
...... ,ii IlL ....................

Mode Analysis and Ward Identities for

Perturbative Quantum Gravity in de Sitter Space

N. C. Tsamis*

DDE/ER/40272--167
Department ofPhysics

University ofCrete DE92 040503

IraklJon, Crete 71409

GREECE

and

R. P. Woodard**

Departmen_ of P11ysics

University of Florida

Gainesville, FL 32611

UNITED STATES

ABSTRACT: We study lineazized gravitons on the D-climensional open sub-

manifold spanned by de Sitter conformal coordinates. The physical modes are

found in the same way a_ for flat space by imposing exact g_,uge conditions on the

invariant field equations and then exploiting the residual gauge freedom of solu-

tions. The resulting polarization tensors h_ve vanishing _ero components amd are

transverse and tracelesn, just a.sin flat space. We al_o show that vacua exist such

_- that the ghost and graviton propagators obey the Ward identity re/ating them.
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Quantum gravity has beeu little considered in the search for an explanation of the

smallness of _he cosmological constant. The reasons for this seem to be the theory's well

known ultraviolet problems and the widespread belief that de Sitter space, the natural

background for A > 0, is such a strange environment that we can never hope to understand

physics on it. This is a great pity because the far infrared sector of quantum gravity is in

many ways the natural place to look for a resolution to what is, after all, a gravitational

problem.

We shall elsewhere establish that Einstein's theory can be used reliably in the far

infrared; here we seek to dispel the notion that it is significantly more difficult to understand

linearized gravitons on a de Sitter background than in flat space. We. make this point

by solving the theory, i_. toto, using the same methods that are employed in flat space.

(See, for example, chapter 10 of ref. [1].) The analysis is so simple that we have been

able to carry it out generally in D dimensions. The result is simple too: in conformal

coordinates and with a suitably rescaled field variable the modes can be written as plane

waves characterized by their spatial (D - 1)-momenta and by polarization tensors which

are identical to the polarization tensors of flat space. The only complicating feature is a

slightly different time dependence. In four dimensional flat space the plane wave solutions

are oscillatory; in four dimensional de Sitter space this oscillatory function acquires a time

dependent prefactor and a phase:

i , [::Ft

: where u is our time variable and k _ [1/_1[is the Euclidean norm of the 3-momenta. (In D

1 dimensions the time dependence i_ proportional to _ times a z, =/.)_2,/_1ttankel function.)

As a bonus we apply our technology _o determine all possible vacua for which the ghost

and graviton propagators obey the Ward identity relating them.

This paper is b,_sed on a previous one [2] whose notational conventions we shall follow.
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The invariant Lagrangian is,:

/_inr = _'_ R - (D- 2)(D- 1)H 2 v/-Z-_ (2)

where the Hubble constant is H 2 1 A= D---r , our metric ha._ spacellke signature r.nd R is

the Ricci scalar formed from R,_ v = I'_,/_ + I'_p FP_- (p _ u). Perturbation theory

derives from the expansion:

= + (3)

where g"_ is an exact solution. We shall work in the open conformal coordinate system

where the background metric is:

^ : (4)

A peculiarity of this system is that while the spatial coordinate, 2'_,can take any value in

(D- 1)-dimensional EuclMean space the time coordinate, u, runs only h'om zero to infinty.

It is also inverted with respect to physical time; that is, the far future is obtained by letting

u approach zero while the far past is probed by taking u to +c_. The flat space limit is

obtained by substituting u = _ - x0 and taking H to zero while holding the flat space

time x 0 fixed. Although the conformal coordinate system covers only half of the full de

Sitter manifold it is complete in the sense that nothizLg leaks into or out of the submanifold;

surfaces of constant u are Cauchy surfaces. An important advantage of restricting physics

to this submanifold is that one avoids the linearization instability which has frustrated all

previous attempts to formulate quantum gravity on de Sitter space [2].

Although interactions are most easily described using the pseudo-graviton field, ¢_, =

f_-2 h/L_, a slJghtly different rescaling gives the simplest formulation of the free theory:

The indices on h/jr are raised and lowered with gl_v but those of both _/'uu and X/Jr are

raised and lowered with the Minkowski metric. It is of course completely trivial to convert
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the mode solutions, Green's functions or propagators from one of these fields to any other.

As an example we consider the pseudo-graviton propagator, i o.&a3 (x, xt), in the gauge

that will shortly be used. Up to a real term which depends upon the vacuum -- and about.

which we shall have mol:e to say later -- we have shown [2] that the four dimensional limit

of this object is H2 times:gT_

(0/
(Our notation is that (x - xr) 2 - -(u- u') 2 + lIE- _'112, parenthesized indices are sym-

metrized and a bar over a standard tensor such as 72p_ or @_ indicates the suppression

of its zero components.) To obtain the propagator' for X_v in four dimensions we just

multiply by a conformal factor for each of the two fields in the expectation value:

8rr2uu t In (x- + - 2_pa

. + 4-_ (z- ._,)2.+ ie

. lt is worth drawing attention to the remarkable simplicity of these results and their close

relation to the flat space limit.

In terms of the field X#V the quadratic part of the invariant Lagrangian is:

•2 _ 1,,l_V \ _I_-- l,\.pa,l_ _pcr,plCi._v= ½xp_'"x._,p _ _ ,t,x,_,+ ¼x4,

where ¢ =- ln(17l). The associa,ed action is invariant under a linearized transformation

char.acterized by a parameter ctL(u,E):

tJX'l_v = -2e(t,_,v) + (D-2)e.(/, o,_,) - 2q/_uepop (9)
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The simplestgaugefixingfunctionalseems tobe -½tll'uF_Fv where:

F_,= )_%,p_ p_,+ )x%_,p+ )x%_,_, (lO)

With some partialintegrationsthe quadraticgaugefixedactioncan be writtena,'.;X:_F--=

_XI_PI_Z)/_up_Xp0",where we define the kineticoperator:

= _ _ I 6o_] 7)A
J

(11)

in terms of the foUowing differential operators:

(12c)

Sincethegaugefixedfieldequationscan bewrittenastheinvariantonesplustermswhich

vanishwithFl,:

0 = "D._̀ _.Xp(_ (13a)

(_S2nv i

= 6X_.u i-F(..v)-_l/_,.FPp-(-_2-)F(/_cpu)-(-D-_--2).l,uFPck.p(13b)

we see that imposing the invariant field equations in F/_ = 0 gauge is the same as solving

the gauge fixed equation (13a) and then imposing F_, = 0 as a supplementary condition.

It should be obvious from the preceding discussion that we wish to study solutions to

_A,B,C "-= 0. The spatial plane wave solutions turn out to have the form:

X,_ tt,,F. ; = rrk:u H t k'u exp ik...7- i + i 7r (14a)
-7- c

2
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The normalizations are such that each of these goes to exp[-ikx 0 + ik. a7] in the flat space

limit. In four dimensions these formulae reduce to elementary functions:

Xb,c tt,£; _ exp ik(u- ) +ik. (15b)
D--4

Although the various modes differ for H # 0 it is simple to convert them into one another

using the standard recursion relations that aM Bessel functions obey:

[Ou "4-(_O._)l] Xa,b = ik _b,a (16a)

It turns out that one of these "raising" or "lowering" operators is always present whenever

modes of different types appear in the same equation.

A convenient reexpression of the field ,_po is as follows:

- D----_']p_ _'J) _,:, + 26(9 6_ e_ + (17)

(Note that we make no distinction between contravariant and covariant spatial indices i,

j, etc.) Substituting (17) in (13a) we obtain:

l@p/_/ i "" ij b" i D B e_ + ½(D'-2 6tO b-I,DC ' 0 (18)

Although the tensor factor of the ,4 term has zero components, the vanishing oi the spatial

ij
components is sufficient to enforce IDA ea = 0. It follows that T_B e_ = 0 = Z_C ec. The

most general solution to (13a) is obtained by superposing plane waves'

e2(u,Z) = (2rr)D_1 .4iJ(k) \,., (,,, 2" ;_7) + c.c. (19a)

i {., .
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We must now enforce as a supplementary condition 'the vanishing of:

= - - t--r-s_j .I} (20)
1 ii " _Q_)

d-TJ2 { 77_ [Ou q" (-_'_)ii] 'a "t" eib,i -- ( _7_ ) [Cgu-- ( 1] Ce}

These equations can be satisfied, just aa in flat space, by determining the temporal polar-

izations in terms of the purely spatial ones:

B_(_)= A_(_)i7.,_ (21.)

C(k,) 7_ Ali(lc) -b ( D-3 "" " (21b)= _) AiJ(;) k_k_

where _i _ k ilk is the momentum direction vector.

The final slep is to exploit the residual gauge freedom. Since the invariant field equa-

tions are unchanged by any transformation of the form (9) the only restriction on ep comes

from preserving the supplementary condition, Fl_ .-=0. The variation of this condition is:

6F/.i= -6; DA ei - b¢)"DB eo (22)

And so we find the most general residual symmetry:

- ( )_/(,_,_.)= (2_.)c,__ a/(k)_,-,u,S,";_) +<.,:. (23<,)

e0(a,2' ) = (2rr)D_. 1 1,(k) \b(,,,.7 ;k) + c.c.

Such a transformation induces the following change on the polarizations:

bAij(k) = -2i k(i aj)(l_-:) + '#tj like, (,,,(_')- ik b(k)] (2,ta)

,_z_(_.)= -ix,,./,(;)- i_,.,;(;.) (24b)

_c(_)= -2i _,t,(;) (24_)
7
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We can suppress the temporal polarizations entirely with the following choice:

• "^]ai(f_) = _ (k) kj + ki Ajj(f_) + ( ki Aje(k) kj ke (25a)

Note that once we have enforced B_ = C I = 0 no further transformations are possible. It

follows that an irreducible characterization of ali physical linearized solutions is given by

the transformed polarization:

Aij -- Aij- 2k'(i Aj) t kg + lci kj Atm k'g km - D-_ - j Atr - rr,

This is manifestly transverse and traceless, just as in flat space.

We emphasize that this is an invariant result even though it has been derived in a

special gauge using a conformally rescaled field variable. Our plane waves obey the invari-

ant field equations; one can check from (24a) that the transverse-traceless polarizations

are gauge invariant; and we have just proven that all other solutions can be gauged to

zero. Note that the general coordinate :.nvariance of our solution set does not imply the

existence of a de Sitter invariant vacuum. These are logically distinct things, even as they

are for Minkowski gravitons. The general coordinate transformations we have considered

correspond to parameters ei_(u, _) which fall off for large II_ll, whereas an element of the

de Sitter group cannot fall off because it affects points everywhere. For this theory no
=

normalizable states exist which are de Sitter invaria,,_ [2]. Strange as this may seem, Allen

and Folacci have shown that the same thing happens for a massless, minimally coupled

scalar in de Sitter space [3]. Note that in neither theory does the absence of a de Sitter

invariant ._tate prevent the background metric from being de Sitter. Indeed, the metric is

not even dynamical in the scalar model.

We can now understand the roles played by the various types of modes. The transverse-

traceless A modes represent dynamical gravitons. From (15a) it is apparent that they

8
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behave badly in the infrared singular region of ku .._O. The B and C modes behave better

here; in four dimensions they act like massless fields on flat space. These modes represent

constrained variables; in the absence of linearized matter sources they are zero. We have

shown previously that their good infrared behavior is crucial in allowing the classical

theory to respond correctly to localized distributions of positive energy density [2]. The

appearance of different types of graviton modes is therefore essential to the correspondence

limit of quantum gravity on a de Sitter background.

One should not take the longest wave lengths too seriously. It is very doubtful that

any real process could establish a uniform de Sitter background throughout infinite space.

Even in such a background the longest wave length modes can not be excited by localized

causal processes. On the other hand, the problem at small u can be accessed causally and

so is undoubted.ly real. Note that of the observed quanta, gravitons must dominate this

regime. The other particles are either irrelevant by virtue of possessing nonzero mass, or

else they act like massless fields in flat space by virtue of their conformal invariance. One

carl see from the logarithm in (7b) that gravitons are move. infrared sin_alar than massless

fields in flat space.

We move now to the BRS _,0rmulation of the gauge fixed theory. At the linearized level

this is described by the Lagrangian:

L_2rs._ Linv-2._ _,lltVlF/, _v"4-_I_ [_,f _A "4-ali0b"p.0DB] 0P (27)

(Note that the antighost _0 is not zero despite the bar; our convention that bars sup-

press the zero components applies only to standard tensors such as T/it_and the derivatlve

operator.) Only kper and _P change under the linearized BRS transformation:

_brsXl,v = [2O(t,,v) -(D'-2)F)(t, _9v ) + 2']U,,OP (Z_p]6q" (28a)

bbrs_f' = - ru t,C, (28b)
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where 6_ is the usual constant anti-commuting C-number.

By computing the retarded Green's function and then analytically continuing we have

shown [2] that the X propagator has the form:

I / C_o_

where we make the following definitions for the three constant tensor factors:

_p,_ (30_)

= _)[_o_o. _ _,][_oo_o_+.___o_] (3o_)
The three scalar functions which multiply them can only be determined up to real terms

which depend upon the choice of vacuum. These terms are consequently real, analytic

and satisfy the appropriate homogeneous equation, "DA,B, C = 0; they are also necessarily

symmetric in x and z _and there is the further requirement that they derive ft'ore evaluating

the canonical field operators in the presence of a normalizable state. We shall leave these

"R.A.H." terms arbitrary for the time being and consider what constraints BRS invariance
.

places upon them. In odd dimensions we have no simple expression for the unambiguous

portions of the three propagator functions but for D = 2d we find:

d-1 k

iAa(x,x') = _ _V _--_ (d- k- 1)!k (x-- z') 2 + ie• k=l

- 11, i l} o-- Irl III 2 (x - x,f) 2 + ,+. ) (31ct)

{ { )iab(X'X') = _ _ k=l (d- k 1)! (x ,r')2 + ie + R.A.H. (3lh)
= - - b
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and, for D > 6:

[ k- 4)! R.A.a.i_Xc(x,_')= _ ___ Z (,t- k- _)! (__ _,)2+ i,
_=2 (31c)

For D = 4 these expressions assume the simple form:

iA.(_ z') ----, --- )2+ i_ 8_Zuu, ,,' 0=4 4r 2 (x -- x I

lAb, c(z' zl) --'* --- b,cO=, 47r2 (x- x') 2 + ie + R.A.H. (32b)

from whence we infer expression (7b). The ghost propagator is even simpler:

--i_aCx, x')_p + iAb(x,x')6p 0 _0°_ (33b)

Unitarity clearly requires that we make the same choices for the R.A.tt. parts of the

functions _a and lab in the two propagators.

Slavnov-Taylor identities derive fxom the presumed BRS invariance of the vacuum.

The one obeyed by the two propagators comes from transforming the opera¢or Xpa_:

"1

(34)

Taking expectation values and assuming a I_RS invariant vacuum we see that the following

two quantities must be equal:

q- __3 (_o"Vlf,a ([cO,,, + (_Q_)I] iz_a - [cO,,,- (-Q_)_] i_c) (35a)

9-2 ) [cOu' 0-4 )

-- 2ti0_L/)(p ) -- 77"---5 - --

35b)
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Comparison of the various tensor factors shows that equality implies the three scalar

functions depend upon their spatial arguments only through the difference, _- _, and

also reflect into one another under the raising and lowering operators (16):

From (36) we see that the most general R.A.H. terms compatible with BRS invariance

are parameterized by a single complex function R(k):

where "r" stands for a, b or c. Many choices are possible, including (R.A.H.) 0, which
r

corresponds to R(k') = 0. An interesting excluded choice is the O(4) vacuum we borrowed

[2] from the analogous solution of Allen and Folacci for the massless minimally coupled

scMar field [3]. (Of course there is no problem with the 0(4) vacuum in the scalar model.)

It should also be noted that no choice can give a de Sitter invariant vacuum.

This work was partially supported by Department of Energy contract DE-FG05-86-

ER40272 and by NATO Collaborative Research Grant CRG-920627.
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