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ABSTRACT

Calculations are performed to predict the distribution of the (5p)5(5d)- (5p)5(6p) 
emission cross section in Xe in a strong magnetic field. For isotopes with no nuclear 
magnetic moment, the question is the calculation of Lande g factors. This is done 
with wavefunctions obtained by diagonalizing the electrostatic interaction in jj 
coupling, leading to reasonable accurate Lande g factors. For levels discribed by 
quantum numbers J and M, the Zeeman interaction is always diagonal in M, and with 
a 6 kG magnetic field the Zeeman interaction is effectively diagonal in J (the non­
diagonal matrix elements are negligible), so the resulting cross section calculations are 
simple. For the isotopes with non-zero magnetic moments, one must determine the 
dipole and quadrupole hyperfine splitting coefficients. To do this, and to improve the 
overall fit of the calculated and measured energy levels, it was necessary to include 
configuration interaction between terms of the (5p)5(5d) and (5p)5(6s) configurations. 
Comparisons are made between these calculated hyperfine parameters and experiment. 
Hyperfine splittings are tabulated as are the cross sections and energy shifts due to 
hyperfine interaction in each transition. When hyperfine interaction is included and 
levels are characterized by the quantum numbers F and MF, the Zeeman interaction is 
diagonal in MF, but there are large non-diagonal components between levels of the 
same MF but different F. All these effects were included in the calculations leading 
to a particularly rich spectrum for Xe(131) with I = 3/2. For example, the 
(5p)5(5d)j-4- (5p)5(6p)j_3 transition is split into approximately 336 components.
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1) Introduction

Because of the large number of possible transitions, Xenon in a strong 
magnetic field is a messy system to model as an IR laser. Here I examine 
the effect of a moderate (5-10) kG longitudinal magnetic field on oscillator

5 5strengths and gain cross sections for the (5p) (5d) -(5p) (6p) lasing 
transitions in Xe. At these moderate fields a linear analysis of the Zeeman 
effect should be sufficient, i.e., one needs megagauss fields to see 
quadratic Zeeman effects. But, before doing the Zeeman effect analysis, 
there are some other effects which need to be estimated.

First, at X = 2m, corresponding to 0.45 eV or 3630 cm-1, the Doppler

width is AEp = 0.024 (kT(eV))1,/2 cm-1, which is small even at kl = 1 eV

(0.025 cm-1). At room temperature (0.025 eV), the Doppler width is 0.004

cm-1, which is comparable to the linewidth due to a level's natural lifetime

corresponding to a decay rate (Einstein coefficient) of 55xl0^/sec.

Second, there are a number of stable isotopes with significant 
fractional concentrations, leading to isotope shifts in spectral lines. I

list the isotopes in Table (l)1.

Table (1)

Mass Percent Spi n

128 1.92 0
129 26.44 1/2
130 4.08 0
131 21.18 3/2
132 26.89 0
134 10.44 0
136 8.87 0
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Cowan points out that the isotope effect is difficult to calculate. The 
easy part to calculate is that due to mass effects in the definition of the 
Rydberg where the reduced mass is replaced with the electron mass, i.e., the 
measured energy difference is [M/(M + me)] AE(M=co). Then in using M + 6M

for a different isotope, one has for the isotope shift,
6(AE) = me 6M/[(M + me)(M + 6M + me)].

(1)

For M = 131, 6M = 3, and AE(M=a>) = 104 cm-1, then 6(AE) = 0.001 cm-1. 

Contributions to the isotope shift from the other effects may be larger, but 
unless they are larger than the above by a factor of 25, they can be

3
neglected. Experimentally, Jackson et al indicate that the isotope shifts

are smaller than 0.006 cm-1 for the levels studied here.

Third, two of the prominent isotopes, 129 and 131, have non-zero 
nuclear spin. This leads to a significant hyperfine splitting, and a 
considerable increase in the complexity of the analysis. If one is 
concerned over radiation trapping/detrapping the hyperfine splitting can be 
important since the mass 129 and 131 isotopes constitute 50 1 of the Xenon. 
Hyperfine splitting effects will be discussed in secs.(5)-(8).

In secs.(2)-(4) the calculations of emission rates in a magnetic field 
are done neglecting hyperfine effects. The most useful results from 
secs.(2)-(4) are likely to be in Tables (4) and (8), which give the Lande g 
factors, and in Table (9a) which lists Einstein coefficients and room 
temperature emission cross sections. Tables (10a) and (11a) list the 
hyperfine splittings for Xe(129) and Xe(131), respectively, and the 
(extensive) Tables (12a) and (12b) list emission cross sections between 
hyperfine components for Xe(129) and Xe(131), respectively, without a 
magnetic field. Because the possible transitions between hyperfine 
components of Xe(129) and Xe(131) in a strong magnetic field are so 
numerous, they are not tabulated; a selection is shown in figs.(2a)-(3c).

H
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2) The Case of Zero Magnetic Field

The excited terms of the noble gases are described by wavefunctions of 

the form Unp)52?, ,(nV ) 21'. ;LSJM> = |2P,V;LSJM> and |(np)5J

There is a real difference between these wavefunctions as is

obtained by adding Jc and j' directly, without introducing L and S, while 

2 2| P, ^';LSJM> does not involve Jc and j. However, one can find a linear

relation between the wave functions,i.e.,

|J ,/j;JM> = [(2J +1)(2j + l)]1/2 Z [(2L+1)(2S+1)]1/2 
c c L,S

{/' 1/2 j1"} | P, ;LSJM>,
L S J

(2)

a b c
where {d e f} is a 9-j symbol. The reason two wavefunctions are introduced 

g h i
is that the dominant effect in the spectrum of the noble gas atoms is the 
spin-orbit splitting of the core, i.e.,

<j;y'j";J"M"|Hso|Jc,rj;JM> = iij Sy,. 6^ 6M„M h(Jc,/j)
c c

(3)

For the noble gases Condon and Shortley give the h(Jc,y’,j) values in Table

(2)

Table (2)

Jc J

1/2 r-1/2 Snp- (1/2) (/'+!) 5„.

1/2 r+1/2 W + (1/2) ^ Vr

3/2 ^'-1/2 -!np/2 - (1/2) (/'+!) 5

3/2 ^'+1/2 -5„p/2+ (1/2) P' Sn.r

9



where $npis the spin-orbit parameter for the subshell. For the noble gases 

the dominant effect on the level structure is the 3Snp/2 splitting due to

the two Jc values. In the later numerical analysis I use = 7025 cm-1

(from the 2p3/2-2pi/2 sP^ttin9 °f the Xe ''on)« $55 = $gp = 369 cm-1, and

$5d = 39 cm-1 (from the splitting of the Cs neutral atom spectra), all data

5
taken from Moore's Tables.

The next largest effect on the spectrum is due to the electrostatic 
effect. Here the interaction matrix elements are

j";j"M"|Hei |Jc,r j;jm> = [(2Jc+i)(2j+i)(2j^i)(2j"+i)]1^

1 1/2 J 1 1/2 J"
I [(2L+1)(2S+1)]1/2 Z [(2L, + 1)(2S' + 1)]1/2 {/1/2 jC} {^'1/2 jC} 

L,S L',S' LSJ L'S'J"

<2P,2^';LSJM|Hel|2P,2/';L'S'J"M">.

(4a)
But the electrostatic matrix element is diagonal in IS coupling

<2P,V ;LSJM||Hel||2P,2r ;L'S'J"M"> = Sjnj 6M»M 6L„L 6S„S h(^'LS)

so

<J^^,j,,;J"M"|He1|Jc^'j;JM> = 6M„M[(2Jc+l)(2j+l)(2JVl)(2j"+l)]

(4b)

1/2

1 1/2 Jr 1 1/2 J"
I (2L+1) (2S+1) h(^'LS) {n/2 J } {-f'1/2 jC}.

L, S L S J L S J
(4c)

The electrostatic interaction is diagonal in J and M but mixes terms of 
different Jc and j. This is discussed in detail in Ref.(6). In consequence,

Jc and j are no longer good quantum numbers, while the new eigenvectors are

|i,JM>, where
|i,JM> = jZ^ C(i,Jcj;J) |Jc,rj;JM>,

(5a)

ft

/
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and the C(i,Jcj;J) are mixing coefficients found by diagonalizing the

interaction matrix. Tables (3), (4), and (5) (which are modifications of 
Tables (3a), (3b) and (3c) of Ref.(6)) list mixing parameters (relative 
energies, mixing coefficients, and Lande g factors with and without (in

5 5parenthesis) the interaction) calculated for the (5p) (6s), (5p) (6p), and 

(5p)5(5d) terms of Xe.
5

The measured level energies from Moore's Tables are listed. The new 
levels resulting from the diagonalization of the electrostatic interaction

5
are labeled (i,J). The calculated energy of the (1,2) level of (5p) (6s),

the (1,3) level of (5p)5(6p), and the (1,4) level of (5p)5(5d) have been 

adjusted to the experimental value. J is a good quantum number, and i
5

increases with increasing binding energy. Moore's Tables identify levels 
by specifying energy relative to the ground state, Paschen notation, e.g. 
Zp^Q, and a designation in jl coupling. The latter is a coupling scheme

which first couples the core J to the valence electron 1 to determinec
another quantum number, k; this is then coupled to the spin of the valence 
electron to determine J. Thus, in place of the jj coupling notation (Jcj,

J), one has the jl coupling expression (Jc,kJ). There is a slight

advantage6 to using jl coupling in place of jj coupling for the J = 1 level

of (5p)6(6p) and the J = 2 level of (5p)6(5d). However, both the jj and jl 

designations are meaningless when significant configuration interaction 
occurs, while their use implies the sufficiency of a single configuration 
description. Thus it seems pointless to continue identifying levels with a 
jl coupling scheme. Thus, in addition to the (i,J) designation of levels, 
the tables herein also list the energy of the level relative to the ground 
state, and the Paschen notation (which orders rather than describes levels), 
e.g. 2p10/77270.

The Lande g factor is given by

g.(iJ) =1 (2L+1)(2S+1) [3J(J+1)+S(S+1)-L(L+1)]/[2J(J+1)]
L,S

11



C(i,Jcj;J)[(2Jc+l)(2j+l)] 1/2 1 1/2 Jr 
{Tl/2 jC} 
LSJ

(5b)
and a comparison of gL(iJ) with gL(Jcj,J) is an additional measure of the

mixing of the wavefunctions. If there are several configurations 
contributing to a term the Lande g factor is the sum of contributions, given 
by eq.(5b), from each configuration, that is there is no intererence.

5
Table (3) Results of the Matrix Diagonalization for the (5p) (6s) Levels

Level J,.c j J K4falc) Kr^xpl 5) GL(calc) Gl (expl5) Comp.
J J c’J

C(i, Jcj;J)

1,2 3/2 1/2 2 -4275 -4275 1.500 (3/2) :1.500 3/2,1/2 1. 000

ls5 /67068

1,1 1/2 1/2 1 6822 5843 1.299(1.333) :1.321 1/2,1/2 -0. 9975

ls2 /77186 3/2 ,1/2 0.0710

2,1 3/2 1/2 1 -3310 -3297 1.201(1.167) :L.204 3/2,1/2 0. 9975

ls4 /68046 1/2 ,1/2 0.0710

1,0 3/2 1/2 0 6263 4857 3/2,1/2 1. 000
ls3/76197

*/
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5
Table (4) Results of the Matrix Diagonalization for the (5p) (6p) Levels

Level J c j 3 Kr^a,c) K^XP1 5) GL(calc) G L(expl5) Comp. .
J J c,J

:(i,ocj;J)

1,3 3/2 3/2 3 -3511 -3509 4/3 (4/3) 1.336 3/2,1/2 1.000
2pg/78403

1,2 1/2 3/2 2 7415 7520 1.173(1.167) 1.195 1/2,3/2 -0.9993
2p3/89163 3/2,1/2 -0.0338

2,2 3/2 3/2 2 -2567 -2701 1.371(1.333) 1.379 3/2,3/2 0.9889
2p6/79212 3/2,1/2 -0.1471

3,2 3/2 1/2 2 -3730 -3793 1.123(1.167) 1.106 3/2,1/2 0.9885
2p9/78120 3/2,3/2 0.1477

1,1 1/2 3/2 1 7360 7366 1.462(1.500) 1.552 1/2,3/2 -0.9902
2p2/89279 3/2,1/2 0.0868

2,1 1/2 1/2 1 6685 6467 0.640(0.667) 0.790 1/2,1/2 -0.9960
2p4/88380 1/2,3/2 -0.0742

3,1 3/2 3 2 1 -3021 -2956 1.097(1.333) 1.022 3/2,3/2 0.7774
2p7/78957 3/2,1/2 0.6155

4,1 3/2 1/2 1 -4551 -4645 1.800(1.500) 1.852 3/2,1/2 0.7833
2p10/77270 3/2,3/2 -0.6205

1,0 1/2 1/2 0 8807 7948 1/2,1/2 0.9881
2PJ/89861 3/2,3/2 0.1539

2,0 3/2 3/2 0 -608 -1794 3/2,3/2 -0.9881
2pc-/80119 1/2,1/2 0.1539

13



5
Table (5) Results of the Matrix Diagonalization for the (5p) (5d) Levels

Level J c j J K,4?a'c> Kr-Jfxpl 5) GL(calc) G L(expl5) Comp. .
Jc’j

1,4 3/2 5/2 4 -3826 -3826 5/4 (5/4) 3/2,5/2 1.000
3d^/80197

1,3 1/2 5/2 3 7438 7724 1.121(1.111) 1.126 1/2,5/2 0.9978
3s^‘ 791747 3/2,3/2 -0.0563

2,3 3/2 5/2 3 -2120 -1592 1.257(1.239) 3/2,5/2 0.8967
3d'/82431 3/2,3/2 -0.4384

3,3 3/2 3/2 3 -3772 -3052 1.039(1.067) 3/2,3/2 0.8970
3d4/80971 3/2,5/2 0.4410

1,2 1/2 5/2 2 7206 7425 1.256(1.289) 1.274 1/2,5/2 -0.9881
3s^ ’ 1 791448 1/2,3/2 0.1023

2,2 1/2 3/2 2 7014 7130 0.777(0.767) 1/2,3/2 0.9922
3s^791153 1/2,5/2 0.1036

3,2 3/2 3/2 2 -2712 -2097 0.951(1.066) 3/2,3/2 0.8985
3d''/81926 3/2,5/2 0.4336
4,2 3/2 5/2 2 -3635 -3700 1.348(1.211) 1.376 3/2,5/2 0.8944
3d3/80323 3/2,3/2 -0.4321

1,1 1/2 3/2 1 9548 9596 0.856(0.833) 1/2,3/2 0.9761
3s^/93619 3/2,5/2 0.2165

2,1 3/2 5/2 1 - 236 - 133 0.764(1.067) 3/2,5/2 0.8533
3d2/83890 3/2,3/2 0.4826

3,1 3/2 3/2 1 -4368 -4036 1.381(1.211) 1.395 3/2,3/2 0.8757
3dc/79987 3/2,5/2 -0.4742

1,0 3/2 3/2 0 -4812 -4251 3/2,3/2 1.000
3d6/79772

J
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One should note that there is significant mixing of some of the level pairs 
5 5of the (5p) (6p) and (5p) (5d) configurations.

In comparing the calculations in Tables (3)-(5) with experiment, it is 
seen that there are 3 major disagreements. First, the levels (1,1) and

5
(1,0) of (5p) (6s) are calculated to be higher than the measurements.
Clearly some additional interaction is pushing these levels to lower energy. 
I will return to this point. The second major disagreement between the 
calculations and experiment are the energy of the J = 0 levels of the

5
(5p) (6p) configuration; this is expected since no configuration interaction 
with the ground state is included, and this point is not pursued further.
The third major disagreement between calculation and measurement occurs for

5
the Lande g factors for the two higher energy J = 1 levels of (5p) (6p), 
even though their calculated relative energies are in excellent agreement 
with the measured values. The calculations indicate little mixing of the jj 
wavefunctions for the 2 higher levels, (1,1) and (2,1), but extensive mixing

13for the 2 lower levels, (3,1) and (4,1). But as listed in sec.(6 ) of
4

Condon and Shortley the electrostatic matrix element between the

(1/2,372,1) and (1/2,172,1) levels of (p)5p' is zero. Thus, even though the 

levels (1,1) and (2,1) are close in energy, there is no significant mixing 
since the interaction matrix element is zero. The Lande g factors obey a 
sum rule, since

I C(i,Jcj;J) C(i,J^j';J) = 6j ^

(5c)
then

Ig,(iJ)= Z A(LSJ) [3J(J+1)+S(S+1)-L(L+1)]/[3J(J+1)], 
i L,S

(5d)
where A(LSJ) indicates that L, S and J satisfy triangular inequalities. For 
the excited states of the noble gases, the sum rule values for gL(iJ) are

listed in Table (6).

15



Table (6) Sum Rule for Lande g factor for the noble gases

J

r + 2 

r + 1

r -1 

r - 2

I gL(iJ)

(J + 1)/J

(3J2 + 4J + 2)/J(J + 1)

2 (2J2 + 2J + 1)/J(J + 1) 

(3J2 + 2J + 3)/J(J + 1) 

(J2 + 1)/J(J + 1)

5
For the J = 2 and J = 1 levels of (5p) (6p) the sum rule values are 3.667 
and 5. The calculations lead to 3.667 and 4.999, while the sums of 
experimental values are 3.680 and 5.216, with an excess of 0.216 for the J =

5
1 levels. The levels (1,1) and (2,1) of the (5p) (6p) configuration are

5
close in energy to levels (3,1) and (4,1) of the (5p) (7p) configuration.

For the latter 2 levels, the sum of the Lande g factors (0.903 and 1.728)5 

equals 2.631, lower than the sum rule value (for Jc = 3/2 only) of 2.833 by

0.202, so that weak configuration interaction (Cl) between nearby levels
5

could account for most of the increase for the J = 1 levels of (5p) (6p).
5

These calculations do not include Cl effects on the (5p) (6p) levels. This 
neglect of Cl has interesting consequences, but they are not relevant to the 
important lasing transitions.

To account for the error in the calculated energy of the (1,1) and
5

(1,0) levels of (5p) (6s), and to have an accurate description of the
5

(5p) (5d) upper lasing level wavefunctions, one must include Cl between
5 5adjacent (5p) (5d) and (5p) (6s) levels, with the former (latter) built on 

the Jc= 3/2 (Jc= 1/2) core. The Cl matrix element in LS coupling is

<(nl^l)mLlSl’n2^2’LSMLMslHCll(nl^l)mpi°l’n3^3’L'S,ML|MS'> =

m-1, ^ I i C »Vl 6s's ml6m^ m$ m L'?s^ ^i Lisil^iLisi) ^i Lisil^ipi°i)
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(-D ^ ^ [(2L1+1)(2P1+1)]1/2 KLS,^^),

(6a)

where |}^L1S1) is a coefficient of fractional parentage? In LSJM

coupling it is

<(nl^l)mLlSl’n2^2’LSJMlHCll(nl^l)'"PlQl’n3^3’L,S'J,M'> =mr

6L'L 6S'S 6J'J 6M'M m

*2 ^3

rn~" 1. i c i 11 ,fTl 1 j i c ■ ! 1 rLisil^iLiV Lisil^ipi°i)

1/2(-1) [(2L1+l)(2P1+l)] I(LS,^1^2^3)

(6b)
However, in JJ coupling the matrix element has the more imposing form 

^m, ^ ,m.<(0^^ L1S1J1,n2^2j2,JM|HCI ((n^^ P^jJ j ,n3^3J3,J'M' > =

m-1J'O 5M'Mm L^s; (/T‘4Sim'LlSl) (-»

[(ZLj+lHZPj+l)]1'2 [(2J1+l)(2j2-H)(20;+l)(2j3+l)]1/2

~^2 ^3

L S J P Q J'
Z (2L+1)(2S+1) hU'LS) y?] {^1/2 j^} KLS,^^),

L, S .t? J2> i'c3 J3JL S J L S J

where

IdS,^^) = (2^1+l) [(2^+1 )(2^3+l)] 1/2

re t n ^2 ^3 4 L L1 P1 y , k . ;k L. P., fk L. Pn
[ 44 (-1) " ('1> {4 ^ 4 4}

(6c)

+ (-1)
-4-4

,1/2 rS' 1/2 Q. 4 L1 Ll.
[(2S1+1)(2Q1+1)] Z e, {^1^4} {^4 4}]

K 1 '3 L K!

(6d)
with

-^1^1, /2k'f3 ^1^3, /lk4,
dk 4 0 0* 4 0 0* ’ ek _ 4 0 0* 4 0 o' Rk*'fl'f2’'f3'fl'

(6e)
where

17



For 

coup!ing

I

k(Vb’Vd} ^a(x) ^c(x) 0fdy 0b(y) 0d(y) R^/R^+1.

(6f)
= 1, = 2> and ^3 = 0» the interaction matrix elements in JJ

are listed in Table (7).

18



)

5 5Table(7) (np) (n'd)-(np) (n"s) Interconfiguration Interaction in JJ Coupling

J1 ^2 Ji j3 J Matrix Element

3/2 5/2 3/2 1/2 2 [21/625]172 R2(pd,ps)

3/2 3/2 3/2 1/2 2 -(2/25) R2(pd,ps)

1/2 5/2 3/2 1/2 2 [24/625]172 R2(pd,ps)

1/2 3/2 3/2 1/2 2 -(1/25) R2(pd,ps)

3/2 5/2 3/2 1/2 1 [l/125]I/^[R2(pd,ps) - (20/3) R^pd.sp)]

1/2 1/2 1 -[8/125]i^[R2(pd,ps) - (5/3) R^pd.sp)]

3/2 3/2 3/2 1/2 1 [4/125]1/2[R2(pd,ps) - (10/9) R^pd.sp)]

1/2 1/2 1 -[2/125]I/^[R2(pd,ps) +(10/9) R^pd.sp)]

1/2 3/2 3/2 1/2 1 (1/5) [R2(pd,ps) - (20/9) R2(pd,sp)]

1/2 1/2 1 [8/81]1/2 R^pd.sp)]

3/2 3/2 1/2 1/2 0 -[2/25]172 R2(pd,ps)

As a consequence of the Cl the Table (3) and (5) calculations are 
merged into Table (8).
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5 5Table (8) Results of the Matrix Diagonalization for the (5p) (5d)+ (5p) (6s) 
Level Jc j J Kr^alc) Kr^xpl) GL(calc) GL(expl) Comp. Coefficient

d, 1,4 3/2 5/2 4 -3826 -3826 5/4 (5/4) d,3/2,5/2 1.000

3d^/80197

d,1,3 1/2 5/2 3 7438 7724 1.121(1.111) 1.126 d,1/2,5/2 0.9978
3s^1'/91747 d,3/2,3/2 -0.0563

d,2,3 3/2 5/2 3 -2120 -1592 1.257(1.239) d,3/2,5/2 0.8967
3d|/82431 d,3/2,3/2 -0.4384

d,3,3 3/2 3/2 3 -3772 -3052 1.039(1.067) d,3/2,3/2 0.8970
3d4/80971 d,3/2,5/2 0.4410

d,1,2 1/2 5/2 2 7239 7425 1.258(1.289) 1.274 d,1/2,5/2 -0.9863
3d'1 ''/91448 (7206) (1.256) d,1/2,3/2 0.1165

d,2,2 1/2 3/2 2 7014 7130 0.777(0.767) d,1/2,3/2 0.9906
3s^'/91153 (7014) (0.777) d,1/2,5/2 0.1178

d,3,2 3/2 3/2 2 -2712 -2097 0.951(1.066) d,3/2,3/2 0.8967
3d'1/81926 (-2712) (0.951) d,3/2,5/2 0.4373
d,4,2 3/2 5/2 2 -3540 -3700 1.347(1.211) 1.376 d,3/2,5/2 0.8901
3d3/80323 (-3635) (1.348) d,3/2,3/2 -0.4348

s,5,2 3/2 1/2 2 -16957 -16955 1.4999( 3/2 ) 1.500 s,3/2,1/2 0.9958
15^/67068 (-16828) (1.500) d,3/2,5/2 0.0727

d,1,1 1/2 3/2 1 9556 9596 0.856(0.833) d,1/2,3/2 0.9763
3s^/93619 (9548) (0.856) d,3/2,5/2 0.2145

d,2,1 3/2 5/2 1 - 227 - 133 0.777(1.067) d,3/2,5/2 0.8592
3d2/83890 (-236) (0.764) d,3/2,3/2 0.4703

d,3,l 3/2 3/2 1 -3762 -4036 1.358(1.211) 1.395 d,3/2,3/2 0.7899
3d5/79987 (-4368) (1.381) s,1/2,1/2 -0.4658

d,3/2,5/2 -0.3929
s,4,1 1/2 1/2 1 -6292 -6837 1.307(1.333) 1.321 s,1/2,1/2 -0.8799
1s2/77186 (-5733) (1.299) d,3/2,5/2 0.2445

s,5,1 3/2 1/2 1 -15933 -15977 1.206(1.167) 1.204 s,3/2,1/2 0.9940
1S./68046 (-15868) (1.201) s,1/2,1/2 0.0789
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Table (8) continued
d,1,0 3/2 3/2 0 -3863 -4251 d,3/2,3/2 0.8603
3d6/79772 (-4812) s,1/2,1/2 0.5097

s ,2,0 1/2 1/2 0 -7143 -7826 s,1/2,1/2 0.8603
1S-/76197 (-6292) d,3/2,3/2 -0.5097

To complete this section Table (9a) lists some calculated Einstein 
emission coefficients and emission cross sections and compares the Einstein

g
coefficients with the dipole length calculations of Aymar and Coulombe, 
while Table (9b) lists calculated radiative lifetimes and compares them with 
calculations of Ref.(6) and measurements. The cross sections are calculated 
from

"ijlC'"2) = 8X10-18 f1:i/rDopp(Ry)

where f.. is the emission oscillator strength and rDopp(Ry) is the Doppler

width in Rydbergs, calculated at room temperature. It is assumed that the 
Doppler width is the dominant broadening mechanism; if it is not dominant, 
then the Doppler width should be replaced by the appropriate width. The 
above formula is obtained from oscillator density continuity, and a factor 
connecting continuum oscillator strength and cross section.
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Table (9a) Some Einstein Coefficients 
(5p)5(5d) (5p)5(6p) X(microns) A(106/sec) A(106/sec) o(10_12cm2)

Term Term
1,4 1,3 5.571
1,3 3,2 0.7338

1,3 1,3 0.7495

1,3 2,2 0.7978

1,3 1,2 3.869
2,3 3,2 2.320
2,3 1,3 2.483
2,3 2,2 3.107
3,3 3,2 3.508
3,3 1,3 3.897
3,3 2,2 5.69

1,2 4,1 0.7053

1,2 3,2 0.7503
1,2 1,3 0.7666
1,2 3,1 0.8006
1,2 2,2 0.8173
1,2 2,1 3.258

1,2 1,1 4.610
1,2 1,2 4.373
2,2 4,1 0.7203
2,2 3,2 0.7673
2,2 1,3 0.7843
2,2 3,1 0.8199
2,2 2,2 0.8375
2,2 2,1 3.605
2,2 1,1 5.336
2,2 1,2 5.023
3,2 4,1 2.148
3,2 3,2 2.627
3,2 1,3 2.839
3,2 3,1 3.368
3,2 2,2 3.685

0.348
Ref.(7)

0.207 90.0
0.0303 0.554 0.0179
0.191 0.166 0.120
0.0076 0.0214 0.0058
1.03 0.699 89.1
0.400 0.192 7.45
1.24 0.479 28.4
1.20 1.14 53.6
1.11 0.737 71.5
0.0173 0.102 1.53
0.0613 0.00051 16.8
1.10 0.00087 0.576
0.144 0.0034 0.091
0.0819 0.00006 0.055
0.749 0.114 0.574
0.777 0.0044 0.633
0.0030 0.101 0.153
0.524 0.0024 76.8
0.0906 0.044 11.3
0.217 0.00087 0.121
0.102 0.0034 0.069
0.0071 0.00006 0.0051
0.195 0.114 0.161
0.0076 0.0044 0.0067
1.09 0.101 76.5
0.0112 0.0024 2.53
0.057 0.044 10.9
0.070 0.0526 1.04
1.11 0.742 30.1
0.0460 0.0343 1.57
0.983 0.681 56.1
0.0042 0.0068 0.312
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Table
4,2 4,1 3.275
4,2 3,2 4.54
4,2 1,3 5.21
4,2 3,1 7.32
4,2 2,2 9.00

1,1 4,1 0.6117

1,1 3,2 0.6452

1,1 3,1 0.6820

1,1 2,2 0.6941

1,1 2,0 0.7407

1,1 2,1 1.908

1,1 1,1 2.304

1,1 1,2 2.244

1,1 1,0 2.660

1,1 (5p)**6 0.1068
2,1 4,1 1.511
2,1 3,2 1.733
2,1 3,1 2.027
2,1 2,2 2.138
2,1 2,0 2.652
2,1 (5p)**6 0.1192
3,1 4,1 3.68
3,1 3,2 5.36
3,1 3,1 9.71
3,1 2,2 12.90
3,1 (5p)**6 0.1250
1,0 4,1 4.00
1,0 3,1 12.27

continued
.609 0.287 31.9
.0214 0.0153 2.99
.0207 0.0030 4.36
.0149 0.0098 8.72
.0374 0.0274 40.8
.29 0.624 0.442
.014 0.0436 0.0057
.825 0.0180 0.391
.193 0.0433 0.097
.174 0.252 0.106
.20 0.746 22.9
.869 0.418 15.9
.112 0.0813 1.90
.73 0.764 48.7
. 3370. 2.49
.00045 0.0396 0.0023
.626 0.304 4.87
.42 2.46 30.1
.0104 0.0060 0.153
.99 1.27 55.5
• 1710. 2.32
.553 0.279 41.2
.0038 0.0077 0.86
.0095 0.0004 13.0
.0119 0.0016 38.2
.5 11.0 0.042
.717 0.232 68.4
.0027 0.0006 7.48

(9a)
0
0
0
0
0

1

0

0

0

0

2
0
0
1

1370
0
0
2
0
1

915
0
0
0
0

14
0
0
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Table (9b) Lifetimes (ns)

Level Cal c. 'tzhty R?^?>
(5p)5(5d)

(1,4) 2865. 4820. 1200. 1330.

(1,3) 787.
(2,3) 349. 551.
(3,3) 837. 1190. 1000. 1170.

(1,2) 288.
(2,2) 592.
(3,2) 452. 659. 1700. 1010±50

(4,2) 1423. 2920. 2900. 2100,1020

B (1,1) 0.87 <350.

(2,1) 1.02 0.6 <350.

(3,1) 4.59 88.9

(4,1) 0.92
(5,1) 6.21
(1,0) 1389. 4300.

(5p)5(6p)

(1,3) 29.9 25.5
(1,2) 26.4 27.7 29.0±1.5

(2,2) 27.6 28.1 33 ±20

(3,2) 35.7 33.0

(1,1) 23.1 27.2 43.5±1.5

(2,1) 28.0 37.4
(3,1) 32.3 29.9

(4,1) 38.0 29.7
(1,0) 21.9 28.4 38.5±1.5
(2,0) 28.7 22.4 40 ±12

The present calculations of Einstein coefficients are generally
5

those of Ref.(6) for the (5p) (5d) levels, though the difference 
generally less than a factor of 2.

W>

30.5±3

29.5±3

30.7±3

larger than 

is
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3) Non-zero Magnetic Field and No Hyperfine Interaction

If next we include the effect of a uniform longitudinal magnetic field
12(in the z direction) with the interaction

Hz = (e h/47rmec) (C + 2 3) • H = (e h/47rmec) (Lz+ 2 Sz) H = 0H (Lz+ 2Sz),

(7a)
where (3 is the Bohr magneton whose value is listed in Ref.(12) as 0.927 x 

10-20 erg/Gauss, which is 0.579 x 10-8 eV/Gauss or

0H(cm 1) = H(Gauss)/21400.

(7b)

1/2

The matrix element is
<i',J'M'|Hz|i,JM> = j.Z^, C(i,Jcj;J) C( i1, J * j ’ ;J')

= j.Zj, C(i,Jcj;J) C(i',Jcj';J') [(2Jc+l)(2j+l)(2J^l)(2j,+l)]

1/2 1/2 1 1/2 Jc 1 1/2 Jc
Z [(2L+1)(2S+1)] ^ Z [(2L,+l)(2S'+l)]i/^ {^'1/2 jc} {^'1/2 j^}

L,S L‘,S' LSJ L'S'J'

<2P,2^' ;LSJM| |HZ| |2P,V ;L'S'J'M'>.

(7c)
As discussed in Ref.(13), the matrix element in eq.(7c) is diagonal in L, S, 
and M, but not in J. It is given by

<2P,V ;LSJM||Hz||2P,2r ;L'S'J'M‘> = 6M,M 6L,L 65,5

[M (1 + gLQ) Sj.j F+ 6J',J-1 F-]

(8a)
where gLQ is given by

gL0 = [J(J+1) + S(S+1) - L(L+l)]/[2J(J+l)],

(8b)
F+ =(1/2J+2)

{[(J+M+l)(J-M+l)(L+S+J+2)(S+J+l-L)(L+J+l-S)(L+S-J)/(2J+l)(2J+3)])172,

(8c)
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and
F_ =(1/2J)

{[(J+M)(J-M)(L+S+J+l)(S+J-L)(L+J-S)(L+S+l-J)]/[(2J+1)(2J-l)]T' \

(8d)
Note that gL0 is independent of M, while F+ and F_ are symmetric in M, so 

that we have to evaluate explictly only the case M £ 0. Then

= /!H M gL Sj.j - (JH SH,M

Cd'.Jjj'iJ') [(2Jc+l)(2j+l)(2J^l)(2j’+l)]1/2

C(i,Jcj ;J)

(9a)

where the diagonal term is written in terms of the Lande g factor, and

{ BU')
CU')

1 1/2 J 1 1/2 J' F 
(2L+1) (2S+1) {ri/2 jc} {ri/2 jC} {F+}.

L S J L S J' -
(9b)

Preliminary calculations, without including 6s-5d Cl, indicated that 
the effect of the non-diagonal matrix elements B(^') and C(^') were small 
even at 20 kG. For any level one can consider a 2x2 interaction with the 
nearest level with the same M value. If the energy difference is AE and the 
non-diagonal interaction is V = /3H, the mixing coefficient is V/AE. For 20

kG, V = 1 cm 1, but as Tables (4) and (8) show, the level splitting is

always greater than 100 cm-1. Thus for the magnetic fields studied here, 

the non-diagonal effects can be neglected.
On the other hand, the new eigenvalues increased linearly with magnetic 

field, i.e. the new eigenvalues are approximately the diagonal matrix 
elements, E(i,J) + gL(iJ) M /3H, where gL(iJ) is the Lande g factor. That

is, for for 1-10 kG magnetic fields only the diagonal component of the 
interaction is significant,

<i,,J'M'|Hz|i,JM> = 6i,i Sj.j 6m,m gL(iJ) M pH.

(10)

Then the effect of the magnetic field is to split a transition at energy 
E(i,JM) - E(i',JlM') into a M and M' dependent multiplet at energies E(i,J)

*
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in the multiplet there is a strength factor, D(i,/M;iV'M')> which is 
discussed in the next section.

- E(i',J') + [ gL(iJ)M - gL(i'J')M'] /3H. In addition, for each (M,M') term
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4) Radiative Transition Rates

In most treatments of radiative transition rates one averages over 
initial state Mj values and sums over final state Mj, values. However, with

a magnetic field present the Mj values must be retained. The squared dipole

matrix element is

D(k,dM;k',pM') = |<k,dM|r|k',pM'>|2 

= i ,Zj, C2(i,J;H,k,dM) C2(i' ,J';H,k',pM') <i ,dJM| r| i' ,pJ'M'>|2 

= i .Zj, C2(i,J;H,k,dM) C2(i' ,J';H,k',pM')

jj?J2 C1(i' »PJ'

where the Zeeman coefficients C2(i,J;H,k,lM) are those found in the

preceeding section, while the C^i ,dJ;j1,j2) are intermediate coupling

coefficients and are independent of M. The radiative transition matrix 
element in jj coupling is

^r1/2+jrJI ,1/2 j_ ^

(lla)

il ? P } 
"2 J2

<j1^2j2JM|r|ji,3j3J'M'> = 6jiJi (A^^/2) (-1)

{ jl j' j3 } [(2j2+l)(2j3+l)(2J +1)]1/2 ^ (-lp Ip C( J1J' ,M/3M')

(11b)
where C(ABC,abc) is a Clebsch-Gordan coefficient,

\2,.3=
Z,<3

*2 1 ^3. 
0 0

(lie)
a b cwith (Q 0 Q) a 3j symbol and (rp p) the radial matrix element. The vectors

are

,=.(2)1/2 <Ix+i?v>,

(12a)

^0=2
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a_i=(2)1/2 K+i?y).

(12b)

(12c)
At the level of intermediate coupling, one may take the factor C(J1J' ,M/3M1) 
outside the absolute value sign and sum and average the squared quantity 
over M and M'. In the present case this is not possible. However, one can 
write eq.(lla) as

D(k,dM;k\pM') =|iZJ ilZJ1 

= i^J i i'^J" i1 M

. ^ [-1)P tp C(J1J',M^‘)|2

£-1 ^.il1(-l)^'c(JU,,M/JMl)

C( J"1J 1" ,M/3' M') tp-Z*

(13a)
-» -> *

But afl*art, =46..,, so that the squared matrix element is 
P P P »P

D(k,dM;k',pM') = 4 (A5d)6p/2)2 ^ (2J +1)1/2 i,ZJ1 C2(i,J;H,k,dM)

C2(i',J';H,k',pM') (-1)~J'C(J1J' ,M/3M' ) W(^i J ,^11J ') |2,

(13b)
where

-f-3-l/2+j,
W(^iJ,^i,J‘) = , I, i-I (-1) iC1 (i .dJMjj. ,j?)

^ j J1,J2 J2’ 1

C1(i',pJ'M';j1,j^)[(2j2+l)(2j3+l)]1/2 {l[Z j3 j3 } { jl ^ ^3 }.

(13c)
However, if for each [i,lM] eigenstate one and only one of the Zeeman 

mixing coefficients were close to unity, then there is a unique relation 
between k and i,J. For such a case the matrix element becomes

D(k,dM;k',pM') = D(iJ ,dM;i'J1,pM')

= 4 (A5d,6p/2)2 (2J+1) /ji-1 C(J1J',M0M')2 |WU2iJ,,3i'J')|2.

(13d)
When magnetic fields are neglected one sums over M' and averages over M to 
find a term dependent squared matrix element, oscillator strength, Einstein 
coefficient, and cross section. The sum and average operation is
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J J' 1 9 J'
[1/(2J+1)] I £ I C(J1J1 ,M/3M') = [1/(2J+1)] I = [(2J' + !)/(2J+1)]. 

M=-J M'=-J'P=-l M'=-J'
(14a)

If is the strength calculated by summing and averaging,
J J’

S(iJ,i'J') = [1/(2J+1)] I £ D(iJ,dM;i'J',pM')
M=-J M'=-J'

= (A5d,6p>2 |W(l2iJ,l3i'J')|2,

(14b)
then the multiplet strength with a non-zero magnetic field is

D(iJ,dM;i'J1,pM1) = z(idJM,i'pJ'M1) S(iJ,i,J'),
(14c)

where

z( idJM, i ' pJ 1M' ) = [(2J+1)/(2J ' + !)] ^^(JU 1 )2= (2J+1) (^_J+M-_m' )2-

(14d)
The line strengths S(iJ,i'J') are given as Einstein coefficients and cross 
sections at the end of sec.(2).

The multiplet emission cross sections with a 6 kG field are shown in 
figs.(la) and (lb) for the 9 transitions with the largest cross sections. 
They show that at 6kG the Zeeman effect splits the emission pattern into 
triplets. This occurs because in the energy difference

AE = E(i, J) - E(i', J') + [ gL(iJ)M - gL(i'J')M'] pH,

(15a)
M = M' + £, where e = 0, ± 1. Then

AE = E(i, J) - E( i', J') + e gL(iJ) pH + [gL(iJ) - gL(i'J')] pH M1.

(15b)
If 2Js[gL(iJ) - gL(i'J')] is small compared to gL(iJ), where Js is the 

smaller of J or J', one has a triplet structure with individual components
Js

of the triplet separated by [gL(iJ) - gL(i'J')] PH. Since M ?_j M' = 0, the
s

average energy of each component of the triplet is

E(iJ,i'J',H) = E(i, J) - E(i1, J1) + £ gL(iJ) pH.
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(15c)
A width for each component of the triplet may be defined by

rz = [1/(2JS+1) M,Z^ (E - I)2]1/2 = [gL(iJ) - gL(i'J')] [JS(JS+1)/3]1/2

(15d)
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Of the nine strongest transitions shown in figs.(la) and (lb), only the 
(2,l)-»(2,0) transition at 2.65 u, the (3,2)-*(3,l) transition at 3.37 u, and

14the (3,3)->(3,2) transition at 3.51 m are observed at high pressure. In 
fig.(lc) some additional multiplet cross sections are shown for transitions

14that are significant in lasing at high pressure. Note that for the 
transitions at 1.73 u and 2.03 n, the triplet pattern is not manifested 
clearly; however, the central 3(2) lines for the transition at 1.73 m(2.03m) 
arise from AM = 0 transitions.
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For lasing transitions with the direction of the laser axis parallel to 
the magnetic field, one should not see the AM = 0 transitions, i.e. the

4
central peaks of the triplets. Condon and Shortley (p.90) show that the 
far field Poynting vector due to a dipole source of radiation at the origin 
i s

5 = (cV/St2) |?-P - (Jr-?)2|2 tr,

(15e)

where Tr is a unit vector in the direction of the field point at a distance

r from the origin and P = e r. Then for the laser axis in the direction of

the magnetic field (along the z axis), T = T and + P^. Thus
r z z x y

rs rs
§ depends on P^ and P^ but not P^. But in eq.(14d) /J = 0 = AM corresponds 

to Pz, so the central peak will not be seen for laser and magnetic field 

axes parallel.
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5) The Hyperfine Splitting without an External Magnetic Field

The hyperfine splitting arises from both the interaction of the nuclear 
spin with the magnetic field at the nucleus generated by the currents 
associated with the atomic electrons, and from a correction to the electron 
Schrodinger equation due to the finite size of the nucleus. The hyperfine 
splitting is comparable to the Zeeman splitting, i.e., much smaller than the 
splitting due to the electrostatic interaction. Therefore the wavefunction 
for the atom including the nuclear spin, I, is written

| iJITt> C(JIT,MMjt) | iJM> [IMp

(16a)
When two subshells are partially filled the hyperfine interaction is 
complicated. I begin with the magnetic dipole hyperfine interaction. A 
detailed evaluation for excited states of the noble gases is found in 
eq.(49) of Ref.(15). Unfortunately, the calculation in Ref.(15) is done in 
LS coupling. In Appendix (A) the desired hyperfine matrix element in

intermediate coupling <iJIF'Mp,|H^p|iJIFMp> is obtained. It is

ciOIF'Mp, |H^F|iJIFMF> = 6ff. (Uo/4f) 2 9nmep („B)2 (l/a/

I+F+ll+^OpTl I/O _1
(-1) {[ j j} (2J+1) [I (1+1)(21+1)j/<: (W2 + W2) = (0.00321 cm l)

I+F+l i+l o p- t ] 1/2
9n 5FF' 6MpMp, {J (2J+1) [I(I + 1)(2I+1)]1/MW1 + W2)

-1 -J+I2+I2
= 6FF' 5MfMfi[':(F+1)-J(J+1)-I(I+1)] (1/2) (0.00321 cm l) (-1) gn

{(2J+1)/[J(J+1)]}1/2 (Wx + W2) = 5pp'^MpMp [F(F+1)-J(J+1)-I(I+1)3 (1/2) A^,

(16b)
where W1 and W2 are given by eqs.(A4-b) and (A4-c), respectively, A.j is a

parameter used to describe the magnetic hyperfine interaction,^6 and the 

calculations are done in atomic units. /un is the nuclear magnetic moment in

nuclear magnetons; gn is defined by = gn mepMg I, where is the Bohr

magneton, and m is the ratio of electron to proton mass, 1/1836. For cp
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Xe(129) Mn/m mr = -0.7771 and I =1/2, so that g = -1.554, while for
I I C Ly U

Xe(131) Mn/nn mr = 0.6911 and I =3/2, so that g = 0.461. The ratio
i i w yj u

Mn(129)//in(131) = -1.124, while gn(129)/gn(131) = -3.372.

3
For the 5p, 6p, and 5d orbitals of Xe I calculate <(l/r) > = 19.947, 

1.086, and 0.07077, respectively. Because of the 6s-5d configuration
3

interaction one requires the additional parameter, <(l/r) >6s gd= 0.0562.

2
The 6s orbital density at the origin was calculated to be Rgs(0) =

3
22/(BR ). The results for the magnetic hyperfine splitting are listed in 
Table (10a) for I = 1/2 (mass 129). In Table (10b) I compare the calculated

17 18A., values with measurements from Jackson and Coulombe, and Liberman.1 J
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Table (10a) Hyperfine splitting in Xe for I = 1/2

Config i,J E(cm-1) W1 w2 W^/W^ F AEHF(cm !)

(5p)5(6p) 1,3 2pg/78403 -6.964 0.379 5/2 0.0560

7/2 -0.0420
1,2 2p3/89163 14.49 0.476 3/2 0.1022

5/2 -0.0682
2,2 2pg/79212 5.978 0.298 3/2 0.0429

5/2 -0.0286
3,2 2pg/78120 8.665 0.811 3/2 0.0647

5/2 -0.0432
1,1 2p2/89279 9.942 -0.571 1/2 -0.0573

3/2 0.0286
2,1 2p4/88380 --21.48 -1.19 1/2 0.1385

3/2 -0.0693
3,1 2p7/78957 -6.192 -0.087 1/2 0.0384

3/2 -0.0192
4,1 2p10/77270 -8.324 0.431 1/2 0.0482

3/2 -0.0241
1,0 2p1/89861 0 0 1/2 0

2,0 2p5/80U9 0 0 5/2 0

(5p)5 1,4 3d^/80197 -5.947 -0.0450 7/2 0.0501

(5d+6s) 9/2 -0.0401
1,3 3s^'1/91747 11.46 0.0530 5/2 0.0877

7/2 -0.0658
2,3 3d^/82431 4.814 0.0477 5/2 0.0370

7/2 -0.0278
3,3 3d4/80971 6.360 0.0714 5/2 0.0490

7/2 -0.0368
1,2 3s\'''/91448 8.744 -0.0614 -0.00006 3/2 -0.0593

5/2 0.0395
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Table (10a) continued
2,2 3s“/91153 -13.95 -0.0931 0.000006 3/2 0.0959

5/2 -0.0640

3,2 3d' 781926 -5.177 -0.0643 0.00009 3/2 0.0358
5/2 -0.0239

4,2 3d4/80323 -1.369 -0.0465 0.00112 3/2 0.0097

5/2 -0.0064

5,2 lSg/67068 -8.643 -0.0004 -0.0010 3/2 0.0590

5/2 -0.0394

1,1 3s^/93619 --10.74 0.1134 0.0007 1/2 -0.0649

0.0023 3/2 0.0325

2,1 3d2/83890 -3.661 0.0729 0.00012 1/2 -0.0218

0.0127 3/2 0.0109

3,1 3d5/79987 6.034 0.0346 0.0021 1/2 0.0450

1.297 3/2 -0.0225

4,1 1s2/77186 17.35 0.0100 0.00025 1/2 0.1342

4.603 3/2 -0.0671

5,1 1s4/68046 10.56 0.0003 -0.0031 1/2 0.0466

-2.921 3/2 -0.0233
1,0 3dg/79772 0 0 1/2 0

2,0 1s3/76197 0 0 1/2 0

40



Table (10b) Comparison of Calculated A,, with Measurements for Xe(129)

Mass I config i ,J AiJ(mK)cal(: A1J<mK>exp

129 1/2 (5p)56p 1,3 -28.0 -29.06*

1,2 -68.2 -96.45*

2,2 -28.6 -29.76*

3,2 -43.2 -45.52*

1,1 57.3 66.20*

2,1 -138.5 -147.6*

3,1 -38.4 -43.73*

4,1 -48.2 -46.77*

129 1/2 (5p)55d 1,4 -20.1 -19.4

1,3 -43.9 -56.88*

2,3 -18.5 -15.8
3,3 -24.5 -26.6

1,2 39.5 33.96*

2,2 -64.0 -88.7
3,2 -23.9 -27.6
4,2 - 6.57(-6.44)[-4.83] - 0.

5,2 -57.7(-39.4) -79.56*

1,1 64.9
2,1 21.8(21.9)
3,1 -45.0(-37.l)[-0.94] -80.7

4,1 -134.2(-106.1) -193.65*

5,1 -46.6(-64.7) -32.15*

* Values obtained from Ref.(17)

The values listed in Table (10b) include both 6s-5d configuration 
interaction and the Fermi contact term. The values in parenthesis are 
calculations including the 6s-5d Cl, but neglecting the Fermi contact term. 
The values in brackets are obtained with both the 6s-5d and Fermi contact
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term neglected. In general, for those terms involving the Fermi contact 
term, the calculated effect of the Fermi contact term is too small. This 
may be a consequence of determining the 6s electron density at the origin 
with non-relativistic wavefunctions. However these effects occur for levels 
that that are not involved in lasing transitions in high pressure Xe. Thus 
we use the calculated A., in calculating the hyperfine splitting for

1 J

Xe(129).

For the I = 3/2 (mass 131) isotope one needs in addition to the 
magnetic dipole contribution to the hyperfine splitting there is a 
quadrupole contribution. An expression for the splitting due to the 
electric quadrupole interaction is obtained in Appendix (B). It is

<iJIF'MF, |H^y|iJIFMF> = bFJ, (-e2 Q/2) (-1)F_I (2J+1) {2 J J}

{(2I+1)(2I+3)(I+1)/[I(2I-1)]}1/2[W3 - W4] = - (0.00393 cm-1] Q(barns2 * *) SF p, 

6MF,MF,("1)F~I+j+1/2 (2J+1) J t(2I+l)(2I+3)(I+l)/[I(2I-l)]}1/2[W3 -W4] 

= 6F,F' «m >m i[A(A+1)-(4/3)I(I+1)J(J+1)] B^,

(17a)
where Q is the nuclear quadrupole moment in barns, W3 and W4 are given in 

eqs.(C14-b) and (C14-c), and B^, is a coefficient16 used in describing the
1 J

quadrupole contribution to hyperfine splitting. An alternative parameter is 
often used, with Bl, in place of B... They are related byI J 1 J

Blj = (8/3) I (21 - 1) J (2J - 1) Bi0.

(17b)
The quadrupole contribution to hyperfine splitting is relevant for the mass

2
131 (I = 3/2) isotope only, and is included in Table (lla) as AEHF- The

2 1quadrupole moment used was Q(b ) = -0.12. Since W^, W2, W^, and W£ are

independent of I and were tabulated in Table (10a), the parameters W3, W4,

and W4 are tabulated in Table (lla). In Table (lib) the calculated A13 and

B.j values are compared with the measurements of Refs.(17) and (19).
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Table (lla) Hyperfine splitting in Xe for I = 3/2

Config i,J E(cm *) W3 W4 W4 F AE^F(cm L) AE^cm !)

(5p)5(6p) 1,3 2pg/78403 -2.34 -0.127 3/2 -0.0498 0.0042

5/2 -0.0290 -0.0011
7/2 0 -0.0036
9/2 0.0373 0.0018

1,2 2p3/89163 -0.118 0.181 1/2 -0.0909 -0.0005

3/2 -0.0607 0
5/2 -0.0101 0.0004
7/2 0.0606 -0.0002

2,2 2pg/79212 0.224 -0.053 1/2 -0.0381 0.0005

3/2 -0.0254 0
5/2 -0.0042 -0.0004
7/2 0.0254 0.0002

3,2 2pg/78120 3.231 0.053 1/2 -0.0576 0.0063

3/2 -0.0384 0
5/2 -0.0064 -0.0045
7/2 0.0384 -0.0018

1,1 2p2/89279 0.329 -0.153 1/2 0.0425 -0.0006

3/2 0.0170 0.0005
5/2 -0.0255 -0.0001

2,1 2p4/88380 -0.0304 -0.0421 1/2 -0.1027 -0.00002

3/2 -0.0411 0.00001
5/2 0.0616 -0.000003

3,1 2p7/78957 -0.211 0.181 1/2 -0.0284 0.0005

3/2 -0.0114 -0.0004
5/2 0.0171 0.0001

4,1 2p1Q/77270 -0.819 -0.0255 1/2 -0.0358 0.0010

3/2 -0.0143 -0.0008
5/2 0.0215 0.0002

1,0 2p1/89861 0 0 3/2 0 0

2,0 2pc/80119 0 0 3/2 0 0
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Table (lla) continued

(5p)5

(5d+6s)

1,4 3d^/80197 1.86 0.0094 5/2 -0.0446 0.00368

7/2 -0.0237 -0.00147
9/2 0.0030 -0.00328

11/2 0.0357 0.00187
1,3 3s“ 791747 0.191 -0.0118 3/2 -0.0781 -0.00039

5/2 -0.0455 0.00010
7/2 0 0.00032
9/2 0.0586 -0.00016

2,3 3dj/82431 -0.250 -0.0034 3/2 -0.0330 0.00048

5/2 -0.0192 -0.00012
7/2 0 -0.00040
9/2 0.0247 0.00020

3,3 3d4/80971 -1.69 -0.0114 3/2 -0.0436 0.00325

f 5/2 -0.0254 -0.00081
7/2 0 -0.00271
9/2 0.0327 0.00135

1,2 3s“'791448 -0.332 0.012 -0.00004 1/2 0.0528 -0.00068

3/2 0.0351 0
5/2 0.0059 0.00048
7/2 -0.0352 -0.00019

2,2 3s“/91153 -0.375 0.013 0.000001 1/2 -0.0854 -0.0008

3/2 -0.0569 0
5/2 -0.0095 0.0008
7/2 0.0569 -0.0002

3,2 3d' 781926 -0.062 0.0053 -0.00002 1/2 -0.0319 0.00013
3/2 -0.0212 0
5/2 -0.0035 0.00010
7/2 0.0212 -0.00004

4,2 3d3/80323 -1.58 -0.0003 0.0008 1/2 -0.0088 -0.0031

3/2 -0.0058 0
5/2 -0.0010 0.0022
7/2 0.0058 -0.0009

i
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Table (lla) continued (2)
5,2 lSg/67068 3.31 0.00003 -0.0007 1/2 -0.0767 0.0065

3/2 -0.0512 0
5/2 -0.0085 -0.0047
7/2 0.0512 0.0019

.,1 35^/93619 -0.086 -0.013 0.0003 1/2 0.0481 -0.000095

3/2 0.0193 -0.000076
5/2 -0.0288 0.000019

2,1 3d2/83890 0.410 -0.012 0.0002 1/2 0.0162 -0.00055

3/2 0.0065 0.00043
5/2 -0.0097 -0.00011

3,1 3d2/79987 1.68 0.0096 0.0005 1/2 -0.0334 -0.00216

3/2 -0.0135 0.00172
5/2 0.0200 -0.00043

4,1 ls2/77186 -0.675 0.0024 -0.0007 1/2 -0.0995 0.00087

3/2 -0.0398 0.00070
5/2 0.0597 0.00017

5,1 ls4/68046 -2.79 0.00005 -0.0003 1/2 -0.0346 0.0036

3/2 -0.0138 -0.0027
5/2 0.0207 0.00072

1,0 3d6/79772 0 0 3/2 0

2,0 1s3/76197 0 0 3/2 0

*
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Table (lib) Comparison of Calculated A.j and Values with Measurement

Mass I config i,J Aij(mK>calc AiJ ^exp 8 ij(mK)calc Bij(mK)exp

131 3/2 (5p)56p 1,3 8.30 -0.059
1,2 20.2 -0.014
2,2 8.48 8.83 0.013 0.020
3,2 12.8 13.31 0.149 0.17

1,1 -17.0 -0.062 -0.02±0.025*

2,1 41.1 -0.0015 -0.10±0.025*

3,1 11.4 12.96 0.051 0.16±0.06*

4,1 14.3 13.99 0.101 0.14±0.025*

1,0
2,0

131 3/2 (5p)55d 1,4 5.95 0.0334
1,3 13.0 -0.0054
2,3 5.50 0.0066
3,3 7.27 0.0452
1,2 -11.7 -0.016
2,2 19.0 -0.014
3,2 7.08 8.18 -0.0032 -0.027±0.010
4,2 1.95(1.91) -0.04 -0.074 -0.058
5,2 17.1 (11.6) 0.155
1,1 -19.3 0.010
2,1 -6.48(6.50) -0.0545
3,1 13.35(11.02) 23.89 -0.216 -0.14±0.08

4,1 39.8 (31.4) 57.12* 0.087 0.13±0.025*

5,1 13.8 (19.1) 0.360 0.36±0.075*

* Values obtained from Ref.(17)

Again the calculations include both 6s-5d Cl and the Fermi contact term. 
Results with the Fermi contact term neglected are shown in parenthesis. 
Again the calculated effect of the Fermi contact term appears to be 
underestimated, possibly showing the need for a relativistic calculation of
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the 6s charge density at the nucleus. These effects are not important for 
the levels involved in lasing transitions in high pressure Xe, and the 
calculated A., and B,, values are used to determine hyperfine splitting inId Id
the radiative transitions.
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6) Radiative Transition Rates between Hyperfine Terms with no Magnetic Field

The quantity we wish to calculate here is

D( 1 2,iJIFMF; 13 ’ i 1J ' IF' M,-,) = Mp^M,-, |<12,iOIFMF| r I i' J' IF' mf,>I 7(2F + 1).

(18a)
In a later section an expression is obtained for the radiative transition 
rate including both Zeeman and hyperfine splitting. For the present I use 
the limit of that expression when the magnetic field is zero, i.e.

D(^iJIFMpj13,i'J'IF'Mp,) = S(iJ,i'J') (2J + 1) (2F1 + 1) {jj'p'}2,

(18b)
where S(iJ,i'Jl) is the line strength for a transition from iJ to i'J', 
defined in eq.(14b). Note that if one multiplies eq.(18b) by (2F + 1), then 
sums over F‘ and sums over F, to remove the hyperfine structure, one has

D = l/[ (2J+1) (21 + 1)] pZp , S(iJ,i'J') (2J+1) (2F'+1) (2F +1)

= l/[ (2J+1) (21 + 1) ] S(i J, i 1J 1 ) (2J+1) f, (2F' + 1) pi (2F +1) {\

= 1/(21+1) S(iJ,i'J') (2F'+1) 1/(2J' + 1) = S(iJ,i'J'),

(18c)
which is as one expects. For various hyperfine transitions the energy shift 
and emission cross sections are listed in Table (12a) for Xe(129) and in 
Table (12b) for Xe(131).
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Table (12a) Emission Cross Sections for Xe(129)

f$rm firm F F' AE(mK) ct( 10 12cm2)
F* AE(mK) a(10 12cm2)

1,4 1,3 5.571 9/2 7/2 1.9 90.3

7/2 7/2 92.1 3.2 5/2 -5.8 87.1

1,3 3,2 0.7338 7/2 5/2 -22.6 0.0179

5/2 5/2 131. 0.0012 3/2 23.0 0.0167

1,3 1,3 0.7495 7/2 7/2 -23.8 0.116 5/2 -12.2 0.004

5/2 7/2 130. 0.006 5/2 31.8 0.114

1,3 2,2 0.7978 7/2 5/2 -37.2 0.0058

5/2 5/2 116. 0.0004 3/2 44.9 0.0054

1,3 1,2 3.864 7/2 5/2 2.4 90.2

5/2 5/2 156. 6.0 3/2 -14.5 84.2

2,3 3,2 2.320 7/2 5/2 15.4 7.66

5/2 5/2 80.2 0.51 3/2 -27.7 7.15

2,3 1,3 2.483 7/2 7/2 14.2 27.4 5/2 -83.7 1.01

5/2 7/2 79.0 1.36 5/2 -18.9 27.1

2,3 2,2 3.107 7/2 5/2 0.80 54.1

5/2 5/2 65.6 3.61 3/2 -5.8 50.5

3,3 3,2 3.508 7/2 5/2 6.4 72.0

5/2 5/2 92.1 4.8 3/2 -15.7 67.2

3,3 1,3 3.897 7/2 7/2 5.2 1.48 5/2 -92.7 0.055

5/2 7/2 91.0 0.073 5/2 -6.9 1.46

3,3 2,2 5.69 7/2 5/2 -8.2 16.8

5/2 5/2 77.6 1.12 3/2 6.1 15.6

1,2 4,1 0.7053 5/2 3/2 63.6 0.576

3/2 3/2 -35.1 0.096 1/2 -107. 0.480

1,2 3,2 0.7503 5/2 5/2 82.7 0.0849 3/2 -25.2 0.0061

3/2 5/2 -16.1 0.0091 3/2 -124. 0.0819

1,2 1,3 0.7666 5/2 7/2 81.5 0.0525 5/2 -16.4 0.0026

3/2 5/2 -115. 0.0551

1,2 3,1 0.8006 5/2 3/2 58.7 0.574

3/2 3/2 -40.0 0.096 1/2 -97.6 0.479

1,2 2,2 0.8173 5/2 5/2 68.1 0.591 3/2 -3.4 0.042

3/2 5/2 -30.7 0.063 3/2 -102. 0.570

1,2 2,1 3.258 5/2 3/2 109. 0.152

3/2 3/2 0.01 0.025 1/2 -198. 0.127
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Table (12a) continued (1)
1,2 1,1 4.610 5/2 3/2 11.0 76.8

3/2 3/2 -87.9 12.8 1/2 -2.0 64.0
1,2 1,2 4.373 5/2 5/2 108. 10.6 3/2 -62.7 7.56

3/2 5/2 0.009 1.13 3/2 -162. 10.2
2,2 4,1 0.7208 5/2 3/2 -39.8 0.121

3/2 3/2 120. 0.020 1/2 47.7 0.101
2,2 3,2 0.7673 5/2 5/2 -20.8 0.0645 3/2 -129. 0.0046

3/2 5/2 139. 0.0069 3/2 31.1 0.0622
2,2 1,3 0.7843 5/2 7/2 -22.0 0.00489 5/2 -120. 0.00024

3/2 5/2 40.0 0.00513
2,2 3,1 0.8199 5/2 3/2 -44.8 0.161

3/2 3/2 115. 0.027 1/2 57.6 0.134
2,2 2,2 0.8375 5/2 5/2 -35.4 0.0063 3/2 -107. 0.0004

3/2 5/2 124.5 0.0007 3/2 53.1 0.0060
2,2 2,1 3.605 5/2 3/2 5.3 76.5

3/2 3/2 165. 12.7 1/2 -42.6 63.8
2,2 1,1 5.336 5/2 3/2 -92.6 2.53

3/2 3/2 67.3 0.42 1/2 153. 2.11
2,2 1,2 5.023 5/2 5/2 42.1 10.17 3/2 -166. 0.72

3/2 5/2 164. 1.09 3/2 -6.3 9.81
2,2 4,1 2.148 5/2 3/2 0.0002 1.04

3/2 3/2 59.9 0.173 3/2 -12.4 0.866
3,2 3,2 2.627 5/2 5/2 19.3 28.1 3/2 -88.6 2.00

3/2 5/2 79.0 3.00 3/2 -28.9 27.1
3,2 1,3 2.839 5/2 7/2 18.1 1.495 5/2 -79.8 0.075

3/2 5/2 -20.2 1.57
3,2 3,1 3.368 5/2 3/2 -46.9 56.1

3/2 3/2 55.0 9.35 1/2 -2.6 46.7
3,2 2,2 3.685 5/2 5/2 4.72 0.292 3/2 -66.7 0.021

3/2 5/2 64.4 0.031 3/2 -7.1 0.281
4,2 4,1 3.275 5/2 3/2 17.5 31.9

3/2 3/2 34.0 5.32 1/2 -38.4 26.6
4,2 3,2 4.54 5/2 5/2 36.6 2.77 3/2 -71.2 0.20

3/2 5/2 53.0 0.30 3/2 -54.9 2.69
Table (12a) continued (2)
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4,2 1,3 5i.21 5/2 7/2 35 .4 4.16 5/2 -62.5 0.21
3/2 5/2 -46.1 4.36

4,2 3,1 7 .32 5/2 3/2 12 .6 8.72
3/2 3/2 29 .0 1.45 1/2 -28.5 7.27

4,2 2,2 9 .00 5/2 5/2 22 .0 38.1 3/2 -49.4 2.72
3/2 5/2 38 .4 4.08 3/2 -33.0 36.7

1,1 4,1 0. 6117 3/2 3/2 56 .6 0.369 1/2 -15.8 0.074
1/2 3/2 -40 .8 0.147 1/2 -113. 0.295

1,1 3,2 0. 6452 3/2 5/2 75 .6 0.00514 3/2 -32.3 0.00057
1/2 3/2 -139. 0.00571

1,1 3,1 0. 6820 3/2 3/2 51 .6 0.325 1/2 -5.9 0.065
1/2 3/2 -45 .7 0.130 1/2 -103. 0.260

M 2,2 0. 6941 3/2 5/2 61 .0 0.0870 3/2 -10.4 0.0097
1/2 3/2 -108. 0.0966

1,1 2,0 0. 7407 3/2 1/2 32,.5 0.106
1/2 1/2 -64,.9 0.106

1,1 2,1 1 .908 3/2 3/2 102. 19.1 1/2 -106. 3.8
1/2 3/2 4..3 7.6 1/2 -203. 15.3

1,1 1,1 2 .304 3/2 3/2 3.,8 13.2 1/2 89.7 2.65
1/2 3/2 -93.,5 5.3 1/2 -7.7 10.6

1,1 1,2 2 .244 3/2 5/2 101. 1.71 3/2 -69.8 0.19
1/2 3/2 -167. 1.90

1,1 1,0 2 .660 3/2 1/2 32. 5 48.7
1/2 1/2 -64. 9 48.7

2,1 4,1 1 .511 3/2 3/2 35. 0 0.00194 1/2 -37.3 0.00039
1/2 3/2 2. 2 0.00078 1/2 -70.0 0.00155

2,1 3,2 1 .733 3/2 5/2 54. 1 4.39 3/2 -53.8 0.49
1/2 3/2 -86.6 4.87

2,1 3,1 2,.027 3/2 3/2 30. 1 25.1 1/2 -27.4 5.01
1/2 3/2 -2. 7 10.0 1/2 -60.2 20.1

2,1 2,2 2,.138 3/2 5/2 39. 5 0.137 3/2 -32.0 0.015
1/2 3/2 -64.7 0.153

2,1 2,0 2.,652 3/2 1/2 10. 9 55.5
1/2 1/2 -21. 8 55.5

Table (12a) continued (3)
3,1 4,1 3. 68 3/2 3/2 1. 6 34.4 1/2 -70.7 6.87
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1/2 3/2 69.1 13.7 1/2 -3.2 27.5
3,1 3,2 5.36 3/2 5/2 20.6 0.777 3/2 -87.3 0.086

1/2 3/2 -19.7 0.863
3,1 3,1 9.71 3/2 3/2 -3.3 10.8 1/2 -60.9 2.16

1/2 3/2 64.2 4.33 1/2 6.7 8.65
3,1 2,2 12.90 3/2 5/2 60.8 34.4 3/2 -65.4 3.8

1/2 3/2 2.1 38.2
1,0 4,1 4.00 1/2 3/2 24.1 45.6 1/2 -48.2 22.8
1,0 3,1 12.25 1/2 3/2 19.2 4.99 1/2 -38.4 2.49
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-12 2Table (12b) Emission Cross Sections in 10 cm for Xe(131)
f^rm ie™ x<"> F F' AE(mK) a F' AE(mK) a F1 AE(mK) a

1,4 1,3 5.571 11/2 9/2 -1.6 90.,3

9/2 9/2 -39.4 7.,5 7/2 3. 3 82 .8

7/2 9/2 -64.4 0.,27 7/2 -21. 7 12,.3 5/2 4. 9 77 .8
5/2 7/2 -37.4 0. 46 5/2 -10. 8 12,.4 3/2 4. 6 77 .4

1,3 3,2 0.7338 9/2 7/2 18.2 0. 018

7/2 7/2 -39.9 0. 003 5/2 11. 2 0..015

5/2 7/2 -85.6 0. 000 5/2 -34. 6 0,.004 3/2 -7. 0 0 .013
3/2 5/2 -67.6 0. 000 3/2 -40. 1 0,.005 1/2 -27. 1 0 .013

1,3 1,3 0.7495 9/2 9/2 19.3 0. no 7/2 61. 9 0,.010

7/2 9/2 -38.8 0. 013 7/2 -3. 9 0,.092 5/2 30. 4 0 .016

5/2 7/2 -41.9 0. 021 5/2 -15. 3 0,.083 3/2 0. 000 0 .016

3/2 5/2 -48.3 0. 024 3/2 -32. 9 0,.096

1,3 2,2 0.7978 9/2 7/2 32.8 0. 006

7/2 7/2 -25.3 0. 001 5/2 5. 0 0,.005

5/2 7/2 -71.0 0. 000 5/2 -40. 8 0..001 3/2 20. 0 0 .004

3/2 5/2 -73.8 0. 000 3/2 -53. 0 0,.002 1/2 -40. 9 0 .004

1,3 1,2 3.864 9/2 7/2 -2.1 90. 2

7/2 7/2 -60.2 12. 9 5/2 100. 2 77..3

5/2 7/2 -106. 0. 86 5/2 -35. 8 22..0 3/2 15. 2 67 .3

3/2 5/2 -68.8 1. 8 3/2 -17. 8 25..3 1/2 13. 1 63 .1

2,3 3,2 2.320 9/2 7/2 -15.3 7. 66

7/2 7/2 -40.6 1. 09 5/2 10. 5 6.,57

5/2 7/2 -59.5 0. 072 5/2 -8. 5 1.,87 3/2 19. 1 5 .72

3/2 5/2 -21.6 0. 15 3/2 5. 9 2.,14 1/2 18. 8 5 .36

2,3 1,3 2.483 9/2 9/2 -14.2 26. 1 7/2 28. 5 2.,3

7/2 9/2 -39.5 3. 0 7/2 3. 2 21.,7 5/2 29. 7 3,.8

5/2 7/2 -15.8 5. 08 5/2 10. 8 19.,6 3/2 26. 2 3 .8

3/2 5/2 -2.4 5. 69 3/2 13. 0 22.,8

2,3 2,2 3.107 9/2 7/2 -0.001 54 .1

7/2 7/2 -26.0 7. 7 5/2 4. 2 46..4

5/2 7/2 -44.9 0. 52 5/2 -14. 7 13. 2 3/2 6. 1 40,.4

3/2 5/2 -27.9 1. 1 3/2 -7. 1 15. 2 1/2 5. 1 37,.9

3,3 3,2 3.508 9/2 7/2 - 6.1 72. 0

7/2 7/2 -42.9 10. 3 5/2 8. 2 61. 7
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Table (12b) continued (1)
5/2 7/2 -15.4 17.6 5/2 12.1 53.8 3/2 -66.4 0.69
3/2 5/2 - 2.0 20.2 3/2 11.0 50.4 1/2 -29.5 1.4

3,3 1,3 3.897 9/2 9/2 - 5.1 1.41 7/2 37.6 0.13
7/2 9/2 -41.8 0.16 7/2 0.001 1.17 5/2 27.4 0.21
5/2 7/2 -22.7 0.27 5/2 3.9 1.06 3/2 19.3 0.20
3/2 5/2 -10.2 0.31 3/2 5.2 1.23

3,3 2,2 5.69 9/2 7/2 8.5 16.8
7/2 7/2 -28.3 2.4 5/2 1.9 14.4
5/2 7/2 -51.8 0.16 5/2 -21.6 4.1 3/2 0.001 12.5
3/2 5/2 -35.7 0.34 3/2 -14.9 4.7 1/2 - 2.8 11.7

1,2 4,1 0.7053 7/2 5/2 -57.0 0.576
5/2 5/2 -15.3 0.173 3/2 21.5 0.403
3/2 5/2 13.5 0.029 3/2 50.3 0.307 172 70.0 0.240
1/2 3/2 67.2 0.096 1/2 86.8 0.480

1,2 3,2 0.7503 7/2 7/2 -75.6 0.078 5/2 -24.5 0.013
5/2 7/2 -33.8 0.017 5/2 17.2 0.052 3/2 44.7 0.021
3/2 5/2 46.0 0.032 3/2 73.6 0.036 1/2 86.5 0.023
1/2 3/2 90.5 0.046 1/2 103. 0.046

1,2 1,3 0.7666 7/2 9/2 -74.5 0.049 7/2 -31.8 0.006 5/2 -5.2 0.000
5/2 7/2 9.9 0.045 5/2 36.5 0.010 3/2 51.9 0.001
3/2 5/2 65.2 0.044 3/2 80.7 0.011
1/2 3/2 97.6 0.055

1,2 3,1 0.8006 7/2 5/2 -52.5 0.574
5/2 5/2 -10.8 0.172 3/2 18.1 0.402
3/2 5/2 18.0 0.029 3/2 47.0 0.306 1/2 63.1 0.239
1/2 3/2 63.9 0.095 1/2 8.0 0.478

1,2 2,2 0.8173 7/2 7/2 -61.0 0.543 7/2 -30.7 0.090
5/2 7/2 -19.2 0.120 5/2 11.0 0.365 3/2 31.8 0.148
3/2 5/2 39.8 0.221 3/2 60.6 0.253 1/2 72.8 0.158
1/2 3/2 77.5 0.317 1/2 89.7 0.317

1,2 2,1 3.258 7/2 5/2 -97.0 0.153
5/2 5/2 -55.3 0.046 3/2 47.4 0.107
3/2 5/2 -26.5 0.008 3/2 76.2 0.081 1/2 138. 0.064
1/2 3/2 93.1 0.025 1/2 155. 0.127
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Table (12b) continued (2)
1,2 1,1 i4.610 7/2 5/2 -9 .8 76 .8

5/2 5/2 31 .9 23 .0 3/2 -11 .1 53.7
3/2 5/2 60 .8 3 .84 3/2 17 .7 40.9 1/2 -6 .7 32 .0
1/2 3/2 34,.6 12 .8 1/2 10 .2 64.0

1,2 1,2 i4.373 7/2 7/2 -95,.9 9 .72 5/2 -25 .7 1.62
5/2 7/2 -54,.1 2 .16 5/2 16 .0 6.53 3/2 67 .0 2 .65
3/2 5/2 44,.9 3 .97 3/2 95 .8 4.54 1/2 127, 2 .84
1/2 3/2 113, 5 .67 1/2 144 5.67

2,2 4,1 0 .7208 7/2 5/2 35,,0 0 .121
5/2 5/2 -30,,6 0,.036 3/2 6,.2 0.085
3/2 5/2 -78.,6 0 .006 3/2 -41,.8 0.065 1/2 -22,.2 0,.050
1/2 3/2 -71.,0 0,.020 1/2 -51,.4 0.101

2,2 3,2 0 .7673 7/2 7/2 16.,5 0,.059 7/2 67,.6 0.010
5/2 7/2 -49.,1 0,.013 5/2 19,.4 0.040 3/2 29..5 0,.016
3/2 5/2 -46. 0 0,.024 3/2 -18,,5 0.028 1/2 -5,.6 0.,017
1/2 3/2 -47. 7 0..035 1/2 -34.,8 0.035

2,2 1,3 0,.7843 7/2 9/2 17. 6 0.,005 7/2 60.,3 0.001 5/2 86.,8 0.,000
5/2 7/2 -53. 8 0.,004 5/2 21.,1 0.001 3/2 36.,6 0.,000
3/2 5/2 -26. 8 0.,004 3/2 -11.,3 0.001
1/2 3/2 -40. 6 0.,005

2,2 3,1 0.,8199 7/2 5/2 39. 5 0.,161
5/2 5/2 -26. 1 0.,048 3/2 2. 8 0.113
3/2 5/2 -74. 1 0. 008 3/2 -45.,1 0.086 1/2 -29.,0 0. 067
1/2 3/2 -74. 4 0. 027 1/2 -58. 2 0.134

2,2 2,2 0.,8375 7/2 7/2 31. 1 0. 006 5/2 61. 3 0.001
5/2 7/2 -34. 5 0. 001 5/2 - 4. 3 0.004 3/2 16. 5 0. 002
3/2 5/2 -52. 3 0. 002 3/2 -31. 5 0.003 1/2 -19. 3 0. 002
1/2 3/2 -60. 7 0. 003 1/2 -48. 5 0.003

2,2 2,1 1.605 7/2 5/2 - 4. 9 76. 5
5/2 5/2 -70. 6 23. 0 3/2 32. 1 53.6
3/2 5/2 -119 • 3. 8 3/2 -15. 8 40.8 1/2 45. 8 31. 9
1/2 3/2 -45. 1 12. 8 1/2 16. 6 63.8

2,2 1,1 ci. 336 7/2 5/2 82. 3 2. 53
5/2 5/2 16. 7 0. 76 3/2 -26. 4 1.77
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Table (12b) continued (3)
3/2 5/2 -31.3 0.13 3/2 -74.3 1.35 1/2 -98.8 1.05
1/2 3/2 -104. 0.42 1/2 -128. 2.11

2,2 1,2 5.023 7/2 7/2 - 3.8 9.34 5/2 66.4 1.56
5/2 7/2 -69.4 2.08 5/2 0.001 6.28 3/2 51.7 2.54
3/2 5/2 -47.2 3.81 3/2 3.7 4.36 1/2 34.7 2.72
1/2 3/2 -25.5 5.45 1/2 5.4 5.45

3,2 4,1 2.148 7/2 5/2 0.001 1.04
5/2 5/2 -25.1 0.312 3/2 11.7 0.727
3/2 5/2 -42.9 0.052 3/2 -6.1 0.554 1/2 13.5 0.433
1/2 3/2 -16.9 0.173 1/2 2.7 0.866

3,2 3,2 2.627 7/2 7/2 -19.0 25.8 5/2 32.1 4.3
5/2 7/2 -43.6 5.7 5/2 7.4 17.3 3/2 35.0 7.0
3/2 5/2 -10.4 10.5 3/2 17.1 12.0 1/2 30.1 7.5
1/2 3/2 6.4 15.0 1/2 19.3 15.0

3,2 1,3 2.839 7/2 9/2 -17.9 1.40 7/2 24.8 0.160 5/2 51.3 0.008
5/2 7/2 0.000 1.28 5/2 26.7 0.27 3/2 42.1 0.015
3/2 5/2 8.9 1.26 3/2 24.3 0.31
1/2 3/2 13.5 1.57

3,2 3,1 3.368 7/2 5/2 4.0 56.1
5/2 5/2 -20.6 16.8 3/2 8.3 39.3
3/2 5/2 -38.4 2.8 3/2 -9.5 29.9 1/2 6.7 23.4
1/2 3/2 -20.2 9.35 1/2 -4.1 46.7

3,2 2,2 3.685 7/2 7/2 - 4.4 0.268 5/2 25.8 0.045
5/2 7/2 -29.0 0.059 5/2 1.2 0.180 3/2 22.0 0.073
3/2 5/2 -16.6 0.109 3/2 4.2 0.125 1/2 16.4 0.078
1/2 3/2 - 6.6 0.156 1/2 5.6 0.156

4,2 4,1 3.275 7/2 5/2 -16.7 31.9
5/2 5/2 -20.4 9.6 3/2 16.4 22.4
3/2 5/2 -27.5 1.6 3/2 9.3 17.0 1/2 28.9 13.3
1/2 3/2 3.2 5.32 1/2 22.8 26.6

4,2 3,2 4.54 7/2 7/2 -35.2 2.56 5/2 15.8 0.43
5/2 7/2 -39.0 0.57 5/2 12.1 1.72 3/2 39.7 0.70
3/2 5/2 5.0 1.05 3/2 32.6 1.19 1/2 45.5 0.75
1/2 3/2 26.5 1.49 1/2 39.4 1.49
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Table (12b) continued (4)
4,2 1,3 5.21 7/2 9/2 -34.2 3.90 7/2 8.5 0.44 5/2 35.1 0.022

5/2 7/2 4.8 3.56 5/2 31.4 0.76 3/2 46.8 0.042
3/2 5/2 24.3 3.49 3/2 39.7 0.87

-T 1/2 3/2 33.6 4.36
4,2 3,1 7.32 7/2 5/2 -12.2 8.72

5/2 5/2 -15.9 2.62 3/2 13.0 6.11
3/2 5/2 -23.0 0.44 3/2 5.9 4.65 1/2 22.1 3.63
1/2 3/2 0.000 1.45 1/2 16.0 7.27

4,2 2,2 9.00 7/2 7/2 -20.6 35.0 5/2 9.6 5.8
5/2 7/2 -24.3 7.8 5/2 5.9 23.5 3/2 27.0 9.5
3/2 5/2 - 1.2 14.3 3/2 19.6 16.3 1/2 31.8 10.2
1/2 3/2 13.5 20.4 1/2 25.7 20.4

1,1 4,1 0.6117 5/2 5/2 -50.5 0.310 3/2 -13.7 0.133
3/2 5/2 - 2.5 0.199 3/2 34.3 0.059 1/2 53.9 0.184
1/2 3/2 63.4 0.368 1/2 83.0 0.074

1,1 3,2 0.6452 5/2 7/2 -69.1 0.005 5/2 -18.0 0.001 3/2 9.5 0.000
3/2 5/2 30.1 0.004 3/2 57.6 0.008 1/2 70.5 0.000
1/2 3/2 86.6 0.003 1/2 99.6 0.003

1,1 3,1 0.6820 5/2 5/2 -46.0 0.274 3/2 -17.1 0.117
3/2 5/2 2.0 0.176 3/2 31.0 0.052 1/2 47.1 0.163
1/2 3/2 60.0 0.325 1/2 76.2 0.065

1,1 2,2 0.6941 5/2 7/2 -54.5 0.077 5/2 -24.2 0.017 3/2 -3.4 0.002
3/2 5/2 23.8 0.061 3/2 44.6 0.031 1/2 56.8 0.005
1/2 3/2 73.7 0.048 1/2 85.8 0.048

1,1 2,0 0.7407 5/2 3/2 -28.9 0.106
3/2 3/2 19.2 0.106
1/2 3/2 48.2 0.106

1,1 2,1 1.908 5/2 5/2 -90.5 16.0 3/2 12.2 6.87
3/2 5/2 -42.5 10.3 3/2 60.3 3.05 1/2 122. 9.54
1/2 3/2 89.3 19.1 1/2 151. 3.81

1,1 1,1 2.304 5/2 5/2 - 3.2 11.1 3/2 -46.3 4.77
3/2 5/2 44.8 7.15 3/2 1.7 2.12 1/2 -22.7 6.62
1/2 3/2 30.8 13.2 1/2 64.0 2.65
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Table (12b) continued (5)
1,1 1,2 2.244 5/2 7/2 -89.4 1.52 5/2 -19.2 0.341 3/2 31.8 0.038

3/2 5/2 28.9 1.19 3/2 79.8 0.607 1/2 111. 0.095
1/2 3/2 109. 0.948 1/2 140. 0.948

1,1 1,0 2.660 5/2 3/2 -28.9 48.7
3/2 3/2 19.2 48.7
1/2 3/2 48.2 48.7

2,1 4,1 1.511 5/2 5/2 -31.5 0.002 3/2 5.3 0.001
3/2 5/2 -14.7 0.001 3/2 22.0 0.000 1/2 41.7 0.001
1/2 3/2 30.8 0.002 1/2 50.4 0.000

2,1 3,2 1.733 5/2 7/2 -50.0 3.90 5/2 1.1 0.88 3/2 28.6 0.097
3/2 5/2 17.8 3.07 3/2 45.3 1.56 1/2 58.3 0.243
1/2 3/2 54.1 2.44 1/2 67.0 2.44

2,1 3,1 2.027 5/2 5/2 -27.0 21.1 3/2 2.0 9.03
3/2 5/2 -10.3 13.5 3/2 18.7 4.01 1/2 34.9 12.5
1/2 3/2 27.4 25.1 1/2 43.6 5.01

2,1 2,2 2.138 5/2 7/2 -35.4 0.122 5/2 - 5.2 0.027 3/2 15.6 0.003
3/2 5/2 11.5 0.096 3/2 32.3 0.049 1/2 44.5 0.008
1/2 3/2 41.1 0.076 1/2 53.3 0.076

2,1 2,0 2.652 5/2 3/2 - 9.8 55.5
3/2 3/2 6.9 55.5
1/2 3/2 15.7 55.5

3,1 4,1 3.68 5/2 5/2 - 2.1 28.9 3/2 34.7 12.4
3/2 5/2 -33.3 18.6 3/2 3.5 5.50 1/2 23.1 17.2
1/2 3/2 -20.4 34.4 1/2 -0.001 6.87

3,1 3,2 5.36 5/2 7/2 -20.6 0.69 5/2 30.5 0.155 3/2 58.0 0.017
3/2 5/2 -0.001 0.54 3/2 26.8 0.28 1/2 39.7 0.043
1/2 3/2 2.9 0.43 1/2 15.8 0.43

3,1 3,1 9.71 5/2 5/2 2.4 9.09 3/2 31.4 3.89
3/2 5/2 -28.8 5.84 3/2 0.000 1.73 1/2 16.3 5.41
1/2 3/2 -23.8 10.8 1/2 - 7.6 2.16

3,1 2,2 12.90 5/2 7/2 - 6.0 30.6 5/2 24.2 6.88 3/2 45.0 0.76
3/2 5/2 - 7.0 24.1 3/2 13.8 12.2 1/2 26.0 1.91
1/2 3/2 -10.1 19.1 1/2 2.1 19.1

1,0 4,1 4.00 3/2 5/2 -21.7 34.2 3/2 15.1 22.8 1/2 34.7 11.4
1,0 3,1 12.25 3/2 5/2 -17.2 3.74 3/2 11.8 2.49 1/2 27.9 1.25

58



7) The Hyperfine Splitting with an External Magnetic Field

We now want to calculate the Zeeman splitting with wavefunctions
| iJIFMp> CfJIFjMMjMp) | iJM> |IMj>.

(19a)
But this is
<iJIFMF|Hz|iJIF'MF,>=MZM M,ZM, 6m M, C( JIF .MMjMj-JCC JIF1 ^MjMj. , )<i JM | Hz | i JM1 >.

But as shown at the end of sec.(3)
<iJM|Hz|iJM'> = |3H gL(i,J) M 6M,M,

(19b)

(20a)
so that

<iJIFMF|Hz|iJIF'MF,> = PH gL(i,J) MZM M C(JIF,MMIM[r) C(JIF' jMMjMp,).

(20b)
In Appendix (C) I show

MZM M C(JIF,MMjMf) C(JIF'.MMjMp,) = [(2F1+1)(2J+1)J(J+lJ]1/2 (-1)+I+1+J+F'

C(F'IF,Mp,OMp)

(20c)
so that

1/2<iJIFMp|Hz|iJIF'Mp,> = /3H gL(i ,0) 5m m [(2F'+1) (2J+1) J (J+l)]

(_1) + I + 1+J+F' F J j C(F1 IF,MpOMp)

=/3HgL(i,J)6M^M^[(2F' + l)(2F+l)(2J+l)J(J+l)]1/2(-l)I+J ^ (^J,^) {} j p.} ■

F "F
(20d)

The diagonal matrix element is
<iJIFMp|Hz|iJIFMp>= pH gL(i,J) (l/2)Mp [F(F+1)+J(J+1)-I(I+1)]/F(F+1),

(21a)
which, with I = 0, reduces to the diagonal matrix element for Zeeman 
splitting in the absence of hyperfine splitting. The non-diagonal matrix 
element is
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<iJI(F+l)MF|Hz|iJIFMp>= |3H gL(i,J) (1/2)

{(I+J+F+2)(J+F+l-I)(I+F+l-J) [(F+l)2 - M2]/[(2F+1)(2F+3)(F+1)2]]1/2.

(21b)
For I = 1/2, one has a sequence of 1x1 and 2x2 matrices to diagonalize, and 
for I = 3/2 a sequence of up to 4x4 matrices. The final eigenfunctions can 
be written, |iJIkMp>, where k is an index, i.e.

J+I
| i JIkMp> = pip. C3(k;0H;iJIFMp) |iJIFMp>

J+I
= pip C3(k;/?H;iJIFMp) C(JIF’MM!Mf) iJM> jlMp,

(22)

where F$ is the greater of |Mp| or |J - I|. Therefore the number of allowed 

B values is J + I + 1 - F . The new energies and mixing coefficients are

too extensive to tabulate entirely. In Table (13) I compare the level 
energies for the case of no hyperfine splitting and a 6 kG magnetic field, 
with that for I = 3/2 in Xe for the level (1,4). In the absence of 
hyperfine splitting this level is split by the Zeeman effect into 9 
components labelled by M. The Zeeman splitting is shown as the first entry 
in Table (13). With hyperfine splitting included there are 4 hyperfine 
levels with F = 11/2, 9/2, 7/2, and 5/2. The magnetic field splits these 4 
levels into 36 components with 12 different Mp values, from -11/2 to 11/2.

But we expect these 36 components to be clustered around the 9 Zeeman 
components occuring when 1=0, if the Zeeman splitting dominates the 
hyperfine splitting. This is illustrated in Table (13) where the (k,Mp)

components are ordered in energy. The entry in parenthesis is the diagonal 
matrix element for the initial (F,Mp) level. A is also ordered in energy.

As expected, with a 6 kG field the non-diagonal matrix element is so large
that all the energies are changed from their initial diagonal values, and
all the mixing coefficients are significant. On the other hand, with no
magnetic field, the mixing coefficients are of the form 6F F and one regains

h ,hk
the eigenfunctions for the case of hyperfine splitting.
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Table (13) Splitting of the (1, 
without and with ( 

Mp\ E(M=4) E(M=3) E(M=2) E(M=1)

1.40 1.05 0.70 0.35
11/2 1.439
9/2 1.413 1.079

(1.306)(1.185)
7/2 1.333 1.095 0.738

(1.221)(1.016)(0.930)
5/2 1.271 1.035 0.760 0.410

(1.2111(0.865)(0.725)(0.675) 
3/2 0.877 0.698 0.411

(0.710)(0.509)(0.435) 
1/2 0.545 0.316

(0.209)(0.165) 
-1/2 0.237

-(0.090)

4) component of (5p) (5d) in a 6 kG field 
I = 3/2) hyperfine splitting 
E(M=0) E(M=-1) E(M=-2) E(M=-3) E(M=-4)

0.0 -0.35 -0.70 -1.05 -1.40

-3/2

-5/2

-7/2

-9/2

-11/2

0.088
(0.420)
0.043 -0.233

(0.153) (0.145)
-0.062 -0.341 -0.563

-(0.145)-(0.203)-(0.291)
-0.070 -0.419 -0.714 -0.929

-(0.345)-(0.436)-(0.559)-(0.792)
-0.380 -0.758 -1.049 -1.346

-(0.600)-(0.726)-(0.915)-(1.293) 
-0.697 -1.084 -1.362

-(0.855)-(1.016)-(1.271) 
-1.023 -1.393 

-(1.109)-(1.307) 
-1.364
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8) The Radiative Transition Rate with Both a 6 kG Magnetic Field and 
Hyperfine Splitting

The squared dipole matrix element is more complicated in this case than 
with zero hyperfine splitting. In this case

DU^iJIkM^.i'J'Ik'Mp,) = | , i JI kMp | r | i' J' I k' Mp, > |

J+I J'+I
= lFgF F.Zp. C3(k;^H;iJIFMp)C3(k,;/IH;i'JlIF'Mp1)<^2,iJIFMp|r^3,i'J'IF'Mp1>|

s s 
J+I J'+I

= Ip2p p.ip. C3(k;^H;iJIFMp) C3(k' ;/JH;i' J‘ IF'Mp,) ^ ^ CIJIF.MMjMp)

C(J1 IF' ,M1 MjMp,) <^2,iJM|f|^3,i 'J'M1^2.

(23a)
But the last matrix element is given in eqs.(ll) of sec.(4), so that

J+I J'+I
D(l2,iJIkMp;l3,i'J'Ik'Mp,) =|plp p.Zp, C3(k;/3H;iJIFMp) C3(k';/JH;i'J ' IF'Mp,) 

MZM] S, C(JIF,MHiHf) C( J' IF' (M'MjMp,) j.Ij.

^3-1/2+ji-J ^,2
C1(l3,i1 J1 «jij-(\2^3/2)(-1) [(Zj^lJCZj^+DCZJ+l)]1^

) < l1 j2 C(F1F',Mf/JMf,)|2

7 7 j+l j'+1 1 n
= (S^3/2) (2J+l)lW^2iJ^31,J,)l If^F F'=F; ^(k^HjiJiFMp)

C3(k';/3H;i'J'IF'Mp,) j^j, CCJIF.MMjMp) C( J ' IF' .M'MjMp ,) C(J1J ' ,M/3M') p,

(23b)
where W is defined in eq.(13c). The sums over M, M', and Mj, which were not 

present in sec.(4) are readily done leading to

DU^iJIkMp^i'J'Ik'Mp,) = (A^^^/2)2 (2J+1) (2J'+1) |W(^2iJ^3i' J ') |2

J+I J1+1 F+I 1/9 T r1i'
IpZp p,Zp, C3( k;/3H; i JIFMp) C3(k' ;j3H;i ' J ' IF'Mp,) (-1) (2F+1)1/^ {j j p }
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^ (-1)^ dp C(F1F',Mf/3Mf,)|2.

(23c)
Note that the result in eq.(23c) does not depend on M and M1, which were 
good quantum numbers for the case of Zeeman splitting with hyperfine effects 
neglected. As discussed in sec.(4), one can take the sum over outside the

-> -> *
absolute value sign and use ap'ap> = 4 p1 to arrive at

DU2,iJIkMF^3,i'J'Ik'MF,) = (\2^3)2 (2J+1)(2J'+1) ^(^iJ.^i'J1)!2 

Z(^2iJMF^3i'0'MF,) = (2J+1) S(iJ,i1 J') Z(^i JMF,^3i' J'MF,),

(24a)
where S(iJ,i'J1) is the level strength defined in eq.(14b), and

J+I J'+I
Z(^2iJkMF,^3i1J ' k'Mp.,) = |FZF F,ZF, C3(k;/3H;i JIFMp) C3(k' ;/3H;i1 J' IF'Mp.,)

F+I 1/? T F111 7
(-1) (2F+1)1/^ {j j F } C(FlF';MF,-MF+MF1,MF,)r.

(24b)
For this case proof of sum rules requires special care. Consider the 

sum of eq.(24b) over final state parameters k' and MF. One has

. J+I J'+I
k,IM, Z(^2iJkMF^3i'J'k'MF,) =k,IM, |FZF F,IF, C3(k;/3H;iJIFMF)

F+I
C3(k';0H;i'J'IF'MF,) (-1) (2F+1)172 {\ ^’} C( F1F1 ;MF ,MF,) |2

F+I
=M^ pl\ F,|F,|FZF C3(k;/3H;iJIFMF)(-l) (2F+1)1/2 {' }C(F1F' ;mf^’Mf) 12-

(25)
Consider the sum over Mp = m and F' = M, which is

|J-I| J+I J+I J+I -|J+I|-1 J+I
T =m=-|J-I| M=|J-I| u(M’m) + m=|J-I|+1 M^m u(M’m) + m=-J-I M=|m|

|J-I| J+I J+I J+I
=m=-|J-I| M=|J-I| + m=|J-I|+1 M=m + U(M,-m)].

(26a)
But interchanging the order of the summations in the second term leads to
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J+I |J-I| J+I M
T = M= | J-I | m=-|J-I | u(M’m) + M=| J-I |+1 m=| J-I |+1 +

|J-I| J+I M
= m=-| J-I | lJ_I I,rn) + M= I J-I

Then
|J'-I|

M= | J-I |+1 rrl-M-

J+I
k,ZM1Z(^iJkMF^3i'J'k'MF,) = M,=_^JI_I| ^ |FZF C3(k;0H;iJIFMF)(-l)

5 F F s

(2F+1)1/2 (J I0'"1' f’} C(F1|J'-I|;Mf,0,M|;)|2+ f, = |j.?,|+1 m^_F' pi-1

(26b)

F+I

J+I F+I
|FZF C3(k;/3H;iJIFMF)(-l) (2F+1) {[j'p'} CCFlF-jMp.Mp)!2.

(27a)
Now the sum over /3 and MF can be done, leading to

J+I|ZM,Z(/2iJkMF^3i,J'k'MFl)=(2|J'-I|+l) FZF |C3(k;^H;iJIFMp) {\ |J'"I|F'} |2 
F s

J'+I J+I I F' J1

so that

f F' = |J'-I|+1 ^2fr +1^ |C3(k;/lH; i JIFMp) j p } I

J'+I J+I TF'l1?
= F' = |j'?! | (2F'+1) p£ps|C3(k;/3H;iJIFMF) {[ ] ^ } |

J+I ?
= 1/(2J + 1) FZF |C3(k;^H;iJIFMp)p = 1/(2J + 1),

k,ZM, D(^2,iJIkMF^3,i'J'Ik'MF,) = S(iJ,i1 J’),

(27b)

(27c)
Thus, summing over k‘ and Mp reduces the radiative transition rate to its

value in the absence of hyperfine splitting and Zeemann splitting. This is 
useful is checking that the programming is correct. Note that each initial 
state with quantum numbers k and Mp has the entire radiative transition

rate, S(iJ,i'J'). For each iJ, the total number of (k,Mp) states is
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(2J+1)(21+1). Since all the levels have the same rate, an average over k 

and Mp leads to S(iJ,i'J').

In figs.(2a)-(2c) I show the emission cross sections for Xe(129) for 
the same transitions as shown in figs.(la)-(lc). The triplet shape is 
retained though the cross section density is increased. As a crude 
generalization, when Zeeman spliting is significant the number of components

2
in each iJ-i'J' transition is 3 (21 + 1) (2JS+ 1), where Js is the smaller

of J or J1. When these components are distributed over a triplet, there are 
2(21 + 1) (2JS+ 1) components in each member of the triplet. In the absence

2
of a magnetic field there are roughly (21 + 1) components in a single peak. 
For these transitions and a 6kG magnetic field the width of the members of 
the triplet seem slightly larger for the case I = 1/2 than for I = 0.

In figs.(3a)-(3c) I show the emission cross sections for Xe(131). Here 
the number of components is so large for some transitions (112 components 
for each member of the (1,4)-(1,3) triplet) that for transitions with J =

2,3 and 4, I have added all cross sections in a 0.01 cm-1 interval, except 

where such an addition would produce unrealistically large summed cross 
sections. One must remember that with I £ 1/2 there will be more components 
than with I = 0, but that the individual cross sections are smaller than in 
the case I = 0. The Doppler width at room temperature in each transition is

^ 0.004 cm-1, while the scale size in the figures is 0.01 citT*. Thus while 

each component may be isolated from all the others, the scale size may imply 
an overlap. Again for I = 3/2 one sees the triplet pattern, with a barely 
discernable increase in width over I = 0 and I = 1/2.
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9) Conclusions

These calculations are done with as simple a set of wavefunctions as 
will produce reasonable agreement with Lande g factors and dipole and 
quadrupole hyperfine splitting paramaters. Since the distribution of 
oscillator strength is dominated by the 6 kG magnetic field it did not seem 
necessary to use more accurate hyperfine splitting parameters. Comparison 
with experiment (such as Ref.(20)) can be made if Doppler and instrumental 
line widths are available.

72



References

1) "American Institute of Physics Handbook, Third Ed.", (McGraw-Hill, New 
York, (1972))

2) R. D. Cowan, "The Theory of Atomic Structure and Spectra", (Univ. Of 
California Press, Berkeley, (1981))

3) D. A. Jackson, M.-C. Coulombe, and J. Bauche, Proc. Roy. Soc. Lond. A 
343, 443 (1975)

4) E. U. Condon and G. H. Shortley, "The Theory of Atomic Spectra", 
(Cambridge Univ. Press, Cambridge, (1935))

5) C. E. Moore, "Atomic Energy Levels, Vol. Ill", NBS Circular No. 467 (U.
S. Gov. Printing Office, Washington, D. C. 1958)

6) E. J. McGuire, "Radiative Transitions in Atomic Xenon", (Sandia Report, 
SAND76-0196)

7) M. Aymar and M. Coulombe, Atomic Data Tables, 21, 537 (1978)

8) H. R. Schlossberg and A. Javan, Phys. Rev. Lett. 12, 1242 (1966)

9) C. C. Davis and T. A. King, J. Quant. Spectrosc. Radiat. Transfer JJ’ 825 
(1973)

10) L. Allen, D. Jones, and D. Schofield, J. Opt. Soc. Amer. 59, 842 (1969)

11) E. Jiminez, J. Campos, and C. Sanchez del Rio, J. Opt. Soc. Amer. 64, 
1009 (1974)

12) L. D. Landau and E. M. Lifshitz, "Quantum Mechanics", (Addison-Wesley, 
Reading, Mass., (1958))

73



13) E. J. McGuire, "Magnetic Field Effects in the Oxygen Auroral Line", 
(Sandia Report, SAND77-0177)

14) M. Ohwa, I. J. Moratz, and M. J. Kushner, J. Appl. Phys. 66, 5131 (1989)

15) E. J. McGuire, "The Magnetic Hyperfine Interaction for Partially Filled 
Shells", (Sandia Report, SAND77-1431)

16) I. I. Sobelman, "Introduction to the Theory Of Atomic Spectra",
(Pergamon Press, New York, 1972)

17) D. A. Jackson and M. C. Coulombe, Proc. Roy. Soc. Lond. A 335, 127 
(1973)

18) S. Liberman, C. R. Acad. Sci. Paris, B 266, 236, (1968), and J. de 
Physique, 30, 53, (1969)

19) S. Liberman, J. de Physique, 32, 867, (1971)

20) P. J. Brannon, R. W. Morris, and E. L. Patterson, (to be published)

21) L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod. Phys. 24, 249 
(1952)

74



Appendix A
The wave function including nuclear spin is

| iJITt> = MIM C(JITjMMjt) | iJM> (IMp

(Al-a)
= j L. MZMi C(JITjMMjt) C(Jcj,iJ) |JcjJM> lIMp

1/9 1/9 11/2 J
= I C(J j,iJ) [(2J +l)(2j+l)]i/^ I [(2L+1)(2S+1)y^ {^'1/2 jC}

Jc’J C C L ,S L S J

MZM^ C(JIT,MMIt) |2P,2r;LSJM> |IMI> = JZj C(JcJ,iJ) [(2Jc+l)(2j+l)]1/2

1 1/2 J - *
Z [(2L+1)(2S+1)]17^ {^'1/2 jc} pP, ;LSJIFMr>

L ,S L S J
(Al-b)

which is the wavefunction in an IS coupling basis. Then the hyperfine 
interaction matrix element is

<i JIF' Mp , |HHF|iJIFMF> = j Z. j.Zj, [ (2Jc+l) (2j+l) (2J^+1) (2j'+1 )]W^C( Jcj , i J)

1/9 1 1/2 J 1 1/2 J‘
C(J^j',iJ) Z Z [(2L+1)(2S+1)(2P+1)(2Q+1{^'1/2 jc} {^'1/2 jc}

L,S P,Q L S J P Q J
<2P,2^';PQJIF'Mp,|Hhf|2P,2^';LSJIFMp>.

<zlP» jPQJIF'Mp, |HHp| P, ;LSJIFMp> = 6pp, 6^

The last matrix element is given in eq.(49) of Ref.(15) and is 

,2d 2„'.Dmrir'M lu i2d 2,'•! c.ititm _ x x A(F) [ (2L+1) (2P+1)]
w

rL 1 P 
l^i^2

■ P S J,

(-D

where

SO

-S-J r Q S 1

K-1)" 5SQ (j l D U-l)L+f> B {“2^} +C - [45(2S+1)(20+1)]

(A2-a)

1/2

1/2

r v o i'ir^^?lr/1xLnrL2Pi , .. P+S—0 r rL 2 P i-i-i 
(1/21/21/2) («5}) c'-1) D (Wl) "(-1) E <W2)])'

A(F) = (Aq/Att) 2 gnmep (-1)

(A2-b)

I+F+l.+1„ F . . .
^ {[ p (2J+1) [1(1+1) (21+1 J]1,

(A2-C)
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(A2-d)

B = C(l/r1)3]5p [^(^DlZ^+l)]172,

C = [(l/r2)3] [^(^nCZ^+i)]172,

■5 -^1o = [(l/ri)%p (-1) (2/1+l) ( J J „),

E = C(l/r2)3]njf (-D 2 (2/2+D ( 2 2 0),

(A2-e)

(A2-e)

(A2-f)
3 3where [(l/r0) ] is the expectation value of (1/r) for the orbital. c n^2 c-

-7The quantities in A(F) are mep= 1/1836, = Att 10 Henrys/meter, is the

Bohr magneton, while gn is defined in terms of the nuclear magnetic moment, 

mn via mn = gn mep ^g. Since we seek the hyperfine interaction matrix 

element in intermediate coupling we want to sum over LSPQ and The

sum over LSPQ is straightforward but tedious. It leads to
<iJIF'MF,|HHF|iJJFMF> = 6ff, A(F) J

1/2[(2JC+1)(2j+l)(23^+1)(2j'+1)] [T1 + T2 + T3 + T4],

(A3-a)
where

Tj = (-1)
/2-l/2-j-Jc-J‘

(A3-b)

t2 = (-1)
1/2+Jc 1 i i' 1 i i ‘c [6JcJ, /(2JC+1)] {\n ^ {Jc } .

(A3-c)

t3 = (-1)
"-fi -fo j J-~2J , y2 1 ] ]' ^1 2 C D (45; 2 C^jj'/(2j+l)] {] jC 3c} { ^ ^ 2 }

1/2 1/2 1

(A3-d)
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T4 = (-1)
-^rt+j+Jc r iacAI2 j' j 1

E (45)^ [Sj j, /(2JC+1)] {j j j } {^^2}.
c c C 1/2 1/2 1

(A3-e)
Then the interaction becomes

<iJIF'MF,|HHF|iJIFMF> = 5FF, 6M^M^ A(F) (W1 + W2),

(A4-a)

where
^o_l/2-j 1/2

W1 = Z (-1) 2 j Zj, (-1) C C [(2JC+1)(2J'+1)]1/2 C(Jcj,iJ) C(J^j,iJ)
J c c

i j. vi: i j:(j ? ?) 1B C/2 ^+ f-1)
-/,+l/2+J -2J ./2 J’ J 1

‘ 1 c D (45)1/2 { ^ ^ 2 }],

1/2 1/2 1
(A4-b)

and
^r1/2+Jc"2J 1/2

W2 = jL (-1) 1 c jlj, [(2j+l)(2j'+l)]i/2 C(Jcj,iJ) C{JcjMJ)

fjji'} icd/2i2)+ (-1'-^2+l/2+j+2^ 1/2 J' J ^
E (45)1/c { ^ ^2 2 }]•

1/2 1/2 1
(A4-c)

When configuration interaction effects are included, the hyperfine 
splitting is further complicated. For the simple case of 6s,5d mixing in

5
the excited states of the noble gases, the modification to the (5p) (5d) 
results is a reduction in the contributions of the and W2 terms since if

2 2 2S > C, then S > C + (S - C) , an increase due to an additional cross-term, 
given by W2 W2 + W^, where

W‘ = -6 <5d|l/r3|6s> jZ (-l)^"172^ (2jd+l)1/2 jd ^2} {^2

C(dJcjd,iJ) C(sJcl/2,iJ),

(A5)
and the need to include the Fermi contact term due to s electrons, which is 
given by W2 W2 + W£, where
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W£ = (2/3)1/2 Rns(0)2 jZ (-1) Jc 1/2 {^c C(sJcl/2,iJ)2,

c

2
where Rns(0) is the ns electron density at the origin.

(A5)
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Appendix B

The textbook formulation of the electric quadrupole contribution to 
hyperfine splitting seems unduly complicated. As an illustration see 
Ref.(15). This effect arises as the lowest order correction to the 
assumption of a point nucleus in atomic physics calculations. That is, the

potential -Ze2 ^ (l/|r.|) is actually -e2 ^ ^ (l/|r^-rN|), where r^ are

the coordinates of the Z protons. The interaction contributing to the 
hyperfine effect is the difference of these two potentials

HHy= ^ [ Nil f - Ze2 ^

= -e2 [ ^ ^ (r<)K/(r<)K+1 PK(cos(0)) - Ze2 ^ (1/lr^)].

(Bl-a)
If we assume that the smaller radius (r<) is always the nuclear coordinate, 

then

HHy =-e2 [ Nij ^ ^ (rN)K/(ri)K+1 PK(COS(0)) - Ze2 ^ (1/lr^)].

(Bl-b)

The K = 0 term is -e2 ^ l/(r^)^ = -Ze2 ^ (l/|r.|), which cancels the

potential due to the assumption of a point mass nucleus. Then, using the 
spherical harmonic addition theorem, the interaction can be written

i = -e2 [ ^ ^ KZp (rN)K/(ri)K+1 [47r/(2K+l)]

(Bl-c)
Parity considerations eliminate the K = 1 term, i.e. diagonal matrix element

calculations lead to 3j symbols of the form ^ q), which require K even.

Thus the lowest order correction is the quadrupole, and if all higher 
interactions are neglected

HHy = -e2 [ Nll f 2p <rN>2/(ri)3 [V^(eN,0N)]*.

(Bl-d)
For the general case of n ^ electrons with quantum numbers L^S^J^, and 

m electrons with quantum numbers forming a term in intermediate

coupling with quantum numbers iJM, which is then coupled to a nuclear
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moment, I, to produce a term of the form <iJIFMp|, the matrix element of the 

quadrupole hyperfine interaction is

<i JIF ‘Mp, | | i JIFMp> = j.Zj, C(J1J2,iJ) C(J^^,iJ) MIM^ CIJIF.MMjMp)

MtZM, C(JIF',M'MjMp,) [-(47T/5)e2] pZ22 ^ <IMI|r2 [YP(eN,0N)]*|IMj> Ha,

(C2-a)
where
Ha=<(^1)nL1S1J1(^2)mL2S2J2,JM|Z(l/ri)3YP(0i,0i)|(^1)nP1Q1Ji(^2)mR2Q2J^J'M'>

(C2-b)
The last matrix element, H . is a standard atomic physics calculation,

a

which, after extensive tedious algebra can be reduced to

1/2,H = (5/4n-)1/tC(J2J' ,MpM') 6, n 6. n [6. p 6, ,, F V + 6. p 5, ,, F V ]. a b1y1 b2y2 2 1 L1K1

(B3-a)
where

n 11 t c < 11 n-1,
F1 =n L^si 4silMLisi) K 4sil^ipi4)’

F2 = m L^S^rlL2S2l}^L2S2)

(B3-b)

vr(-i)
—Lj^—Sj—J J2

[(2L1+1)(2P1+1)(2J1+1)(2J;+1)(2J+1)(2^1+1) ]

(B3-c) 

1/2

2 J J' 2 J 2 P L
(J2 (Sl P; l|} (4

V2=(-l)
-*'2-32-^2+3l+3

[(2L2+l)(2P2+l)(2J2+l)(2J£+l)(2J+l)(2/2+l) ]

(B3-d)

1/2

2 J, J: 2 J9 Ji 2 P9 l9
^ fo, J. o2Ms2 P2 L2H 4 ,2 4)-

(B3-e)
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(B3-f)

a(^) - (-I)'' (q ^ & <1 11/r311> (2^1)1/2,

where | is a fractional parentage coefficient.

Next consider the nuclear matrix element in eq.(B2-a). Since we do not 
have a complete theory of the nucleus we cannot explicitly calculate

<IMj|r^ [Y^C^,^)] | IMj>. Assuming a spherical harmonic description is

valid for the nuclear wavefunctions then the matrix element is of the form

£ <IMI|r^ [YP(eN,0N)J*|IM|> = (-l)~p C(121;Mj,-p,Mj) ^ <I|r^ |I>,

(B4-a)
with all other coefficients lumped in jjj. Note that the Clebsch-Gordan 

coefficient requires I £ 1, so there is no effect for isotopes with I £ 1/2. 

The nuclear quadrupole moment is defined by1^(I use the traditional 

spherical harmonics, Y^, rather than QKm= [47r/(2K+l)]1^2 Y^)

0 = [16W5]1/2 ^ <IM,|r2 ,

(B4-b)

= [167r/5]1/2 C(I2I,MI,-p,MI)M ^ <11 r2 |I>

= (-1)21 [167T/5]172 {I(2I-1)/[(2I+3)(I+1)]}1/2 ^<I|r2 |I>

(B4-c)
7

which defines the unknown integral j>j <11 |I> in terms of the nuclear

quadrupole moment,

£ <1|r2 |I> = Q (-1)21 [5/167r]1/2 {(2I+3)(I+1)/[I(2I-1)]}1/2.

Then the nuclear matrix element in eq.(B2-a) is

<IMllrN = (-1} P C(I2I,MI,-p,Mj) Q [5/167r]^-P 21

(B4-d)

,1/2

{(2I+3)(I + 1)/[I(2I-1)]}1/2 = (-1) P C(121,Mj,-p,M|) Fn,

(B4-e)
where
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FN = Q (-1)21 [5/16TT]172 {(2I+3)(I+1)/[I(2I-1)]}1/2

(B4-f)

<i JIF

The eq.(B2-a) becomes

1 Mp , | | i JI FMp> = j.Zj, CCJ^^iJ) [-(47r/5)e2] F^ Fa

(5/47r)1/2 6^ n 6c n [6. p 6, ,, V. + 6, p 6, ,, V?]
S1Q1 S2Q2 L2P2 J2J2 1 L1P1 J1J1 2

^^(JIF.MMjMp) m,Z:m,C(JIF' ,M'MjMFI)pZ22(-l)"P C( 121 ,Mj )C(J2J ' ,MpM').

(B5-a)

Some tedious but straightforward algebra reduces the last line of eq.(B5-a) 
to

6f,f' 6mf,mf, (-1)"F"I"J [(21+1)(2J+1)]1/2 {2 ] J},

(B5-b)
Thus one has the selection rules F = F‘, Mp = Mp,. Then the matrix element 

i s

<iJIF'Mri|H2.. |iJIFMr> = 6r r, 6U „ 6C ^ 6C n (-1)_F_I_J [(2I + 1)(2J+1)]1/2'Mp, |HHy|iJIFMF> - 6p5p, 6s202( l')

{p ] J} (5/4»)1/2 [-(4»/5)e2] PN Fa

0^2 C(JiJ2’lJ) l-6L2P2 6J2J^ V1 + 6L1P1 6J1J^ V2]

(B6-a)

• 5F,P' 5S202'-1>‘F+I'J [(2I+1)(2J+1)]1/2 (2 J J) Q (-e2/2)

[(2I+3)(I + 1)/(I(2I-1)]1/2 Fa j.Zj, CfJ^.iJ) C(J^J^iJ)

[8L2P2 6J2Jj V1 + \1P1 6JjJJ V2]-

(B6-b)
For the excited states of closed shell atoms including the noble gases,

F2 = 1, and

F1 = (1/3) L^S| (2Li + l) (2Si + 1)?

(B7-a)
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F, Vj= (-1)
— 1—S^—J J2

[(2^1+l)/3] [(2J1+1)(2J^1)(2J+1)(2^1+1)] 1/2

2 J Ji 2 J J' 
a(^l) {j2 J' J } ^1/2 /j

(B7-b)
1/2 ^o+J11 /o

F2 V2=(-l) [(2J2+l)(2J-+l)(2J+l)(2^2-fl)

2 o9 j: 2 j9 j:
a(^2) J } ^1/2 /2 /2)’

(B7-c)
so that

<iJIF'MF,|H^y|iJIFMF> = 6F^F, 6^ ^(-e2 Q/2) (-1)F 1 (2J+1) {2 ] J}

1/2,

where

{(2I+1)(2I+3)(I+1)/[I(2I-1)]}[W3 - W4] ,

W3 " (2^i+1) (q 0 0^ <(1/r) >^1

(B8-a)

-j+l/2-Jc-JCr
,1/2, 2 Vc, r 2 JcJc1

(-1) ^ ^C(2Jc+l)(2Jc+l)]i-C(Jcj,iJ) C(J-j,iJ) {j //} {1/2

(B8-b)

W4 = (Z^2+1^ ^0 0 Cp <(1/r) >j2

J+1/2+2J 1/2 2 i i1 2 i i1(-1) [(2j + l)(2j' + l)]1/2C(Jcj,iJ) C(Jcj',iJ) {2J j } J^}],

(B8-c)
where and j have been substituted for J. and 0o. c J 12 21

21Biedenharn et al give the relation

{p j j} = (-1)F+I+J 6 [A(A+1) - (4/3) I(I+1)J(J+1)]

{(21-2)!(2J-2)!/[(2I+3)! (2J+3)!])1/2,

(B9-a)
where
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A = F(F+l) - 1(1+1) - J(J+1),
(B9-b)

so that

[w3 - W4] 6

1 I?{[A(A+l)-(4/3)I(I + l)J(J+l)]/[2I(2I-l)]} {(20+1)/[(2J+3)(2J+2)(2J)(2J-1)]}1

[A(A+1)-(4/3)I(1+1)J(J+l)] Bi0," ^F,F‘ 6Mf,Mf

(B9-c)
wi th
BiJ=(-3e2Q)(-l)2I"J{[W3-W4]/[2I(2I-l)]} {(2J+1)/[(2J+3)(2J+2)(2J)(2J-1)])1/2

(B9-d)
where B., is a coefficient used to describe the quadrupole contribution to 

1 J

hyperfine splitting. In studies of hyperfine splitting the second term in 
brackets in eq.(B9-c) is neglected as an irrelevant constant, but it must be 
included when one studies transitions between levels with different iJ.

When configuration interaction (Cl) effects are included in the 
wavefunction the calculation of the quadrupole contribution to the hyperfine 
splitting is complicated. For the simple case of 5d-6s mixing considered 
here, the effect of Cl is to add a cross term which may be described by -*

+ W4, where

(BIO)
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Appendix (C)

To evaluate
I = MZM M C(JIF,MMiMf) C(JIF'.MMjMp,),

(Cl-a)
I use

M = I [L(L+1)]1/2 C(L1L,M'OM). 
M'

(Cl-b)
Then

I = ,1/2[J(J+l):r^ mEm C(JU,qOM) C(JIF,MMiMf) CCJIF'.MMjM,-,).

(Cl-c)
But since C(JU,qOM) is non-zero only when M = q

I = [J(J+1)]1/2 § MZM C(01J,qOM) C(JIFjMMjMp) C(JIF*.qMjMp,)

= [J(J+1)]1/2 (-1)2F+1 AZa qIMiC(2A+l)(2J+l)]1/2 j a } C(A1F,aOMp)

C(IJA,MIqa) C(JIF'.qMjMp,)

= [J(J+1)]1/2 (-1)2F+1-J-I+F' aZq [(2A+1)(2J+1)]1/2 {} j ^ } C(AlF,aOMF)

qZM CCIJA.Mjqa) C(IJF1.MjqMp,).

(Cl-d)
But the last sum is 6. 6 u , so thatA,F a,Mp,

I = [(2F' + 1)(2J+l)J(J+l)]1/2 (-1)+I + 1+J+F' {} F ^,} C(F1 IF,Mp,OMp)

(Cl-e)
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HISTORY: started originally as a memo to E. patterson in august 1989 for the 
Xe laser in the falcon program. Recast as a report end of Oct 1989 because 
it had grown so large.
1) calculations complete for isotopes with no hyperfine effect
2) need for mass 129 with spin 1/2 and 131 with spin 3/2
3) puzzling feature is the dominance by the transition at 1.73 £. Is this 
due to dominance of the laser medium by radiation trapping?
completed 1/31/90
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