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Abstract:

The intermittency ané fractal behavior in e*e” annihilations bas been
studied using the HRS detector at PEP (/s = 29 GeV). The factorial moments
F;(i = 2 ~ 5) in small rapidity intervals show stronger intermittency slopes
than those for the =p, pp, and AA reactions. This direct measurement confirms
our previous data derived from the k-values in the negative binomial fits to
the multiplicity distributions in various central rapidity windows. The
fractal moments G, have been measured for the first time in e*e”
annihilations. The Legendre transform f(a) derived from the fractal moments
show a self-similar behavior which is consistent with the jet cascading

mechanism.
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1. Introduction

The idea of intermittency for the multiparticle production in the high
energy collisions’ has recently generated a considerable enthusiasm in trying
to understand the underlying physics of multiparticle productions at high
energies. The intermittency is defined here as a power-law dependence of
factorial moments Fi on the width of rapidity interval § such that

where the mathematical definitions of F; and & will be given later on. The
word "intermittency" originally came from the field of fluid-dynamics
physies. 1In an isotropie turbulent fluid of a high Reynolds number, an
intermittent structure appears as tube-like regions of a high vorticity
isosurf‘ace.2 Besides the interesting developments in the physics of
turbulence and chaos, it is the notion of phase transition in quark-gluon
plasma3 that motivated the applieation of intermittency to the multiparticle
production in high energy physics. While it is still not clear whether such
phase transition exists or not, there have been data in cosmic ray physics
which suggest a large concentration of particles in narrow rapidity regions at
very high energies.u The factorial moments are suited to study the
fluctuations of particles event-by-event which, averaged over many events,
could be smoothed away. Since there are scaling properties of statistical
system in critical phenomena, the moments are also expected to show an
intermittency in case of a phase transition.? Therefore, the normalized
factorial moments in the small rapidity intervals have recently been measured
in various types of collisions.6 So far, the intermittency is strongest in
e*e” annihilations with a hierarchy of aj(e%e”) > aj(hadron-hadron) >

ai(nucleus-nucleus).

The interpretation of the origin of intermittency seen in some data is
not yet straight forward. Not only does the phase transition lead to a signal
of intermittency, but also other mechanisms such as self-similar interactions
can show an intermittency behavior. The concept of self-similarity is closely
related to a fractal theory7 and is a natural result of cascading mechanism in



the hadronization of quarks and gluons. Therefore, the analysis techniques
developed in the field of fraectals are also useful tools to study the
underlying physics of multiparticle production. At this stage, it is
necessary to approach the intermittency from various angles. More data as
well as closely interplay between theory and experiment are also needed.

In the following sections, I will present data in e*e™ annihilations and
discuss their implications. I apologize in advance tov all authors whose work

I have omitted to mention through my negligence, ignorance, or misplaced

brevity.

2. Detector and Event Selections
2.1 Detector

In this talk we report an intermittency study of the charged particle
multiplicity in e*e” annihilations, using a high statisties data sample
corresponding to a total integrated luminosity of 300 pb'1 obtained with the
High Resolution Spectrometer (HRS)} at PEP. The HRS detector, as shown in Fig.
1, was a solenoidal spectrometer that measured charged particles and
electromagnetic energy over 90% of the solid angle.8 The tracking system
consisted of a vertex chamber, a central drift chamber, and an outer drift
chamber. The central drift chamber had 15 cylindriecal iayers of drift
cells. Eight of the layers had stereo wires (+60 mrad) in order to measure
the z position. The momentum of a 14.5 GeV/c charged particle in the 1.62 T
magnetic field was measured with a resolution of about 3%. A 40-module barrel
shower counter system provided electromagnetic calorimetry over 62% of the
solid angle with energy resolution below 10 GeV of op/E = 0.16//E (E in
GeV). The beam pipe and the inner wall of the central drift chamber were made
of beryllium so as to minimize photon conversions; the total material between
the interaction point and the central drift chamber was less than 0.02

radiation lengths.



2.2 Event Selections

To ensure good tracking efficiency, the thrust axis of the event was
selected to be within 60° of the equatorial plane of the detector, and all
acceptable tracks were required to have an angle with respect to the e*e™ beam
direction (8) of more than 24° and to register in more than one-half of the
drift chamber layers traversed. Isolated tracks were reconstructed with > 99%
efficiency, but for a typical annihilation event, with several close tracks,
the reconstruction efficiency was lower. For 6 > 30° and p > 200 MeV/c, the
track reconstruction efficiency was 80% or better and varies slowly with dip
angle; for the . 3zher momenta, p > 2 GeV/c, this inereased to 90%. In
addition, ~ 7% of the found tracks were not valid. Low momentum tracks were
not well reconstructed for any dip angle because of the high magnetic field of
the spectrometer; a track with p < 2U0 MeV/c spiraled within the central drift

chamber.

The events were selected with the number of acceptable charged tracks
between 5 and 40. Each track had to pass within 3 em in (x,y) radius and 15
cm in z from the interaction point. In addition, the scalar sum of the
charged momenta, plus the energy registered in the barrel shower counter
system, was required to be greater than 12 GeV, with at least 1 GeV in the
shower counter and more than 7.5 GeV/c in charged particle. The invariant
mass of three-prong jets in six-prong events was required to be greater than
the t lepton mass. These cuts, which effectively removed beam-gas
interactions, examples of lepton-pair production, two-photon events, and
cosmic rays, produced a data sample of about 100k events. The events passing
these cuts were mixtures of the two-jet and three-jet topologies. The low
sphericity region (0 < S < 0.25) was dominated by the two-jet events, and
contained 82% of the data sample; the higher sphericity region (0.25 < S < 1)
was strongly enriched in three-jet events. A picture of a two-jet event is
shown in Fig. 2 in the kinematic region with S < 0.25 and A < 0.1, where the
sphericity and aplanarity were determined by the eigenvalues of the momentum

tensor.



3. Factorial Moments

3.1 Rapidity Distributions

A rapidity of each charged particle is calculated by the following

formula:

where E is an energy of a particle assuming it to be a pion and p" is a
momentum projected onto a thrust axis of the event. The rapidity resolution
is calculated to be 0.01, based on the detector resolutions of 2 mrad for a
polar angle resolution, 0.5 mrad for an azimuthal angle resolution, and 0.7%
for a momentum resolution for p < 5 GeV/c. However, since there is an
ambiguity in determining the true jet axis which is the initial quark
direction, a realistic rapidity resolution is estimated to be about 0.1.

The rapidity distribution after detector corrections for the inclusive
data sample is shown in Fig. 3, where only the absolute values of y are
considered. The uncorrected distribution is shown in Fig. 4 for the range of
y = ~5 and y = +5. The narrow valley near y= 0 is due to the definition of a
jet axis. The jet axis is determined by the thrust axis of all charged
particles including a missing momentum vector which balances the total
momentum vector. The broad valley between y = -1.5 and y = +1.5 is mainly
because of the low tracking efficiency of slow particles and tracks near the
beam line. The slight asymmetry between positive and negative rapidities is
due to the direction of the jet axis. In the following analysis, we use

uncorrected variables.

3.2 Azimuthal Angle Distribution

An azimuthal angle (¢) of each charged track with respect to the beam
axis is caleulated. This should be distinguished from the azimuthal angle
with respect to the jet axis. Although ¢'s in each event are clustered in
narrow phase space regions due to the jet structure of events, the averaged
distribution over many events is expected to be flat as shown in Fig. 5. This



variable is well suited for the technical study of intermittency and fractal
theories because it is invariant under Lorentz transformations, its
distribution is quite flat thus eliminating the need for detector corrections,
and it is easy to visualize the intermittent structure in terms of narrowly

collimated jets.

3.3 Normalized Factorial Moments

A rapidity interval of total length Y, is divided into M equal intervals
of length 8y = Y, /M. A normalized ith factorial moment is defined as follows:

ko (km -1 ... (km -1i+1)
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where k; is the number of particles in the ot bin of length &y with 1 < m <
M, N is the total number of particles in the rapidity interval of Y. thus N =
kq + k2 + ... + ky, and < > means the average is taken over all events.

The rapidity range is selected to be between y = -2 and y = +2 and the
maximum number of divisions is Y40, which corresponds to the minimum bin size
of 8y = 0.1. Resulting factorial moments F; (i = 2 ~ 5) are shown in Fig. 6,
where the abscissa is -ané8y and the ordinate is ani. The error bars are
statistical only. The slopes (aj) of &nF; in the small &y region (typically
-endy > 0.5) are listed in Table 1. These results are consistent with the
recent TASSO data? and the slopes in e*e” annihilations are larger than those
in hadron-hadron (hh) and nucleus-nucleus (AA) collisions. Figure 7 and 8
show similar plots for the full rapidity range of Y, = 10 and for the 2-jet

sample, respectively.

An azimuthal angle interval of total length ¢, is also studied in a
similar way. The factorial moments with ¢, = 2n are shown in Fig. 9 where the
abscissa is the number of divisions and the ordinate is the averaged factorial
moments both in log scales. There are definite linear relationships for all
F; in log-log plot in the region of M > 10 reflecting the intermittent
behavior of jet events. Figure 10 is for the 2-jet sample and the slopes are
larger than those for the inclusive sample. This is explained by the 2-jet
structure of events which is narrowly collimated and back-to-back.



3.4 Factorial Moments at Fixed Rapidity Values

Indirect values of F2 and F3 in e*e” annihilations have been calculated'o

using the k-values from the negative binomial fit to the multiplicity
distributions in various rapidity windows. 1 In order to compare these values

with the direct measurement, we use a slightly different normalization of

factorial moments:

<nfn-1) ... n -1+ 1)>
i

<F, > =
1 <n?>

2

where n is the number of charged particles in a bin of size &y at a fixed

rapidity value and < > denotes an average over all events.

The factorial moments at y = 0 for the inclusive sample are plotted in
Fig. 11, together with those from k's in negative binomial fits. The
agreement between the calculated values and the direct measurements is
generally good, although the statistical errors of the direct measurements in
the small &8y region are large due to the lack of "horizontal” averaging. The
factorial moments at different y's (y center = 0.5 and 1) are shown in Fig. 12
and Fig. 13. It is intriguing that the moments differ somewhat according to
the positions in rapidity space. Some theories predict different moments at
different rapidity points. However, the statistical errors are large and it
could be due to che nonuniformity of the rapidity distribution. A similar
trend is observed in the data for the 2-jet sample as shown in Figs. 14, 15,
and 16.

4.  Fractal Moments
4.1 Dpefinition of Multifractal Moments

A rapidity range of Y, is divided into M, bins of width & = Y /M, and let
k; be the number of particles in the i®™ bin. Since there may be bins that
have no particles, we define M to be the number of non-empty bins, which
constitute a fractal set.

A multifractal moment is defined as fbllows'e:



where Py = kJ/n with n = ky + ky + ... + ky, q is a real number, and the
summation is carried over non-empty binslonly. If the particle production
process exhibits self-similar behavior, the moments show a power law relation
of Gq « (@) This relation does not necessarily oécur in the limit of & +
0. Once t(g) is determined from Gq, we can apply the theory of multifractals
to calculate f(a) by Legendre transform:

a = dz(q)
q dg

fla) = quq - q) .

4,2 Multifractal Moments in ¢ Space

We start with a study of multifractal moments in azimuthal angles with
respect to the beam axis because it is easier to interpret the results in
terms of multijet structure. The multifractal moments with the full ¢ range

(¢
o
(Mo 2V) and the ordinate is an average of zan over all events. The moments

with positive g-values show a linearity over a wide range in v, but those with

2%) are shown in Fig. 17, where the abscissa is the number of divisions

negative g-values tend to saturate as v becomes larger. In calculating the
slope with the following formula

1 denG

R q
wq) = wn2 dv

we used the first two points in v, i.e., M, = 2 and 3. The 1(q) averaged over
all events is plotted as a function of q in Fig. 18, and the Legendre
transform f(a) is shown in Fig. 19. The left-hand side of the f(a) curve (g >
0) is sensitive to the peaks in the ¢ distribution and the right-hand side (q
< 0) to the valleys. The broad width of the curve means that the particles
are tightly bunched together in the ¢ space and there is wide space between
the bunches for almost every event as expected with the jet structure of



events. Th's can be compared to the narrow delta function at a« = 1 which is

the result of a constant distribution for arbitrary small s§.

The Gq, 1(g), and f(a) for the 2-jet sample are shown in Figs. 20, 21,
and 22, respectively. The f{a) is even wider reflecting the back-to-back
narrow jets. If the ¢, is restricted in a smaller range (¢, = v), the
multifractal moments become smaller as shown in Fig. 23 and the 1(g) gets
flatter as shown in Fig. 24. The f(a) shown in Fig. 25 shifts to the smaller
a and the width becomes narrower. These tendencies can be understood in terms
of the size of phase space. The smaller the ¢, range is, the finer is the
structure in the region investigated for the given number of divisions.
Figures 26, 27, and 28 are respectively the Gq, 7(q), and f(a) for the Lund
Monte Carlo events (JETSET 5.3)13 after detector simulation. The left-hand
side of f(a) in Fig. 28 agrees well with the data in Fig. 19, but there are
some discrepancies with the right-hand side., This can be attributed to the
lack of fine tuning of the Lund model in the region between jets where

coherence effects show up.

4.3 Multifractal Morents in y Space

The multifractal moment in the rapidity space is a powerful tool to study
the self-similarity in the hadronization mechanism in jJets. If quarks and
gluons become jets of particles through a cascading process, then the
particles inside a jJet should show a self-similar behavior due to its fractal
structure of the tree-branching. Furthermore, the f(a) is sensitive to the
models of various parton branchings. The multifractal moments for the
inclusive data sample with the rapidity range between y = -2 and v = +2 are
shown in Fig. 29, where the abscissa is -#ndy and the ordinate is an average
of zan over all events. All the moments show a saturating behavior in the
large -2n8y region. The slopes are calculated using the first two points (-
indy = -0.693 and -0.288) with a formula;

(q) = A< 1an >/A2nsy

|

The 1(q) is shown in Fig. 30 as a funetion of q. The curve flattens for the
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positive g-values, which is a feature of a gluon model compared to a ¢3
model.“l The Legendre transform f(a) is plotted in Fig. 31. Compared to the
f(a) in the ¢ space in Fig. 19, the curve in the y space is narrower and the
peak position is shifted to the smaller a-values. The tangential position (q
= 1) remains almost the same. The generalized dimensions Dq = t(q)/(g - 1)
are derived and listed in Takle 1. The end points of the curve (q = #=) seem
to be all positive, which can be interpreted as "no phase transition" in the

u—model.15

4 different averaging technique for Gq has also been tried. The Gq's,

instead of 2an's, were averaged arithmetically over all events and then a
logarithm was taken. The difference is that the previous < &n Gq >is a
logarithm of a geometrical average of Gq while this gn « Gq > is a logarithm
of an arithmetic average of Gq. The 2n< Gq > moments are shown in Fig. 32.
As expected, the arithmetic average is always larger than the geometric
average. The tendency of saturation is similar. The t(q) p.otted in Fig. 33
show a stronger flattening for q > 1. Consequently, the f(a) is wider as

shown in Fig. 34.

Figures 35, 36, and 37 are respectively the multifractal moments (< %n Gq >),
1(a), and f(a) for the 2-jet sample with a rapidity window of Y, = 4.
Different rapidity windows have been tried for the inclusive data szmple. The
multifractal moments with Yo = 2, shown in Fig. 38, become smaller than those
with Y, = 4 and as a result, the t(q) saown in Fig. 39 is flatter. The f{a)
curve, shown in Fig. 40, shifts to the left and the width is much narrower.
This can be explained in a similar manner as the previous case of ¢, = n. The
multifractal moments with Y, = 10 are shown in Fig. 41, where some strucktures
appear near -2n8y = -1. This is due to the rapidity distribution which has a
steep fall-off beyond |y| > 2. The 1(q) is calculated using the first two
points of the moments as before, although it is no longer the steepest slope
for q¢ > 0. The resulting t(q) and f(a) are shown in Fig. 42 and Fig. 43,
respectively. The general feature of the unusually wide f(a) curve can be
explained by the rapidity distribution. The edges of the rapidity
distribution contribute to the moments in both positive and negative g-values,
thus widening both sides of the f(e) curve. Therefore, a caution should be
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exercised when a strongly nonuniform portion of an averaged distribution is

selected for an initial window in studying its multifractal structure.

Finally, the Lund Monte Carlo events, after detector simulation, are
compared to the data. The multifractal moments with Yo = 4 for the inclusive
sample are shown in Fig. U4l4. The agreement with the data shown in Fig. 29 is
almost perfect. A slight difference can be seen in the 1(a)} plot shown in
Fig. 46. The f(a) is the best among the three plots to see the differences as
well as the general features. The left-hand side of f{a) is in almost perfect
agreement with the data shown in Fig. 31. This means thet the Lund Monte
Carlo is already well-tuned even in terms of fluctuation of particle
multiplicities. The right-hand side of f(a) is slightly wider than the data,
indicating again that the tuning of the model is not perfect in the region

between jets where coherence effects are important.

5. Summary and Conclusions

The intermittency and fractal behavior in e*e” annihilations at 29 GeV
has been studied. The normalized factorial moments in tke rapidity space show
a power law relation in the region of small rapidity intervals which is called
intermittency phenomena. The slopes of the ith factorial moments F; in the
enF; - inéy plane are measured with the same normalization formula as the
TASSO group used. The results are consistent with each other. The slope a;
increases as the index i becomes larger. Comparing the data of ag for various
types of collisions such as e*e™, =*p, Pp, and SS, there is a hierarchy of
ai(e+e’) > ai(hh) > ai(AA), where hh is a hadron-hadron collision and 44 a
nucleus-nucleus collision. The normalized factorial moments in the azimuthal
angle space with respect to the beam axis show even stronger behavior of
intermittency. This is explained by the jet structure of events.

The factorial moments at fixed rapidity positions have been measured with
a slightly different normalization formula. They are consistent with the F,
and F3 calculated from the k-values in the negative binmomial fits to the
multiplicity distributions in various rapidity windows. Although the
statistics is limited due to a lack of horizontal averaging, there is a hint



12

that F; changes according to the position in the rapidity distribution. The

effects of various detector corrections are under investigation.

The multifractal moments Gq have been measured for the first time. The
slope 1(q) and the Legendre transform f(a) are calculated. This new approach
reveals the fractal structure of the multipartiecle production. If quarks and
gluons become jets of particles through a cascading process, the particles
inside a jet should show a self-similar behavior which leads to a fractal
structure. The results are consistent with this interpretation of jet

formations, although there are still other models that can explain the data.

The azimuthal angle with respect to the beam axis is a convenient measure
for developing various analysis techniques of models. Since each e*e™ event
has a distinct structure of clustered multi-jets, the general feature of
moments can be interpreted visually in terms of spatial distributions of
particles in jets. The flatness of the azimuthal angle distribution averaged
over all events eliminztes the need for detector corrections such as

acceptance and tracking efficiency.

The multifractal moments in the rapidity space are sensitive fo the
underlying physics of the hadronization of quarks and gluons into jets of
particles. The f{e) in the rapidity range y = -2 and y = +2 show a peak at «
= 0.81 * 0.02 with a fractal dimension of D, = 0.75 + 0.04. The width of the
curve is narrower than the prediction by a gluon model at very high energies
but definitely wider than that by a ¢3 model. Other higher generalized
dimensions have also been derived and give further information on the dynamics
of particle production mechanisms. The data with smaller rapidity range (¥, =
2) and full rapidity range (Yo = 10) zre consistent with the expectations
based on’ the rapidity distribution. The Lund Monte Carlo events after
detector simulation agree very well with the data in the q > 0 range, but
differ slightly in the q < 0 range. This indicates that the fluctuation of
particles inside a jet is well tuned in the Lund model (JETSET 5.3) but not
yet in the valley regions between jets where coherence effects show up.
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Table Captions

The intermittency slopes (a;) of the -2n8y vs. #nF; plot in the small &y
region (-&nsy > 0.5}.

The generalized dimensions D, = 1(q)/{(q - 1) of fractal moments for the

q
rapidity range hetween y = -2 and y = +2.
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Table 1
Flat Rapidity Region Full Rapidity Region
aj YO =4 Yo = 10
as 0.021 = 0.002 0.025 * 0.003 _
as 0.063 + 0.009 0.073 £ 0.010
ay 0.202 £ 0.080 0.245 + 0,100
ag 0.469 £ 0.250 0.623 + 0.340
Table 2
Dq Name ete™ data for Y, = 4
Dy = f(ao) fractal dimension 0.75 £ 0.04
Dy = ay - f(a1) information dimension 0.70 £ 0.03
Dy = 205 - f(“z) correlation dimension 0.65 + 0,03
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Figure Captions

The HRS detector.
The 2-jet event seen from the beam line.

The rapidity distribution (]y}) of charged particles for the inclusive
data sample after detector corrections such as acceptance and tracking

efficiency.

The rapidity distribution (y) without detector corrections. The narrow
valley near y = 0 is due to the definition of the jet axis. The jet axis
was determined by the thrust axis of all charged particles including a
missing momentum vector which balances the total momentum vector. The
broad valley between y = -1.5 and y = +1.5 is mainly due to the low
tracking efficiency of slow particles and tracks near the beam line.

The azimuthal distribution (¢) of charged particles for the inclusive

sample. The ¢ is with respect to the beam axis.

The normalized factorial moments (Fi) of charged particles in the
rapidity range between y = -2 and y = +2 for the inclusive sample. The
definition of the factorial moments are described in the text. The
abscissa is -enéy, where 8y is a rapidity window Y /M (M = 1, 2, 3, ...,
40).

The factorial moments for the inclusive sample in the full rapidity

range.

The factorial moments for the 2-jet sample. The cuts for the 2-jets are
S < 0.25 and A < 0.1, where S is a spherieity and A4 is an aplanarity.

The normalized factorial moments of charged particles in the full
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azimuthal angle range between ¢ = 0 and ¢ = 2n. The abscissa is the

number of divisions of bg-

The factorial moments in the ¢ space for the 2-jet sample.

The normalized factorial moments at the rapidity center of y = 0 (without
horizontal averaging) averaged over all events for the inclusive

sample. The normalization factor is described in the text. Superimposed

are the data derived from the k-values in negative binromial fits to the

distributions in various rapidity windows.

The factorial moments at y = 0.5 for the inclusive sample.
The factorial moments at y = 1 for the inclusive sample.
The factorial moments at y = 0 for the 2-jet sample.

The factorial moments at y = 0.5 for the 2-jet sample.

The factorial moments at y = 1 for the 2-jet sample.

The fractal moments (Gq) of charged particles in the azimuthal angle
range between ¢ = 0 and ¢ = 2n for the inclusive sample. The definition
of the fractal moments is described in the text. The abseissa is the

number of divisions M = 2V,

The slopes t(q) between M = 2 and M = 3 of the fractal moments for

various g-values.

The spectrum f(a) of a for the fractal moments in é. f(a) and a are

Legendre transforms described in the text.

The fractal moments in the ¢ space for the 2-jet sample.
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The t(q) for the 2-jet sample.
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f(a) in the reduced y range for the inclusive sample.
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fractal moments in the rapidity range between y = -2 and y = +2 for
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