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ABSTRACT: We study linearized gravitons on the D-dimensional open sub-
manifold spanned by de Sitter conformal coordinates. The physical modes are
found in the same way as for flat space by imposing exact gauge conditions on the
invariant field equations and then exploiting the residual gauge freedom of solu-
tions. The resulting polarization tensors have vanishing zero components and are
transverse and traceless, just as in flat space. We also show that vacua exist such
that the ghost and graviton propagators obey the Ward identity relating them.
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Quantum gravity has beeu little considered in the search for an explanation of the
smallness of the cosmological constant. The reasons for this seem to be the theory’s well
known ultraviolet problems and the widespread belief that de Sitter space, the natural
background for A > 0, is such a strange environment that we can never hope to understand
physics on it. This is a great pity because the far infrared sector of quantum gravity is in
many ways the natural place to look for a resolution to what is, after all, a gravitational

problem.

We shall elsewhere establish that Einstein’s theory can be used reliably in the far
infrared; here we seek to dispel the notion that it is significantly more difficult to understand
linearized gravitons on a de Sitter background than in flat space, We make this point
by solving the theory, in tote, using the same methods that are employed in flat space.
(See, for example, chapter 10 of ref. (1].) The analysis is so simple that we have been
able to carry it out generally in D dimensions. The result is simple too: in conformal
coordinates and with a suitably rescaled field variable the modes can be written as plane
waves characterized by their spatial (D — 1)-momenta and by polarization tensors which
are identical to the polarization tensors of flat space. The only complicating feature is a
slightly different time dependence. In four dimensional flat space the plane wave solutions
are oscillatory; in four dimensional de Sitter space this oscillatory function acquires a time

dependent prefactor and a phase:

etikz® (1 T Ii—“-> exp[:}:ik(u - 717)] (1)

where u is our time variable and k = ||k|| is the Euclidean norm of the 3-momenta. (In. D
dimensions the time dependence is proportional to VAu times a v = p_i;_l_ Hankel function.)
As a bonus we apply our technology to determine all possible vacua for which the ghost

and graviton propagators obey the Ward identity relating them.

This paper is based on a previous one [2] whose notational conventions we shall follow.
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The invariant Lagrangian is:
1] 1 2 -

where the Hubble constant is H? = D’L—'TA’ our metric has spacelike signature and R is
the Ricci scalar formed from R% =T, +T9, r’ g~ (4 = v). Perturbation theory

1%

derives from the expansion:
Juv = Guv + Khyuy (3)
where gy, is an exact solution. We shall work in the open conformal coordinate system

where the background metric is:

1

g;w = E"}}";)'i' Nuv = n? v (4)

A peculiarity of this system is that while the spatial coordinate, ¥, can take any value in
(D — 1)-dimensional Euclidean space the time coordinate, u, runs only from zero to infinty.
It is also inverted with respect to physical time; that is, the far future is obtained by letting
u approach zero while the far past is probed by taking u to +co. The flat space limit is
obtained by substituting v = 71[ ~ r0 and taking H to zero while holding the flat space
time 1" fixed. Although the conformal coordinate system covers ouly half of the full de
Sitter manifold it is complete in the sense that nothing leaks inte or out of the submanifold;
surfaces of constant u are Cauchy surfaces. An important advantage of restricting physics
to this submanifold is that one avoids the linearization instability which has frustrated all

previous attempts to formulate quantum gravity on de Sitter space [2].

Although interactions are most easily described using the pseudo-graviton field, ¥, =

-2 huv, a slightly different rescaling gives the simplest formulation of the free theory:
D_3
Xur =077 hy (5)

The indices on hy, are raised and lowered with j,, but those of both ¥, and . are

raised and lowered with the Minkowski metric. It is of course completely trivial to convert
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the mode solutions, Green’s functions or propagators from one of these fields to any other.
As an example we consider the pseudo-graviton propagator, i[paA“"@ ] (z,z'), in the gauge
that will shortly be used. Up to a real term which depends upon the vacuum — and about
which we shall have more to say later — we have shown [2] that the four dimensional limit
of this object is Egr; times:
/
2 N2 ] oz (a5 B) o 2uu (o5 af

__ln[H (z—2) +ze] [26p by = 2Mpg T +m 20 —1p0 1%"| (6)
(Our notation is that (z — £/)2 = —(u — u/)? + || — &'||%, parenthesized indices are sym-
metrized and a bar over a standard tensor such as 7),, or 6p“ indicates the suppression
of its zero components.) To obtain the propagator for x,, in four dimensions we just

multiply by a conformal factor for each of the two fields in the expectation value:

D D
ilpoaf?](2,¢) =0T @) 0T @) i pra? (2, ) . (Ta)
— - 1 [ r2 ol 2 . = (o= B) _ -(lb’
D=4 87 2uu/ In [H (z —2')" + e [Zép 5 2 por 7 }
- . (o ) s
28, 85 — i den. \(7b
+ 472 (- _L./)2 + i€ [ p Yo Npa Nl } + (vac ep )( )

It is worth drawing attention to the remarkable simplicity of these results and their close
relation to the flat space limit.

In terms of the field x,u the quadratic part of the invariant Lagrangian is:

Lo = 3 xpop = 3" xw + P = T o

— . ) 2 N )
+ (Z52) " \po 0 = N 0w+ 2\ ow +-}(-\ +\ "7 \pﬂ) ‘P,y}
D-

+(--2-)2{%x“"xpd)w +iI ™ dud.L+ ot o, —--%,x”"\paaﬁ"‘qﬁ,,.‘} (8)

where ¢ = In(f2). The associa.ed action is invariant under a linearized transformation

characterized by a parameter ¢, (u.r):

6}(1“’ = —"26(“‘”) + ([)"2)6(;1 Q)T 2')}“’ ¢’ @p (9)




L

The simnlest gauge fixing functional seems to be —~%r}’“’FuF v where:

Fy = XPup = 5o+ (B52) X b9 + (BE2)Xp b (10)

With some partial integrations the quadratic gauge fixed action can be written as CGF =

%x‘“’ Du,ﬂm Xpo, Where we define the kinetic operator:

17(pgo) 1 : 1 -0 0 .
'Dwfa = [25;4( 61/ —-z;npun”" - mbﬂ oy 60/)‘500 DA

. 07 (pg o) D2 p (1)
+6,08,)" 8 D+ 3(53) 8. 8. 67 6" Dc
in terms of the following differential operators:
Da= [+ (23] (12a)
5= (0% +(25t)(2r2) | (12b)
Dc = [0 + (258 (Bt 4| (12¢)

Since the gauge fixed field equations can be written as the invariant ones plus terms which

vanish with F;:

0= 'D,ufm X po (13a)
652 1 14 D-2 D-—-2 o
B bxHY w) " 3lpr Ffp—(55*) Fluou) — (=) FF ¢, (13b)

we see that imposing the invariant field equations in F}, = 0 gauge is the same as solving

the gauge fixed equation (13a) and then imposing Fj, = 0 as a supplementary condition.

It should be obvious from the preceding discussion that we wish to study solutions to

Da,g,c = 0. The spatial plane wave solutions turn out to have the form:

. 7 ST s - D
\,,(u,.r ,k) Qn'l.u H Au gz,l. R a 1—_{71'] (14a)
x(,(u,f;lz) = %n’kuH&(Au) exp[ ST = zﬁﬁ + EQ—I 71'] (14d)
xc<u,f;§) =4/ %n'ku H(_Di_)_g(kﬂ exp{zlu . 1{”7 + :QTiW} (14c¢)
p] 7
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The normalizations are such that each of these goes to exp[—ikz? +ik- 7 ] in the flat space
g p

limit. In four dimensions these formulae reduce to elementary functions:

Xa (u,i? ,k?) — (1 + l*lﬂ) exp[ik(u - 31;) + ik - ;'z?} (15a)
x‘b\c(u,i" ; E) -7 exp [ik(u - 717) + ik - n'c'] (150)

Although the various modes differ for H # 0 it is simple to convert them into one another

using the standard recursion relations that all Bessel functions obey:
(0w + (5] vap = ik b (16a)

00 (B4 xpe = ik xep (165)

It turns out that one of these “raising” or “lowering” operators is always present whenever
g g op

modes of different types appear in the same equation.

A convenient reexpression of the field x,, is as follows:
oo = (8,67 — sl 1) e +28,°8,) e + (8,8 + prgTir) e (17)

(Note that we make no distinction between contravariant and covariant spatial indices i,

J, etc.) Substituting (17) in (13a) we obtain:
%(5; 6 — piz6,060 ‘J) Dacd +6,06, Dpel+ 58258 Deec =0 (18)

Although the tensor factor of the A term has zero components, the vanishing of the spatial
components is sufficient to enforce D, e}lj = 0. It follows that Dpg e;; = 0 = Dee.. The
most general solution to (13a) is obtained by superposing plane waves:

eaj(u,z) _/(’21:)—01% {._11?_1'(;';)\”(“ T L) +<‘r} (19a)

_— dD-1g . Lo
e;,(u,x):]WT{B‘(H\,,(‘H.I F) +c.c.} (19b)
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eelu, &) = fz—:r)%'% {c@ xe (.7 iF) + cc.} (19¢)

We must now enforce as a supplementary condition the vanishing of:

Fy = 5; {Eij i [au - (Q_2~:_2_)_11:] E;)}
+ﬁ% [a+(1rhhg+%i (5= W%‘( )]}

These equations can be satisfied, just as in flat space, by determining the temporal polar-

(20)

izations in terms of the purely spatial ones:

Bi(k) = AU(k)k; (21a)
O(F) = oy AT(R) + (B23) AT (k) ki k; (21b)

where k! = ki/k is the momentum direction vector.

The final step is to exploit the residual gauge freedom. Since the invariant field equa-
tions are unchanged by any transformation of the form (9) the only restriction on e, comes

from preserving the supplementary condition, Fj, = 0. The variation of this condition is:
bFy = —6,.Dae; =06, Dpeg (22)

And so we find the most general residual symmetry:

B dP—1k - Lo

ei(u,x = (i;r_j-[)_:_l- {a,(k)‘(a (u,ilf ;}\') +C.C.} (23(1)

- dP-1k —~ .
eg(u,x)zfa—;r—)-ﬁ—q {Z(k)\b(u T ;A)-{-cc} (23b)

Such a transformation induces the following change on the polarizations:
5Aj(F) = —2i kg ajy(F) + nij {,A, ap(R) = ik b(k)] (24a)
§B;(K) = —iki b(K) — ik w;(k) (24b)
§C(F) = ~2i k b(F) (24c)
7
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We can suppress the temporal polarizations entirely with the following choice:

ai(F) = o |~2455(F) &j + phy ki 45 (F) + (B3 B e(F) 7 R (25a)
b(k) = o |~ phs Ai(R) = (B=3) Aij (k) ki ks (25b
2% |~ D=z Auik) — (5=3) Aij (k) ki ks )

Note that once we have enforced B; = C' = 0 no further transformations are possible. It
follows that an irreducible characterization of all physical linearized solutions is given by

the transformed polarization:
Alj = Ayj — 2k(; Ajy ke + ki kj Agm ke b — g (m'j — ki kj) (Aee — Apm ke km) (26)
This is manifestly transverse and traceless, just as in flat space.

We emphasize that this is an invariant result even though it has been derived in a
special gauge using a conformally rescaled field variable. Our plane waves obey the invari-
ant field equations; one can check from (24a) that the transverse-traceless polarizations
are gauge invariant; and we have just proven that all other solutions can be gauged to
zero. Note that the general coordinate invariance of our solution set does not imply the
existence of a de Sitter invariant vacuum. These are logically distinct things, even as they
are for Minkowski gravitons. The general coordinate transformations we have considered
correspond to parameters ey(u,Z) which fall off for large ||Z||, whereas an element of the
de Sitter group cannot fall off because it affects points everywhere. For this theory no
normalizable states exist which are de Sitter invariaut {2]. Strange as this may seem, Allen
and Folacci have shown that the same thing happens for a massless, minimally coupled
scalar in de Sitter space [3]. Note that in neither theory does the absence of a de Sitter
invariant state prevent the background metric from being de Sitter. Indeed, the metric is

not even dynamical in the scalar model.

We can now understand the roles played by the various types of modes. The transverse-

traceless A modes represent dynamical gravitons. From (15a) it is apparent that they

8

N TR L R T TR I B I TR PA



behave badly in the infrared singular region of ku ~ 0. The B and C modes behave better
here; in four dimensions they act like massless fields on flat space. These modes represent
constrained variables; in the absence of linearized matter sources they are zero. We have
shown previously that their good infrared behavior is crucial in allowing the classical
theory to respond correctly to localized distributions of positive energy density [2]. The
appearance of different types of graviton modes is therefore essential to the correspondence

limit of quantum gravity on a de Sitter background.

One should not take the longest wave lengths too seriously. It is very doubtful that
any real process could establish a uniform de Sitter background throughout infinite space.
Even in such a background the longest wave length modes can not be excited by localized
causal processes. On the other hand, the problem at small u can be accessed causally and
so is undoubtedly real. Note that of the observed quanta, gravitons must dominate this
regime. The other particles are either irrelevant by virtue of possessing nonzero mass, or
else they act like massless fields in flat space by virtue of their conformal invariance. One
can see from the logarithm in (7b) that gravitons are more infrared sing alar than massless

fields in flat space.

We move now to the BRS formulation of the gauge fixed theory. At the linearized level

this is described by the Lagrangian:

brs

£2 = Ciznv - %"’w F/l F, + ?)‘“ zl‘p P:\ + é/tﬂ 5()’9 DB ‘9.0 (27)

(Note that the antighost 5" is not zero despite the bar; our convention that bars sup-
press the zero comiponents applies only to standard tensors such as 7, and the derivative

operator.) Only Y s and 8" change under the linearized BRS transformation:

6])1-3/\/;11/ = [29(;1,1/) - (D—'Z) 9“[ (’D.V) + 27];[1/ 91) (I)‘p (bc (280)

6\)[55“ = —-F* o¢ (28b)
9
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where 6¢ is the usual constant anti-commuting C-number.

By computing the retarded Green’s function and then analytically continuing we have

shown [2] that the x propagator has the form:

i[WA;"B] (z,2') = <vac|T [xpa(:c) x“ﬂ(:c')] |v=:1c>£§rl (29a)

= ilq(z, 7)) [,,,,cr';;/’] +iAy(z, o) [,,,Tgf’] +ilAe(z, ') [,,,Tgﬂ](ng)

where we make the following definitions for the three constant tensor factors:

[ Taﬂ] [2‘5 (a gaﬁ) - D‘%ﬁﬁpo’ ﬁaﬁ] (300)
o T5’| = 45,8 8 o (309)
[”"Tgﬁ] = 2(55%) [5p0 55 + pe3 nl’ﬂ'] [50“ 5 + Dt n"”] (30¢)

The three scalar functions whick multiply them can only be determined up to real terms
which depend upon the choice of vacuum. These terms are consequently real, analytic
and satisfy the appropriate homogeneous equation, Dy g ¢ = 0; they are also necessarily
symmetric in r and =’ and there is the further requirement that they derive from evaluating
the canonical field eperators in the presence of a normalizable state. We shall leave these
“R.A.H.” terms arbitrary for the time being and consider what constraints BRS invariance
places upon them. In odd dimensions we have no simple expression for the unambiguous

portions of the three propagator functions but for D = 2d we find:

: (2d - k — 2)! 4y £
N
WBa(z,7) ﬁ[‘lwuu] {>—4 (d - L—l‘k[(w——w’)z-{-ie]

_ %L:_i_))_ In[H? (2 ~ )2 + ée]} + (R.A.H.)a(Sla)

. d=1 ! k
. N1 1 qd-1 (2d - k - 3)! 4uu
i8y(z,7') = g | =] ?: TR |G |+ (RAR) (1)
bl

4ruu’ T — ‘1:’)2 + i€
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and, for D > 6:

d-1 ' k
N 1 -1 S (2d -k —4)!(k -1) 4uu
ZAC("E’ z ) = qr [471"(“1,,] k..‘_..(__z (d —_k - 1)! (IE — x/)z + i€ + (RAH)

(31¢)

For D = 4 these expressions assume the simple form:

: o 1 1 1 20 N2 ‘
iBale) 32 GV e n[H2 (2 - ) e + (R.A.H.)a (32a)
. o 1 1
iAp (2, 2) Py oo tie + (R.A.H.) be (32b)
from whence we infer expression (7b). The ghost propagator is even simpler:
N "N = NTE ()
i [pAg](m,x )= <vac T[Hp(.v) 6 (z )] ‘va.c>£l2m (R3a)
= iAq(z, ') gpa +iAy(z, ') 5p0 ap” (33b)

Unitarity clearly requires that we make the same choices for the R.A.H. parts of the

functions iAq and iAj in the two propagators.

Slavnov-Taylor identities derive from the presumed BRS invariance of the vacuum.

The one obeyed by the two propagators comes from transforming the operator X, "
Srs [x,,.,(x) 5"@:’)] = —xpo FM6¢ [29( o) = AD=2)8(, & 5) + 21po 6 m] g 6¢ (34)

Takirg expectation values and assuming a ERS invariant vacuum we see that the following

two quantities must be equal:

<vaclT[)(pa(;1:) Fl“(:z:')] ‘vac>£ =2 "( # Z’-I(,) 1Ay + 250“ 6(p0 E”_:,) 1Ay

%m P
+ 13 60 po ({au, + (252)-1}7] iAq — [au, - (%‘-‘i)ﬂ LAP\) (35a)
- 25,5, [au, - (9—2)57] idy — 26806, [au, - (Qgi)l“-l,] iAe
_<vac!T[{26(p’U) — 2(D=2)8(, 6 4 + 210 8 (p\u} aﬂ} lvac>£§m = =23,/ 3,yila

- 2(50“ 6(p0 -50) 1Ay — 'D_z:i (‘).0“ Moo ([au - (‘122—_2‘)}1]} AR [‘N + (Qi.‘.__).H iAb)

+ 25, 5,0 [0u + (BF2)E] ita + 2848, 8 0w+ (Bt E] i
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Comi)arison of the various tensor factors shows that equality implies the three scalar
functions depend upon their spatial arguments only through the difference, 7 — &', and

also reflect into one another under the raising and lowering operators (16):

(o + (P52)d] ifa(z,a') = - [a,, ~ (B2 iz, 2" (36a)
[0 + (23] idy(2,2') = = [0 = (BFh)E] ire(a,2') (365)

From (36) we see that the most general R.A.H. terms compatible with BRS invariance

pury

are parameterized by a single complex function R(k):
- gD-1
ooy d k . = N ok, .

(R.A.H.)r(x,x ) = f GrypT {R(k) XT(u,z ,k) ,\{r(u 7 k) + c.c.} (37)

where “r" stands for a, b or c. Many choices are possible, including (R.A.H.) = 0, which
r

corresponds to R(I.:) = 0. An interesting excluded choice is the O(4) vacuum we borrowed
[2] from the analogous solution of Allen and Folacci for the massless minimally coupled

scalar field [3]. (Of course there is no problem with the O(4) vacuum in the scalar model.)

It should also be noted that no choice can give a de Sitter invariant vacuum.

This work was partially supported by Department of Energy contract DE-FG05-86-
ER40272 and by NATO Collaborative Research Grant CRG-920627.
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