of subdomains attached to that node [23,9,11]. For example, if the i-th Lagrange
multiplier component A(:) acts on an interface node that is shared between 2
subdomains, then W (i) = 1/2; if it acts on an interface node that is shared by
m subdomains, then W) (i) = 1/m. Such a matrix W) is referred to as the
“topological scaling” matrix.

Recently, both Dirichlet and lumped preconditioners have been extended to
address more efficiently heterogeneous structural problems [19]. These extensions
are simply obtained by redefining appropriately the scaling matrix w),
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Finally, we note that for homogeneous problems, the simplest choice Q =
I is the most computationally efficient. Most FETI computations reported in
the literature have been performed with this trivial choice. However, it was
shown in [9] that heterogeneous problems call for a matrix Q that is physically
homogeneous to a generalized stiffness. For this reason, two alternativ? choices
for Q were first proposed in [9): Q = QF = Ff 1, and Q= QP = F? . These
choices were further investigated in [18] and shown to be effective for model
heterogeneous problems.
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3. Scalability results lon the ASCI Option Red supercomputer

3.1. Implementation of Salinas and FETI on massively parallel distributed mem-
ory systems

Like FETI, Salinas is based on substructuring, and relies on the same con-
cept of mesh partitioning. For this reason, interfacing both codes was a relatively
straightforward task. Using an automatic mesh decomposer [29,30], a given finite
element structural model is first decomposed into N; > N, subdomains, where
N, denotes the target number of processors. The potential advantages of gener-
ating more subdomains than there are processors are discussed in [14,31], among
other references. Next, the generated subdomains are re-arranged into N, clus-
ters containing each one or several subdomains, and each cluster is assigned to
one processor. Most if not all Salinas and FETT computations can be performed
concurrently at the subdomain level, and necessitate interprocessor communica-
tion only between neighboring clusters. As far as FETI is concerned, only the
solution at each PCG iteration k of a coarse problem of the form

(GTQG))a* = GTwF (16)

deserves special attention. Such a coarse problem is associated with a matrix-
vector multiplication of the form PTwF or Py*. where w* and y* denote respec-
tively two vectors generated by the PCG algorithm applied to the solution of the
interface problem (PTF;P)A = PT(d — F;A%) (12). Hence, it arises twice at
each FETI iteration. Before addressing this issue, we note that

e the system matrix G?QG 7 is independent of the iteration number k. Only
the right hand side vector GT w* varies throughout the FETT iterations.

o for any Q, the system matrix G?QG 7 has the same size which depends on
the number of floating subdomains /N, and the dimensions of the null spaces
kerK(s), s =1, ..., N¢. In general, the size of G?QGI is of the order of
6.N;.

o forQ=1, G?G 1 1S a sparse symmetric positive matrix. Its sparsity pattern
is dictated by the connectivity of the mesh partition, and is identical to
the sparsity pattern of any finite element matrix obtained by treating each
subdomain as a “superelement”. More specifically, G T’GYI) # 0 if and
only if Q) and Q@ are neighboring subdomains.

=Lt =D~ .
e for Q =QFf = F; and Q = QP = ¥, o, GITQGI is also a sparse
syminetric positive matrix, and its sparsity pattern is also dictated by the
connectivity of the mesh partition. However, in these two cases G?QG 118
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slightly more populated than GT G;. More specifically, G‘(,S)TQGg‘Z) # 0 if
and only if (@ is a neighbor of Q(), or the neighbor of a neighbor of Q).

e for all three choices of Q specified above, G?QG 7 can be assembled in
parallel using only subdomain level computations, and a small amount of
interprocessor communication between processors mapped onto neighboring
clusters of subdomains.

As mentioned in the introduction, we consider here solving the coarse prob-
lem (16) by a direct method. Such a strategy improves the robustness of the FETI
method, but complicates its implementation on massively parallel distributed
memory systems. As stated earlier, parallel sparse direct algorithms do not scale
well in the sense defined in this paper, particularly for these small size coarse
problems. Furthermore, we note that because the system matrix G}PQG 1 needs
be factored only once, but the coarse problem (16) must be solved twice at each
FETI iteration, it is essential to focus on a strategy that addresses not only the
factorization of G?QG I, but most importantly the subsequent forward and back-
ward substitutions. Indeed, the scalable parallelization of the direct solution of
sparse lower and upper triangular systems is even more challenging than that of
the factorization of a sparse matrix.

For all of the above reasons, we consider here the following approach for solv-
ing the coarse problem (16) on a massively parallel distributed memory system
such as the ASCI Option Red supercomputer. For the sake of notational sim-
plicity, but without any loss of generality, we assume in the following algorithmic
description that each floating subdomain has exactly 6 rigid body modes.

a) form G?QG 7 in parallel and replicate this relatively small size sparse matrix
in each processor.

b) request that each processor factor G?QG I-

¢) compute in parallel a distributed inverse of GT QG as follows. For each
floating subdomain Q) assigned to processor p;, request that p; performs 6
forward and backward substitutions to solve

(GTQGNX; =1, (17)

where I; contains the 6 columns of the identity matrix I that are assigned
to subdomain Q) in conjunction with its 6 rigid body modes RY).

d) at each FETI iteration k, solve each coarse problem of the form given in (16)
by performing a parallel distributed matrix-vector multiplication. Indeed,
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from Egs. (7,16,17) it follows that

J=Ny o
of = X(GIwh) = ¥ X;[GY) wh] (18)
=1

which shows that the evaluation of a* can be performed using subdomain-
by-subdomain parallel computations and requires only one global range com-
munication.

The strategy outlined above for solving the coarse problem (16) is essentially
composed of three sequences of embarrassingly parallel computations.

The first one has two caveats. From a computational viewpoint, request-
ing that all processors perform the factorization of the same matrix G?QG Iis
equivalent to serializing this computation. This serialization does not significantly
affect the overall performance of FETI, as long as the cost of the factorization of
G?QG 7 is negligible compared to the cost of the other FETI operations — that
is, as long as the number of subdomains is below a certain critical value N¢7.
However, because of Amdahl’s law, there also exists a certain number of proces-
sors N;" beyond which this serialization will prevent FETI from scaling well on a
massively parallel system. Furthermore, given that the size of GrijG 1 increases
with the number of subdomains N, and that N, increases with the number of
processors N, there also exists a critical number of subdomains and/or processors
beyond which storing GfQG 7 in a single processor of a local memory system will
not be feasible. However, note that after the X; column matrices have been com-
puted, G?QG 1 can be deleted, which frees memory for other usage, for example,
by Salinas.

The second sequence (c) of embarrassingly parallel computations is an effec-
tive one from both computational complexity and parallel scalability viewpoints.
The third sequence (d) is also perfectly scalable from a parallel processing view-
point. It is also computationally efficient if the size of each cluster of subdomains -
is such that the total number of column matrices X; assigned to a processor p;
is comparable to the average number of nonzero entries in a row of the factors
of the sparse matrix G"IFQG 7. In particular, if one and only one subdomain is
assigned to each processor (IN; = N,), the embarrassingly parallel steps (c) and
(d) are both numerically and parallel-wise scalable.

In summary, one can reasonably expect that the FETI method equipped with
the coarse problem solver described above will scale well on massively parallel dis-
tributed memory systems, up to a certain problem and/or machine size (number
of processors) beyond which the storage scheme and factorization method of the
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coarse matrix G?QG 1 will need to be revisited. Hence, a first objective of this
work is to assess this limit in the context of the solution of three-dimensional
second-order elasticity problems on the ASCI Option Red supercomputer.

3.2. The ASCI Option Red supercomputer

The ASCI initiative supports the ASCI Option Red supercomputer, a mas-
sively parallel processor with a distributed memory multiple instruction and mul-
tiple data architecture, as well as the ASCI Option Blue Mountain and ASCI
Option Blue Pacific supercomputers. The ASCI Option Red and Blue Mountain
systems run MP LINPACK, one of the computer industry’s standard speed tests
for large systems, at 1.3 and 1.6 Teraflops respectively [24].

The ASCI Option Red supercomputer, also known as the Intel Teraflops
machine, is the first large-scale supercomputer built entirely of commodity, com-
mercial, off-the-shelf components. It has 4,536 compute and 72 service nodes each
with 2 Pentium Pro processors, 594 Gbytes of real memory, and two independent
1-Terabyte disk systems. It occupies 1600 sq. ft. of floor-space (Fig. 2). The
system’s 9,216 Pentium Pro processors are connected by a 38 x 32 x 2 mesh.

SRR RO

Fig. 2. The ASCI Option Red supercomputer

The Pentium Pro processor runs at 200 MHz and has a peak floating-point
rate of 200 Mflops (million floating-point operations per second). It has separate
on-chip data and instruction L1 caches of 8 Kbytes each. It has also an L2 cache
of 256 Kbytes packaged with the CPU in a single dual-cavity PGA package. All
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cache lines are 32 bytes wide. The system was delivered with 128 Mbytes of
memory per node, but supports up to 256 Mbytes of memory per node. The
two processors on each node support two on-board PCI interfaces; each of these
interfaces provides 133 Mbytes/sec I/O bandwidth. The memory subsystem is
structured as four rows of four independently controlled and sequentially inter-
leaved banks of DRAM to produce up to 533 Mbytes/sec of data throughput.
Each memory bank is 72 bits wide. The router supports bi-directional band-
widths of up to 800 Mbytes/sec over each of six ports. As many as four message
streams can pass on any given port and at any given time.

Two UNIX-based operating systems collectively called the Teraflops OS run
on the ASCI Option Red supercomputer and present a single system image to
the user. Compute nodes run an efficient small operating system called Cougar
[25-27]. Service nodes run POSIX 1003.1 and XPG3, and AT&T System V.3
and 4.3 BSD Reno VFS [28]. The file system is concentrated on a small set of
specialized nodes that process I/O requests. Symbios RM20 Redundant Arrays
of Independent Disks (RAIDs) are used for secondary storage. A Symbios RM20
RAID has two bays of ten drives each and two controllers. The disk drives are
Seagate 4-GbytesBarracudas with a 3.5 form-factor [28].

8.8. Preliminary scalability results

Assessing the scalability (in the sense defined in this paper) of both the
FETI method and its massively parallel implementation described in Section 3.2
requires generating, for a given problem, a sequence of finite element models
where the total number of d.o.f. is increased proportionally to an increasing
sequence of number of processors, in order to maintain the ratio problem size over
machine size constant. Generating such a sequence of finite element models and
the corresponding sequence of mesh partitions is in general a tedious task. For this
reason, and because the numerical scalability of the FETI method has already
been established and repeatedly demonstrated for realistic structural problems
[9-14,31], we consider here two simple three-dimensional benchmark problems
that are easy to generate and manipulate for scalability studies. Both benchmark
problems correspond to homogeneous structures uniformly discretized by 8-noded
brick elements, and partitioned into cubic subdomains. For this reason, we set
Q = I for both problems. In both cases, we generate the sequence of finite
element meshes by fixing the size of each cubic subdomain, and increasing the
number of subdomains N, to match the target number of processors N,. Hence,
we consider here only the case N, = NN,, because we consider large values of
N, ranging between 8 and 1000 processors. We fix the subdomain size to 1728
elements (12 x 12 x 12), which corresponds to the maximum subdomain size
affordable by FETI for one of the two benchmark problems on a single processor
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with 128 Mbytes of memory, after the Salinas memory requirements have been
met. The two benchmark problems considered here differ as follows

1) in benchmark problem BP1, the structure has a cubic shape and is parti-
tioned into » x n x n subdomains (Fig. 3.). It is clamped at one end, and
subjected to a distributed vertical load at the other. '

2) in benchmark problem BP2, the structure has the shape of a rectangular .
parallelepiped and is partitioned into 2 X 2 x n subdomains (Fig. 4.). Tt is
clamped at one end, and subjected to a distributed vertical load at the other.
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Fig. 3. The benchmark problem BP1

Fig. 4. The benchmark problem BP2
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In both cases, the size of the G?G 7 matrix increases linearly with the number
of subdomains, and the amount of fill-in per row suffered during the factorization
of this matrix grows with the number of the subdomains lying in a plane perpen-
dicular to the main axis of the structure. Hence, for benchmark problem BP1,
this amount of fill-in per row increases as O (n?), while for benchmark problem
BP2 it remains constant. Since the parallel implementation of the one-level FETI
method described in Section 3.2 calls for replicating the storage of G}PG 7 in ev-
ery processor, and effectively serializes the factorization of this matrix, it follows
that problems BP1 and BP2 provide a worst-case and best case scenarios, respec-
tively, for the memory requirements and parallel scalability of the FETI method.
In particular, given that the size of each subdomain is fixed to 1728 elements, that
each processor of the target ASCI Option Red supercomputer has 128 Mbytes of
memory only, and that Salinas has its own memory requirements that must be
accommodated, the O (n?) growth of fill-in per row for the factorization of the
coarse problem associated with the benchmark problem BP1 limits the number
of subdomains that can be considered in this investigation to Ny = 1000, and
therefore limits the number of processors to N, = 1000. Of course, this number
of subdomains and/or processors can be increased by decreasing the subdomain
problem size. However, because access to more than 1000 processors on the ASCI
Red Option machine is also a practical challenge by itself, we limit here our in-
vestigation of the performance and scalability of the FETI method on the ASCI
Option Red supercomputer to a maximum number of 1000 processors.

We also note that most realistic problems are neither cube-shaped, nor
parallelepiped-shaped. The decomposition of their meshes seldom generates per-
fectly load-balanced subdomains, or subdomains with a perfect aspect ratio. How-
ever, based on the arguments presented above, we can reasonably argue that the
scalability results of FETI for the benchmark problems BP1 and BP2 provide
lower and upper bounds of the scalability results to be expected for the solution
by FETI on the ASCI Option Red supercomputer of more realistic problems.

Even though Salinas is primarily a structural dynamics implicit code, we
report here on the scalability of this software equipped with the FETI solver
for linear static analysis. This is because the complexity of solving a system of
equations arising from one step of an implicit structural dynamic (large time-step)
analysis, or from a static analysis, is essentially the same. For the optimization of
FETI to the solution of repeated systems arising form the linear dynamic analysis
or the eigenvalue analysis of a structure, we refer the reader to [10,20,21]. For both
benchmark problems, we equip FETI with the topological scaling matrix w,
We report in Table 1 and Table 2 the performance results obtained for problem
BP1 on a 1000-processor configuration of the ASCI Option Red supercomputer,
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using the Dirichlet and lumped preconditioners, respectively. Similarly, we report
in Table 3 and Table 4 the performance results obtained for problem BP2. In all
cases, we use the following stopping criterion

Ku—flla <107 x |[fll2 (19)

- Table 1
Solution by FETI equipped with the Dirichlet preconditioner of the benchmark problem

BP1 on the ASCI Option Red supercomputer

N,=N,  Nagpj Ny Factor GIG; FETI Salinas + FETI

n
2 8 46,875 14 0.001 sec 209 sec 336 sec
3 27 . 151,959 20 0.006 sec 216 sec 346 sec

.4 64 352,947 25 0.05 sec 222 sec 355 sec
) 125 680,943 27 0.3 sec 225 sec 358 sec
6 216 1,167,061 30 1.1 sec 229 sec 365 sec
7 343 1,842,375 31 2.9 sec 235 sec 367 sec
8 512 2,738,019 33 5.8 sec 239 sec 380 sec
9 729 3,885,087 33 14.9 sec 252 sec 405 sec
10 1,000 5,314,683 34 32.4 sec 275 sec 413 sec
Table 2

Solution by FETI equipped with the lumped preconditioner of the benchmark problem
BP1 on the ASCI Option Red supercomputer

N,=N, Naos Nur Factor GTG; FETI Salinas + FETI

n
2 8 46,875 27 0.001 sec 140 sec 267 sec
3 27 151,959 36 0.006 sec 148 sec 278 sec
4 64 352,947 45 0.05 sec 155 sec 288 sec
5 125 680,943 48 0.3 sec 157 sec 290 sec
6 216 1,167,051 51 1.1 sec 161 sec 297 sec
7 343 1,842,375 55 2.9 sec 167 sec 299 sec
8 512 2,738,019 55 5.8 sec 171 sec 312 sec
9 729 3,885,087 58 14.9 sec 187 sec 340 sec
10 1,000 5,314,683 60 32.4 sec 216 sec 399 sec
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Table 3

Solution by FETTI equipped with the Dirichlet preconditioner of the benchmark problem
BP2 on the ASCI Option Red supercomputer

n  Np=N,  Nags Ny Factor GFG; FETI Salinas + FETI

2 8 46,875 14 0.001 sec 209 sec 336 sec
7 28 159,375 18 0.007 sec 214 sec 343 sec
16 64 316,875 18 0.018 sec 215 sec 354 sec
31 124 699,375 18 0.038 sec 216 sec 347 sec
54 216 1,216,875 19 0.073 sec 216 sec 350 sec
86 344 1,936,875 19 0.131 sec 217 sec 351 sec
128 512 2,881,875 19 0.203 sec 218 sec 354 sec
182 728 4,096,875 19 0.298 sec 218 sec 355 sec
250 1,000 5,626,875 19 0.414 sec 222 sec 360 sec
Table 4

Solution by FETI equipped with the lumped preconditioner of the benchmark problem
BP2 on the ASCI Option Red supercomputer

n  Np=N; Naos Nitr Factor GTG; FETI  Salinas + FETI

2 8 46,875 27 0.001 sec 140 sec 267 sec
7 28 159,375 30 0.007 sec 142 sec 271 sec
16 64 316,875 31 0.018 sec 143 sec 282 sec
31 124 699,375 31 0.038 sec 143 sec 274 sec
54 216 1,216,875 31 0.073 sec 144 sec 278 sec
86 344 1,936,875 31 0.131 sec 144 sec 278 sec
128 012 2,881,875 32 0.203 sec 146 sec 282 sec
182 728 4,096,875 33 0.298 sec 147 sec 284 sec
250 1,000 5,626,875 34 0.414 sec 151 sec 289 sec

The performance results reported in Tables 1-4 show that

e the FETI method equipped with the Dirichlet preconditioner achieves nu-
merical scalability (constant asymptotic iteration count) for both benchmark
problems BP1 and BP2.
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e when equipped with the lumped preconditioner, the FETI method achieves
numerical scalability for problem BP2. It also exhibits a reasonable numer-
ical scalability for problem BP1. For both benchmark problems, the FETI
method performs on average 1.6 times more iterations when equipped with
the lumped preconditioner than when equipped with the Dirichlet precondi-
tioner. However when equipped with the lumped preconditioner, the FETI
method is on average 1.3 times faster (problem BP1) and 1.5 times faster
(problem BP2) than when equipped with the Dirichlet preconditioner. This
demonstrates the computational efficiency of the lumped preconditioner for
the solution of second-order elasticity problems by the FETI method.

e for problem BP1, the cost of the factorization of the matrix G?G 1 — which
is the only sequential operation performed by the current implementation
of FETI on massively parallel local memory machines — is shown to in-
crease dramatically with the number of the subdomains and processors, as
O (N /3 = Ny / %), which is consistent with the O (n2) (n = N/ %) growth of
the fill-in per row predicted for the factorization of this matrix for problem
BP1. Nevertheless, the results reported in Table 2 show that for the bench-

" mark problem BP1, the FETI method equipped with the lumped precondi-
tioner solves 5,314,683 equations in 216 seconds CPU on a 1000-processor
configuration of the ASCI Option Red supercomputer.

e for problem BP2, the CPU time consumed by the sequential factorization of
the coarse problem of the FETI method is reported to grow only linearly with
the number of subdomains. This is consistent with our analytical prediction
that is based on the fact that the size of GI G grows linearly with the
number of subdomains, and the fact that for problem BP2, the fill-in per
row suffered during the factorization of this matrix is independent of the
number of subdomains. For the benchmark problem BP2, the FETI method
equipped with the lumped preconditioner solves 5,626,875 equations on 1000
processors in 151 seconds. '

In order to quantify the scalability of the current implementation of the FETI
‘method on the ASCI Option Red supercomputer, we introduce the following
definition of the speed-up

8 x Ty % Ndost

Sp =
Tn, Ngog,

(20)

where T3 and T, denote respectively the CPU timings corresponding to 8 and
N, processors, and Ng,r, and NdOfNS denote respectively the sizes (in d.o.f.)
of the global problems corresponding to 8 and N, subdomains. Here, the case
N, = 8 is taken as a reference point. Note that the above definition of the
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speed-up is a strict one: it accounts for both concepts of numerical and parallel
scalability. It assesses the combined performances of the given algorithm, its
parallel implementation, and the parallel hardware on which this algorithm is
executed. For the benchmark problems BP1 and BP2, the speed-ups achieved by
the FETI method are reported Fig. 5 for the case of the Dirichlet preconditioner,
and in Fig. 6 for the case of the lumped preconditioner.

Speed-up
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Fig. 5. Scalability results of the FETI method equipped with the
Dirichlet preconditioner on the ASCI Option Red supercomputer
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Solver: FETl-lumped -- Supercomputer: ASCI Red Option
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Fig. 6. Scalability results of the FETI method equipped with the
lumped preconditioner on the ASCI Option Red supercomputer

From Fig. 5, we conclude that when equipped with the Dirichlet precondi-
tioner, the one-level FETI method implemented on a 1000-processor configuration
of the ASCI Option Red machine, as described in Section 3.1 can be expected to
achieve for realistic second-order elasticity problems a speed-up in the range of
700 to 900, and therefore an efficiency (speed-up per processor) ranging between
70% and 90%. The lower bound of this trend for efficiency suggests that for
Np > 1000, maintaining this level of speed-up will require the parallelization of
the factorization of the matrix G?G 1 of the coarse problem in order to address
the effect of Amdahl’s law.

4. Highly heterogeneous structural problems

Benchmark problems BP1 and BP2 are homogeneous problems, and their
mesh partitions are characterized by perfect subdomain aspect ratios. This ex-
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plains the relatively low iteration counts reported in Tables 1-4 for their solution
by the FETI method.

The structural problems targeted by the ASCI initiative are typically het-
erogeneous, with some material properties differing by as much as five orders of
magnitude. For such problems, FETT delivers the same parallel scalability as for
the benchmark problems BP1 and BP2. However, maintaining the numerical scal-
ability of the FETI method for highly heterogeneous structural problems requires
equipping it with different choices for Q and W than the identity and topo-
logical scaling matrices, respectively. For example, it was argued in [9] that for
heterogeneous structural problems, Q must be chosen as a matrix that captures

the different stiffnesses of the various subdomains. It was also shown in [9] that the
-1

—_ 71
two specific choices QD = F? and QL = Ff’ not only meet this requirement,
—p-1 _p-1 _ y—1
but also offer a computational advantage because P(F? )FID PT(F;J ) =
_D—]. T /= -1 _L—-l ___L—l T _L—l ___L~—1 T _L-l
FI P (FI ), and P(FI )FI P (FI ) = FI P (FI ). Subsequently,
it was verified numerically in [18] that for highly heterogeneous model problems,

these two specific choices of Q maintain indeed the numerical scalability of the
FETI method with respect to both the mesh size A and subdomain size H.

A variational approach for tuning FETI to the solution of heterogeneous
structural problems was also proposed in [32], then simplified in [19] to provide
computational efficiency. This alternative approach does not focus on the projec-
tor P, and therefore does not affect the choice of the matrix Q. It focuses on the
scaling matrix W(S), and proposes a “superlumped stiffness” scaling procedure
rather than the topological one described in Section 2. The variational theory
exposed in [19] suggests that an efficient scheme for accelerating the convergence
of the FETI method applied to the solution of highly heterogeneous problems is
to construct the diagonal matrix W) as follows. If A(z) is the i-th component
of the Lagrange multiplier vector viewed by subdomain Q() and connecting the
interface displacement d.o.f. u(s)(js) in Q) to the interface displacement d.o.f.
ul?(j,) in the neighboring subdomain Q(%), then W) (4) is set to

k49
wO() = — lale 0 (21)
kj5, T k5
QW eN(Q))

where A (Q(%)) denotes the set of neighbors of Q(%), k;gl is the diagonal coefficient

of the subdomain stiffness matrix K® associated with the displacement d.o.f.
u®(4;), and j; is such that the displacement d.o.f. u®(j;) and the displacement
d.o.f. u®(j,) correspond to the same displacement d.o.f. of the global finite
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element model. Note that if all the subdomains in A’(Q(*)) have the same material
and discretization properties as subdomain Q(), then W(®)(3) = 1/m (see Section
2), which shows that the topological scaling overviewed in Section 2 is a particular
case of the superlumped stiffness scaling summarized in Eq. (21). In [19], using
a set of model problems and a few realistic ones, it was shown that the FETI
method equipped with the stiffness scaling matrix W®) specified in Eq. (21) is
numerically scalable with respect to both the problem and mesh partition sizes.

The superlumped stiffness scaling (21) does not increase neither the com-
putational complexity nor the storage requirements of the FETI method by any

significant amount. Therefore, it can be invoked by default. On the other hand,
—1 .

equipping the FETI method with QP = _FT? or QF = Ff 1 increases the com-
putational complexity and storage requirements of the projection steps in FETI
by a small percentage. Hence, a first objective of this section is to investigate
when and whether equipping the FETI method not only with the stiffness scaling
procedure (21) but also with a matrix Q # I is worthwhile.

Furthermore, since both the Q- and W )-approach address in an explicit
manner only the structural heterogeneities viewed by the subdomain interfaces, a
second objective of this section is to investigate whether the subdomain interfaces
should include all the mesh boundaries separating the different materials of a
heterogeneous finite element model, which would affect the mesh partitioning
strategy.

Finally, a third objective of this section is to devise a general strategy for
optimizing the solution of highly heterogeneous structural problems by the FETI
method.

4.1. Findings and recommendations

In our numerous experimentations with the solution of heterogeneous prob-
lems by the FETI method, we have observed the following

0O1) in addition to QP and QZF, the following matrix should be considered

N
SL _ (s)m(s) | 0 0 ()T (s)
Q% = SWOBO [ feo [BOWO e

This matrix is a diagonal (lumped) approximation of the lumped precondi-
tioner. Hence, we refer to it as the superlumped matrix QS L , which explains
the SL superscript. Equipping the projector P with the superlumped ma-
trix Q5T can be interpreted as preconditioning the coarse problem by the
superlumped stiffness scaling procedure (21). This matrix is inexpensive to
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02)

03)

compute and store, and is such that G?QS LG/ has the same sparsity pattern
— and therefore the same memory requirements — as G?G I-

if all the subdomain interfaces separate regions with similar high jumps in the
material properties, then the FETT method equipped with the superlumped
stiffness scaling procedure (21) performs well, and converges even faster than
when the problem is homogeneous. We have observed this behavior of FETI
even for mesh partitions with poor subdomain aspect ratios.

if some but not all of the subdomain interfaces separate regions with similar
high jumps in the material properties, then FETI exhibits a good convergence
when equipped with the superlumped stiffness scaling procedure (21) and
Q # I, and when the mesh partition has good subdomain aspect ratios. By

Q # I, we mean here Q = QP, oerQL,orQ:QSL.

Based on these observations, some of which are illustrated in the next section,

we make the following recommendations for the solution of highly heterogeneous
structural problems by the FETI method

R1)

R2)

R3)

4.2.

by default, use the superlumped stiffness scaling matrix (21), and equip
FETYI’s projector P with QL (10). This improves the convergence of FETI
at almost zero additional storage and computational cost.

if possible, design a mesh partition where all subdomain interfaces are along
boundaries between materials with similar jumps in their properties. Unfor-
tunately, this may be possible only for cyclic structures, or academic prob-
lems where the number of materials matches the desired number of subdo-
mains.

in the general case, partition the mesh along the material boundaries, then
refine the obtained partition to generate the target number of subdomains
N;. If, because of topological reasons, this process can be expected to create
subdomains with poor aspect ratios, modify this strategy as follows. First,
re-organize the material groups into a smaller number of clusters each con-
taining materials with relatively similar properties. Then, decompose the
mesh along the boundaries of the clusters, and refine the obtained mesh par-
tition to generate the desired number N, of balanced subdomains. If needed
for ensuring good subdomain aspect ratios, include in a cluster a neighboring
material even if it has significantly different properties.

Justifications

In order to highlight the importance of the recommendations formulated

above, we consider here the stress analysis of the heterogeneous cantilever struc-
ture shown in Fig. 7. This structure has a length L, = 4, a depth L, = 1, a
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thickness th = 0.01, and a Poisson ratio ¥ = 0.3. It is constructed by gluing
together 8 slices of 3 different materials M; in the following sequence: M7, Mo,
M, My, My, My, M3, M, (Fig. 7). The Young moduli E; of the materials M;
are such that

E, = 1000x E, and E, = 100 x F3 = 2.05 x 101! (23)

Hence, E™3% /| Fmin = 105,

M1 M2 M3 M2 M1 M2 M3 M2

- M
4

Fig. 7. A heterogeneous cantilever problem

We uniformly discretize this structure by 80 x 20 plane stress elements, and
generate several M x N mesh partitions with different characteristics. For each
mesh partition, we solve the corresponding system of equations by the FETI
method equipped with the lumped and Dirichlet preconditioners, and with Q =1,
Q= QD ,Q=Q% and Q= QS L. In all cases, we use the superlumped stiffness
scaling procedure (21). We adopt the stopping criterion (19) and report the
obtained iteration counts in Table 5.
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Table 5

Iteration count for FETI applied to the solution of the heterogeneous problem graphi-
cally depicted in Fig. 7

Lumped preconditionerDirichlet preconditioner
N,(M x N) AR I Q% @t I Q% QP
4(4x1) 1 18 17 17 5 5 4
8 (8x1) 1/2 23 23 23 7 7 6
16 (16 x 1) 1/4 43 42 41 19 17 22
16 (8 x 2) 1 34 21 19 22 15 15
40 (40 x1) 1/10 113 112 112 82 81 81
40 (8 x 5) 1/2 68 37 35 53 25 27
64 (4 x 16) 1 66 20 19 52 14 17

From Fig. 7 and the results summarized in Table 5, the reader can check
that

e for both 4 x1 and 8 X 1 mesh partitions, all subdomain interfaces separate re-
gions with high jumps of Young’s modulus. In both cases, the FETI method
performs well, particularly when equipped with the Dirichlet preconditioner,
which is in agreement with the general observation O2.

e both 16 x 1 and 8 x 2 mesh partitions have the same number of subdomains.
In both cases, only half the subdomain interfaces separate regions with high
jumps of Young’s modulus. However, the subdomains of the 8 x 2 mesh
partition have a better aspect ratio (AR = 1) than the subdomains of the
16 x 1 decomposition (AR = 1/4). This explains why FETI performs better
for the 8 x 2 mesh partition than for the 16 x 1 decomposition.

e similarly, both 40 x 1 and 8 x 5 mesh partitions have the same number of
subdomains, same number of homogeneous interfaces, and same number of
heterogeneous interfaces. However, the subdomains of the 8 x 5 decomposi-
tion have a better aspect ratio (AR = 1/2) than those of the 40 x 1 mesh
partition (AR = 1/10). Consequently, FETI performs better for the 8 x 5
mesh partition than for the 40 x 1 decomposition.

e the 16 X 4 mesh partition is another example of a mesh partition with both '
homogeneous and heterogeneous subdomain interfaces. For this decomposi-
tion and Q # I, the FETI method performs as well as for the 8 x 2 mesh
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partition, which is also characterized by a uniformly perfect subdomain as-
pect ratio.

e in all cases, the FETT method equipped with QS L performs almost as well
as when equipped with QD or QL , and in some cases it performs even better
(because of variations in the initial residual). In a few cases the FETI method
equipped with Q # I performs much better than when equipped with Q = 1.
These two observations are consistent with the general observations O1 and

03.

e the Dirichlet preconditioner is needed when the mesh partition has poor
subdomain aspect ratios.

e Q # I is justified and needed when the mesh partition has heterogeneous
crosspoints.

e when the recommendations formulated in the previous section are followed,
FETT exhibits a reasonable numerical scalability with respect to the number
of subdomains.

Next, we consider the case of a realistic ASCI-type heterogeneous structural
problem, and illustrate in particular the importance of recommendation R3.

5. Application to the analysis of a mockup reentry vehicle

Here, we report on the performance of the FETI method applied to the
finite element analysis of a mockup reentry vehicle (RV) on the ASCI Option
Red supercomputer.

An RV can be expected to experience different loadings in normal and hostile
environments. Its structural response during vibration is usually predicted by a
modal analysis, while its shock response is usually simulated by a direct transient
analysis. The predictive computation of responses at component levels requires a
detailed finite element model of the full body as well as individual components.

We focus on a large-scale finite element model of a mockup RV with 330,300
elements, and 334,759 nodes. With slightly more than one million d.o.f., this
model requires significant computational power, and provides a reasonable bench-
mark for massively parallel computational platforms. All elements of the mesh
are either 8-noded brick or 6-noded wedge elements. Decomposing this mesh into
subdomain with good aspect ratios is a difficult task because the RV shown in Fig.
8 has a thin wall tubular-like overall structure. Hence, the finite element model
considered herein poses serious computational challenges to substructure-based
methods.

There are eight different materials that are scattered within the RV model
(Fig. 8), and their Young’s moduli vary from 102 psi to 3x 107 psi. Hence, this RV
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structure is a highly heterogeneous one with E™% /E™i" — 3 10°, and therefore
can be expected to challenge any iterative solver. For the same reasons described
in Section 3.3, we consider here only the stress analysis of this RV model using
Salinas equipped with the FETI solver.

The results of the analysis performed in Section 3.3 (see Tables 1-4) suggest
that the solution by FETI of this million d.o.f. problem requires (the memories of)
at least 216 processors of the ASCI Option Red supercomputer. For this reason,
we consider partitioning the given RV mesh into 250 subdomains and assigning
each subdomain to one processor. We also consider partitioning this mesh into
500 subdomains for computations on 500 processors, in order to provide at least
one example of the parallel scalability for a fixed problem size of our current
massively parallel implementation of the FETI method. More specifically, in order
to illustrate recommendation R3, we consider three different mesh decomposition
strategies '

e  partitioning the mesh as is, with particular attention to the subdomain aspect
ratio using the optimizers described in [15,16].

e partitioning the mesh along its material boundaries, then refining the ob-
tained mesh partition to generate the requested number of subdomains. In
that case, the subdomain aspect ratio optimizer [15,16] is applied locally,
within each material group.

e re-organizing all the material groups of the RV finite element model into two
clusters and partitioning each cluster independently from the other.

Furthermore, our mesh decomposer [29] automatically post-processes each
mesh partition to remove any internal mechanism generated by the partitioning
algorithm, in order to allow a robust evaluation of the rigid body modes and
generalized inverse of the stiffness matrix of each floating subdomain [33]. For
this reason, and because of other issues associated with the clustering process,
the number of generated subdomains N; may differ from the requested number
of subdomains N7¢¢, usually by less than 5 %. '

Following recommendation R1, we equip FETI with the superlumped stiff-
ness scaling procedure (21). However, as stated earlier, the topology of the RV
model shown in Fig. 8 is such that mesh partitions with good subdomain aspect
ratios cannot be reasonably expected. For this reason, we employ the Dirichlet
preconditioner. Furthermore, we equip FETT’s projector P with Q = QP, be-
cause the three other choices discussed in this paper turned out to be ineffective.
We monitor the convergence of FETI with the stopping criterion (19), and report
in Table 6 the obtained performance results.
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Fig. 8. Mockup reentry vehicle: each color indicates a different material

Table 6

Solution by FETI on the ASCI Option Red supercomputer of the RV problem with
1,004,277 d.o.f. (Fig. 8)

Nr¢t® N, =N, Type N Factor GTQD Gy FETI  Salinas + FETI
s p I

250 252 Regular 290 1.8 sec 378 sec 474 sec
250 251 Material 463 1.7 sec 563 sec 657 sec
250 257 Cluster 221 1.5 sec - 261 sec 350 sec
500 513 Regular 325 8.8 sec 167 sec 219 sec
500 505 Material 584 10.6 sec 443 sec 502 sec
500 517 Cluster 276 11.6 sec 162 sec 218 sec

For both requested numbers of subdomains, the following trend can: be ob-
served

e the FETI method performs better on the regular mesh partition than on the
material based mesh partition. This can be explained as follows. Many of
the material interface boundaries run parallel to the longitudinal axis of the
RV, within its thin wall structure. Consequently, each material group defines

- a substructure with a poor aspect ratio. Partitioning this substructure into
tens of subdomains generates subdomains with poorer aspect ratios than
partitioning the original mesh.
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e on the other hand, the FETT method performs much better for the cluster
based decomposition, which highlights the relevance of recommendation R3.
Again, we remind the reader that this notion of clustering is motivated here
by topological reasons and the objective of generating subdomains with as
good an aspect ratio as possible.

For the cluster based mesh decompositions, the performance results reported
in Table 6 demonstrate a reasonable numerical scalability of the FETI method
for this highly heterogeneous problem. They also show that the CPU time of the
FETI method is reduced by a factor equal to 1.6 when the number of processors
is increased from 257 to 517. This corresponds to an efficiency of 80%, which.
demonstrates a good parallel scalability of our implementation of FETI on the
ASCI Option Red supercomputer.

Finally, from Table 1 and Table 6, the reader can observe that the perfor-
mance of the FETI method for this heterogeneous RV problem is consistent with
that of the BP1 problem with 216 subdomains.

6. Closure

We have presented an initial implementation of the FETI method on the
ASCI Option Red supercomputer, reported on its incorporation within the Sali-
nas structural dynamics code, and its application to the solution of highly hetero-
geneous problems. This initial implementation of FETI on a massively parallel
distributed memory system is characterized by (a) the redundant storage of the
sparse matrix G QG of the FETI coarse problem in every processor, (b) the
serialization of the factorization of this matrix, but (c) the perfect and efficient
parallelization of the subsequent forward and backward solves associated with
this matrix via an inverse matrix approach. For up to 1000 subdomains and 1000
processors with 128 Mbytes each, this implementation delivers a good scalabil-
ity. For a larger number of subdomain and processors, it must be revisited to
distribute the storage of the sparse matrix of the coarse problem among a group
if not all of the processors, and perform in parallel the factorization of this ma-
trix. For heterogeneous structural problems, we recommend equipping FETI by
default with the superlumped stiffness scaling procedure fully described in [19],
and the superlumped version (22) of the heterogeneous projector presented in
[9]. However, some problems may require equipping FETD’s projector with the
Dirichlet QP matrix. We also recommend generating mesh partitions whose in-
terface boundaries include the mesh material boundaries. If doing so prevents the
generation of subdomains with good aspect ratios, we recommend clustering the
materials into groups with different but relatively similar properties before parti-
tioning the mesh. When these recommendations are followed, the FETI method
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achieves a good combined numerical/parallel scalability for highly heterogeneous
structural problems.
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Appendix B
SAND 98-0410C: A Basic Parallel Sparse
Eigensolver for Structural Dynamics

David Day !

Abstract

In this work the basic Finite Element Tearing and Interconnecting (FETI) linear system
solver and the PARPACK eigensolver are combined to compute the smallest modes of
symmetric generalized eigenvalue problems that arise from structures modeled ‘primarily’
by solid finite elements. Problems with up to one million unknowns are solved. A
comprehensive and relatively self-contained description of the FETI method is presented.

B.1 Introduction and Summary

We seek to compute the left-most modes of a symmetric generalized eigenvalue prob-
lem Az = MxA with more than one million unknowns arising from structural dynamics
using a distributed memory platform. In this work both A and M are positive definite.
This generalized eigenvalue problem is solved using PARPACK [B.19, B.21] in shift-invert
mode. The traditional approach is to use a sparse direct linear solver for inversion [B.15].
The limitation of this approach is that all current parallel direct sparse matrix factoriza-
tion codes require essentially infinite per processor memory to be scalable. Instead we use
an iterative linear solver. The Finite Element Tearing and Interconnecting (FETT here-
after) iterative linear system solver [B.13] is used to invert [B.6]. This work describes the
basic FETT multilevel used method for solving linear systems whose coefficient matrix is
a positive definite stiffness matrix for solid structures. The underlying partial differential
equation for solid structures is second order elliptic.

Section two describes the reformulation of the linear system as a distributed interface
linear system. Section three develops the FETI iterative solution algorithm. In section
four the combined FETI/PARPACK method is applied to several model eigenvalue prob-
lems. of order up to one million.

Notation. In this work upper case Roman letters denote matrices, lower case

1Sandia National Laboratories, Albuquerque, New Mexico 87185. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.
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Roman letters denote vectors and Greek letters denote scalars. R(A) and N (A) denote
the range and null spaces of the specified matrix.

B.2 Formulation of the Interface Linear System

FETTI is a domain decomposition method in which the compatibility equation for the
subdomain interfaces is solved iteratively. A subdomain is a set of elements (not nodes).
This approach is natural for finite element modeling because assembling the subdomain
stiffness matrix requires no interprocessor communication.

Substructuring is a type of domain decomposition in which an unassembled struc-
tural stiffness matrix is represented in the form A = LT KL where K is a block diagonal
matrix of subdomain stiffness matrices and L is a Boolean assembly matrix [B.22]. Con-
sider for example if —ii(z) = g with Dirichlet boundary conditions on the unit interval
is discretized by finite differences on a regular grid with mesh spacing 1/4. Paritioning
into two subdomains, each with a single element, yields the decomposition

2 -1 0 1000 2 -1 0000
-1 1 0 0]||010

-1 2 -1|=]0110
0 -1 2 00 0 1 0 0 1 -1||010
0 0 -1 2J]001

Note that in this case LTL = diag(1,2,1). In general the linear system Au = f is tra-
ditionally solved by multi-frontal Gaussian elimination [B.17, pp. 216-225] FETI solvers
exploit the parallelism inherent in the representation A = LY K'L.

A subdomain boundary node is represented on each subdomain sharing the node.
The global solution is a particular set of subdomain solutions that have consistent values
along subdomain interfaces. This interface compatibility condition is a discrete analog of
the Neumann boundary condition Vu - n = 0. For this reason most subdomain stiffness
matrices are singular. To illustrate this point, return to the example problem —i(z) = g
on the unit interval discretized with regular mesh spacing 1/(n+1). For n > 3, paritioning
into one element subdomains yields '

cean ([ 3] (4 ) [0

A more precise definition of L will be required. L maps the unknowns to subdomain
unknowns. Each row of L corresponds to a subdomain unknown and each column of L
corresponds to a structure unknown. In each row of L there is precisely one nonzero
entry. L;; = 1 if subdomain node i corresponds to node j. Moreover A := LTL is a
diagonal matrix whose (7,j) entry is the number of subdomains sharing the jth global
unknown. '
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The FETT approach is based on the decomposition of Au = f into the three linear
systems

LTp=f p not unique
Kus=p us not unique

us exists <= pe€ R(K) (p L N(K))
Lu=u, wuexists & u, € R(L) (us LN(LT))

Here the fact that the range of a matrix is orthogonal to the null space of the transpose
is used. The constraints that us; and u exist determine p and u,.

Because K is singular, it is necessary to compute the action of the pseudo-inverse,
K™, on a vector. We digress to discuss this task in detail. A stable algorithm for
computing K+ involves the eigendecomposition of K which is too costly. We are stuck
using an unstable algorithm. A much more efficient but potentially unstable method is
to use the factorization K = RTDR, where R is unit upper right triangular and D is
diagonal, to determine the null space N(K) [B.25]. In general (complete) pivoting tends
to reduce instability of a factorization [B.16]. Currently complete pivoting is not used.
Instead using the properties of solid elements, it is possible to permute the subdomain
unknowns so that on connected subdomains the pivots are all positive until only a small
South East submatrix remains unfactored. Instead of factoring, an eigendecomposition
of this small symmetric South East submatrix is computed. This technique is potentially
unstable due to a kind of element growth.

Particular solutions to the first two equations are p := LA™!f (simpler to verify
than derive) and
a5 := K'p. (B.1)

The general solutions can be written in the following form. First p is the sum of a
particular solution and a vector in the null space of LY. Let the rows of B span the null
space of LT, so that BL = 0. Because p is determined by LTp = f to within the null
space of LT, there exits a vector z such that

Similarly u, is determined by Ku, = p to within the null space of K. Let the columns
of N, be an orthonormal basis for the null space of K. Then u; must be of the form

Us = Us — N,z (B.3)
Because u, satisfies the interface compatibility condition, there holds us = Lu. Multiply

by A7'LT to find
uw=ATLTu, (B.4)
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Engineers use the symbol A in place of z to remind the reader that this is a vector
of Lagrange multipliers. We reserve the symbol X for eigenvalues.

If a subdomain stiffness matrix is poorly conditioned, it may be nontrivial to dis-
tinguish the null space from the eigenspaces that correspond to the smallest positive
eigenvalues. In this case the columns of N, are ortho-normal and span a space that con-
tains M(K) and the span of the eigenvectors corresponding to the smallest eigenvalues.
The indices of z, corresponding to eigenvectors of positive eigenvalues are not required
to vanish.

We conclude this section by deriving the linear system that defines the interface
unknowns. There exist unique vectors z and z, such that u; and u exist. The vector u,
is contained in R(L) if Bus = 0. First substitute equations (B.3), (B.1) and (B.2) to
find

0 =Buy; = Buy;— BNz,
= BK'p— BN,z,
BK*(p— BTz) — N'N,z,
BK*p— BK*BTz — BN,z,

Second because N (K) is the orthogonal complement of R(K),
0=Nlp=N'p—~ N'BTx

implies that p € R(K). Rewriting these two simultaneous equations for x and z, in
matrix notation yields the reduced interface linear system

BK*BT BN, [ =z | _[ BK*p (B5)
NTBT 0 z |~ | N'p '

Section three describes the FETI iterative solution method for this equation. Given the
solutions z and z,, first compute p, then u,, next u,; and finally the solution wu.

B.3 The FETI Method

In this section the basic FETT method for solving the reduced interface linear system
is developed. The indefinite interface linear system is first reduced to a symmetric positive
semi-definite linear system. Dirichlet preconditioning is used. The resulting iterative
method is an instance of a preconditioned conjugate projected gradient method [B.13].

Next we discuss the particular choice of ‘B used in this work. B is defined by two
properties. First the rows of B are of the form [0...010...0 — 10...0] where the lo-
cation of the two nonzero entries corresponds to a pair of unknowns that correspond to
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the same global unknown. Second the subdomain constraint matrix is constructed in
the same way for each subdomain. These choices are made to ease implementation. The
disadvantage of constructing B in this way is that redundant constraints are included
in B. If one structure unknown corresponds to three subdomain unknowns, then two
constraints would suffice to enforce the interface compatibility condition, but two con-
straints are added to B for each of the three subdomains, resulting in a total of three
constraints. If one structure unknown corresponds to four subdomain unknowns, then
then three constraints are added to B for each of the four subdomains, resulting in a
total of six constraints. In general if a subdomain shares a node with k other processors,
then k constraints would suffice, but a total of k(k — 1)/2 constraints are used. This
choice of B is inefficient due the the excessive number of redundant constraints if a node
is shared by very many subdomains (think of the hub of a spoked wheel). We will revisit
this subject in more detail in §3.2.

B.3.1 The Projected Linear System

In this section we discuss the solution method for the linear system (B.5). We first
introduce the notation

F=BK*BT" G=BN, d=BK'p e=Np

and rewrite (B.5) in the more compact form

EXINEN )

Iterative solvers such as MINRES applied to the the symmetric indefinite linear sys-
tem (B.6) converge somewhat less rapidly than conjugate gradient iteration for symmet-
ric positive definite matrices [B.29]. The above system is solved by deflating the G term
and applying PCG to the constrained linear system. The resulting algorithm has been
called the preconditioned conjugate projected gradient method (PCPG) [B.13].

The eponymous projector in PCPG annihilates G,
h=17I- G(GTG);lGT.
Multiply row 1 of equation (B.6) by II to eliminate z, from
IFz + IGz, =l1Fzx = I1d.

To compute x approximate the correction ¢, x = ¢ + g, to 7o = G(GTG)le. Now
GTzy = e = GTx implies that GT¢c = 0. Thus ¢ = Ilc solves

(IFM)c = II(d — Fxo)

Note that once z has been computed, z, is given by z, = (GTG)"'GT(d — Fr).
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The basic FETI method works well for elasticity problems, for stuctures modeled by
elements (hex and wedge elements) that correspond to a second order partial differential
equation. But, for structures modeled primarily by elements that correspond to a fourth
order partial differential equation such as plate and shell elements, modifications to the
coarse space are worthwhile [B.11] [B.3]. We give a new possible explanation for this.
It is possible to view FETI as a multilevel method with coarse space N(K) and coarse
space preconditioner (GTG)™!. Recall that G = BR where the rows of B, [..1...—1.],
act like a gradient operator. And GG contains a product of gradients, like a Laplacian.
Thus (GTG)™! acts like an inverse Laplacian preconditioner, suitable for second order
elliptic partial differential equations.

B.3.2 Dirichlet Preconditioning

A Dirichlet preconditioner F' is an approximate inverse of F = BK*B7T. To define
F', more notation will be needed. Let p denote the number of subdomains and let _K @
and B; denote the subdomain stiffness and constraint matrices:

K = diag(KW,...,K?P)  B=[By,...,B)

Then F = %; B;K®*BT. Next a kind of inverse of B; K9+ BT is defined. Each row of B
represents a constraint and is of the form [...1... —1...]. But the columns of B that
correspond to interior nodes vanish. We define B; to be the matrix obtained by deleting
the zero columns from B;. If a global unknown corresponds to an unknown on only one
subdomain, then the corresponding subdomain unknown is called an interior unknown.
But if a global unknown corresponds to unknowns on more than one subdomain, then the
corresponding subdomain unknowns are called boundary unknowns. Thus B; K <")+B;‘F =
B,-X@Bf where X; consists of the elements of K¥+ that correspond to boundary nodes.

Next we show that X; is related to a Schur complement in K®. Since we will be
discussing one subdomain only in this paragraph, the superscript ¢ is dropped. K can be
permuted so that interior unknowns precede all boundary unknowns. In this case,

K= Ky Ky | I 0 Kii Kp
" Ku Kn | |KukKi' I|| 0 s

where S = Ky — Kp K 'Ky, If S were nonsingular then

go1o | Ka' —Ki'KpS™h I 0] _[* =
10 s —KuK;' 1| [ * 57

and X = S~1.
Dirichlet preconditioning approximates the inverse of the sums,

F* = (3,B,SFBT)*
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by the sum of the inverses F = E,B’lSZB;T .

The effectiveness of the Dirichlet preconditioner is enhanced by including a diagonal
scaling matrix W1 and using W~1FW~! as an approximate inverse of F' [B.14]. We
present a derivation that the scaling makes the preconditioner an exact inverse in a special
case. The derivation is condensed and relatively difficult to follow. The scaling can be
derived in the special case in which each K@ = J. First observe that ' = F = BB7.
The remainder of the derivation depends on a special property of B that we now digress
to derive. Constraining two unknowns to be equal is achieved using C» = [1 —1].
Constraining three unknowns to be equal is achieved using

1 -1 0
C3=11 0 -1
0 1 -1

Constraining n + 1 unknowns to be equal is achieved using

e —1I
Cn—f—l: {0 Cn]

where e is a vector of ones of appropriate length. A remarkable property of this choice of
redundant constraints is that CxC[ has only one nonzero eigenvalue, &, with multiplicity
k —1. The null space of CxC7 has dimension (k—1)(k —2)/2. Thus the matrix BB” can
be permuted into a direct sum of matrices of the form CyCF and the zero matrix. Recall
that Cxk™*CY is a projection. We define W = diag(W, ..., W,,) where the (k, k) entry of
W; is the number of unknowns in any subdomain that correspond to the same (global)
unknown as the k-th boundary unknown on the i-th subdomain. Then (in the special
case KOt = 1) W-Y2FW~1/2 is a projection and F* = W~1FW~!. This completes the
derivation of the scaling.

B.3.3 Scalings for Highly Heterogeneous Materials

A structural model consists of highly heterogeneous matrerials if the material stiff-
nesses (Young’s moduli) vary over many orders of magnitude. For these applications a
generalized scaling of the Dirichlet preconditioner is used. If a global unknown corre-
sponds to unknowns i; on subdomains p;, then the entry of W that corresponds to ¢;
is

( ZkK(Pk) )/K.(P]:)

ik,ik 15,85
instead of ¥;1 [B.12, B.20]. This scaling is called super lumped scaling. In section 4.2,
numerical evidence is given that, even with this scaling, FETI is not robust for structural
models that consist of highly heterogeneous matrerials. In this section, we present an
additional diagonal scaling, called K scaling, for highly heterogeneous materials designed
to extend the range of applicability of the FETI solver. K-scaling is used in concert with
the super lumped scaling.
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In general DAD scaling of a symmetric positive definite matrix A to a unit diagonal
matrix is known to be nearly optimal, in the sense that the condition number of DAD
is nearly minimized. In FETI the dual problem with coefficient matrix F is solved
iteratively. K-scaling nearly minimizes the condition number of F’. The ideal matrices
to scale are F' or K™, but neither is assembled. The most closely related matrix that is
assembled is

K BT
, B 0
We will scale this matrix on the left and right to reduce the condition number of F',
Dy, 0][K BY][ D, 0
0 D;|| B 0 0 D,

by choosing the scaling for which the diagonal elements of K are as near to unity as
possible. At unknowns that correspond to interior subdomain nodes (not shared), the
diagonal entries of D; are chosen so that Dy K D; is unit diagonal. And diagonal entries
of D, that correspond to the same global unknown are chosen to be equal. In this case,
due to the special structure of the signed Boolean constraint matrix B, there exists a

diagonal matrix A such that
BD, = AB

The constraint matrix B is invariant under scalings such that Dy = A™1;
D, 0 K BT D, 0] _ |[DiKD, BT
0 D, B 0 0 Dy | B 0
This vastly simplifies the implementation of the K scaling.

The diagonal entries of D; that correspond to shared unknowns are chosen so that
D1 KD, is nearly unit diagonal on a logarithmic scale. As in the discussion of super
lumped scaling, suppose that a global unknown corresponds to local unknowns {i1, iz, . ..}
on the corresponding subdomains {p;, ps, . . .}. The corresponding entries of D; each have
the value 6 that minimizes

i)
max | log 52K,;z’ij |

N\ 1/4

min; Ki?’i). !
5 — A
max; K(pi)

’Lj,’L]’

The mini-max solution is

Numerical experiments using this scaling will be presented in a future report.

B.3.4 Algorithm Implementation

In summary, the basic FETI method is implemented as follows.

Initialize: zo = G(GTG) e and r¢ =d — Fx

Fork=1,2, ..
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1. wi_q = ri
2. zpy = W ILFW lwy_,
3. k-1 =z
4. Gp1= yz_lzk—l/yg_sz—Q (G =0)
5 pr = Ye-1+Pre-1Ce-1 (21 = %)
6. pr .= (I — P Q0)pr (k> 0)
7. P(1,k) =px
8. Q(:,k) = Fp
9. Q(k, k) = P(:,K)TQ(:, k)

10. vy = yi_j2p_1/wk

11. zp = zp_1 + Prti

12. 7% = T6—1 — Fpevs

Remark. In steps 6, 7 and 8 the search directions are stored and the current search

direction is explicitly re-orthogonalized against all the previous search directions. This
extra work is observed to be worthwhile [B.23].

Remark. Iteration stops once |Jwy|| < TOL||lwg||. The reduction in ||w]|| is observed to
be proportional to the reduction in ||Au — f||.

B.4 Eigenvalue Problems

In this section the FETI method is applied to a few model generalized eigenvalue
problems. We first discuss the extension of the algorithm to eigenvalue problems and we
conclude with a summary of proposed future work.

B.4.1 The Influence of Limited Accuracy Linear Solves

In this theoretical section the influence of linear solver accuracy on the eigenpair
residuals Az — Mz is analyzed. Eigenpairs of (A, M) are approximated using the shift-
invert Lanczos algorithm. The result of this section is to show that if a direct linear solver
is used and the relative eigenvalue tolerance, 7, (for the shifted problem) is not too small,
then the absolute residual error is proportional to 7. And the same result holds if an
iterative linear solver is used, provided that the tolerance for the linear solver is somewhat
smaller than 7. The use of a finite tolerance does not influence the orthogonality of the
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Lanczos vectors. This simple analysis does not in any way account for implicit restarts;
the initial deflation scheme in ARPACK is sensitive to 7 [B.18], but deflation schemes
are in progress that are not sensitive to 7 [B.28].

The expression fI(A™!) is introduced to denote the computed result of (implicitly)
computing the action of A~!. For example if a direct solver is used, then the computed
Cholesky decomposition of A satisfies A = UTU + E for ||E|| = O(e||A]]) and fI(A™1) =
(Utu)-L.

The governing equation for the shift-invert Lanczos algorithm (zero shift) is
FUATHIMQ; = QiTj + gjiBine; + Ej,  |1B5] = O(ellQ; T3 1)
For clarity we set E; = 0. Let 7 denote the relative residual tolerance
CFUATIMQ s — QAT = —r, Il S 7T (B.7)
Here Tjs = sA™! and ||@s||as = 1. But the significant quantity is the norm of
AQjs — MQjsA.
Multiply (B.7) by —AX to find
—AfI(ATHYMQ;s\ + AQjs = Ar)
Adding (Afl (Afl) — I)MQ;s to both sides yields
AQjs — MQjsh = Ard + (AfU(ATY) — I)MQ;sA (B.8)
In the direct solver case, for £ = ||AfI(A™Y) — I|| = |E(UTU)71|| and ||E| =

O(e||All), one can derive that £ = O(e||A|l||A7Y|). Take norms, substitute |jr|| < 7A~!
and there appears

IAQjs — MQssAll < 7 [|A]lL + & IMQ;] [IsAl

That is the residual error depends on the eigensolver tolerance 7 until 7 decreases to the

threshold £||MQ;]|||sA]l-

The error in computing X = fI(A~1)(M Q;) is different if an iterative linear solver
is used. Assuming that the linear solver converges, the columns of X = [Z; - - - Z,] satisfy
the inequality

|AZ; — Mail| < pl| Magll.

Use of this strict stopping criterion in the iterative linear solver is based on the assump-
tion that all backward error is in the right hand side; this criterion is unachievable for
sufficiently small p [B.1]. The following analysis captures the essential relations. First it
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is not too much of a simplification to say that an iterative linear solver computes X such
that

IAX — MQ;l| < pl| MQ;)| (B.9)

for a user supplied scalar p. Substitute
(AfI(A™Y = DHMQ s\ = (AX — MQ;)s\
into (B.8), take norms and substitute (B.9) to find
14Q;s — MQ;sAll < 7 [|Al + o [IMQy]] isAll (B.10)

The residual error depends on both the eigensolver tolerance 7 and the linear solver
tolerance p. Ideally the error due to limited accuracy linear solves is smaller than the
error from the eigensolver, p||MQ;|l||sA|| < 7||Al|, and is still achievable by the iterative
linear solver.

B.4.2 Numerical Results

In this section examples are presented that demonstrate the scalability of the linear
solver and the eigensolver. Performance results are obtained for large model problems.
And a parameter study of the sensitivity of the computed eigenvalues to the linear solver
and eigensolver accuracy is performed. Before discussing these results, the choice of
partitioner and coarse solver are discussed.

A given structure is first decomposed or partitioned using the DOMDEC decompo-
sition package [B.8, B.24, B.9]. Using DOMDEC makes it possible to determine subdo-
mains with low geometric aspect ratio, which is critical for FETI [B.13, B.10].

To apply the FETI method, it is necessary to solve many linear systems with coeffi-
cient matrix GTG. The order of GTG is proportional to the number of subdomains. We
use a full sweep of the conjugate gradient method with stable DGKS [B.7] reorthogonal-
ization to compute the decomposition (GTG)~! = PD~'PT where D is diagonal and P is
dense. This algorithm is not as efficient as a sparse direct solver, but it is scalable, simple
to implement and easy to adapt to more complex applications (e.g. singular GTG). More
efficient algorithms could be used here, such as a parallel sparse direct solver. But for
eigenvalue problems the cost of inverting GTG is amortized over many solves, and the
difference in cost of these approaches has been insignificant so far.

The PARPACK package is used in shift-invert mode to compute the smallest eigen-
values of (A, M). A zero shift is used because we have not yet implemented a FETI solver
for the indefinite problem A — M. Computing the action of M involves communication
along the subdomain interfaces. The tolerance for the eigensolver is used is 7 = 1075.
Eigenpairs are approximated using Krylov-based subspaces of dimension three times the
number of requested eigenvalues, unless on one eigenvalue is requested, in which case
the Krylov subspace dimension is six. The tolerance used for the FETI linear solver is
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Table B.1. Number of FETI iterations required to reduce the relative residual error a
' fixed amount for the linear system arising from modeling a steel cube
clamped at one face and loaded on the opposite face. The grid size and
< number of processors are increased to keep the number of unknowns per
processor constant.

Grid | Procs | Iters
63 81 20
123 64| 37
183 216 | 41
243 512} 43

Table B.2. Solution time for PARPACK/FETI eigensolver on different numbers of
processors. The smallest eigenpair of a steel cube clamped at one side is
computed. The problem dimension is 100, 000.

Procs | Time
(Min)

64 24
125 11
256 6

p = 10ne where ¢ is the machine precision and n is the number of global unknowns. The
FETI method is used to compute u such that ||Au — f|} < p|| f]l-

The first set of model problems are steel cubes clamped at one face and discretized
using brick elements. The subdomains are irregular. First the FETI solver was applied to
problems on different grids and solved using different numbers of processors, but holding
the number of unknowns per processor fixed. The results are tabulated in Table 1. We
observed that the FETT linear solver is scalable in the sense that the number of iterations
required to solve the linear system to a fixed accuracy grows only modestly as the number
of processors increases.

Next the eigensolver was applied to a 32 x 32 x 32 cube with roughly 100,000
unknowns, and computed the smallest mode using different numbers of processors. These
results tabulated in Table 2 were obtained on an INTEL PARAGON platform with
16 megabytes of memory per processor. The solution time scaled with the number of
processors. Computing the smallest mode for a 64 x 64 x 64 cube with 800, 000 unknowns
took 36 minutes using 512 processors. The time to compute additional modes increases
roughly linearly in the number of requested modes.

We have also applied the FETI solver to a family of model structures with more
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complex geometry. The structures were analyzed on an INTEL TERAFLOP platform
with 128 megabytes of memory per processor. Several materials are used in these struc-
tures whose stiffnesses range over six orders of magnitude, and the scaling described in
[B.12, B.20] for highly heterogeneous materials is used.

For a model with over one million unknowns, attempts to reduce the residual error by
a factor of approximately 10~° failed; after 600 iterations the residual had been reduced
by a factor of 107%. If all of the materials are replaced by a single material, then 200
iterations suffice to solve a typical linear system. If the stiffnesses are changed from the
original model so that they range over three orders of magnitude, then approximately
260 iterations suffice to solve a typical linear system and the ten left-most modes are
computed in 3.5 hours on 256 processors.

We have investigated the influence on the accuracy of the computed eigenpairs of
the accuracies of the FETI linear system solver and PARPACK. The following data is for
a model with approximately 3600 unknowns and in which the material stiffnesses range
over six orders of magnitude. The model was partitioned into four subdomains and the
ten left-most modes were computed using a subspace of dimension thirty. Of the ten
lowest modes, the first and the second are equal, the fourth and the fifth are equal, the
sixth and the seventh are equal and the tenth and the eleventh are equal. The tenth
and eleventh modes are approximately 10%7. In each experiment, the modes computed
were in fact the left-most modes. Based on quantities computed during computation, the
stiffness matrix has condition number greater than 10° and norm greater than 10%2. One
use of this experiment is to demonstate the bound (B.10). In our case ||sA|| = A. Because
M is a diagonal matrix with entries ranging from 3 x 107° to 3 x 1072 and QT MQ; = I,
we use the rough estimate | MQ;] =~ 1072.

Table 3. requires some explanation. p denotes the maximum residual error norm
achieved by the FETI linear solver divided by the right hand side norm. 7 is the relative
tolerance for PARPACK. The eigenpair residuals are given by r = Ax — Mz where
zT Mz = 1. The maximum residual error norm predicted by equation (B.10) is compared
to the observed value. All logarithms are computed base ten. The columns labeled
Solves and Iterations display the number of linear systems solved and the total number
of iterations of the FETT linear system solver respectively.

The number of linear solver iterations is large. At first glance the residual errors
norms also appear large, but relative to || A|| > 10®, the norms are reasonable. The values
of p are observed a posteriori. The computation of p is nontrivial. The values of 7 are
upper bounds specified a priori.

Table 4. tabulates the number of linear solves and the number of eigen pairs com-
puted for a similar model.

Future work on this approach starts with modifications to FETI necessary to solve
highly heterogeneous problems. We are experimenting with modifying the decomposition,
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Table B.3. The influence of linear solver accuracy, p, and eigensolver accuracy, 7, on
the eigenpair residual error norms for computing the ten smallest modes
of a 3000 unknown model problem. The number of linear systems solved
(Solves), the number of linear solver iterations (Iterations), and the
solution time in seconds are also tabulated.

logp | log7 | log||7||oss | log||7||prea | Solves | Iterations | Seconds
-1.0 -8 3.1 271 108 3101 462
21| -8 1.8 1.6 109 3373 496
-3.2 -8 -9 7 119 3934 584
-4.4 1 -10 -2 -7 122 4320 647
-5.2 1 -11 -1.1 -1.5 133 4942 715
6.2 -12 -1.9 -2.5 135 5268 750
711 -12 -3.0 -3.2 135 5534 770
-84 -12 -4.2 -3.7 135 5806 802
-8.8 -9 14 3.2 70 3153 447
-8.8 -6 1.4 2.2 70 3153 448
-8.8 -7 -3 1.2 80 3738 523
-8.8 -8 -2.2 2 119 5358 752
-8.8 -9 -3.0 -.8 122 5500 759
-88 | -10 -3.0 -1.8 122 5500 755

Table B.4. The the number of linear systems solved (Solves) and the number of
eigen pairs computed (NumEigs) for a 3000 unknown model problem.

NumEigs | 4|14 24| 34| 44| 54| 64| 74| 84| 94194
Solves 60 | 95| 116 | 140 | 135 | 163 | 193 | 223 | 211 | 236 | 273
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the scaled Dirichlet preconditioner and the coarse space. Of course the number of linear
system solves per eigenpair can be substantially reduced by shifting. Extensions to
solve linear systems in which the stiffness matrix is singular are needed. In this case
it is possible to determine N(A) from N(GTG) [B.6] and it is necessary to check for
nondegeneracy, N (A) NN (M) # 0, given N (A). Experiments with an eigensolver based
on limited accuracy solves, such as a restarted Jacobi-Davidson method for symmetric
generalized eigenvalues problems, are needed [B.27, B.26]. Such methods are meant to
require fewer linear solver iterations. Techniques to (usually) detect missed modes by
restarting will be included in a future release of PARPACK.

An alternative algorithm (that we hope to experiment with) for computing the null
space of the subdomain stiffness matrices is to shift, factor, and apply a partial eigensolver
on each subdomain. Another approach that we have recently implemented is to determine
the null space directly from the subdomain geometry, with out using the subdomain
stiffness matrix.

We are indebted to Gene Golub for the observation that instead of implicitly repre-
senting the projection as Il = I — G(GTG)™1G7, one can perform a sparse QR factoriza-
tion G = QR and use Il = I —QQ7. This approach is advantageous in the important case
in which A is symmetric positive semi-definite. The null space of A must be determined
before solving linear systems or eigensystems. The null space of A can be determined
from the right null space of G [B.6]. The standard practice is to apply a rank-revealing
Cholesky decomposition to GTG, but this is unstable [B.16]. In contrast a rank-revealing
QR factorization of G is stable [B.2, B.4, B.5]. This is a subject for further study.
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Appendix C
Multipoint Constraints

Reference

Charbel Farhat, Catherine Lacour and Daniel Rixen, “Incorporation of Linear Multipoint
Constraints in Substructure Based Iterative Solvers. Part 1: A Numerically Scalable
Algorithm”, Int. J. Numer. Meth. Engng. 43, 997-1016 (1998).

Summary Development

The above reference outlines the details of the theory governing different methods
of implementing linear multipoint constraints (MPCs) in the FETI framework. The con-
straint equations can be written as

Cu=g

Where C is a m X n real matrix, g is a n-long vector, and u is the vector of generalized
displacements. ’

The problem is formulated as a constraint problem using Lagrange multipliers. The
degrees of freedom are partitioned into three distinct sets.

1. u, the physical degrees of freedom in the model,

2. A, the standard constraint equations of FETI, i.e. those equations necessary to insure
that displacements are continuous across subdomain boundaries, and

3. u, the Lagrange multipliers introduced by the MPCs.

The two sets of constraints may be solved simultaneously or one set of constraints
may be solved in an inner loop, while the second set is solved in an outer loop. Simul-
taneous solution for both constraints is difficult to precondition. Solution for u in the
outer iteration is inefficient. Solution for A in the outer iteration is very similar to the
two-level FETI method previously developed. The equations for solution are,

ES e G- 4] e
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Here K is the stiffness matrix, B is the Boolean matrix for application of subdomain
interface continuity and f are the applied forces.

The form of this equation is exactly the same as the two-level FETI method (see
the reference above or?) . In this method corner nodes for shell and plate finite element
subdomains are constrained to insure continuity between subdomains. In the case of
shell/plate problems, the constraint is optional since the method does converge without
it. However, including the constraint greatly improves the convergence rate. For applied
MPCs, the constraint is required for correct solution of the equations, but the formalism
is identical.

2C. Farhat, P. S. Chen, F. Risler and F. X. Roux, “A unified framework for accelerating the convergence
of iterative substructuring methods with Lagrange multipliers”, Int. J. Numer. Meth. Engng., 42,
257-288 (1998).
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