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Abstract:

The intermitteney and fractal behavior in e+e~ annihilations has been

studied using the HRS detector at PEP (/s = 29 GeV). The factorial moments

F^(i = 2 - 5 ) in small rapidity intervals show stronger intermitteney slopes

than those for the irp, pp, and AA reactions. This direct measurement confirms

our previous data derived from the k-values in the negative binomial fits to

the multiplicity distributions in various central rapidity windows. The

fractal moments G have been measured for the first time in e+e"

annihilations. The Legendre transform f(a) derived from the fractal moments

show a self-similar behavior which is consistent with the jet cascading

mechanism.
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1. Introduction

The idea of Intermittency for the multiparticle production in the high

energy collisions has recently generated a considerable enthusiasm in trying

to understand the underlying physics of multiparticle productions at high

energies. The intermittency is defined here as a power-law dependence of

factorial moments Fj on the width of rapidity interval S such that

-a.

where the mathematical definitions of F^ and 6 will be given later or. The

word "intermittency" originally came from the field of fluid-dynamics

physics. In an isotropic turbulent fluid of a high Reynolds number, an

intermittent structure appears as tube-like regions of a high vorticity

isosurface. Besides the interesting developments in the physics of

turbulence and chaos, it is the notion of phase transition in quark-gluon

plasma^ that motivated the application of intermittency to the multiparticle

production in high energy physics. While it is still not clear whether such

phase transition exists or not, there have been data in cosmic ray physics

which suggest a large concentration of particles in narrow rapidity regions at

very high energies. The factorial moments are suited to study the

fluctuations of particles event-by-event which, averaged over many events,

could be smoothed away. Since there are scaling properties of statistical

system in critical phenomena, the moments are also expected to show an

intermittency in case of a phase transition.-' Therefore, the normalized

factorial moments in the small rapidity intervals have recently been measured

in various types of collisions.^ So far, the intermittency is strongest in

e+e" annihilations with a hierarchy of ai(e
+e~) > a^Chadron-hadron) >

a^nucleus-nucleus).

The interpretation of the origin of intermittency seen in some data is

not yet straight forward.. Not only does the phase transition lead to a signal

of intermittency, but also other mechanisms such as self-similar interactions

can show an intermittency behavior. The concept of self-similarity is closely

related to a fractal theory^ and is a natural result of cascading mechanism in



the hadronization of quarks and gluons. Therefore, the analysis techniques

developed in the field of fractals are also useful tools to study the

underlying physics of multiparticle production. At this stage, it is

necessary to approach the intermittency from various angles. More data as

well as closely interplay between theory and experiment are also needed.

In the following sections, I will present data in e+e" annihilations and

discuss their implications. I apologize in advance to all authors whose work

I have omitted to mention through my negligence, ignorance, or misplaced

brevity.

2. Detector and Event Selections

2.1 Detector

In this talk we report an intermittency study of the charged particle

multiplicity in e+e" annihilations, using a high statistics data sample

corresponding to a total integrated luminosity of 300 pb"1 obtained with the

High Resolution Spectrometer (HRS) at PEP. The HRS detector, as shown in Fig.

1, was a solenoidal spectrometer that measured charged particles and

electromagnetic energy over 90% of the solid angle. The tracking system

consisted of a vertex chamber, a central drift chamber, and an outer drift

chamber. The central drift chamber had 15 cylindrical layers of drift

cells. Eight of the layers had stereo wires (±60 mrad) in order to measure

the z position. The momentum of a 14.5 GeV/c charged particle in the 1.62 T

magnetic field was measured with a resolution of about 3%. A 40-module barrel

shower counter system provided electromagnetic calorimetry over 62% of the

solid angle with energy resolution below 10 GeV of a£/E = 0.16//E (E in

GeV). The beam pipe and the inner wall of the central drift chamber were made

of beryllium so as to minimize photon conversions; the total material between

the interaction point and the central drift chamber was less than 0.02

radiation lengths.



2.2 Event Selections

To ensure good tracking efficiency, the thrust axis of the event was

selected to be within 60° of the equatorial plane of the detector, and all

acceptable tracks were required to have an angle with respect to the e+e~ beam

direction (8) of more than 24° and to register in more than one-half of the

drift chamber layers traversed. Isolated tracks were reconstructed with > 99?

efficiency, but for a typical annihilation event, with several close tracks,

the reconstruction efficiency was lower. For e > 30° and p > 200 MeV/c, the

track reconstruction efficiency was 80/5 or better and varies slowly with dip

angle; for the : ?her momenta, p > 2 GeV/c, this increased to 90jS. In

addition, ~ 7% of the found tracks were not valid. Low momentum tracks were

not well reconstructed for any dip angle because of the high magnetic field of

the spectrometer; a track with p < 240 MeV/c spiraled within the central drift

chamber.

The events were selected with the number of acceptable charged tracks

between 5 and 40. Each track had to pass within 3 cm in (x,y) radius and 15

cm in z from the interaction point. In addition, the scalar sum of the

charged momenta, plus the energy registered in the barrel shower counter

system, was required to be greater than 12 GeV, with at least 1 GeV in the

shower counter and more than 7.5 GeV/c in charged particle. The invariant

mass of three-prong jets in six-prong events was required to be gi-eater than

the T lepton mass. These cuts, which effectively removed beam-gas

interactions, examples of lepton-pair production, two-photon events, and

cosmic rays, produced a data sample of about 100k events. The events passing

these cuts were mixtures of the two-jet and three-jet topologies. The low

sphericity region (0 < S < 0.25) was dominated by the two-Jet events, and

contained 82^ of the data sample; the higher sphericity region (0.25 < S < 1)

was strongly enriched in three-jet events. A picture of a two-jet event is

shown in Fig. 2 in the kinematic region with S < 0.25 and A < 0.1, where the

sphericity and aplanarity were determined by the eigenvalues of the momentum

tensor.



3. Factorial Moments

3-1 Rapidity Distributions

A rapidity of each charged particle is calculated by the following

formula:

where E is an energy of a particle assuming it to be a pion and p is a

momentum projected onto a thrust axis of the event. The rapidity resolution

is calculated to be 0.01, based on the detector resolutions of 2 mrad for a

polar angle resolution, 0.5 mrad for an azimuthal angle resolution, and 0.7%

for a momentum resolution for p < 5 GeV/c. However, since there is an

ambiguity in determining the true jet axis which is the initial quark

direction, a realistic rapidity resolution is estimated to be about 0.1.

The rapidity distribution after detector corrections for the inclusive

data sample is shown in Fig. 3, where only the absolute values of y are

considered. The uncorrected distribution is shown in Fig. 4 for the range of

y = -5 and y = +5. The narrow valley near y= 0 is due to the definition of a

jet axis. The jet axis is determined by the thrust axis of all charged

particles including a missing momentum vector which balances the total

momentum vector. The broad valley between y = -1.5 and y = + 1.5 is mainly

because of the low tracking efficiency of slow particles and tracks near the

beam line. The slight asymmetry between positive and negative rapidities is

due to the direction of the jet axis. In the following analysis, we use

uncorrected variables.

3.2 Azimuthal Angle Distribution

An azimuthal angle (<t>) of each charged track with respect to the beam

axis is calculated. This should be distinguished from the azimuthal angle

with respect to the jet axis. Although *'?; in each event are clustered in

narrow phase space regions due to the jet structure of events, the averaged

distribution over many events is expected to be flat as shown in Fig. 5. This



variable is well suited for the technical study of intermittency and fractal

theories because it is invariant under Lorentz transformations, its

distribution is quite flat thus eliminating the need for detector corrections,

and it is easy to visualize the intermittent structure in terms of narrowly

collimated jets.

3.3 Normalized Factorial Moments

A rapidity interval of total length YQ is divided into M equal intervals

of length 6y = YQ/M. A normalized i factorial moment is defined as follows:

F <1
1 " * MM J.^ N(N - 1) ... (N - i + 1) M y '

where kj,, is the number of particles in the m bin of length fiy with 1 < m <

M, N is the total number of particles in the rapidity interval of YQ, thus N =

k.] + kg + ... + kM, and < > means the average is taken over all events.

The rapidity range is selected to be between y = -2 and y = +2 and the

maximum number of divisions is 40, which corresponds to the minimum bin size

of 6y = 0.1. Resulting factorial moments F^ {i = 2 ~ 5) are shown in Fig. 6,

where the abscissa is -an6y and the ordinate is UnF-. The error bars are

statistical only. The slopes (a^ of anFj in the small 6y region (typically

-ln5y > 0.5) are listed in Table 1. These results are consistent with the

recent TASSO data' and the slopes in e e annihilations are larger than those

in hadron-hadron (hh) and nucleus-nucleus (AA) collisions. Figure 7 and 8

show similar plots for the full rapidity range of YQ = 10 and for the 2-jet

sample, respectively.

An azimuthal angle interval of total length $o is also studied in a

similar way. The factorial moments with <bQ = 2ir are shown in Fig. 9 where the

abscissa is the number of divisions and the ordinate is the averaged factorial

moments both in log scales. There are definite linear relationships for all

F: in log-log plot in the region of M > 10 reflecting the intermittent

behavior of jet events. Figure 10 is for the 2-jet sample and the slopes are

larger than those for the inclusive sample. This is explained by the 2-jet

structure of events which is narrowly collimated and baek-to-back.



3.4 Factorial Moments at Fixed Rapidity Values

Indirect values of F2 and F? in e
+e" annihilations have been calculated10

using the k-values from the negative binomial fit to the multiplicity

distributions in various rapidity windows. In order to compare these values

with the direct measurement, we use a slightly different normalization of

factorial moments:

. „ . < n(n - 1) ... (n - i + 1) >
< F > = r ,

1 < n >

where n is the number of charged particles in a bin of size 6y at a fixed

rapidity value and < > denotes an average over all events.

The factorial moments at y = 0 for the inclusive sample are plotted in

Fig. 11, together with those from k's in negative binomial fits. The

agreement between the calculated values and the direct measurements is

generally good, although the statistical errors of the direct measurements in

the small 6y region are large due to the lack of "horizontal" averaging. The

factorial moments at different y's (y center = 0.5 and 1) are shown in Fig. 12

and Fig. 13. It is intriguing that the moments differ somewhat according to

the positions in rapidity space. Some theories predict different moments at

different rapidity points. However, the statistical errors are large and it

could be due to che nonuniformity of the rapidity distribution. A similar

trend is observed in the data for the 2-jet sample as shown in Figs. 14, 15,

and 16.

4. Fractal Moments

4.1 Definition of Multifractal Moments

A rapidity range of YQ is divided into MQ bins of width & - Yo/Mo and let

k^ be the number of particles in the i bin. Since there may be bins that

have no particles, we define M to be the number of non-empty bins, which

constitute a fractal set.

A multifractal moment is defined as follows .



where pj = kj/n with n = k1 + k2 + ... + kM, q is a real number, and the

summation is carried over non-empty bins only. If the particle production

process exhibits self-similar behavior, the moments show a power law relation

of G = 6 T ^ . This relation does not necessarily occur in the limit of 8 +

0. Once -r(q) is determined from G_, we can apply the theory of multifractals

to calculate f(a) by Legendre transform:

q dq

f(o) = qa - T(q) .

4.2 Multifractal Moments in 4> Space

We start with a study of multifractal moments in azimuthal angles with

respect to the beam axis because it is easier to interpret the results in

terms of multijet structure. The multifractal moments with the full 4> range

(4>o = 2ir) are shown in Fig. 17, where the abscissa is the number of divisions

(MQ - 2
V) and the ordinate is an average of anG over all events. The moments

with positive q-values show a linearity over a wide range in v, but those with

negative q-values tend to saturate as v becomes larger. In calculating the

slope with the following formula

we used the first two points in v, i.e., M o = 2 and 3. The x(q) averaged over

all events is plotted as a function of q in Fig. 18, and the Legendre

transform f(a) is shown in Fig. 19- The left-hand side of the f(ct) curve (q >

0) is sensitive to the peaks in the <j> distribution and the right-hand side (q

< 0) to the valleys. The broad width of the curve means that the particles

are tightly bunched together in the $ space and there is wide space between

the bunches for almost every gvent as expected with the jet structure of



events. Th-'s can be compared to the narrow delta function at a = 1 which is

the result of a constant distribution for arbitrary small 6.

The G , x(q), and f(a) for the 2-jet sample are shown in Figs. 20, 21,

and 22, respectively. The f(a) is even wider reflecting the back-to-baek

narrow jets. If the ij>0 is restricted in a smaller range (<|>0 = TT), the

multifractal moments become smaller as shown in Fig. 23 and the -r(q) gets

flatter as shown in Fig. 2H. The f(a) shown in Fig. 25 shifts to the smaller

a and the width becomes narrower. These tendencies can be understood in terms

of the size of phase space. The smaller the $ 0 range is, the finer is the

structure in the region investigated for the given number of divisions.

Figures 26, 27, and 28 are respectively the G_, T(q), and f(a) for the Lund

Monte Carlo events (JETSET 5.3)1^ after detector simulation. The left-hand

side of f{a) in Fig. 28 agrees well with the data in Fig. 19, but there are

some discrepancies with the right-hand side. This can be attributed to the

lack of fine tuning of the Lund model in the region between jets where

coherence effects show up.

4.3 Multifractal Mounts in y Space

The multifractal moment in the rapidity space is a powerful tool to study

the self-similarity in the hadronizatj.on mechanism in jets. If quarks and

gluons become jets of particles through a cascading process, then the

particles inside a jet should show a self-similar behavior due to its fractal

structure of the tree-branching. Furthermore, the f(o) is sensitive to the

models of various parton branchings. The multifractal moments for the

inclusive data sample with the rapidity range between y = -2 and y = +2 are

shown in Fig. 29, where the abscissa is -ftnfiy and the ordinate is an average

of JlnG over all events. All the moments show a saturating behavior in the

large -ln5y region. The slopes are calculated using the first two points (-

= -0.693 and -0.288) with a formula;

•c(q) = A< inG >/Ain«y .

The t(q) is shown in Fig. 30 as a fun tion of q. The curve flattens for the
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positive q-values, which is a feature of a gluon model compared to a <t>̂

model. The Legendre transform f(a) is plotted in Fig. 31. Compared to the

f(a) in the $ space in Fig. 19, the curve in the y space is narrower and the

peak position is shifted to the smaller o-values. The tangential position (q

= 1) remains almost the same. The generalized dimensions D = t(q)/(q - 1)

are derived and listed in Table 1. The end points of the curve (q = ±°>) seem

to be all positive, which can be interpreted as "no phase transition" in the

a-model. ^

A different averaging technique for Gq has also been tried. The G _'s,

instead of fcnG 's, were averaged arithmetically over all events and then a

logarithm was taken. The difference is that the previous < in G > is a

logarithm of a geometrical average of G while this in < G > is a logarithm

of an arithmetic average of Gq. The Hn< Gq > moments are shown in Fig. 32.

As expected, the arithmetic average is always larger than the geometric

average. The tendency of saturation is similar. The t(q) plotted in Fig. 33

show a stronger flattening for q > 1. Consequently, the f(cc) is wider as

shown in Fig. 34.

Figures 35, 36, and 37 are respectively the multifractal moments (< in G >),

T(O), and f(a) for the 2-jet sample with a rapidity window of YQ = 4.

Different rapidity windows have been tried for the inclusive data sample. The

multifractal moments with Yo = 2, shown in Fig. 38, become smaller than those

with Yo = 4 and as a result, the x(q) shown in Fig. 39 is flatter. The f(a)

curve, shown in Fig. 40, shifts to the left and the width is much narrower.

This can be explained in a similar manner as the previous case of <t>o = it. The

multifractal moments with YQ = 10 are shown in Fig. 41, where some structures

appear near -ilnsy = -1. This is due to the rapidity distribution which has a

steep fall-off beyond |y| > 2. The -r(q) is calculated using the first two

points of the moments as before, although it is no longer the steepest slope

for q > 0. The resulting t(q) and f(a) are shown in Fig. 42 and Fig. 43,

respectively. The general feature of the unusually wide f(a) curve can be

explained by the rapidity distribution. The edges of the rapidity

distribution contribute to the moments in both positive and negative q-values,

thus widening both sides of the f(«) curve. Therefore, a caution should be
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exercised when a strongly nonuniform portion of an averaged distribution is

selected for an initial window in studying its multifractal structure.

Finally, the Lund Monte Carlo events, after detector simulation, are

compared to the data. The multifractal moments with YQ = 4 for the inclusive

sample are shown in Fig. 44. The agreement with the data shown in Fig. 29 is

almost perfect. A slight difference can be seen in the T(CX) plot shown in

Fig. 46. The f(ce) is the best among the three plots to see the differences as

well as the general features. The left-hand side of f(a) is in almost perfect

agreement with the data shown in Fig. 31. This means that the Lund Monte

Carlo is already well-tuned even in terms of fluctuation of particle

multiplicities. The right-hand side of f(a) is slightly wider than the data,

indicating again that the tuning of the model is not perfect in the region

between jets where coherence effects are important.

5. Summary and Conclusions

The intermittency and fractal behavior in e+e~ annihilations at 29 GeV

has been studied. The normalized factorial moments in the rapidity space show

a power law relation in the region of small rapidity intervals which is called

intermittency phenomena. The slopes of the i™1 factorial moments F^ in the

anF^ - an5y plane are measured with the same normalization formula as the

TASSO group used. The results are consistent with each other. The slope a^

increases as the index i becomes larger. Comparing the data of ac for various

types of collisions such as e+e~, u+p, pp, and SS, there is a hierarchy of

a^(.e+e~) > a^hh) > ai(AA), where hh is a hadron-hadron collision and AA a

nucleus-nucleus collision. The normalized factorial moments in the a2imuthal

angle space with respect to the beam axis show even stronger behavior of

intermittency. This is explained by the jet structure of events.

The factorial moments at fixed rapidity positions have been measured with

a slightly different normalization formula. They are consistent with the F2

and F^ calculated from the k-values in the negative binomial fits to the

multiplicity distributions in various rapidity windows. Although the

statistics is limited due to a lack of horizontal averaging, there is a hint
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that F^ changes according to the position in the rapidity distribution. The

effects of various detector corrections are under investigation.

The multifractal moments G have been measured for the first time. The

slope i(q) and the Legendre transform f(o) are calculated. This new approach

reveals the fractal structure of the multiparticle production. If quarks and

gluons become jets of particles through a cascading process, the particles

inside a jet should show a self-similar behavior which leads to a fractal

structure. The results are consistent with this interpretation of jet

formations, although there are still other models that can explain the data.

The azimuthal angle with respect to the beam axis is a convenient measure

for developing various analysis techniques of models. Since each e+e~ event

has a distinct structure of clustered multi-jets, the general feature of

moments can be interpreted visually in terms of spatial distributions of

particles in jets. The flatness of the azimuthal angle distribution averaged

over all events eliminates the need for detector corrections such as

acceptance and tracking efficiency.

The multifractal moments in the rapidity space are sensitive to the

underlying physics of the hadronization of quarks and gluons into jets of

particles. The f(a) in the rapidity range y = -2 and y = +2 show a peak at a

= 0.81 ± 0.02 with a fractal dimension of DQ = 0.75 ± 0.04. The width of the

curve is narrower than the prediction by a gluon model at very high energies

but definitely wider than that by a <t>3 model. Other higher generalized

dimensions have also been derived and give further information on the dynamics

of particle production mechanisms. The data with smaller rapidity range (Y =

2) and full rapidity range (Yo = 10) are consistent with the expectations

based on the rapidity distribution. The Lund Monte Carlo events after

detector simulation agree very well with the data in the q > 0 range, but

differ slightly in the q < 0 range. This indicates that the fluctuation of

particles inside a jet is well tuned in the Lund model (JETSET 5.3) but not

yet in the valley regions between jets where coherence effects show up.
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Table Captions

1. The intermittency slopes (a^) of the -2n5y vs. fcnF^ plot in the small 6y

region (-fcnSy > 0.5).

2. The generalized dimensions D = x(q)/(q - 1) of fractal moments for the

rapidity range between y = -2 and y = +2.
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Table 1

Flat Rapidity Region Full Rapidity Region

0.021 + 0.002 0.025 ± 0.003
0.063 ± 0.009 0.073 ± 0.010
0.202+0.080 0.245+0.100
0.469 ± 0.250 0.623 ± 0.340

Table 2

Dq Name e+e" data for YQ - 4

Do = f(aQ) fractal dimension 0.75 ± 0.04

D1 = o1 - £(a.y) information dimension 0.70 + 0.03

Do = 2oo - f(ap) correlation dimension 0.65 ± 0.03
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Figure Captions

1. The HRS detector.

2. The 2-jet event seen from the beam line.

3. The rapidity distribution (|y|) of charged particles for the inclusive

data sample after detector corrections such as acceptance and tracking

efficiency.

4. The rapidity distribution (y) without detector corrections. The narrow

valley near y = 0 is due to the definition of the jet axis. The jet axis

was determined by the thrust axis of all charged particles including a

missing momentum vector which balances the total momentum vector. The

broad valley between y = -1.5 and y = +1.5 is mainly due to the low

tracking efficiency of slow particles and tracks near the beam line.

5. The azimuthal distribution (<j>) of charged particles for the inclusive

sample. The $ is with respect to the beam axis.

6. The normalized factorial moments (Fj) of charged particles in the

rapidity range between y = -2 and y = +2 for the inclusive sample. The

definition of the factorial moments are described in the text. The

abscissa is -inSy, where 6y is a rapidity window YQ/M (M = 1, 2, 3, ,

40).

7. The factorial moments for the inclusive sample in the full rapidity

range.

8. The factorial moments for the 2-jet sample. The cuts for the 2-jets are

S < 0.25 and A < 0.1, where S is a sphericity and A is an aplanarity.

9. The normalized factorial moments of charged particles in the full
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azimuthal angle range between $ = 0 and $ = 2ir. The abscissa is the

number of divisions of $Q.

10. The factorial moments in the $ space for the 2-jet sample.

11. The normalized factorial moments at the rapidity center of y = 0 (without

horizontal averaging) averaged over all events for the inclusive

sample. The normalization factor is described in the text. Superimposed

are the data derived from the k-values in negative binomial fits to the

distributions in various rapidity windows.

12. The factorial moments at y = 0.5 for the inclusive sample.

13. The factorial moments at y - 1 for the inclusive sample.

14. The factorial moments at y = 0 for the 2-jet sample.

15. The factorial moments at y = 0.5 for the 2-jet sample.

16. The factorial moments at y = 1 for the 2-jet sample.

17. The fractal moments (G ) of charged particles in the azimuthal angle

range between <t> = 0 and * = 2it for the inclusive sample. The definition

of the fractal moments is described in the text. The abscissa is the

number of divisions M = 2 V.

18. The slopes x(q) between M = 2 and M = 3 of the fractal moments for

various q-values.

19. The spectrum f(a) of a for the fractal moments in <>. f(a) and a are

Legendre transforms described in the text.

20. The fractal moments in the <t> space for the 2-jet sample.
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21. The t(q) for the 2-jet sample.

22. The f(o) for the 2-jet sample.

23. The fractal moments in the reduced range between y = 0 and y = n for the

inclusive sample.

24. The t(q) for the reduced <t> range for the inclusive sample.

25. The f(«) for the reduced <& range for the inclusive sample.

26. The fractal moments in the <f space for the Lund Monte Carlo events

(JETSET 5.3) after detector simulation.

27. The -r(q) in the <t> space for the Lund Monte Carlo events.

28. The f(a) in the <j> space for the Lund Monte Carlo events.

29. The fractal moments of charged particles in the rapidity range between y

= -2 and y = +2 for the inclusive sample.

30. The i(q) in the y space for the inclusive sample.

31. The f(a) in the y space for the inclusive sample.

32. The fractal moments in the y space for the inclusive sample. The

logarithm was taken after averaging the moments arithmetically.

33. The x(q) from an< Gq >.

34. The f(a) from ln< Gq >.

35- The fractal moments in the y space for the 2-jet sample.
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36. The x(q) in the y space for the 2-jet sample.

37. The f(a) in the y space for the 2-jet sample.

38. The fractal moments in the reduced rapidity range between y = -I and y =

+1 for the inclusive sample.

39. The t(q) in the reduced y range for the inclusive sample.

40. The f(o) in the reduced y range for the inclusive sample.

41. The fractal moments in the full rapidity range of y = -5 and y - +5 for

the inclusive sample.

42. The -r(q) in the full rapidity range for the inclusive sample.

43. The f(o) in the full rapidity range for the inclusive sample.

44. The fractal moments in the rapidity range between y = -2 and y = +2 for

the Lund Monte Carlo events (JETSET 5.3) after detector simulation.

45. The t(q) in the y space for the Lund Monte Carlo events.

46. The f(a) in the y space for the Lund Monte Carlo events.
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