

16-90 51

(2)

ornl

ORNL/TM-10817

OAK RIDGE
NATIONAL
LABORATORY

MARTIN MARIETTA

Maintenance Accountability, Jobs, and
Inventory Control (MAJIC) Program

User's Manual

B. P. Adkisson

DO NOT MICROFILE
COVER

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

NTIS price codes—Printed Copy: A04 Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/TM-10817
(formerly ORNL/CF-87/263)

Instrumentation and Controls Division

ORNL/TM--10817

DE90 006427

MAINTENANCE ACCOUNTABILITY, JOBS, AND
INVENTORY CONTROL (MAJIC) PROGRAM

User's Manual

B. P. Adkisson

Date Published: January 1990

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
Under Contract No. DE-AC05-84OR21400

MASTER

SP

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Blank Page

TABLE OF CONTENTS

ABSTRACT	v
1. GENERAL INFORMATION	1
1.1 Scope	1
1.2 Policy	1
1.3 Objective	1
1.4 Procedures	1
1.5 Requirements	2
2. MMD MAJIC STEERING COMMITTEE	3
3. INSTRUMENT INVENTORY PROCEDURES	4
3.1 Introduction	4
3.2 Instrument Identification	4
3.2.1 Identification Numbers and Labels	4
3.3 Data Entry	5
3.3.1 The Inventory Form	7
3.3.2 Change of Inventory Information	11
4. PROGRAMMED INSTRUMENT MAINTENANCE AND CALIBRATION	12
5. JOB CONTROL	14
5.1 Introduction	14
5.2 The I&C Work Request Form	14
5.3 ID Number Procedure	18
6. REPORTS	19
6.1 Data Storage and Retrieval	19
6.2 Status Reports	19
6.3 Instrument Inventory Reports	19
6.4 Time Reports	20
7. COMPUTER OPERATING PROCEDURE	22
7.1 Establishing Connection	22
7.2 Step-By-Step Instructions	22
APPENDIXES	29
A. Instrument Classification Codes	29
B. Instrument Manufacturer Codes	36
C. Instrument Inventory File Points	55
D. ORNL Division Codes	58

Blank Page

ABSTRACT

This document describes the operating procedures for the maintenance accountability, jobs, and inventory control (MAJIC) program for the Maintenance Management Department of the ORNL Instrumentation and Controls Division.

1. GENERAL INFORMATION

1.1 SCOPE

This document describes the Maintenance Management Department (MMD) data base program for maintenance accountability, jobs, and inventory control (MAJIC), a work order system developed in-house for the collection of data on work requests, work assignments, work report summaries, equipment records, and manpower and material control.

1.2 POLICY

Every member of the Maintenance Management Department is expected to support the MAJIC system and take actions as required to assure that data are collected, accurately and in a timely manner, to provide the highest possible degree of confidence and traceability of maintenance information.

1.3 OBJECTIVE

The objective of the MMD MAJIC system is to provide a method of data accumulation and a reporting system for cost control, quantifying performance measurements and improvements, and engineered time standards (as a tool for job planning). MAJIC also makes possible more accurate and reliable preventive maintenance and calibration performance measurements and reporting of equipment history as well as providing a basis for backlog, job status, and work performance reports. While MAJIC is utilized mainly by the Maintenance Management Department of the Instrumentation and Controls (I&C) Division, it is available as a service to other divisions.

1.4 PROCEDURES

The following information has been organized into an operating procedures manual for the I&C MMD MAJIC system, which is a computerized 1032 data base management system to be used for the following purposes:

- Monitoring maintenance activities
- Identifying material and labor costs
- Documenting maintenance history
- Identifying and controlling backlog
- Measuring performance
- Scheduling work
- Controlling scheduled preventive maintenance and calibrations
- Providing control of bench stock
- Validating work orders and accounts

The interactive feature of the computerized MAJIC system is achieved through a DEC microVAX 2 computer accessed from data terminals at each supervisor location.

1.5 REQUIREMENTS

1. All work performed by the Maintenance Management Department is documented and entered into MAJIC using the I&C Work Request, UCN-14783.
2. All instruments serviced by the Maintenance Management Department are entered into MAJIC using the I&C Instrument Inventory form UCN-10598.
3. I&C calibration records are maintained on UCN-10600.
4. Employee time sheet information shall include name, employee number, month, date, hours worked, work order number, and work request number.
5. Supervisor will regularly review the status report, note changes, and make revisions to job control data.
6. The written Work Request will remain at the supervisor's location until the job is closed.

2. MMD MAJIC STEERING COMMITTEE

The Head of the Maintenance Management Department has the responsibility to appoint committees and assign management responsibilities as needed to assure continued data handling, programming, reporting, and other operational functions of the MAJIC system.

In order to assure the orderly and prudent continued growth of the MAJIC System, a Steering Committee is officially established. This committee will consist of the Job Control System Manager and three line staff members appointed by the Department Head. This committee will report to the Maintenance Management Department Head.

This committee is to be guided in its deliberations by the following objectives:

1. Ensure that the MAJIC System is capable of collecting and reporting all data needed to comply with DOE policies and procedures as summarized in the MMD Plan, ORNL/TM-10136.
2. Ensure that the system is constantly evaluated in the light of current shop and customer needs.
3. Actively seek contacts with similar maintenance organizations in order to share ideas and information to improve the system.
4. Periodically examine MAJIC records to verify the accuracy of data and compliance with I&C procedures.
5. Justify to the Department Head, in writing, all proposed major changes in hardware or software.
6. Prepare I&C an official status report in October of each year for presentation to the I&C Division Director.

3. INSTRUMENT INVENTORY PROCEDURES

3.1 INTRODUCTION

Instrument inventory procedures are designed to assist I&C Division personnel in providing necessary inventory and maintenance information for computerized data handling. The program is also designed to provide a written and retrievable calibration record of instruments.

3.2 INSTRUMENT IDENTIFICATION

Instruments requiring identification are typically categorized as follows:

1. Instruments requiring programmed recall for operational checks and/or recalibration.
 - a. Measurement and test equipment as defined by QA-L-12-100.
 - b. Instruments with required traceability to the National Bureau of Standards (NBS), for example, calibration and field standards.
 - c. Instruments and equipment, other than those listed above, requiring a history of operational status or periodic operational check (e.g., radio communication equipment).
2. Instruments and other equipment for which I&C Division has administration responsibility and which require inventory control.
 - a. Sensitive items such as cameras, binoculars, and tape recorders.
 - b. Portable equipment whose location often changes (e.g., audiovisual equipment).

3.2.1 Identification Numbers and Labels

Instruments are identified with an identification (ID) number by attaching a bar-coded label (M number if labeled by MMD or X number if labeled by the ORNL Property Department).

Property Department labels will be used first and must be of the newer type with a bar code (Fig. 1). If the equipment does not have a bar-coded property number, identification is by M number (Fig. 2). All M number labels will be prenumbered to prevent duplication. Older property

Fig. 1. Sample Property Department label.

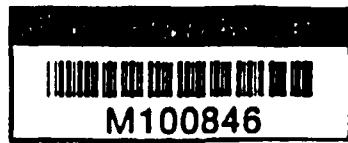


Fig. 2. Sample M number label.

numbers still attached should not be used as ID numbers. (Obsolete labels will not have a bar code.) If the instrument has an IC number, remove the IC number and affix a new M number. If it is not feasible to remove the IC number (possible damage to the instrument), affix the M number over the IC number (after recording the IC number for updating in the data base).

All instruments included in the instrument inventory will have a label that can be read with a bar code reader (with the exception of instruments that operate in harsh environments, have exceptional size, etc.). In such cases, the number will be engraved on the instrument or on an attached metal tag and the prenumbered label will be destroyed.

Some instruments with property numbers from other sites or instruments from private sources are brought to the Maintenance Management Department for service. These instruments should not be labeled and entered into the data base unless they are to become a permanent part of the inventory data base.

3.3 DATA ENTRY

It is the responsibility of the supervisor at the instrument's file point to attach the bar code label. In some cases the Property Department will have attached an identifying property number (bar coded) to the instrument. When this is the case, MMD does not label the instrument; however, in all cases the supervisor must process the necessary information for the instrument to be entered in the inventory data base.

The completed inventory form (Fig. 3) can be routed to the Job Control Office to have the information entered into MAJIC, or it can be entered interactively by the supervisor. The inventory form will be returned to the supervisor, who will dispose of the form or file it if necessary.

Print plainly and use all capital letters, one letter or number per column. Use 0 to indicate the letter O, and use 0 with a slash to indicate zero. Use a straight vertical line with small cross bars top and bottom (serifs) to write the letter I, and a plain straight vertical line to write the numeral 1.

I & C INSTRUMENT INVENTORY

 CHECK IF REVISIONDate: 8-1-87

I.D. NO.		Description					
M 1 0 0 9 6 7		C O M P U T E R					
Mfr. Code	Model No.					Classification Code	F. P.
I B M	5 1 5 0 6 7 2 1					C M B	K 6
Purchase Order		Cost New	Year	Division	ST.	Cat.	
		2 2 5 0	8 6	I C	1	A	
Serial No.		Service Designation					
8 1 2 X 9 4 3 2							
Maint. Document No.		OSR					
D-							
Range From	To	Units	CB Freq.	PM Freq.	Start Mo	Est. Hr.	
					6	1 0	1
Bldg.	Room	Custodian					
3 5 0 0	4	S M I T H R					
Remarks							
Remarks CB/ PM							
INSTRUMENTS							

(a) Ready to be entered by the Job Control Office.

I & C INSTRUMENT INVENTORY

 CHECK IF REVISIONDate: 8/1/87

I.D. NO.		Description					
M 1 0 0 9 6 7		C O M P U T E R					
Mfr. Code	Model No.					Classification Code	F. P.
I B M	5 1 5 0 6 7 2 1					C M B	K 6
Purchase Order		Cost New	Year	Division	ST.	Cat.	
		2 2 5 0	8 6	I C	1	A	
Serial No.		Service Designation					
8 1 2 X 9 4 3 2							
Maint. Document No.		OSR					
D-							
Range From	To	Units	CB Freq.	PM Freq.	Start Mo	Est. Hr.	
					6	1 0	1
Bldg.	Room	Custodian					
3 5 0 0	4	S M I T H R					
Remarks							
Remarks CB/ PM							
INSTRUMENTS							

(b) Terminal display of data as entered by supervisor.

Fig. 3. Completed instrument inventory form.

3.3.1 The Inventory Form

The following list describes how to fill out the data fields on the inventory form, and notes whether the information is required or optional.

<u>Block Name</u>	<u>Field Length</u>	<u>Description</u>
ID Number (REQUIRED)	7	Identifying number attached to the instrument such as M012345 or bar-coded property). This number is assigned when the instrument is installed or initially serviced by I&C personnel or by the Property Department.
Description (REQUIRED)	20	Description of instrument such as camera, computer, meter, valve, or terminal. Appendix A describes the correct way to list an instrument based on type and classification and includes the list of classification codes.
Mfgr. (REQUIRED)	4	Manufacturer of instrument. Manufacturer codes are listed alphabetically in Appendix B. If a manufacturer isn't listed in the appendix, or is unknown, code ZZ shall be used, and the name of the manufacturer shall be listed in the remarks block on the inventory form. The MAJIC Committee will review new additions to the manufacturer list and update the listing biannually.
Model (REQUIRED)	15	Instrument model number. (If not known, enter NONE).
Classification (REQUIRED)	8	This field provides a systematic way to categorize instruments based on their generic function using the classification codes listed in Appendix A. If a class code is not listed, code ZZ shall be used and the type of instrument shall be listed in the remarks block on the inventory form for periodic review by the MAJIC Committee.
File Point (REQUIRED)	2	File points identify the MMD supervisor having maintenance responsibility for an instrument, and allows flexibility for the supervisor to group instruments according to need. Because there are many ways to group instruments, MAJIC does not set forth specific guidelines on how a file point is to be used; however, any requests for file points must be brought before the MAJIC

Committee for review and assignment. Appendix C is a list of the current file points, the person who manages them, and their contents.

Purchase Order (OPTIONAL)	8	Number of the purchase order on which the instruments was purchased.
Cost (OPTIONAL)	6	Cost of the instrument in dollars.
Year (REQUIRED)	4	Year the instrument was put in service.
Division (REQUIRED)	3	Division that purchased instrument. (Division codes are listed in Appendix D.)
Status below: (REQUIRED)	1	Present status of an instrument as defined
		CODE STATUS
		1 Active (Instrument in service)
		2 Spare (Instrument out of service)
		3 Salvaged (Instrument disposed of)
Category (REQUIRED)	1	Classification of instrument in QA Manual QA-L-12-100.
Serial Number (OPTIONAL)	17	Serial number of instrument (to be listed if known).
Service Designation (OPTIONAL)	12	The service designation is provided primarily to indicate the position of the instrument in an instrumented control system. The use and coding of this block will be left up the individual supervisor to provide a workable system for his operation.
Document Number (OPTIONAL)	7	Number assigned to instrument manuals that have been put on Microfiche.
ADP Number (OPTIONAL)	10	Automatic Data Processing number for classification of instrument. Assigned by Computer and Telecommunications Division.
OSR Number (REQUIRED*)	10	Operational Safety Requirement number for classification of instruments in special systems. (*WHEN DEALING WITH IDENTIFIED OSRs, AN OSR INSTRUMENT MUST BE ON RECALL.)

Range From (OPTIONAL)	4	Start of specification range of instrument.
Range To (OPTIONAL)	4	End of specification range of instrument.
Units (OPTIONAL)	4	This field may be used to specify ohms, amps, volts, or other such units.
CB Frequency (REQUIRED*)	2	Calibration recall frequency in months (1 to 99). (*REQUIRED IF INSTRUMENT ON RECALL.) Entering a number (01 through 99) establishes the calibration recall frequency in months. The first calibration recall will occur when the specified number of months has elapsed following the start date entered the Start Month data block (e.g., entering 12 would tell the program to recall the instrument for service every 12 months).
		When the designated calibration is performed and activity code 5 is entered in the activity code (AC) field on the I&C Maintenance Work Request (Fig. 4), the date of the next recall will be calculated from the date in the Actual Completion Date (Act. Comp.) block on the I&C Maintenance Work Request.
		A special activity code (55) has been designated to permit recall of selected instruments by fixed calendar dates rather than number of months. Once the calibration schedule has been established, entering activity code 55 in the AC field on the I&C Maintenance Work Request will cause the next recall to be calculated from the previous recall date, rather than from the Act. Comp. date on the I&C Maintenance Work Request.
PM Frequency (REQUIRED*)	2	Programmed maintenance frequency. (*REQUIRED IF INSTRUMENT ON RECALL.) Entering a number (01 through 99) will establish programmed maintenance recall frequency in months. The first programmed maintenance recall will occur when the specified number of months has elapsed following the date in the Start Month data block (e.g., entering 6 would tell the program to recall the instrument for service every 6 months).
		When the designated programmed maintenance is performed and activity code 4 is entered in the AC field on the Maintenance Work Request, the date of the next recall will be calculated from the date

Fig. 4. Blank I&C maintenance work request form.

in the Act. Comp. block of the Maintenance Work Request.

A special activity code (44) has been designated to permit recall of selected instruments by fixed calendar dates. Once the programmed maintenance schedule has been established, entering activity 44 in the AC field on the Maintenance Work Request will cause the next recall to be calculated from the previous recall date, rather than from the Act. Comp. date on the Maintenance Work Request.

Start Month (REQUIRED*)	2	Month (1 to 12) that recall is to begin (e.g., entering a 4 in this block would tell the program to start the recall for this instrument in April). (*REQUIRED IF INSTRUMENT IS ON RECALL.)
Estimated Used Hours ON (REQUIRED*)	2	Estimated hours for PM or Calibration (0 to 99). for time standards. (*REQUIRED IF INSTRUMENT IS RECALL.)
Building (REQUIRED)	5	Location of instrument.
Room (REQUIRED)	4	Location of instrument in building.

Custodian (REQUIRED)	14	Custodian of instrument when entered into data base.
Remarks use Inventory (OPTIONAL)	29	Special remarks on the instrument, for optional by the supervisor.
Remarks PM, CAL (OPTIONAL)	29	Information and procedures for programmed maintenance and calibration (information in this on block is preprinted work requests).

3.3.2. Change of Inventory Information

The I&C instrument inventory form is also used to change or eliminate inventory information in the computer data base. In addition to the changed information listed on this form, the form must also have the ID number, file point, and SIC so that the data entry clerks can route the form back to the proper supervisor.

Any new information in a given data group entered into the computer will automatically replace the previous information. To eliminate information but not insert any new information, draw a horizontal line in the data group.

It is the responsibility of the supervisor of the identified instrument's file point to keep the inventory list current by revising data as required.

4. PROGRAMMED INSTRUMENT MAINTENANCE AND CALIBRATION

The computer will generate a preprinted Work Request (Fig. 4) for instruments designated for programmed maintenance and/or calibration at fixed intervals. The file point supervisor will then use these forms in the manner described above.

When instruments are calibrated, the shop performing the calibration will retain the information in its file on the I&C Calibration Record (UCN-10600) shown in Fig. 5. The calibration form does not contain information that need be entered into the Inventory.

For each instrument calibrated, the following information is to be entered on the left side:

1. Instrument identification number
2. Date of calibration
3. Service personnel badge number
4. Procedure number used
5. Next calibration date
6. Accuracy when calibrated
7. Reference identification number(s).

Calibration data are to be entered in the columns of the right portion, with appropriate headings and the units.

When calibration is performed, the data will be recorded on the I&C Calibration Record, which is to be filed at the calibrator's file point. When the calibration data cannot be entered on this form, all other pertinent information will be filled out, with a note across the data blanks indicating where the actual calibration data are filed. (The back side of the form contains spaces for addition data or comments.) Activity code 5 must be indicated on the Work Request for the recall program to be updated and for the instrument inventory data base.

Fig. 5. Front side of I&C calibration record card.

5. JOB CONTROL

5.1 INTRODUCTION

Job control is based on collecting good information from the work area, organized in a systematic manner to enable rapid recall and summarization. The following attributes are used both in the data base and on the Work Request. Some of these represent required data, while other attributes are optional and are left to the discretion of the supervisor in charge (SIC).

5.2 THE I&C WORK REQUEST FORM

A work request shall be generated upon request for service to the I&C MMD. Initial information required on the work request is listed below and shown in Fig. 6.

<u>FIELD Name</u>	<u>FIELD Length</u>	<u>Description</u>
DATE: customer	10	Date request for service received from
JOB NUMBER:	5	Job number preassigned on work requests.
REQUESTOR:	14	Person requesting service (entered on work request as last name then first initial with no punctuation (e.g., Smith R).
BUILDING:	5	Location where service is to be performed
ROOM: performed	5	Room number where service is to be
PHONE:	6	Phone number of requestor (also used to select appraisals and aid technicians in completing work).
SIC:	3	MMD supervisor in charge.
BL:	2	Backlog codes (categorizes jobs).

Date: 7/1/87	UCN-14783 (3 10-86)	I & C MAINTENANCE WORK REQUEST						NO. - N- 4601
Requester Jones, R.		Bldg. 1000	Room 101	Phone 4-7411	SIC 401	BL B1	Work Order G7674DAA	
Description Computer		MFR	Model		OSR		Document No.	
Sch. Start 7/2/87	Sch. Comp. 7/3/87	Est. Labor 6	Service Desc		Work Permit Required	<input type="checkbox"/> Electrical	<input type="checkbox"/> Other (Specify)	
Act. Start	Act. Comp.	Est. Material	Act.	QA Instructions	AC	ID	HRS	Material
Request: Will not transmit								\$
								\$
								\$
								\$
								\$
Comment					Badge No.	HR	Date	ACTIVITY CODE
								1 Installation
								2 Alteration
								3 Breakdown Maint.
								4 Programmed Maint.
								5 Calibration
								6 Adjustment
								7 Operational Check
								8 Removal
								9 User Assistance
								10 Scheduled Maint.
								11 Fabrication
								12 Logistics

Fig. 6 Initial job entry on I&C maintenance work request

BACKLOG CODES:

B1 - Breakdown Maintenance

Work required to repair failed equipment.

B2 - Scheduled Work

Work scheduled for completion in a timely manner with respect to facility operations or other factors.

B3 - Emergency Maintenance

Work required immediately for health, safety, security, or programmatic needs, protection of data, or reduction of downtime.

B4 - Awaiting Material

Work to be completed when parts are received, either from in-plant stores or outside vendors.

WORK ORDER:

8

Work order or account number (must be valid to charge time to the job).

DESCRIPTION:

20

Description of instrument or service
(should be a generic listing of instrument)

or service and not try to describe the whole job).

MFR:	4	Manufacturer of instrument (not used interactively; preprinted on PM/CAL forms).
MODEL:	12	Model number of instrument (not used interactively; preprinted on PM/CAL forms).
OSR:	10	Operational Safety Requirement ID No. (not used interactively; preprinted on PM/CAL forms).
DOCUMENT NO:	6	Document number of manuals in microfiche library (not used interactively).
SCH START:	10	Scheduled start date for service.
SCH COMP:	10	Scheduled completion date for service.
EST LABOR:	3	Estimated labor (hours) to complete the job.
EST MATERIAL:	3	Estimated material cost.
REQUEST:	200	Request of work to be performed (should be a brief but specific description of work).

Additional fields such as "Service Designation," and "QA instructions" are to be used at the discretion of the responsible supervisor. The detail to which such data is recorded is left to the discretion of the supervisor.

The Work Request is made up of an original and two copies. The original work request goes to the JCS Office for entry into the data base, or can be entered by the field shop. The yellow copy is provided to the person performing the work, and the blue copy is reserved for use by other Maintenance personnel where applicable. The person performing the work records the following on the Work Request:

ACT. START	10	Actual start date of service
ACT. COMP:	10	Actual completion date of service
ACT. MATERIAL:	3	Actual material cost per ID number
ACT. LABOR:	3	Actual labor charged to job (not used interactively; automatically updated by program).

COMMENT: 200 Comments on work performed or parts replaced (be brief and specific)

AC: 2 Activity code to describe the type of maintenance effort.

ACTIVITY CODES:

1. Installation	Instrument put in service
2. Alteration	Change to the instrument
3. Breakdown Maint.	Instrument not functioning properly
4. Programmed Maint.	Instrument serviced for preventive maintenance
5. Calibration	Instrument serviced for calibration
6. Adjustment	Adjustment to instrument
7. Operational Check	Test of instrument
8. Removal	Instrument removed from service
9. User Assistance	Assisting customer
10. Scheduled Work	Work not of critical nature
11. Fabrication	Construction or model building
12. Logistics	Maintenance effort not directly related to instrument repair

ID: 7 Identification number of instrument (use bar-coded property number when available, otherwise use bar-coded M number).

HRS: 3 Hours charged to the instrument (can be different than hours charged to the overall job).

\$ MATERIAL: 4 Cost of material used per ID number

BADGE NO.: 3 Badge number of employee performing service

HR: 3 Hours charged to the work request (also entered on employee's time record).

DATE: 10 Month, day, and year hours are charged to the work request (should be the same date employee lists on time sheet).

The JCS Office updates the data base and returns the yellow copy of the Work Request to the supervisor, who retains it until the job is closed.

NOTE: When a job entered by a JCS operator is invalid, the operator will enter "BAD" in the work order field to tell the applicable SIC that the work order is not on file and adjustments must be made. On the status report printout the word "BAD" will appear in the work order field to signify that the job was entered without a valid work order and must be corrected before time can be charged to the job.

5.3 ID NUMBER PROCEDURE

To maintain a complete and accurate inventory and historical file, ID numbers must be identified on as many jobs (Work Requests) as practical. The number of jobs completed without an ID number should be very small, thus ensuring the integrity of the MAJIC system. The use of the ID numbers allows MMD management and supervisors to monitor the number and types of activity performed on an instrument. When a job is completed, the ID number of the instrument is listed on the Work Request and the inventory is checked (electronically) to make sure the instrument is on file. If it is not on file, an error list is generated, listing the job number and ID number used. Some of the more common reasons for instruments not found in inventory are

1. Instrument not entered into inventory (initial entry).
2. Instrument is in inventory, but the wrong ID number is used to identify the instrument. For example:
 1. Listing old IC number instead of bar-coded "X" number.
 2. Listing old "X" number instead of bar-coded "X" number.

When practical, the IC number should be removed from the instrument to reduce the chance of listing the wrong number. (It is not advisable to remove the metal tagged X number because it is glued to the instrument and its removal could deface the equipment.)

The procedures to correct error listings are as follows:

1. If an error occurred because the instrument wasn't listed in the inventory, enter the information necessary to list the instrument in inventory (on a form or interactively).
2. If an error occurred because the wrong ID number was used, determine the correct bar code X number or M number and update the Work Request by entering the correct ID number. (NOTE: Job control personnel can help the supervisor find the correct ID number.)

The ID numbers are assigned to new inventory items each Friday night, and an error list is generated after the update. After corrections are made to the instrument inventory or the work requests, the next update will reflect the corrections and remove the listings from the error list.

Each supervisor should give identification numbers to certain types of work or services that are not necessarily tied to an instrument but that should be tracked. Customer assistance and work for other locations using different Numbering systems are examples of the types of activities that should be given a special M number. However, these types of ID numbers should not be used as a catch-all when the ID number of an instrument isn't listed on the Work Request.

6. REPORTS

6.1 DATA STORAGE AND RETRIEVAL

Work request information is maintained in a data base (supervisor's work space) for a minimum of 35 days. This time period is sufficient to allow the data to be reviewed and manipulated for reporting purposes and to generate the desired statistical information. At the end of 35 days, the supervisor has the option of deleting a Work Request from his dedicated work space. This action is termed "Closing a Work Request." After a Work Request has been closed, the information is deleted from the supervisor's work space and stored in a data base for an additional period of time. Historical data are stored to provide a means of retrieving data for statistical forecasting over long periods of time. Retrieval of Work Request information in the form of interactive computer output will be discussed later as part of the computer operating procedure.

6.2 STATUS REPORTS

Status reports are generated by the Job Control System at the request of the supervisor, who should use it to monitor job elements such as backlog, scheduling, and cost. The status report is designed to provide the supervisor with timely information on which to base decisions pertaining to work activities. The status report is obtained by accessing the computer and executing a program entitled "REP." (Details and examples of computer operation will be addressed later in greater detail.)

6.3 INSTRUMENT INVENTORY REPORTS

The instrument inventory report request form (Fig. 7) allows the requestor to select from several data fields as well as from a variety of report formats designed by requestors. To generate a print format, the requestor informs the system manager of the report headings needed and they are stored in a data base for recall by any requestor on an as-needed basis. The report program allows maximum flexibility in selecting, sorting, and printing data.

To fill out the form, enter under Selection Field the data needed in each field. After the data needed have been selected, select the sort order needed. Next a print format is chosen. Examples of the available print formats are listed in an on-screen menu for viewing, and are included in Appendix E. Depending on the number of headings in the individual print formats, the requestor has a choice of either 80-column or 132-column print. The completed forms should be forwarded to the Job Control Office for processing.

I & C SELECTED INSTRUMENT REPORT REQUEST

Date	1- Print Inventory _____	2- Maintenance History _____	3- Maintenance Summary _____
SELECTION FIELD(S)		SORT ORDER	
_____		ID NUMBER	_____
_____		FILE POINT/SIC	_____
_____		MANUFACTURER	_____
_____		MODEL	_____
_____		CLASS. CODE	_____
_____		SERVICE DESIGN.	_____
_____		CUSTODIAN	_____
_____		BUILDING	_____
_____		ROOM	_____
_____		DIVISION	_____
_____		STATUS	_____
_____		CATEGORY	_____
Print Format? _____			

UCN-11773
(3 7-87)
*U.S. GPO: 1987-748-184/60043

Fig. 7. I&C selected instrument report request form.

6.4 TIME REPORTS

Labor hours are recorded on both the Work Request (Fig. 8) and the Time Report (Fig. 9). Each individual's badge number labor hours are recorded on the Work Request, and the work order and job number are recorded on the individual's time report. The Job Control System allows weekly time information to be entered from the Work Request or during review of the Time Report. Time is automatically entered on the work request when input for the employee through I&C internal time entries. Time information is stored in a data base and made available for final review by the JCS operators before entry into the I&C Division Internal Timekeeping System.

Date: 7/1/87	I & C MAINTENANCE WORK REQUEST										NO. N- 4601			
		UCN-14783 (3 10-86)		Bldg. 1000	Room 101	Phone 4-7411	SIC 401	BL B1	Work Order G7674DAA					
Requester Jones, R.			MFR		Model		OSR		Document No.					
Description Computer														
Sch. Start 7/2/87	Sch. Comp. 7/3/87	Est. 6	Labor	Act.	Service Desc			Work Permit Required	<input type="checkbox"/> Electrical	<input type="checkbox"/> Other (Specify)				
Act. Start 7/2/87	Act. Comp. 7/2/87	Est.	Material	Act.	QA Instructions			AC 3	ID X184600	HRS 4	Material \$			
Request Will not transmit											\$			
											\$			
											\$			
											\$			
Comment Replaced SN7400N on main logic board tested											\$			
										Badge No 84162	HR 4	Date 7/3/87	ACTIVITY CODE	
													1 Installation	
													2 Alteration	
													3 Breakdown Maint.	
													4 Programmed Maint.	
													5 Calibration	
													6 Adjustment	
													7 Operational Check	
													8 Removal	
													9 User Assistance	
													10 Scheduled Maint.	
													11 Fabrication	
													12 Logistics	

BACKLOG CODES: B1 Breakdown Maint. B2 Scheduled Work B3 Emergency Service B4 Awaiting Material

Fig. 8. I&C maintenance work request properly filled out for completed job.

TIME REPORT															704-4																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
KELLER, D.N.															PAT WILKERSON D. R. MILLER, ADMIN. SUPPORT																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
015699 W															MAY 1987																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237

7. COMPUTER OPERATING PROCEDURE

7.1 ESTABLISHING CONNECTION

The data communications link must be clear to send and receive before communications can be established. Normally this will be accomplished by the PCD (port contention device) at the computer location; however, if the terminal has been used recently, the PCD may still be connected and require a "break" before communications can be established.

Understanding the different levels of operation will be beneficial to effective computer operations. Following is a brief summary of these levels of operation:

- LOCAL The PC may operate local programs. These may consist of shell programs, resident programs on a system of directories and sub-directories, or floppy disks. Terminals may be operated in the typing mode.
- PCD The port contention device (PCD) allows access to the computers in the I&C and the C&TD networks. Most use will concentrate on the microVAX computer (System 7), the Vax computer (System 6), and the C&TD PCD (127), which allows access to the PDP-10 computer (System 1) and the F&M system (System 30).
- LOGIN After reaching the appropriate system, a short period of time will be allowed to perform the login procedures. If login is not completed, the system will disconnect automatically.
- MONITOR At this level, system programs may be run and files created and stored. DIR, MAIL, EDT and S1032 are some of the programs that can be run. Special programs such as MAJ (MAJIC) and REP (Reports) can be made to run from this level.
- PROGRAM In this level a program is in progress, and responses and input are done with program commands. Within programs, other areas and programs may be utilized or referenced, depending on the way in which the master program is written.

7.2 STEP-BY-STEP INSTRUCTIONS

The following describes step-by-step operation of the MAJIC Program and the associated REPORTS Program for producing reports.

NOTE: This is an interactive program, listing on-screen commands and options; therefore, some commands and options are not listed below.

To connect to the computer, use the carriage return (<CR>) on the keyboard.

<u>COMPUTER RESPONSES</u>	<u>USER RESPONSES</u>
---------------------------	-----------------------

SELECT SYSTEM:	7 (MICROVAX 2) 127 (DEC 10)
USERNAME:	User ID
PASSWORD:	User Password
PROMPT \$	MAJ (Opens program for input or review) REP (Opens program for reports)

The following sections list the various menus the MAJIC Program uses to process data. Follow the instructions in the menus by typing the number corresponding to the action you need, then enter the data according to the on-screen instructions. The forms used on-screen to enter data are identical to the forms used to record data.

(MAJ MENU)

- 1 - MAINS (INVENTORY)
- 2 - JOB CONTROL
- 3 - PARTS
- 4 - EXIT (TEMPORARILY)
- 5 - QUIT

When the inventory form is displayed, the cursor will be in the "ID NO." field. Enter the ID number that needs to be entered or reviewed. If data have been stored previously for that ID number, it will appear on the screen; if not, the cursor will move to the description block, waiting for new inventory data to be entered. The top two lines must be completed for the information to be stored in the data base. To move the cursor through the data fields, use either the TAB key or the carriage return (<CR>) key to go forward. To backtrack through the form use the BACKSPACE key. To exit the form, the ID block must be blank, then press the ENTER key.

(JOB CONTROL MENU)

- 1 - UPDATE WORK REQUEST
- 2 - UPDATE INTERNAL TIME
- 3 - UPDATE PERSONNEL FILE
- 4 - REVIEW JOB NUMBER
- 5 - CLOSE WORK REQUEST
- <CR> - RETURN TO MAIN MENU

When the Work Request form is displayed, the cursor will be in the "JOB NO." field. When the job number is entered, the program searches the data base to see if the job is on file. If it is, the data already

entered will be displayed and revisions can be made. If not, the cursor goes to the "WO" field, waiting for the work order number to be entered, indicating that this is a new job. If the work order is good, the cursor goes to the date block; if the program cannot find the work order number, an instruction set will appear at the bottom of the screen, listing several options the supervisor can take to complete job entry. From this point, pressing the ENTER key will cause the program to exit the form. The <CR> and the TAB key will move the cursor from one field to another. When the form is completed, press the ENTER key to tell the program to accept the data. To exit the form, press ENTER while the cursor is in the blank "JOB NO." field.

If there is a need to abort a job, it must be done before a date is entered in the date block; otherwise the program views the job as valid and will not let you exit the program until the BL and SIC BLOCKS have data in them. If there is a need to erase the job (typing in the wrong job number), the system manager will have to remove it from the active file so the number can be used at a later date.

UPDATE INTERNAL TIME MENU

- 1 - CLOCK BY TIME SHEET
- 2 - CLOCK BY EMPLOYEE NUMBER
- 3 - PRINT TIME CHARGES
- <CR> - RETURN TO ACTION LEVEL

Entering a date within the work week will allow time to be collected for that week. If the end of the month comes before the end of the week, then enter the end of month date. Time previously entered from the Work Request will be displayed on the form. When time is entered, the job number can be used without the work order number; then type in hours and date (the entry will not be accepted without hours, date, and job number or work order number being entered).

Use the ENTER key only after you have made all necessary entries. When you use the ENTER key, a message will appear at the bottom of the screen. The total time will not be displayed until a review is made. Follow the instructions on the screen to go to next employee or to exit the form.

Entering time for an individual employee is exactly the same as entering time for a SIC time sheet. This method of time entry relieves the supervisor of searching his entire list of employees just to enter time for one person, and allows the supervisor flexibility on how time can be entered for his area.

(UPDATE PERSONNEL FILE MENU)

- 1 - ADD NEW EMPLOYEE
- 2 - REVISE EMPLOYEE RECORD
- 3 - DELETE EMPLOYEE FROM FILE
- 4 - LIST PERSONNEL
- <CR> - RETURN TO ACTION LEVEL

From this menu a supervisor can add a newly hired employee or a transfer to his area, or remove someone from his area by following the questions asked by the program.

REVIEW A JOB NUMBER

The work request form will appear with the cursor in the job number field. Typing in the job number and pressing ENTER will cause the data to be input in the field if the job number is on file. If the data do not appear, the system will display "Job No. not on file."

In the review format data can only be viewed. The Update Work Request command should be used to change data.

CLOSE WORK REQUEST MENU

- 1 - INDIVIDUAL JOB NUMBERS
- 2 - ALL JOBS COMPLETED FOR AT LEAST 35 DAYS
- <CR> - RETURN TO ACTION LEVEL

After a job has been closed, it is removed from the active data file and data cannot be changed except by the System Manager. The job must be at least 35 days old before the program will remove it from the active files.

(PARTS MENU)

- 1 - FIND/CHANGE PARTS
- 2 - FIND/PRINT PARTS
- <CR> - RETURN TO MAIN MENU

PART NUMBER:
 PRODUCT CODE:
 MANUFACTURER CODE:
 STORE STOCK NO.:
 STOCK POINT 0:
 STOCK POINT 1:
 STOCK POINT 2:
 STOCK POINT 3:
 STOCK POINT 5:
 DESCRIPTION:
 UNIT COST:

DEPT. STOCK POINT A:
DEPT. STOCK POINT B:
DEPT. STOCK POINT C:
(Type a PART NUMBER and/or press ENTER)

PRINT SELECT?

1 - SELECT BY SHOP
2 - SELECT BY CODE
3 - SELECT BY MFGR
<CR> - PARTS ACTION

Parts can be located interactively on the terminal by entering the appropriate information, or by referring to a printout of the complete parts inventory to find information on parts.

EXIT (TEMPORARILY)

Returns to monitor level but doesn't exit the MAJ Program.

QUIT

Exits the program and returns to monitor level.

REPORTS

This program will contain all computer-generated reports that may be accessed by users. It is expected that this area will continue to expand rapidly as the needs for special reports and cross references are recognized.

The following reports are currently available:

1 - STATUS
2 - WORK ORDER - JOB NUMBER CROSS REFERENCE
3 - ID NUMBER - JOB NUMBER CROSS REFERENCE
4 - MAINTENANCE HISTORY
5 - PRINT INVENTORY
6 - OSR
7 - QUIT

(STATUS MENU)

1 - ALL JOBS
2 - JOBS WITH NO COMPLETION DATE
3 - PM - CAL JOBS ONLY (NO COMPLETION DATE)
<CR> - PREVIOUS MENU

WORK ORDER - JOB NUMBER CROSS REFERENCE

This report allows a supervisor to enter a work order number or an account number to track the number of jobs, types of jobs, number of hours charged to the work order, and completion dates for the particular work order or account number entered into the system.

ID NUMBER - JOB NUMBER CROSS REFERENCE

This report allows a supervisor to track the number of times a particular instrument has been serviced. It will list several items from the Work Request, summarizing the activity for the dates the report scans.

MAINTENANCE HISTORY

1 - INDIVIDUAL ID NUMBER
2 - INDIVIDUAL FILE POINT
<CR> - PREVIOUS MENU

This report lists the number of times an instrument has been serviced, type of activity, hours charged, and description of service. This can be listed for each individual ID number or for the whole SIC file point.

OSR (OPERATIONAL SAFETY REQUIREMENT)

This report will list the instruments that are identified with a particular OSR, indicating the present status of an instrument relative to the requirements of that particular OSR.

(PRINT INVENTORY MENU)

1 - VIEW ALL QUEUED REPORTS
2 - REVIEW SINGLE QUEUED REPORT
3 - DELETE A QUEUED REPORT
4 - HELP NOTES
5 - LIST PRINT FORMATS
6 - QUIT INVENTORY REPORTS
<CR> - RUN A REPORT

THE REPORT FORM IS AS FOLLOWS:

SELECTION FIELDS

SORT ORDER

_____ ID NUMBER _____
_____ FILE POINT/SIC _____
_____ MANUFACTURER _____
_____ MODEL _____
_____ CLASSIFICATION CODE _____
_____ SERVICE DESIGNATION _____
_____ CUSTODIAN _____
_____ BUILDING _____
_____ ROOM _____
_____ DIVISION _____
_____ STATUS _____
_____ CATEGORY _____

WHICH PRINT FORMAT?

(SELECT FIELDS ON LEFT - SORT FIELDS ON RIGHT)

To generate a report, start with the left-hand column and type in the data that correspond to that field. Continue on to the right-hand side and type the order you wish the printout sorted. Type a 1, 2, or 3 in the order you want the fields sorted. If no sort order is indicated, the program default sorts by ID number.

Choose the print format in which you want your report and type that number after WHICH PRINT FORMAT?. A list of print formats is available on-screen or in the MAJIC Manual (Appendix E).

To move the cursor through the form, use TAB or <CR>. To have the program select the data you entered, use the ENTER key.

APPENDIX A
Instrument Classification Codes

NAME	MOD1	MOD2	CODE
ACCELEROMETER			
ACCESSORY	MEASURING	"D" _ RING	TDD
ACCESSORY	MEASURING	CAPACITOR	MAG
ACCESSORY	MEASURING	FREEZE _ POINT	MAA
ACCESSORY	MEASURING	INDUCTOR	MAE
ACCESSORY	MEASURING	LAMP _ RIBBON	MAI
ACCESSORY	MEASURING	PYROMETER	MAJ
ACCESSORY	MEASURING	RESISTOR	MAB
ACCESSORY	MEASURING	SHUNT	MAC
ACCESSORY	MEASURING	STANDARD _ CELL	MAF
ACCESSORY	MEASURING	TRANSFORMER	MAD
ALARM	INDIVIDUAL		ALB
ALARM	MULTIPOINT		ALC
ALARM	SYSTEM		ALA
AMPLIFIER	AUDIO		AMF
AMPLIFIER	BIASED		AMJ
AMPLIFIER	BUFFER		AMH
AMPLIFIER	DC		AME
AMPLIFIER	DIFFERENTIAL		AMC
AMPLIFIER	LINEAR		AMA
AMPLIFIER	LOG		AMB
AMPLIFIER	MAGNETIC		AMI
AMPLIFIER	OPERATIONAL		AMD
AMPLIFIER	VIDEO		AMQ
ANALYZER	AUTO	TITRATOR	ACH
ANALYZER	CARBON		ACK
ANALYZER	CHLORINE		ACU
ANALYZER	CHROMATOGRAPH		ACI
ANALYZER	CHROMOPOT		ACR
ANALYZER	COLORIMETER		ACG
ANALYZER	CONDUCTIVITY		ACN
ANALYZER	COULOMETER		ACO
ANALYZER	DENSITOMETER		ACF
ANALYZER	DISTORTION	ELECTRONIC	AEB
ANALYZER	FLAME	PHOTOMETER	ACC
ANALYZER	FLUORPHOTOMETER		ACB
ANALYZER	FOURIER	ELECTRONIC	AEE
ANALYZER	GAS		ACV
ANALYZER	INFRARED		ACE
ANALYZER	MOISTURE		ACL
ANALYZER	PH	METER	ACJ
ANALYZER	POLAROGRAPH		ACM
ANALYZER	POTENTIOSTAT		ACS
ANALYZER	PULSE _ HEIGHT	COMPUTER _ BASED	APC
ANALYZER	PULSE _ HEIGHT	MULTI _ CHANNEL	APB
ANALYZER	PULSE _ HEIGHT	SINGLE _ CHANNEL	APA
ANALYZER	SIGNAL	DIGITAL	AED
ANALYZER	SOLIDS		ACT
ANALYZER	SPECTROPHOTOMET		ACA
ANALYZER	SPECTRUM	ELECTRONIC	AEC
ANALYZER	ULTRAVIOLET		ACD
ANALYZER	WAVE	ELECTRONIC	AEA
ANALYZER	X-RAY	DIFFRACTION	ACP
ANNUNCIATOR			ALD
ARITHMETIC	MANIPULATOR	ADDER	ARA
ARITHMETIC	MANIPULATOR	AUCTIONEERING	ARK
ARITHMETIC	MANIPULATOR	AVERAGING	ARJ

ARITHMETIC	MANIPULATOR	DIFFERENTIATOR	ARF
ARITHMETIC	MANIPULATOR	DIVIDER	ARD
ARITHMETIC	MANIPULATOR	INTEGRATOR	ARE
ARITHMETIC	MANIPULATOR	MULTIFUNCTION	ARG
ARITHMETIC	MANIPULATOR	MULTIPLIER	ARC
ARITHMETIC	MANIPULATOR	SQUARE ROOT	ARH
ARITHMETIC	MANIPULATOR	SUBTRACTOR	ARB
BALANCE	ELECTRONIC	DIGITAL	MSE
BALANCE	MECHANICAL		MSF
BATH	WATER		MSA
BRIDGE	CAPACITANCE		BRB
BRIDGE	FORCE		BRC
BRIDGE	IMPEDANCE		BRD
BRIDGE	INDUCTANCE		BRG
BRIDGE	MULTIFUNCTION		BRE
BRIDGE	RESISTANCE		BRA
BRIDGE	THERMOCOUPLE		BRF
CALCULATOR	DESK		CLA
CALCULATOR	POCKET		CLB
CALDRIMETER			MSC
CAMAC	ADAPTER		NCH
CAMAC	AMPLIFIER		NCA
CAMAC	CONTROLLER	CRATE	NCC
CAMAC	CONVERTER	ADC/DAC/TDC	NCB
CAMAC	DRIVER		NCD
CAMAC	ENCODER		NCE
CAMAC	GATE		NCG
CAMAC	INPUT/OUTPUT	I/O	NCI
CAMAC	INTERFACE		NCF
CAMAC	MEMORY	COMPUTER	NCM
CAMAC	MISC	OTHER	NCZ
CAMAC	SCALER	COUNTER	NCS
CAMAC	TEST		NCT
CAMERA	FILM	MOVIE	CAB
CAMERA	FILM	STILL	CAA
CAMERA	TV		CAC
CENTRIFUGE			MSB
CHANGER	SAMPLE		MSD
CLEANER	ULTRASONIC		MSG
CLOCK	TIMER	TIME_OF_DAY	STD
COMPARATOR	DUAL_TRIP		COB
COMPARATOR	SINGLE_TRIP		COA
COMPUTER	ANALOG		CMA
COMPUTER	KEYBOARD		CMK
COMPUTER	MAXI		CMD
COMPUTER	MEMORY	RAM	CMM
COMPUTER	MICRO		CME
COMPUTER	MINI		CMC
COMPUTER	PERSONAL		CMB
COMPUTER	PNEUMATIC		CMP
CONTROLLER	CURRENT	CAT	CNB
CONTROLLER	EMF	DAT	CNA
CONTROLLER	GAS_BULB		CNE
CONTROLLER	LINE	CONDITIONER	CNI
CONTROLLER	MOTOR		CNF
CONTROLLER	PNEUMATIC		CNC
CONTROLLER	POSITION	PAT	CND
CONTROLLER	PROGRAMMABLE	PLC	CNH
CONTROLLER	TEMPERATURE		CNG
CONVERTER	ANALOG/DIGITAL	ADC	CVD

CONVERTER	DIGITAL/ANALOG	DAC	CVE
CONVERTER	ELECTRICAL		CVA
CONVERTER	VOLTS/FREQ		CVV
COUNTER	ALPHA		CUE
COUNTER	BETA/GAMMA		CUG
COUNTER	EVENTS	PER_UNIT_TIME	CUA
COUNTER	FREQUENCY	MEASUREMENT	CUB
COUNTER	INTERVAL	TIME	CUF
COUNTER	LO_BETA		CUD
COUNTER	X-RAY		CUC
DEMODULATOR			MSH
DETECTOR	GAS		DTG
DETECTOR	LEAK		DTB
DETECTOR	PERSONNEL		DTE
DETECTOR	RADIATION	ALPHA	DTA
DETECTOR	RADIATION	BETA/GAMMA	DTH
DETECTOR	RADIATION	GAMMA	DTI
DETECTOR	RADIATION	NEUTRON	DTJ
DETECTOR	SMOKE		DTC
DETECTOR	TEMPERATURE		DTD
DISK	CARTRIDGE		DDC
DISK	FIXED_HEAD		DDX
DISK	FLOPPY		DDF
DISK	WINCHESTER		DDW
ELECTROFINISHER			MSI
ELECTROMETER	MOSFET		ELB
ELECTROMETER	REED	VIBRATING	ELA
FURNACE	INDUCTION	RF	FUI
FURNACE	RESISTANCE	HEATER	FUR
GAUGE	PRESSURE	COMPOUND	IDG
GAUGE	PRESSURE	DIFFERENTIAL	IDF
GENERATOR	FUNCTION		GNE
GENERATOR	MULTIPURPOSE		GNC
GENERATOR	NOISE	RANDOM	GNJ
GENERATOR	PULSE		GND
GENERATOR	RAMP		GNL
GENERATOR	SINE_WAVE		GNA
GENERATOR	SQUARE_WAVE		GNB
GENERATOR	SWEEP		GNG
GENERATOR	TIME_MARK		GNH
GENERATOR	TV	SPECIAL_EFFECTS	GAN
GENERATOR	TV_SYNC		GNF
INDICATOR	DIGITAL		IDJ
INDICATOR	ELECTRICAL		IDI
INDICATOR	FLOW		IDA
INDICATOR	LEVEL		IDB
INDICATOR	PRESSURE		IDC
INDICATOR	PRESSURE	COMPOUND	IDG
INDICATOR	PRESSURE	DIFFERENTIAL	IDF
INDICATOR	SPEED	VELOCITY	IDE
INDICATOR	TEMPERATURE		IDD
INDICATOR	VACUUM		IDH
INTERCOM	MASTER		INB
INTERCOM	MULTISTATION		INA
INTERCOM	SLAVE		INC
INTERCOM	WIRELESS		IND
ISOLATOR	OPTICAL		MSJ
LASER			MSK
LASER	EXCITER		MSL
LENS	CAMERA	FILM	LNC

LENS	CAMERA	TV	LNV
LENS	PROJECTOR	FILM_STRIP	LNF
LENS	PROJECTOR	MOVIE	LNM
LENS	PROJECTOR	OPAQUE	LNO
LENS	PROJECTOR	SLIDE	LNS
LENS	PROJECTOR	TRANSPARENCY	LNT
LOGGER	DATA	ANALOG	REG
LOGGER	DATA	DIGITAL	REF
METER	AMMETER		MTA
METER	FLOW	MAGNETIC	MTQ
METER	FLUXMETER		MTF
METER	FREQUENCY		MTI
METER	GALVANOMETER		MTR
METER	LIGHT		MTJ
METER	MULTIMETER	VOM	MTD
METER	OHMMETER		MTC
METER	PHASEMETER		MTE
METER	POWER	RF	MTH
METER	RMS		MTM
METER	SOUND		MTN
METER	VIBRATION		MTO
METER	VOLTMETER		MTB
METER	VTVM		MTV
METER	WATTMETER		MTG
MICROPHONE	WIRED		MIB
MICROPHONE	WIRELESS		MIA
MIXER	AUDIO		MXA
MIXER	MICROWAVE		MXD
MIXER	RF		MXC
MIXER	VIDEO		MXB
MODEM			TED
MONITOR	ALPHA		MNA
MONITOR	AUDIO		MNK
MONITOR	BETA/GAMMA		MNB
MONITOR	COMPUTER	CRT	MNP
MONITOR	GAMMA		MNC
MONITOR	GAS	INERT	MNH
MONITOR	IODINE		MNI
MONITOR	LINE		MNG
MONITOR	MONITRON		MNO
MONITOR	NEUTRON		MND
MONITOR	NOISE		MNJ
MONITOR	POWER_SUPPLY		MNF
MONITOR	PROCESS		MNE
MONITOR	SAFETY	TROUBLE	MNN
MONITOR	VIBRATION		MNV
MONITOR	VIDEO		MNL
MONITOR	WATER		MNM
MULTIMETER	DIGITAL		MTL
NIM	ADAPTER		NMH
NIM	AMPLIFIER		NMA
NIM	CONVERTER	ADC/DAC/TDC	NMB
NIM	DRIVER		NMD
NIM	ENCODER		NME
NIM	GATE		NMG
NIM	INPUT/OUTPUT	I/O	NMI
NIM	INTERFACE		NMF
NIM	MEMORY	COMPUTER	NMM
NIM	MISC	OTHER	NMZ
NIM	POWER_SUPPLY	BIN	NMC

NIM	SCALER	COUNTER	NMS
NIM	TEST		NMT
OPERATOR	ELECTRIC		OR8
OPERATOR	PNEUMATIC		ORA
OSCILLOSCOPE	ACCESSORY		OCF
OSCILLOSCOPE	CALIBRATION	FIXTURE	OCG
OSCILLOSCOPE	CONVENTIONAL		OCA
OSCILLOSCOPE	CURVE TRACER		OCD
OSCILLOSCOPE	DISPLAY		OCE
OSCILLOSCOPE	SAMPLING		OCC
OSCILLOSCOPE	STORAGE		OCB
PLOTTER	ANALOG		PLA
PLOTTER	DIGITAL		PLB
PLOTTER	INK_JET		PLC
PLUG-IN	OSCILLOSCOPE	AMPLIFIER	OPA
PLUG-IN	OSCILLOSCOPE	COUNTER-TIMER	OPH
PLUG-IN	OSCILLOSCOPE	CURVE_TRACER	OPJ
PLUG-IN	OSCILLOSCOPE	CUR_PROBE_AMP	OPN
PLUG-IN	OSCILLOSCOPE	DELAY_LINE	OPD
PLUG-IN	OSCILLOSCOPE	DIGITAL_COUNTER	OPQ
PLUG-IN	OSCILLOSCOPE	DMM	OPF
PLUG-IN	OSCILLOSCOPE	OP_AMP	OPK
PLUG-IN	OSCILLOSCOPE	POWER_SUPPLY	OPP
PLUG-IN	OSCILLOSCOPE	PULSE_GENERATOR	OPL
PLUG-IN	OSCILLOSCOPE	RAMP_GENERATOR	OPM
PLUG-IN	OSCILLOSCOPE	SAMPLING_AMP	OPD
PLUG-IN	OSCILLOSCOPE	SAMPLING_HEAD	OPR
PLUG-IN	OSCILLOSCOPE	SAMPL_TIME_BASE	OPE
PLUG-IN	OSCILLOSCOPE	SPECTRUM_ANAL	OPI
PLUG-IN	OSCILLOSCOPE	TDR	OPC
PLUG-IN	OSCILLOSCOPE	TIME_BASE	OPB
POLISHER	CRYSTAL		MSM
POTENTIOMETER	MICROVOLTS		POA
POTENTIOMETER	MILLIVOLTS		POB
POTENTIOMETER	RESISTANCE		POE
POTENTIOMETER	TEMPERATURE		POD
POTENTIOMETER	VOLTS		POC
POWER_SUPPLY	BATTERY	PACK	PSE
POWER_SUPPLY	AC-AC		PSB
POWER_SUPPLY	AC-AC	REGULATED	PSG
POWER_SUPPLY	AC-DC		PSA
POWER_SUPPLY	AC-DC	REGULATED	PSF
POWER_SUPPLY	BATTERY	CHARGER	PSL
POWER_SUPPLY	CONSOTROL		PSK
POWER_SUPPLY	DC-AC		PSC
POWER_SUPPLY	DC-AC	REGULATED	PSH
POWER_SUPPLY	DC-DC		PSD
POWER_SUPPLY	DC-DC	REGULATED	PSI
POWER_SUPPLY	VOLT_BOX		PSJ
PREAMPLIFIER	FISSION	CHAMBER	PAF
PREAMPLIFIER	GM_TUBE		PAD
PREAMPLIFIER	ION_CHAMBER		PAE
PREAMPLIFIER	PROPORTIONAL	COUNTER	PAB
PREAMPLIFIER	SCINTILLATION		PAC
PREAMPLIFIER	SOLID_STATE		PAA
PREAMPLIFIER	TIME_PICKOFF	FET	PAP
PRINTER	BAND		PRB
PRINTER	DAISY_WHEEL		PRW
PRINTER	DOT_MATRIX		PRM
PRINTER	DRUM		PRD

PRINTER	ELECTROSTATIC	PRE	
PRINTER	INK_JET	PRJ	
PRINTER	LASER	PRL	
PRINTER	THERMAL	PRT	
PROJECTOR	FILM_STRIP	PJF	
PROJECTOR	MOVIE	PJM	
PROJECTOR	OPAQUE	PJO	
PROJECTOR	SLIDE	PJS	
PROJECTOR	TELEVISION	PJV	
PROJECTOR	TRANSPARENCY	PJT	
PUNCH	CARD	PUB	
PUNCH	PAPER_TAPE	PUA	
RATEMETER	CURRENT	INTEGRATOR	RME
RATEMETER	DIGITAL	RMD	
RATEMETER	LIN/LOG	RMC	
RATEMETER	LINEAR	RMB	
RATEMETER	LOG	RMA	
READER	BARCODE	RDC	
READER	CARD	RDA	
READER	PAGE	RDD	
READER	PAPER_TAPE	RDB	
RECEIVER	PAGECOM	RCD	
RECEIVER	RADIO	RCA	
RECEIVER	SPECTRUM	ANALYZER	RCC
RECEIVER	TELEVISION	TV	RCB
RECORDER	AUDIO	RED	
RECORDER	CHART	CIRCULAR	RE1
RECORDER	CURRENT	REB	
RECORDER	DATA	ANALOG	REG
RECORDER	DATA	DIGITAL	REF
RECORDER	EMF	REA	
RECORDER	PNEUMATIC	REC	
RECORDER	PROGRAMMABLE	REP	
RECORDER	STRIP_CHART	MULTIPOINT	REK
RECORDER	STRIP_CHART	SINGLE_POINT	REJ
RECORDER	TAPE	COMPUTER	RET
RECORDER	VIDEO	REE	
RECORDER	X-Y	REH	
REGULATOR	CURRENT	RQF	
REGULATOR	FLOW	RQD	
REGULATOR	PRESSURE	RGA	
REGULATOR	TEMPERATURE	RGC	
REGULATOR	VACUUM	RGB	
REGULATOR	VOLTAGE	RGE	
SAMPLER	WATER	MSN	
SAW	DICING	MSO	
SAW	WIRE	MSP	
SCALER/TIMER	SCALER	STC	
SCALER/TIMER	TIMER	STA	
SCALER/TIMER	TIMER	STB	
SCALER/TIMER	TIMER	STD	
SCALER/TIMER	TIME_OF_DAY	STE	
SCREEN	TRIPOD_MOUNT	SCN	
SCREEN	WALL_MOUNT	SCW	
SOURCE	CURRENT	SQB	
SOURCE	RADIOACTIVE	SOC	
SOURCE	VOLTAGE	SOA	
SPEAKER	ENCLOSURE_MOUNT	SPB	
SPEAKER	WALL_MOUNT	SPA	
SWITCH	FLOW	SWB	

SWITCH	LEVEL	SWC
SWITCH	PRESSURE	SWD
SWITCH	SCANNER	SWH
SWITCH	TEMPERATURE	SWE
SWITCH	THERMOCOUPLE	SWA
SWITCH	VACUUM	SWF
SWITCH	VIDEO	SWG
SYSTEM	X-RAY	SYX
TERMINAL	COUPLER	ACOUSTIC
TERMINAL	CURRENT_LOOP	TEC
TERMINAL	PRINTING	TEG
TERMINAL	RS-232	TEB
TERMINAL	RS-422	TEE
TERMINAL	TELETYPE	TEF
TERMINAL	VISUAL	TET
TESTER	BATTERY	TEA
TESTER	CALIBRATOR	TSC
TESTER	CALIBRATOR	TSK
TESTER	CAPACITOR	DIGITAL
TESTER	DEAD_WEIGHT	TSJ
TESTER	TRANSISTOR	TSD
TESTER	TRANSISTOR	TSE
TESTER	TUBE	TSB
TRANSCIEVER	RADIO	TSF
TRANSDUCER	FORCE	TSA
TRANSDUCER	MOTION	TRA
TRANSDUCER	PRESSURE	TDC
TRANSDUCER	SIGNAL	TDF
TRANSDUCER	SPEED	TDA
TRANSDUCER	TEMPERATURE	TDB
TRANSDUCER	VIBRATION	TDE
TRANSMITTER	FLOW	TDQ
TRANSMITTER	LEVEL	TDH
TRANSMITTER	PNEUMATIC	TMF
TRANSMITTER	PRESSURE	TMJ
TRANSMITTER	PRESSURE	TMP
TRANSMITTER	RADIO	TMG
TRANSMITTER	TELEVISION	TMH
TRANSMITTER	TEMPERATURE	TMA
TRANSMITTER	CAMERA	TMB
TRIPOD	CAMERA	TMI
TRIPOD	ELECTROMETER	TPB
TUBE	I/O DEVICE	TPA
TYPEWRITER	MEMORY	ELC
TYPEWRITER	NON-MEMORY	TWA
VALVE	BALL	TWC
VALVE	BUTTERFLY	TWB
VALVE	CHECK	VAB
VALVE	COCK	VAC
VALVE	CONTROL	VAD
VALVE	GATE	VAJ
VALVE	GLOBE	VAE
VALVE	NEEDLE	VAF
VALVE	RELIEF	VAG
VALVE	SAUNDERS	VAH
VOLTMETER	DIFFERENTIAL	VAI
VOLTMETER	DIGITAL	MTP
		MTK

APPENDIX B
Instrument Manufacturer Codes

PAGE 1

MANUFACTURER	CODE	MANUFACTURER	CODE
A. H. EMERY COMPANY	AHEC	ANANA CORPORATION	ANA
AADCO, INC.	AAD	AMBER SCIENCE	AMSC
AARDVARK INSTRUMENT CO.	AARD	ANDEK CORPORATION	ANDK
ABR CORPORATION	ABR	AMERICAN HI-VOLTAGE TEST SYSTEMS	ANTHS
ACUTRONICS	ACCU	AMERICAN INSTRUMENT CO.	AI
ACDC ELECTRONICS	ACDC	AMERICAN MAGNETICS	ANG
ACME ELECTRIC	ACME	AMERICAN METAL RESEARCH, INC.	ANR
ACOPIAN CORP.	ACO	AMERICAN METER CO.	ANC
ACOUSTICA ASSOCIATES	AA	AMERICAN OPTICAL CO.	AO
ACRONAG INC.	ACRO	AMERICAN PHOTO APPLIANCE	APA
ACTION INSTRUMENTS COMPANY, INC.	AICO	AMERICAN TELEPHONE AND TELEGRAPH CO.	ATT
ACUREX CORP.	ACUC	AMES LAB.	AL
ACURTEX CORP.	ACUR	AMETEK/MANSFIELD & GREEN	MF
AD-YU ELECTRONICS LAB. INC.	AY	AMINCO	AMI
ADAC CORP.	ADAC	AMOIT, J. L., CO.	JLA
ADAGE, INC.	ADAG	AMPERITE CO.	APR
ADDMASTER CORP.	ADCO	AMPEX CORP.	APC
ADDRESSOGRAPH-MULTIGRAPH	ADD	AMPLIFIER RESEARCH CORP.	ARC
ADL	ADL	ANPROBE INSTRUMENT CORP.	AMP
ADVANCE ELECTRONICS CO.	AEC	ANAC, INC.	ANAC
ADVANCED CONTROL SYSTEMS, CORP.	ACS	ANADEX INSTRUMENTS, INC.	ADI
ADVANCED DESIGN ELECTRONICS	ADE	ANALABS, INC.	ANAL
ADVANCED DEVICES LABORATORIES, INC.	ADEV	ANALOG DEVICES, INC.	AD
ADVANCED DYNAMIC INSTRUMENTS	ADIN	ANALOG TECHNOLOGY	ANT
ADVANCED HIGH VOLTAGE CORP.	ADHV	ANALOGIC CORP.	ANC
ADVANCED TECHNOLOGY LABS.	ADVT	ANALYTICAL JACOBSON	AJ
ADVANCED TERMINALS, INC.	AT	ANARAD, INC.	ANAR
ADVENT CORP.	ADVC	ANATROL	ANA
AEMC CORPORATION	AEMC	ANDERSON JACOBSON	AJ
AERO CEMET METRICS INC.	AERO	ANDONIAN ASSOCIATES	AND
AEROMETRICS	AE	ANILAN ELECTRONICS CORP.	ANIL
AEROTECH, INC.	AET	ANN ARBOR AMBASSADOR	AAA
AEROVAC CORP.	AVC	ANN ARBOR TERMINALS, INC.	ANNA
AGAGEODIMETER, INC.	AGNI	ANHIN CO.	ANN
AGASTAT (ELASTIC STOP NUT CORP)	ESNC	ANTON ELECTRONIC LABORATORIES, INC.	ANEL
AILTECH	AILT	ANTON PAAR	AMP
AINSWORTH & SONS, WM., INC.	AW	APAC CO.	APAC
AIR POLLUTION TECHNOLOGY CORP.	APT	APOLLO	APOL
AIR PRODUCTS MFG.	APM	APOLLO LASERS, INC.	ALI
AIR TECH, INC.	ATI	APPLE COMPUTER CORP.	APPL
AIRBORNE INSTRUMENT LAB.	AIRB	APPLICON INCORPORATED	APN
AIRCO-TENESCAL	AIR	APPLIED AUTOMATION	APAU
AIRMATE	AIPM	APPLIED DIGITAL DATA SYSTEMS	ADDS
ALDEN ELECTRONIC & IMPULSE RECORDING EQUIP. CO.	ALD	APPLIED DYNAMICS	ADC
ALFRED ELECTRONICS CO.	ALF	APPLIED ELECTRO CHEMISTRY	AELC
ALLIED MECHANICAL EQUIPMENT CO.	AMEC	APPLIED PHYSICS	APP
ALLIS-CHALMERS CORP.	ACC	APPLIED RESEARCH LAB.	APL
ALMAC CRYOGENICS	ALC	APPLIED TEST SYSTEMS INC.	APTS
ALNDR INSTRUMENT CO.	AIC	APTEC NUCLEAR	APNU
ALOE-HARDA	ALN	ARBOR LAB.	ARL
ALPHA-M CORP.	ALP	ARDEL KINANATIC	ADK
ALSPA COMPUTER, INC.	ALSP	AREMAC ASSOCIATES	ARE
ALTEC LANSING PRODUCTS	ALT	ARENBURG ULTRASONIC LAB.	ARB
ALTEK INDUSTRIES CORPORATION	ALTI	ARMY, DEPT. OF THE	ARMY
ALTEX SCIENTIFIC INC.	ASI	ARROW PRODUCTS	ARRO
ALTOS	ALTO	ARTHUR D. LITTLE, INC.	LITL

MANUFACTURER	CODE	MANUFACTURER	CODE
ARTHUR THOMAS CO.	ATH	BARATRON INSTRUMENTS, INC.	BII
ARTRONIX	ART	BARBER-COLMAN CO.	BC
ASAHI PRECISION COMPANY, LTD.	ASA	BARKER & WILLIAMSON	BARK
ASHCROFT (MM)	MM	BARKSDALE VALVES, INC.	BDV
ASSEMBLY PRODUCTS, INC. (API INSTRUMENT CO.)	API	BARNES ENGINEERING CO.	DEC
ASTON COMPANY	ASTO	BARNSTEAD STILL & STERILIZER CO.	DS
ASTRA SCIENTIFIC INSTRUMENTS	ASTR	BARRY-WRIGHT CORP.	DURC
ASTRO ARC	AST	BARTON (ITT BARTON)	BT
ASTRO INDUSTRIES INC.	AS	BASCOM-TURNER INSTRUMENTS	BASC
ASTROCOM CORP.	ASCO	BASEBAND SYSTEMS	DDS
ASTRODATA	ASD	BASELINE INDUSTRIES	BAI
ATARI CORPORATION	ATAR	BASLER ELECTRIC CO.	BASL
ATKINS TECH, INC.	ATK	BASTELLE LABORATORY	BAST
ATLANTIC	ATIC	BAUSCH & LOMB, INC.	BAU
ATH CORP.	ATH	BAYLEY INSTRUMENT CO.	BYI
ATMOSPHERIC TURBULENCE LAB.	ATL	BBC GOERZ METRAMATT	GRZM
ATOMIC ACCESSORIES INC.	AAI	BEATTIE COLEMAN ENGINEERING CO.	BCE
ATOMIC ENERGY COMMISSION, U. S.	USAE	BECKMAN INSTRUMENTS, INC.	BI
ATOMIC INSTRUMENT CO.	ATC	BEEHIVE INTERNATIONAL	DEE
ATR ELECTRONICS, INC.	ATR	BEEHIVE MEDICAL ELECTRONICS	DEE
AUDIO VISUAL LABS., INC.	AVL	BEHLMAN	BEM
AUDIOTRONICS	AUD	BELDON CORP.	BDC
AUTO SYSTEMS LAB.	ASL	BELFORT INSTRUMENT CO.	BETC
AUTOCLAVE	AC	BELL & HOWELL CO.	BH
AUTODATA CORPORATION	ATD	BELL, F. W., INC.	BELL
AUTOLOGIC, INC.	AUTL	BELLAMY, JAMES E./MEBCO PRODUCTS	JEB
AUTOMATIC INDUSTRIES, INC.	AUTO	BELLCO INDUSTRIES	BELI
AUTOMATIC SWITCH CO.	ASC	BELLEVILLE-HEXEM CORP.	BELH
AUTOMATIC SYSTEMS LABORATORY	AUTS	BELLO FRAM CORPORATION	BFC
AUTOMATIC TIMING & CONTROLS CO.	AUTC	BENDIX CORP.	BX
AUTOMATION INDUSTRIES	AIN	BENTAN ASSOCIATES	BENT
AUTOMATION PRODUCTS CO.	AUP	BERGEN EXPO SYSTEMS, INC.	BES
AVA INSTRUMENT CO.	AVA	BERING INDUSTRIES, INC.	BERI
AVM INSTRUMENT CO.	AVM	BERKELEY NUCLEONICS CORP.	BKH
AVO LTD.	AVO	BERKELEY SCIENTIFIC CORP.	BERK
AVTECH ELECTROSYSTEMS, LTD.	AVTE	BERKLEY MARKETING CO.	BCAL
AW VINCENT ASSOCIATES	AWV	BERMAR CORPORATION	BERN
AXION CORPORATION	AXI	BERTHOLD INSTRUMENT	BER
AYDIN CONTROLS	AYD	BERTRAN ASSOCIATES, INC.	BERT
B & W CONTROLS	BWC	BETA ELECTRIC CO.	BET
B T U ENGINEERING CORP.	BTU	BETA PRODUCTS, INC.	BETA
BAK INSTRUMENTS, INC.	BK	BFA CORPORATION	BFA
B. K. SWEENEY MFG. CO.	SWEN	BI RA SYSTEMS	BRSY
B. L. PACKER	BLP	BIC INC.	BIC
B/R INSTRUMENT CORP.	BRIC	BICRON CORPORATION	BICC
BACHARACH INSTRUMENT CO.	BAC	BIDDLE & GRAY	BG
BACKUS DATA SYSTEMS	BDS	BIDDLE, J. C., CO.	BD
BAILEY METER CO.	BMC	BILLINGS MCEACHERN, INC.	BINC
BAIRD-ATOMIC, INC.	BA	BIO-ANALYTICAL SYSTEMS, INC.	BAS
BALDWIN ELECTRONICS, INC.	BAL	BIO-MARINE INDUSTRIES	BH
BALDWIN TATE-EMORY	BTE	BIO-RAD CO.	BRCO
BALL BROTHERS RESEARCH	BABR	BIOBLOCK SCIENTIFIC	BLS
BALLANTINE LABORATORIES, INC.	BLI	BIOGAS DETECTOR CORPORATION	BIBE
BALTEAU ELECTRIC	BAE	BIMATOM	BIO
BALTIMORE BIOLOGICAL LABS.	BBL	BIOSPHERICAL INSTRUMENTS, INC.	BISP
BALZERS CORP.	BZC	BIOSYSTEMS INCORPORATED	BIDS

MANUFACTURER	CODE	MANUFACTURER	CODE
BIRD ELECTRONICS CORP.	BIRD	BURKE, U. S.	USB
BISON INSTRUMENTS INC.	RIS	BURLEIGH INSTRUMENTS, INC.	BUI
BLACK, SIVALLS & BRYSON, INC.	BSR	BURR-BROWN RESEARCH CORP.	BBR
BLACKSTONE ULTRASONICS, INC.	BULI	BURRELL CORP.	BU
BLAKE INDUSTRIES, INC.	BLK	BURROUGHS CORP.	BRC
BLAZER INDUSTRIES INC.	BLZ	BUTLER NATIONAL CORP.	BUT
BLH ELECTRONICS, INC.	BLH	BWR SCIENTIFIC	BUR
BLUE M ELECTRIC CO.	BME	C. A. MORGREN CO.	MORN
BNC PORTABIN	BKN	C. G. COMM, LTD.	CGC
BO SHERREL COMPANY	SRL	C. HALL	HALL
BODINE ELECTRIC CO.	BDE	C. J. KENNEDY CO.	KECO
BOFORS	BOF	C. W. RADIATION, INC.	CUR
BOGEN DIV.	BO	CAHN INSTRUMENT CO.	CHI
BOLT, BERANEK & NEWMAN	BBN	CALICO	CAL
BOONSHAFT & FUCHS INC.	BOFU	CALIFORNIA COMPUTER PRODUCTS, INC.	CCP
BOONTON ELECTRONICS	BE	CALIFORNIA DIGITAL	CFD
BORG-WARNER CONTROLS	BW	CALIFORNIA INST. CO.	CIC
BOWENS INSTRUMENT CO.	BOWI	CALIFORNIA SCIENTIFIC SYSTEM	CSS
BOWMAR	BOM	CALUMET	CALU
BP ELECTRONICS	BPE	CAMAG	CANG
BRAD THOMPSON INDUSTRIES	BTI	CAMBRIDGE INSTRUMENT CO.	CA
BRAILSFORD CO.	BRA	CAMPBELL SCIENTIFIC, INC.	CASC
BRANSON INSTRUMENT CO.	BSI	CANBERRA INDUSTRIES, INC.	CBI
BRANSONIC ULTRASONICS CORPORATION	BRSC	CANDELA CORP.	CAND
BRAUN MELSONGERH	BRN	CANNON	CANN
BREW	BRW	CAPINTEC, INC.	CAPT
BRICE PHOENIX	BP	CAPINTER INSTR., INC.	CII
BRIDGE COMMUNICATIONS	BRDG	CAPITAL CONTROLS CO. - DIV. OF DART IND.	CAP
BRINKMAN LAUDA	BRL	CARD-KEY SYSTEMS	CARD
BRINKMANN INSTRUMENTS, INC.	BMI	CARL ZEISS	CZ
BRISTOL DIV	BR	CARLE INSTRUMENTS, INC.	CAR
BROOKFIELD ENGINEERING LAB.	BEL	CAROLINA BIOLOGICAL SUPPLY CO.	CBS
BROOKHAVEN INSTRUMENT CORP.	BRI	CARY INSTRUMENTS, INC.	CI
BROOKHAVEN NATIONAL LABORATORY	BHL	CASIO COMPUTER COMPANY	CAS
BROOKS INSTRUMENT DIV.	BRK	CATEL	CATL
BROTHERS, INC.	BROT	CEA INSTRUMENTS	CEAI
BROWN & SHARPE	BRS	CELESCO	CELC
BROWN BOVERA COMPUGUARD CORP.	BBCC	CELSCO	CECO
BROWNE CORPORATION	BROW	CENTIGRAM CORPORATION	CTGM
BROWNLEE LABS, INC.	BRLL	CENTORR ASSOC.	CEA
BRUCE INDUSTRIAL CONTROLS	BRUC	CENTRAL SCIENTIFIC CO.	CSC
BRUEL AND KJØER	BAK	CENTRONICS DATA COMPUTER CORP.	CEN
BRUNDIG	BDG	CENTURION INSTRUMENTS CORPORATION	CEIC
BRUNNING	BHG	CENTURY DATA	CEND
BRUNSON INSTRUMENT CO.	BNI	CEPA-CARL PABBURG	PADB
BRUSH INSTRUMENT DIV.	BRU	CHALCO ENGINEERING CORP.	CHEC
BUCHLER INSTRUMENT DIV.	BL	CHAMELEON	CHNL
BUCHLER-COTLOVE	BUC	CHARLES BESLER CO.	CHB
BUD RADIO INC.	BUR	CHARLES SUPPER CO.	CHSC
BUD	BUD	CHEMAC	CHEM
BUEHLER	BUE	CHEMAP	CHNP
BUHL OPTICAL CO.	BHL	CHEMICAL DATA SYSTEMS	CDS
BUHLER LIMITED	BUL	CHEMTRIX, INC.	CHE
BUILDERS IRON FOUNDRY	BIF	CHESELL CORP.	CHSL
BUNKER-RAMO	BRO	CHRISLIN INDUSTRIES, INC	CRLI
BURGER ENTERPRISES INC.	BEI	CHRISTIE ELECTRIC CORP.	CHRI

MANUFACTURER	CODE	MANUFACTURER	CODE
CHROMATICS INC.	CHRN	COMM, C. E., LTD.	CCC
CHROMATIX	CHRO	COMOFLOW CORP.	CF
CHROMATRONIX, INC.	CHR	COMON	CMU
CHROMETICS, INC.	CN	CONRAC CORP.	CON
CHROMO-LOG CORP.	CLC	CONSOLIDATED CONTROLS CORP.	CCC
CIMRON DIV.	CRD	CONSOLIDATED ELECTRODYNAMICS CORP.	CEC
CINCINNATI MILLING MACHINE CO.	CM	CONSOLIDATED ENGINEERING LAB.	COE
CIPHER DATA PRODUCTS	CDP	CONSOLIDATED STILLS	CONS
CIRCLE SEAL	CS	CONSOLIDATED VACUUM CORP.	CVC
CITEL, INC.	CTL	CONTINENTAL INSTRUMENT CORP.	CONT
CLASSE SCIENTIFIC CO.	CLAS	CONTINENTAL SPECIALTIES CORP.	CSP
CLARDSTAT	CLA	CONTINENTAL WATER SYSTEMS OF TENNESSEE	CWST
CLARY CORP.	CLAR	CONTROL DATA CORP.	CDC
CLAY ADAMS	CLAY	CONTROL LASER CORP.	COLA
CLEVELAND CONTROLS, INC.	CLCI	CONTROL LOGIC	CL
CLEVELAND INSTRUMENT CO.	CLVI	CONTROL SYSTEMS RESEARCH	CSR
CLEVITE CORP.	CC	CONTROLLED POWER COMPANY	CPC
CLIMET INSTRUMENTS CO.	CLIM	CONTROLTRON CORP.	CTT
COBER ELECTRONICS INC.	CODE	CONVERGENT TECHNOLOGY	CVT
COBRA INDUSTRIES	COB	COOKE VACUUM PRODUCTS, INC.	CV
COHERELL	COHL	COOKE, F. J.	FJC
COHERENT, INC.	COHE	CORDIM COMPANY	CORD
CONU ELECTRONICS, INC.	CON	CORNELL-BUDILIER ELECTRONICS	CD
COLE	COL	CORNING DIGITAL	CODI
COLE PALMER	CP	CORNING GLASS WORKS	CGW
COLEMAN INSTRUMENTS, INC.	CO	CORNING MEGA PURE	CMP
COLLINS RADIO	CR	CORONA WESCAN	COW
COLONIAL DATA SERVICES CORPORATION	CDSC	CORVUS HANG	CORY
COLORADO VIDEO, INC.	CVI	COSMICAR	COS
COLORGRAPHIC COMMUNICATIONS CORP.	CGCO	COULTER ELECTRONICS	COEL
COLUMBIA DATA PRODUCTS	COPP	CPT CORP.	CPT
COLUMBIA ELEC.	CEL	CRAIG CORP.	CRG
COLUMBIA RESEARCH LAB. INC.	CORE	CREST	CRE
COLUMBIA SCIENTIFIC IND.	CSI	CROFT	CRT
COLUTRON CORP.	COCO	CRONENCO, INC.	CROM
COM DATA	COD	CROUF	CRF
COM-CENTER-CORPORATION	COCE	CRYOCAL, INC.	CRY
COMMERCIAL FILTERS DIV.	CMF	CRYOGENIC	CRYO
COMMODORE BUSINESS MCH., INC.	COM	CS3, INC.	CS3
COMMONWEALTH SCIENTIFIC CORP.	CONC	CUBIC CORP.	CBC
COMMUNICATIONS CONTROLS CORP.	COPQ	CULLIGAN WATER CONDITIONING	CULL
COMPAD	CPHV	CUNNINGHAM CORP.	CUN
COMPREHENSIVE VIDEO	COC	CUNO ENGINEERING CO.	CE
COMP CORP.	COI	CURTIS MATHESON	CURT
COMPUSCAN, INC.	COM	CURTISS WRIGHT	CW
COMPUTEK, INC.	CAI	CUSTOM COMPUTER TECHNOLOGY	CCT
COMPUTER AUTOMATION, INC.	CCI	CUSTOM CONTROL SYSTEM	CCS
COMPUTER COMMUNICATION, INC.	COCC	CYBORG SYSTEMS, INC.	CYB
COMPUTER CONTROLS CO., INC.	COMP	CYCLE-DYNE	CYDI
COMPUTER DESIGN CORP.	COPD	D O INDUSTRIES INC. (KONA)	DOI
COMPUTER DEVICES	CIT	D.S. DAVIDSON CO.	DSD
COMPUTER INTERFACE TECHNOLOGY	CNC	DA-LITE SCREEN CO.	DA
COMPUTER MEASUREMENTS CORP.	CPI	DAGE	DAGE
COMPUTER PRODUCTS INC.	CPTI	DAGE-MTI, INC.	DAGE
COMPUTER, INC.	COMI	DAHL, G. W. COMPANY, INC.	DAL
CONSONICS INC.		DANON/IEC DIVISION	DANI

MANUFACTURER	CODE	MANUFACTURER	CODE
DANA LABORATORIES INC.	DAN	BERRITRON	BER
DANFYSIH	DFY	DETECTOLAB	DET
DANYL CORPORATION	DYL	DETECTRON SECURITY SYSTEMS	DSS
DARCEY	DC	DIABLO SYSTEMS, INC.	DIA
DASIDI ENVIRONMENTAL CORP.	DEM	DIALIGHT CORP.	DL
DATA 100 CORP.	DAC	DIAMOND ELECTRONICS DIV. OF ARVIN SYSTEMS	DIAM
DATA ACCESS SYSTEMS, INC.	DAS	DICKSON COMPANY, THE	DKSM
DATA ACQUISITION SYSTEM, INC.	DASI	DICTAPHONE CORP.	DTC
DATA CAP, INC.	DCI	DIETERICH STANDARD CORP.	DIET
DATA DEVICES INTERNATIONAL	DDI	DIGI-DATA CORP.	DD
DATA GENERAL	DG	DIGI-LAB INC.	DGL
DATA I/O CORP.	DATI	DIGI-LOG	DIGI
DATA INTERFACE (INFOREX)	INF	DIGICOM DATA PRODUCTS, INC.	DDP
DATA MEDIA CORP.	DNC	DIGILIN	DIG
DATA PRECISION	DAP	DIGIMETRIC (SYDROM CORP.)	DIM
DATA PRINTER CORP.	DPC	DIGITAL COMMUNICATIONS ASSOC.	DCOM
DATA PRODUCTS	DPR	DIGITAL DATA DOSIMETRY, INC.	DDD
DATA PULSE	DP	DIGITAL DEVELOPMENT CORP.	DDC
DATA SCIENCES	DASC	DIGITAL EQUIPMENT CORP.	DEC
DATA SOUTH COMPUTER CO.	DSCC	DIGITAL LABS.	DILA
DATA SYSTEMS	DASY	DIGITAL PATHWAYS, INC.	DPI
DATA SYSTEMS DESIGN, INC.	DSDI	DIGITAL SYSTEMS	DCTS
DATA TECHNOLOGY CORP.	DIT	DIGITEC	DGT
DATACOPY CORPORATION	DCC	DIGITRONICS	DGI
DATAGRAPHICS, INC.	DAG	DILLON, W. C., CO.	DLN
DATAMEC (HEWLETT-PACKARD)	HP	DINCO-GRAY CO.	DCC
DATANETRICS, INC.	DM	DIONEX CORP.	DXC
DATANEST CORPORATION	DNC	DIRECT, INC.	DII
DATEL	DAT	DIRIGO	DIR
DATOS	DATO	DISC INSTRUMENTS, INC.	DSI
DATUN INC.	DATH	DOCUMENTATION, INC.	DOC
DAVEN	DV	DONHRMAN INSTR. CO.	DIC
DAVIDSON PRESS	DAY	DONALDSON CO.	DOM
DAVIDSON, D. S., CO.	DSD	DORIC SCIENTIFIC DIV.	DO
DAVIS INSTRUMENTS	DI	DRAGER-DRAGERWERK (WEST GERMANY)	DDW
DAYSTROM, INC.	DAYS	DRANETZ ENGINEERING LABS. INC.	DRZ
DAYTON ELECTRONIC PRODUCTS CO.	DAYE	DRESSEN-BARNES CORP.	DDC
DAYTRONIC	DAY	DRESSER INDUSTRIAL VALVE & INSTR. CO.	DSR
DE VILBISS CO.	DEV	DREXELBROOK ENGINEERING CO.	DDE
DECCA RADAR, INC.	DR	DSC	DSC
DECIDEL PRODUCTS	DDP	DTI DATA TERMINAL CORP.	DTI
DECITEK	DCT	DUFFERS ASSOCIATES, INC.	DAI
DECKER CORP.	DKR	DUKANE CORP.	DK
DEJUR GRUNDIG	DJ	DUNHONT	DUM
DEL ELECTRONICS CORP.	DELE	DUNN INSTRUMENTS, INC.	DUNH
DELATRON INC.	DT	DUNUELL	DU
DELAVAL	DELA	DUPONT INSTRUMENT PRODUCTS DIV.	DIP
DELCO, DIVISION OF GENERAL MOTORS	DEL	DURRANT CORP.	DURR
DELPHI	DDS	BUYER INSTRUMENTS, INC.	DYR
DELTA DATA SYSTEMS CORP.	DED	DYNEC DIV.	DY
DELTA DESIGN	DLTR	DYNAIR ELECTRONICS, INC.	DYN
DELTA RAY	DPE	DYNAMIC RESEARCH CORP.	DRC
DELTA-PHI ELEKTRONIK	DTD	DYNAMICS CORP. OF AM.	DCA
DELTA-T-DEVICES	DELT	DYNAMICS INSTRUMENTATION CO.	DNI
DELTEC CORP.	DEP	DYNASCAN CORP.	DYS
DEPCO		DYNATECH COMPANY	DYC

MANUFACTURER	CODE	MANUFACTURER	CODE
DYNATUP COMPANY	DYTP	ELECTRONIC INDUSTRIES ASSOCIATION	EIA
DYNISCO	DYNO	ELECTRONIC MEASUREMENTS	ELM
E-H RESEARCH LABORATORIES, INC.	EH	ELECTRONIC MISSLES	ELMI
E. F. JOHNSON CO.	JH	ELECTRONIC MODULE CONTROL CORP.	ENCC
E. H. SARGENT (SARGENT-WELCH SCIENTIFIC CO.)	SWS	ELECTRONIC NUCLEONIC INSTRUMENTS	ELNU
EAGLE EYE	EGL	ELECTRONIC RESEARCH ASSOCIATES, INC.	ERA
EAGLE SIGNAL DIV.	ES	ELECTRONIC SYSTEMS ENGINEERING	ESE
EANCO INCOM INTERNATIONAL	EAM	ELECTRONIC SYSTEMS PRODUCTS, INC.	ELP
EASTERN MICRO	EAM	ELECTRONICS ASSOCIATES, INC. (PACE)	EAI
EASTERN SCIENTIFIC INSTITUTE	ESI	ELECTRONICS CORP. OF AMERICA	ECA
EASTMAN KODAK CO.	EK	ELECTRONICS INSTR CO.-EICO	EICO
EBERLINE INSTRUMENT CORP.	EBI	ELECTRONICS NAVIGATION INDUSTRIES	ENI
ECCO	ECC	ELECTRONICS-ATLANTA, INC.	ELAT
ECD CORP.	ECD	ELECTROSTATIC	EST
ECO INSTRUMENTS(DIV OF SEA DATA CORP.)	ECO	ELEKTRONIK SERVICE NOGGERATH	ESN
ECOLOGIC INSTRUMENT CORP.	ECDI	ELEXON	ELX
EDAX (NUCLEAR DIODES INC.)	MD	ELGAR	ELGR
EDCOR	EDCO	ELGEET	EGT
EDGERTON-CERNESHAUSEN & GRIER, INC.	EGG	ELGIN ELECTRONICS, INC.	EL
EDISON CONTROLS, INC.	ECI	ELLISOM DRAFT GAUGE	EDG
EDO WESTERN CORP.	EDO	ELNA ENGINEERING CO.	ELNA
EDWARDS HIGH VACUUM, LTD.	EHV	ELMO	ELMO
EFFECTS TECHNOLOGY INC.	ETEC	ELOGRAPHICS	ELG
EGAG, INC.	EGG	ELOX CORP.	EC
EGAG-ORTEC	OT	ELRON/ELSCINT, LTD.	ELR
EHRENEICH PHOTO-OPTICAL IND., INC.	EPO	EMERSON TV & RADIO	EM
EIKI INTERNATIONAL, INC.	EIKI	ENERY, A. H., COMPANY	ANEC
EIL INSTRUMENTS, INC.	EIL	EMI TECHNOLOGY, INC.	EMIT
EIP MICROWAVE, INC.	EIP	EMILE WAEFLY CO. LTD.	ENN
EKCO ELECTRONICS, LTD.	EKCO	EMPIRE	EMP
EL TINE	ETI	ENULEX CORPORATION	EMU
EL-TRONICS, INC..	ELTI	ENULOGIC MICROPROCESSOR DEVELOPMENT SYSTEMS	ENL
ELASCO, INC.	ELAS	ENDEVCO CORP.	EDC
ELASTIC STOP NUT CORP. (AGASTAT)	ESMC	ENDLESS & HAUSER	ENDH
ELCOR	ELC	ENERGETICS SCIENCE, INC.	ENS
ELDEX LABORATORIES	ELDL	ENGINEERED TECHNICAL PRODUCTS	ETP
ELDORADO ELECTRONICS	ELDE	ENGIS	ENG
ELECTRA CO.-BEARCAT	ELEC	ENRAF MONIUS DELFT	ENRF
ELECTRA SYSTEMS CORP.	ESC	ENVIRONMENTAL RESEARCH CORP.	ERI
ELECTRO CIRCUITS INC.	ELT	ENVIRONMENTAL SYSTEMS CORPORATION	ENST
ELECTRO CORP.	ELCO	EPICON INC.	EPIC
ELECTRO INSTRUMENTS, INC.	ELI	EPPLEY LABORATORY, INC.	EPP
ELECTRO MEASUREMENTS, INC.	EMI	EPSCO, INC.	EPSI
ELECTRO POWER PACK CORP.	EPC	EPSON	EPSO
ELECTRO SCIENTIFIC INDUSTRIES, INC.	ELS	EOS SYSTEMS	EOS
ELECTRO-CRAFT CORP.	ELCC	ERI CO.	ERIC
ELECTRO-CYBERNETICS	ELCY	ESECO	ESEC
ELECTRO-VOICE, INC.	EV	ESPEY MFG. & ELECTRONICS CO.	ESPY
ELECTRODATA CORP.	ELD	ESTERLINE-ANGUS DIV.	EA
ELECTROHOME, LTD.	ELH	EUROTHERM, INC.	EUR
ELECTROMEDICAL SUPPLY	ELNS	EVANS	EVNS
ELECTRON FUSION DEVICES, INC.	EFDI	EVERST INTERSCIENCE	EVST
ELECTRONIC CONTROL SYSTEMS, INC.	ECS	EWALD INSTRUMENTS	EI
ELECTRONIC CONTROL TECHNOLOGY	ECT	EX-CELL-O/REHEX CORP.	REN
ELECTRONIC DESIGN LAB	EDL	EXACT ELECTRONICS	EXE
ELECTRONIC DEVELOPMENT CORP.	ED	EXTECH INTERNATIONAL CORP.	EXT

MANUFACTURER	CODE	MANUFACTURER	CODE
EXTRA-NUCLEAR LAB., INC.	EXH	GARDNER ASSOCIATES	GAR
EXXON INFORMATION SYSTEMS	EXX	GARRARD	GRD
F I C INDUSTRIES INC.	FIC	GAST MFG. CORP.	GAST
F J W INDUSTRIES	FJW	GATAN, INC.	GATA
F&M SCIENTIFIC CORP.	FM	GATES & CO.	GAT
F-R MACHINE WORKS INC.	FXR	GAUGE DIV., U. S.	USG
F. J. COOKE	FJC	GBC-CCTV	GBC
F. W. DELL, INC.	BELL	GELDER PUMP	GP
FABRI-TEK INSTRUMENTS, INC.	FI	GELMAN INSTRUMENT CO.	GMI
FAIRCHILD INSTRUMENTATION	FCI	GENCO ELECTRIC CO.	GNE
FAIRPORT INSTRUMENTS, INC.	FPI	GEMS SENSORS DIV.	GMC
FAHNIN INSTRUMENT CORPORATION	FAHH	GENUARE PRECISION INSTR.	GPI
FAHNON	FAN	GEN-TEC, INC.	GETE
FARADAY, INC	FARA	GENCOM	GEN
FARR AND CONTROLS	FAR	GENERAL APPLIED SCIENCE LABS.	GASL
FARRAND CONTROLS, INC.	FACO	GENERAL AUTOMATION	GA
FEDERAL PACIFIC ELECTRIC CO.	FPEC	GENERAL DESIGN, INC.	GDI
FEDERAL TELE. & RADIO CO.	FTRC	GENERAL DIGITAL CORP.	GDC
FENWAL ELECTRONICS, INC.	FUE	GENERAL EASTERN CORPORATION	GEST
FERRIS INSTRUMENTS	FEI	GENERAL ELECTRIC CO.	GE
FIBRA SONICS, INC.	FIBS	GENERAL INSTRUMENT CORP.	GINC
FILIMATIC	FIL	GENERAL IONEX	GENI
FINCOR	FINC	GENERAL MONITORS	GENM
FINNIGAN	FIN	GENERAL RADIO CO.	GRC
FISCHER GOVERNOR CO.	FGC	GENERAL REGULATOR CO.	GR
FISHER & PORTER CO.	FP	GENERAL RESISTANCE	GRS
FISHER CONTROLS COMPANY	FCC	GENERAL SCANNING INC.	GENS
FISHER SCIENTIFIC CO.	FS	GENESIS ONE CORPORATION	GOC
FLEXICON CORP.	FL	GENEYS SYSTEMS, INC.	GESY
FLEXION - H P	FHP	GEMISCO COMPUTERS	GC
FLOATING POINT SYSTEMS, INC.	FPSI	GENRAD, INC.	GRC
FLOW TECH., INC.	FT	GENTRY	GENT
FLUKE MFG. CO.	FK	GEOPHYSICAL SPECIALTIES CO.	GS
FLU, INC.	FLU	GEORGE K. PORTER CO.	GKP
FORMA SCIENTIFIC - DIV. OF MALLINKRODT	FORN	GEORGIA TECHNOLOGICAL UNIVERSITY	GTU
FORDX CORP.	FOC	GEOSCIENCE INSTR. CORP.	GIC
FOXBORO CO.	FOX	GERBER	GRBR
FRANKLIN ELECTRONICS, INC.	FRK	GERTSCH	GER
FRAZIER, INC.	FRA	GERTHNER INST.	GH
FREDERIC ELECTRONICS CORP.	FRED	GIANNINI CONTROLS	GI
FREDERICKS CO.	FRD	GILBERT CONNECTOR, INC.	GCI
FREED TRANSFORMER CO.	FTC	GILFORD INSTRUMENT LAB., INC.	GF
FRIDEN DIV.	FR	GILIAN INSTRUMENT CORP.	GILI
FRIEZ-BENDIX	FB	GILSON MEDICAL INSTRUMENTS	GILM
FRONTIER ENTERPRISES	FE	GLASSMAN	GLS
FTS SYSTEMS, INC.	FTS	GLENOE SCIENTIFIC, INC.	GSI
FUJITSU	FUJ	GLOBAL SPECIALTIES CORP.	GLOB
FULLER CO., SUB. OF GEN. AMER. TRANS. CO.	FULL	GLODE-UNION, INC.	GUI
G. H. KELLER CORP.	GHK	GNT AUTOMATIC	GNTA
G. K. TURNER ASSOC.	GKT	GOULD INC.-INSTRUMENTS SYSTEMS DIV.	GOUL
G. R. ELECTRONICS, LTD.	GRE	GOULD-BRUSH	GOD
G. T. I. CORP.	GTI	GOV-MAC INSTRUMENT CO.	GM
G. W. DAHL COMPANY, INC.	DAL	GRANVILLE-PHILLIPS	GRP
GAERTNER SCIENTIFIC CO.	GSC	GRAPHTEC	GPTE
GAMMA SCIENTIFIC, INC.	GANS	GREAT LAKES COMPUTER PERIPHERALS	GLCP
GANDALF TECHNOLOGIES, INC.	GATI	GREAT LAKES INSTRUMENTS INC.	GRLI

MANUFACTURER	CODE	MANUFACTURER	CODE
GRIEVE-HENDRY CO.	GNC	NESTER	HST
GROVE VALVE & REGULATOR CO.	GY	HEURIKON	HKN
GROVER PHOTO PRODUCTS	GPP	HEURISTICS, INC.	HUR
GTEIS/HODVAR	GT	HEVI-DUTY ELECTRIC CO.	HDE
GUARDIAN ELECTRIC MFG. CO.	GEM	HEWLETT-PACKARD CO. (DATAMEC)	HP
GUIDED WAVE, INC.	GUI	HF INSTRUMENTS	HF
GUILDLIME	GU	HICKOK ELECTRICAL INSTRUMENT CO.	HK
GULTON	GUL	HIGH VACUUM EQUIPMENT CORP.	HVE
GYRA ELECTRONICS CORP.	GEC	HIGH VOLTAGE ENGINEERING	HIV
GYVR PRODUCTS	GYR	HIPOTRONICS INC.	HIP
H. O. TRERICE CO.	TER	HITACHI	HT
H. TINSLEY CO.	TIN	HITEC, CORPORATION	HIT
HAAKE INSTRUMENTS, INC.	HKI	HHU SYSTEMS, INC.	HHU
HAARE	HAAR	HODART BROTHERS	HOD
HACH CHEMICAL CO.	HAH	HOEFFER SCIENTIFIC INSTRUMENTS	HOEF
HACH COMPANY	HACH	HOLMAN CORP.	HOL
HACKER INSTR.	HAC	HONEYWELL, INC.	HH
HADRON	HAD	HORIDA, LTD.	HOLT
HAEEFLY	HAEF	HORIZON	NOR
HAGAN CHEMICAL CORP.	HCC	HOSKINS MFG. CO.	HOS
HALIBURTON	HAN	HOTPACK CORP.	HPC
HALL, C.	HALL	HOUSTON INSTRUMENTS INC.	HSI
HALLIAKEN CO.	NAL	HOWELL INSTRUMENTS, INC.	HIC
HALMAR ELECTRONICS INC.	HALM	HRB-SINGER	HRS
HANAMATSU SYSTEMS, INC.	HANS	HUBER(GERMANY)	HUB
HAMBURG	NAM	HUGGINS LAB.	HGL
HAMILTON MICRO LAB.	NHL	HUGHES	HUG
HAMILTON STD.	NMS	HUMAN DESIGNED SYSTEMS, INC.	HDS
HANHARLUND MFG. CO. INC.	HLH	HUMPHREY INSTRUMENT CO., INC.	HUP
HANDEL DAHL DIV.	HD	HUNTER MANUFACTURING COMPANY	HUNT
HANNER ELECTRONICS	HME	HUNTRON INSTRUMENTS INC.	HII
HANPSHIRE CONTROLS	HC	HUPPERT, K. H., CO.	KHP
HARNAM-KARDON, INC.	HAKA	HURST MFG. CORP.	HMC
HARRIS CORPORATION	HACO	HY-CAL ENGINEERING/LEEDS & NORTHROP	HYCL
HARRISON LABORATORIES	HL	HYBRID SYSTEMS CORP.	HYDS
HARROP LABS.	HLR	HYDRO-PRODUCTS CO.	HYPR
HARSHAW CHEMICAL CO.	HAR	HYDROLAB CORPORATION	HYDR
HARTLEY MEASUREMENTS LTD.	HARM	HYGROMETRIX	HYGX
HARVARD APPARATUS	HARV	HYPERION INDUSTRIES CORP.	HYP
HARVEY WELLS CORP.	HUC	I/O DEVICES	IOD
HARWOOD	HARU	ICON	ICON
HASS INSTRUMENT CORP.	HAS	IDACO	IDC
HASTINGS-RAYDIST CO.	HR	IDAHO FALLS	INF
HAYDON SWITCH & INSTRUMENTS, INC.	HS	IET LABORATORIES	IET
HAYES MICROCOMPUTER PRODUCTS, INC.	HMPI	IKL INC	IKL
HAYES TECHNICAL	HAY	IKONAS GRAPHICS SYSTEMS	IKGS
HAYS CORP.	HA	ILLINOIS TEST CO.	ITC
HAZELTIME	NZ	IMPACT REGISTER COMPANY	INPC
HEADWAY RESEARCH, INC.	HEAD	IN-SITU, INC.	INSI
HEAT SYSTEMS	NTS	INDUCTION HEATING DIV.	ID
HEATH CO.	HE	INDUSTRIAL INSTRUMENTS, INC.	II
HEISE BOURDON TUBE CO.	HI	INDUSTRIELLE ELEKTRONIK	INEL
HELICOIL PRODUCTS DIV.	HPD	INERON, INC.	INE
HELLER CO.	HEL	INFICON	INFN
HELPER INSTRUMENT COMPANY	HELP	INFOREX INC. (DATA INTERFACE)	INF
HERNES ELECTRONICS CO.	NEC	INFORMATION DESIGN, INC.	IDI

MANUFACTURER	CODE	MANUFACTURER	CODE
INFORMER COMPUTER TERMINALS	ICT	IRCON INC.	IRCH
INFOTRON INC.	INFO	IREC	IRE
INFOTRONICS CORP.	IC	ISCO COMPANY	ISCO
INNET	INM	ITC IKEGAMI	ITCI
INO-TECH, INC.	INO	ITEK CORP.	IT
INSTITUTE OF APPLIED PHYSICS	IAP	ITHACO INC.	ITH
INSTROLEC	IHL	ITOH, C., ELECTRONICS, INC.	ITOH
INSTROM, INC.	INS	IVAC CORP.	IVAC
INSTRU LAB, INC.	IL	IVAN SURVALL, INC.	SVL
INSTRU-LEC CORP.	ILEC	IZUKAR	IZ
INSTRUMENT CORP. OF AMERICA	ICA	J. A. JACKSON CORP.	JAC
INSTRUMENT DEVELOPMENT LABS, INC.	IBL	J. G. BIDDLE CO.	BD
INSTRUMENT RESEARCH CO.	IREC	J. L. AMIOT CO.	JLA
INSTRUMENT SPECIALTIES CO.	IS	JACKSON, J. A., CORP.	JAC
INSTRUMENTS CORP., THE	TIC	JAMES MILLEN MFG. CO. INC.	MIL
INSTRUMENTS SA, INC.	ISA	JAMES P. MARSH CO.	JPM
INTEGRAL DATA SYSTEMS, INC.	INTD	JAMESBURY CORP.	JB
INTEGRATED COMPUTER SYSTEMS	ICS	JAPAN ELECTRON OPTICS LAB.	JEOL
INTEL CORP.	INT	JARRELL-ASH CO.	JA
INTELLIGENT SYSTEMS	INTS	JAVELIN ELECTRONICS CO.	JAV
INTERACTIVE SYSTEMS, INC.	ITSY	JENSEN TOOLS & ALLOYS	JENT
INTERATOM (BERGISCHE-GLADSBACHENBURG WEST GERMANY)	IWAT	JENWAY LIMITED	JNUA
INTERDATA (PERKIN-ELMER)	PE	JEOL	JEOL
INTERFACE MECHANISMS, INC.	IMI	JEROME INSTRUMENT CORPORATION	JIC
INTERNET	IM	JERROLD ELECTRONICS CORP.	JERR
INTERNATIONAL BIOPHYSICS CORP.	IBC	JOBIN YVON	JOBY
INTERNATIONAL BUSINESS MACHINES INC.	IBM	JOERGER	JOER
INTERNATIONAL COMM. CORP.	ICC	JOHN FLUKE MFG. CO.	FK
INTERNATIONAL COMPUTER EQUIP.	ICE	JOHNSON LABS	JL
INTERNATIONAL COMPUTER PRODUCTS, INC	ICP	JOHNSON CONTROLS, INC.	JC
INTERNATIONAL DATA SCIENCES CORP.	IDS	JOHNSON SERVICE CO.	JS
INTERNATIONAL ECOLOGY SYSTEMS, CORP.	IESC	JOHNSON, E. F., CO.	JN
INTERNATIONAL ELECTRONIC RESEARCH CORP.	IERC	JOHNSON-KECK, INC.	JKI
INTERNATIONAL ELECTRONIC RESISTOR CORP.	IRC	JOHNSON-WILLIAMS, INC.	JW
INTERNATIONAL EQUIPMENT CO.	IEC	JOHNSTON LABS	JOH
INTERNATIONAL INSTRUMENTS CO.	III	JONES MEDICAL	JOME
INTERNATIONAL LIGHT, INC.	ILI	JONES MOTOROLA CO.	JH
INTERNATIONAL MICROTRONICS CORP.	IMC	JORDAN ELECTRONICS CO.	JE
INTERNATIONAL PLASMA INST.	IPI	JORGES	JOR
INTERNATIONAL RESEARCH & DEV. CORP.	IR	JORWAY CORP.	JY
INTERNATIONAL ROBOMATION/INTELLIGENCE	IROB	JOYCE, LOEGL & CO.	JLC
INTERNATIONAL SCIENCE	IWSC	JUKI	JUKI
INTERNATIONAL SCIENTIFIC INSTRUMENT, INC.	ISI	JUC CORPORATION	JWC
INTERNATIONAL TELEPHONE & TELEGRAPH	ITT	K-V ASSOCIATES INC.	KVA
INTERSCAN	ITS	K. H. HUPPERT CO.	KHP
INTERSTATE ELECTRONICS	INST	KALART VICTOR CORP.	KRT
INTERTECHNIQUE	INTE	KALDFELL LAB. INC.	KALB
INTERTRAN	ITW	KAMAN CORP./KAMATICS CORP.	KAM
INTRA-ACTION CORP.	IAC	KAY ELECTRONIC CO.	KAEL
INVERTRON	INV	KAYE INSTRUMENTS INC.	KAYE
IONEGA CORPORATION	IDM	KECK GEOPHYSICAL INSTRUMENTS, INC.	KCII
ION EQUIPMENT CORP.	ION	KEITHLEY INSTRUMENTS, INC.	KI
ION TECH	IOT	KELLER, G. H., CORP.	GHK
ION TRACK INSTRUMENTS	ITI	KELLER, R. E.	RCK
IONICS, INC.	IOI	KELLEY-KOETT INSTRUMENT CO.	KKIC
IPAC	IPAC	KENNEDY ASSOCIATES	KA

MANUFACTURER	CODE	MANUFACTURER	CODE
KENNEDY, C. J., CO.	KECO	LAUDA	LAU
KEPCO, INC.	KEP	LAVOIE	LAV
KERNCO	KRN	LAURENCE LIVERMORE LAB.	LLL
KERNS GROUP	KG	LAURENCE RADIATION LAB.	RLR
KERVONICS	KER	LAUNSON RUSH	LR
KEVEX	KEV	LAZAR RESEARCH LABS., INC.	LAZ
KEYTRONIZE	KTN	LE CROY RESEARCH SYSTEMS, INC.	LC
KICKSORT	KIK	LEADER MFG. CO.	LDR
KIELEY & MUELLER, INC.	KN	LEAR SEIGLER	LSR
KIKL MICROCODE	KIKL	LECO CORPORATION	LECO
KILOVOLT CORP.	KILO	LEDEX, INC.	LD
KINETIC SYSTEMS	KS	LEEDS & NORTHRUP CO.	LN
KING CONCEPT CORP.	KCC	LEIBEL FLARSHEIM CO., THE	LFC
KINMERTICS	KINM	LEITZ	LEZ
KINTEL	KTL	LEKTRA LABORATORIES, INC.	LLI
KIRKHOF DIV. FLX CORP.	KDC	LEKTRA LABS	LEL
KISTLER SUNSTRAND DATA CONTROL, INC.	KSDC	LEPEL CORP.	LEP
KIVI	KIVI	LESLIE COMPANY	LES
KLINGER SCIENTIFIC CORPORATION	KLIS	LEUPOLD & STEVENS, INC.	LS
KLOSS VIDEO CORP.	KVIC	LEYBOLD-HERAEUS	LH
KNIGHT	KN	LFE CORPORATION	LFE
KOERING PEGASUS DIVISION	KPD	LI-COR	LICO
KONTES GLASS CO.	KOW	LINBURG	LIN
KORAD	KORA	LINDBERG	LIB
KRATOS-DISPLAY DIV.	KRAT	LINDBERG NEVI-DUTY	LND
KRAUTKRAMER-DRANSON INC.	KK	LINDE	LIND
KREONITE INC.	KREO	LINN ELECTRIC CO.- -DIVISION OF ESTERLINE	LINE
KROHN-HITE CORP.	KH	LINERAR INSTS. CO.	LIC
KRONOS	KRO	LING ELECTRONICS INC.	LING
KULICKE & SOFFA MFG.	KSM	LINK COMMUNICATIONS, INC.	LINK
KURZ INSTRUMENTS INC.	KURZ	LINSEIS, INC.	LIMS
KYBE CORP.	KY	LIONEL ELECTRONICS	LION
L & R MANUFACTURING COMPANY	LRN	LISTON-DECKER INSTRUMENT CO.	LB
L D J ELECTRONICS	LDJ	LITHE TECH. INTERNATIONAL	LT
L F E PROCESS CONTROL DIV.	LFEP	LITTLE GIANT PUMP CO.	LG
L-H PHOTO INC.	LWP	LITTLE, ARTHUR B., INC.	LITL
LAD-LINE INSTRUMENTS	LABI	LIVERMORE DATA SYSTEMS, INC.	LDS
LADAC	LADA	LKB INSTRUMENTS, INC.	LKB
LABELLE INDUSTRIES, INC.	LAB	LMC MEGA MICRO	LNC
LABORATORY DATA CONTROL	LBC	LOBO DRIVES INTERNATIONAL	LOBO
LABORATORY EQUIPMENT CO.	LA	LOCKWOOD MCLODRIE	LH
LABORATORY FOR ELECTRONICS	LFE	LOG-E-TEC	LGT
LABORATORY FOR SCIENCE	LFS	LOGETRONICS INC.	LO
LAKE SHORE CRYOTRONICS	LSC	LOGICAL DEVICES, INC.	LDI
LAMBDA ELECTRONICS CORP.	LE	LORILLARD TOBACCO CO., P.	PLT
LANDA PHYSIK	LAPH	LOS ALAMOS SCIENTIFIC LAB.	LASL
LAND-AIR INC.	LAI	LOVE CONTROLS CORP.	LCC
LANDSVERK ELECTROMETER CO.	LANV	LOURANCE	LOU
LANGLEY-FORD INSTRUMENTS CO.	LFI	LOYOLA INDUSTRIES	LI
LANIER BUSINESS PRODUCTS	LBP	LUDLUM MEASUREMENTS, INC.	LL
LANSING	LAN	LUMAC SYSTEMS	LUNC
LAPINE	LAP	LUMONICS RESEARCH LTD.	LUM
LASER PRECISION CORP.	LPC	MAR ENTERPRISES	MRE
LASER SCIENCE, INC.	LSI	M-T ELECTRONICS CO.	MTE
LASER TECH., INC.	LTI	MAC VICTOR MANUFACTURING COMPANY	MACV
LATRONICS CORP.	LAT	MACBETH-DIV. OF KOLLORMORGEN CORP.	MCB

MANUFACTURER	CODE	MANUFACTURER	CODE
MAGION, INC.	MA	MELETRON CORP.	MEL
MAGITRON	MG	MELOY LABORATORIES, INC.	MLI
MAGMAFLUX CORP.	MFC	MENODYNE	MEDY
MAGNAVOX	MX	MENOREX CORP.	MRX
MAGNECORD	MC	MENSOR CORP.	MENS
MAGNETICS, INC.	MH	MERCOID CORP.	MCD
MAGNETROL, INC.	MAG	MERIAM INSTRUMENT CO.	MIC
MALIBU DESIGN GROUP	MALI	METALS RESEARCH CORP.	MRC
MALLINCKRODT	MALL	METEROLOGY RESEARCH, INC.	MRI
MALLORY	HAL	METERSONICS, INC.	MESI
MANNESMANN TALLY	MATA	METRA INSTRUMENTS, INC.	METI
MANNING ENVIRONMENTAL CORP.	MAEN	METROHM	MET
MANNING TECHNOLOGIES, INC.	MANT	METROLOGIC	MTRL
MANNING, MAXWELL & MOORE (ASHCROFT)	MHH	METROTEK INC.	MEK
MANOSTAT CORP.	MAN	METTLER INSTR. CORP.	MEIC
MANSFIELD-GREEN, INC. (AMETEK)	MF	MEYERS & KNAPP	MKP
MANUFACTURERS ENGR. & EQUIPMENT CO. (MEECO)	ME	MFE CORP.	MFE
MARCO	MARC	MICON CORPORATION	MICO
MAREL INSTRUMENT COMPANY	MAIN	MICRO CHEMICAL SPEC. CORP.	MCS
MARION INSTR. CO.	MAIC	MICRO INSTRUMENT CO.	MIIC
MARKSON INST.	MAR	MICRO METRIC CORP.	MIM
MARLIN	MARL	MICRO MOTION, INC.	MMO
MARQUETTE ELECTRIC CO.	MEC	MICRO MOU INST. CO.	MMI
MARSH-MCBIRNEY, INC.	MHI	MICRO PERIPHERALS, INC.	MPI
MARSHALL	MAH	MICRO-PURE SYSTEMS INC.	MPS
MARTEK INSTRUMENT INC.	MART	MICRO-TERM, INC.	MCT
MARTIN BECKER	MARD	MICROCARD CORP.	MDC
MASER OPTICS	MAS	MICROCOM	MICC
MASON-NEILAN, INC.	MSH	MICRODESIGN INC.	MIDE
MASSACHUSETTS COMPUTER CORPORATION	MCC	MICRODYNE CORP.	MID
MAST DEVELOPMENT CO.	MD	MICROFORM PRODUCTS	MIPR
MASTER-FLEX	MASF	MICROMAS, V.G.	MICR
MATEC INC.	MATE	MICROMECH	MICH
MATERIAL ANALYSIS CO.	MTAC	MICROMEDIC	MIM
MATERIALS RESEARCH CORP.	MAT	MICROTEK ELECTRONICS, INC.	MT
MATERIALS TESTING SYSTEMS	MTS	MICROWAVE POWER DEVICES, INC.	MPD
MATHESON CHEMICALS	MAC	MID-EASTERN INDUSTRIES, INC.	MEI
MATHIS CO., R. D.	RDM	MIDWEST INSTRUMENTS	MIDU
MATRIX, INC.	MATI	MIKRO PHIL CORPORATION	MIPC
MATSUSHITA	MS	MIKROM INSTRUMENT CO.	MIK
MATTHEY BISHOP, INC.	MAB	MILLEM MFG. CO., JAMES	MILW
MB MFG. CO.	MB	MILLENIUM SYSTEMS, INC.	MSI
MCINTOSH	MCI	MILLER CO.	MILL
MCKENNA LABS	MK	MILLETRON, INC.	MTI
MCL, INC.	MCL	MILLIPORE CO.	MIL
MCHARTIN INDUSTRIES INC.	MCM	MILLIVAC INSTRUMENTS	MII
MCPHERSON	MCP	MILTON ROY CO.	MR
MDA SCIENTIFIC	MDAS	MINARIK, INC.	MINI
MDD SYSTEMS, INC.	MDD	MINCO PRODUCTS INC.	MNCO
MEASUREMENT SYSTEMS	MESY	MINE SAFETY APPLIANCES CO.	MSA
MEASUREMENTS CORP.	NEA	MINITERM COMPUTER DEVICES, INC.	MITC
MECHANICAL TECHNOLOGY, INC.	METE	MINNEAPOLIS-HONEYWELL	MH
MECHTRONICS NUCLEAR	NEH	MINNESOTA MINING & MFG. CO.	MIM
MEGASON	MEGA	MINOLTA	MIMO
MEHLER INSTRUMENTS	MEHI	MINTEDORF-WHITNEY CORP.	MNC
NEKEL ASSOCIATES	MKL	MIRAN INSTRUMENT COMPANY	MIRC

MANUFACTURER	CODE	MANUFACTURER	CODE
MKS BARATRON	MKS	NEWPORT LABORATORIES, INC.	NLI
MKS INSTRUMENTS, INC.	MKSI	NEWPORT RESEARCH CORP.	NEW
MODCOMP CORP.	MOD	NICOLET INST. CORP.	NIC
MODICON	MDM	NICOLET-ZETA CORP.	ZRI
MODULAR COMPUTER CORP.	MOD	NIEMOFF	NIE
MOELLER INST. CO.	MOE	NIKON	NIK
MONHAWK DATA SCIENCES, CORP.	MOH	NINE ASSOCIATES	NINE
MOLECTRON, INC.	MOL	NIPPON ELECTRIC CORP.	NEC
MOLECULAR DESIGN LTD., INC.	MODE	NJE CORP.	NJE
MOLSGAARD MEDICAL	MOLS	NOISE ABATEMENT SOCIETY	NAS
MOLYTEK, INC.	MOLT	NON-LINEAR SYSTEMS, INC.	NLS
MONITOR EQUIPMENT CORP.	MOEQ	NORBATROL ELECTRONICS CORP.	MB
MONITOR LABS INC.	ML	NORCROSS	NORC
MONITROL MFG. CO.	MONT	NORDEN KETAY	NK
MONROE ELECTRONICS, INC.	MON	NORGREN, C. A., CO.	NOCH
MONSANTO ELECTRONICS, INC.	MSE	NORMAN ENTERPRISES	NOE
MONTEDORO-WHITNEY CORP.	MOWH	NORTEC	NORT
MOORE INDUSTRIES, INCORPORATED	MOII	NORTH AMERICAN PHILIPS	NAP
MOORE PRODUCTS CO.	MPC	NORTH EAST SCIENTIFIC CORP.	NES
MOBENHOUSE MACHINE CO.	MNC	NORTH HILLS CO.	NHC
MOSLER ELECTRONICS SYSTEMS	MES	NORTHEASTERN ENGINEERING, INC.	NE
MOSLEY (HEWLETT-PACKARD)	HP	NORTHERN SCIENTIFIC, INC. (TRACOR)	TRA
MOSSBAUER SPECTROMETER COMPANY	HOSS	NORTHERN TELECOM, INC.	NOTE
MOTION DYNAMICS RESEARCH	MDR	NORTHSTAR ADVANTAGE	NOAD
MOTOMATIC	MOM	MORTON CO. (NATIONAL RESEARCH CORP.)	MOR
MOTOROLA, INC.	MOT	MORWOOD CONTROLS	MC
MOXON INC.	MOX	NOVATION	NOV
MPM CORP.	MPM	NUCLEAR AREAS	NA
MUELLER X-RAY	MU	NUCLEAR ASSOC. MFG.	NAM
MUIRHEAD & CO., LTD.	MHC	NUCLEAR CORP.	NUC
MYRON L. CO.	MLC	NUCLEAR DATA, INC.	ND
MANOSECOND SYSTEMS	MNH	NUCLEAR DIODES, INC. (EDAX)	NID
MARCO BIO-SYSTEMS, INC.	MDSI	NUCLEAR ELECTRONICS CORP.	NUEL
NATIONAL ALUMINATE CORP.	MAC	NUCLEAR ENTERPRISES INC.	NEEN
NATIONAL APPLIANCE CO.	MACO	NUCLEAR INSTRUMENT CO.	NI
NATIONAL CASH REGISTER COMPANY	MCR	NUCLEAR MAGNETICS CORP.	NMC
NATIONAL CONTROLS, INC.	MCI	NUCLEAR MEASUREMENTS CORP.	MM
NATIONAL ELECTRIC INSTRUMENT DIV.	MEI	NUCLEAR R & D, INC.	MRD
NATIONAL ELECTROSTATIC	MAE	NUCLEAR RESEARCH CORPORATION	NURE
NATIONAL INSTRUMENT LAB	MIL	NUCLEAR SEMICONDUCTOR-DIV. UNITED SCIENTIFIC CORP.	NS
NATIONAL MANUFACTURING CO.	MNFG	NUCLEAR TECHNIC	NUTE
NATIONAL RADIO COMPANY	MRC	NUCLEAR-CHICAGO CORP.	NCC
NATIONAL RESEARCH CORP. (NORTON)	MOR	NUCLEOMETRICS, INC.	NUCH
NATIONAL RESEARCH GROUP	MRC	NUCLEUS, INC.	NUCI
NATIONAL SONICS	MATS	NUCLIDE ANALYSIS ASSOC.	NUA
NATIONAL SPECTROMETER LAB.	MSL	NUCLIDE CORPORATION	NUCO
NATIONAL TECHNICAL LABS.	MTL	MUDATA	MUD
NEC INFORMATION SYSTEMS, INC.	NEC	NZV (SIEMENS & HALSKE)	NZV
NEC SPINWRIGHT CORP.	NEC	O. I. CORPORATION	OIC
NEFF INSTRUMENT CORPORATION	NEFF	OAK RIDGE NATIONAL LAB.	OR
NELSON ANALYTICAL	NELA	OCEANOGRAPHY INTERNATIONAL	OI
NEPTUNE METER CO.	NEP	OFFNER ELECTRONICS, INC.	OFF
NESLAB INSTRUMENTS, INC.	NESL	OHaus SCALE CORPORATION	OWSC
NEW BRUNSWICK SCIENTIFIC CO.	NBS	OHIO THERMAL CO.	OTC
NEW LONDON INST. CO.	NLIC	OHMART CORP.	OHM
NEWPORT ELECTRONICS, INC.	NEEL	OHRA CORPORATION	OHRA

MANUFACTURER	CODE	MANUFACTURER	CODE
OKI ELECTRIC INDUSTRIES CO., LTD.	OKIE	PERTEC	PRP
OKIDATA	OKID	PESCHEL ELECTRONICS	PES
OLIVETTI UNDERWOOD CORP.	OV	PETROLIGHT	PET
OMNICRON CORP. OF AMERICA	OCA	PFAUDLER	PFA
OMEGA ENGINEERING, INC.	BEI	PFEIFFER-BALZIRS CORPORATION	PBC
OMNICHROME	OMC	PHARMACIA CHEMICALS	PHA
OMNITEC	DM	PHASED RADIATION	PR
ONYX, INC.	ONYX	PHASER CORP.	PHC
OPAD ELECTRIC COMPANY	DEC	PHILADELPHIA SCIENTIFIC CONTROLS	PS
OPAMP LABS	OPAL	PHILDRIC	PH
OPTICAL RADIATION CORP.	ORC	PHILCO-FORD CORP.	PFC
OPTIMAL TECHNOLOGY, INC.	OTI	PHILIPS', N. V. GLOEILAMPENFABRIEKEN	PHG
OPTIMATION, INC.	DP	PHILLIP MORRIS TOBACCO CO.	PNT
OPTO ELECTRONICS, LTD.	OPTO	PHILLIPS ELECTRONIC INSTRUMENTS, INC.	PHE
OPTRONICS INTERNATIONAL, INC.	OII	PHILLIPS SCIENTIFIC, INC.	PPS
ORBISPHERE LABORATORIES	ORB	PHILLIPS TEST & MEASUREMENT INC.	PTNI
DREC INC.	OREC	PHILLIPS VACUUM	PHV
OREGON ELECTRONIC MFG. CO.	OE	PHOENIX PRECISION INSTRUMENT CO.	PX
ORGANIZATION OF PETROLEUM EXPORTING COUNTRIES	OPEC	PHOTO RESEARCH	PHR
ORIEL	ORL	PHOTOCHEMICAL RESEARCH ASSOCIATES	PCRA
ORION CORP.	ORI	PHOTOCIRCUITS CORP.	PC
ORRTRONIC, INC.	ORT	PHOTOUAC	PHOT
ORTEC, INC.	OT	PHOTOVOLT CORP.	PV
OSBORNE CORPORATION	OSB	PHYSICAL DATA INC.	PHDA
OVERHOFF ASSOC.	OA	PHYSICAL ELECTRONIC INDUSTRIES	PEI
OXFORD INSTRUMENTS	OX	PHYSICAL ELECTRONIC INDUSTRIES, INC.	PEII
OZONE RESEARCH AND EQUIPMENT CORPORATION	OZR	PHYSICAL METALLURGY	PHM
P B S K ASSOCIATES	PBSK	PHYSICAL SCIENCE CORP.	PHSC
P. LORILLARD TOBACCO CO.	PLT	PHYSICOM CORP.	PSCC
PACE ENGINEERING CO.	PEC	PHYSICS INTERNATIONAL	PHI
PACE INSTRUMENTS. CO. (ELECTRONIC ASSOCIATES INC.)	EAI	PHYSNET	PHYS
PACE, INC.	PACE	PICKER CORP.	PK
PACIFIC ELECTRIC MOTOR	PEN	PICO SECOND INT.	PICO
PACIFIC MEASUREMENTS, INC.	PM	PIONEER ELECTRIC & RESEARCH CORP.	PION
PACIFIC PRECISION INSTRUMENTS	PPI	PLASMA THERM	PLTH
PACKARD INSTRUMENT CO.	PAC	PLESSEY MEMORIES, INC.	PLM
PACKER, B. L.	BLP	PLESSEY MICROSYSTEMS	PLM
PADBURG, CARL-CEPA	PABB	PLESSEY PERIPHERAL SYSTEMS	PLM
PAKO CO.	PAK	PLUG-IN INSTRUMENTS	PII
PALMER INSTRUMENTS, INC.	PALM	POLAROID	POL
PANALARM	PAL	POLARON INSTRUMENT, INC.	PROH
PANAMETRICS, INC.	PAN	POLLUTION CONTROL INDUSTRIES	PCI
PANASONIC	PAN	POLYSCIENCE CORP.	PO
PANORAMIC RADIO PRODUCTS, INC.	PRPI	POLYSONICS	PSON
PARAGON	PARA	POPE INSTRUMENTS	POPE
PARKER ENGINEERING	PKE	POTTER AERONAUTICAL CORP.	PA
PARKER HANNAFORD	PARK	POTTER INSTRUMENT CO., INC.	POTT
PARR INSTS.	PARR	POTTER-BRUNFIELD CO.	PB
PARTLOW INSTRUMENTS	PART	POWER DESIGNS, INC.	PD
PELCO SALES INC.	PELC	POWER EQUIPMENT CO.	POW
PENRIL CORP.	PEN	POWER INSTRUMENTS, INC.	PI
PENTAX MANUFACTURER	PNTX	POWER MATE CORP.	PNC
PENWALT (S.S. WHITE)	SSW	POWERTEC	PT
PERIPHERAL EQUIPMENT CORP.	PRP	POWERSIGHT, INC.	POVI
PERIPHERAL INTERFACE CORP.	PIC	PPM, INC.	PPM
PERKIN-ELMER (INTERDATA)	PE	PRECISE SENSORS	PRCS

MANUFACTURER	CODE	MANUFACTURER	CODE
PRECISION DIGITAL	PRD	RAMSEY ENGINEERING CO.	REN
PRECISION INST.	PRI	RANTEK	RANT
PRECISION PRODUCTS AND CONTROLS, INC.	PP	RANK BROTHERS - ENGLAND	RBE
PRECISION SCIENTIFIC CO.	PSC	RASOR & TINKER	TKRA
PREIFFER	PREI	RAULAND CORP.	RAU
PREISER SCIENTIFIC INC.	PRSC	RAYNER (CELTIC TRUTONE)	RMR
PRESTON	PST	RAYTEC	RAY
PREVOST	PRV	RAYTHEON CO.	RT
PRIAM CORPORATION	PRC	RDF CO.	RDF
PRINCETON APPLIED RESEARCH CORP.	PAR	REACTOR CONTROLS, INC.	RC
PRINCETON ELEC. PRODUCTS	PEP	REACTOR EXPERIMENTS, INC.	RE
PRINCETON GAMMA TECH.	PGT	REALIST VANGUARD	RY
PRINCETON GRAPHICS SYSTEMS	PGS	REALTIME SYSTEMS, INC.-AFFILIATE OF LEVI	REAL
PRINCETON SCIENTIFIC INSTS.	PSI	RED LION CONTROLS	RLC
PRINTEK CORPORATION	PTKC	RED-MUN INSTRUMENT CORPORATION	RED
PRINTER TECHNOLOGY, INC.	PTI	REES INSTRUMENTS	REES
PRINTRONIX INC.	PRIN	REGATRAH	REG
PRIORITY ONE ELECTRONICS	PDE	REGENT	RHT
PRL ELECTRONICS	PRL	RELIABLE MEASUREMENT	RELM
PRO LOG CORP.	PLC	REMEX/EX-CELL-O CORP	REN
PROCESS & INSTRUMENTS, INC.	PRII	REPUBLIC FLOWMETER CO.	RF
PRODUCTS FOR RESEARCH	PRR	RESEARCH ASSISTANTS INC.	REA
PROJECTION OPTICS CO.	PRJ	RESEARCH SPECIALITIES	RESP
PROMETHEUS PRODUCTS, INC.	PRON	RESEARCH, INC.	RI
PULCIR INC.	PULC	REUTER-STOKES	RS
PYE UNICAM	PYE	RF COMMUNICATIONS	RCH
PYROMETER INSTR. CO.	PYS	RFL INDUSTRIES	RFL
PYROMETER SERVICE CO.	QDRM	RHEEN ELECTRIC	RHE
QUADRAH	DRI	RHK TECHNOLOGY, INC.	RHK
QUANTA-RAY, INC.	QUAH	RNODE & SCHWARZ SALES CO.	RSS
QUANTACHROME CORP.	QUAI	RI RESEARCH, INC.	RIR
QUANTEL INTERNATIONAL	QTX	RIGAKU-USA INC.	RIG
QUANTEX CORPORATION	QSTE	RIL ELECTRONICS	RIL
QUEST ELECTRONICS	QT	RILEY	RILY
QUINTON INST.	QUME	RIXON	RIX
QUME CORP.	SAND	ROBERTSHAW-FULTON CONTROLS	RFC
R. C. SANDERS TECHNOLOGY SYSTEMS, INC.	RDM	RODIWAIR MFG. CO.	RMC
R. D. MATHIS CO.	RGK	ROBINSON-HALPERN CO.	RH
R. G. KELLER	RRI	ROBOTICS, INC.	ROBO
RACAL RECORDER, INC.	VAD	ROCHESTER INSTRUMENT SYSTEMS, INC.	RIS
RACAL-VADIC	RADE	ROCKLAND	RO
RADAR ENGINEERS	RCL	ROCKWELL MFG. CO.	RH
RADIATION COUNTER LAB.	RID	ROFIN LTD, ENGLAND	ROF
RADIATION INSTRUMENT DEV. LAB.	RPS	ROLAR PHOTOGRAPHY	RP
RADIATION POWER SYSTEMS, INC.	RATE	ROMAN	ROM
RADIATION TECHNOLOGY, INC.	CVR	ROMAN ENGINEERING CO.	RON
RADIATION, C. W., INC.	RCA	ROSEmount ENGINEERING CO.	REC
RADIO CORP. OF AMERICA	RAD	ROSIE	ROS
RADIO FREQUENCY LAB.	RME	ROTEK	ROT
RADIO MFG. ENGINEERS INC.	TAND	ROTESCO, LTD.	ROTL
RADIO SHACK (TANDY CORP.)	RADP	ROYAL TYPEWRITER	CPT
RADIOACTIVE PRODUCTS, INC.	RADM	ROYCO INSTRUMENTS, INC.	RII
RADIOMATIC	RADC	RUDICON	RUB
RADIOMETER COPENHAGEN	RANI	RUSKA	RUSK
RAMAPO INSTRUMENT COMPANY	RAM	RUSTRAK INSTRUMENT CO.	RUS
RAMMAN		RUTHERFORD ELECTRONICS CO.	RFE

MANUFACTURER	CODE	MANUFACTURER	CODE
S H E MFG. CORP.	SHE	SNEFFIELD CORP.	SHE
S. S. WHITE CO. (PENWALT)	SSU	SHERWOOD ELECTRONIC LABS, INC.	SUD
SADER	SAD	SHIBA ELECTRIC CO.	SHI
SAGE INSTRUMENTS, INC.	SAGE	SHIMADZU SEISAKUSHO LTD.	SNC
SAI TECHNOLOGY CO.	SAI	SHUGART ASSOCIATES	SCHG
SALIENT ELECTRONICS, INC.	SE	SHURE	SN
SALVAGED	ZSAL	SIEGLER CORPORATION	SIS
SAMBORN	SAND	SIEMANS	SIE
SANDA, INC.	SAD	SIERRA ELECTRONIC CORP.	SIEC
SANDERS TECHNOLOGY SYSTEMS, R. C., INC.	SAN	SIGANOTOR, INC.	SIGA
SANDIA CORP.	SAN	SIGMA INSTRUMENTS, INC.	SI
SANYO ELECTRIC CO.	SAHY	SIGMUND COHN	SG
SARGENT, E. H. (SARGENT-WELCH SCIENTIFIC CO.)	SUS	SIGNAL GALAXIES, INC.	SGI
SARGENT-WELCH SCIENTIFIC CO. (E.H. SARGENT)	SUS	SIGNAL PROCESSING SYSTEMS, INC.	SPS
SARNIA	SARH	SIGNATURE	SIG
SARTORIUS	SAR	SIGNET SCIENTIFIC CO.	SIGN
SAUTER DIV OF NETTLER INST.	MEIC	SILENA, S.P.A. (SOCIETA INC. PER L'ELETT RONICA AVA	SILN
SAVANT INSTRUMENTS, INC.	SAV	SIMPLEX VALVE & METER CO.	SMP
SCAN INSTRUMENT CORP.	SIC	SIMPSON ELECTRIC CO.	SN
SCANDITRONIX	SCA	SIMPSON OPTICAL	SIMO
SCANIVALVE, INC.	SVI	SINTEC	SNT
SCARPA LABS	SCL	SINGER	SN
SCHAEVITZ	SCHV	SIRIUS SYSTEMS, INC.	SIRS
SCHMIEDER INST. CO.	SCHI	SKINNER ELECTRIC VALVE DIV.	SK
SCHOEFFLE	SCH	SLO-SYM (SUPERIOR ELECTRIC CO.)	SPE
SCHONSTED INST. CO.	SCHO	SLOAN TECHNOLOGY CORP.	STC
SCHUTTE & KOERTING CO.	SKC	SMITH ROOT	SNR
SCIARRY BROTHERS, INC.	SBI	SMITH-CORONA	SNCB
SCIENCE ACCESSORIES CORP.	SCAC	SOCIETE FRANCAISE-AT	SFAT
SCIENTECH, INC.	SCI	SOCIETY FOR VISUAL EDUCATION, INC.	SVE
SCIENTIFIC COLUMBUS	SCLM	SODEN, INC.	SODI
SCIENTIFIC ELECTRIC, INC.	SCE	SODEV, INC.	SODV
SCIENTIFIC INSTRUMENTS INC.	SCII	SOILTEST, INC.	SO
SCIENTIFIC MICROSYSTEMS, INC.	SCNI	SOLA ELECTRIC DIV.	SLE
SCIENTIFIC-ATLANTA, INC.	SA	SOLAREX CORP.	SOL
SCINTILLONICS, INC.	SCIN	SOLARTRON INSTRUMENTS GROUP	STI
SCOTT AVIATION, INC.	SCTA	SOLINET SOUTHEASTERN LIBRARY NETWORK INC.	SSLN
SEARLE-BUCHLER INSTRUMENTS	SEBU	SOLTEC CORPORATION	SCO
SEARS ROEBUCK CO.	SRC	SONIC	SOMC
SECO INDUSTRIES INC.	SECO	SONICOR INSTRUMENTS CORP.	SONI
SEEGERS INSTRUMENT CO.	SEGI	SONITROL SECURITY SYSTEMS, INC.	STS
SEIFERT COMPANY	SEIF	SONOTRON	SOMD
SEIKO INSTRUMENTS INC.	SEKO	SONY CORP. OF AMERICA	SOMH
SEMCO	SEN	SORENSEN OPERATION, RAYTHEON CO.	SS
SEMCORE	SEMC	SURGEL	SOR
SEMMHEISER ELECTRONIC CORP.	SEW	SOROBAN ENGINEERING INC.	SORD
SENSITIVE RESEARCH CORP.	SRI	SOROC TECHNOLOGY INC.	SOC
SEMSOTECH, INC.	SSTI	SORTEBERG CONTROLS CO.	SB
SEQUOIA-TURNER	SOT	SORVALL	SOV
SERVO CORP. OF AM.	SER	SOUTH BAY TECHNOLOGY	SBT
SETARAM	SETA	SOUTHERN SYSTEMS, INC.	SOSY
SETRA SYSTEMS, INC.	SSY	SOUTHWESTERN INDUSTRIAL ELECTRIC	SI
SHAKER	SHK	SPARLING-ENVIROTECH CORP.	SPRE
SHALLCROSS MFG. CO.	SMC	SPECIAL DYNAMICS CORP.	SPDC
SHANDON SOUTHERN INSTRUMENT, INC.	SSI	SPECIALTY ASSEMBLING AND PACKING CO. INC.	SAP
SHARP	SHA	SPECIFIC PRODUCTS	SPEC

MANUFACTURER	CODE	MANUFACTURER	CODE
SPECTRA-PHYSICS	SPP	SYSTEMS ENGINEERING LABS, INC.	SEL
SPECTRO GRAPHIC LAB. EQUIP. CO.	SGL	SYSTEMS RESEARCH LABORATORIES	SYRL
SPECTROMAGNETIC	SPM	SYSTEKNIK, AB	STTM
SPECTRONIC	SPCT	SYSTRON-DONNER CORP.	STD
SPECTRUM SCIENTIFIC	SPC	SYTEK, INC.	SYTK
SPELLMAN	SPEL	T B ASSOCIATES	TDA
SPENCER-KENNEDY LABS, INC.	SKLI	TACHISTO INC.	TACH
SPERRY	SPR	TALK-A-PHONE CO.	TAP
SPEX INDUSTRIES	SPEX	TALLY REGISTER CO.	TRC
SPM INSTRUMENTS	SPI	TAHARACK SCIENTIFIC CO., INC.	TNSC
SPRAGUE PRODUCTS CO.	SP	TANDY CORP. (RADIO SHACK)	TAND
SPUTTER-BELL	SPB	TAURUS LABORATORIES	TARL
SQUARE "D" CO.	SD	TAXAN	TAX
STACO, INC.	STA	TAYLOR INSTRUMENT CO.	TAY
STAG-MICRO SYSTEMS	STAG	TAYLOR, TAYLOR, & HOBSON	TTH
STAINLESS EQUIPMENT CO.	SEQ	TAYLOR-SYBROW CORP.	TASY
STAMCOR DIV.	SCB	TAYLOR-WINFIELD	TAW
STANDARD ELEC. TIME CO.	SET	TCC (TECHNICAL COMMUNICATIONS CORP.)	TCC
STANDARD ELECTRONIC CORP.	STEC	TEC, INC.	TEI
STANDARD ENGINEERING	STEW	TECAN	TECM
STANDARD EQUIPMENT CO.	STED	TECH LABORATORIES	TECL
STANDARD MEMORIES, INC.	SMI	TECH OPERATIONS, INC.	TECO
STANDARD NUCLEAR INSTRUMENT MOD. SYSTEM	SNI	TECHNE INC.	TCHI
STANDARD POWER, INC.	STP	TECHNICAL ASSOCIATES	TA
STANFORD RESEARCH SYSTEMS	SRS	TECHNICAL COMMUNICATIONS CORP. (TCC)	TCC
STANFORD TECHNOLOGY CORP.	STTC	TECHNICAL EQUIPMENT CORP.	TM
STAR MICRONICS, CORP.	STMI	TECHNICAL INDUSTRIES INC.	TII
STARRETT	STAR	TECHNICAL MEASUREMENT CORP.	TMC
STATMAN INSTRUMENTS, INC.	ST	TECHNICIAN INSTRUMENTS CORP.	TKW
STEPLESS CONTROLS CORP.	SCC	TECHNICON INSTRUMENTS CO.	TECI
STEVENS	STEV	TECHNICS	TECH
STRAINSERT	STRT	TECHNOLOGY FOR ENERGY CORPORATION	TFEC
STRAND	STR	TECHNOLOGY INSTRUMENT CORP.	TICO
STREETER-ANET CO.	SAC	TECHSONICS	TECS
STRODE, INC.	STRI	TECHTRAM, INC.	TECT
STRODO RESEARCH	SR	TECMAR	TCMR
STRONBERG-CARLSON	SDC	TECO	TCO
STRONG ELECTRICAL CORP.	SEC	TEK-COM	TKC
STRONG-FICKLER	SF	TEK-PRO	TENP
STRUERS	STRU	TEKTRAM	TEXT
SUB-SEA SYSTEMS INC.	SSSI	TEKTROMIX, INC.	TEK
SUM-X CORPORATION	SUNX	TELE-MEASUREMENTS INC.	TELE
SUMMIT MFG. CO.	SUNC	TELEAUTOGRAPH CORP.	TEL
SUNDEAN	SUN	TELEDYNE PHILDRECK, INC.	TD
SUNRISE ELECTRONICS	SRE	TELEMATE	TLM
SUPAVAC	SUPA	TELEQUIPMENT	TEQ
SUPERIOR ELECTRIC CO. (SLO-SYN)	SPE	TELESORRY SYSTEMS, INC.	TESY
SUPERSCOPE	SUP	TELETALK	TET
SURFACE SCIENCE LABS	SSL	TELETRONICS, INC.	TTR
SWEENEY, B. K., MFG. CO.	SWEN	TELETYPE CORP.	TTY
SWIFT, JAMES & SON, LTD.	SWIF	TELEVAC	TEL
SWITCHCRAFT, INC.	SC	TELEVIDEO, INC.	TVI
SYBROW/DARNSTEAD	BS	TELEX COMPUTER PRODUCTS, INC.	TCP
SYKES DATATRONICS, INC.	SYK	TELEX MIDWESTERN INSTRUMENTS	TENI
SYLVANIA ELECTRIC PRODUCTS, INC.	SV	TELLADS, INC.	TELL
SYSTEM INDUSTRIES	SYI	TELMAR INC.	TELM

MANUFACTURER	CODE	MANUFACTURER	CODE
TEN-PRES RESEARCH, INC.	TPR	TRANSISTOR ELECTRONICS CORP.	TREC
TEMPTRON, INC.	TEM	TRANSISTOR SPECIALTIES, INC.	TSI
TENNECOMP SYSTEMS, INC.	TNC	TRANSMATION, INC.	TRW
TENNELEC, INC.	TNL	TRANSREX	TRX
TENNY ENGINEERING, INC.	TE	TRAPELO DIV.	TP
TERADO	TERA	TRENDATA CORPORATION	TRDC
TERAK CORP.	TERC	TERICE CO., H. O.	TER
TERMIFLEX CORP.	TC	TRI LOG CORP.	TRIL
TERMINAL EQUIPMENT CORPORATION	TEEC	TRI-R INST.	TRIR
TERRA TEK	TTEK	TRIAD DIV.	TAD
TESTING MACHINES, INC.	TNI	TRICOMEX, INC.	TRI
TESTLINE INSTRUMENTS	TLE	TRIMAR INDUSTRIES	TRIM
TEXAS ELECTRONICS	TXEL	TRIPLE A SPECIALTY CO.	TAS
TEXAS INSTRUMENTS, INC.	TI	TRIPPLETT & ELECTRICAL INSTRUMENT CO.	TPT
TEXSCAN CORPORATION	TEX	TRIPP	TRIP
TEXSCANLYNE SYBROM	TEXS	TRODYNE	TRD
THAYER SCALES	THYR	TRONAC, INC.	TROM
THE DICKSON COMPANY	DKSH	TROPEL, INC.	TROP
THE INSTRUMENTS CORP.	TIC	TROXLER RADIATION LABS.	TRL
THE LEIDEL FLARSHEIM CO.	LFC	TRUE DATA CORP.	TDC
THELCO	THLC	TRUTONE ELECTRONICS, INC.	TRU
THERMAL INSTRUMENT COMPANY	THIN	TRU INSTRUMENTS	TRU
THERMATIC RECORDERS	THR	TRYGON ELECTRONICS	TRY
THERNCO	THN	TULLAMORE	TUN
THERNO	THER	TUNG-SOL DIV.	TSD
THERNO ELECTRICS UNLIMITED	THNO	TURBITROL, DIV. OF TAULMAN CO.	TURB
THERNO ELECTRON CORP.	THEL	TURNER DESIGNS	TUBE
THERNO SYSTEMS, INC.	TS	TURNER, G. K., ASSOC.	GKT
THERMO-ELECTRIC CO.	TEC	TUEEZER WELD	TU
THERMO-LAD INSTRUMENTS, INC.	THL	TYCO	TYCO
THERMOLYME CORP.	TLC	TYCOM SYSTEMS CORP.	TSC
THERMONICS	TH	TYLAN CORP.	TYL
THERMOX INSTRUMENTS, INC.	THNI	U. S. ATOMIC ENERGY COMMISSION	USAEC
THETA	THT	U. S. BURKE	USB
THOR CRYOGENICS	THOR	U. S. GAUGE DIV.	USG
TIF INDUSTRIES	TIF	U.S. ROBOTICS, INC.	RODO
TIGERMAN ENGINEERING CO.	TIG	ULTEK	ULT
TIMEPLEX	TIM	ULTRA ELECTRONICS, INC.	ULTR
TINIUS-OLSEN CORP.	TOC	ULTRASONIC IND., INC.	UII
TINKER & RASOR	TKRA	UNHOLZ-DICKIE	UMHD
TINSLEY CO., H.	TIN	UNCODED MANUFACTURER	ZCOD
TLD	TLD	UNGAR-ELDON INDUSTRIES	UEI
TN VISUAL, INC.	THV	UNICO CONTROLS DIV.	UC
TOKYO, INDUSTRIES	TKI	UNILOCK INC.	UI
TOLEDO SCALE/RELIANCE ELECTRIC	TOL	UNINATIC	UNI
TOPAZ ELECTRONICS	TOP	UNION CARBIDE CORP.	UCC
TORR VACUUM PRODUCTS	TOVP	UNIPHASE	UNPH
TOSHIBA	TOS	UNIT PROCESS ASSY.	UPA
TRACERLAB	TR	UNITED DATA SERVICES COMPANY	UDSC
TRACOR, INC. (NORTHERN SCIENTIFIC INC.)	TRA	UNITED DETECTOR TECHNOLOGY, INC.	UD
TRACOR-NORTHERN INC.	TRA	UNITED ELECTRIC CONTROLS CO.	UEC
TRAN-ELECTRIC	TRE	UNITED SCIENTIFIC CORP.	UNSC
TRANSFORM TECHNOLOGY, INC.	TTI	UNITED STATES SCIENTIFIC INST., INC.	USSI
TRANSFORMER TECH., INC.	TT	UNITED SYSTEMS CORP.	USC
TRANSIAC CORPORATION	TRAC	UNITED TECHNICAL RESEARCH CENTER	UTRC
TRANSISTOR DEVICES, INC.	TDI	UNITEK CORP.	UNC

MANUFACTURER	CODE	MANUFACTURER	CODE
UNIVERSAL DATA SYSTEMS	UDS	VIDEO APPLICATIONS, INC.	VIA
UNIVERSAL ELECTRIC CO.	UE	VIDEO INSTRUMENT CO.	VBI
UNIVERSAL FILTERS, INC.	UFI	VIEWLEX, INC.	VIN
UNIVERSAL FLOW MONITORS	UFM	VIEWPOINT	VEP
UNIVERSAL SECURITY INSTRUMENTS	USI	VINCENT, AN ASSOCIATES	AVV
UNIVERSAL VOLTROMICS	UV	VIRITIS CO.	VIR
UNIVERSITY OF CALIFORNIA	UCA	VISHAY INTERTECHNOLOGY	VSYI
UNIVERSITY OF TENNESSEE	UDT	VISICORDER	VISI
UNIVERSITY OF TEXAS	UTX	VISIPAK, INC.	VPI
UNKNOWN MANUFACTURER	ZMFR	VISUAL TECHNOLOGY INC.	VIS
UPTIME CORPORATION	UPTC	VOLAND & SONS	VOL
USM CORP.	USM	VOLUMETRICS	VLM
USON CORP.	USO	VOTAN	VOT
UTAH ELECTRONICS, INC.	UT	VU-DATA CORPORATION	VUDC
UTHE TECHNOLOGY INTERNATIONAL	UTHE	VWR SCIENTIFIC	SCT
UTI	UTI	W. C. DILLON CO.	BLN
VACION	VACN	W. M. WELCH CO.	WNU
VACTRONIC LAB. EQUIPMENT, INC.	VAC	W.T. SPECIALTY CO.	WTS
VACUUM ATMOSPHERE CORP.	VAT	WANL, W., CORPORATION	WNC
VACUUM ELECTRONICS	VEL	WALKER SCIENTIFIC, INC.	WSI
VACUUM INDUSTRIES, INC.	VI	WALLACE & TIERNAN, INC.	WT
VACUUM INSTRUMENT CORP.	VIC	WALTON CO.	VAL
VACUUM PRODUCTS	VP	WANG LABORATORIES, INC.	UL
VABIC	VAD	WANSCO, INC.	VAN
VAISALA INSTRUMENTS	VASA	WANLESS ELECTRIC CO.	WANL
VALHALLA SCIENTIFIC	VAL	WASHINGTON UNIVERSITY	WU
VALIDYNE ENGINEERING CORP.	VAEC	WATANABE, INC.	WTD
VALTEC CORP.	VALC	WATERMAN PRODUCTS CO.	WPC
VANZETTI	VAN	WATERS ASSOCIATES	WAT
VARIAN ASSOCIATES, INC.	VA	WATLOU COMPANY	WTL
VARTYPER	VART	WAVEFORMS, INC.	WAV
VATRONIC LAB.	VL	WAVETEK	WA
VECTOR ELECTRONIC CO.	VEEL	WAYNE KERR	WK
VECTOR GRAPHIC, INC.	VEGR	WEATHER MEAS. CORP.	WH
VECTRIX CORPORATION	VEX	WEATHERALERT	WEA
VEECO INSTRUMENTS, INC.	VEC	WEBBER GAUGE	WG
VEEKAY, LTD	VK	WEBSTER ELECTRIC CO.	WEC
VEGA CORPORATION	VEGA	WEKSLER INSTRUMENT CORP.	VI
VELENEX	VLNX	WELCH CO., W. M.	WNU
VENCO	VEN	WELSH SCIENTIFIC CORP.	VEL
VENTRON INSTRUMENT CORP.	VEI	WENKING ELEKTRONISCHER	VENK
VERN-KIEBLER ASSOC., INC.	VKA	WESCAN	WSCN
VERSA-THERM	VRT	WESCOR	WESC
VERSATEC	VER	WEST INSTRUMENT DIV.	VIC
VERTRON CORP.	VC	WESTERN APPARATUS CO.	WAC
VG-ISOTOPES LTD.	VGIS	WESTERN ELECTRIC CO.	UTC
VIATRAN	VTR	WESTERN MARINE ELECTRONICS	UNE
VIDRO CERAMICS DIV.	VIB	WESTERN UNION DATA SERVICES CO.	WUDA
VICKERS DIV.	VD	WESTINGHOUSE ELECTRIC CORP.	WE
VICON INDUSTRIES INC.	VII	WESTON	WST
VICTOR ANIMATOGRAPH CORP.	VOR	WESTON AND START	WAS
VICTOR COMP. CORP.	VCC	WESTRONICS, INC.	WES
VICTOREEN INSTRUMENT CO.	VIT	WESTWOOD ASSOC. DATA COMM. EQUIPMENT	WODC
VICTORY ENGINEERING CORP.	VE	WHITEBY	WD
VIDAN INST.	VID	WHITE-WESTINGHOUSE	WHUE
VIDAR CORP.	VDR	WILD HEERBRUGG MFG.	WH

MANUFACTURER	CODE	MANUFACTURER	CODE
WILDLIFE MATERIALS INC.	WMI		
WILKES INST.	WILK		
WILKINS CO.	WKC		
WILLIAM WAHL CORP.	WWC		
WINFORD O. WHITE & SON	WOW		
WINTEK CORP.	WINT		
WISCO DIV.	WC		
WM. AINSWORTH & SONS, INC.	AW		
WOLLENSAK	WS		
WONG LABORATORIES	WONG		
WYSE TECHNOLOGY	WYSE		
X-RITE CO.	XRIT		
XEDEC SYSTEMS INC.	XBC		
XENTEK, INC.	XEN		
XEROX	XE		
XTEX INC.	XTEX		
Y-12	Y12		
YALE	YALE		
YAMAHA	YAMA		
YAMATO SCIENTIFIC CO., LTD.	YSC		
YELLOW SPRINGS INSTRUMENT CO.	YS		
YOKOGAWA ELECTRIC WORKS	YEW		
YSI	YSI		
ZEMER	ZEH		
ZENITH CORP.	ZENC		
ZEWON	ZEN		
ZERO-MAX CO.	ZM		
ZETA CORP.-NICOLET	ZRI		
ZETA METER INC.	ZETA		
ZETA RESEARCH INC.	ZRI		
ZETEC INC.	ZET		
ZONIC MFG. CO.	ZNC		
ZYMARK CORPORATION	ZYM		

Appendix C. INSTRUMENT INVENTORY FILE POINTS

A4 Controllers & Recorders
A5 Strip Chart Recorders
A6 Controller Temperature
A7 Recorders
A8 Amplifiers
F5 M&C Instruments
F6 Pulse Generators
F7 Preamps
F8 (NIM)
F9 Power Supplies
L0 4500 Area Instruments

Shop 402 A. J. Millet, Supervisor

F1 Instruments SS Div. (Bldg. 3001)
F2 Instruments SS Div. & IE Div. (Bldg. 2000/18)
F3 Instruments ESD (Bldg. 1505/142)
J3 Multichannel Analyzers
J4 Liquid Scintillation Counters
J5 Instruments Modules/Misc.
T0 Calibration Standards
T1 Oscilloscopes
T2 Oscilloscopes Digital
T3 Oscilloscopes Special
T4 TM500/5000 Plug-ins
T5 Frequency Counters
T6 Generators/Synthesizers
T7 Meters
T8 Accessories
T9 Calibration Standards

Shop 403 R. P. Rosenbaum, Supervisor

K0 DEC Writers
K3 SEL 810B & PDP 15
K4 MOD-COMP Computer System
K5 Minicomputer Systems DEC, HP, DG, HW

Shop 404 H. C. Ford, Supervisor

E1 Audio Equipment
E2 Projection Equipment
E5 Teletype/Microfiche
V0 Security Systems
V1 Video Monitors

V2 Camera/Video
 V3 Video Recorders/Players
 V4 Modulators/Demodulators
 V5 Test Equipment
 V6 Radio Stations/Remotes
 V7 Radio/Mobile Units
 V8 Radio/Portable Units
 V9 Pagers

Shop 405 R. H. Brown, Supervisor

G1 NIM Instruments
 G2 Camac Instruments
 G3 Power Supplies
 G4 Vacuum Instruments
 G5 Test Instruments
 G6 Video/Audio Instruments
 G7 R/F Instruments
 G8 Oxygen/Radiation Instruments
 G9 Miscellaneous Instruments

Shop 406 C. R. Cinnamon, Supervisor

N2 Fabrication
 N4 PCB Fabrication
 N6 Photo Metal Processing
 P2 QA/Electrical Checkout

Shop 407 B. A. Tye, Supervisor

K1 RJE Stations
 K2 Multiplexers/Plotters
 K6 PC Computers
 K7 HP Instruments
 K9 Modems/Couplers

Shop 501 R. A. Vines, Supervisor

A0 Shop Standards and Test Equipment
 A1 Instrument, ORNL, Y-12, and K-25
 A2 Field Standards
 B1 Leak Detectors
 B2 Steam Plant (Building 2519)

Shop 502 B. L. Carpenter, Supervisor

E0 Stationary HP Instruments
 E3 Operations, Effluent (Bldg. 3130)
 E4 PRMs
 E6 Portable HP (Bldg. 2007)

E7 Dept. of Environmental Management
E8 Laboratory Emergency (Bldg. 4512)

Shop 503 C. G. Allen, Supervisor

A3 Instruments (Bldg. 7600)
A9 Instruments (Bldg. 3019)
B3 Instruments (Bldg. 7920)
B5 Instruments (Bldg. 7930)
C0 Reactor Test Equipment (Bldgs. 3010, 7900, 7710, 7702, 3042)
C1 Instruments (Bldg. 3042)
C2 Instruments (Bldg. 3010)
C3 Instruments (Bldg. 3010 Exp.)
C4 Instruments (Bldg. 3042 Exp.)
C5 Instruments (Bldg. 3010 NLTNIF)
C6 Instruments (Bldg. 7900)
C7 Instruments (Bldg. 7900 Exp.)
C8 Instruments (Bldg. 7710)
C9 Instruments (Bldg. 7902)
· H1 Shop Standards (Bldg. 7606)
· H2 MMD Engineering Service Jobs

D. G. Prater Z0* I&C Property Inventory

Job Control S2 Salvaged Instruments

***Note that items in this file point are recorded for inventory purposes only and normally would not be subject to in-house maintenance.**

APPENDIX D

ORNL DIVISION CODES

<u>Code</u>	<u>Number</u>	<u>Division</u>
AC	1	Analytical Chemistry
BI	2	Biology
CH	4	Chemistry
CT	3	Chemical Technology
CM	20	Central Management Offices
CTD	10	Computer and Telecommunications
DD	5	Directors
EN	15	Energy
EG	40	Engineering
EP	12	Engineering Physics & Mathematics
ET	16	Engineering Technology
EO	36	Environmental and Occupational Safety
ES	42	Environmental Sciences
FM	37	Finance and Materials
FE	19	Fusion Energy
FR	14	Fuel Recycle
HL	23	Health
HS	8	Health and Safety Research
HP*		Industrial Safety and Applied Health Physics
IN	7, 31	Information
IC	9, 34	Instrumentation and Controls
LP	26	Laboratory Protection
MC	11	Metals and Ceramics
OP	27, 28, 32	Operations
PER	29	Personnel
PH	13	Physics
PE	21	Plant and Equipment
PR*		Public Relations
QA	24	Department of Quality Assurance and Inspection
SS	18	Solid State
ZZ		Other
MA*		Mathematics

*Included for reference only

INTERNAL DISTRIBUTION

1. B. P. Adkisson	23. P. E. Melroy
2. C. G. Allen	24-28. D. R. Miller
3. K. L. Allison	29. A. J. Millet
4. J. D. Blanton	30. S. M. Odum
5. H. R. Brashear	31. D. G. Prater
6. R. H. Brown	32. R. P. Rosenbaum
7. B. L. Carpenter	33. C. T. Stansberry
8. T. E. Chambers	34. C. W. Tompkins
9. C. R. Cinnamon	35. R. A. Vines
10. E. D. Collins	36. K. W. West
11. B. G. Eads	37. A. Zucker
12. R. P. Effler	38. J. B. Ball (Advisor)
13. M. B. Farrar	39. P. F. McCrea (Advisor)
14. H. C. Ford	40. T. B. Sheridan (Advisor)
15. D. N. Fry	41-42. Central Research Library
16. H. A. Glover	43. Y-12 Document Reference
17. W. R. Hamel	Section
18. J. M. Jansen	44. I&C Division Publications
19. S. V. Kaye	45-46. Laboratory Records
20. E. H. Krieg, Jr.	47. Laboratory Records - RC
21. C. W. Kunselman	48. ORNL Patent Section
22. F. C. Maienschein	

EXTERNAL DISTRIBUTION

49. Assistant Manager for Energy Research and Development,
DOE-ORO, Oak Ridge, TN 37831.

50-59. Office of Scientific and Technical Information, P.O. Box 62,
Oak Ridge, TN 37831.

60-61. Tyrone Harris, DOE-ORO, Federal Bldg., Oak Ridge, TN 37831.

DO NOT FILE THIS PAGE