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ABSTRACT

Calculations are performed to predict the distribution of the (5p)5(5d)- (5p)5(6p)
emission cross section in Xe in a strong magnetic field. For isotopes with no nuclear
magnetic moment, the question is the calculation of Lande g factors. This is done
with wavefunctions obtained by diagonalizing the electrostatic interaction in jj
coupling, leading to reasonable accurate Lande g factors. For levels discribed by
quantum numbers J and M, the Zeeman interaction is always diagonal in M, and with
a 6 kG magnetic field the Zeeman interaction is effectively diagonal in J (the non-
diagonal matrix elements are negligible), so the resulting cross section calculations are
simple. For the isotopes with non-zero magnetic moments, one must determine the
dipole and quadrupole hyperfine splitting coefficients. To do this, and to improve the
overall fit of the calculated and measured energy levels, it was necessary to include
configuration interaction between terms of the (5p)5(5d) and (5p)5(6s) configurations.
Comparisons are made between these calculated hyperfine parameters and experiment.
Hyperfine splittings are tabulated as are the cross sections and energy shifts due to
hyperfine interaction in each transition. When hyperfine interaction is included and
levels are characterized by the quantum numbers F and MF, the Zeeman interaction is
diagonal in MF, but there are large non-diagonal components between levels of the
same MF but different F. All these effects were included in the calculations leading
to a particularly rich spectrum for Xe(131) with I = 3/2. For example, the
(Bp)5(5d)j-4- (5p)5(6p)j_3 transition is split into approximately 336 components.
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1) Introduction

Because of the large number of possible transitions, Xenon in a strong
magnetic field is a messy system to model as an IR laser. Here I examine

the effect of a moderate (5-10) kG longitudinal magnetic field on oscillator

strengths and gain cross sections for the (5p)5(5d) —(5p)5(6p) lasing
transitions in Xe. At these moderate fields a linear analysis of the Zeeman
effect should be sufficient, i.e., one needs megagauss fields to see
quadratic Zeeman effects. But, before doing the Zeeman effect analysis,

there are some other effects which need to be estimated.

First, at X = 2M, corresponding to 0.45 eV or 3630 cm-1, the Doppler
width is AEp = 0.024 (kT(eV))1,/2 cm-1, which is small even at kl = 1 eV

(0.025 cm-1). At room temperature (0.025 eV), the Doppler width is 0.004
cm-1, which is comparable to the linewidth due to a level's natural lifetime

corresponding to a decay rate (Einstein coefficient) of 55x10"/sec.

Second, there are a number of stable isotopes with significant

fractional concentrations, leading to isotope shifts in spectral lines. I

list the isotopes in Table (1)I1.

Table (1)

Mass Percent Spin
128 1.92 0
129 26.44 1/2
130 4.08 0
131 21.18 3/2
132 26.89 0
134 10.44 0
136 8.87 0



Cowan points out that the isotope effect is difficult to calculate. The
easy part to calculate is that due to mass effects in the definition of the
Rydberg where the reduced mass is replaced with the electron mass, i.e., the
measured energy difference is [M/(M + me)] AE(M=co). Then in using M + 6tM

for a different isotope, one has for the isotope shift,
6(AE) = me 6M/[(M + me)M + 6M + me)].

1)
For M = 131, 6M = 3, and AEM=a>) = 104 cm-1, then 6(AE) = 0.001 cm-1.

Contributions to the isotope shift from the other effects may be larger, but

unless they are larger than the above by a factor of 25, they can be

3
neglected. Experimentally, Jackson et al indicate that the isotope shifts
are smaller than 0.006 cm-1 for the levels studied here.

Third, two of the prominent isotopes, 129 and 131, have non-zero
nuclear spin. This leads to a significant hyperfine splitting, and a
considerable increase in the complexity of the analysis. If one is
concerned over radiation trapping/detrapping the hyperfine splitting can be
important since the mass 129 and 131 isotopes constitute 50 / of the Xenon.
Hyperfine splitting effects will be discussed in secs.(5)-(8).

In secs.(2)-(4) the calculations of emission rates in a magnetic field
are done neglecting hyperfine effects. The most useful results from
secs.(2)-(4) are likely to be in Tables (4) and (8), which give the Lande g
factors, and in Table (9a) which lists Einstein coefficients and room
temperature emission cross sections. Tables (10a) and (11a) list the
hyperfine splittings for Xe(129) and Xe(131), respectively, and the
(extensive) Tables (12a) and (12b) list emission cross sections between
hyperfine components for Xe(129) and Xe(131), respectively, without a
magnetic field. Because the possible transitions between hyperfine
components of Xe(129) and Xe(131) in a strong magnetic field are so

numerous, they are not tabulated; a selection is shown in figs.(2a)-(3c¢).



2) The Case of Zero Magnetic Field

The excited terms of the noble gases are described by wavefunctions of

the form Unp)52?, .(nV ) 21" ;LSIM> = |2P,V;LSIM> and |(np)5]

There is a real difference between these wavefunctions as is

obtained by adding Jc¢ and j' directly, without introducing L and S, while

\ZP,ZN;LSJM> does not involve Jc¢ and j. However, one can find a linear

relation between the wave functions,i.e.,

[J ./pIM> = [(2) +1D)2j+D]1/2 Z  [QRL+1)(2S+1)]1/2
C c L,S

("1/2 §" | P, LSIM>,

L S J
')
abec
where {d e f} is a 9-j symbol. The reason two wavefunctions are introduced
g hi

is that the dominant effect in the spectrum of the noble gas atoms is the

spin-orbit splitting of the core, 1i.e.,

<3;y'j":J"M"|HsoJc,rj;JM> = ij Sy,. 6 6MM hlJc./j)
cc
3)
For the noble gases Condon and Shortley give the h(Jc,y’,j) values in Table
(@)
Table (2)
Je J
1/2 r—1/2 Snp- (1/2) (/'+!) 5,..
1/2 r+1/2 W+ (172) ~ Vr
3/2 N-1/2 -np/2 - (1/2) (/'+1) 5
372 AN+1/2 -5,.,p/2+ (1/2) P' Sn.xr



where $npis the spin-orbit parameter for the subshell. For the noble gases

the dominant effect on the level structure is the 3Snp/2 splitting due to

the two Jc values. In the later numerical analysis [ use = 7025 cm-1
(from the 2p3/2-2pi/2 sP~ttin9 °f the Xe "on)« $55 = $gp = 369 cm-1, and

$5d = 39 cem-1 (from the splitting of the Cs neutral atom spectra), all data

5
taken from Moore's Tables.
The next largest effect on the spectrum is due to the electrostatic

effect. Here the interaction matrix elements are

iITMTIHei [Je,r gsume = [(2Je+iD)(2j+D (20D (25D

12 1 12 J"
I [QL+D@2S+D]1/2 Z [(RLA+1)2S'+1)]1/2 {/1/2 jC {/\'1/2 3C|
L,S L'.S' LSy L'SJ"

<2P,2";LSJM|Hel|2P,2/;L'S'T"M">.

(4a)
But the electrostatic matrix element is diagonal in IS coupling

<2P,V LSIM|[Hel||2P 2r ;L'SU"M"> = Sjnj 6l 6L,L 65,5 h(*LS)

(4b)
SO
<IN, 0"M"[He 1 |TcNj;TM> = M M[(2Tc+D)(2j+1)(2IVD(2j"+D)] /2
112 Jr 1 12 "
I (2L+1)(2S+1) h("LS) {n/2 T | {-f1/2 jC}.
LS L S J L S 7
(4c)

The electrostatic interaction is diagonal in J and M but mixes terms of
different Jc and j. This is discussed in detail in Ref.(6). In consequence,

Jc and j are no longer good quantum numbers, while the new eigenvectors are

|1,JM>, where
1LIM> = ;27 C(,Jcy3)) |Je,rp;JM>,

(5a)

10



and the C(1,Jcj;J) are mixing coefficients found by diagonalizing the

interaction matrix. Tables (3), (4), and (5) (which are modifications of
Tables (3a), (3b) and (3c) of Ref.(6)) list mixing parameters (relative
energies, mixing coefficients, and Lande g factors with and without (in
parenthesis) the interaction) calculated for the (5p)5(6s), (5p)5(6p), and
(5p)5(5d) terms of Xe.
5

The measured level energies from Moore's Tables are listed. The new

levels resulting from the diagonalization of the electrostatic interaction
5
are labeled (i,J). The calculated energy of the (1,2) level of (5p) (6s),
the (1,3) level of (5p)5(6p), and the (1,4) level of (5p)5(5d) have been
adjusted to the experimental value. J is a good quantum number, and i
5

increases with increasing binding energy. Moore's Tables identify levels

by specifying energy relative to the ground state, Paschen notation, e.g.

Zp™Q, and a designation in jl coupling. The latter is a coupling scheme
which first couples the core J . to the valence electron | to determine

another quantum number, k; this is then coupled to the spin of the valence

electron to determine J. Thus, in place of the jj coupling notation (Jcj,

J), one has the jl coupling expression (Jc,kJ). There is a slight

advantage6t to using jl coupling in place of jj coupling for the J = | level

of (5p)6(6p) and the J = 2 level of (5p)6(5d). However, both the jj and jl

designations are meaningless when significant configuration interaction
occurs, while their use implies the sufficiency of a single configuration
description. Thus it seems pointless to continue identifying levels with a
jl coupling scheme. Thus, in addition to the (i,J) designation of levels,
the tables herein also list the energy of the level relative to the ground
state, and the Paschen notation (which orders rather than describes levels),
e.g. 2pl0/77270.

The Lande g factor is given by

g (i) =1 QL+1)(2S+1) [3IJ+1D)+S(S+1)-L(L+D]/[2IJ+1)]

2

11



1y 12 Jr
C@,Jci: DIRIcD(2j+D] "+ {TI2 3

rLsJ

(5b)

and a comparison of glL(iJ) with glL(Jcj,J) is an additional measure of the

mixing of the wavefunctions.

If there are several configurations

contributing to a term the Lande g factor is the sum of contributions, given

by eq.(5b), from each configuration, that is there is no intererence.

Table (3) Results

Level J,,
¢

1,2 372
15/67068

11 12
1s2/77186

2,1 32
154 /68046

1,0 372
1s3/76197

j

172 2

172 1

172 1

1/2 0

5
of the Matrix Diagonalization for the (5p) (6s) Levels

C

-4275

6822

-3310

6263

-4275

5843

-3297

4857

1.500 (3/2) 1.500
1.299(1.333) 11.321

1.201(1.167) L.204

12

3/2,1/2

1. 000

1/2,1/2 -0.9975
3/2,1/2 0.0710

3/2,1/2  0.9975
1/2,1/2  0.0710

3/2,1/2

1. 000



5
Table (4) Results of the Matrix Diagonalization for the (5p) (6p) Levels

Level J  j 3 Kr~a,e) Kaxpld) Ol(cale)  GL(expld) for%p‘ (i,0¢j;))
C,

1,3 3/2 323 -3511 3509 4/3 (4/3) 1336 3/2,1/2  1.000
2pg/78403

12 12 322 7415 7520 1.173(1.167) 1.195  1/2,3/2 -0.9993
2p3/89163 3/2,1/2 -0.0338
22 3/2 3722 -2567 2701  1.371(1.333) 1.379  3/2,3/2 0.9889
2p6/79212 3/2,1/2 -0.1471
32 3/2 122 -3730 3793 1.123(1.167) 1.106  3/2,1/2 0.9885
2p9/78120 3/2,3/2  0.1477
11 12 321 7360 7366 1.462(1.500) 1.552  1/2,3/2 -0.9902
2p2/89279 3/2,1/2  0.0868
21 12 121 6685 6467  0.640(0.667) 0.790  1/2,1/2 -0.9960
2p4/88380 1/2,3/2 -0.0742
3.1 3/2 321 -3021 2956  1.097(1.333) 1.022  3/2,3/2 0.7774
2p7/78957 3/2,1/2  0.6155
4,1 32 12 1 -4551 4645  1.800(1.500) 1.852  3/2,1/2 0.7833
2p10/77270 3/2,3/2 -0.6205
1,0 12 120 8807 7948 1/2,1/2  0.9881
2PJ/89861 3/2,3/2  0.1539
2,0 32 320 -608 -1794 3/2,3/2 -0.9881

2pe-/80119 1/2,1/2  0.1539

13



Table (5) Results

Level J . j
1.4 3/2 572
3d~/80197

1,3 12 5/2
3s™N 791747
2,3 3/2 52
3d'/82431

3,3 3/2 3/2
3d4/80971

1,2 172 52
3571791448
2,2 172 372
3s"791153

3,2 3/2 372
3d'/81926

4.2 3/2 572
3d3/80323

1,1 12 3/2
3593619

2,1 3/2 52
3d2/83890

3.1 3/2 32
3dc/79987

1,0 3/2 32

3d6/79772

5
of the Matrix Diagonalization for the (5p) (5d) Levels

K.4?a"c> Kr-Jfxpl 5) GL(CaIC) GL(CXplS)

-3826

7438

-2120

-3772

7206

7014

-2712

-3635

9548

- 236

-4368

-4812

-3826

7724

-1592

-3052

7425

7130

-2097

-3700

9596

- 133

-4036

-4251

5/4 (5/4)

1.121(1.111)

1.257(1.239)

1.039(1.067)

1.256(1.289)

0.777(0.767)

0.951(1.066)

1.348(1.211)

0.856(0.833)

0.764(1.067)

1.381(1.211)

14

1.126

1.274

1.376

1.395

Comp. .
Jc’j

3/2,5/2  1.000

1/2,5/2  0.9978
3/2,3/2 -0.0563

3/2,5/2  0.8967
3/2,3/2 -0.4384

0.8970
0.4410

3/2,3/2
3/2,5/2

1/2,5/2 -0.9881
1/2,3/2  0.1023

0.9922
0.1036

1/2,3/2
1/2,5/2

3/2,3/2  0.8985
3/2,5/2  0.4336
3/2,5/2  0.8944

3/2,3/2 -0.4321

0.9761
0.2165

1/2,3/2
3/2,5/2

0.8533
0.4826

3/2,5/2
3/2,3/2

3/2,3/2  0.8757
3/2,5/2 -0.4742

3/2,3/2  1.000



One should note that there is significant mixing of some of the level pairs

of the (5p)5(6p) and (5p)5(5d) configurations.
In comparing the calculations in Tables (3)-(5) with experiment, it is

seen that there are 3 major disagreements. First, the levels (1,1) and

5
(1,0) of (5p) (6s) are calculated to be higher than the measurements.
Clearly some additional interaction is pushing these levels to lower energy.
[ will return to this point. The second major disagreement between the

calculations and experiment are the energy of the J = 0 levels of the

(5p) (6p) configuration; this is expected since no configuration interaction
with the ground state is included, and this point is not pursued further.

The third major disagreement between calculation and measurement occurs for

the Lande g factors for the two higher energy J = | levels of (5p)5(6p),
even though their calculated relative energies are in excellent agreement
with the measured values. The calculations indicate little mixing of the jj
wavefunctions for the 2 higher levels, (1,1) and (2,1), but extensive mixing

3

for the 2 lower levels, (3,1) and (4,1). But as listed in sec.(61 ) of

4
Condon and Shortley the electrostatic matrix element between the
(1/2,372,1) and (1/2,172,1) levels of (p)Sp' is zero. Thus, even though the
levels (1,1) and (2,1) are close in energy, there is no significant mixing

since the interaction matrix element is zero. The Lande g factors obey a

sum rule, since
I CGJe: )y CGEJN':)) = 6 ™

(5¢)
then
Ig.(iJ)= Z A(S)) [3JJ+1)+S(S+1)-L(L+1)])/[3J(J+1)],
i L,S
(5d)
where A(LSJ) indicates that L, S and J satisfy triangular inequalities. For

the excited states of the noble gases, the sum rule values for gL(iJ) are

listed in Table (6).

15



Table (6) Sum Rule for Lande g factor for the noble gases

J I gL(iJ))
r +2 (J+ DA
 + 1 (G122 + 47 + 2)/JJ + 1)
2 2R +25+ DHYIJ + 1)
r —I (G2 +2] +3)JJ + 1)
r -2 a2+ HJJ + 1)
5
For the J =2 and J = | levels of (5p) (6p) the sum rule values are 3.667

and 5. The calculations lead to 3.667 and 4.999, while the sums of
experimental values are 3.680 and 5.216, with an excess of 0.216 for the J =

5
| levels. The levels (1,1) and (2,1) of the (5p) (6p) configuration are

5
close in energy to levels (3,1) and (4,1) of the (5p) (7p) configuration.
For the latter 2 levels, the sum of the Lande g factors (0.903 and 1.728)5

equals 2.631, lower than the sum rule value (for Jc = 3/2 only) of 2.833 by
0.202, so that weak configuration interaction (Cl) between nearby levels

5
could account for most of the increase for the J = | levels of (5p) (6p).

5
These calculations do not include Cl effects on the (5p) (6p) levels. This
neglect of Cl has interesting consequences, but they are not relevant to the

important lasing transitions.
To account for the error in the calculated energy of the (1,1) and

5
(1,0) levels of (5p) (6s), and to have an accurate description of the
5
(5p) (5d) upper lasing level wavefunctions, one must include Cl between

adjacent (5p)° (5d) and (5p)° (6s) levels, with the former (latter) built on
the Jc= 3/2 (Je= 1/2) core. The Cl matrix element in LS coupling is

<(n1™")mL1S1°n2~2°LSMIMsTHC11(n1~D)mpi©1°n33°L'SMLMS"> =

VL O6S's MLeM S m L'?7sA A1 Lisil~iLisi) AN Lisilo~ipien)
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D ~ A~ [QLI+DQPI+D]12 KLS,~AM),
(6a)
where |+ ~L1S1) is a coefficient of fractional parentage? In LSIM

coupling it is

<(n1™N)mL1S1’n272° LSIMIHC1(n1~)™P1Q1°n343°L,S"I,M"> =

6L'L 6S'S 6J'J 6MM m wlgitaiviv T i INibich)
*2 3 1/2
-1 [QLI+DRPI+D] '~ I(LS, 1~2/3)

(6b)
However, in JJ coupling the matrix element has the more imposing form

A A
<(0™M™L18171,n272§2,IMHCI (M M""PAjTj ,n3"3]3.JM' >

7O SMMnm Lrs; (PFr4asim LS (-

[(ZLj+HHZPj+D]1°2  [RI1+D)(22-H)(20;+1)(2j3+D]1/2

L P Q I
Z QL+1D(Q2S+1) hU'LS) 7 1/2 KLS,A™),
s 1 %??J ifs gﬁ
(6¢)
where
TAS,~A~) = 2A14) [(22+1)2A3+D] V2
re t n 2”3 a4 L L Ply k. ;k L P, fk L Pn
[ 44 (-1) P (1> {4 ~ 4 A
-4-4 ' 4 L1 Ll
+ (1) [(2SI+DRQI+DIY2 7 e, PAVALY §~a ayy
K I 3L K
(6d)
with
AIA, /2K13 A3, /1kA,
dk 40 0% 4 0 0 " ek 40 0° 40 o RK*MI'T2'B'A
(6e)
where

17



k(\VVb’\/d} ra(x) Ac(x) Ufdy Ob(y) 0d(y) RVRML

(61)

For =1, = 2 and "3 = O» the interaction matrix elements in JJ

coupling are listed in Table (7).
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Table(7) (np)5(n'd)—(np)5(n"s) Interconfiguration Interaction in JJ Coupling

Il ™) Ji 33 J Matrix Element

32 572 32 12 2 [21/625]172 R2(pd,ps)

32 32 32 12 2 -(2/25) R2(pd,ps)

12 52 32 12 2 [24/625]172 R2(pd,ps)

12 32 372 12 2 -(1/25) R2(pd,ps)

32 572 322 12 | [1/12571/7[R2(pd,ps) - (20/3) R~ pd.sp)]
12 12 1 -[8/125TiN[R2(pd,ps) - (5/3) R™pd.sp)]

3/2 3/2 3/2 12 I [4/125]1/2[R2(pd,ps) - (10/9) R”pd.sp)]
12 12 1 -[2/12511/N[R2(pd,ps) +(10/9) R~ pd.sp)]

12 32 372 12 | (1/5) [R2(pd,ps) - (20/9) R2(pd.sp)]
12 12 1 [8/81]1/2 R”pd.sp)]

32 32 12 12 0 -[2/25]172 R2(pd,ps)

As a consequence of the Cl the Table (3) and (5) calculations are
merged into Table (8).
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Table (8) Results of the Matrix Diagonalization for the (5p)5(5d)+ (5p)5(6s)
J Krnale) Krxpl) GL(calc) GL(expl) Comp. Coefficient

Level Jo 3

d 14 3/2 5/2 4 -3826
3d~/80197

d,1,3 172 5/2 3 7438
3s™1'/91747

d2,3 3/2 5723 -2120
3d|/82431

d, 3.3 32 3/23 -3772
3d4/80971

d1,2 12 5722 7239
3d'l 7'/91448 (7206)
d2,2 1/2 3/22 7014
3s"'/91153 (7014)
d3,2 32 3/22 -2712
3d'1/81926 (-2712)
d4,2 3/2 5/2 2 -3540
3d3/80323 (-3635)
s,5,2  3/2 1/2 2 -16957
157/67068 (-16828)
d,1,1 1/2 3/2 1 9556
3s5"/93619 (9548)
d,2,1 3722 521 -227
3d2/83890 (-236)
d, 3.1 3/2 3721 -3762
3d5/79987 (-4368)
s,4,1 12 172 1 -6292
1s2/77186 (-5733)
s,5,1  3/2 1/2 1 -15933
1S./68046 (-15868)

-3826

7724

-1592

-3052

7425

7130

-2097

-3700

16955

9596

- 133

-4036

-6837

-15977

5/4 (5/4)

1.121(1.111)

1.257(1.239)

1.039(1.067)

1.258(1.289)
(1.256)

0.777(0.767)
(0.777)

0.951(1.066)
(0.951)

1.347(1.211)
(1.348)

1.4999( 3/2 )
(1.500)

0.856(0.833)
(0.856)

0.777(1.067)
(0.764)

1.358(1.211)
(1.381)

1.307(1.333)
(1.299)

1.206(1.167)
(1.201)

20

1.126

1.274

1.376

1.500

1.395

1.321

1.204

d,3/2,5/2

d,1/2,5/2
d.3/2,3/2

d,3/2,5/2
d,3/2,3/2

d,3/2,3/2
d,3/2,5/2

d,1/2,5/2
d,1/2,3/2

d,1/2,3/2
d,1/2,5/2

d.,3/2,3/2
d,3/2,5/2
d,3/2,5/2
d,3/2,3/2

s,3/2,1/2
d,3/2,5/2

d,1/2,3/2
d,3/2,5/2

d,3/2,5/2
d,3/2,3/2

d,3/2,3/2
s,1/2,1/2

d,3/2,5/2
s, 1/2,1/2
d,3/2,5/2

s,3/2,1/2
s,1/2,1/2

1.000

0.9978
-0.0563

0.8967
-0.4384

0.8970
0.4410

-0.9863
0.1165

0.9906
0.1178

0.8967
0.4373
0.8901
-0.4348

0.9958
0.0727

0.9763
0.2145

0.8592
0.4703

0.7899
-0.4658

-0.3929
-0.8799
0.2445

0.9940
0.0789



Table (8) continued

d,1,0 3/2 3/2 0 -3863 -4251 d.3/2,3/2  0.8603
3d6/79772 (-4812) s,1/2,1/2  0.5097
s,2,0 172 1/2 0 -7143 -7826 s,1/2,1/2  0.8603
1S-/76197 (-6292) a.,3/2,3/2 -0.5097

To complete this section Table (9a) lists some calculated Einstein

emission coefficients and emission cross sections and compares the Einstein

g
coefficients with the dipole length calculations of Aymar and Coulombe,
while Table (9b) lists calculated radiative lifetimes and compares them with
calculations of Ref.(6) and measurements. The cross sections are calculated

from

"ij1C"'2) = 8x10-18 fl:i/rDopp(Ry)
where f.. i1s the emission oscillator strength and rDopp(Ry) is the Doppler

width in Rydbergs, calculated at room temperature. It is assumed that the
Doppler width is the dominant broadening mechanism; if it is not dominant,
then the Doppler width should be replaced by the appropriate width. The

above formula is obtained from oscillator density continuity, and a factor

connecting continuum oscillator strength and cross section.
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(5p)5(5d)

Term
1,4
1,3
1,3
1,3
1,3
2,3
2,3
2,3
3,3
3,3
3,3
1,2
1,2
1,2
1,2
1,2
1,2
1,2
1,2
2,2
2,2
2,2
2,2
2,2
2,2
2,2
2,2
3,2
3,2
3,2
3,2
3,2

Table (9a) Some Einstein Coefficients

X(microns) A(106/sec) A(106/sec)

(5p)5(6p)

Term
1,3
3,2
1,3
2,2
1,2
3,2
1,3
2,2
3,2
1,3
2,2
4,1
3,2
1,3
3,1
2,2
2,1
1,1
1,2
4,1
3,2
1,3
3,1
2,2
2,1
1,1
1,2
4,1
3,2
1,3
3,1
2,2

5.571
0.7338
0.7495
0.7978
3.869
2.320
2.483
3.107
3.508
3.897
5.69
0.7053
0.7503
0.7666
0.8006
0.8173
3.258
4.610
4.373
0.7203
0.7673
0.7843
0.8199
0.8375
3.605
5.336
5.023
2.148
2.627
2.839
3.368
3.685

0.348
0.0303
0.191
0.0076
1.03
0.400
1.24
1.20
1.11
0.0173
0.0613
1.10
0.144
0.0819
0.749
0.777
0.0030
0.524
0.0906
0.217
0.102
0.0071
0.195
0.0076
1.09
0.0112
0.057
0.070
1.11
0.0460
0.983
0.0042
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Ref.(7)
0.207
0.554
0.166
0.0214
0.699
0.192
0.479
1.14
0.737
0.102
0.00051
0.00087
0.0034
0.00006
0.114
0.0044
0.101
0.0024
0.044
0.00087
0.0034
0.00006
0.114
0.0044
0.101
0.0024
0.044
0.0526
0.742
0.0343
0.681
0.0068

o(10_12cm?2)

90.0
0.0179
0.120
0.0058

89.1
7.45

28.4

53.6

71.5

1.53

16.8
0.576
0.091
0.055
0.574
0.633
0.153

76.8

11.3
0.121
0.069
0.0051
0.161
0.0067

76.5
2.53

10.9
1.04

30.1
1.57

56.1
0.312



4,2
4,2
4,2
4,2
4,2
1,1
1,1
1,1
1,1
1,1
1,1
1,1
1,1
1,1

2,1
2.1
2,1

b

2.1
2.1
2.1
3,1
3,1
3,1
3,1
3,1
1,0
1,0

4,1

32

1,3

3,1

2,2

4,1

32

3,1

2,2

2,0

2,1

1,1

1,2

1,0
(5p)**6

4,1

3,2

3,1

2,2

2,0
(5p)**6

4,1

3,2

3,1

2,2
(5p)**6

4,1

3,1

Table (9a) continued

3.275
4.54
5.21
7.32
9.00
0.6117
0.6452
0.6820
0.6941
0.7407
1.908
2.304
2.244
2.660
0.1068
1.511
1.733
2.027
2.138
2.652
0.1192
3.68
5.36
9.71
12.90
0.1250
4.00
12.27

0.609 0.287
0.0214 0.0153
0.0207 0.0030
0.0149 0.0098
0.0374 0.0274
1.29 0.624
0.014 0.0436
0.825 0.0180
0.193 0.0433
0.174 0.252
2.20 0.746
0.869 0.418
0.112 0.0813
1.73 0.764
1370 . 3370.
0.00045 0.0396
0.626 0.304
2.42 2.46
0.0104 0.0060
1.99 1.27
915. 1710.
0.553 0.279
0.0038 0.0077
0.0095 0.0004
0.0119 0.0016
14.5 11.0
0.717 0.232
0.0027 0.0006
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31.9
2.99
4.36
8.72

40.8
0.442
0.0057
0.391
0.097
0.106

22.9

15.9

1.90

48.7
2.49
0.0023
4.87

30.1
0.153

55.5
2.32

41.2
0.86

13.0

38.2
0.042

68.4
7.48



Table (9b) Lifetimes (ns)

Level Cal c. ‘tzhty R?A?> W>
(5p)5(5d)

(1,4) 2865. 4820. 1200. 1330.

(1,3) 787.

(2,3) 349. 551.

(3,3) 837. 1190. 1000. 1170.

(1,2) 288.

(2,2) 592.

(3,2) 452. 659. 1700. 1010+50

4.,2) 1423. 2920. 2900. 2100,1020

B (1,1) 0.87 <350.

2,1) 1.02 0.6 <350.

(3,1) 459 889

(4,1) 0.92

(5,1) 6.21

(1,0) 1389. 4300.

(5p)5(6p)

(1,3) 29.9 25.5

(1,2) 26.4 27.7 29.0+1.5 30.5+3
2,2) 27.6 28.1 33 £20

(3,2) 35.7 33.0

(1,1) 23.1 27.2 43.5£1.5 29.5+3
(2,1) 28.0 37.4

(3,1) 32.3 29.9

(4,1) 38.0 29.7

(1,0) 21.9 28.4 38.5+1.5 30.7+3
(2,0) 28.7 22.4 40 +12

The present calculations of Einstein coefficients are generally larger than

5
those of Ref.(6) for the (5p) (5d) levels, though the difference 1is

generally less than a factor of 2.
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3) Non-zero Magnetic Field and No Hyperfine Interaction

If next we include the effect of a uniform longitudinal magnetic field

(in the z direction) with the interaction 12

Hz = (e h47mec) (C + 2 3) + H = (e W4Tmec) (Lz+ 2 Sz) H = (H (Lzt+ 2Sz),
(7a)
where (3 is the Bohr magneton whose value is listed in Ref.(12) as 0.927 x
10-20 erg/Gauss, which is 0.579 x 10-8 eV/Gauss or
OH(em 1) = H(Gauss)/21400.
(7b)

The matrix element is
<i" JJM'|Hz|i,JM> = j.z~, C@G,Jcj:)) C(1L, )ty 5JY)

= 373, C@AJIc:T) CGELIG T [(2Ic+D(2i+1)(2IM)(2j,+D)] 2

1/2 12 112 Jc 112 Jc
Z [QL+DQS+)] * Z  [QRLAD@RSHDIIA (M1/2 Je (N1/2 7
L,S Le.S' ISy L'sS7J

<QP,27' ;LSIM| [HZ| |2P,V ;L'S'TM'>.

(7¢)
As discussed in Ref.(13), the matrix element in eq.(7c) is diagonal in L, S,

and M, but not in J. It is given by

<2P,V ;LSIM||Hz||2P,2r ;L'S'J'M*> = 6M.M 6L,L 65,5
M (1 + gLQ) SJ.J F+ 6J',J-1 F-]
(8a)
where glQ is given by
gl0 = [JJ+1) + S(S+1) - L(L+D)/[2JJ+D)],
(8b)

F+ =(1/2]+2)

{[HMADA-MAD)(L+SH+2) (SHIH-L)Y(LAI+-8)(L+S-1)/(2T+D(2I+3)H 172,
(8¢c)
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and
F =(1/2))

£ [A+M) I-M)(LAS+IH)(S+HI-L) (L+I-S)(L+SH-D1/[(2I+DRI-D]T' \
(8d)
Note that gl0 is independent of M, while F+ and F are symmetric in M, so

that we have to evaluate explictly only the case M £ 0. Then
=/H M gL SJ.J - (H SH,M C(@,Jcj ;)

Cd'.Jjj'iJ") [RI+DERj+DRIDRj’+D]1/2

(92)

where the diagonal term is written in terms of the Lande g factor, and

' 1127 1 123 F
{gtlyg (QL+1) (2S8+1) {ri/2 jc| {ri/2 jC} {F+}.
L S J L s J -

(9b)
Preliminary calculations, without including 6s-5d Cl, indicated that
the effect of the non-diagonal matrix elements B(”') and C(*') were small
even at 20 kG. For any level one can consider a 2x2 interaction with the
nearest level with the same M value. If the energy difference is AE and the

non-diagonal interaction is V = /3H, the mixing coefficient is V/AE. For 20

kG, V= 1 ecm 1, but as Tables (4) and (8) show, the level splitting is

always greater than 100 cm-1. Thus for the magnetic fields studied here,

the non-diagonal effects can be neglected.

On the other hand, the new eigenvalues increased linearly with magnetic
field, i1.e. the new eigenvalues are approximately the diagonal matrix
elements, E(i,J) + gL(1J) M /3H, where gL(iJ) is the Lande g factor. That

is, for for 1-10 kG magnetic fields only the diagonal component of the

interaction is significant,

<i,,’M'|Hz|i,JM> = 6i,i SJ.J 6MM gL(iJ) M pH

10y
Then the effect of the magnetic field is to split a transition at energy
EG,JM) - EG'.JIM) into a M and M' dependent multiplet at energies E(i,J)
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- EQ".JY) + [ gL)M - gL@'J)H)M'] BH. In addition, for each (M,M') term

in the multiplet there is a strength factor, D(i,/M;iV'M')> which is
discussed in the next section.
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4) Radiative Transition Rates

In most treatments of radiative transition rates one averages over

initial state Mj values and sums over final state Mj values. However, with

a magnetic field present the Mj values must be retained. The squared dipole

matrix element is
Dk, dM;k',pM") = |<k,dM]|r|k',pM'>|2

i.Zj, C21LJNHkdM) C2G' . J:H.K,pM") <i ,dM| 1| i’ ,pJ'M">)2

- i .Zi, C2G,J:H.k,dM) C2(i' ,J;H.k',pM")

jj?32 Cl1(a' »pJ
(11a)
where the Zeeman coefficients C2(i,J;H,k,IM) are those found in the
preceeding section, while the C™i.,dJ;j1,j2) are intermediate coupling

coefficients and are independent of M. The radiative transition matrix
element in jj coupling is

Al /24 12 5 8

<j1"2§2IMr|ji,3j3IM"™> = 6jiJi (A~/2) (-1) i 7P

(1§ §3 1 [QRi2HD2J3+DRI +DI1/2 = (=Ip Ip C(IJ1T M3M)

(11b)

where C(ABC,abc) is a Clebsch-Gordan coefficient,
*2 1 "3,
\2,.3=
7.<3 0 0
(ie)
with (6 B E)) a 3j symbol and (1p p) the radial matrix element. The vectors

are

= ()12 <Ix~+i?v>,

(12a)

~0=2
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(12b)
a_ i=(2)12 K+i?y).

(12¢)
At the level of intermediate coupling, one may take the factor C(J1J M/3MI)
outside the absolute value sign and sum and average the squared quantity
over M and M'. In the present case this is not possible. However, one can

write eq.(lla) as

D(kdM;k\pM") =|izJ ilzit - — - [FDP p CU1I,M”9)|2
- A 3 _1O\ A\
g oA 3y £ NALGDA UL MM

CI"IT 1" MA'M") £p-Z*

(13a)
But Zlff’]*?algt? =46P 52 so that the squared matrix element is
»
Dk, dM;k' ,pM") = 4 (A5d)6p/2)2 — 2J +H1/2 1,2J)1 C2(i,J;H,k,dM)
C2G"J;H.K',.pM") (-D)~J'CJ1J' M3M' ) W(™MJI A1) |2,
(13b)
where
) ) ) £3-1/2+5, o
W iJ, M, J°) = ) 1, i-1 (-1) 1Cl (1 .dIMj;. .37)
A J J1,J2 J2 1
C1G'.pI'M';31.3™[(232+D(233+1D) 12 sz7z 33 33 } { j1 ™ "3 }.
(13c)

However, if for each [i,IM] eigenstate one and only one of the Zeeman
mixing coefficients were close to unity, then there is a unique relation
between k and 1,J. For such a case the matrix element becomes

D(k,dM;k',pM'") = D@J ,dM;i'J1,pM’)
= 4 (A5d,6p/2)2 (2J+1) /ji-1 CJ1IMOM")2 |[WU21J,.31'J")|2.
(13d)
When magnetic fields are neglected one sums over M' and averages over M to

find a term dependent squared matrix element, oscillator strength, Einstein

coefficient, and cross section. The sum and average operation is
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J AN 9 J
[1/(2]+1)] T £ 1 CULIMAM) = [1/Q2J+1)] T = [(2T+1D)/QI+D)].
M=J M'=-J'P=-| M'=-J'

(14a)
If is the strength calculated by summing and averaging,
J J
SGJ.i'JY) = [1/2J+1)] 1 £ D@GJ,dM:;1'J . pM)
M=] M'=-J'
= (A5d,6p>2 |(W(21J,131'J")|2,
(14b)
then the multiplet strength with a non-zero magnetic field is
D@J,dM;i"J 1 pM1) = z(GdJM,i'"pJ'MI) S(J.1,J"),
(14c¢)
where
z(idIM,i'p] IM) = [(2J+1)/(2T'+1)] ™" U | 2= (2J+1) (™ _J+tM-_ M )2-
(14d)

The line strengths S(iJ,1'J') are given as Einstein coefficients and cross
sections at the end of sec.(2).

The multiplet emission cross sections with a 6 kG field are shown in
figs.(la) and (Ib) for the 9 transitions with the largest cross sections.
They show that at 6kG the Zeeman effect splits the emission pattern into
triplets. This occurs because in the energy difference

AE = E(G,)) - EG'.J) + [ gL@HM - gL@G'THYM'] pH,
(15a)
M=M + £ where ¢ = 0, £+ 1. Then
AE = E(G,J) - E(1',J") + e gL(iJ) pH + [gLGJ)) - gL(3'I)H] pH Ml
(15b)
If 2Js[gL(1)) - gL(1'J")] is small compared to gL(iJ), where Js is the

smaller of J or J', one has a triplet structure with individual components

Js
of the triplet separated by [gL(iJ) - gL(1'J")] PH. Since M ? 3 M' = 0, the
S

average energy of each component of the triplet is

EGLi'T.H) = EGJ) - EGLJ) + £ gLG)) pH
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(15¢)
A width for each component of the triplet may be defined by

rz = [1/(238+1) M, Z* (B - D)2]1/2 = [gL(iT) - gLG'ID]  [ISAS+1)/3]12

(15d)
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a(10-12¢m?2,

a(10'12 cm2,

e (10-12 cm 2,

a.2) -*(1,1)
(1.0) — (4,1)
3.7 3.8
(291)_*(270)
0.40 0.10 _-0.10 -0.20
AE (cnrl)
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Of the nine strongest transitions shown in figs.(la) and (Ib), only the
(2,D)-»(2,0) transition at 2.65 u, the (3,2)-*(3,1) transition at 3.37 wu, and

the (3,3)->(3,2) transition at 3.51 M are observed at high pressure.1 In
fig.(Ic) some additional multiplet cross sections are shown for transitions

that are significant in lasing at high pressure.14 Note that for the
transitions at 1.73 u and 2.03 n, the triplet pattern is not manifested
clearly; however, the central 3(2) lines for the transition at 1.73 M(2.03VM)

arise from AM = 0 transitions.
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For lasing transitions with the direction of the laser axis parallel to
the magnetic field, one should not see the AM = 0 transitions, i.e. the

4
central peaks of the triplets. Condon and Shortley (p.90) show that the

far field Poynting vector due to a dipole source of radiation at the origin
is
5= (cV/ST2) |?-P - (Jr-2)2|2 tr,
(15¢e)

where Tr is a unit vector in the direction of the field point at a distance

r from the origin and P = ¢ r. Then for the laser axis in the direction of

the magnetic field (along the z axis), T =T and + P~ Thus
r z z X y

s N
§ depends on P and P* but not P*. But in eq.(14d) J = 0 = AM corresponds

to Pz so the central peak will not be seen for laser and magnetic field

axes parallel.
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5) The Hyperfine Splitting without an External Magnetic Field

The hyperfine splitting arises from both the interaction of the nuclear
spin with the magnetic field at the nucleus generated by the currents
associated with the atomic electrons, and from a correction to the electron
Schrodinger equation due to the finite size of the nucleus. The hyperfine
splitting is comparable to the Zeeman splitting, i.e., much smaller than the
splitting due to the electrostatic interaction. Therefore the wavefunction
for the atom including the nuclear spin, I, is written

JITt> CUIT.MM;jt) |1JIM> [IMp

(16a)
When two subshells are partially filled the hyperfine interaction is
complicated. [ begin with the magnetic dipole hyperfine interaction. A
detailed evaluation for excited states of the noble gases is found in
eq.(49) of Ref.(15). Unfortunately, the calculation in Ref.(15) is done in
LS coupling. In Appendix (A) the desired hyperfine matrix element in

intermediate coupling <iJIF'Mp, H*p|iJIFMp> is obtained. It is

ciOIF'Mp, [H"F[JJIFMF> = 6ff (Uo/4F) 2 Smmep (,,B)2 (I/a/
I+F+11+"~OpT1 1/0 1
(-1 {3 3 @I+ [TA+D)21+1) g /< (W2 + W2) = (0.00321 cm™ Z)

[+F+l i+l o % T ]
{

1/2
9n SFF' 6MpMp, QI+1) [IA+1DQRI+1)]I/MWI + W2)

-1 _JH124D2
= 6FF SMEMFI[':(F+1)-J(J+1)-I(1+1)] (1/2) (0.00321 em Z) (-1) en

{J+1)/[JJ+1)]31/2 (Wx + W2) = Spp"MpMp [F(F+1)-J(J+1)-I(I+1)3 (1/2) A",
(16b)
where WI and W2 are given by eqs.(A4-b) and (A4-c), respectively, A is a

parameter used to describe the magnetic hyperfine interaction,”™ and the
calculations are done in atomic units. /un is the nuclear magnetic moment in
nuclear magnetons; gn is defined by = gn mepMg I, where is the Bohr

magneton, and mCp is the ratio of electron to proton mass, 1/1836. For

37



Xe(129) erll/mCLMg = -0.7771 and I =1/2, so that g = -1.554, while for
f

0.6911 and I =3/2, so that g = 0.461. The ratio

Xe(131) Mn/m MR
i wy u

Mn(129)//in(131) = -1.124, while gn(129)/gn(131) = -3.372.

3
For the 5p, 6p, and 5d orbitals of Xe | calculate <(I/r) > = 19.947,
1.086, and 0.07077, respectively. Because of the 6s-5d configuration

3
interaction one requires the additional parameter, <(1/r) >6s gd= 0.0562.
2
The 6s orbital density at the origin was calculated to be Rgs(0) =

3
22/(BR ). The results for the magnetic hyperfine splitting are listed in

Table (10a) for I = 1/2 (mass 129). In Table (10b) I compare the calculated

ﬁ.J values with measurements from Jackson and Coulombe, 17 and Liberman. 18
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Config

1,J

(5p)5(6p) 1.3

(5p)s

(5d+6%)

1,2

2,2

3,2

1,1

2,1

3,1

4,1

1,0
2,0

1,4

1,3

2,3

3,3

Table (10a) Hyperfine splitting in Xe for [ = 1/2

E(cm-1) Wi

2pg/78403  _6.964

2p3/89163 14.49

2pg/79212  5.978

2pg/78120  8.665

2p2/89279  9.942

2p4/88380 --21.48

2p7/78957 -6.192

2p10/77270 -8.324

2p1/89861 0
2p5/80U9 0

3d~/80197 -5.947

3s"'1/91747 11.46

3d"/82431  4.814

3d4/80971 6.360

1,2 3s\""%/91448 8.744

w2

0.379

0.476

0.298

0.811

-0.571

-1.19

-0.087

0.431

-0.0450

0.0530

0.0477

0.0714

-0.0614

39

WAWA

-0.00006

f

5/2

7/2
3/2

5/2
3/2

5/2
3/2

5/2
172

3/2
172

3/2
172

3/2
172

3/2
172

5/2

7/2

9/2
5/2

7/2
5/2

7/2
5/2

7/2
3/2

5/2

AEHF(cm !)

0.0560

-0.0420
0.1022

-0.0682
0.0429

-0.0286
0.0647

-0.0432
-0.0573

0.0286
0.1385

-0.0693
0.0384

-0.0192
0.0482

-0.0241

0.0501

-0.0401
0.0877

-0.0658
0.0370

-0.0278
0.0490

-0.0368
-0.0593

0.0395



2,2

3,2

4,2

5,2

1,1

2,1

3,1

4,1

5,1

1,0
2,0

3s°°/91153

3d' 781926

3d4/80323

1Sg/67068

3s"/93619

3d2/83890

3d5/79987

182/77186

134/68046

3dg/79772
153/76197

Table (10a) continued
-13.95 -0.0931 0.000006

-5.177 -0.0643 0.00009

-1.369 -0.0465 0.00112

-8.643 -0.0004 -0.0010

--10.74 0.1134 0.0007

0.0023
-3.661 0.0729 0.00012

0.0127
6.034  0.0346 0.0021

1.297
17.35 0.0100 0.00025

4.603
10.56 0.0003  -0.0031

-2.921

40

3/2

5/2
3/2
5/2
3/2

5/2
3/2

5/2
12

3/2
1/2

3/2
1/2

3/2
1/2

3/2
1/2

3/2
1/2

1/2

0.0959

-0.0640
0.0358
-0.0239
0.0097

-0.0064
0.0590

-0.0394
-0.0649

0.0325
-0.0218

0.0109
0.0450

-0.0225
0.1342

-0.0671
0.0466

-0.0233



Table (10b) Comparison of Calculated A,, with Measurements for Xe(129)

Mass | config i.J  AiJ(mK)cal(: AlJ<mK>exp

129 12 Gp)sép 13 -28.0 -29.06*
1,2 -68.2 -96.45%*
22 286 -29.76*
3,2 -43.2 -45.52%*
1,1 57.3 66.20*
2,1 -138.5 -147.6*
3,1 -38.4 -43.73%*
4,1 -48.2 -46.77*

129 12 ((5p)55d 14 -20.1 -19.4
1,3 -43.9 -56.88*
23 -18.5 -15.8
3,3  -24.5 -26.6
1,2 395 33.96*
22  -64.0 -88.7
3,2 -239 -27.6
42 - 6.57(-6.44)[-4.83] - 0.
52 -57.7(-39.4) -79.56*
1,1 64.9

2,1 21.8(21.9)
3.1 -45.0(-37.1)[-0.94] -80.7

4,1 -134.2(-106.1) -193.65*

51  -46.6(-64.7) -32.15%
* Values obtained from Ref.(17)

The values listed in Table (10b) include both 6s-5d configuration
interaction and the Fermi contact term. The values in parenthesis are
calculations including the 6s-5d Cl, but neglecting the Fermi contact term.

The wvalues in brackets are obtained with both the 6s-5d and Fermi contact
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term neglected. In general, for those terms involving the Fermi contact
term, the calculated effect of the Fermi contact term is too small. This
may be a consequence of determining the 6s electron density at the origin
with non-relativistic wavefunctions. However these effects occur for levels
that that are not involved in lasing transitions in high pressure Xe. Thus

we use the calculated A[.J in calculating the hyperfine splitting for

Xe(129).

For the I = 3/2 (mass 131) isotope one needs in addition to the
magnetic dipole contribution to the hyperfine splitting there is a
quadrupole contribution. An expression for the splitting due to the

electric quadrupole interaction is obtained in Appendix (B). It is

<iJIF'MF, [H y|iJIFMF> = bF.J (-e2 Q) (-DFI1 (2J1+1) 21 1}

{QRIFDQRI+3)I+1/I2I-1)]} 1/2[W3 - W4] = - (0.00393 cm-1] Q(barns2)*$F p,

OMFME,("DF~I+j+1/2 2J+1) T  tQRI+DRI+3)A+)/[I(2I-1)]} 1/2[W3 -W4]

= 6F,F' «i M I[A(A+])-(4/3)I(I+1)JJ+1)] BA,

(17a)

where Q is the nuclear quadrupole moment in barns, W3 and W4 are given in
eqgs.(Cl14-b) and (Cl4-c), and B”, is a coefficientl6 used in describing the
1y

quadrupole contribution to hyperfine splitting. An alternative parameter is
often used, with BI]J in place of ]?»J.. They are related by

Blj = (83) 1 (21 - 1) I (2J - 1) BioO.
(17b)

The quadrupole contribution to hyperfine splitting is relevant for the mass

131 (I = 3/2) isotope only, and is included in Table (lla) as AE%IF- The

quadrupole moment used was Q(bz) = —0.12.1 Since W», W2, W and W{ are
independent of [ and were tabulated in Table (10a), the parameters W3, W4,
and W4 are tabulated in Table (lla). In Table (lib) the calculated Al3 and

B.j values are compared with the measurements of Refs.(17) and (19).
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Config 1,J

(5p)5(6p) 1.3

1,2

2,2

3,2

1,1

2,1

3,1

4,1

1,0
2,0

Table (lla) Hyperfine splitting in Xe for [ = 3/2
AE"F(cm L) AE”cm !)

E(cm *) W3

2pg/78403 5 34

2p3/89163 -0.118

2pg/79212  0.224

2pg/78120  3.231

2p2/89279  0.329

2p4/88380 -0.0304

2p7/78957 -0.211

2p1Q/77270 -0.819

2p1/89861 0
2pc/80119 0

W4

-0.127

0.181

-0.053

0.053

-0.153

-0.0421

0.181

-0.0255

43

W4

F

3/2

5/2
7/2
9/2
1/2

3/2
5/2
7/2
1/2

3/2
5/2
7/2
1/2

3/2
5/2
7/2
1/2

3/2
5/2
1/2

3/2
5/2
1/2

3/2
5/2
1/2

3/2
5/2
3/2

3/2

-0.0498

-0.0290
0

0.0373

-0.0909

-0.0607
-0.0101

0.0606
-0.0381

-0.0254
-0.0042

0.0254
-0.0576

-0.0384
-0.0064
0.0384
0.0425

0.0170
-0.0255
-0.1027

-0.0411
0.0616
-0.0284

-0.0114
0.0171
-0.0358

-0.0143
0.0215
0

0

0.0042

-0.0011
-0.0036

0.0018
-0.0005

0
0.0004
-0.0002
0.0005

-0.0004
0.0002
0.0063

0
-0.0045
-0.0018
-0.0006

0.0005
-0.0001
-0.00002

0.00001
-0.000003
0.0005

-0.0004
0.0001
0.0010

-0.0008
0.0002
0

0



(5p)5 1,4 3d7/80197

(5d+6s)

1,3 3s* 791747

2,3 3dj/82431

3,3 3d4/80971

1,2 357791448

2,2 3s°°/91153

Table (lla) continued

1.86 0.0094

0.191 -0.0118

-0.250 -0.0034

-1.69 -0.0114

f

-0.332 0.012 -0.00004

-0.375 0.013 0.000001

3,2 3d' 781926 -0.062 0.0053 -0.00002

4,2 3d3/80323 -1.58 -0.0003 0.0008

44

5/2

7/2
9/2
11/2
3/2

5/2
7/2
9/2
3/2

5/2
7/2
9/2
3/2

5/2
7/2
9/2
1/2

3/2
5/2
7/2
1/2

3/2
5/2
7/2
172
3/2
5/2
7/2
1/2

3/2
5/2
7/2

-0.0446

-0.0237
0.0030
0.0357

-0.0781

-0.0455

0.0586
-0.0330

-0.0192

0.0247
-0.0436

-0.0254

0.0327
0.0528

0.0351
0.0059
-0.0352
-0.0854

-0.0569
-0.0095

0.0569
-0.0319
-0.0212
-0.0035

0.0212
-0.0088

-0.0058
-0.0010
0.0058

0.00368

-0.00147
-0.00328

0.00187
-0.00039

0.00010
0.00032
-0.00016
0.00048

-0.00012
-0.00040
0.00020
0.00325

-0.00081
-0.00271

0.00135
-0.00068

0
0.00048
-0.00019
-0.0008

0
0.0008
-0.0002
0.00013
0
0.00010
-0.00004
-0.0031

0
0.0022
-0.0009



Table (1la) continued (2)

5,2 1Sg/67068 3.31 0.00003 -0.0007

., 1 35793619 -0.086

2,1

3,1

4,1

5,1

1,0
2,0

3d2/83890 0.410

3d2/79987

1.68

-0.013

-0.012

0.0096

1s2/77186 -0.675 0.0024

1s4/68046 -2.79 0.00005

3d6/79772
183/76197

0
0

0.0003

0.0002

0.0005

-0.0007

-0.0003
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1/2

3/2
5/2
7/2
1/2

3/2
5/2
1/2

3/2
5/2
1/2

3/2
5/2
1/2

3/2
5/2
1/2

3/2
5/2
3/2

3/2

-0.0767

-0.0512
-0.0085
0.0512
0.0481

0.0193
-0.0288
0.0162

0.0065
-0.0097
-0.0334

-0.0135
0.0200
-0.0995

-0.0398
0.0597
-0.0346

-0.0138
0.0207

0.0065

0
-0.0047
0.0019
-0.000095

-0.000076
0.000019
-0.00055

0.00043
-0.00011
-0.00216

0.00172
-0.00043
0.00087

0.00070
0.00017
0.0036

-0.0027
0.00072



Table (lib) Comparison of Calculated A.j and Values with Measurement

Mass I config i,J Aij(mK>calc AiJ “exp 8ij(mK)calc Bij(mK)exp

131 3/2 5p)56p 13 8.30 -0.059
1,2 20.2 -0.014
2,2 8.48 8.83 0.013 0.020
3,2 12.8 13.31 0.149 0.17
1,1 -17.0 -0.062 -0.02+0.025*
2,1 41.1 -0.0015  -0.10+0.025*
3,1 11.4 12.96 0.051 0.16+0.06*
4,1 14.3 13.99 0.101 0.14+0.025*
1,0
2,0

131 32 (5p)55d 14 5.95 0.0334
1,3 13.0 -0.0054
2,3 5.50 0.0066
3,3 7.27 0.0452
1,2 -11.7 -0.016
2,2 19.0 -0.014
3,2 7.08 8.18 -0.0032  -0.027+0.010
42 1.95(1.91) -0.04 -0.074  -0.058
5,2 17.1 (11.6) 0.155
1,1 -19.3 0.010
2,1 -6.48(6.50) -0.0545
3,1 13.35(11.02) 23.89 -0.216  -0.14+0.08
4,1 39.8 (31.4) 57.12% 0.087 0.13+0.025*
5,1 13.8 (19.1) 0.360 0.36+0.075*

* Values obtained from Ref.(17)

Again the calculations include both 6s-5d Cl and the Fermi contact term.
Results with the Fermi contact term neglected are shown in parenthesis.
Again the calculated effect of the Fermi contact term appears to be
underestimated, possibly showing the need for a relativistic calculation of
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the 6s charge density at the nucleus. These effects are not important for
the levels involved in lasing transitions in high pressure Xe, and the
calculated AI'd and Bld values are used to determine hyperfine splitting in

the radiative transitions.
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6) Radiative Transition Rates between Hyperfine Terms with no Magnetic Field

The quantity we wish to calculate here is
D(1 2,UIFMF, 13 J'TF'M;-,) = MpM,-, [<12,i0IFMF 1| 1JIF Mﬁ>I 7Q2F + 1).

(18a)
In a later section an expression is obtained for the radiative transition
rate including both Zeeman and hyperfine splitting. For the present [ use

the limit of that expression when the magnetic field is zero, i.e.

D(MNJIFMp;j13,i'J'IFMp,) = SGLi'J) QI + 1) QF + 1) {ji'p'}2

(18b)
where S(1J.1'J1l) is the line strength for a transition from iJ to 1'J",
defined in eq.(14b). Note that if one multiplies eq.(18b) by (2F + 1), then
sums over F' and sums over F, to remove the hyperfine structure, one has

D= V[Q@J+1)Q21+1)] pZp, S@GJ,1'J") (2J+1) (2F+1) (2F +1)
= V[ @J+1)@21+1)] S@aJ,i1100) (21+1) f; (2F'+1) pi (2F +1) {\
= 1/21+1) S@GJ1'J") 2F'+1) 1/(2J + 1) = S@GJ.i'J"),
(18c)
which is as one expects. For various hyperfine transitions the energy shift

and emission cross sections are listed in Table (12a) for Xe(129) and in
Table (12b) for Xe(131).
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f$rm

1.4

1,3

1,3

1,3

1,3

2,3

2,3

2,3

3.3

3.3

3.3

1,2

1,2

1,2

1,2

1,2

1,2

Table (12a) Emission Cross Sections

firm F

1,3 5.571 9/2
7/2
3,2 0.7338 7/2
5/2
1,3 0.7495 7/2
5/2
2,2 0.7978 7/2
5/2
1,2 3.864 7/2
5/2
3,2 2.320 7/2
5/2
1,3 2.483 7/2
5/2
2.2 3.107 7/2
5/2
3,2 3.508 7/2
5/2
1,3 3.897 7/2
5/2
2,2 5.69 7/2
5/2
4,1 0.7053 5/2
3/2
3,2 0.7503 5/2
3/2
1,3 0.7666 5/2
3/2
3,1 0.8006 5/2
3/2
2.2 0.8173 5/2
3/2
2,1 3.258 5/2
3/2

o

7/2
7/2
5/2
5/2
7/2
7/2
5/2
5/2
5/2
5/2
5/2
5/2
7/2
7/2
5/2
5/2
5/2
5/2
7/2
7/2
5/2
5/2
3/2
3/2
5/2
5/2
7/2

3/2
3/2
5/2
5/2
3/2
3/2

AE(mK)

1.9
92.1
-22.6
131.
-23.8
130.
-37.2
116.
2.4
156.
15.4
80.2
14.2
79.0
0.80
65.6
6.4
92.1
52
91.0
-8.2
77.6
63.6
-35.1
82.7
—-16.1
81.5

58.7
-40.0
68.1
-30.7
109.
0.01

er( 10 12em?2)

90.3
3.2
0.0179
0.0012
0.116
0.006
0.0058
0.0004
90.2
6.0
7.66
0.51
27.4
1.36
54.1
3.61
72.0
4.8
1.48
0.073
16.8
1.12
0.576
0.096
0.0849
0.0091
0.0525

0.574
0.096
0.591
0.063
0.152
0.025
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F*

5/2

3/2
5/2
5/2

3/2

3/2

3/2
5/2
5/2

3/2

3/2
5/2
5/2

3/2

1/2
3/2
3/2
5/2
5/2

1/2

3/2

3/2

1/2

for Xe(129)

AE(mK)

-5.8

23.0
-12.2

31.8

44.9

—14.5

-27.7
-83.7
—18.9

-5.8

—15.7
-92.7
-6.9

—107.
-25.2
—124.
—16.4
—-115.

-97.6

-3.4

—102.

—198.

a(l0 12ecm2)

87.1

0.0167
0.004
0.114

0.0054

84.2

7.15
1.01

27.1

50.5

67.2
0.055
1.46

15.6

0.480

0.0061
0.0819
0.0026
0.0551

0.479
0.042

0.570

0.127



1,2

1,2

2,2

2,2

2,2

2,2

2,2

2,2

2,2

2,2

2,2

3,2

3,2

3,2

3,2

4,2

4,2

1,1

1,2

4,1

3,2

1,3

3,1

2,2

2,1

1,1
1,2

b

4,1
3,2
1,3
3,1
2,2

4,1

3,2

4.610

4.373

0.7208

0.7673

0.7843

0.8199

0.8375

3.605

5.336

5.023

2.148

2.627

2.839

3.368

3.685

3.275

4.54

5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2
5/2
3/2

3/2
3/2
5/2
5/2
3/2
3/2
5/2
5/2
7/2

3/2
3/2
5/2
5/2
3/2
3/2
3/2
3/2
5/2
5/2
3/2
3/2
5/2
5/2
7/2

3/2
3/2
5/2
5/2
3/2
3/2
5/2
5/2

Table (12a) continued (1)

11.0
-87.9
108.

0.009

-39.8
120.
-20.8
139.
-22.0

-44.8
115.
-35.4
124.5
5.3
165.
-92.6
67.3
42.1
164.
0.0002
59.9
19.3
79.0
18.1

-46.9
55.0
4.72
64.4
17.5
34.0
36.6
53.0

Table (12a) continued (2)

76.8

12.8

10.6
1.13
0.121
0.020
0.0645
0.0069
0.00489

0.161
0.027
0.0063
0.0007
76.5
12.7
2.53
0.42
10.17
1.09
1.04
0.173
28.1
3.00
1.495

56.1
9.35
0.292
0.031

31.9
5.32
2.77
0.30

50

1/2
3/2
3/2

1/2
3/2
3/2
5/2
5/2

1/2
3/2
3/2

1/2

1/2
3/2
3/2

3/2
3/2
3/2
5/2
5/2

1/2
3/2
3/2

1/2
3/2
3/2

-2.0
-62.7

-162.

47.7

-129.

31.1
120.
40.0

57.6
107.
53.1

-42.6

153.
166.
-6.3

-12.4
-88.6
-28.9
-79.8
-20.2

-2.6
-66.7
-7.1

-38.4
-71.2
-54.9

64.0
7.56
10.2

0.101
0.0046
0.0622
0.00024
0.00513

0.134
0.0004
0.0060

63.8

2.11
0.72
9.81

0.866
2.00
27.1
0.075
1.57

46.7
0.021
0.281

26.6
0.20
2.69



4,2

4,2

4,2

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1

2,1

2,1

2,1

2,1

2,1

3,1

1,3

3,1

2,2

4,1

3,2

3,1

2,2

2,0

2,1

1,1

1,2

1,0

4,1

3,2

3,1

2,2

2,0

4,1

51.21

7.32

9.00

0.6117

0. 6452

0. 6820

0. 6941

0. 7407

1.908

2.304

2.244

2.660

[.511

1.733

2,.027

2,.138

2.,652

3. 68

5/2
3/2
5/2
3/2
5/2
3/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2
3/2
1/2

3/2

7/2

3/2
3/2
5/2
5/2
3/2
3/2
5/2

3/2
3/2
5/2

1/2
1/2
3/2
3/2
3/2
3/2
5/2

172
1/2
3/2
3/2
5/2

3/2
3/2
5/2

172
1/2

3/2

35

32,.
-64,.

102.
4.

4

<SS JRCN

5
9

3

3.8
-93.5

101.

32.
-64.
35.
2.
54.

30.
-2.
39.

10.
-21.

— N D O W

9
8

Table

1.

6

4.16

8.72
1.45
38.1
4.08
0.369
0.147
0.00514

0.325
0.130
0.0870

0.106
0.106
19.1
7.6
13.2
5.3
1.71

48.7

48.7
0.00194
0.00078
4.39

25.1
10.0
0.137

55.5
55.5

(12a) continued (3)

34.4

51

5/2
5/2

1/2
3/2
3/2
1/2
1/2
3/2
3/2
1/2
1/2
3/2
3/2

1/2
1/2
1/2
1/2
3/2
3/2

1/2
1/2
3/2
3/2
1/2
1/2
3/2
3/2

1/2

-62.5
-46.1

-28.5
-49.4
-33.0
-15.8
-113.
-32.3
-139.
-5.9
103.
-10.4
-108.

106.

-203.
89.7
-7.7
-69.8

-167.

-37.3
-70.0
-53.8
-86.6
-27.4
-60.2
-32.0
-64.7

-70.7

0.21
4.36

7.27
2.72
36.7
0.074
0.295
0.00057
0.00571
0.065
0.260
0.0097
0.0966

3.8
15.3
2.65
10.6
0.19
1.90

0.00039
0.00155
0.49
4.87
5.01
20.1

0.015
0.153

6.87



3,1

3,1

3,1

1,0
1,0

3,2 5.36

3,1 9.71

2,2 12.90

4,1 4.00
3,1 12.25

1/2
3/2
1/2
3/2
1/2
3/2
1/2
1/2
1/2

3/2
5/2

3/2
3/2
5/2

3/2
3/2

69.1
20.6

-3.3
64.2
60.8

24.1
19.2

13.7
0.777

10.8
433
34.4

45.6
4.99

52

1/2
3/2
3/2
1/2
1/2
3/2
3/2
1/2
1/2

-3.2
-87.3
-19.7
-60.9

6.7
-65.4
2.1
-48.2
-38.4

27.5
0.086
0.863
2.16
8.65
3.8

38.2

22.8
2.49



2 for Xe(131)

fArm o orv x<"> F F'  AE(mK) a F AE(mK) a F|  AE(mK) a

Table (12b) Emission Cross Sections in lo_ucm

1.4 1,3 5.571 11/2 9/2 —-1.6 90,3
9/2 9/2 -394 7.5 7/2 3.3 82 .8

7/2 9/2 -64.4 0.27 7/2 -21.7 12.3 52 49 77.8
52 7/2 -37.4 0.46 5/2 —-10.8 12.4 32 4.6 77.4
1,3 3,2 0.7338 9/2 7/2 182 0.018
7/2  7/2 -39.9 0.003 5/2 11.2 0.015
52 7/2 -85.6 0.000 5/2 -34.6 0,.004 32 -7.0 0.013
3/2 5/2 -67.6 0.000 3/2 -40.1 0.005 1/2 -27.1 0.013
1.3 1,3 0.7495 9/2 9/2 193 0.nmo 7/2 61.9 0,010
7/2 9/2 -38.8 0.013 772 -3.9 0,.092 5/2 30.4 0.016
52 7/2 -41.9 0.021 5/2 -15.3 0,.083 3/2 0.000 0.016
3/2 5/2 -48.3 0.024 3/2 -32.9 0,.096
1,3 2,2 0.7978 9/2 7/2 32.8 0.006
7/2  7/2 -25.3 0.001 5/2 5.0 0.005
5/2 7/2 =71.0 0.000 5/2 -40.8 0.001 3/2 20.0 0.004
3/2 5/2 -73.8 0.000 3/2 -53.0 0.002 1/2 -40.9  0.004
1,3 1,2 3.864 9/2 7/2 -2.1 90.2

7/2  7/2 -60.2 12.9  5/2 100.2 77.3

572 7/2 —106. 0.86 5/2 -35.8 22.0 3/2 152 67.3

3/2 5/2 -68.8 1.8 3/2 —-17.8 25.3 172 13.1 63.1
2,3 3,2 2320 9/2 7/2 -15.3 7.66

7/2 7/2 -40.6 1.09 5/2 10.5 6.,57

52 7/2 =595 0.072 5/2 -85 1.87 3/2  19.1 5.72

3/2 5/2 -21.6 0.15 3/2 5.9 2,14 1/2 188 5.36
2,3 1,3 2.483 9/2 9/2 —14.2 26. | 7/2 285 2.3

7/2 9/2 =395 3.0 7/2 3.2 21,7 5/2 29.7 3.8

5/2 7/2 -15.8 5.08 5/2 10.8 19,6 3/2 262 3.8

3/2 5/2 -24 569 3/2 13.0 22.8

2,3 2,2 3.107 9/2 7/2 -0.001 54 .1
7/2  7/2 -26.0 7.7 5/2 4.2 46.4
52 7/2 -449 0.52 5/2 —14.7 13.2 3/2 6.1 404
3/2 52 -27.9 1.1 3/2 -7.1 15.2 1/2 51 37.9
3,3 3,2 3508 9/2 7/2 - 6.1 72.0
7/2  7/2 -42.9 10.3 5/2 82 61.7

53



3,3

3,3

1,2

1,2

1,2

1,2

1,2

1,2

1,3 3.897

2,2 5.69

4,1 0.7053

3,2 0.7503

1,3 0.7666

3,1 0.8006

2,2 0.8173

2,1 3.258

5/2
3/2
9/2
7/2
5/2
3/2
9/2
7/2
5/2
3/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
172
7/2
5/2
3/2
1/2
7/2
5/2
3/2
12

7/2
5/2
9/2
9/2
7/2
5/2
7/2
7/2
7/2
5/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
9/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2

Table
-15.4
- 2.0
- 5.1
-41.8
-22.7
-10.2
8.5
-28.3
-51.8
-35.7
-57.0
-15.3
13.5
67.2
-75.6
-33.8
46.0
90.5
-74.5
9.9
65.2
97.6
-52.5
-10.8
18.0
63.9
-61.0
-19.2
39.8
77.5
-97.0
-55.3
-26.5
93.1

(12b) continued (1)
12.1 53.8
11.0 504

17.6

20.2
1.41
0.16
0.27
0.31

16.8
2.4
0.16
0.34
0.576
0.173
0.029
0.096
0.078
0.017
0.032
0.046
0.049
0.045
0.044
0.055
0.574
0.172
0.029
0.095
0.543
0.120
0.221
0.317
0.153
0.046
0.008
0.025

5/2
3/2
7/2
7/2
5/2
3/2

5/2
5/2
3/2

3/2
3/2
1/2
5/2
5/2
3/2
1/2
7/2
5/2
3/2

3/2
3/2
1/2
7/2
5/2
3/2
1/2

3/2

3/2
1/2

54

37.6

0.13

0.001 1.17

3.9
5.2

1.06
1.23

1.9 144

-21.6
-14.9

21.5
50.3
86.8
-24.5
17.2
73.6
103.
-31.8
36.5
80.7

18.1
47.0
8.0
-30.7
11.0
60.6
89.7

47.4
76.2
155.

4.1
4.7

0.403
0.307
0.480
0.013
0.052
0.036
0.046
0.006
0.010
0.011

0.402
0.306
0.478
0.090
0.365
0.253
0.317

0.107
0.081
0.127

3/2
1/2

5/2
3/2

3/2
1/2

172

3/2

1/2

5/2
3/2

1/2

3/2
1/2

1/2

-66.4
-29.5

27.4
19.3

0.001
- 2.8

70.0

44.7

86.5

-5.2
51.9

63.1

31.8
72.8

138.

0.69
1.4

0.21
0.20

12.5
11.7

0.240

0.021

0.023

0.000
0.001

0.239

0.148
0.158

0.064



1,2

b

1,2

2,2

2,2

2,2

2,2

2,2

2,2

2,2

1,1 4.610

2

1,2 14.373

4,1 0.7208

3,2 0.7673

1,3 0,.7843

3,1 0.8199

2,2 0.,8375

2,1 1.605

1.1 S4.336

7/2
5/2
3/2
172
7/2
5/2
3/2
172
7/2
5/2
3/2
12
7/2
5/2
3/2
172
7/2
5/2
3/2
12
7/2
5/2
3/2
12
7/2
572
3/2
12
7/2
5/2
3/2
1/2
7/2
5/2

5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
9/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
5/2
5/2

Table (12b) continued (2)

-9.8
1.9
60 .8
34,.6
-95,.9
-54,.1
44,9
113,
35,,0
-30,,6
-78.,6
-71.,0
16.,5

S o W D o

S O O O O

8
0
84
8
72
16
97
67
121
036
0.006
0,.020
0,.059
0,.013
0,.024
0..035
0.,005
0.,004
0.,004
0.,005
0.,161
0.,048
. 008
027
. 006
. 001
. 002
. 003

.53
. 76

3/2
3/2
172
5/2
5/2
3/2
172

3/2
3/2
12
7/2
5/2
3/2
172
7/2
5/2
3/2

3/2
3/2
12
5/2
5/2
3/2
1/2

3/2
3/2
172

3/2

55
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1 537
.7 40.9
2 64.0

1.62
6.53
4.54
5.67

0.085
0.065
0.101
0.010
0.040
0.028
0.035
0.001
0.001
0.001

0.113
0.086
0.134
0.001
0.004
0.003
0.003

53.6
40.8
63.8

1.77

1/2

3/2
1/2

1/2

3/2

1/2

5/2
3/2

1/2 -29.,0

3/2
1/2

1/2

32.0

2.65
2.84

0,.050

0,016
0.,017

0.,000

0.,000

0. 067

0. 002
0. 002

31.9



2,2

3,2

3,2

3,2

3,2

3,2

4,2

4,2

1,2

4,1

3,2

1,3

3,1

2,2

4,1

3,2

5.023

2.148

2.627

2.839

3.368

3.685

3.275

4.54

3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2
7/2
5/2
3/2
1/2

5/2
3/2
7/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
9/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2

Table
-31.3
-104.
- 38
-69.4
-47.2
-25.5
0.001
-25.1
-42.9
-16.9
-19.0
-43.6
-10.4

6.4
-17.9
0.000

8.9
13.5

4.0
-20.6
-38.4
-20.2
- 44
-29.0
-16.6
- 6.6
-16.7
-20.4
-27.5

3.2
-35.2
-39.0

5.0
26.5

(12b) continued (3)

0.13
0.42
9.34
2.08
3.81
5.45
1.04
0.312
0.052
0.173
25.8
5.7
10.5
15.0
1.40
1.28
1.26
1.57
56.1
16.8
2.8
9.35
0.268
0.059
0.109
0.156
31.9
9.6
1.6
5.32
2.56
0.57
1.05
1.49

3/2
1/2
5/2
5/2
3/2
1/2

3/2
3/2
1/2
5/2
5/2
3/2
1/2
7/2
5/2
3/2

3/2
3/2
1/2
5/2
5/2
3/2
1/2

3/2
3/2
1/2
5/2
5/2
3/2
1/2

56

-74.3
-128.
66.4
0.001
3.7
5.4

11.7
-6.1

2.7
32.1

7.4
17.1
19.3
24.8
26.7
243

8.3
-9.5
-4.1
25.8

1.2

4.2

5.6

16.4

9.3
22.8
15.8
12.1
32.6
39.4

1.35
2.11
1.56
6.28
4.36
5.45

0.727
0.554
0.866
4.3
17.3
12.0
15.0
0.160
0.27
0.31

39.3

299

46.7
0.045
0.180
0.125
0.156

224

17.0

26.6
0.43
1.72
1.19
1.49

1/2

3/2
1/2

1/2

3/2

12

5/2

3/2

1/2

3/2
1/2

172

3/2
1/2

-98.8

51.7
34.7

13.5

35.0

30.1

51.3

42.1

6.7

22.0
16.4

28.9

39.7
45.5

1.05

2.54
2.72

0.433

7.0

7.5

0.008

0.015

234

0.073
0.078

13.3

0.70
0.75



4,2

4,2

4,2

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,3 5.21

3,1 7.32

2,2 9.00

4,1 0.6117

3,2 0.6452

3,1 0.6820

2,2 0.6941

2,0 0.7407

2,1 1.908

1,1 2304

7/2
5/2
3/2
172
7/2
5/2
3/2
12
7/2
5/2
3/2
172
5/2
3/2
1/2
5/2
3/2
12
5/2
3/2
1/2
5/2
3/2
172
5/2
3/2
1/2
5/2
3/2
1/2
5/2
3/2
172

9/2
7/2
5/2
3/2
5/2
5/2
5/2
3/2
7/2
7/2
5/2
3/2
5/2
5/2
3/2
7/2
5/2
3/2
5/2
5/2
3/2
7/2
5/2
3/2
3/2
3/2
3/2
5/2
5/2
3/2
5/2
5/2
3/2

Table (12b) continued (4)

-34.2

4.8
243
33.6
-12.2
-15.9
-23.0
0.000
-20.6
-24.3
- 12
13.5
-50.5
- 25
63.4
-69.1
30.1
86.6
-46.0

2.0
60.0
-54.5
23.8
73.7
-28.9
19.2
48.2
-90.5
-42.5
89.3
- 32
44.8
30.8

3.90
3.56
3.49
4.36
8.72
2.62
0.44
1.45
35.0
7.8
14.3
20.4
0.310
0.199
0.368
0.005
0.004
0.003
0.274
0.176
0.325
0.077
0.061
0.048
0.106
0.106
0.106
16.0
10.3
19.1
11.1
7.15
13.2

7/2 8.5
52 314
3/2 397

3/2 13.0
32 5.9
172 16.0
52 9.6
52 59
3/2 19.6
172 257
3/2 -13.7
3/2 343
172 83.0
5/2 -18.0
3/2 57.6
172 99.6
3/2 -17.1
3/2 31.0
12 76.2
5/2 -24.2
3/2 44.6
12 85.8

3/2 12.2
3/2 60.3
1/2 151.

3/2 -46.3
3/2 1.7
172 64.0

57

0.44
0.76
0.87

6.11
4.65
7.27
5.8
23.5
16.3
20.4
0.133
0.059
0.074
0.001
0.008
0.003
0.117
0.052
0.065
0.017
0.031
0.048

6.87
3.05
3.81
4.77
2.12
2.65

5/2

3/2

1/2

3/2
172

172

3/2

1/2

1/2

3/2
1/2

172

172

35.1

46.8

22.1

27.0
31.8

53.9

9.5

70.5

47.1

3.4
56.8

122.

-22.7

0.022

0.042

3.63

9.5
10.2

0.184

0.000

0.000

0.163

0.002
0.005

9.54

6.62



1,1

1,1

2,1

2,1

2,1

2,1

2,1

3,1

3,1

3,1

3,1

1,0
1,0

1,2

1,0

4,1

3,2

3,1

2,2

2,0

4,1

32

3,1

2,2

4,1
3,1

2.244

2.660

1.511

1.733

2.027

2.138

2.652

3.68

5.36

9.71

12.90

4.00
12.25

5/2
3/2
1/2
5/2
3/2
1/2
5/2
3/2
12
5/2
3/2
12
5/2
3/2
12
5/2
3/2
1/2
5/2
3/2
1/2
5/2
3/2
1/2
5/2
3/2
1/2
5/2
3/2
1/2
5/2
3/2
172
3/2
3/2

7/2
5/2
3/2
3/2
3/2
3/2
5/2
5/2
3/2
7/2
5/2
3/2
5/2
5/2
3/2
7/2
5/2
3/2
3/2
3/2
3/2
5/2
5/2
3/2
7/2
5/2
3/2
5/2
5/2
3/2
7/2
5/2
3/2
5/2
5/2

Table (12b) continued (5)
1.52 5/2 -19.2 0.341

-89.4
28.9
109.
-28.9
19.2
48.2
-31.5
-14.7
30.8

1.19 3/2 79.8
140.

0.948
48.7
48.7
48.7

0.002

0.001

0.002

3.90
17.8 3.07
541 2.44
-27.0 21.1
-10.3 13.5
274 25.1
-35.4
11.5
41.1
- 9.8
6.9
15.7
- 2.1
-33.3
-20.4 344
-20.6  0.69
-0.001 0.54
29 043
24 9.09
-28.8 5.84
-23.8 10.8
- 6.0 30.6
- 7.0 24.1
-10.1 19.1
-21.7 34.2
-17.2  3.74

-50.0

55.5
555
55.5
28.9
18.6

0.122
0.096
0.076

1/2

3/2
3/2
1/2
5/2
3/2
1/2
3/2
3/2
1/2
5/2
3/2
1/2

3/2
3/2
1/2
5/2
3/2
1/2
3/2
3/2
1/2
5/2
3/2
1/2
3/2
3/2

58

- 52

0.607
0.948

0.001
22.0 0.000
50.4 0.000
1.1 0.88
453 1.56
67.0 2.44
2.0 9.03
18.7 4.01
43.6 5.01
0.027
0.049
0.076

5.3

32.3
533

347 12.4
3.5 5.50

-0.001 6.87

30.5 0.155
26.8 0.28
15.8 0.43
314 3.89
0.000 1.73

- 7.6 216

242 6.88
13.8 12.2
2.1 19.1
15.1 22.8
11.8 2.49

3/2
172

1/2

3/2

1/2

1/2

3/2
172

172

3/2

1/2

1/2

3/2
1/2

172
172

31.8
111.

41.7

28.6

58.3

34.9

15.6
44.5

23.1

58.0

39.7

16.3

45.0
26.0

34.7
27.9

0.038
0.095

0.001

0.097

0.243

12.5

0.003
0.008

17.2

0.017

0.043

5.41

0.76
1.91

11.4
1.25



7) The Hyperfine Splitting with an External Magnetic Field

We now want to calculate the Zeeman splitting with wavefunctions
| JIFMp> CHIIFfMMjMp) | IM>  |IMj>.

(19a)
But this is
<UJIFMF|HZz|iJIF'MF >=MZM M,ZM, oM M, C(JIF MMJM-JCC JIFI “MJMi., )<i M |Hz | iJM >,

(19b)
But as shown at the end of sec.(3)
<iIM|Hz[iIJM"™> = [3H gL(i,J) M 6MM,

(20a)
so that
<{JIFMFHz|{JIF'MF,> = PH gL(i,J) MZM M CUIF,MMIM[r) C{IF' jMMjMp,).

(20b)
In Appendix (C) 1 show
MZM M CUIE,MMJoML) CIF'MMjMp,) = [(RFI+1)2J+1)JJ+1J]1/2 (-1)+I+1+]J+F

C(F'IF,Mp,0Mp)

(20c¢)
so that

<UTFMpHZ[IJIE'Mp,> = BH gL(i,0) 5v u [(2F+1) (2J+1)J J+1)] /2

(1) +1+1+J+F" FJ j C(F IFMpOMp)

=3HgL(1,J)OM ™M (2F'+ DRF+D(2J+DHIJ+D]12(-DI+H] ™~ (™I, {} J p
F "F
(20d)
The diagonal matrix element is
<{JIFMp|Hz{JIFMp>= pH gL(i,J) (I/2)Mp [F(F+1)+J(J+1)-I(1+1)]/F(F+1),
(21a)
which, with I = 0, reduces to the diagonal matrix element for Zeeman
splitting in the absence of hyperfine splitting. The non-diagonal matrix

element is
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<iIJI(F+)MFHZ[iJTFMp>= [H eL(i,0) (1/2)

{(HJHF2)(J+FH-DA+F+-J) [(FH1)2 - M2J/[(2F+1)(2QF+3)(F+1)2]]1/2.

(21b)
For I = 1/2, one has a sequence of 1xI and 2x2 matrices to diagonalize, and
for I = 3/2 a sequence of up to 4x4 matrices. The final eigenfunctions can

be written, |[iJIkMp>, where k is an index, 1i.e.

I+
|iJIkMp> = pip. C3(k;0H;iJIFMp) |iJIFMp>

J+
= pip C3(k;y/?H;iJIFMp) C(JIF’MM!ME) 1IM> jIMDp,
22)

where F§ is the greater of [Mp| or |J - I|. Therefore the number of allowed
B values is J + I + 1 - F . The new energies and mixing coefficients are

too extensive to tabulate entirely. In Table (13) I compare the level
energies for the case of no hyperfine splitting and a 6 kG magnetic field,
with that for 1 = 3/2 in Xe for the level (1,4). In the absence of
hyperfine splitting this level is split by the Zeeman effect into 9
components labelled by M. The Zeeman splitting is shown as the first entry
in Table (13). With hyperfine splitting included there are 4 hyperfine
levels with F = 11/2, 9/2, 7/2, and 5/2. The magnetic field splits these 4

levels into 36 components with 12 different Mp values, from -11/2 to 11/2.

But we expect these 36 components to be clustered around the 9 Zeeman
components occuring when 1=0, if the Zeeman splitting dominates the
hyperfine splitting. This is illustrated in Table (13) where the (k,Mp)

components are ordered in energy. The entry in parenthesis is the diagonal

matrix element for the initial (F,Mp) level. A4 is also ordered in energy.

As expected, with a 6 kG field the non-diagonal matrix element is so large
that all the energies are changed from their initial diagonal wvalues, and
all the mixing coefficients are significant. On the other hand, with no

magnetic field, the mixing coefficients are of the form 6F F and one regains

5

the eigenfunctions for the case of hyperfine splitting.
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Table (13) Splitting of the (1,4) component of (5p) (5d) in a 6 kG field
without and with (I = 3/2) hyperfine splitting
Mp\ E(M=4) E(M=3) E(M=2) EM=1) E(M=0) E(M=-1) E(M=-2) E(M=-3) E(M=-4)

140 105 070 0.35 00 -035 -0.70 -1.05 -1.40
112 1.439
9/2 1.413 1.079
(1.306)(1.185)
7/2 1333 1.095 0.738
(1.221)(1.016)(0.930)
52 1271 1.035 0.760 0.410
(1.2111(0.865)(0.725)(0.675)

3/2 0.877 0.698 0411  0.088
(0.710)(0.509)(0.435) (0.420)
12 0.545 0316 0.043 -0.233
(0.209)(0.165) (0.153) (0.145)
-1/2 0.237 -0.062 -0.341 -0.563
~(0.090)-(0.145)-(0.203)-(0.291)
-3/2 -0.070 -0.419 -0.714 -0.929
~(0.345)-(0.436)-(0.559)-(0.792)
-5/2 -0.380 -0.758 -1.049 -1.346
~(0.600)-(0.726)-(0.915)-(1.293)
-7/2 0.697 -1.084 -1.362
~(0.855)-(1.016)-(1.271)
9/2 -1.023 -1.393
~(1.109)~(1.307)
1172 -1.364
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8) The Radiative Transition Rate with Both a 6 kG Magnetic Field and
Hyperfine Splitting

The squared dipole matrix element is more complicated in this case than

with zero hyperfine splitting. In this case

DUMNJIKMAi'TIK'Mp,) = | ,iJlkMp|r| i J Ik Mp,>]|
I+ I+
=IFgF F.Zp. C3(k;AH;iJIFMp)C3(k,:/IH;i'JIIF'Mp1)<A2,iJIEFMp|rA3,i'J IF'Mp1>|
S S
AES RS

= Ip2p p.ip. C3(k; H;iJIFMp) C3(k' ;/JH;i J IF'Mp,) -~ ~~ CUIF.MM;jMp)

CUIIF' M MjMp,) < 2,iJMIf]"3.i 'TMI2,

(23a)
But the last matrix element is given in eqgs.(ll) of sec.(4), so that
J+L J+I

D(12,iJTkMp;13.i'T'Ik'Mp,) =lplp p.Zp, C3(k;/3H;iJIFMp) C3(k';/JH;i'J' IF'Mp,)
MZM] S, CUIF,MHiHf) C(J' IF' (M'MjMp,) i.Tj.

A3-1/2+ji-J ~2
C1(13,il JI «GEF—(N\273/2)(-1) [(Zj"JCZj*+DCZI+DH|1 A

) < 1 j2 C(F1F,MF/ME,)|2

7 7§+ '+l n
=(S~3/2) QRIHDIWA2iJ~31,J,)l TF'F F'=F; A(kAHjiJiFMp)

C3(k';/3H;i'J'TF'Mp.,) i, CCIFMMjMp) C(J'IF MMjMp,) CUJ1J' MAM)p,

(23b)

where W is defined in eq.(13c). The sums over M, M', and Mj, which were not

present in sec.(4) are readily done leading to

DUMNJIKMpN'TTK'Mp,) = (AMNMA/2)2 (2T+1) (2T+1) [W(2iJ~31'TY) |2

J+HL Ji1+1 o F+I 1/9 1 rli
IpZp p,Zp, C3(k;/3H;iJIFMp) C3(k' ;j3H;i 'J' IF'Mp,) (-1) QF+D1/™ g J p |
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=~ (D" dp C(FIFMEAME,)|2.

(23¢)
Note that the result in eq.(23c) does not depend on M and MI, which were
good quantum numbers for the case of Zeeman splitting with hyperfine effects

neglected. As discussed in sec.(4), one can take the sum over outside the

> > ¥
absolute value sign and use ap'ap> = 4 pl to arrive at

DU2JTKMFA3,i'T'IK'MF,) = (\273)2 2J+1)(2J+1) AT A'TDHD

Z("2iIIMF~3i'0'MF,) = (2J+1) S(iJ.iJ") Z("iIMF,*3i'J'MF.,),

(24a)
where S(1J,1'J1) is the level strength defined in eq.(14b), and

I+ I
Z("2iJkMF,~3i1J ' K'Mp.,) = |FZF F,ZF, C3(ky/3H;iJIFMp) C3(k' ;/3H;i J' IF'Mp.,)

- ? ‘
(-1)FI (2F+1)V/A {JI JF lFl‘} C(FlF';MF,-MF+MF1,MF,)r7.

(24b)
For this case proof of sum rules requires special care. Consider the

sum of eq.(24b) over final state parameters k' and MF. One has
. I+ I+
k,IM, Z("2UJkMF"™31'J'k'MF,) =k,IM, |FZF F,IF, C3(k;/3H;iJIFMF)

F4
C3(k;0H;i'TIF'MF,) (-1)  (F+DI72 #| —~’} C(FIF MF,MF,) |2

F+
W pI\ F,|F,|FZF C3(k/3HUIFMF)(-1)  (QF+1)1/2 £ ¥ JCFIF ;ME~ME) 12

(25)
Consider the sum over Mp = m and F' = M, which is
|J-1| J+I J+I J+I -|J+I-1  J+I
T =m=-|J-1] M=|J-1I] u(M’'m) + m=|J-I|+1 M'm u(M’'m) + m=-J-1 M=|m|
|J-1| J+I J+I J+I
=m=-|J-1] M=[J-]| + m=[J-I|+1 M=m + UM,-m)].
(26a)

But interchanging the order of the summations in the second term leads to
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I+ 1T-1| I+ M

T = M=[J-1| m=-[J-1| u(M’'m) + M=|J-I [+1 m=|J-T |+1 +
|J-1 J+1 M
= m=|J-1| 1 ILm) + M=[J-I #1 1rl-M-
(26b)
Then
. . 1951 J+I , F+l
K, ZMIZ(MIKMFEA31''K'ME,) = M= AJ1 I =~ |FZF C3(k;0H;iJIFMF)(-1)
i F F S
(2F+1)1/2 (J 101" F’} C(F1|J-I|;MF,0M[;)|2+ £=|T3.2,|+] m*_F' pi-1
J+H F+I o . |
|FZF C3(k;/3H;JIEMF)(-1)  (2F+1) {b'p'y CCFIF-jMp.Mp)!2.
(27a)

Now the sum over 3 and MF can be done, leading to

ZM,Z(/20KME~34, Tk MED)=(2|3'-T[+1) T2F (C3(AHLTTEMp) £\ |3 T|F} |2

F s
J'+I J+I I F J
f F'=J-I|+1 72fr +1" |C3(k;/IH; 1 JIFMp) J p} !
J'+HI J+I . TF'1 A ?
= F'=|3'?!| F'+1) pfps|C3(k;/3H;iJIFMF) , ; * } |

J+I ?
= 1/(2) + 1) FZF |C3(k;"H;iIJIFMp)p = 1/(2J + 1),

(27b)
so that

k,ZM, D("2,JJIKMF"™3,i'J'Ik'MF,) = S(iJ.,1J’),
(27¢)
Thus, summing over k' and Mp reduces the radiative transition rate to its

value in the absence of hyperfine splitting and Zeemann splitting. This is
useful 1is checking that the programming is correct. Note that each initial

state with quantum numbers k and Mp has the entire radiative transition

rate, S(1J,1'J'). For each 1J, the total number of (k,Mp) states is
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(2J+1)(21+1). Since all the levels have the same rate, an average over k
and Mp leads to S(1J,1'J").

In figs.(2a)-(2c) [ show the emission cross sections for Xe(129) for
the same transitions as shown in figs.(la)-(Ic). The triplet shape is
retained though the cross section density is increased. As a crude
generalization, when Zeeman spliting is significant the number of components

2
in each 1J-1'J' transition is 3 (21 + 1) (2J5+ 1), where Js is the smaller
of J or J1. When these components are distributed over a triplet, there are

(21 + 1)2 (2JS+ 1) components in each member of the triplet. In the absence

of a magnetic field there are roughly (21 + 1)2 components in a single peak.
For these transitions and a 6kG magnetic field the width of the members of
the triplet seem slightly larger for the case | = 1/2 than for I = O.

In figs.(3a)-(3c) [ show the emission cross sections for Xe(131). Here
the number of components is so large for some transitions (112 components
for each member of the (1,4)-(1,3) triplet) that for transitions with J =

2,3 and 4, I have added all cross sections in a 0.01 c¢m-1 interval, except

where such an addition would produce unrealistically large summed cross
sections. One must remember that with I £ 1/2 there will be more components
than with 1 = O, but that the individual cross sections are smaller than in

the case I = 0. The Doppler width at room temperature in each transition is
" 0.004 cm-1, while the scale size in the figures is 0.01 arr*. Thus while

each component may be isolated from all the others, the scale size may imply
an overlap. Again for [ = 3/2 one sees the triplet pattern, with a barely

discernable increase in width over | = 0 and 1 = 1/2.
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9) Conclusions

These calculations are done with as simple a set of wavefunctions as
will produce reasonable agreement with Lande g factors and dipole and
quadrupole hyperfine splitting paramaters. Since the distribution of
oscillator strength is dominated by the 6 kG magnetic field it did not seem
necessary to use more accurate hyperfine splitting parameters. Comparison

with experiment (such as Ref.(20)) can be made if Doppler and instrumental
line widths are available.
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Appendix A
The wave function including nuclear spin is

JITe> = MIM CUITjMM;jt) | iIM> (IMp

(Al-a)
= j L. MZMi CUITjMMijt) C(Jcj,iJ) |JcjiM> 1IMp

= 1 C(U j.iD [ +1)(2j+1)]}§(2 I [(2L+1)(2s+1))£//(2 {*']1/5 JIC}
Jc’] C C L.S L S 7

MZM' CUIT,MMIt) |2P,2rLSIM> [IMI> = JZj C(Jcl.i)) [(2Jc+D)(2j+D)]1/2

1 12 ] .
Z [QL+D@S+D]17" {~N1/2 jei pP, LSIIFMr>
L.S L s J

(Al-b)
which i1s the wavefunction in an IS coupling basis. Then the hyperfine
interaction matrix element is

<iJIF Mp. [HHF[JIFMPF> = 5 Z 3.23, [(2Jc+1) (2j+]) (2I°+1) (2§'+1 )JWAC(Jcs.iJ)

o 19 1 1221 112 F
CAND Z 7 [QCL+DESTDHERP+DH(2Q—+1 {M1/2 je,  {M1/2 jc
LS PQ L S 1J PoQ J

<2P,2";PQJIF'Mp, |[HHF|2P, 27 LSJIFMp>.

(A2-a)
The last matrix element is given in eq.(49) of Ref.(15) and is

<2P) 2., PaUiEMp, [HHpI2P, 25 L SaiFMp> = Bpp, & -~ A(F) [(L+1) (2P+1)] 172
N

K-1)" 5%8 G YD U-DI B (=<2~} +Cc L TP _ [4502S+1)(20+1)] 1/2

~ar2

-S-J f g 1ir"2?lr/1xLnrL,2Pi , ..P+S-0 r rL 2 P i-i-i
(-D (1%1/21/2) («5}) c'-1) D (W) "(-1) E<W2)])'

(A2-b)
where

+F+1+1,, F . . .
A(F) = (AQ/ATI) 2 gnmep -1) ~H p @I+ 1A+ QL] 3,

(A2-C)
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B = C(/r1)3]5p [~(ADIZA+1)]172
(A2-d)
C= [(/2)3] [~(nCZA+i)]172
(A2-e)
0 = [(/riYeop (-1) @/1+1) (T T.),
(A2-e)
E= C/2)3nf (<D 2 (224D ( 2 2 0),
(A2-1)

where [(1/113))3]“2 is the expectation value of (1/r)° for the _ orbital.

The quantities in A(F) are mep= 1/1836, = AT 10_7 Henrys/meter, is the
Bohr magneton, while gn is defined in terms of the nuclear magnetic moment,
MN via MN = gn mep °g. Since we seek the hyperfine interaction matrix

element in intermediate coupling we want to sum over LSPQ and The

sum over LSPQ is straightforward but tedious. It leads to
<iJIF'MF,|HHF[iJJFMF> = 6fF, A(F) J

[(2ICHD2j+D)23A+1)(2j'+D)] V2 [TI + T2 + T3 + T4],

(A3-a)
where
/2-1/2-j-Jc-J'
Tj = (-1)
(A3-b)
= (1) 124Jc ¢ eded, /(2JC+1)] A =1 gl 1Ty
(A3-c)
5o e PRIy @se e e dy (o~ o~ 2

1/2 1/2 1
(A3-d)

76



-~rt+j+Jc .- . PR
C ey I YR s G sicy) i £ty

cc C 172 12 1
(A3-e)
Then the interaction becomes
<i{JIF'MF, HHF{JIFMF> = S5FF, 6eM"M"™ A(F) (Wl + W2),
(Ad-a)
where
Z (-1) 2—1/2J j Zj, (-1) € ¢ [(2JC+1)(2J‘+1)]%% C(cj,1J) CUN,1))
J c ¢
d%% B drn "~ £ 1)_/1+1/2+J Hoan (A by,
1/2 1/2 1
(A4-b)
and
=L D MG i@ DIV CUcLiT) CUgMI
£§ji'y icaA/=Zay+ 17 VI (45)% { AR S e
1/2 1/2 1
(Ad-c)

When configuration interaction effects are included, the hyperfine
splitting is further complicated. For the simple case of 6s,5d mixing in

5
the excited states of the noble gases, the modification to the (5p) (5d)

results is a reduction in the contributions of the and W2 terms since if

S > C, then 82 > C2 + (S - C)z, an increase due to an additional cross-term,

given by W2 W2 + W" where
W = -6 <5d|l/r3|6s> jZ (-D™"172" (2jd+1)1/2 jd ™2 {2

C(dJcyd,iJ) C(sJcl/2,1]),
(AS)
and the need to include the Fermi contact term due to s electrons, which is

given by W2 W2 + W£, where
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WE = (2/3)1/2 Rns(0)2 jZ (-1) Jc 172 {’c C(slcl/2,iT)2,
C
(AS)

2
where Rns(0) is the ns electron density at the origin.
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Appendix B

The textbook formulation of the electric quadrupole contribution to
hyperfine splitting seems unduly complicated. As an illustration see
Ref.(15). This effect arises as the lowest order correction to the

assumption of a point nucleus in atomic physics calculations. That is, the

potential -Ze2 ~ (1/|r.]) is actually -e2 -~ ~ (1/|r™-rN|), where " are

the coordinates of the Z protons. The interaction contributing to the

hyperfine effect is the difference of these two potentials
HHy= -~ [ Nil f - Ze2 A

=-e2 | AN (K/(r<)K+HL PK(cos(0)) - Ze2 N (1/1r™M)].
(Bl-a)
If we assume that the smaller radius (r<) is always the nuclear coordinate,
then
HHy =-e2 [ Nij ~ » (rN)K/(r1)K+1 PK(COS(0)) - Ze2 ™ (1/1r™M)].

(B1-b)
The K = 0 term is -e2 AN Y/a™HN = -Ze2 N (1/|r.])., which cancels the

potential due to the assumption of a point mass nucleus. Then, using the

spherical harmonic addition theorem, the interaction can be written

B o= -e2 [ ©™ A KZp (PNK/(ri)KH [47r/(2K+1)]

Bl-c
Parity considerations eliminate the K = | term, i.e. diagonal matrix el(emen)t
calculations lead to 3j symbols of the form A Q), which require K even.
Thus the lowest order correction is the quadrupole, and if all higher
interactions are neglected
HHy = -e2 [ NI1 £ 2p <rN>2/(r1)3 [V/A(eN,ON)]*.
(Bl-d)

For the general case of n ™ electrons with quantum numbers L"S*”, and
m electrons with quantum numbers forming a term in intermediate

coupling with quantum numbers iJM, which i1s then coupled to a nuclear
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moment, I, to produce a term of the form <iJIFMp|, the matrix element of the

quadrupole hyperfine interaction is

<iJIF ‘Mp, |  |iJIFMp> = 323, C(J1J2,iJ) CU"™.,iJ) MIM' CIJIF.MMjMp)
MtZM, C(JIE*M'MjMp,) [-(47T/5)e2] pZ22 -~ <IMI|r2 [YP(eN,ON)]*[IMj> Ha,

(C2-a)
where
Ha=<(*1)nL1S1J1(*2)mL2S2J2,JM|Z(/ri)3YP(0L,01) (" DnP1Q1Ji(N2)mR2Q2JNJ' M ">

(C2-b)

The last matrix element, Ha. is a standard atomic physics calculation,

which, after extensive tedious algebra can be reduced to

= (5/4n-)172C 23 MpM) 6 6, . FV +6.p 5 » FVIL

pij1 %pafa L6 P I

(B3-a)
where
n 1l jce . . n-l, . ..,
FI =n L~si SlﬁV[LlSl) K 4sil™ipi4)
(B3-b)
F2 =m LASAIL2S213N1282)
(B3-¢)
—Lj~Sj——J n 11
va(-i) [QLI+D2PI+1D)2II+1D)2I;+D)2J+1DH(2M+]) ]
(t212J J (%l P; L[} (4P L
(B3-d)
—*2-32-"2+31+3 1/2
V2=(-1) [(2L2+1)(2P2+1)(212+D)(2IE+D)(2T+1)(2/2+]) ]
2 J, ). 2 J9 2 P9 19
—~ fo, J] 02Ms2 P2 I2H 4 .2 4)-
(B3-e)
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a”™ - (-D" (Q N & <1 11/r311> 27™N1)1/2,
(B3-f)
where \ is a fractional parentage coefficient.

Next consider the nuclear matrix element in eq.(B2-a). Since we do not

have a complete theory of the nucleus we cannot explicitly calculate
<IMjir™ [YCH,M)] | IMj>.  Assuming a spherical harmonic description is
valid for the nuclear wavefunctions then the matrix element is of the form
£ <IMI|r™ [YP(eN,ON)J*|IM|> = (-D~p C(121;Mj,-p,Mj) " <I|t* |I>,
(B4-a)
with all other coefficients lumped in jj. Note that the Clebsch-Gordan

coefficient requires [ £ 1, so there is no effect for isotopes with 1 £ 1/2

The nuclear quadrupole moment is defined byl™(I use the traditional

spherical harmonics, Y#, rather than QKm= [47r/(2K+D)]1"2 Y*)
0 = [16W5]1/2 ~ <IM,|r2
(B4-b)
= [167r/5]1/2 C(I2L,ML,-p,MI)\ SRS IEv =
= (121 [I67T/51172 {IQI-1)/[QRI+3)(A+1)]} 12 ~<I|r2 |I>

(B4-¢)
7
which defines the unknown integral pj <lI [I> in terms of the nuclear
quadrupole moment,

£ <lr2 > = Q (-1)21 [5/167c]1/2 {(RI+3)A+1)/[I(2I-1)]} 1/2.

(B4-d)
Then the nuclear matrix element in eq.(B2-a) is

<IMI1rN = (=IIRP C(RLML,-p,Mj) 0 2L 1s/16mp 12
(QI+3)A+ 1)/[IRI-D]}1/2 = (1) P C(121,Mj,-p,M|) Fn,
(B4-e)

where
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= Q (121 [SA6TT]I72 {QRI+3)(I+1)/[I2I-1)]}1/2

(B4-1)
The eq.(B2-a) becomes
< JIF 'Mp, | | 1JTFMp> = J.Z3, CCI™M1)) [-(47r/5)e2] F* Fa
(5/47r)1/2 6 n 6 n [6. p 6, ,, V. +6 p 6, ,, V?]
S1QI  S2Q2 L2P2 J2J2 | L1P1 J1JI 2
MITF.MMjMp) MZM,CJIF' MMMFI)pZ22(-1)"P C( 121 ,M;j )CJ2]' MpM").
(B5-a)

Some tedious but straightforward algebra reduces the last line of eq.(B5-a)

to
6F.F 6MF ME CGD"F'I"T [(21+1)(2J+1)]1/2 {2 ] J},

(B5-b)
Thus one has the selection rules F = F¢, Mp = Mp,. Then the matrix element
1s

<iJIF'

Ghsk 6 60 % gLoiy(-1) F LT [1+ DRI+D]1/2

{p ] I} (5/4»)1/2 [-(4»/5)e2] PN Fa
o~2 C(J1J2°1)) -6L2P2 6J2J~ VI + 6LIPI 6J1J~ V2]
(B6-a)
* 5F,P' 58202'-1>F+I1") [QRI+1D)(2J+1)]1/2 2] J) Q (-e2/2)

[(21+3)(I+ 1)/(1(21-1)]1/2 Fa 323, CfI~.iT) CONINNT)

[8L2P2 6J2Jj VI + \IPI 6JjJJ V2]-

(B6-b)
For the excited states of closed shell atoms including the noble gases,

F2 = 1, and

= (1/3) LAS| QLi + ) (2Si + 1)?

(B7-a)
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-] Ay) -
F, Vi= (-1) [(27141)/3] [(RII+1)(RINDRI+1)(2A+1)]

27 3 2 1T
a(N) 2 X T ) AR

(B7-b)
1/2 ~o+J T T /0
F2 V2=(-D [QI2HDQRI-+DR2IT+D(272-11)
2 09 J: 2 J9 J:
a(™2) I} "2 72 72)
(B7-¢)

so that
<UJIF'MF, H "y iJIFMF> = 6F"F, 6™ ~(-e2 Q/2) (-D)F I (2J+1) {2 ] I}

(QRIFDIF3)A+1)/[IRI-DTYRW3 - 4] |

(B8-a)
where
W3 " @™+l (Q 0 00 <(1/1) >N
-j+1/2-Jc-JCr y . . 2 Ve, 12 Jcdcl
(-1) N ACQIcHD)(2IADHLE(T6LiT) CU-iiD) § /Y (R
(B8-b)
W4 = (Z™2+1" 20 0 Cp <(1/1) >.2
4194 . L
T Vi j D1 cag.an cdeitin 23t P B,
(B8-¢)
where ¢ and _] have been substituted for J. fnﬁcﬁl
Biedenharn et al 2 give the relation
{pJ i+ = GDHF+H+] 6 [AA+]) - (4/3) 1d+1)JJ+1)]
{21-2)1(2J-2)//[(2I+3)] (2I+3)!'D1/2,
(B9-a)

where
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A = F(F+]) - 1(1+1) - JJ+1),
(B9-b)
so that

W3 - W4] 6
(AAH)-@DIA+DITDV[2IRI-D]}  {(20+1)/[(2T+3)2I+2)21y2I-D 13 7

" AR F 6MEMr [AA+D)-(4/3)I(1+1)IJ(J+D] BiO,

(B9-¢)
wi th

BiJ=(-3e2Q)(-D21"J{[W3-W4]/[2L(2I-D]} {(2J+1)/[(2T+3)(2T+2)2N(2I-DHP1/2

(B9-d)
where Bi'.i is a coefficient used to describe the quadrupole contribution to

hyperfine splitting. In studies of hyperfine splitting the second term in
brackets in eq.(B9-c) is neglected as an irrelevant constant, but it must be
included when one studies transitions between levels with different 1iJ.

When configuration interaction (Cl) effects are included in the
wavefunction the calculation of the quadrupole contribution to the hyperfine
splitting is complicated. For the simple case of 5d-6s mixing considered
here, the effect of Cl is to add a cross term which may be described by &

+ W4, where

(BIO)
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Appendix (C)

To evaluate
[ = MZM M CUIF,MMIMt) CUIF'.MMjMp,),

(Cl-a)

I use

M= T [LIL+1)]1/2 CLILMOM)
Ml

(Cl-b)

Then

I = [JQAI+H%~ MEwm C(UU,qOM) CUIF,MMIME] CCJIF.MMiM,-).

(Cl-c)

But since C(JU,gOM) is non-zero only when M = q
[ = [JJ+1)]1/2 § MZM C(01J,qOM) C(IFjMMjMp) CJTF*.qMjMp,)

[JJ+1D]12 (-1)2F+1  AZa  qIMiCQA+1)(2J+1)]1/2 i Al C(AIF,aOMp)

C(JAMIqa) C(JIF'.qMjMp,)

[JO+1)]1/2 (-1)2F+H1=J-I+F AZQ [QA+D(J+1)]1/2 { j ~ 1 C(AIF,aOMF)

qZM CCIJA.Mjqa) C(IJF1.MjqMp,).

(Cl-d)
But the last sum is 6A,F 6 a,M D so that

I = [QF+DQRIFDIT+D]2 (-DH+++F {1 F A} C(F IF,Mp,0Mp)

(Cl-e)
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HISTORY: started originally as a memo to E. patterson in august 1989 for the
Xe laser in the falcon program. Recast as a report end of Oct 1989 because
it had grown so large.

1) calculations complete for isotopes with no hyperfine effect

2) need for mass 129 with spin 1/2 and 131 with spin 3/2

3) puzzling feature is the dominance by the transition at 1.73 £. Is this
due to dominance of the laser medium by radiation trapping?

completed 1/31/90
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