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ABSTRACT 

A computer program has been developed to simulate the sputtering process 

using the Monte Carlo method and the binary collision approximation. This 

program is a result of the generalization of the TRIM computer program such 

that the target atom trajectories are followed in addition to those of the 

incident particles. This program, which includes electronic energy loss, 

uses an analytic formula which is based on realistic interatomic potentials 

for determining particle scattering angles and the energy transfer 

to target atoms. A model of the sputtering process has been developed 

for physically defining the surface and bulk binding energies necessary for 

calculations. A number of sputtering yield calculations have been performed 
4 for H, D, T, and He ions incident on C, Ni, Mo, and Au targets for energies 

less than 10 keV. The validity of the Monte Carlo model is demonstrated by 

the good agreement betveen the calculated results and the most recent 

experiments. 

*Work supported by the Division of Magnetic Fusion Energy of the Department 
of Energy under Contract Number AT(29-1)-789. 
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1. Introduction 
Plasma contamination by sputtered wall material is one of the crucial 

problems for present plasma experiments and future fusion reactors [1]. The 
sputtering is caused primarily by low energy, light ions and neutrals front the 
plasma. Measurements of the small sputtering yields for light particles are 
inherently difficult, and sputtering theories [2, 3] are still not accurate 
enough to predict absolute values at low energies [4]. To provide some futher 
insight into the sputtering mechanisms, a Monte Carlo method using the binary 
collision approximation has been applied to simulate the sputtering process. 

Similar methods have been applied previously [5-8] tr simulate sputtering, 
but the majority of the reported results [5-7] have been for heavier incident 
particles. Only the recently presented results of Maderlechner et al [8], 
using the MARLOWE [9] computer program, have dealt with light particle sputtering. 
Here we have used a generalization of the TRIM [10] computer program which treats 
particle transport in amorphous solids. This program, which includes electronic 
energy loss, uses an analytic formula [10, 11] which is based on realistic 
interatomic potentials for determining particle scattering angles and the 
concomitant energy transfer to target atoms. Thus, it is both fast, in terms 
of computer usage, and accurate within the constraints of the binary collision 
approximation. 

A simplified model of the sputtering processes has been developed which 
is applicable to the Monte Carlo method. Parameters of this model are physically 
meaningful and are related to "surface" and "bulk" binding energies of the 
target atoms. A number of calculations have been performed for H, D, T, and 
4 He ions incident on C, Ni, Mo, and Au targets for energies less than 10 keV. 
Comparisons are made between our computed results and those of the most 
recent experiments. 
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2. Monte Carlo Procedure and Sputtering Model 

To simulate the sputtering process, the TRIM Mante Carlo computer program 

has been generalized to consider the trajectories of the target atoms as wall 

as those of the incident ion. The full details of the TRIM computer program have 

been described elsewhere [lO]. In brief, each particle starts with a given 

energy, position, and direction, and its trajectory is followed in a target, 

collision by collision, until its energy falls below a prespecified value or 

until it leaves the target surface. The particle changes direction as a result 

of binary nuclear (elastic) collisions and moves in a straight path between 

collisions. The particle's energy is reduced by nuclear and electronic 

(inelastic) energy losses, and these energy loss mechanisms are assumed to be 

independent. The target is assumed to be amorphous (atoms at random locations) 

so that the directional properties of a crystal lattice are ignored. The low 

energy, electronic energy loss ДЕ is based on the velocity dependent treatment 

of Lindhard and Scharff [12]. Thus, ДЕ = LNk M, where L is the pathlength 

between collisions, N is the target atomic density, к is a proportionality 

constant, and E is the particle's energy. For the results presented here, we 

have used the Lindhard and Scharff [12] expression for к and with L = N - 1 . 

Although it is recognized that deviations from this electronic energy loss 

treatment are known to exist [10], the sensitivity of the sputtering yields to 

variations from this treatment has not been investigated in these studies. 

Such variations would effect primarily the transport of the incident light 

particles, since the energy loss of the low energy target atoms is dominated 

by the nuclear energy loss mechanism. 

Par the nuclear energy loss T and the associated scattering angle, use 

is made of a parameterized analytic formula derived by Biersack et al. [10, 

11]. This formula very accurately describes classical scattering for any 
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repulsive interatomic potential given the particle's energy, impact parameter, 

and distance of closest approach. The values for the parameters in the 

scattering formula were determined by a least-squares fitting procedure using 

precomputsd, numerical evaluations of the classical scattering integral [13] 
i 

based on the Moliere [14] potential. This potential with the Firsov [15] 

screening length is used for most routine calculations with the TRIM program. 

One of the more important attributes of this Monte Carlo approach is that 

the most realistic interatomic potentials can be readily used. Here, we have 

calculated the various atom-atom potentials that were necessary using the free-

electron approximation as described by Wilson and Bisson [16]. To facilitate the 

use of these potentials, we adjusted the screening length, in most cases, in the 

Moliere screening function to give the best fit to the free-electron potentials. 

For the Mo -MO , Au -Au , and H-C potentials a better fit was achieved by adjusting 

the screening length a in the following screening function: 

Ф(г/о) = O.lOOe"0-22 r / a -Ю.472е-°'50 r / a чСЛИе" 1' 5 1 r / a , (1) 

where r is the interatomic separation. This screening function was presented 

by Wilson et al. [17] in reporting their results for Nb°- Nb° potential using 

the free-electron method. The screening lengths used to fit the screening 

functions to the potentials are given in Table I together with those of Firsov. 

As mentioned above, the impact parameter and the distance of closest 

approach, in addition to the energy, are needed to use the nuclear scattering 
-1/3 formalism. With the pathlength between collisions being N ' the impact 

parameter P is randomly selected using the following formula: 

P = [R/TIN 2/ 3] 3-/ 2 (2) 
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«here R is a random number uniformly distributed between 0 and 1. This 
assumes there is one atom in the volume element of length N ' and base 

-2/3 area N ' . This procedure mamtaxns the atomic density in the target but 
ignores any correlation between the positions of successive atoms, ihe 
distance of closest approach is then obtained, in the usual manner, from 
the pole of the integrand in the classical scattering integral. 

In generalizing the TRIM formalism to follow the target atom trajectories 
and their subsequent possibility of becoming sputtered atoms, we have set 
certain criteria for considering the motion and escape of these atoms. This 
part of the procedure follows closely that defined for the general displacement 
model in the MARLOWE [9] program. A particle with original kinetic energy E 
emerges from a nuclear collision with kinetic energy E., after transferring 
energy T to a target atom, i . e . , E, = E - T. The target atom's motion i s 

considered if the energy T is greater than a threshold energy E,, and if 
T > E,, it then loses some binding energy E. <_ E.. Thus, the final kinetic 
energy E_ of a target atom is given by E, = T - E, . In the calculations 
presented here we have set E, = EL, and the value of E, depends on whether 
the collision is with a surface or a bulk atom. In what follows, a model 
for physically defining the E, values is presented. 

An ion incident upon a metal surface transfers energy to both the surface 
and bulk atoms of the metal in its slowing down process. This transferred 
energy may result in the production of surface and bulk vacancies and vacancy 
clusters as well as the associated interstitial loops. In order to bring a 
measure of physical understanding to the Monte Carlo calculation presented 
here and also to provide a predictive capability, a simplified model of these 
complex radiation damage processes has been developed. 
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In this model, the incident ions may transfer energy to the "surface" 
and "bulk" atoms, these two types being the only ones distinguished between. 
Atoms lying between vacuum and 1/4 a (a - lattice parameter) of the surface 
are considered "surface" atoms and all others are taken to be "bulk." Very 
real surface complications such as angular orientation, steps, kinks, jogs 
and effects due to impurities are neglected. Similarly, atoms quite near 

. the surface, i.e., within a few monolayers, are approximated as bulk atoms. 
We shall consider the bulk atoms first. The energy required to remove 

a bulk atom to infinity is denoted EL. and is given by: 

\ = 4v + *№ ' (3) 

where E ? v is the vacancy formation energy and E ™ the heat of sublimation of 
the solid; Е?.. is the energy required to place a lattice atom on the surface 
(i.e., to bring it first to infinity and then back \a the surface); E^ is the 
energy per atom to remove an entire layer of the surface to infinity and there 
dissociate all the atoms of the layer. In forming a bulk vacancy, a lattice 
atom is brought to infinity and then placed back into an interstitial site, 
forming a Frenkel pair, the "binding" energy of a lattice atom, E_, is there­
fore given by: 

% = *V + 4 ' (4) 

where E £ is the self-interstitial formation energy. 
It is recognized that in using Eq. (4) for the binding energy, one is 

neglecting the dynamics of the process going on. That is, the ejected lattice 
atom may not actually be in an interstitial position but may creata further 



knock-ons, and may find itself finally in a substitutional site. Even if it 
is in an interstitial configuration, that configuration may not be the lowest 
energy one because the lattice relaxations may not yet have equilibrated. We 
therefore propose using the equation: 

Еь = < + =1 . (5) 

defining Ej as an effective interstitial formation energy. Energy E is sub-
tracted from the transferred energy T (= YE sin 6/2) to give the kinetic 
energy of the ejected particle. 

Before turning to the surface auom binding, let us be more specific about 
the volume dependence of the terms already defined. The vacancy formation 
energy can be written: 

l V = - | V < r v j ) + | V ( r v j ) + E v o l ' <«) 

where V(r x.) is the interatomic potential between a lattice atom at the vacant 
site in the bulk (x = b) or on the surface (x - s). (For a first-neighbor 
two-body potential having magnitude ф at the first-neighbor separation, ? V(r. .) 
= 12ф and £ V(r s.) = бф.) Similarly, the heat of sublimation can be written: 

=ЙБ--Р<ф -Ето1 (7) 

In Eqs. 6 and 7, E , is the volume dependent part of the energy, that is, 
that part of the energy of the lattice which cannot be represented by Ш э -
body forces [18]. From Eqs. в and 7, 
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Evol = K v - V - < 8> 
We now define E t o be the energy required to remove a surface atom to 

infinity and E the energy required to remove a surface atom and place it in 
the bulk. Clearly, 

Vfe write 

E s " E s + Е Г < 9 > 

Es = 4 "Evol ' ( 1 0 ) 

where f is fraction of the (volume independent) energy required to bring an 
atom from the bulk to infinity which must be expended to bring an atom from 
the surface to infinity. Using Eqs. 3 and 8 in Eq. 10, it is easy to show 
that 

E S = E H S + ( f-|> (Elv + V- ( 1 1 ) 

Simple estimates of f can be made by comparing the number of nearest 
neighbor bonds on a surface (Ng) to the number in the bulk (N, ). For a fee 
material, the (100) surface gives (Ng/N^) = f = 2/3, while for a (111) surface 
f = 3/4. The important point to be made is that for any value of f > 1/2, it 
takes more energy (E ) than the heat of sublimation (E^J to remove a surface 
atom to infinity. These arguments are consistent with the experimental results 
of Bay et al. [19] who find that the threshold energies tor sputtering appear 
to be higher d a n that dictated by the heat of sublimation. 

To summarize, if a collision occurs on the surface (depth £ 1/4 a) then 
EL = E for a target atom which will leave the surface on its initial, free 
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flight path L and E, = E for an atom that will have a collision on its initial 
path. At depths greater than 1/4 a, 

% = *1V + ^ S + E i • < 1 2 ) 

Ihe values of EL._ and E j y used in the present calculations are given in 
4 Table II. Using those values, results for He normally incident on Ni are 

illustrated in Fig. 1 for E^ = 0, 1, and 3 eV, and for f = 2/3 and 3/4. ffote 
in this figure that the results are not sensitive •.. the choice of f except at 
very low energies. A value of f = 3/4 was chosen throughout the remainder of 
this work. 

It should be pointed out that a value of 3 eV for E' is not unreasonable. 
Johnson and Wilson [23] found El to be ъ 3.3 eV using a pair potential and non-
central force for Ni. Absolute values of formation energies are very difficult 
to calculate, however, and other pair-potentials may well give widely different 
results. In bcc materials, interstitial formation energies are usually found 
to be higher. 

3. Results and Discussion 
For the Monte Carlo i-v.u.U presented hers, a sufficient number of 

incident particle histor:, .<: -v • • processed at each energy bo yield at least 
100 sputtered atoms, and in the majority of the cases this number exceeded 
200. Comparisons of repeated calculations with different sequences of random 
numbers indicated that the statistical errors are approximately 10 to 20 
percent. We performed the calculations at energies which correspond closely 
with those used in the experiments, i.e., 0.05, 0.08, 0.1, 0.15, 0.24, 0.5, 
1, 2, 4, and 8 keV. Most of our comparisons with experimental results are 
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with the recent data generated by the Garching group [IS, 24, 25]. The reader 

is referred to their original papers for further comparisons with previous 

results. 

The calculated sputtering yields (atans/ion) already presented in Fig. 1 

indicate that E' = 3 eV is a suitable value fo" Ni and this value has been 

used for the other Ni calculations. Fig, 2 _*ows the calculated results for 
4 

H, D, T, and He normally incident on Ni together with the experimental 

measurements of Bohdansky et al. [24] for H, D, and He. Our results show 

the same energy dependent trends as tliose of the experiments with the maximum 

yield in the 1 to 3 keV range. Also, near the maximum yield, the ratios of 
4 the He and D sputtering yields to that for H is about the same as determined 

experimentally. Ihe calculated results at energies above n V-*' are somewhat 
4 

lower than experiment for He and higher for H and D. Nevertheless, the 

overall comparison between the calculations and experiments seems encouraging 

considering our use of the binary collision approximation and the inherent 

difficulties in measuring small sputtering yields. 

Figs. 3 and 4 show our results for D, T, and He normally incident on 

Au and Мэ, respectively. In these figures, we also show the results of Bay 
4 

et al. [19] for D and He. We again used El = 3 eV for Au, but as discussed 

earlier, this value is expected to be too low for bcc Мэ. We therefore show 

in Fig. 4, the He - Мэ results using E^ = 3, 10, and 20 eV and show only the 

El = 20 eV results for T and D. It is felt that E' = 20 eV may be too hi^h a 

value to be considered an interstitial formation energy and its necessity may 

be due to a breakdown of the binary collision approximations. Molecular dynam­

ical calculations are planned to help determine the sot-roe of this large E ' 

value. 
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We determine the sputtered atari energy spectra in our calculations, 
as well as the angular distributions. The angular distributions are all 
essentially cosine distributions, as is to be expected from our Monte Carlo 
model, since our targets are amorphous and we consider no influence of surface 
atone on the sputtered atoms once they leave the surface. An example of the 
sputtered energy spectrum is shown in Fig. 5 for 1 keV He normally incident 
on Au. live dashed lines in this figure indicate the variation of the energy 
distribution in terms of the energy power function E"*11 with n = 1.5, 1.8, and 

_2 2.0. Our results indicate that the spectrum is somewhat harder than E as 
predicted by Sigmund [2], but this is consistent with the recent measurements 
of Hucks et al. [26] for light ions on Au (n = 1.8). 

Finally, the calculated sputtering yields for H, D, and T normally 
incident on С are shown in Fig. 6. Also, the results from three recent 
experiments are included in the figure. Vfe realize that there are many types 
of "carbon" and their sputtering properties [4] can vary markedly. Our pur­
pose here is to show the energy dependence of the sputtering yields predicted 
by the Monte Carlo formalism using nominal values for E„ s and EL. (see Table I) 
with El = 3 eV. The calculated results indicate that the maximum yield occurs 
in the energy range from about 0.3 to 0.5 keV. These results disagree with 
the sputtering yield energy dependence reported by Smith et al. [27] for H, but 
they are consistent with the measurements of Bohdansky et al. [25] for н and 
Borders et al. [28] for D. 
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TftBLE I 

Screening Lengths Used in Pitting the Screening 

Function of Moliere and Eg. (1) to the Free-Electron 

Potentials. 

Screening Lengths (nm) 

Potent ia l 
Screening Function 

foliere Eq. (1) Firsov 

H - N i + 0.0118 0.0137 

He - N i + 0.0101 0.0132 

N i + - N i + 0.00819 0.00972 

H - Mo+ 0.0113 0.0122 

He - М э + 0.0103 0.0118 

Ю>+ - №>+ 0.00810 0.00849 

H - AU+ 0.0102 0.0102 

Не - Au + 0.00928 0.00989 

Au - Au 0.00675 0.006S8 

H - С 0.00160 0.0205 

С - С 0.0128 0.0162 



TABLE II 

Value for Е ™ and E 

Element ^ ( * ) ( a ) 

*1V <eV> 

Ni 4.45 1.4<b> 

Mo 6.89 2.4 <c> 

Au 3.93 - 9 ( b ) 

С 7.38 (2.5) <d> 

(a) Metal Reference Book [20] 
(b) A. Seeger and H. Mehrer [21] 
(c) M. Doyama and J. S. Koehler [22] 
(d) Assured 
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FIGURE CAPTIONS 

r 
4 Fig. 1 - Marts Carlo calculations of the sputtering yields for He normally 

incident on Ni for energies less than 10 keV. The parameters f and 
E' are used in the binding energy formalism (see text). The 
experimental sputtering yield of Bohdansky et al. [24] are presented 
for comparison purposes. 

Pig. 2 - Calculated sputtering yields for H, D, T, and He normally incident 
on Ni for energies less than 10 keV. The experimental sputtering 

4 yields of Bohdansky et al. [24] for H, D, and He are presented for 
comparison purposes. 

4 Fig. 3 - Calculated sputtering yields for D, T, and He normally incident on 
Au for energies less than 10 keV. The experimental sputtering yields 

4 of Bay et al. [19] for D and He are presented for comparison purpose». 
4 Fig. 4 - Calculated sputtering yield for D, T, and He normally incident on 

Mo for energies less than 10 keV. The experimental sputtering 
yields of Bay et al. [19] for D and He are presented for comparison 
purposes. 

Fig. 5 - Energy distribution of the sputtered atoms for 1 keV He normally 
incident on Au. The histogram is the calculated results and the 
dashed lines indicate the energy power function E - 1 1 for n = 1.5, 1.8 
and 2.0. 

Fig. 6 - Calculated sputtering yields for H, T, and D normally incident on 
С for energies less than 10 keV. The experimental sputtering yields 
of Borders et al. [28], Smith et al. [27], and Bohdansky et al. [25] 
are presented for comparison purposes. The dashed lines through the 
experimental H yields are intended only as a visual guides. 
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