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Abstract

The formalism of Analytic Multi-Regge Theory is developed as a basis for the study
of abstract Critical and Super-Critical Pomeron high-energy behavior and for related
studies of the Regge behavior of spontaneously broken gauge theories and the Pomeron
in QCD.

Asymptotic domains of analyticity for multiparticle amplitudes are shown to follow
from properties of Field Theory and S-Matrix Theory. General asymptotic dispersion
relations are then derived for such amplitudes in which the spectral components are
described by the graphical formalism of hexagraphs. Further consequences are distinct
Sommerfeld- Watson representations for each hexagraph spectral component, together
with a complete set of angular momentum plane unitarity equations which control the
form of all multi-Regge amplitudes. Because of this constraint of “Reggeon Unitarity”
the Critical Pomeron solution of the Reggeon Field Theory gives the only known “non-
trivial” unitary high-energy S-Matrix.

By exploiting the full structure of multi-Regge amplitudes as the Pomeron becomes
Super-Critical, the simultaneons modification of hadrons and the Pomeron can be
studied. The result is a completely consistent description of the Super-Critical Pomeron
appearing in hadron scattering. Reggeon Unitarity is satisfied in the Super-Critical
Phase by the appearance of a massive “gluon” (Reggeised vector particle) coupling

pair-wise to the Pomeron.
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1. INTRODUCTION

QCD is now firmly established as the gauge theory of the strong interaction. It
is commonly believed that the theory can be calculated in the ultra-violet region via the
parton model and perturbation theory and that in the infra-red region it can at least be
approximated via lattice gauge theory. An optimist might believe that it is only a matter
of time before the continuum limit of lattice QCD is proved to exist, giving a confining,
unitary, theory of hadrons and giving the parton model at short distances. This article
is most directly aimed at the pessimist {or realist) who is persuaded (persuadable) that
coupling the current infra-red and ultra-violet understanding of QCD is a major challenge
for which new technology may be at least desirable, if not mandatory. The general purpose
of the article, which will be published in two separate parts, is to provide a comprehensive
analysis and review of how Analytic Multi-Regge Theory, when applied to the problem of
the Pomeron in QCD, provides both new technology and a simultaneous confrontation with

infra-red and ultra-violet properties of the theory.

A primary ambition of the article, and of this first part in particular, is to demonstrate
that the vacuum quantum number multi-Regge region of the strong-interaction multiparticle
S-Matrix is close to being determined by the very powerful general principles of analyticity
and unitarity. We can then argue that in this truly mixed infra-red/ultra-violet kinematical
regime, unitarity provides an explicit challenge to the complete formulation of QCD. This
argument will provide the dominant theme of the second part of the article, which will contain
all the analysis of gauge theories and of QCD in particular. We shall see that ultimately
confinement, chiral symmetry-breaking, asymptotic freedom and the parton-model, and even
the quark flavor spectrum all couple together i the problem of obtaining a fully unitary
high-energy S-Matrix within QCD.

During the barren years of quantum field theory (for the strong interaction) the most
sophisticated analyticity methods were developed? to study multi-Regge behavior and its
inter-relation with unitarity. However, the resulting formalism is not well-known, nor is
its underlying basis well understood. Consequently the early Sections of this article will
be devoted to a broad and fairly comprehensive development of the subject. The essen-
tial results are first that in the multi-Regge asymptotic regime there are relatively simple

many-variable domains of analyticity and corresponding multiparticle dispersion relations



are valid. Secondly consequent generalised Sommerfeld-Watson representations exist which
lead to asymptotic behavior strongly constrained by “cross-channel” multiparticle unitarity
continued in the complex angular momentum plane. At the Regge pole level the asymptotic
amplitudes obtained from these representations were shown!344 to coincide (in all essential
respects) with those calculated directly from “dual models”. Such amplitudes are, of course,
now understood as tree-level string theory amplitudes and so it follows that the multi-Regge
form of string theory amplitudes is just that imposed by the requirements of analyticity
and unitarity. Not surprisingly these requirements do not determine, or even constrain, the

number and nature of the quantum numbers involved in a string theory.

The strongest constraints are actually on multi-Regge behavior involving the Pomeron—
where no quantum numbers are exchanged. The concept of the Pomeron was originally purely
phenomenological. It was introduced® as a Regge pole with vacuum quantum numbers which
is responsible for the energy independence (up to logarithms) of total cross-sections. How-
ever, it became clear, even before the advent of QCD, that the Pomeron is at the core of
a fundamental high-energy, strong-interaction, “vacuum problem”. This is the problem of
producing a non-trivial high-energy S-Matrix which is consistent with both direct-channel
and cross-channel unitarity. We shall call a high-energy S-Matrix non-trivial if all total
and inclusive cross-sections do nol go to zero asymptotically. Producing such an S-Matrix
is a “vacuum problem” in that those channels which are related to physical cross-sections
via optical theorems necessarily involve “vacuum” quantum number exchange. It is the
fundamental importance of angular momentum plane unitarity’»” (Reggeon Unitarity) for a
non-trivial high-energy S-Matrix that suggests the problem is best analysed in the language
of Regge theory and the Pomeron. However, the derivation of further “direct-channel”

unitarity constraints®~1! and several “no-go theorems”*1%3 emphasised that even in this

formalism finding a solution would be far from easy.

Note that since the resulting large transverse momentum cross-sections do not de-
crease with energy, the requirement within QCD that perturbation theory and the parton-
model are valid in the ultra-violet region actually determines that the high-energy S-Matrix
must be non-trivial. Therefore QCD must provide a solution to the full high-energy vacuum
problem if it is indeed a complete theory of the strong interaction with all the properties
we would like! As we already implied above we shall find that within QCD the high-energy

vacuum problem is intimately related to the full vacuum problem.



The basic reason that Pomeron amplitudes are so constrained, and the high-energy
problem correspondingly difficult, is that “multi-Pomeron” exchanges (Regge Cuts) are also
required by unitarity and they are necessarily as important in the asymptotic S-Matrix as
single Pomeron exchange. Consequently there is an unavoidable “strong-coupling” problem
- the major constraint on which is that of Reggeon Unitarity. This is explicitly satisfied in
the (perturbative) formalism of Pomeron Reggeon Field Theory.!®! Indeed it was a very
elegant application'®” of renormalisation group methods to the Reggeon Field Theory, in
the mid-70’s, which finally produced an infra-red fixed-point, scaling solution of Reggeon
Unitarity for the Pomeron. This solution, the “Critical Pomeron”, is a vital part of the basic
argument which this article advances. We shall emphasise that the Critical Pomeron is both
completely formulated and absolutely calculable and also gives the only known non-trivial
unitary high-energy S-Matrix. We shall argue both that it is crucial to the consistency of
QCD that the Critical Pomeron be the true high-energy behavior and also that QCD explains

why the Critical Pomeron occurs!

The foremost problem posed by our general purpose is clearly that of making direct
contact between the abstract Pomeron formalism developed before QCD and the explicit
formulation of a non-abelian gauge theory. It is quite probable that a large N topological
expansion has a straightforward correspondence with the general Pomeron Reggeon Field
Theory perturbation expansion'®. However, this correspondence is only qualitative and
certainly does not allow us to discuss the detailed dynamical question of the Criticality of
the Pomeron. Fortunately a direction in which to proceed is provided by the answer to

another question which was also posed, and studied, before the advent of QCD.

As part of its formulation it is clear that the Critical Pomeron is a “phase-transition”
point for a class of “Sub-Critical” Pomeron theories in which the asymptotic S-Matrix is triv-
ial - that is total cross-sections go to zero asymptotically as a power of the energy (the power
decreasing to zero as the critical point is approached). The question is whether there exists
a “Super-Critical Phase” and if so what are its distinguishing properties. There was much
controversy surrounding this subject in the late 70’s. Several authors'®~?! advocated an
“Expanding Disc” solution of the problem which (at least) saturates the energy dependence
of the Froissart bound and so potentially gives a non-trivial S-Matrix in the sense discussed
above. We argued then (and have re-emphasised recently?? in the context of minijet models)
that the large transverse momentum dependence of the Expanding Disc inevitably violates

Reggeon Unitarity. Indeed this was the case for all explicit versions of this solution that
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could be constructed?!.

We should point out that our criticism of the Expanding Disc “solution” of Reggeon
Field Theory applies to all high-energy models or “theories” giving Froissart bound saturat-
ing energy dependence (“Froissarton” behavior). That is such behavior is almost certainly
in direct contradiction with angular momentum plane unitarity and therefore is inconsistent
with the basic analyticity and crossing properties of the hadron S-Mairix. Indeed, if this
form of high-energy behavior could be made to satisfy some form of Reggeon Unitarity, all of
our discussion of the constraints placed on QCD in the multi- Regge region would be empty.
It is almost trivial to obtain Froissarton behavior as a first approximation in a wide variety of
circumstances and if there were no problem with unitarity there is little doubt that it would
arise as the exact high-energy behavier in almost all such circumstances. It would then be
futile to look for any deep constraint on a theory by studying the high-energy S-Matrix. This
is clearly the very opposite of our point of view. We believe the constraint of producing a
unitary Pomeron is the deepest of constraints on a theory. (As an aside we might mention
that the problem of producing a consistent reggeised graviton is a generalised Super-Critical
Pomeron problem in string theories, whose solution probably involves the sister trajectories
and hence® the detailed algebraic structure of such theories, in an intricate manner. This

almost certainly places a very strong constraint on such theories—perhaps even selecting the

desired unigue theory!)

Our major contribution®® to the Super-Critical Po.neron controversy was to advocate
a solution to the problem which is again characterised by asymptotically decreasing cross-
sections, that is a “trivial” high-energy S-Matrix. The distinction from the Sub-Critical
phase is the presence of a “Pomeron Condensate” together with an odd-signature compo-
nent of the Pomeron associated with a vector particle. At the Critical point the vector
particle decouples while its mass simultaneously goes to zero. The problem with this so-
lution was always that we were unable to find a formulation for introducing the Pomeron
Condensate which unambiguously defined the graphical rules of the theory and clearly sat-
isfied Reggeon Unitarity. Nevertheless we became convinced that this solution described the
(partial) deconfinement of a gauge theory and that the Reggeised massive vector particle we
had found emerging out of the Critical Pomeron would provide a key to the exact nature of
such an underlying theory. We then began studying the possible connection of the Regge be-
havior of massive gauge theories to the high-energy behavior of QCD. Our hope was that we

would uncover the Super-Critical Pomeron theory we had proposed and that the ambiguity



in the rules would somehow be resolved by the gauge theory context. A number of articles
published over the years?®®~2" have gradually elaborated the physics that we have come to
believe underlies the relation of the Super-Critical Pomeron to spontaneously broken QCD.

This relationship will, of course, be extensively covered in the second part of this article.

As our direct study of the Pomeron within QCD developed we found that the in-
evitable confrontation with confinement involved several deep issues that actually required
a full exploitation of multi-Regge theory for their resolution. Specifically, it was necessary
to simultaneously study both the formation of hadrons (as Reggeons) and the Pomeron by
studying appropriate multi-Regge amplitudes. We then realised that almost the same issues
were involved in the ambiguities of defining the Super-Critical Phase and so their resolution
should be similar. Following this idea through, we have now found that if we consider a multi-
Regge amplitude in which we can simultaneously study the modification of the Pomeron and
the modification of hadrons by the Pomeron, then the introduction of a Pomeron Conden-
sate leads to an unambiguous theory. {In this context a hadron is simply a massive particle
lying on a Regge trajectory). The full discontinuity structure of multi-Regge amplitudes
and Regge cuts is involved in the formulation but the outcome is a straightforward set of
graphical rules. Reggeon Unitarity is explicitly satisfied, with the properties of the resulting

Super-Critical Pomeron exactly as we had previously conjectured.

It seems therefore that, after more than ten years of (intermittent) study, we can
finally claim to have solved the problem of the Super-Critical Pomeron. The description
of this solution actually provides a self-contained motivation for this part of our article in
that all of the analyticity properties and multi-Regge theory that we develop and review
are necessary backgreund for the presentation of the Super-Critical Pomeron. However, this
material will also be an essential background for our analysis of QCD in the second part of
the article. More importantly perhaps we believe that the abstract formalism of Analytic
Multi-Regge Theory will eventually prove to be very powerful for studying many aspects of
gauge theories, string theories and perhaps more general theoretical formalisms. Most of the
review material incorporated in this article is not appropriately presented elsewhere and it

surely provides an essential basis for future development of the subject.

We shall discuss explicitly the relationship between the phase structure of QCD and
the Pomeron phase transition in the second part of the article. This will make it clear that

the Super-Critical Pomeron provides a vital bridge between the perturbative Regge behavior



of an entirely massive gauge theory (in which the gauge symmetry is completely broken)
and the Pomeron of unbroken QCD. That is the Super-Critical Pomeron describes a partial
breaking of the SU(3) gauge symmetry of QCD down to SU(2). The extraction of the theory
with unbroken SU(2) symmetry from completely massive (spontaneously broken) QCD is an

infra-red problem that will be a major topic in part two.

The outline of this Part is as follows. We begin in Section 2 with a description of
the multiparticle angular variables that we utilise for all of the analyticity and Regge theory
analysis. The introduction of these variables is extensively described in several articles!*2529,
However, there is almost no usage of them in current research work. We give a brief but
complete, in principle, description which is aimed directly at the applications in the following
Sections. The over-riding virtue of the angular variables is that they provide a complete and

unconstrained set of independent Lorentz-invariant variables for a general N-point amplitude.

Section 3 is devoted to a description of the dymains of analyticity of multiparticle am-
plitudes and related asymptotic dispersion relations. We discuss the basis of these properties
in Field theory and S-Matrix theory. Both the generality of the material and the presen-
tation distinguish this Section from previous related discussions. The Section closes with
a complete description, utilising “hexagraphs™®, of the break-up of a general multiparticle
amplitude into spectral components via an asymptotic dispersion relation. The essence of
the general multi-Regge theory developed in Section 4 is that each hexagraph spectral com-
ponent has a distinct Sommerfeld-Watson Representation utilising distinct Froissart-Gribov
Continuations. We emphasise the inter-relation of the particle pole structure of a hexagraph
spectral component with the asymptotic discontinuity structure. This inter-relation is essen-
tial in the formulation of the Super-Critical Pomeron. We also note a connection with the

structure of sister Regge trajectory contributions in multiparticle string-theory amplitudes.

The complete Reggeon Unitarity equation for a general hexagraph Froissart-Gribov
amplitude js the subject of Section 5. That angular moimentum plane unitarity is effectively
diagonalised by the break-up of a general amplitude into hexagraph spectral components is
an essential element in the derivation. In Section 6 we move on to the relationship between
Reggeon Unitarity and Reggeon Field Theory for the Pomeron. We then present a brief

review of both the formulation and some key features of the Critical Pomeron.

Section 7 contains our new formulation of the Super-Critical Pomeron. An important

point is that once all of the necessary background multi-Regge theory is in place, it is clear



that the appropriate “classical solution” defining the Pomeron condensate is a symmetric
stationary point which always appeared to have many virtues as a candidate “vacuum” but
was thought to give an unstable perturbation expansion®. The new formulation we present
produces a straightforwardly stable expansion with the unstable classes of graphs simply
absent.

Section 8 summarises our view of the general significance of the Pomeron phase tran-

sition for the high-energy vacuum problem, in preparation for the analysis of QCD in the

second part of the article.



2. MULTIPARTICLE KINEMATICS

Regge theory is, in a sense, generalized partial-wave analysis. Not surprisingly there-
fore to apply such an analysis to a multiparticle amplitude we must first introduce a set
of angular variables. Although we shall make little direct use of these variables in the sec-
ond part of the article, involving the analysis of QCD, they play a basic role in the initial
dispersion theory and complex angular momentum theory. Therefore a reader wishing to
understand these basic formalisms must have a working knowledge of the angular variables.
We shall therefore elaborate their properties rather more pedantically than in previous arti-
cles. We shall do this by first giving an excessively pedantic treatment of elastic scattering

which will then generalize in a straightforward manner.

2.1 Elastic Scattering

A four-point amplitude is a function of the four on-mass-shell momenta satisfying
p:2 = m? t=1,2,3,4 (21)

which if incoming particles carry positive energy and outgoing particles carry negative energy

satisfy momentum conservation in the form
Y pi=0 (2.2)

There are three obvious Lorentz-invariant variables

s=(m+p)?,  t=(m+p) and u=(p+p) (2.3)
which, of course, satisfy
‘ 4
s+t+u=)Y_ ml (2.4)
i=1

. If p1 and p; are incoming particles (and for simplicity we take m? = m? i=1,...4) then

the physical region is
I: s>4m?  tu<O. (2.5)

There are two other physical regions in which p; and p4, and p; and pa, are respectively

incoming momenta, that is
I: u2>4m?,  t,s<0, (2.6)

HI: ¢ >4m?, s,u < 0. (2.7)

8



We introduce the t-channel center-of-mass scattering angle by the following procedure.
First we define Lorentz frames F, ..., F4 in which the external momenta p; respectively have

the standard form
P = (m,0,0,0). (2.8)

Next we define further standard frames £y and ¥ in which Q = (p; + ps) has the standard

form

Qo = (Qa OaO! 0) t= Q2 > 0. (29)
In F; we also require that p, and p; lie in the 2-¢ plane. Therefore to transform from frame

Fy to Fy we can apply a boost a;(€) in the 2-t plane such that
p1 = a.(¢)p? = (mcosh {,0,0,msinh ¢) cosh( = 5% (2.10)

In F, we similarly require that p, and p, lie in the (2-t) plane, so that p, in particular has

the form (2.10) but with the sign of the time component reversed.

Since @ has the form Q° in both frame F, and F; it follows that these two frames

differ by a Lorentz transformation g such that

9Q° = Q" (2.11)
That is g belongs to the “little group” of Q° which, since Q° is timelike, implies that
g € SO(3). (2.12)
We can parameterize SO(3) as
0<d<m

9 = us(p)uz(0)u.(v) (2.13)

?
0<wv, p<om

where u, and u, are respectively rotations about the z and z axes.

We can express invariant variables in terms of g, 6, and v by computing all the
relevant external momenta in one particular standard frame. To compute s, for example, we
can compute p; and p; in frame F;. p;, already has the form (2.10), while p; has this form

in frame F3. Therefore we apply g to p; in the form (2.10) to obtain its form in Fy. That is

we first calculate

u,(v)(—~m cosh {,0,0,msinh {) = (—m cosh ¢, 0,0, m sinh ), (2.14)

9



and then

uz(8)(—m cosh ¢, 0,0, msinh ) = (—m cosh (,0, m sinh { sin 8, m sinh ( cos @), (2.15)

and finally applying u.(u) gives

p2 = (—m cosh {, msinh ( sin @ sin p, m sinh { sin @ cos g, m sinh { cos 9). (2.16)

Utilizing (2.10) and (2.16) directly we find that

s=(p1 4 p2)? = —2m?cosh?¢ — 2m?*sinh? { cos § + 2m? (2.17)
= —2m?sinh? (1 + cos ) (2.18)

2 —
= —(372-2———1')(1 + cos 8). (2.19)

Similarly we find

u=(p+ps) = Qm—Q:-Q(l ~ cos ). (2.20)

Clearly we recognize @ as the usual t-channel center of mass scattering angle which
we have simply introduced in a rather elaborate way. Note that while the invariants s and
u are independent of the azimuthal angles 4 and v, these angles would appear in the spin-
dependence of amplitudes if we considered particles with spin. Analogous angles will play

an important role in the multiparticle amplitudes we consider shortly.

Note that the corstraint (2.4) is automatically satisfied by the parameterization (2.19)

and (2.20) and so ¢t and z = cos @ can be used as independent unconstrained variables. The
three physical regions are then
I. t<0, 221,
II. t<0, 2<-1 (2.21)
IOI. t>4m? -1<2<1.
Since (2.19) and (2.20) express cos # as a function of invariant variables only it is clear that

although introduced in a frame-dependent manner it is really a Lorentz-invariant variable.

We refer to I and II as direct channels. Regge singularities in the cross-channel or ¢-channel

IIT describe high-energy scattering in the direct channels.
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We can also introduce the variables ¢ and 2z in the direct channels. Since t < 0 we

replace the standard form (2.9) in the frames F and F5 by
Q°=(0,0,0,Q) t=-Q*<0. (2.22).
We change (2.10) only in that sinh { = Q/2m (instead of cosh (). {2.12) is replaced by

g €50(2,1), (2.23)

and so we write
—w< <o
g= uz(.u)az(ﬂ)uz(y) ) (2'24)
0<pu,v<2r
where a; is now a boost in the z — ¢ plane. In frame £}, (2.16) is replaced by (note that p;

is now an incoming momentum)

Pz = (m cosh ¢ cosh B, m cosh ( sinh § cos i, m cosh { sinh @ sin g, msinh (), (2.25)

so that now

s=(pm+ P2)2 = 2m? cosh? ¢ cosh 8 — 2m? sinh® ¢ + 2m? (2.26)
Am? — i
= (—-%-—-—)- (cosh g +1), (2.27)

and so we can directly identify z = cosh # and, of course, recover the parameterization (2.21)
of the s-channel physical region. To recover the parameterization (2.21) of the u-channel we

can simply add the “T'CP” transformation

g:z=coshf — —z (2.28)
as an extension of SO(2,1) and include the s and u-channels in the same little group param-
eterization.

It will also be useful for the following to extend our elastic scattering kinematical

analysis to the unphysical situation of particles with spacelike masses. That is we now

consider replacing (2.8) by

p? = (0,0,0,p) —-pP=m?<0. (2.29)

11



If @ remains spacelike we now replace (2.10) by
3 o _ . _Q o
P = (98 = (0,psing,0,pcosg)  cosg = 5. (2.30)
To obtain the equivalence of the independence of p and v in (2.17)—(2.20) we must replace
the parameterization (2.13) of SO(2,1) by one of the form
g = ay(a)day(y)  —o0<a, v <oo (2.31)

In fact, if we choose § = a,() we do not cover the whole group. Instead we have to use

both
g = a.(f) —w< <o allowing both cosh 8 > 1 and cosh 8 < 1

and
g = u.(0) 0 <0< 27, (2.32)

Repeating (2.14) to (2.16) gives that in F}, for § = e.(B),
P2 = (psin ¢sinh B cosh a, psiﬁ ¢ cosh 3, psin ¢sinh Ssinh o, —pcos ¢) (2.33)

or for § = u.(9)

P2 = (psin ¢sin@sinh a, psin ¢ cos 8, psin ¢sin § cosh a, —p cos ¢) (2.34)
and hence
s = —2p’sin® ¢ z + 2p® cos? ¢ — 2p* (2.35)
4m? — ¢
= Cid)) m2 )(z +1), (2.36)

where now z = cosh B and z = cos@ in the parameterization (2.32). In effect the three
physical ranges of z appearing in (2.21) all describe “physical” real momenta when the
external masses are spacelike.

Finally we note that we can also consider one set of external momenta, p; and ps say, to
be timelike (and sum to a spacelike vector) while allowing the remaining two momenta to be

spacelike. In this case we could repeat the above analysis using yet another parameterization

of SO(2,1) namely

g= uz(ﬂ)az(lg)ay(‘” —co < ﬂ7 7 <cC (237)

12



Our next task is to generalize the above discussion to an arbitrary multiparticle

amplitude.

2.2 Toller Diagrams and Little Group Variables

For a multiparticle amplitude there are many possible sets of angular variables.!%282°

They are distinguished by the Toller diagram with which they are associated. A Toller
diagram is a tree diagram with only three-point vertices. For every Toller diagram there is
a distinct set of angular variables and, as we shall describe in the next Section, a distinct
asymptotic dispersion relation. We use a general formalism to introduce the variables and
use the above discussion to be more specific when necessary.

For an N-point amplitude we denote the external momenta as P;, z = 1,...,/N and
introduce internal momenta @;, j = 1,..., N — 3 for each internal line of the Toller diagram
as illustrated in Fig. 2.1. The @Q; are defined by imposing momentum conservation at each
vertex (following the momentum flow of the incoming momenta). Next we introduce three
standard Lorentz frames at each vertex (including the external vertices) in each of which one
of the three momenta entering the vertex has a standard form. To be specific we can utilize
(2.9) ((2.8)) if Q; (£;) is timelike or (2.22) ((2.29)) if Q; (F;) is spacelike. We denote as g;
the Lorentz transformation-—associated with the internal line j—which transforms between
the two standard frames for @); defined respectively at the two vertices to which the line j

is attached. Since @Q; has the same form QY in both standard frames g; necessarily belongs

to the little group of Q? implying (as above) that

g; € SO(2,1) if Q; is spacelike
(2.38)

g; € SO(3) if Q; is timelike.

We also introduce the Lorentz transformations (jx transforming between the standard
frames defined for @; and Qi respectively, at the same vertex. Note that (; is a function
of t; = @3, ti = Q} and #, = (Q; + Qi)* only. In analogy with (2.10) and (2.14)-(2.16) we
can combine the g; and (jx (together with (;; transformations defined analogously to the (j«,
but at external vertices) to determine any of the external momenta in any of the standard
frames associated with the Toller diagram. Consequently for the N-point amplitude My we
can write

Mu(pry..pn) = My (t1, .. tv_3, 0150 .- gN-3) - (2.39)

13



If we initially consider all the @; to be timelike then we can use the parameterization
(2.13) for the g;. We can also take all the {jx and {;; to be boosts a.(() in the z- plane. In
this case the u, rotations clearly commute with the @, and as a result the external invariant
variables depend only on combinations wjx = p; — w4 of the azimuthal angles. (This is a
generalization of the independence of s and u of p and » in (2.19) and (2.20)). The net
effect is that the angular variables for each Toller diagram reduce always to the (3N — 10)
independent variables which we know it is possible to find for an N-point amplitude. There

are always
(N —=3) t; variables (= Qf)

(N —3) 2 variables (= cosd;) ¢ (3N —10) variables. (2.40)
(N —4) wuj variables(= e™it)

Just as ¢ and z were an unconstrained, Lorentz invariant, independent set of variables for the
elastic amplitude, so for each Toller diagram the ¢}, z;, and u;; variables are an unconstrained
Lorentz invariant set for the N-point amplitude. given the complicated (Gram-determinant)
constraints satisfied by the complete set of momentum or invariant variables for a general am-
plitude, this is a remarkable simplification, which is particularly important for the dispersion

relations we describe in the next Section.

Before discussing the details of spacelike kinematics for a general Toller diagram we
first introduce an extended tree-diagram notation which can be used to distinguish both

the “direct channels” in which the @}; are spacelike and the “cross-channels” in which these

momenta are timelike.

2.3 Hexagraphs, Cross-Channels, Direct Channels and Twisting

We begin by first introducing a set of planar Toller diagrams for each Toller diagram.
These are obtained by considering all scattering processes for which all the Q; are spacelike.
Each distinct process is then drawn as proceeding via the particular Toller diagram, but in
a plane and with the incoming particle lines drawn vertically entering the diagram from the
bottom and the outgoing particles similarly exiting from the top. The @; lines are drawn
horizontal when they don’t meet internal vertices and close to horizontal when they do. An
example of the resulting set of planar Toller diagrams obtained from a simple Toller diagram
is shown in Fig. 2.2. We shall not distinguish processes differing by the TCP transformation

of incoming particles into outgoing particles. The set of planar Toller diagrams is in one to
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one correspondence with the set of direct channels for a general Toller diagram.

From the set of planar Toller diagrams we generate a further set of diagrams called
hezagraphs. A hexagraph has the same number of vertices as the original Toller diagram
but all lines are drawn either horizontal or at 60° (or 120°). Hexagraphs are constructed
by substituting for each of the vertices of a planar Toller diagram the sets of vertices shown
in Fig. 2.3 (As illustrated the number of vertices substituted depends on the number of
external lines entering the vertex.) By joining the available vertices with horizontal lines in
all possible manners the complete set of hexagraphs is formed. Examples of this construction
are shown in Fig. 2.4 and 2.5. If incoming particles are now considered to enter a hexagraph
from the left of the diagram and outgoing particles to exit from the right then (up to a TPC
transformation) each hexagraph represents a unique cross-channel. To illustrate this we can
think of each internal horizontal line of the diagram as representing a resonance and each
vertex as representing resonance formation or decay. For this to be kinematically possible,

if @; is the horizontal momentum line entering a vertex and ;4 and Q;42 the other two

momenta we must have

Q; > Qjr1 + Qira, (2.41)
and so
Aty tientiga) = 2+ 80, + 80, — 2550 — 2jutjan — 2jat; (2.42)
= —(Q; + Qjr1 + Qj+2)(Q; + Qi1 — Qj42)
X (@i — Qi+1 + Qi+2)(—Qj + Qi1 + Qj42) (2.43)
>0 (2.44)

That is A > 0 is satisfied at all vertices in a cross-channel. However, distinct cross-channels
can be distinguished by which factors in (2.43) are positive and which negative at each
vertex. This is what the hexagraph describes. The horizontal line at the vertex is the largest
momentum.

Note that the hexagraph can also be used to count the variables of the Toller diagram.
That is each &; (and each ¢;) can be associated with the corresponding horizontal line of the
hexagraph, while each wj; can be associated with an internal sloping line. In this case the
@; can be thought of as conjugate to the angular momentum of the corresponding resonance
while the w;; are conjugate to the helicity of the corresponding resonance. Of course, the
scattering process does not have to take place by the resonance formation illustrated by the

hexagraph—it is simply that this process is kinematically possible.
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Although a hexagraph is drawn in a plane the scattering process described is not at all
planar. Indeed if one half of a hexagraph is rotated through 180° (perpendicular to the plane
of the paper) about one horizontal line relative to the other half so that the diagram is again
drawn in a plane as illustrated in Fig. 2.6, the same cross-channel is described. Therefore
each cross-channel is described by a class of hexagraphs related by twisting. The process of
twisting a hexagraph (or a planar Toller diagram) about a horizontal line is, however, impor-
tant for distinguishing direct channels because it defines the multiparticle generalization of
signature. Note that the (unique) direct channe] associated with a hexagraph is immediately
obtained by simply recovering the original planar Toller diagram from the hexagraph.

The angular variables can be straightforwardly introduced in any physical region by
the procedure described above. In general some of the little groups will be spacelike and
some will be timelike, that is some g; will belong to SO(2,1) and some to SO(3). Also
even if all the @Q; meeting at a vertex are spacelike the vertex may still be timelike in
that (2.41) is satisfied. In general we call a vertex timelike if A(¢;,¢;41,¢42) > 0 and
spacelike if A(tj,tj4+1,t542) < 0. For spacelike internal lines joining two timelike vertices
the parameterization (2.24) of SO(2,1) must be used, if a timelike and spacelike vertex are

joined (2.37) must be used while for two spacelike vertices (2.32) has to be used.™

For our purposes it will be sufficient to describe as direct-channels those (parts of)
physical regions in which all the @); are spacelike and all the tnternal vertices are spacelike.

We can then generalize (2.21) to say that in each cross-channel, in addition to (2.44) we

have
t; >4m? —-1<z <1, —1<coswy <1 (2.45)

while in each direct-channel, (2.44) is reversed and also
t; <0, z;j>2lor <-1 coshwjz >1or <-1. (2.46)

(Although for vertices with just one external particle we must retain ~1 < coswjx < 1 to
remain in a physical region.) A twist about a horizontal line of a hexagraph changes the
sign of the corresponding z; and, for any sloping line attached directly to this line (not via
a vertex), the sign of the corresponding wji.

2.4 Invariants and Angular Variables

Some detailed calculations of expressions for invariant variables in terms of angular
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variables can be found in Ref. 2. Here we simply list some properties that are particularly

important in the following.

2a) If we define v; = €*, that is z; = } (v_,- + vj'l), and uj; as above then all factors of

2b)

2c)

2d)

2e)

2)

2
7 in expressions for invariants {coming from sinf; and sinwj;) cancel. The relation

between all invariants and the u’s and v’s is real and analytic.

When all the v;’s are large (or all the z;’s) we obtain for an invariant s, = (pm + pn)2

Smr .
2 " sinh (mj, vj, (cosh (j, 5, + cosw;, ) Vit Vi

m (2.47)

P (cosh Cirorjr + COS wj,_,j,) v, sinh §j,n,

which implies that for any invariant Smn.r = (Pm + Pn + ... + pr)°

8 A
m;mZ 2,—"; v, (E’L.‘.J)ZJ': Zj2 " Z4as (248)

where now ji, j2,...,Jjs denotes the longest path through the tree diagram linking any

two of the external momenta contained in smp...r.

When all the uj;’s are large we similarly obtain
s . .
21\”;2 ~ sinh Cmj, 5in 65, w55, (€08 85, + 1)ty g <+ Ujp g 5oy
(2.49)

X (COS 0]',_, + 1) Yj,_,.j, Sin8;, sinh {j, .

When 2; = v; = %1 (f; = 0,n) the associated line can be contracted out of the
tree diagram for the purpose of calculating invariants. The azimuthal angles at the

contracted vertices are added or subtracted according to whether z; = +1.

Similarly when z; = %1, zj4; = %1 and coswj,j31 = %1 both the 7 and j + 1 lines can
be contracted from the diagram and uader analogous conditions any number of lines

can be contracted out.

If p, and p., are separated by one internal line only, then s,,, is linearly related to the

associated z (simple examples of this being (2.19) and (2.20)).
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It will be important in the following that the singularities of amplitudes as functions
of the invariant variables have a very similar asymptotic structure in term- of either the z;

variables or the uj; variables because of the similarity of (2.47) and (2.49).
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3. Multiparticle Asymptotic Dispersion Relations

Any standard book on elementary Regge theory covers the relationship between the
analyticity properties of (four-particle) momentum-space amplitudes and complex angular
momentum theory. However, the development of a comparable relationship for multipar-
ticle amplitudes took many years since the relevant analyticity properties are much more
complicated. In particular it is necessary to concentrate on “asymptotic analyticity proper-
ties”. To explain this concept and also to give a self-contained development for those who

wish to avoid going back to the “standard” books of the 60’s we first describe in detail the

asymptotic dispersion relation for an elastic amplitude.?

3.1 The Asymptotic Dispersion Relation for Elastic Scattering

Consider a scalar (for simplicity) elastic scattering amplitude A(s,t). The analyticity
property most immediately derived from field theory®? is “cut-plane analyticity” for large s

at spacelike t. That is A(s,?) has a domain of analyticity
D = {|s| > sg, Ims #0, t fixed < 0}. (3.1)

Applying the Cauchy formula to the contour shown in Fig. 3.1 gives

1 ds'A(s't) 1 ds'A(s',1) t) s, t)
Alst) = 2ri /;,, (s'"—s) + 57;/ (s —s) s) t o /" -s)’ (32)
where
Afs,t) = A(s +10,t) — A(s — i0,1) = 2:Im A(s, t). (3.3)

In early applications of dispersion relations the third term in (3.2) played a crucial
role in relating low and high energy data.®® Consequently it was important to know the
precise details of the low-energy cut structure. However, if we are interested only in the
leading Regge behavior of the amplitude then we need just the first two terms and as the

following argument shows the third term can be ignored. Suppose that '
Als,1), e B (D570 + B_(1)(=3)°0, (3.4)

(there could also be additional Ins dependence—the important feature is that the power

behavior is ¢-dependent) and suppose also that somewhere in an interval t, < t < t, (which

19



could even be complex) a(t) increases through —1. In the full interval

1 (A 2) 1) ,
2mi A’I=So ds (s'— S) Js]—co o (s ’ (35)
while in some subinterval
1 ds'A(s',t) a(2)
ari ./13'|=R (s' —s) R =0 Rea(t) <-L (3.6)

Consequently we can begin with Rea(t) < —1 and take B — oo leaving only the integral

over [s'| = so in (3.1). Analytic continuation to Rea(t) > —1 then gives that the first two

terms dominate and we can write

A(s,t) = (/ /1_) ds;A-(_sst + Ae, (3.7)

where Ao gives sub-dominant asymptotic behavior provided Re(t) > —1 and the I and 1.
integrals are defined by analytic continuation from Rea(t) < —1. The integrals I, and /-
are over the intervals (sp, 00) and (—o00, —sg) respectively, with the precise value of sy being

irrelevant. (3.7) is the simplest example of an “asymptotic dispersion relation”.

We should emphasize that the asymptotic dispersion relation is not qualitatively
different from the exact dispersion relation. It simply drops some irrelevant details from the
complete relation (irrelevant for our purposes, that is). We do not mean to imply that the

asymptotic dispersion relation is in any sense “only valid asymptotically”.

3.2 Analyticity Properties of Many-Particle Amplitudes

The analytic structure of many-particle amplitudes is much more complicated than
that of elastic amplitudes and for many years physicists despaired of deriving any general-
ization of (3.2). An N-point amplitude is a function of 3N — 10 independent variables only
but there are ~ N! invariants with threshold singularities in each of them. Even if some
invariants are fixed (away from their thresholds) there is still an enormous complexity of
simple thresholds to consider. In addition there is a very rich structure of higher-order Lan-
dau singularities for many-particle amplitudes. Finally the many variable generalization of
Cauchy’s theorem (which we discuss shortly) is in general very difficult to apply. Altogether

it seemed that any simple generalization of (3.2) was very unlikely to exist.
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Fortunately if we consider (3.7) rather than (3.2) we can find a generalizatior which
is precisely what we require to provide a general basis for multi-Regge theory. Our major
purpose will be to simply describe the structure of the resulting “asymptotic dispersion
relations”. Qur intention is to exploit this structure in our development of multi-Regge theory

rather than to dwell on an axiomatic derivation of the relations. Nevertheless we do want
to describe why we believe they are natural consequences of the two most well-established

formalisms used for deriving analyticity properties, that is Axiomatic Field Theory (AFT)
and Axiomatic S-Matrix Theory (AST). We shall therefore briefly review what can be said
with respect to deriving the dispersion relations within each formalism. Of course, AFT and

AST are, as far as is known, mutually consistent and in a sense complimentary to each other.

Note that as in our discussion of (3.7), we do not expect the asymptotic dispersion
relations for multiparticle amplitudes to be only valid asymptotically. We expect their essen-

tial structure to be preserved at finite momenta but with a multitude of (for our purposes)

“inessential complications”.

3.3 Axiomatic Field Theory

AFT has many starting points and distinct formalisms within it. However, the basic
ingredient is always space-time fields ¢;(x) which as operators can create (or destroy) the
particles of the theory from (or into) the vacuum. As an imposition of microcausality such

fields are assumed to commute at space-like separations
Bi(e), W) =0  (z—y)? <0 Vij. (3.8)

In this case the S-Matrix elements of the theory can be related by reduction formulae to the

Fourier transforms of “retarded” Greens functions, the simplest example of which is
G(p) = [ d'ze™*(0/0(z0)8(2)4(0)0), (3.9)

(where 0(y) = 1,y > 0; 8(y) = 0, y < 0). Provided that the retarded Greens functions
are well-defined distributions—that is they are polynomially bounded—then their Fourier
transforms have extensive analyticity domains because of the convergence provided by the
Fourier exponential factors of the form exp[ip-z]. For example G(p) is analytic in the

“forward-tube”
(Imp)* >0  Imp, >0. (3.10)

21



The general AFT program formulated by Bros, Epstein and Glaser®?#4~3¢ introduces
a complete set of “Generalized Retarded Functions” (GRF’s) defined from all the field-
operators in the theory. Each GRF is analytic in a particular tube or “cone” which is a
generalization of (3.10). In addition each GRF gives an S-Matrix element as a boundary-

value from within this tube. For an N-point amplitude a general tube is defined by

2
(Zlmp;) >0 Y Impio 0 VA, (3.11)
a A <

where A is any channel, that is any subset of the external momenta p; ...pn, and (3.11)
must be satisfied with either the > or the < sign operative in the second term for all A.
Distinct tubes and therefore distinct GRF’s are then defined by the possible combinations
of choices for the 2 signs. By use of the “Edge of the Wedge” theorem® it is straightiorward
to extend analyticity within the tubes to “partial tubes” in which any of the p; are real and
spacelike. If all of the p; are real and spacelike then all the GRF’s defined from a given set

of field operators coincide. This implies that they are all (off mass-shell) continuations of
the same analytic function.
For the 4-point amplitude we can use our kinematic analysis of Section 3.2 for spacelike

external momenta to immediately see the origin of the dispersion relation (3.2). Going to

frame /) we have by definition that p; and p3 are spacelike and have the form

n= (0, O,PSiD ¢‘t,pcos ¢)7 p3 = (Oa Oi —-P sin ¢1PCOS ¢)v (312)

while (2.33) gives, on taking a =y =10
p2 = (psin ¢sinh 3, psin ¢ cosh 3,0, —pcos @) (3.13)
P4 = (—psin ¢sinh 8, —psin ¢ cosh 3,0, —p cos @) (3.14)

If we allow z = cosh 3 to be complex so that

2Imz =1Im coshf =Im [/)e"'s + %e“"} = [p - l] sin § (3.15)
p
. s, —1 _is 11 .
2Im sinh 8 = Im |pe" + —;e = p+; siné (3.16)

then all momenta apart from p; and p, are real and spacelike and

i . 1 1
Imp; = -Imp, = pS]n¢sxn6 ([p+ —} , [p— —] ,0,0) . (3.17)
2 P P
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Consequently
(Impz)? = (Imp,)* >0 Impy = —Impyo ~ Imz. (3.18)

That is the cut 2-plane and hence, from (2.19), the cut s-plane is contained in the

analyticity domain given by the GRF (partial) tubes.

We see that the analyticity domain of Fig. 3.1 is obtained straightforwardly from AFT
for spacelike masses. It is nevertheless a major exercise in the use of analytic completion
theorems to show®®3! that this domain survives the continuation onto the physical mass
shell. In a sense the continuation on mass-shell could be sidestepped for our purposes. We
have no intention of being rigoreus in our analysis since we intend in any case to input the
assumption of Regge behavior. (When analyzing non-abelian gauge theories we shall discuss
the extent to which this is an assumption.) As we shall see our major interest is in the
analytic structure of reggeon amplitudes. Since the reggeons carry spacelike momenta we
could derive their analyticity properties directly from field-theory amplitudes with spacelike

external momenta simply by assuming that the reggeons couple directly to spacelike states.

The analysis of (3.12)-(3.18) extends naturally to an N-point amplitude regarded
as a function of the (N — 3) z;-variables if all the external p; and all the internal @; are
spacelike. From (3.15)~ (3.18) we see that applying a complex boost to a real spacelike
momentum vector automatically takes the momentum vector into a tube of the form (3.10).
More generally if the imaginary part of the initial four momentum already satisfies (3.10)
and in addition the real part is a spacelike vector then both properties are preserved by a
complex boost. As a result the application of successive “complex z;” transformations—
with the cosh wjz and ¢; kept real—automatically takes all the momenta involved into a tube

of the form (3.11). Since the product of z; transformations satisfies

cosh [ﬂj + Bi+1+ Big2 + -+ ﬂj.,.,] ~ . coshp;cosh By ... cosh B, (3.19)

Z532y433%54 200

= ZjZj41 -« Zjtry (3.20)

the result is that analyticity in the tubes (3.11) transfers “asymptotically” into analyticity

in the “z;-cones” bounded by the “cuts”

Im (IAI;-,-) =0 VA, (3.21)
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where now A is any subset of j = 1,..., N — 3 associated with adjecent lines in the Toller

diagram. Note that we would also obtain a very similar cut structure asymptotically in

terms of the u; variables.

The analyticity domain given by the compliment of (3.21) is just what we require to
write the asymptotic dispersion relations we shall describe. From (2.48) it is clear that all

normal threshold cuts, that is

ImSpmn.r=0 Ymn...r, (3.22)

lie asymptotically within the cuts (3.21). Consequently analyticity outside of the cuts (3.21)
provides a natural generalization of the cut-plane analyticity for the four-point amplitude

illustrated in Fig. 3.1

To the extent that we are prepared to ignore (or sidestep) the very considerable prob-
lem of analytic continuation in the masses the above description shows why the dispersion
relations are a natural consequence of AFT. (Although a much more detailed discussion of
the relationship between (3.11) and (3.21) could clearly be given.) We shall postpone dis-
cussion of the structure of the discontinuities across the branch cuts (3.21) until after our

discussion of S-Matrix theory.

3.4 Axiomatic S-Matrix Theory

Axiomatic S-Matrix Theory (AST) has been given a solid foundation®” by starting
from the principle of macroceusality. This principle says that all interactions between parti-
cles fall-off exponentially under space-time dilations unless the interaction can be transmitted
by the exchange of (interacting) stable particles. This leads to the existence of (infinitesimal)
domains of analyticity for S-Matrix elements in the immediate neighborhood of physical re-
gions. Note that while macrocausality is thought to be consistent with the microcausality
property of AFT a direct relationship has yet to be established. It is thought that unitar-
ity of the S-Matrix has to be combined with the microcausality property of AFT to derive
macrocausality. This is effectively the purpose of the “non-linear program” of AFT in which
“asymptotic completeness” is added as an additional axiom to allow the mixing of unitarity

properties with the off-shell analyticity domains of AFT.

Given the local analyticity which follows from macrocausality it is possible, within

AST, to study the minimal singularity structure required by unitarity and to analyze the
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discontinuity formulae implied. A heuristic way to understand the basic results3*38 of AST
is as follows. First write the S-Matrix as § = 1 + R* and its Hermitian conjugate as
S+ =1 — R~. The unitarity equation $S* =1 can be written formally as
R-—
+ = 2
R T - (3.23)
=3 (R~ (3.24)

Using a conventional bubble diagram notation for Rt and R~ and inserting intermediate

states into (3.24) we obtain for a generai connected part of Rt

(3.25)

= Z B,
where the sum is over all kinematically possible connected (minus) bubble diagram functions.

(Note that all internal lines are on mass-shell in such diagrams.)

The series (3.25) displays explicitly all possible normal-threshold and higher-order
Landau singularities, in the sense that new terms appear in the series whenever such a (gen-
eralized) threshold is passed. The sum of these new terms actually defines the discontinuity
at such a threshold. As a result the total discontinuity across all thresholds in a partic-
ular channel is then defined as the sum of all terms in (3.25) which have a phase-space
integration in the relevant channel. Extending this argument multiple discontinuities can
be defined from (3.25) by keeping those term which have all the corresponding phase-space
integrations. Consequently it is possible to given an S-Matrix definition of amplitudes on
all sides of normal threshold cuts. The main consequence is that there are good and bad

boundary-values onto the “unphysical” sides of normal threshold cuts.

Amplitudes cttained as bad boundary-values have the very undesirable property that
the higher-order Landau singularities they contain produce muitiple complex cuts extend-
ing from the real normal threshold cuts as illustrated in Fig. 3.2. Conversely the good

boundary-value amplitudes have a neighborhood of analyticity close to the physical region.

25



The higher-order Landau singularities are real and contained within the (product of) the
normal thresholds.

To write a dispersion relation we clearly require global analyticity properties of the
kind discussed above. To “derive” global analyticity domains from AST necessarily requires
some form of mazimal analyticity assumption or principle. The simplest such principle is that
all 5-Matrix amplitudes with the same number of external particles are boundary-values of
the same analytic function {generalized crossing) and have only those singularities required by
unitarity. Adopting this principle the analyticity domain of Fig. 3.1 for the elastic amplitude
can be derived by first showing that the infinitesimal analyticity domain illustrated in Fig. 3.3
and involving both physical and unphysical sides of the normal threshold cuts, is consistent
with unitarity. This is in fact the case since there are no bad boundary-values for the elastic
amplitude. Consequently maximal analyticity says that the infinitesimal domain of Fig. 3.3

(derived fron» microcausality plus unitarity) can be extended to the global domain of Fig. 3.1.

Generalizing this last argument to multiparticle amplitudes requires that we start with
infinitesimal domains analogous to those shown in Fig. 3.3. We can then appeal to maximal
analyticity to extend such domains to global domains if and only if there are no complex
cuts extending uncontrollably out into the complex plane. Consequently an AST derivation!
of the asymptotic dispersion relations amounts to demonstrating that bad boundary-values
are not involved in the analyticity domain utilized. Remarkably, adding imaginary parts to
z; variables (only) does not allow invariants to acquire bad boundary-value imaginary parts.
We shall not attempt to prove this in general here but instead give an elementary example.

For the 2-4 amplitude shown in Fig. 3.4 a bad boundary-value is
s+10, 0 +10, s, ~10, s3 —10, (3.26)

whereas in the asymptotic limit associated with the Toller diagram of Fig. 3.1 we have from
(2.48)
§ ~v 212923, 81 ~ 2122, S2 ~~ 2223, O ~ 29, (327)
and no combination of imaginary part signs for the z;’s will give (3.26).
We see therefore that the dispersion relations follow in AST from maximal analyticity
plus the existence of good boundary-values. (The details, of course, depend on some further

properties which we discuss shortly.) At first sight the principle of maximal analyticity may

seem somewhat arbitrary. However, it is satisfied, to the extent of existing knowledge, by
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all Feynman diagrams and therefore in perturbation theory to all orders (ignoring possible
complications from renormalization and regularization) when the S-Matrix can be defined.
(Of course, the §-Matrix is not defined perturbatively in QCD because of infra-red diver-
gences.) There is also a body of knowledge on how the “physical solution” of any differential
equation is always “maximally analytic” as a function of the parameters involved. In fact
this line of argument is brought to its most sophisticated by Japanese mathematicians who
have suggested (and in some cases demonstrated) that the discontinuity formulae satisfied
by S-Matrix elements can be regarded as infinite order “pseudo-differential” equations. The
maximal analyticity assumption then appears closely related to Sato’s conjecture®® that
the S-Matrix is a holonomic microfunction—that is it is a solution of a maximally over-

determined system of pseudo-differential equations.

The most complete argument for the dispersion relations perhaps comes from com-
bining the AFT and AST arguments. That is the AFT analysis shows that the needed
global analyticity domains are present for spacelike masses while the AST analysis shows
that these domains are not violated by any singularities emerging from the physical regions
on mass-shell. Since it is very hard (if not impossible) to imagine any source of singularities

disconnected from the physical regions the AST analysis shows the AFT domains should be
preserved on mass-shell.

Our next task will be to describe the asymptotic relations in detail. (Afterwards
we will briefly comment on the extent to which we can derive them directly for the study
of QCD which is our ultimate purpose.) For each multiparticle amplitude there will be a
separate dispersion relation for each Toller diagram introduced in the last Section. (Although

as we shall describe some individual contributions can appear in more than one dispersion
relation.)

The dispersion relation for a particular Toller diagram is derived by regarding the

N-point amplitude as a function of the ¢;, z; and u,) variables introduced in the last Section.

That is we write

1"I(p1, e ,pN) = M(tl, e ,tN._3, 21y yZN=3y U125y 'LLN_4,N_3). (328)

We then fix all ¢; in a direct-channel region. We further fix the u;; at physical values and
regard the amplitude as a function of the (N — 3) z;-variables, to which we apply the many-

variable generalization of the Cauchy formula—that is the “Bargman-Weil” integral formula.
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We begin by describing this formula in the most directly applicable manner.?

3.5 The Bargman-Weil Formula

Suppose a function f(z) = f(z1,...,2a) is analytic in a domain D that is the whole

space C™ minus a set of cuts ¢,, where
Cm = {g €CY Imsn(z) = 0}. (3.29)

(Clearly we anticipate that s, is an invariant variable and ¢,, the corresponding normal

threshold cut.) If I* is the intersection of n such cuts we define the multiple discontinuity

atgel’\as

Az\(g)=2(_1)n’f (‘E(Res'\l :EiO,...,Res,\,,L:EiO)), A= (A, dn) (3.30)

where the sum is over all combinations of + signs and n’ is the number of minus signs. The

theorem says we can write

flz) = XA:f*(sz"(z), (3.31)

where the sum is over all sets of n cuts A and f° includes possible contributions from

intersections of less than n cuts together with the “sphere” at infinity and

1
Y 2) — ! .. ! A ' /\] Az .. /\n s N
fiz) = Grip /;'GI* dzy...dz;, A*(Z") x det (g v 4. q ) (3.32)

The generalized dispersion denominators ¢*™ must satisfy

¢ (z,2)(F—2) =L (3.33)

We would ultimately like the contributions (3.32) expressed as integrals over the

invariant variables s,,,. If we simply change variables to the s,, and write (3.32) in the
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form

< A z. 2
f)\ (Z(S,\)) = _—1_/ dSS\ .. dSS\ —a.t— A)‘(SS\) D ("”' ( )‘))
4 (2775)" 2'elr 1 » | Os, .y (Sf\, - S,\,(g)) .. .(s’)\n — SAn(g))'

(3.34)

(3.33) will be satisfied if the numerator D*(z,2) is the determinant of any set of functions

p)., satisfying
$3m(2) = 8an(2) = 3 P (2, 2')(20 — 20). (3.35)
¢

Note that this implies that

Dz2) =22, (3.36)

Z

In a general application of the Bargman-Weil formula the numerator D*(z,2’) can
be very complicated (if the sy, (z) are sufficiently complicated functions). However, in the

special circumstance that the sy, are simple polynomials (or entire functions) of the z; we

can expect to write
D'2) = D(esa)+ [on(e) = on(e)] B ) oot [s1(2) - 020 B2, (390
where the E)\ (z, 2') are also polynomials (or entire functions). Substituting (3.37) into (3.34)

the first term gives a very simple expression

Al o?
4 (‘3“’“’) = o St 2 ( £1)

. %(g)) (A - smg))

, (3.38)

while the remaining terms in (3.37) cancel at least one denominator in (3.34) and so can be

included in the f° term appearing in (3.31).

Our assumption of multi-Regge asymptotic behavior which generalizes (3.4) (and

which we describe in greater detail in later Sections) will be that

N=-3
f2)=M(t,z,u), oo TT(25)%®) (3.39)

i=1
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where again there may also be (In z;)?: factors). Since this asymptotic form represents a
( g y j P p

function with n = (N — 3) cuts in the z;-variables it can only originate from the f*(z) terms

in (3.31). Also in the same sense that sq was irrelevant in (3.7), non-leading functions of

the z; appearing in the sy,(z) can be dropped in writing that part of the f*(z) which can

generate the asymptotic form (3.39). Consequently we can write as an asymptotic dispersion

relation

M(t,z,u) = 3 MMt z,u) + MO(8, 2,u), (3.40)
A

where we can use the asymptotic form (2.48), which expresses all invariants as polynomials in

the z;, to justify writing each of the M*(¢, z,u) in the simple form (3.38). M°(¢, z,u) contains

all non-leading multi-Regge behavicr. Therefore the problem of writing the full asymptotic

dispersion relation reduces to enumerating the complete set of multiparticle discontinuities

(3.30).
3.6 The Steinmann Relations and Multiple Discontinuity Formulae

From the AFT analysis in Section 3.3 leading to (3.21) it is clear that all of the
multiple discontinuities involved lie in the set (3.21). At first sight this implies that too
many cuts intersect to apply the Bergman-Weil formula. However, the Steinmann relations
imply that only (N — 3)-fold multiple discontinuities occur. In AFT the Steinmann relations
are linear relations between the GRF’s involved as boundary-values in the distinct tubes
(3.11). Multiple discontinuities are defined in analogy with (3.30) as multiple differences
between GRF’s with £7 0 replaced by 2 for the subsets A of (3.11). The Steinmann relations

simply state that there is no double discontinuity for two overlapping 1. innels.

In the AFT context a channel is a subset of the external momenta p;...py_3 and
two channels overlap if they include common momenta but neither set is contained entirely
in the other. If all the @; of a Toller diagram are spacelike and all the external momenta p;
are also spacelike, then each maximal set of non-overlapping channels can be characterized
by a conjugate Toller diagram-—that is a tree diagram which again contains only three-point-
vertices but which has no internal lines in common with the original Toller diagram. The
non-overlapping channels are the internal momenta of the conjugate diagram. Since there

are again (N —3) internal lines it is clear that all multiple discontinuities involve only (N —3)

(or less) channels.
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Within AFT therefore the multiple discontinuities contributing to (3.40) for a par-
ticular Toller diagram are in one to one correspondence with the “conjugate” set of Toller
diagrams. The discontinuities can be directly evaluated in terms of GRF’s or, if complete
sets of states corresponding to the tree diagram are inserted, as products of amplitudes.® Of
course, all of the AFT formalism is for spacelike masses and if physical intermediate states

are used we are effectively assuming asymptotic completeness.

Within AST a channel refers to an invariant (the “mass” of the momentum involved
in the AFT formalism) and multiple discontinuities involve the definition (3.30). It is non-
trivial to show?! that the Steinmann relations can be analogously applied as above because and
only because just good boundary-value amplitudes are involved. The multiple discontinuity

formulae derived™ can also be shown to be identical to those derived in the AFT context.
Consequently the identical asymptotic dispersion relation is derived off mass-shell from the

AFT formalism and ¢i. mass-shell from the AST formalism.

A further feature of the asymptotic nature of the dispersion relation is that many
inverient cuts coincide asymptotically. Because of (2.48) all invariants Syn..» having the
same longest path through the Toller diagram (linking any two of the external momenta)
coincide asymptotically. However, only multiple discontinuities involving (N — 3) asymptot-
ically distinct invariant cuts can contribute to the multi-Regge behavior (3.39). Therefore
we further modify our description of (3.40) by insisting that the M? originate from N — 3-
fold discontinuities invelving asymptotically distinct cuts only. This brings us to our final

classification of discontinuities.

3.7 Hexagraph Classification of Multiple Discontinuities

Given a particular hexagraph we define an alloweble discontinuity as in any chan-
nel defined by a set of external particles such that the minimal path (cut) drawn through

the graph connecting all the particles involved enters and exits only between 60° lines as

illustrated in Fig. 3.5.

Any set of (N — 3) non-overlapping cuts which are asymptotically distinct with re-

spect to a particular Toller diagram correspond to a unique hexagraph if all (N — 3) cuts
are required to be allowable. This is because allowing each cut to enter and exit appro-

priately, determines the choice of hexagraph vertices at each vertex of the Toller diagram.
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Consequently we can re-express the asymptotic dispersion relation (3.40) in the final form

M(Pl,---PN)= ZJWH(PI,---aPN)‘i‘MO: (341)

HEeT
where M? again contains all non-leading multi-Regge behavior and the sum is over all hex-
agraphs H generated by the Toller diagram T. Each “hexagraphical component” M is

further written as

MY =% M%@p,...,pn), (3.42)
CeH

where now the sum is over all sets C of (N — 3) asymptotically distinct, non-overlapping,

cuts which are (all) allowable cuts of the hexagraph. If we denote the invariant cuts of a

particular C as (s, ..., sn-3) then from (3.38) we can write
Mo o) = .1 f dsy...dsy_sAC(t,w, s}, 8h,...,sN_3) .4
e (2mi)N-3 (s} —s1)(sh —s2)... (=3 — SN=3) '
where from (3.30)
AC(t, 0,81, n-3) = I (—1)" M(t,w,s; +90,82 £ 10,...,sn-3 % 30), (3.44)
and the asymptotic relation (2.48) is used to change variables from z1,...,2y-3t031,...,8N~3-

(3.41)-(3.44) is our final complete description of the asymptotic dispersion relation for
an N-point amplitude associated with each Toller diagram. Clearly it is trivial to introduce
the simple (unique) Toller diagram for the elastic amplitude such that (3.7) is expressed
in the form (3.40)-(3.44) showing that we have indeed formulated a direct multiparticle
generalization of (3.7). We close by discussing briefly the extent to which we expect the

foregoing discussion to apply either directly or indirectly to QCD.

The S-Matrix of QCD presumably involves hadrons only and it is quite possible, if
not probable, that hadrons are not describable by off mass-shell fields of the kind required to
apply the AFT formalism above. In this case we would have to appeal to the AST formalism
alone. (Of course, we have emphasized that the AFT results can be viewed as simply making
plausible the maximal analyticity assumption of AST.) However, the starting point for our
direct construction of the Pomeron in QCD will be the perturbative Regge behavior of the

spontaneously broken massive theory. The perturbation theory of a (completely massive)
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spontaneously broken gauge theory should satisfy all the assumptions of the AFT (and the
AST) formalism. In this case all of the asymptotic dispersion relation formalism and all of the

following multi-Regge theory should directly apply—given that the perturbative high-energy

behavior does indeed sum up to Regge behavior, as all existing calculations imply.
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4. PARTIAL-WAVE EXPANSIONS, FROISSART-GRIBOV

CONTINUATIONS AND SOMMERFELD-WATSON
TRANSFORMATIONS

In this Section we shall set up the basic machinery for applying complex angular
momentum theory to many-particle amplitudes. An essential feature of the formalism is that
each hexagraph amplitude has a distinct Sommerfeld-Watson (S-W) representation and each
multiple discontinuity (that is each term in the asymptotic dispersion relation) corresponds
to a distinct analytically continued Froissart-Gribov (F-G) partial-wave amplitude. Again

we begin by briefly reviewing the elementary elastic scattering formalism.

4.1 Elastic Scattering

The familiar partial-wave expansion is

A(z,t) = ?(2[ + Day(t) Pe(2), (4.1)

where the P;(z) are Legendre polynomials and
1+
a(l) = 5/1 dzA(z,1)Pe(z) (4.2)

= _/; dzA(z,1)Q(2), (43)

where C is the contour shown in Fig. 4.1. Moving this contour out using Cauchy’s theorem

gives (if, for simplicity, we ignore Ao in (3.7))
at) = — [ dzQu(z)A(2,) 44
t _27rA¢ozlz %t (4.4)
Since the second-type Legendre function Q¢(z) satisfies
1
0y, r e e - (=77 »

it follows that if a,(t) is defined for complex ¢ from (4.3) then the contribution from the

right-hand cut

1
ﬁu=gﬂamumma (4.6)
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satisfies the Carlson condition for uniqueness (cf a function defined initially for integer £

only), that is
laf()] s &M 8< g (4.7)

-0
Re >0

Using the further property that for integer £
Qe(z) = (-1)*'Qe(-2), (4.8)

we can define “signatured” F-G continuations from even and odd £ respectively, that is
af(t) = [af(t) £ af(2)] /2, (4.9)

where ay(?) is defined exactly the same as af{(t) but with Q¢(z) — Q¢(—2), that is

at(t) = —-217;/;_ dz'Qe(—2")A(Z', ¢). (4.10)

Behavior of the form (4.7) for a7 (t) allows us to make a S-W transformation and

rewrite (4.1) as

a¢(
A(z,t)—-/ f;j:—gl)z [pe(z :i:pz(—z)] (4.11)
or equivalently
A(z,1) = Ar(z,t) + Ar(z,1) (4.12)
/de;ile ———=ap({,t)p(2) +/£i£(gg—f—l-aL(f,t)pz(—z). (4.13)

Comparing (4.13) and (4.11) we see that the signatured representation can be viewed simply
as a consequence of the right-hand and left-hand cuts having identical representations apart
from the change of sign of z. The importance of signature is, of course, that ¢-channel
unitarity equations are diagonalized by signatured partial-wave amplitudes. We shall discuss

this further in the next Section.

4.2 Multiparticle Partial-Wave Expansions

It is straightforward to generalize (4.1) to an N-point amplitude expressed as a func-

tion of a particular set of Toller variables since (4.1) is simply a special case of harmonic
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analysis on SO(3). For a general function f(g) on SO(3) we can write

f(g) = i Z Dfm’(g)alnn’, (414)
£=0 |n|,In*|<¢

where the DY, ,(g) are representation functions. In particular for the parameterization (2.13)

we have
DL (g) = e™di, ,(8)e™". (4.15)

Since d’y(0) = p’(cos §), (4.14) gives (4.1) for a function that is independent of y and v.

Using (4.14) we can write immediately

oo o0

o0
MN(Eyglj'-"gN—ii): Z Z e E Z
4=0 |n|,n}]<t; tn_3=0 |ny_3lin},_;I<tn-3 (4 16)
¢ [ IV
Dnli n; (gl) L D"!:"‘:;'”;V—s (gN-3)all Ny ""'lN-3'"N—3'"'N.~3(E)'

Since each My in fact depends only on combinations of the azimuthal angles p; and v; there
is an additional constraint on the sums on n;,n} in (4.16). If we temporarily adopt the
convention that at a vertex where lines 7, k, ¢ meet, the Lorentz transformations g;, g, g¢ are
defined to transform from this particular vertex to adjacent vertices then this constraint
takes the form

nj+ng+mn,=0. (4.17)
After this constraint is imposed there are (N — 4) independent n and n’ indices in (4.16)
(considering spiniess external particles) which are “conjugate” to the (N — 4) independent

azimuthal angles w;; discussed in the last Section.

For a particular hexagraph we can associate each ¢; with the corresponding horizontal
line of the graph and an appropriately chosen nj; = n; with each sloping line of the graph.
With the resonance interpretation of the hexagraph discussed in Section 2.3 the ¢;’s are the
angular momentum of the relevant resonance while the n;’s are the corresponding helicities.
It is then helpful to identify three subgraphs contained in a general hexagraph and to rebuild

the partial-wave expansion (4.16) using a partial-wave for each subgraph.

A T-graph is, as illustrated in Fig. 4.2, analogous to a 2-2 scattering amplitude. If
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the scattering takes place through a state (resonance) with angular momentum ¢; then
Tl) ~ dvl;’. ,n;-(zj) = df:j, +nj, ,nfu +'n";2 (zj)? (4‘18)

where n;,n; and n} ,nj, are the helicity indices associated with the sloping lines of the

T-graph and ¢; is the angular momentum associated with the central horizontal line.

A D-graph is, as illustrated in Fig. 4.3, analogous to a decay of a state (resonance)

with angular momentum ¢; and helicity n;, that is

D‘J ~ el"n,w,df‘) zJ) =1 dfl] n’ +n' (ZJ) (419)
A V-graph is, as illustrated in Fig. 4.4, analogous to a virtual transition, that is

Ve, ~ ei"’“”dt’ (z,) e = u"’d’ (zj)(u;-)";‘. (4.20)

[

The partial-wave expansion (4.14) is reproduced by choosing a particular hexagraph of the

original Toller diagram, writing T¢,, D, and V,, factors for each corresponding subgraph of
the hexagraph (identifying »; and n} labels where appropriate) multiplying by a partial-wave
amplitude and summing over ¢;, n; and n; labels.

It is, of course, trivial that a Toller diagram partial-wave expansion can be rewritten
in a distinct way for each hexagraph. What is non-trivial is that this will allow us to write
a distinct S-W transform for each hexagraph amplitude. Before discussing this in detail we

first discuss the transform? of the simple Fourier sums that are involved in the expansion

(4.16).

4.3 The Sommerfeld-Waison Transform of a Fourier Series

Consider the expansion

[ o]
= > a.un, (4.21)
n=-—oo
which we assume converges in some annulus around |u] = 1. If f(u) has the cut-plane

analyticity illustrated in Fig. 4.5, then we can write

’ f(u) = fi(u) + fe(u), (4.22)

37



where
1 dv’

L) =5 /gﬂg A (4.23)

I is the right-hand cut in |u|21 and IZ_ the corresponding left-hand cut. Since
<

1
>_ -
a“—27r

/{ 1 duu™" £, (u), (4.24)

the contour can be closed to zero for n < 0, while for n > 0 the contour can be moved out

to give

1
> —-_1=1 '2
a, = 2 /;;H; duv A(u). | (4.25)

Consequently signatured continuations can be defined as above
a%(n) = /1 , dun T A) & /1  du(~u)"" Alu), (4.26)
> >

and an S-W transform written

B= [ 2 emiewr ). (1.21)
Ren = —1/2 Tl

Clearly it is straightforward to derive a similar representation for f<(u) in terms of
signatured continuations a$(n). However, if we wish to study the asymptotic limit ju| — oo,
we can move the contour to the left in (4.27) giving contributions from the singularities of
a2(n) and from the poles of the [sin7n]™" factor. These last contributions will be inverse
powers of u which will in general simply cancel the series expansion of f<(u). Therefore
the |u] — oo f‘Regge behavior” of f(u) (given by the dynanucal singularities of arz(n)) is

entirely contained in the representation{4.27). Of course, for an amplitude that is a function

of cosw = 3 (u + %) the behavior as |u| — oo must be identical to that for Ju] — 0.

4.4 Problems for Many-Variable Transforms

Each hexagraph (amplitude) has multiple discontinuities in (N — 3) variables (if the

t-variables are below threshold), while there are (2N — 7) angular variables available to
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describe the corresponding cuts. From (4.3)-(4.13) or (4.23)-(4.27) it is clear that the
existence of a continuation to complex angular momentum or helicity (and the subsequent S-
W representation) is a direct reflection of cut-plane analyticity in the corresponding complex
plane. It might seem therefore that the most obvious multiparticle procedure would be to
simply look for a continuation to complex values of each of the (N —3) ¢; as a reflection of the
(N - 3)-fold multiple discontinuities. However, it is clear from (3.21) that we have something

more complicated than simple cut-plane analyticity in each zj-variable. To illustrate some

of the issues involved we consider first a function f(u;,u;) of two u-type variables.

If f(uy,uz2) is analytic for |u,{, |uz| ~ 1 then we can write

+co [e-)
flug,ug) = Z Z u un?an, n, - (4.28)

ny=—00 ny=—00
Suppose also that for large u; and uy there are (right-hand) cuts in the planes
Imu; =0, Imuju, =0 (4.29)
associated with the asymptotic behavior

’
flanug), g (uu)P s ufPud. (4.30)

luzf—co

From (4.23)-(4.27) it is clear that we should simply take f to be a function of u; and

uju and carry out the corresponding S-W transform, that is we rewrite (4.28) as

+oo +0o0
f(ul)UZ) = Z Z u?l'":(uluz)ﬂzanlnz (4.31)
Ny==—00 N —Nz=—00
dng dn,
= sin T sin7r(n —n )’u?"u;za(nl,nz)
Renp=—1/2 2 Re(ny—ny)=-1/2 17~ T2

-1 +oo +oo -1
+( )IEEED DN D DD S ) (4.32)

R2==—00 N1 =N2=—00 N2=—00 N —Ny=—00
(for simplicity we have omitted signature). Pulling the n; and n; contours to the left we
expect to pick up poles at n; = a + 4 and n», = § while the contributions of the poles at
integer n, and n; — ng are cancelled by the sums in (4.32). Consequently we obtain

ug(uyug)?
sinm(a + B)sintg’

f(ula u2) ~ Ra+ﬁ,a (433)
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From this simple manipulation there are a number of general points we can make.
Firstly we note that the “kinematic poles” or “phase-factors” [sin 7(a + 8)]”" and [sin #8]™"
arising from the S-W procedure actually distinguish in which variables the asymptotic cut
structure appears even though the location of the helicity (or angular momentum) plane
singularities does not. Secondly we see that only a subset of the sums in the partial-wave
expansion is responsible for building up the asymptotic behavior that is of interest. In this
case it is the subset

ng >0, ny > ng. (4.34)
If the function f(u;,uz) also had branch-points (with a simultaneous discontinuity) in =,
and u,u; than the corresponding asymptotic behavior would be generated from the part of
the partial-wave expansion satisfying (4.34) but with n; and n; interchanged. Note that the

FG continuation a(n;,%2) has to be defined as a two variable generalization of (4.25) that is

(for right-hand cuts only)

a(mng) = / duyduy Aluy, ugug)uy™ " tuz"t (4.35)

u1>u‘,’
uyup>(u) uz)°®

and this will only satisfy the Carlson condition for uniqueness (4.7), in the half-planes corre-
sponding to (4.34). To obtain the formula (4.35) it is necessary to apply the Bargman-Weil
theorem (3.32) (which can be regarded as the many-variable generalization of Cauchy’s the-
orem) to the two-variable version of (4.24). In fact this is straightforward because there are
no singularities of u7™ 'u3™*"! in the finite u, or u; planes that would interfere with the

two-variable contour manipulation.

This last point has a very important general significance because if we were to at-
tempt a two-variable generalization of (4.2)-(4.10), the singularities of Q,(z) at z = +1
would directly prevent the appropriate two-variable contour manipulation. (In addition to
integrals over the double discontinuities of the function there would be integrals over single
discontinuities together with a discontinuity of one of the Q¢(z)). As a result it is essentially
impossible to define a simultaneous continuation to complex values of two or more ¢; vari-
ables (we shall qualify this shortly). Fortunately we can exploit the similarity of the analytic
structure with respect to the z; and uj; variables emphasized in the last two Sections and ob-
tain multiple helicity continuations even though multiple angular momentum continuations

cannot be defined.
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The above discussion is intended to explain in general terms why the distinct sets
of cuts associated with each term in the muitiparticle dispersion relation (3.42) require a
distinct S-W transform procedure. One important property of the hexagraph notation is
that it classifies together all those sets of cuts for which continuations in the same helicity
and angular momentum variables are made. However, distinct sets of cuts associated with
the same hexagraph do differ in terms of constraints of the form (4.34) on the parts of the
partial-wave expansion that are S-W transformed. We shall first give the rules for which
continuations exist for a particular hexagraph amplitude and then briefly outline how we

demonstrate the existence of such continuations.

4.5 Froissart-Gribov Continuations for Hexagraph Amplitudes

As is clear from subsection 4.3 the negative helicity terms in all partial-wave expan-
sions can be handled analogously to the positive helicity sums and simply produce cancel-
lations in all discussions of asymptotic behavior. Therefore we shall adopt conventions for
azimuthal angles that allow us to always consider all helicities to be positive in the follow-
ing. We describe the rules for F-G continuations in terms of the T, D and V subgraphs of a
hexagraph.

In each V; we can take n; complex with ({; — n;) and (»; — n!) held fixed at integer
values. In each D; we take n; and n; complex with (£; — n;) held fixed at an integer value.
In each T we can take all three of £;,n; and n} complex. (Note that each n-label appears in
two subgraphs, although the corresponding u is associated with only one subgraph.) These
rules imply that the helicity labels, which are attached to sloping lines of the hexagraph, are
always coupled (that is differ only by an integer) to the angular momentum associated with

the corresponding horizontal line of the hexagraph.

It is interesting to note that the continuations we make correspond, in the case when
no v}’s are present in the hexagraph, to continuing the total cross-channel angular momentum
to complex values, together with all the helicities of (cross-channel) subchannels. In no case
is the angular momentum of a subchannel continued separately from the helicity. When
Vj’s are present the total angular momentum of the cross-channel is not used as a variable.
Instead, the scattering can be regarded as made up of subprocesses for which the total

angular momenta and subchannel helicities are analytically continued.

We begin the general construction of F-G amplitudes by discussing the V; subgraphs
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first. For simplicity consider a hexagraph A¥(z,u,t) with a single V; subgraph, for example

that shown in Fig. 4.6. We consider first the analyticity properties of the partial-wave

amplitude obtained by performing just the z;-integration, that is we consider
H + : H
Al,'n_,‘ﬂ_',- 21,---azj-1,2j+1,---,%15 = ./—l dzjdf:,n_',(zj)A (fayaé) (436)

The cuts of AZn,n; include those of A which are independent of z; together with branch
cuts arising from collisions of the branch points of Ay with the end-points z; = £1. It is
important that because of the allowable discontinuity rule of Section 3.7, A¥ has no cuts
depending on just z; (and no other angular variables) and also no cuts depending on u; but
not u} (or vice-versa). (Both of these features follow because a path defining an allowable
discontinuity cannot exit at either of the vertices to which the V; graph is attached.) The
location of the resulting end-point branch cuts can then be determined by simply contracting
out the j-line of the hexagraph to effectively give a smaller hexagraph as described in 2d.
The resulting branch-cuts will be functions of the variables u = u;uj or ' = u;/u} depending
on whether they are generated at the z; = +1 or z; = ~1 end-points respectively. The cuts
which are functions of u will have no double discontinuity with those which are functions

of u' since they are generated at distinct end-points. If we now carry out the u; and u}

projections we can write

’ (4.37)

By moving the u-contour out to enclose the cuts of A . we can define a F-G continuation
to complex n; + n; with »; — »} fixed at an integer value. We cannot simultaneously move

out the u'-contour because of the absence of double discontinuities in « and u’. This absence

also implies that X, ,(z,u,¢) will have branch-cuts in only those invariant variables which

are independent of both u and u'. Effectively then af , has the branch-cut structure of the

jnn’

two hexagraphs which are joined by the Vj-graph in the original hexagraph. In the case of
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Fig. 4.6 this is the two hexagraphs of Fig. 4.7. Clearly for hexagraphs with many v;’s we

proceed similarly to the above and arrive at an amplitude with the cut-structure of a product

of hexagraphs all containing no v; subgraphs.

We now have to consider only hexagraphs that contain a single T subgraph with an
arbitrary number of D-graphs attached to each leg as illustrated in Fig. 4.8 [The most general
hexagraph contains an arbitrary number of such structures connected by V-graphs.] The cor-
responding F-G amplitude can be defined straightforwardly by simply applying the analogue
of (4.2)-(4.4) to the z; projection associated with the T graph after applying (4.23)-(4.27)

to each of the u;-projections associated with the D-graphs. We need only the generalization

of (4.2)~(4.3) which is provided by the formula

-—n—n

(1 —z)-n’_z—— nn'(z) n> 77.

dise [(1+42)™F (1= 2)" el ()] = 50+2)

~1<2<1

(4.38)
= Pj'"(z),

where P'~"(z) is a polynomial for j — n = N an integer and e,m,(z) is a “second-type”
representation function. The appropriate powers of (1 + z) and (1 — z) needed to apply this
formula always emerge, if the integrals over the u-variables are performed first, because of

the factors sin 8, (cos8;, + 1) etc. appearing in (2.49). The asymptotic behavior needed to

check the Carlson condition is
ein’(z) 'J[LVOO j:é—l-ejln[z_(zz_l)l/zli (4-39)

which is a simple extension of (4.5). In general the additional factors in (4.38) will imply

the Carlson condition is satisfied in the half-plane

Re(j —n) > 0. (4.40)

An additional property of the €} ,(z) and d_.(z) functions that we shall reed in the
following is their “fixed-pole” structure. At the “nonsense” point j = n — 1, efm,(z) has an
inverse square-root branch-point and

nin’ 5__ —-n n - 1/2
(142)55(1 = 2) T el (o) oy TEL2E VG2t 1}2%:2; DI = n' + 1))

(4.41)
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It will also be important that d’ ,(z) has an inverse square-root branch point at j = n’ — 1

and when also j = n we have a particularly simple result, that is

- den 1 [TG+n+ 10 —n' + 1))
- g = — 9
(1+2)77 (1—2)2 d,(2) > TG+ T UTG —nt D) . (4.42)

The F-G continuation of a hexagraph of the form of Fig. 4.8 has the general form

/A d-’.’(l + z)n,+n2+n3+n4(1 - 2)n1+n2—n3_ne;’;1+ﬂ2»n3+n4 (2)

M i1 +1 ; u (4-43)
xH/AMdujuj ) H/l d2jd? A" (2,20, wry s 1),
j=17% F R

where the integration over the region A x A™ will be around the non-zero multiple discon-

tinuities A® of Ay. From (4.41) and (4.42) the continuation to £, n1,...,nas, complex (from

ny + ng > n3 + ny, say) and with & — ny,...,fy — np kept fixed has branch-points at
f=n1+n2—1, n.1=€1=n5+n6—-1,.... (444)

The “residue” at the product of such singularities reduces (apart from a normalization factor

due to (4.41) and (4.42)) to the simple integral

> /a’s; coedshr o D(zyu, o uag, 8y S A (ST Shr)s (4.45)
CeH

where A€ is given by (3.44) and D(z,u,s’) is the relevant Jacobian. For large z and u

this Jacobian is simply a product of factors [\/Z;/\“’/Z(tj, tj+1,tj+2] for each vertex of the
hexagraph.

To obtain a signatured F-G amplitude we have to add together all hexagraphs related
by twisting—with a positive or negative sign for each twist (according to the signature
associated with the line twisted). For the residues at a nonsense singularity to not cancel
(by virtue of a contour in (4.45) being closable to zero), the nonsense point must be wrong-
signature. For example, the nonsense singularity at £ = n; + n; — 1 in (4.44) will be

wrong-signature if 777 = —1 where 7, 7, and 7, are the signatures associated with £, n,;
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and n; respectively. “Nonsense, wrong-signature, fixed-poles”, which are products of the
branch-points we have discussed, will play a vital role in the generation of Regge cuts in

unitarity integrals discussed in the next Section.

Since there is only one z-integration manipulated in arriving at (4.43) there is, as
discussed above, no multivariable problem. Similarly there is no such problem for the simul-
taneous continuation to complex valnes of ¢;’s corresponding to T-graphs linked by V-graphs
(together with some number of D-graphs in general)—this being the only exception to the
statement in subsection 4.4 that two or more ¢;’s cannot be simultaneously continued. This
exception is possible because as we have described there is effectively a factorization of the
cut-structure involved.

Signature is introduced in general into the F-G and 5-W transformation procedure by
adding together all hexagraphs differing simply by a twist as described in Section 3. A single
twist can be treated as simply changing the sign of the angular variable (associated with the
line about which the twist is made) whose conjugate variable (¢; or n;} is taken complex. In
effect then (4.9) and (4.13) simply generalize by the presence of corresponding minus signs
associated with twisting—the twist of the hexagraph representing the right-hand cut in the

elastic amplitude to give the left-hand cut hexagraph being the simplest example of a twist.

The F-G amplitudes define by the above procedure will satisfy the Carlson uniqueness
condition only in appropriate half-planes in analogy with (4.34). This will determine the

form of the corresponding S-W transformation as we will illustrate on some examples in the

next subsection.

4.6 Sommerfeld-Watson Representations of Hexagraph Amplitudes

Rather than giving a general description of the construction of S-W representations
we shall give a detailed description of the representations for a small number of individual
hexagraphs. This will illustrate the general construction but will also enable us to make

some important special comments associated with the particular hexagraphs we choose.

Consider first the Toller diagram of Fig. 2.2. There are three z; variables, two uj;
variables and three ¢;-variables. Altogether there are thirty-two hexagraphs associated with
this Toller diagram (if we distinguish hexagraphs differing by a twist) all of which are drawn
in Fig. 2.5. The sets of branch-cuts in each type of hexagraph are illustrated in Fig. 4.9.
As illustrated in Fig. 4.9a each of the hexagraphs in Fig. 2.5a has only one sets of cuts, as

45



do each of the graphs in Fig. 2.5d. Similarly Fig. 4.9a illustrates that all the hexagraphs of
Fig. 2.5¢ also contain only one set of cuts. In contrast half of the hexagraphs of Fig. 2.5b
contain three sets of cuts as illustrated in Figs. 4.95-d while the other half contain the two
sets illustrated in Figs. 4.9e and f. Altogether the thirty-two hexagraphs generate forty-

four sets of three cuts and so there are forty-four terms in the corresponding asymptotic
dispersion relation as described in Ref. 2.

We describe first the S-W representation for the first hexagraph of Fig. 2.5a which
has the cut structure shown in Fig. 4.9a. The angular variables and corresponding angular
momenta and helicity labels are shown in Fig. 4.10. This hexagraph contains one 7-graph

and two D-graphs and so the partial-wave expansion has the form

Ap(z1, 22, 23,u1, Uty by 1) = D T, De,Deyaen (4.46)

fn

= S d ()l dl , (22upd (za)aga(t).  (4.47)
n

A F-G continuation can be defined to complex £;, n;, and n;. The corresponding asymptotic

cut structure is in the variables 2y, u; and u; and is given by (in the limit z;,u;, up — o)

Sz = (P + P3)*~ 2z (4.48)

Sz =(P2+ P+ P~y = [(zf - 1)1/2 (z;‘: - 1)1/2] Uy (4.49)
2

Sis =(PA+ P5)2 ~ Y23 = [(212 - 1)1/ ((z§ - 1)1/2J U Uz (4.50)

From the F-G formula, or by comparing with (4.31)-(4.34) we see that we can expect
the analogous constraints to (4.34) following from the asymptotic relations (4.48)~(4.50) to

be
6 2n, np2n, n 20, (4.51)

that is the F-G formula would show that it is in the three complex half-planes

Re(t’l - Tll) Z 0, Re(n; - ‘nz) 2 0, ReTl;_J Z 0, (452)
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that the Carlson condition for uniqueness is satisfied. The corresponding S-W transform is

Ay = 1 / dng up? / dny up! / d,ds, (=)
8 ) sin Tng o sin r(n; — ny) . sinw(¢; — ny)
Renz = —35 Re(ﬂl - le) =—-3 Re(el - TL]) = -3
oo
X Z dﬁzx ,ng(z2)d£fg,0(z3)aN2Ns (el’nl,nh f)
P

+ ZeﬂTlx thDtsagg(E)’
(4.53)

wherc the sum ¥ is over that part of (4.47) not reproduced by the integrals in (4.53).
As discussed above we expect 3 to simply cancel non-Regge behavior produced from the
integrals in the asymptotic limits we study.

From the definitions of PY(z), y12 and #123 in (4.38), (4.49) and (4.50) respectively

we can rewrite (4.53) in the form

dnzdnldfl
A =/ . " " ny o ni—np plh—~n
H sin 7ngsin 7(ny — ng)sinw(¢; — nl)yl"’ayl‘-’ p (1)
x S PM(2)PY(z3)amn, (1, 7,3, 1) (4.54)
Ny ,N2=0

+ ) Ty, De, Deyagq(t),

where now, since all of the asymptotic cut structure of Ay has been represented by the S-W

integrals we expect the polynomial sums over V; and N, to be convergent in the asymptotic

regions we study.

Unitarity determines (see the next Section and Ref.1) that the Regge singularities of
an, N, (6,1, 12) occﬁr at values of £;,€; = n; + Ny and 43 = ny + N,. As a consequence an
asymptotic expansion for the multi-Regge region 2y, 22,23 — oo, with u; and u, fixed, can
be obtained by pulling back the 4, n, and n2 contours in (4.54). In particular Regge poles

at &, = oy, &y = az, €3 = o3 will give

oo ﬂm&zas PN; (Z )PN:{Z
N N 2 3 - -
Ag _~ . e ) 280 (2011)°7M (23u5) %™ (4.55)
TR N, WMo SR Tagsinm(az — ag) sin7(a) — az)
23~=+00
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~ 2?‘ 2;221?3 i ﬁﬂlaﬂo'Suai'Nl uaa-Nz (4 56)
sin Ty sin (@, — as) sin 7(a; — 2) S0 NN % 2

Again we see that the [sin mas)™", [sinm(a2 — a3)] ™", ... factors reflect the asymptotic cut
structure of Ay. In fact the Steinmann relations discussed in the last Section determine that

this must be the case. To see this we rewrite (4.56) in the form
AH ~ 2;’1-02(21 zgul)""“” (Z] 2223111“2)“3‘/010,203 (ul, UQ) (457)

~ (S23)*17%(S236) 2" (S15)™* Vay g (11, u2), (4.58)

which implies that asvmptotically

déff ap ~ sin 7!'(01 - ag)AH (459)
dsjzsag ag ~sinw(a; — az)Ay (4.60)
dé,ff ay ~ sinwagzAp. (4.61)

Consequently each discontinuity cancels one of the poles in the aj-variables—which for the
purposes of the Steinmann relations we regard as poles in the ¢j-variables. Therefore the
triple discontinuity of Ay indeed has no poles in the ¢;-variables. Since the #;-channels

overlap the discontinuity channels, the Steinmann relations imply this must be the case.

In the “helicity-pole” limit z;, uz, us — oo we obtain from the same Regge poles
a very similar (but simpler) expression to (4.58) by again pulling back the #;, n, and ng

contours in (4.54) giving

oy —ap, Cy—-03 03 Q010203

A ~ 2y " i3aBod 4.62
H 5 = ; : (4.62)

A7 sinwas sin w(az — az)sinw(a; — az)

u3 —Coo
ﬂggazaa
ay—0p Og—Q3 03

~ S5 S236 S (4.63)

sinragzsinw(az — az)sinw(a; — ag)’

So in terms of invariants we have the same result as (4.58) but with the distinction that the
vertex function involved is a sirgle (analytically-continued) partial-wave amplitude. This
emphasizes the close relationship between the u;-dependence and z;-dependence of ampli-
tudes in the asymptotic region which is, of course, a consequence of the presence of only
(N —3) cuts (in general) for (2/V — 7) variables. It will be very important in the following

that helicity-pole limits have the advantage of isolating a single partial-wave amplitude. This
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is because the unitarity properties of such an amplitude can be straightforwardly studied.
Note that the helicity-pole limit (4.62) is not a physical region limit although for the more

complicated hexagraphs studied in later Sections the analogous limits will be.

We consider next the first hexagraph of Fig. 2.5b whose cut structure is shown in
Fig. 4.96-d. This is a more complicated example since there are three sets of cuts contained

in the same hexagraph. Fig. 4.9b gives cuts in

Sze ~ 22 (4.64)
S35 ~ Y12 (4.65)
Sis ~ i (4.66)
Fig. 4.9¢ gives cuts in

Sz ~ 22 (4.67)
Ssea ~ [(zg - 1)1/2 (z§ - 1)1/2} Uz = Ya3 (4.68)
S5 ~ Y123 (4.69)

while 4.9d gives cuts in
S = (Pr+ Py)’ ~ y12 (4.70)
Sz = (Ps+ Ps)* ~ yas (4.71)
S1s = Y23 (4.72)

For all three cases the F-G continuation made is to complex n;, ny and &; with § — n; =

Nyand &3 — np = N, held fixed at integer values. However, the set of asymptotic cuts

(4.64)-(4.66) leads to the constraints (analogous to (4.34))

€2,,_>_ n, ni Z N2, N2 2 0 (473)

and the corresponding S-W transform is

1 dnzdnldfg
Ay = = ng ,n1-nz pla—ny
H =%/ sinwnysin 7(n1 — ng)sinw (¢, — n;)y123 ni P (22)
(>
X Z PNI (ZI)PNQ(Z-?)GN;N: (£2anl)n21 !) (474)
N; ,Ny=0

+ 3 Dt Te, Dyara(t),
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which is very similar to (4.54). The S-W transform for the sets of cuts (4.67)-(4.69) is the

same but with n; « n,.

The S-W transform of the dispersion integral corresponding to (4.70)-(4.72) has,

however, some distinctive features. The Carlson condition requires that the S-W transform

be made on the half-plane sums

gz — _>__ O, [2 - N2 2 0, n; + ng — €2 2 0, (475)

while the distinct analytic definition of df,m(z) for n; 2 ng requires that we treat these two

cases separately. In practice there will be two terms in the transform, with the first having

the form
1 dn,dngdfz ng , ny-nz
= - > - —n2 pla=—m
., sinw(€z — n1)sinw(ny — ng)sin 7(ny + np - 22)y123y12 (22)
Re(l;—n; )=-5‘
Re(ry—n2)= ;—

Re(ni+nz—f2)= %

Q
X z PN (2) PN (23)an, n, (82, 1, 22, t)
Ny ,N2=0
+3,
(4.76)
while the second has the same form but again with n; <> na.
Consider now the contribution of Regge poles at & = a4, £, = a3, 5 = agz, to the

helicity-pole limit z3, uy, uz — oo of (4.76). Pulling back the ¢;, n; and n; contours as usual

gives
~ v AT sinw(az — a)sinw(a; — az)sinw(eq + a3 — ag)’ (417)
Since
Yrayza | 07 Zathas, (4.78)

it is straightforward to rearrange the power behavior in (4.77) to give, from (4.70)-(4.72)

ngazag
Sas+ax—&2502—ﬂa az—0 - - - .
T % 3 sinw(a; —aq)sinw(eq — a3)sinT(ay + a3 — az)’ (4.79)

which cannot be the complete asymptotic behavior giving the triple discontinuity of (4.70)-

(4.72) because the pole factors in the denominator are not cancelled in the triple discontinuity
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and there would be a conflict with the Steinmann relations. However, the second term (with

ny < n, in (4.76)) resolves the problem. Because of Regge pole factorization this gives
essentially the same residue apart from a phase-factor e™("1~) (arising from the n; « n;

definition of dJ, ., and so we obtain

.Slass+ax —azsgg-aasgg—ax Boaeaos . 1 __ 'l —aa) (4.80)
sinw(ay + az — agz)sinm(ay — a3) [sinw(a; —ar) sinw(a; — a3)

Sgpt oS Sg e gy ws)

= sin m(oy + as — az)sinw(ay — oy)sinw(az — @a)’

which is now of the form imposed by the Steinmann relations.

The combination of cuts (4.70)~(4.72) is also interesting from another perspective. It
was omitted from all the early studies of multi-Regge factorization. It does not occur, for
example, in the ladder model of Regge behavior. However, the general formalism certainly
allows it to be present and it can, as we have shown, be incorporated with only minor
subtleties in our S-W formalism. It has the very interesting property that the Regge pole
in the tp-channel automatically decouples if we continue to particle poles in the ¢, and 3
channels since there are no poles at «; = 0 or a3 = 0 in (4.81) (in contrast to (4.56) or
(4.63)). Effectively the last constraint in (4.75) implies that the amplitude cannot give an

infinite set of partial-waves in the £3-channel when n, and n; are fixed at finite integers.

This last property and its generalization will play a fundamental role in our analy-
sis of the Super-Critical Pomeron in Section 7. It also manifests itself in a very different
context. Namely the manner that sister Regge trajectories?! appear in string (or originally)
dual models. Such trajectories appear for the first time in the multi-Regge configurations
corresponding to Fig. 2.2 and indeed do not couple in four-point functions, The property is
easily generalized by noting that a triple cut configuration which is to give a four-particle
amplitude at particle poles in the ¢; and t3 channels must have the Sag (or z;) discontinuity
which becomes the total energy of the amplitude. In fact only the hexagraphs of Fig. 2.5b do
have the appropriate discontinuity. The hexagraphs in ¥igs. 2.5a, ¢ and d have the appro-
priate discontinuity and pole structure to produce elastic scattering amplitudes in the z;, 2
and z3, and z3 channels respectively. The cut structure of Fig. 4.9d which gives (4.70)-(4.72)
is distinct in that it cannot reduce to elastic scattering at particle poles in any combination
of i-channels. It is totally a multiparticle amplitude. When we go to more complicated

hexagraphs such as, for example, that shown in Fig. 4.11 there will be many multiple dis-

51



continuities which do not include elastic scattering discontinuities. For example, in Fig. 4.11
there are altogether eight sets of five allowable discontinuities, only four of which contain the
M? discontinuity which must be present to give a four-particle amplitude at poles in each of

the ¢,, ¢, t3 and #4-channels. We shall return to this example in Section 7.

The above examples should be sufficient to illustrate, in principle at least, how the

S-W transform is obtained for the multiple discontinuities in a general hexagraph.
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5. REGGE CUTS AND REGGEON UNITARITY FOR
HEXAGRAPH AMPLITUDES

In the previous Section we have seen how the analytic structure of many-particle am-
plitudes is reflected directly in the existence of hexagraph F-G amplitudes and the resultant
S-W representations. The most powerful consequences of the formalism will, however, be
the results of this Section. We shall see that we can obtain a complete translation of the
full multiparticle unitarity equations to the complex angular momentum and helicity planes
of a general hexagraph. (The multiparticle unitarity equations referred to here are those
applying in the hexagraph cross-channel.) In analogy with previous Sections we begin with

an elaborate discussion of elastic unitarity.

5.1 Two-Particle Unitarity

The discontinuity of any amplitude across the two-particle threshold in any channel

is well-established. We can write, in standard S-Matrix notation

]

=0~

(5.1)

(5.2)

(5.3)

A circle represents the connected part of an S-Matrix element, while a square denotes the
full S-Matrix (or its Hermitian conjugate). The channel in which the discontinuity has been
taken is clear both from the grouping of the initial and final states shown on the left-hand
side and the intermediate states displayed on the right-hand side. In addition a minus sign
indicates that an amplitude is evaluated below the cuts associated with the states grouped

with this sign.
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The hatches in (5.1)-(5.3) indicate an arbitrary number of external lines but if we

take single lines in each case we obtain the familiar elastic unitarity equation

o i & i O x o =iNNRNC

The phase-space-space integral involved is the same in all cases, that is if Q is the external

4-momentum,

Q) =i / &P d P84 (P + Py — Q)8+ (P — m?)6* (P2 ~ m?) (5.5)

- i/d4P15+(Pf —m?)t ((Q - P)? —m?), (5.6)
where m is the mass of internal state particles. Choosing Q = (v/%,0,0,0) we can write
[P,
Iy(t) =3 / Sp*(t = 2VEP), (5.7)

and using polar coordinates (r,8, 1) for P gives

=i rdr 87 (;:ﬁffn\;m) [ dtecos 0)ds (5.8)
= ip(t) / dg (5.9)
where
o(t) =% [t = f’"z]m (5.10)
and

/dg = _8%5./-:1 d(cos 9) ./OZ«d#/Oz« dv (5.11)

is the usual SO(3) group integration in the parameterization (2.13). The additional azimuthal
integration over v that we have introduced is redundant unless the internal state particles '
carry spin.

It is straightforward to make a partial-wave projection of (5.2) or (5.3). We first

introduce a Toller diagram T’ for the amplitude A whose discontinuity is taken-—with the

“t-channel” involved chosen as one of the {-channels of the diagram. Cutting the Toller

diagram through this particular line defines diagrams T, and Tg for each of the amplitudes
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AL and AR appearing on the right-hand side as illustrated in Fig. 5.1. The group integration
(5.11) can then be directly written as an integration over gr, the Lorentz transformation
corresponding to the ¢ line of T1. If gr and g are respectively transformations associated

with the ¢-line in Ty and T then we have
gR=91'9. (5.12)

Consequently if we display the appropriate part of the partial-wave expansion (4.16) for each

of A, Ar and Apr by writing

Alg) = tiato‘(g) (5.13)
Ax(ox) =3 a¥Dlox) K =L,R (5.14)
=0

where we have suppressed all other group-variables and even the helicity-labels indicating

the matrix form of both D¢ and a,, we can write (5.2) say, in the form
disc A(g) = ia(t) [ darAr(or)Ar (s7'g) (5.15)
We then use the group representation properties of the D, that is
D' (g9z'g) = D* (g7") D'(9) (5.16)
and
[ dg.D*gr)D" (97") = G/ (2 +1) (5.17)
to obtain the partial-wave projection of (5.15) as

(;—;%af'af (5.18)

ditsc ar =

The diagonalization of unitarity equations by partial-wave projection is, of course,
well-known to be a powerful tool. For us the importance of these equations will be in their
continued validity at complex values of the angular momenta (and helicities) involved. An
example of this is provided by the elastic unitarity equation obtained from the particular

version (5.4) of (5.2). The Carlson condition for uniqueness implies that since (5.18) holds
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for all integer ¢ it immediately holds (for each signature) for complex ¢. Note that in this
special case there are no additional helicities involved and a; = a} = a}(t), 7 = %1 as defined
by (4.9), and @} = aff = a}(t)". Conseque. ily (3.18) gives for complex ¢ (since a}(t) is real

analytic as a function of t)

T TV = ( ) -r T

The power of this equation is most immediately illustrated by supposing that a}(t)

has a “fixed-pole” singularity at £ = c. In this case (5.19) would give

B g _ _ip(t) BB
f——a—é’-—a‘(2£’+1)(z_a)2’ (5.20)

which is inconsistent unless there is an essential singularity (infinite-order pole) or the residue
B = 0. So fixed-poles are not allowed by elastic unitarity. In contrast a Regge pole at £ = a(t)
gives no problem but (5.19) implies

B(1) ~ ip(t) B()B*(¢)
—a(t) t=a() (20+1) (€ —al?)) (a(t) —e*(t) (5.21)
= ﬂ*(t) = _1(2_(%)12[ ( ) (t)] (5-22)

Our derivation of (5.18) was actually valid for arbitrary amplitudes involved in (5.2)
or (5.3). We simply suppressed all additional variables. Note that since all remaining g; in
the Toller diagram T (besides g) can be identified with the corresponding transformations in
Ty, or Tg, (5.18) applies directly to the full partial-wave amplitudes obtained by projecting
with respect to all g;.

Unfortunately, perhaps, we cannot continue (5.18) directly to complex ¢ when arbi-
trary multiparticle amplitudes are involved. As we have demonstrated in previous Sections
we must first decompose a multiparticle amplitude into hexagraph amplitudes and then con-
tinue to complex angular momenta and helicities in a distinctive manner for each hexagraph.
The vital question is therefore whether (5.18) can be broken down into component equations

for hexagraph amplitudes?
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5.2 Hexagraph Diagonalization of Unitarity Equations

We shall now argue that the unitarity equation is further diagonalized by hexagraph
amplitudes. First we note that if we substitute specific hexagraphs Hy and Hp for Ag
and Ap in (5.2) we naturally obtain a specific product hexagraph H by contracting out the

phase-space lines as illustrated in Fig. 5.2.

The unitarity integral represented by (5.2) (or (5.3)) clearly contains all discontinuities
of the product hexagraph. Such cuts correspond to cuts either through just one of the Ay and
AR or to a cut through both amplitudes which avoids the phase-space lines. The combination
of cuts in each amplitude with the phase-space integration will certainly give this last form of
cut in the complete integral. It follows then that the product of H;, and Hp in the unitarity
integral contributes to the product hexagraph H on the left-hand side of (5.2) or (5.3). We
now argue that for Regge behavior (in the t-channel) generated in the unitarity integral, the

product of H; and Hp contributes only to H.

If we parameterize g as in (2.13) and then consider the Regge limit z = cos@ — oo
it follows from (5.12) that, since we have chosen g1 as integration variables, we must have
zp = cos g — oo (or possibly cos ugp — 00) if the integration region remains finite in the
Regge limit. The form (5.3) for the discontinuity equation implies we can take A to be a
physical amplitude while Ag is evaluated below its ¢-channel cut. Consequently if the Regge
behavior of Ay is due to singularities at £ = ;(t), the Regge behavior of Ar will be due
to singularities at £ = a}(t). Therefore Regge behavior of A associated with singularities at
¢ = a;(t) cannot arise from the Regge behavior of Ar and can only arise if the integration
region does not remain finite but is instead pushed out into the Regge region of Ar. That
this happens can be seen by considering Fig. 5.3. This shows the vy = ez plane. We
can suppose that the integration over gy (and vr) has been performed with branch-points
generated by the cuts of Ap and Apg hitting the end-points at cosp;, = £1. At these points

(5.12) reduces to
0 =8, + 0p, (5.23)

and so for § € (0,7) the physical region #r € (0,7) maps into the v;-plane as shown in
Fig. 5.3. The cuts of Ay (which are independent of #) and the cuts of Ag (which do depend
on #) are both shown. It is then clear that as z — oo (or equivalently v = ¢ — oc0) the cuts

of Ar do indeed move out in the v;-plane dragging the integration contour into the large v,
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Regge region as shown in Fig. 5.4. Furthermore the only singularities (of the integral over
vy ) generated out in the Regge region where the Regge behavior of Ar is exposed are those
involving pinches (of the integration contour) by a combination of branch-points of both
Ar and Ag. But these are just the cuts present in the product hexagraph. Consequently
Regge behavior associated with singularities at £ = a;(t) contributes only to the product
hexagraph. By considering the form (5.2) for the discontinuity formula and by choosing gg
rather than g, as integration variables we can similarly show that Regge behavior associated

with singularities at £ = a](t) also contributes only to the product hexagraph.

Once (5.18) is written as an equation for hexagraph amplitudes (with a, the partial-
wave projection for H and a¥ and af respectively the partial-wave projections for Hy, and
Hpg) it can immediately be continued to all allowed complex values of the angular momen-
tum and helicity labels on both sides of the equation. This is because the appropriate

continuations allowed by the rules of Section 5.5 coincide on both sides of the equation.

We now move onto the technically much more complicated problem of the generation
of Regge cuts in multiparticle unitarity integrals. We have elaborated the above argument
for hexagraph diagonalization in detail in part because we shall give only an outline of a

similar (but much more complicated) argument for the general hexagraph diagonalization of

the production of Regge cuts.
5.3 Partial-Wave Diagonalization of Multiparticle Unitarity

We begin with the general discontinuity formula for a multiparticle intermediate state

of an arbitrary amplitude. That is we write, similarly to (5.1)-(5.3)

(5.24)

(5.25)

(5.26)




Each set of hatched lines again represents a particular set of particles (and not a sum over

such sets). The ¢ in the square-box in (5.24) indicates that the discontinuity is that due

to a particular intermediate state ¢ in the discontinuity channel; F_—-j is the inverse
of the physical S-Matrix defined with respect to this state (which, of course, defines the
internal phase-space integrations). The i— in (5.25) and (5.26)—which will be the formulae
we actually use—indicates that an amplitude is evaluated below the i-cut and all sub-channel
cuts associated with the phase-space. The complete set of discontinuity formulae of the form
(5.24), together with the discontinuity formulae for general Landau singularities, is equivalent
to the full set of coupled unitarity equations for all S-Matrix amplitudes. We shall consider

only states with an even number of particles since these directly generate multireggeon cuts.
The odd number states generate directly reggeon/particle cuts (which do not contribute to
high-energy scattering in the cross-channel) or alternatively reggeon cuts involving reggeons
which couple only to odd number particle states.

The next step, in analogy with (5.9), is to write the phase-space integration in (5.24)-
(5.26) in terms of angular variables. For this purpose we introduce a Toller diagram T;
which directly describes the phase-space integration variables. This new form of Toller
diagram is a tree-diagram connecting an initial-line representing the incoming momentum Q

to final particles representing the phase-space state as illustrated in Fig. 5.5. Starting from

some standard frame sg for § we can introduce Lorentz transformations g; for each of the
internal lines of the diagram and a gy, for st (just as we did for amplitudes in Section 3). A

generalization of (5.5)-(5.11) then gives for the i phase-space integral I;(t = Q%)

I(t) = z'fdp(t, tyeetsy..) f dgy T] dg; (5.27)

where (apart from numerical factors—powers of 27 etc.)

A2t tl t2)] [AY2(ty,t3,t4) M2t a1, ts2)
j = ”d b » ¢3y 725+l V542
/dp(t by / [ 1 [ t;

(5.28)

There is a A-function, defined by (2.42), for each internal vertex, including those involving

the internal particles—for which the corresponding “¢;” is the mass?. The integration region
is defined by
/\(tj,tj+],tj+2) >0 A2 (5.29)
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if t; is the largest momentum?.

As in our discussion of two-particle unitarity we denote the amplitude whose discon-
tinuity we are considering as A and choose a Toller diagram 7 (in which the é-channel is one
of the t-channels) to denote the variables we use to describe A. We denote by AL and AR the
constituent amplitudes involved in the integrals of (5.25) and (5.26)—the latter being the
formula we shall initially discuss. We introduce Toller diagrams T, and Tx for Ay and Ap
by cutting T at the i-line and joining T; to each of the sub-diagrams formed as illustrated
in Fig. 5.6. We can choose the same g; for Tf, and Tg at all internal phase-space lines but
at the : line, if the transformations g, g; and gr are chosen respectively for T', Ty, and Tk,
they must again be related by (5.12). By choosing the standard frame s;, for T; to be the
corresponding (external) frame of 77, we can regard the internal phase-space integral (5.27)

as expressed directly in terms of the variables of T}.

Having written the phase-space in the form (5.27) it is straightforward to obtain
a partial-wave projection and diagonalization of (5.25) or (5.26) by again utilizing (5.12)-
(5.17). However, before giving explicit formulae we first wish to discuss the diagonalization
of the equations by hexagraphs. Suppose we consider a Regge (or helicity) limit in which the
parameters of g are taken large. If Ay is a physical amplitude with Regge behavior associated
with € = ax(tx), where & = 1,... N now labels the internal lines of the Toller diagram
attached to particles as illustrated in Fig. 5.6, we can expose Regge behavior associated with
all of the ak(tx) only if the phase-space integration is pushed out into the corresponding
asymptotic regions by the cuts of Ag, in analogy with Fig. 5.4. This means that Ap must
have sufficient cuts in (invariant) variables that depend on the parameters of g and also
involve the internal particles. If we decompose Ay into hexagraph amplitudes we know that
each amplitude has simultaneous cuts in only a limited set of angular variables. We can find
hexagraphs with appropriate cuts to distort the contour into helicity-pole limits where all the
ai(t) will be exposed but not to distort if into Regge regions. Demanding the appropriate
helicity-pole asymptotic behavior determines the internal hexagraph structure of Ay and
demanding the appropriate cuts to distort the phase-space determines the internal hexagraph
structure of Ar. The external hexagraph structure of both Ay and Ag is determined by
requiring that the cut structure of the hexagraph component of A selected be reproduced by

the cuts of Ay and Ap.
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Following this discussion through in detail shows that Ay and Ar must have the
same hexagraph structure as A externally while the internal T;-lines must all be D-lines
as illustrated in Fig. 5.7. Note that Ay and Agr can have distinct D-line structures as
illustrated in Fig. 5.8. In general such distinct hexgraphs describe distinct asymptotic cut

structures. However, at the phase-space boundary where (as we shall discuss) the Regge

cuts are generated, A =0 VAor

\/t: =/tisn +/tis2z V5, (5.31)

This implies that all the @; (of T;) are parallel and the asymptotic cut structures associated
with the various possible D-line structures cannot be distinguished. The distinct hexagraphs
are then distinguished only by the ¢-channels in which their Regge singularities appear and

not by their cut structure.

The hexagraph projection of (5.3) (or (5.2)) therefore has the form

disc H = i/dp/dgLHdgj Hip(gr,...,9j,...)Hn (gzlg,...,gj,...), (5.32)
j

and the partial-wave projection takes the form

disc aff = i/deZ azg‘,gazg}l}. (5.33)
M

We have suppressed all the external hexagraph partial-wave labels (angular momenta and

helicities) and formally indicated the sums over the internal helicity labels n and angular
momenta N = ¢ — n of all the D-graphs in T;. (Note that we must choose a particular
hexagraph for T; and use it for both Hy and Hg to carry through the following analysis.)

The continuation of (5.33) to complex £ is achieved by an adaptation of the S-W

transform procedure of the last Section. The sums over N converge for complex £ (in analogy

with the corresponding S-W sums). The first D-graph in T; contributes a sum of the form

(5.34)

=(zx) .

n ™om2 >ln1 +n2|<¢
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which, in the particular case that there are no additional D-graphs in T;, we can define for

complex £ as

Z_ Slﬂ ')/ dnldn2
o sin Z(n) — m{)sin Z(ny — 13)sin 5 ({ =y — ny — (7' = (7] + 73)))

1., T2

+ {n; = —n;} + {n2 = —n2} + {n1,n2 = —ny, —n2},
(5.35)
where 7' = (1 — 1), 7/ = }(1 — 7). Inserting (5.35) into (5.33) defines a signatured

continuation to complex ¢, using the appropriate continuations of ath and aeN Ifn;is

coupled to an additional D-graph, as illustrated in Fig. 5.9, then the factor [sin F(n1— Tl')] -

n (5.35) is replaced by an analogous expression to (5.35) that is

dngdn4

n?‘; ,.32, 16 sin Z(ng — 73)sin 3(nq ~ 74)sin § (n1 —ng —ng — (1f — (74 + 74)))
(5.36)
Similarly if ngy is coupled to an additional D-graph the factor [sm ‘rz)] is replaced

by an analogous expression. This process is repeated until the complete sum over n in (5.33)

is similarly represented.

Regge cuts are generated in the continuation of (5.33) by the combination of inter-

nal Regge poles with the nonsense singularities (4.44) and the helicity integrals (5.35) and
(5.36). From (4.41) and (4.42) it follows that each of af& n and aZS‘}G will have square root

nonsense wrong-signature singularities in their complex (angular momentum and helicity)
continuations, which combine to give poles to be inserted in the integrals (5.35) and (5.36).
Therefore we insert such a fixed-pole into (5.33) for each vertex of T; not involving particles
and use such poles to perform as many helicity integrations of the form (5.36) as possible.
This will leave only the helicity integrals for hexagraph lines attached directly to the internal
particles. If we also keep only the N = O part of (5.33) we then obtain the “fixed-pole”
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contribution due to a 2M particle state, that is
i dmldmz . 6MNL-rr;-rg...NR-r-r;fy...
.,/,\>o,v,\ ?sin Z(my—7)sinZ(mg—7)...(d—my—my...+ M - 1)

(5.37)

. . T ’
disca”(£) ~ sin 5([-—7‘ ) >
T14T24ee
where m,, ... ma now label the helicities coupled to internal particles and N* and N® are
fixed-pole residues of a”2(¢) and afR(¢) respectively. If we extract an appropriate Jacobian

factor (cf. D of (4.45)) in defining N¥ and NR we can write

- A TT . — S T0; 445 1M o
/dpE/depkz — 2 11 k=l T (5.38)
k=1 [’\ 12(t,t1,82) ... A /2(tj’tj+1,tj+2)]

where each p; is a two-particle phase-space factor (5.10) and there is a A!/2 factor for each
non-particle vertex of T;. The € factor in (5.37) originates from the denominator factor
sinZ(f—ny—ny— 7 + 7 +7) in (5.35) or sin§(ny — ng — ny — 7§ + 75 + 77) in (5.36).
When evaluated at a nonsense, wrong-signature, point such a factor gives (—1) for two even-
signature Regge poles, (+1) for two odd-signature Regge poles and (—1) for an even/odd-

signature combination.

If we also perform the my integrations in (5.37) by picking up the Regge poles of N*
at my = on(ty) k =1,..., M (the corresponding poles of N® will be at m; = aj(ti)) we
can use the factorization property

NL
NGy, o~ bk (5.39)

my—oy M — O ’

and exploit the unitarity equation (5.18) to eliminate both p; and fx. We then obtain

L‘r: RT:I:
(5.40)

T
disca™(€) ~ sin Z(¢ — 7w [ dp - _ ,
2 [E 1M (ar - 1)] TTL, sin Z(o — 7f)
The M-reggeon cut is generated in (5.40) by the nonsense-pole factor hitting the
boundary of the phase-space (5.31). This implies that

Y

t
Vi = i Vk =t = t/M>, (5.41)
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and at ¢ = 0 the branch-point is located at
£=ap(0) =a;(0) + - ap(0) — M +1. (5.42)

In the simple case ax(tx) = a(tk), k =1,... M the location is given for all ¢ by

0= au(t) = Ma ( A;z) ML (5.43)

To derive a complete discontinuity formula from (5.40) we write it in the general
“matrix” form

a(f) — a'(€) = T(£)a(£)d’ (), (5.44)

where I'(¢) denctes the phase-space which generates the cut. Since a’(¢) does not contain the

reggeon cut generated by I'(¢) but a(€) does, (5.44) implies (if 6, is the £-plane discontinuity)
6ea(l) = [6,L(8)] a(€F)a(€), (5.45)

where + implies the amplitude is evaluated above or below the reggeon cut involved. From
the formal structure of (5.45) we can now derive a general discontinuity formula for an

M-reggeon cut in any t-channel of any hexagraph F-G amplitude in the form

HLTT HRTI 1 _
disc af” (£) =sin = (E T)EM/dea ("N (&) ( 1 Zk—l(ak 1))

t=ap(t)

sin %(al —71)...sin f(anm — i)

(5.46)

This formula, that is reggeon unitarity, has been known” (apart from signature factor
details) for over twenty years and it has also been understood for a long time that it provides
a general, model-independent basis for the Reggeon Field Theory. This will be the subject of
the next Section. However, for the purposes of this article, it is vital that (5.46) holds for a
general hexagraph and so controls far more than just elastic scattering and the RFT. As we
shall see it is the consequences of (5.46) for the formation of bound-states whose scattering
is also controlled by (5.46) that will enable us to study the Pomeron phase-transition and

also analyze infra-red divergences in QCD.

It is important to emphasise that although our discussion has been specific to singu-
larities generated by Regge poles it could clearly be carried through to at least locate the

trajectory of “multi-Reggeon” singularities generated by any initial “reggeon” singularity.
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In particular if the initial singularity is due to an Expanding Disc, the two-particle unitarity
equation (5.18) continued to complex £ implies that this singularity occurs in all (vacuum)
channels. “Multi/Expanding Disc” singularities will then be generated by the foregoing
analysis. The difficulty is that the phase-space integration in the analog of (5.40) will in-
volve additional integrations over the full branch-cuts of all the contributing “discs”. Since
these branch-cuts will overlap in the discontinuity formula analagous to (5.46) the result is

ambiguous and there is no well-defined discontinuity.

The ambiguity of (5.46) when the basic singularities are branch-points can be viewed
as resulting from the lack of sufficient locality for such states in rapidity and impact parameter
space. In contrast Regge pole states are well- localised and so a multi-Regge pole state is
well defined. Although it would be difficult to prove conclusively it seems very unlikely that
(5.46) is actually a well-defined equation if the contributing singularities are anything other
than Regge poles or Regge cuts generated from Regge poles. Certainly we can say that
Regge poles and their multi-Reggeon cuts (or “thresholds”) are the only form of angular

plane singularity structure known to satisfy full multirarticle unitarity in the cross-channel,
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6. REGGEON FIELD THEORY AND THE CRITICAL
POMERON

Reggeon Field Theory (RFT) has been derived and formulated from many different
starting points since Gribov’s seminal paper,'* and we shall describe some of them in this
Section. First we want to emphasize the viewpoint that RFT is a technical device for
obtaining a scaling solution of the reggeon unitarity equations for the particular case of an

even-signature Pomeron regge pole, with trajectory j = ag(t), where the intercept is

ap(0) = 1. (6.1)
Note that when (6.1) holds we also have, from {5.43), that

ape(0) =1, (6.2)

where j = aarp(?) is the trajectory of the A/-Pomerorn rut. Therefore all the Pomeron singu-
larities accumulate at one point as illustrated in Fig. €.. and we must look for a simultaneous

solution of all the corresponding discontinuity formulae.

The idea that high-energy diffraction scattering is described by a Pomeron with unit
intercept has a lengthy phenomenological history. Here we shall be emphasizing the theo-
retical virtues and attractions of this idea. Most immediately we shall concentrate on the
existence of a renormalization group solution of the reggeon unitarity equations in terms of
infra-red fixed-point behavior.

6.1 Reggeon Unitarity Phase-Space for Pomerons

The initial significance of considering an even signature Regge pole satisfying (6.1) is

that we can neglect the signature factors in (5.46), that is for small values of all #
Ear ~ (=)™, sin g(al — 1))~ ~sin g(aM — 7)) ~ sin -72:(3 -r)~1. (6.3)

In this case (5.46) can be conveniently rewritten by introducing the usual RFT variables,

that is energies F; and two-dimensional {“transverse”) momenta &; where

£,' =1- E,' and t,' = kiz A4 (64)
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We can then write (with Ax = 1 — ax(tk))

M M
6 (!-— 1- ZAk) H/HdEM(Ek—Ak)&(E—ZEk)
k=1 k k=1
= energy conservation + energy-shell (6.5)

dt;dt 21 2y <2 )
m H/dijdkkts (l‘li“ﬁj—ik)

= .nomentum conservation + phase-space integration.  (6.6)

Consequently the even-signature elastic amplitude @”(¢,t) will satisfy the corresponding

reggeon unitarity equation (5.46) if it can be written in the form

o0

F(BE)= 3 Fum(B.E), (6.7)

n,m=1

a’(¢,t)
where
Fam (B,E) = [ [H dEd"k:6 (E -y E;) 5 (g -
i i=1 i=1

x/[HdE}dzﬁ}é (E-ZE}) & (&—Zic;-)}gm (.. &)
i i=1 v

=1

n

L)] gn (ks k)

XGnm(El:---EmE;a“-sEvlm-IEh .I‘ka’la k )

and the G,,, are Pomeron “Greens functions” satisfying the unitarity equation

Gom (B +i€,k) = Gom (E —ie, k) =3 (1) /[IJdE,d?k,é(E - A, (k ))J (E ZE)

x & (!.‘5__’ Zk-') Grr (E + iC,lC_) Grm (E - 7:5:&) .
s=1 ,

(6.9)
The g, are general couplings of n-Pomerons to the external particles. Equations (6.8) and

(6.9) are illustrated in Figs. 6.2 and 6.3.

6.2 The RFT Graphical Expansion

It is straightforward to write a general solution to (6.9) in terms of a (non-relativistic)
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Feynman graph expansion involving arbitrary non-singular (but momentum dependent) ver-

tices. That is we take as inverse propagator
1%, = [E~ A(K)] = [E - Ao+ ahk® + afk? + -], (6.10)

where now Ag = 1 — ap(0). Therefore for Ag > 0, single Pomeron exchange gives total
cross-sections going to zero (as $™2°) and so gives a trivial high-energy S-Matrix (in the

sense discussed in the introduction).

As three-point function (with the notation of Fig. 6.4) we take

I, =i (ro+ rouk} + roak} + For Ey + ) . (6.11)
As four-point functions

MNs = (/\o + Aok + A2k + A By + -+ ) (6.12)

%, = (MN+ Mk +--1), (6.13)

and so on. We write down the complete set of topologically distinct diagrams with a loop
integration [dE d°k for each loop, together with momentum and energy conservation im-
posed at each vertex. The k-integration is over the whole plane, while the E-integration can
be taken to be down the imaginary axis. The factor of 7 in (6.11) (and all vertices for odd

numbers of Pomerons) reproduces the (—1)" factor in (6.9) when the usual Feynman graph

cutting rules are applied.

A lagrangian can be written in terms of fields which are functions of conjugate vari-

ables to £ and k. 1,5(:5:,‘1;) and 9(z,y) are respectively Pomeron creation and destruction
operators with z the impact parameter conjugate to £ and y the rapidity (~ Ins ~ Inz)

conjugate to E. In this case
L) = 310 &  — bV V9 — Aoy — a7 - V7
ce —'2—2 [ro#* + roPt? + ror po V2 + - ] (6.14)
5 [ 4 doB 4] oo
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6.3 The Renormalization Group

Next we discuss the implementation of a Wilson renormalization group transformation
on the effective Lagrangian (6.14). This transformation can be formulated in a variety of
ways. The most direct, in our opinion, is to integrate out regions of energy and momenta
in the Fevnman graphs generated by (6.10)-(6.13). (For this purpose it will be preferable
to bend the E-contours away from the imaginary axis as illustrated in Fig. 6.5). The most
sophisticated view of the RFT that we have written for the Pomeron is perhaps to suppose
that we can write a complete effective lagrangian involving all hadronic Regge poles such
that all reggeon unitarity equations are satisfied. In the neighborhood of j =1, ¢ = 0 (i.e.
E ~ k* ~ 0) only the Pomeron trajectory is relevant and so integrating out all |E| > g,
say, and also all |k?] > p will (for p sufficiently small) lead to an effective field theory for

Pomerons only, with a cut-off 4 in the Feynman graphs.
We can specifically illustrate the renormalization group transformation g — /2 by
considering the three-Pomeron graphs of Fig. 6.6. Integrating over £ and k& in the region

g > |E|, |E°| > 1/2 and expanding the result as a Taylor series in Ey, k;, Ea, k, gives
ro{g) — ro(p/2) through

T —7r3() *k 1 1
ole) :‘,(;;IE‘ I/L . #/QdEd M A E+E - AT b))

! . 6.15
PECENCEIN )

=T0(£;‘)+T01 (%)k?+....

The complete transformation is defined by carrying out this procedure on all graphs.

If we carry out a general transformation g — p/¢ and then rescale £ and k by
E—(E, k-, (6.16)

the cut-off in the Feynman graph expansion remains formally unchanged. However, each

parameter ¢ in the lagrangian (6.14) will change by

g—(7g+g, (6.17)
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where v, is the canonical dimension of g and ¢’ depends on all the other parameters of the
lagrangian. The original values of parameters with v, < 0 will be completely suppressed
after a sequence of such transformations. Therefore if a fized-point in parameter space is
approached by such a process the bare parameters with v, < 0 must be “irrelevant” (in
Wilson’s terminology) to the existence of the fixed-point. Consequently we can look for a
fixed-point by keeping only those parameters with positive canonical dimension. In our case
we have

va, =1, vy =

Voo, = 0,.... (6.18)

o} —

6.4 The Critical Pomeron
By expanding the theory in powers of ¢ = 4 — D, where D is the number of transverse

dimensions, we can show that there is indeed a fixed-point at finite values of r and A (the

renormalized values of ro and Ag), that is at
rT = —:'3'—6, A:—‘O(:—.’ &E(O) = 1) (619)

Assuming this fixed-point persists to € = 2, the corresponding theory describes an interacting
Pomeron satisfying (6.1) and so potentially gives the non-trivial theory that we are looking
for. The theory has the “universality” property familiar from critical phenomenon behavior
in phase-transition theory and thus is referred to as the Critical Pomeron. In this case
universality implies that the asymptotic predictions of the theory can be calculated without
knowledge of the initial bare parameters of the lagrangian (6.14), ezcept that A = 0 must
be satisfied. A is analogous to temperature (or renormalized mass) in this context. Given
that A = 0 the S-function for r can be calculated and this shows that the fixed-point is
indeed “infra-red stable” as illustrated in Fig. 6.7, so that the theory is driven to this point
in the “infra-red” region E ~ k? ~ 0. To calculate specific properties of the resulting critical
theory it is simpler to use the Gellmann-Low form of the renormalization group applied to

the theory containing only the relevant parameters.

6.5 Renormalization Group Analysis

We study the triple Pomeron theory with bare lagrangian

L= 35 Z v ayOi0y ~ Ao~ giro [B? + 9% (6.20)

N =
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and renormalized lagrangian

1 - - I D N
Lr= 5ot & ¥ — 2200/ VIVY — 23899 — siar [$6° + §7) (6.21)
corresponding to the renormalizations
Y =23 (6.22)
' =27 (6.23)
and
o= 3/ z7'ro. (6.24)

The renormalization constants are determined by normalization conditions,the most straight-

forward being

oirR
o an —
0E E=—E,: k*=0 : (6.25)
8z’1’{‘; 1
il $.177 ) =—a 6.26
31"-2 E=-Exnk*=0 ¢ ( )

R _ T
FUJ)IE,:2E:=2E3=~E~, k;=0 - (27‘.)5—_—" : (627)

In general we should also impose A = 0, which is equivalent to

Pl gy = 0 (6.28)

In practice, however, computations are made by combining the e-expansion with
perturbation theory. Within the e-expansion setting Ao = 0 is sufficient to impose A = 0
and so satisfy (6.28) automatically. (6.25)—(6.27) are then simply equations for z;, z; and

z3. Note that a general Green’s function satisfies

F(n ) (Ei,_k:.‘,r, al) - Zéﬂ+m}/2r("vm) (E,‘,_’g,-, To, a;,) . (6-29)

The independence of En of the bare Greens functions leads to the renormalization

group equation
3 R ’
EN—_‘ + :B(g) + C(Q, )—~ - _(n + TI‘L) (g) I-‘(m,n) (Eiakiv g, a aEN) =0, (630)
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where g is the dimensionless coupling

g(EN) = E%%])T-?Eﬁfi (6.31)

with «, 8 and ( defined by

9 /
v(g9) = Enzo—Inzs(ep, ro, En) (6.32)
aEN agro fixed
dg
= Engr— 6.33
B(g) N oLy o (6.33)
Ba’(EN)
= EN—p— 6.34
¢(g) NG En - (6.34)
The well-known solution to Eq. (6.30) is
Fﬁ,m) (fEi, ]ﬁiaga aI’EN) = I-‘(}31,m) (Eiaki’ g(—t)a a’(—t)7 EN)
0 i 1 . (6.35)
xexp [ dt'[1=Zn+m)y(a(t)]
where ¢t = Iné
dg _ _
= =-BGEW), 0=y, (6.36)
da'(t » _ _, ,
L0 — & - @), #0)=d. (637)

(6.35) provides the most simple scaling laws for the Critical Pomeron. Within the

e-expansion

ﬂ=_1_9+z(‘;_97':’)_2+... (6.38)
¢ =~ 4?8'1;2 (6.39)
Y = _2(3;2 oo, (6.40)
and so we find the fixed-point (6.19) of g. For I'{} |, (6.35) implies that
I}, (EE, kg, Bn) = E&VOTE ) (B, k, 9,067, By), (6.41)
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where g = g; is the fixed-point zero of § and z = 1 — {/a’. Setting & = @ gives directly

{3y E B = 0) ~ B0, (6.42)

giving the well-known Critical Pomeron result'®'€ for the total cross-section

or,~ [In s)”, (6.43)

where
€
n= -7 (gf) =t O(é*). (6.44)

Since 7 > 0 the Critical Pomeron theory is indeed non-trivial. Much more elaborate scaling
properties can be derived by adopting more general renormalization conditions than (6.25)-
(6.27) so that a transverse momentum scale ky is introduced in addition to the energy scale

En. A line-integral representation of I'y ;) of the form*?

2
OE ol 0K } (6.45)

F(l.l)(E’E):/da [6F(1-1)_a?+ 35 OE

can be combined with the more general scaling forms obtained and the ¢-expansion to give®®

(to lowest order in €)

) —e/41/3
2\ _ t _ pyl4e/12 (87")25 2 (a(,J)l /

(6.46)
ef12
£ 1
<frea (e )] e
where 7 is given implicitly by
’, /12 1\1-¢/471/6
aol”-z _ (87)% ' 2(ap) €/24
(=E)t+eizs [ 24 ro 7(1+9/2)"". (6.47)
The general scaling law
do a’t[ln s]1+¢/24
—= ~ efep2 | _Tori 1Tl
5~ (lns)”"F ( 7 (6.48)
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is then obtained with F given expliutly by

F(:E) - z(—_c/l'z)/(l+c/24)1\(1 + 6/12)

5 /+ioo dup e~ (#</3) 1+ T_’/2]_¢/12 (6.49)
—ioo (—w)*e/12{1 4 (1 + €/24))* 73’
with
(1 + 7/2)Y% = (—w) ™17/, (6.50)
and

N 12
K- [(87)26(012)(2 /2)]1/ '
67§

(6.48) gives the diffraction peak shown in Fig. 6.8, which is not that far from the data
at ISR energies. Unfortunately the O(e?) calculations do not improve the agreement.*® At
the higher collider energies of the CERN SppS and the Fermilab Tevatron collider there are

apparently far greater deviations from Critical Pomeron behavior.

Apart from the rising total cross-section and diffraction peak scaling given by (6.43)
and (6.48) respectively, other well-known scaling properties of the Critical Pomeron are the
rising and peaking of the central plateau

do 1 "1 K

£~ () (poess) -

2y (2 ns—y) (35 ns+y (6.51)
and also central region KNO scaling of the multiplicity moments

(n?) ~ Cp(n)™. (6.52)

We shall not, however, attempt a comprehensive review of Critical Pomeron scaling proper-

ties here, even though a suitable review does not exist in the literature. Further references
can be found in Refs. 47 and 18.

In a sense the Critical Pomeron is the summit of Multi-Regge theory and abstract
Pomeron theory. The Reggeon Unitarity equations derived in the last Section are essentially
sufficient to determine the Reggeon Field Theory rules for all multi-Regge regions directly
related to measurable physical cross-sections. This is illustrated for high-mass diffractive

production in Ref. 49 where the triple-Regge RFT rules are derived. The same rules are
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directly derived from “hybrid” Feynman graphs in Ref. 43 and the triple Pomeron analogue
of (6.48) is calculated. In general we anticipate that the RFT formulation of the Critical
Pomeron, when combined with Reggeon Unitarity, provides a complete non-trivial high-

energy S-Matrix as we claimed in the Introduction.

Although all Critical Pomeron Greens Functions have scaling behavior at (or close
to) zero momentum transfer, it is straightforward to show that a simple Pomeron pole and
multi-Pomeron cuts emerge for positive momentum transfer?. This ensures that Reggeon
Unitarity, and therefore full multiparticle cross-channel unitarity, is satisfied by the Critical
theory. It has also been shown®®5! that the Critical Pomeron satisfies all known direct
channel unitarity constraints. From the above analysis it might appear that theory can only
be calculated in the e— expansion (which is presumably not a very good approximation at
¢ = 2). However, while this is true as a matter of practise at present, it certainly is not true
in principle. In particular it has been shown®? that a phase-transition is indeed present in

the physical number of dimensions.

Since the Critical Pomeron is completely formulated and is (in principle) absolutely
calculable without reference to any underlying theory it clearly provides a uniquely attractive
possibility for the high-energy behavior of hadron amplitudes. At present it is also the only
known unitary possibility. As we emphasised in the last Section it is very likely that Reggeon
Unitarity requires that high-energy behavior be built up from Regge poles. That it involve

a single Pomeron pole only might (as we discuss in Part 2) be a deeper requirement of QCD
and the strong interaction.

In determining the significance of the Critical Pomeron phase- transition within QCD

an important part of our understanding will come from the properties of the Critical Pomeron

interaction with secondary Regge trajectories.
6.6 The Critical Pomeron and Secondary Regge Trajectories

From (5.42) we note that the Regge cut apmp(t) due to one distinct reggeon and

M-Pomerons has the intercept
arme(0) = ar(0) + M (cp(0) — 1) (6.53)
and so when ap(0) = 1 we have also
arme(0) = ar(0). (6.54)
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That is the RMIPcuts all collide with the R trajectory at ¢ = 0 in close similarity to the
collision of IPcuts and pole illustrated in Fig. 6.1.
The renormalization group has been used to study the RMIPcollision with both a

“boson” Regge pole \yith “bare” trajectory®?
J=ap+at+.--, (6.55)
and®! with a “fermion” with “bare” trajectory
j=oao+BVI+t 4. (6.56)

In both cases fixed-points were found giving scaling behavior similar to (6.42) (or (6.46)) for

the reggeon propagator. In the case of the fermion (6.56) the inverse propagator is argued

to have the form

Th(E kY ~ €777 [di(2) + Vad(2)] (6.57)

where z = £/ and £ = E— (l - a{;), with af the renormalized fermion intercept. The

form (6.57) arises only if an appropriate fixed-point exists. Such a fixed-point does exist in

the e-expansion but it is only partially infra-red stable.

The inverse propagator (6.57) has some very interesting properties. First the renor-

malized trajectory has the form
£ = C(BY 4, (6.58)

where C is determined by a zero of [¢)(2) + /z¢2(2)). This is the same analytic form as
the Pomeron trajectory (although the coefficient C is not the same) and, since ¥ ~ 1 in the
e-expansion, can be expected to give an almost linear trajectory. Secondly, since the sign of
V/Z in (6.57) is determined by the parity of the fermion trajectory, it can be shown>* that
(6.57) actually describes a parity doublet of trajectories for ¢ = —k? < 0 while for ¢ > 0 only

one parity trajectory is present on the physical sheet of the £-plane.

Although (6.57) has been developed to describe fermion trajectories it could also
describe parity-doublet boson trajectories with only one parity present for positive ¢ (where
particles are generated). There have in fact been phenomenological arguments®® that the

pion trajectory should be parity-doubled for negative t. Note that for a pion with m?2 = 0,
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the RMIPpile-up described by (6.54) actually takes place at the particle pole, i.e. ¢ = m2 = 0.
Consequently the ¢ = 0 singularities, of Regge residue functions etc., related to the Critical
Pomeron behavior are very likely to be inter-related with the (Adler) zeroes of pion scattering
amplitudes. In fact before the advent of QCD there was much discussion®® of how the t = 0
behavior of Regge amplitudes might be deeply connected to the PCAC structure of pion
amplitudes. We are here adding the extra suggestion that the Critical Pomeron should also
be part of the physical solution. Of course, the whole subject has been barely discussed in
the context of QCD. We shall return to the inter-relation of chiral symmetry breaking and

the Critical Pomeron in QCD in the second part of this article.

For the next Section the most important result of the secondary trajectory analysis is
that the Critical Pomeron interactions dominate the “bare” reggeon so completely that even
the nature (parity in particular) of the particle states on the trajectory is basically modified.
In attempting to define a Super-Critical Pomeron, as we shall do, it will be vital to take into

account the Pomeron component of the particle states.

6.7 RFT From Hexagraph Products

The above construction of RFT was completely abstract with no physical properties
ascribed to the individual graphs. We shall now outline two further constructions—the first
making contact with the multiple discontinuity hexagraph structure of amplitudes discussed

in previous Sections. The final construction will be completely phenomenological.

Our purpose now is to view the RFT perturbation theory graphs as built up by a
process of “sewing” hexagraph amplitudes together. For this it is necessary to rewrite all
graphs in the time-ordered (that is rapidity-ordered in this context) Rayleigh-Schrodinger
form. This is achieved by performing all energy loop integrations. The resulting expansion
can be represented by the set of distinct hexagraph loops which are obtained by joining
all hexagraph tree diagrams together in all possible ways. If the rapidity-ordering of the
vertices in any graph is ambiguous (the rapidity-axis is thought of as increasing along the
horizontal lines of the hexagraph) distinct orderings define distinct graphs. The g, must
also be represented by generalized hexagraph vertices as illustrated in Fig. 6.9 and if vertice=
other than the triple Pomeron vertex are to be present corresponding new hexagraph vertices
must also be introduced. The hexagraph loop expansion for the elastic scattering amplitude

involving only triple Pomeron vertices is illustrated in Fig. 6.10.

The amplitude for a particular hexagraph loop diagram is obtained by first allowing
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transverse momenta to flow along all internal lines (with momentum conservation at each
vertex) and writing [ d*k for each loop. A propagator is then written for each intermediate
state, which in this case is each distinct set of horizontal lines cut by a single vertical line—as

illustrated in Fig. 6.11. The corresponding propagator is

[E -Xa (&?)] B , (6.59)

where the sum is over the horizontal lines involved. The vertices are now functions of the

transverse momenta only.
In the rapidity-ordered formulation the propagators (6.59) correspond directly to

the nonsense fixed-pole factor [¢ — 1 — Y (e — 1)]”* appearing in the discontinuity formula

(5.40). Consequently the RFT expansion can be thought of as resulting from the iteration

TT

of (5.40) beginning with a Regge-pole approximation for the NO:. Since we know precisely

how “s-channel” discontinuities of hexagraph amplitudes are taken it is clear that building
up graphs in this manner, in principal at least, allows us to explicitly discuss the s-channel
discontinuity content of general RFT graphs. For the even signature Pomeron the dropping
of signature factors through (6.2) implies that taking discontinuities involves only the re-
moval (or changing sign) of factors of ¢ in vertices. Before giving the rules for “cut RFT”
which make this explicit we first discuss a very simple physical motivation for RFT in terms

of multiparticle production processes. This physical picture underlay most physicists’ un-

derstanding of RFT during the years of its development.5758

6.8 RFT as an Effective Field Theory of Multiplicity Fluctuations

We suppose that in first approximation all hadrons are produced by an elementary
process. That is the particles of an average multiplicity event are uniformly spread across
the rapidity axis (apart from short-range fluctuations) and with a sharp cut-off (exponential)
in transverse momentum. A multiperiphal model for pion production, or ladder diagrams
in A¢® scalar field theory, would be good realizations of such a production process. In fact
the representation of the production process as in Fig. 6.12 can be thought of either as
representing the actual (multiperipheral) amplitude or as representing the distribution of
particles on the rapidity-axis. When elastic scattering is calculated through unitarity as

indicated in Fig. 6.13 the output will be a shrinking diffraction peak—that is a Regge pole,
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with trajectory ap(t) say. We shall assume that events with close to the average multiplicity

are well-reproduced by this production process.

We next assume that events with close to twice the average multiplicity can similarly
be represented by the same production process doubled up on the rapidity axis as illustrated

in Fig. 6.14. If the basic process produces Regge pole behavior
A(s,t) ~ §or(t), (6.60)
then the “doubled-up” process will give two Pomeron Regge cut behavior, that is

Szap(t)—l

A(s,t) ~ (6.61)

Ins

Similarly we assume that events with three times the average multiplicity are well repre-

sented by three Pomerons and so on. (These assumptions are realized in suitably transverse-

momentum cut-off field-theoretic models.)

If we move on to discuss events with distinct multiplicity densities on distinct portions
of the rapidity-axis we will generate more complicated RFT graphs as illustrated in Fig. 6.15.
In general then each N-Pomeron iniermediate state corresponds to a multiplicity density of
N-times the average multiplicity on the corresponding portion of the rapidity-axis. How-
ever, because of the different possibilities for taking discontinuities in underlying Feynman
graphs {or because of the possible discontinuities through a hexagraph—in the hexagraph
construction discussed above) each RFT graph also represents a variety of processes besides

the basic multiplicity fluctuation that we have so far associated with it.

The complete set of physical processes associated with a particular RFT graph cor-
responds to the possible discontinuities of the graph. These are the allowable cuts through
the associated hexagraph loop diagram—with the additional possibility that a cut éntering
a vertex through a horizoatal line can ezit simultaneously through both slanting lines as
illustrated in Fig. 6.16 if these lines are part of a hezagraph loop. This is because the for-
mation of loops allows distinct culs in a hezagraph tree diagram to coincide as a single cut
of a loop amplitude. The basic multiplicity fluctuation interpretation of an RFT graph de-
scribed above corresponds to cutting all Pomerons in the graph. In general uncut Pomerons

represent the absorption of some basic production process as illustrated in Fig. 6.17.

The complete set of cut RFT graphs, with the AGK cutting rules®? incorporated, is
described®® by the “cut Reggeon Field Theory” (CRFT). This involves both cut and uncut
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propagators, with the uncut propagators given both +i¢ and —i¢ prescription. That is we

have propagators

+ - c (6.62)

and vertices
+ - c
+ - c
. + c c
- + -

The corresponding lagrangian involves three Pomeron creation operators %, ®¥_, . and

three destruction operators ¥, ¥, ¥. and has the form

(6.63)

‘21‘0

=L+ L2+ L2+ 3 ($a9] + Pios) ———(¢ P2+ y.)
’_22 (¢c¢c¢+ + ¢c'¢’c'¢’+) 0 ("/307/15"/)— + 1/’:.%5«:1/_)—) b

with each of the free terms £, £% and L2 the same as in (6.14) or (6.20). The lagrangian
L. generates the full set of discontinuities of all RFT graphs and allows at least the formal

s-channel unitarity properties of the theory to be discussed.

If ap(0) < 1, that is Aq > 0, the interaction graphs will not significantly disturb the
multiplicity distribution given by the “non-enhanced” graphs of the form Fig. 6.13, Fig. 6.14
etc. and the full multiplicity distribution will look as illustrated in Fig. 6.18 with peaks
at the average multiplicity, twice the average multiplicity etc. As Ag approaches Ag,, the

bare-value giving the A = ( Critical Pomeron, the peaks in the multiplicity distribution

80



merge to give a KNO distribution satisfying (6.52). Consequently the Critical Pomeron can
be understood as a critical phenomenom of multiplicity fluctuations producing KNO scaling.

We shall come back to this interpretation in the second part of this article.
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7. THE SUPER-CRITICAL POMERON

In this Section, we address the question of what could be the new phase approached
as the Pomeron becomes Critical. This question was first asked before QCD was accepted
as the underlying strong interaction theory and so at that time it was very unclear that a
Pomeron with Ag < 0 could or should make any sense, since this corresponds to (a first
approximation with) total cross-sections increasing like $™2°. At the time there was no
conception of a new hadronic phase that might be reached in a Pomeron phase transition.
Now, of course, we understand that QCD has more than one distinct phase and it is clearly
plausible that the Critical Pomeron is related to one of the anticipated phase-transitions. In

this case we should be able to identify a Super-Critical phase with distinct properties.

7.1 Classical Vacua for Ag < Age

The effective RFT lagrangian near the Critical Pomeron fixed-point is the simple
triple Pomeron theory with the lagrangian (6.20). For Aq > 0, the perturbation expansion
described in the last Section defines the theory. It is a super-renormalizable theory and
so the perturbation expansion is expected to be Borel summable. The critical behavior

occurs at some Ag = Agc and it can be shown that without a transverse momentum cut-off

Age = —oo. With a cut-off we have??
7'?) e 2
Aoc = o In oiAL +0(rg) <O0. (7.1)

To define a (cut-off) theory with Ag <« Aoc, we can look for a classical field configuration

minimizing the “potential”

V(,$) = Doy + S + Py?). (7.2)
Imposing
oV ov
'67/;" = -6_‘(/). —_— 01 (7-3)
we immediately find four stationary points, that is
I ¢ =9=0 (7.4)
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2iAq

I 3% =0¢= - (7.5)

I ¢ = 2?,1/3 =0 (7.6)
_ %A

IV p =9= ;ro". (1.7)

Iis, of course, the “vacuum™ used to define the original perturbation expansion giving

the subcritical theory. The asymmetry of IT and III with respect to % « % implies that the
perturbative theory developed around either of these points breaks Lorentz invariance and

so does not give an acceptable theory. IV seems therefore to be the obvious choice to use to

define a new theory. Shifting each of 4 and % by (7.7) and dropping a constant leads to

Bap Do in

e _"AO' 2 2, 0,72 72
V(yw) =~ — 59" ~ 59"+ S ("% + 99) (7.8)

This has reversed the sign of the intercept (or “mass”) term and so potentially gives
a sensible theory for Ag < 0. However, (7.8) also contains the two source terms =22¢? and
—%”-1,[)2, and previously this has always led®® to the rejection of this theory. TLe path-integral

which, formally at least, represents the theory defined by (7.8) is not well-defined because
of the source terms. The problem can be seen to arise diagrammatically if we consider the
perturbation expansion in powers of rg. This requires the summation of an infinite series
involving the source terms at each order. Consider in particular the series of Fig. 7.1 in zero

transverse dimensions. We obtain

Ny [(3E—Ao)(3E+Ao)] =[ E23J (7.9)

n=0

and so instead of having a Pomeron pole with intercept less than one, we have a double-pole
with intercept one. This problems persists in two transverse momentum dimensions if the

diegrams of Fig. 7.0 are indeed present in the theory.

In fact all previous attempts to define a Super-Critical Pomeron theory have been
based on trying to combine II and III in some manner or utilizing classical “instanton”
solutions linking I, II, and III. The expanding disc solution!®*~2! | which certainly saturates

the Froissart bound and may even violate it, is obtained by keeping I as the vacuum and
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letting transitions to II and from III back to I contribute to scattering amplitudes. All of
our previous efforts?* to define a Super-Critical theory have been based on utilizing II as
the vacuum on one half of the rapidity axis and III as the vacuum on the other half. We
now believe that when the Super-Critical problem is properly formulated, it is clear that IV
provides the correct answer and that the problematic graphs of Fig. 7.1 (and many others of
a related form) do not in fact appear in the theory. The key to understanding this resolution

of the problem is the multiparticle hexagraph formalism of previous Sections.

7.2 The Physical Significance of the Pomeron Vacuum

Qur introduction of RFT in the last Section was as a diagrammatic solution of the
reggeon unitarity equations. This provides a well-defined formulation which is effectively
what emerges from all field-theoretic or string models generating the RFT directly. However,
when we consider changing the “vacuum” in the formalism, we at first sight lose all control
of the physical significance of the diagrams we are manipulating. It is particularly difficult to
determine what the physical significance of the Pomeron source diagrams might be. Since it
is these diagrams that cause the problems in our attempt to define a Super-Critical theory,
understanding their physical significance is clearly crucial. In fact since the Pomeron is only
defined by the scattering of hadrons, it would seem that the “Pomeron vacuum” can only
be redefined by some underlying redefinition of hadron states. But this apparently takes us
into the full problem of the hadronic vacuum which surely can not be discussed solely within

the RFT formalism.

Fortunately, there is a sense in which we can bring the redefinition of a hadron, as
the Pomeron becomes Critical, into our formalism and this will ultimately be sufficient to
resolve the vacuum problems. We noted in Sect. 6.6 that all secondary (hadron) trajectories
are significantly modified by Pomeron Regge cuts as the Pomeron becomes Critical. We
shall now argue that it is this redefinition which gives a well-defined meaning to the set of

Super-Critical Pomeron graphs associated with the new vacuum IV above,

We shall assume that as the Pomeron becomes Super-Critical, it is a good initial
approximation to consider the new hadron reggeons as differing from the old simply by the
presence of an infinite sum of Pomerons with zero energy and momentum as illustrated in
Fig. 7.2 The relative weighting of the terms with different number of Pomerons is actu-
ally determined by the vacuum expectation value (VEV) IV. That is in terms of diagrams,

the choice of a classical stationary point for the Pomeron VEV can be thought of as simply
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achieving the cancellation of the vacuum production processes illustrated in Fig. 7.3. Requir-
ing this cancellation determines therefore the relative weighting of (N + 1) to N Pomerons

in a reggeon for all V and directly fixes the value of the VEV.

We now need to consider the scattering of the new reggeons via Pomeron graphs
with the additional requirement that the reggeons are forming bound-state particles. This
means that we must necessarily consider the complicated scattering process illustrated in

Fig. 7.4 and to discuss bound-state formation by the reggeon we must consider the hexagraph

structure of the amplitudes involved.

7.3 Hexagraph Analysis of the Scattering of Bound-States Formed by Regge Cuts

As discussed in Section 4 we can isolate a single partial-wave which satisfies straight-
forward Reggeon Unitarity equations by exploiting helicity-pole limits. Therefore we define
each of the reggeon + Pomeron sum configurations in Fig. 7.4 by (physical) helicity-pole
limits of the hexagraph amplitude defined by Fig. 4.11. From our description of the 5-W
representations of hexagraph amplitudes in Section 4 we also know that particle poles appear
accompanying Regge pole behavior only for the appropriate multiple discontinuity structure.
Consequently, if the scattering illustrated in Fig. 7.4 is to contain dynamically generated par-
ticle poles in each reggeon channel (by the reggeon plus zero-energy Pomeron sum), not only
must it correspond to the hexagraph of Fig. 4.11, but in addition the amplitude must con-
tain a multiple discontinuity set which is consisteni with the presence of particle poles in
each channel. The possible five-fold discontinuities are illustrated in Fig. 7.5. There are
also discontinuity sets, analogous to those of Fig. 4.9d in the hexagraph of Fig. 2.5b, which
are inconsistent with the presence of the desired particle poles and these are illustrated in

Fig. 7.6.

Since we are considering the contribution of Pomeron Regge cuts in each hexagraph
channel, we also know from Section 5 that the Regge cut discontinuities in each individual
contribution to the sums of Fig. 7.4 can be described in terms of the fixed-pole residues of
hexagraph amplitudes of the form shown in Fig. 7.7. Consequently, our task is to construct
the general set of “RFT graphs” with Regge cut discontinuities of the form illustrated in
Fig. 7.7, which also have momentum space discontinuities of the form of Fig. 7.5. This will

give us the desired bound-state amplitudes of the form of Fig. 7.4.

To study the Super-Critical Pomeron therefore we are apparently faced with the major

theoretical problem of constructing RFT graphs for a general multiparticle hexagraph. (This
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goes beyond the problem of constructing RF'T for physical cross-sections discussed in th.
last Section—for which we asserted Reggeon Unitarity is sufficient.) There is clearly no
problem in formulating rules for the RFT graphs in which all Pomercn or reggeon/Pomeron
interactions are confined to one hexagraph ¢-channel, that is graphs of the form of Fig. 7.8
which correspond directly to hexagraphs of the form of Fig. 7.7. The rules developed for a
single t-channel, as described in the last Section, just apply (“multiplicatively”) to each of
the channels involved. In general, however, we can expect to have RFT graphs involving
arbitrary numbers of Pomeron interactions and connecting the different ¢-channels. A simple

graph of this form is shown in Fig. 7.9. New problems necessarily arise in formulating RFT

rules for such graphs, as we now discuss.

An apparent problem occurs if we consider the Regge cuts corresponding to the
dashed lines in Fig. 7.9. According to the above discussion each discontinuity should be
expressible in the form given by (5.46) in terms of nonsense, fixed-pole, hexagraph amplitudes
of the form illustrated in Fig. 7.7. The component amplitudes of Fig. 7.9 correspond to the
hexagraphs shown in Fig. 7.10 which do not have the appropriate form. However, the
multiple discontinuities of the graphs in Fig. 7.10 do actually coincide with particular sets
contained in the appropriate hexagraphs, as illustrated in Fig. 7.11. Consequently, the graphs
of Fig. 7.10 do indeed contain the necessary fixed-pole residues to give the Regge cuts picked
out in Fig. 7.9 and in this particular case there is no problem. In other graphs discussed

below, this problem will result in their elimination.

The second problem we encounter with Fig. 7.9 is that although we expect such
a configuration to contribute to the Regge cuts siiown, we can not find a natural way to
express the graph in terms of transverse momentum integrals. We can not simultaneously
replace all three Regge cut discontinuities by transverse momentum integrals, as we did for
the complete single-channel reggeon unitarity equation in (6.8) and (6.9). The transverse
momentum planes involved are distinct and so there is no natural way to let transverse
momentum flow through Fig. 7.9. Fortunately we can determine the contribution of this
graph to the reggeon scattering amplitude of Fig. 7.4 (involving zero energy and momentum
Pomerons) by studying the forward amplitude related to the “Di-Triple Regge” inclusive
cross-section®®!, since this involves only a single transverse momentum plane, and the RFT
rules for this cross-section are determined by straightforward extension of the arguments of
Ref. 49. Indeed it is clear that if the Pomerons involved in the outer discontinuities of Fig. 7.9

carry zero energy and iransverse momentum so that there is no outer loop integrations
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then the graph has an unambiguous form as a single transverse momentum integral with
the propagators illustrated in Fig. 7.12. Placing each of the external reggeon propagators
[Ey = AR(t1)]7}, [E2 = Agr(t2)]™! on shell and summing over the rapidity orderings of the

internal vertices gives an amplitude

(7.10)

4
1
~ (B~ Ap(@)? [k L0
B8O | O Ry (B~ &e(B) — BrlE ~ 9]
where ¢ = ¢% and we have factored off Pomeron/reggeon and external particle vertices. If
each of the zero energy Pomerons is weighted by the VEV of IV above, then we obtain
exactly the Super-Critical graph of Fig. 7.13.

We can effectively construct the complete set of hexagraph loops contributing to the
reggeon scattering of Fig. 7.4 in the same manner as for Fig. 7.12. A very important element
of the procedure is that we are to construct amplitudes with the discontinuity structure of
Fig. 7.5 only and reject those with discontinuities corresponding to Fig. 7.6. We must also
ensure that all Regge cut contributions involve amplitudes with discontinuities consistent
with the hexagraph structure of Fig. 7.7. These requirements make a very interesting se-
lection of potential graphs if we construct discontinuities according to the CRFT rules of
the last Section. For example, consider the graph of Fig. 7.14 which potentially generates a
Super-Critical graph of the form of Fig. 7.1. Applying the cutting rules shows this contains
only the cuts of Fig. 7.15, which are in fact of the form of Fig. 7.6, and so this graph is

rejected since it does not contribute to an amplitude with the necessary bound-state poles.

Following the above analysis through in detail for a general graph, we find that all
“desirable” graphs of the Super-Critical theory of IV above contribute to the relevant multiple
discontinuities. The intercept is shifted by the set of graphs shown in Fig. 7.16 and the
cancellation of Fig. 7.3 will take place if the reggeon states contain appropriately weighted
~ numbers of Pomerons as discussed above. None of the graphs of Fig. 7.1 contributes, or

graphs of the form Fig. 7.17, for example, which would produce similar problems if they did
contribute. The full reggeon graphs generating the Super-Critical graphs of Fig. 7.17 (and all
graphs with a related structure) are actually eliminated because the amplitudes that would
give the necessary Regge cut discontinuities in the reggeon channels do not have the right
(momentum-space) cut structure to contribute to the hexagraphs of Fig. 7.7. (Therefore
such graphs do not generate the Regge cuts that they appear to and so are essentially

meaningless.) We conclude that if we take the Super-Critical Pomeron to be defined by
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reggeon scattering, then a consistent set of graphs is generated corresponding to the “new

vacuum” of IV above. The vital point being that the actual source diagrams contributing

are only a subset of those naively generated by the potential (7.8).

The lowest order Super-Critical graphs generated by reggeon scattering are shown in
Fig. 7.18. Note that the graph of Fig. 7.19 is absent because the corresponding reggeon graph
has only the discontinuity structure of Fig. 7.6. This last graph has always been present in
our previous (unsuccessful) attempts at formulating the Super-Critical theory. There is no
immediate problem (from the RFT viewpoint) caused by the presence of graphs of this form,
but its absence follows straightforwardly from the present procedure. In fact the absence of
this graph is the key to understanding the reggeon unitarity, that is intermediate reggeon
state properties, of the Super-Critical theory. A problem we were never able to resolve
satisfactorily in our previous approaches.

The one-loop graphs of Fig. 7.18 at first sight give a two-Pomeron discontinuity of
the form illustrated in Fig. 7.20 with a new triple Pomeron vertex

A Dgro

—iTy(ki, ka) =70 — - 4

il12(k1, k2) =0 2(Ap + 3apk?)  2(Ag + 3ahk?) (11
_ 3o, .2, 12

T 200 (k1 k) +---. (7.12)

which therefore vanishes at zero transverse momentum. However, the unitarity product of
Fig. 7.20 will include a “cross-product” of the form generated by Fig. 7.19 which is absent
from Fig. 7.18. Therefore, this contribution must be subtracted from Fig. 7.20. But Fig. 7.19

can be writien directly in the form

-2 27 -3
[E — Ap(?)) /d k A ((&_g)g) [E—A(Ez) _A ((k—g_)z)} (7.13)

which is exactly the contribution to the Pomeron propagator of a two vector Regge pole state

with propagator
1 1

S E-a@)AE) (7.14)

I-‘(‘;,1)(Ea -k-z)

The second factor is the particle-pole which is the small A approximation to the “signature

factor” [sin ZA|™! associated with an odd-signature reggeon in the discontinuity formula

(5.46). Furthermore, since we must subtract the discontinuity due to (7.13) and it already
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has a negative sign, we must add a positive two vector contribution to the reggeon unitarity
equation. From (5.46) this is the correct sign for a two-reggeon cut contribution due to odd-
signature reggeons. The full one-loop reggeon unitarity equation can therefore be represented

as in Fig. 7.21.

If we consider arbitrary high-order graphs in the Super-Critical expansion, we also find
new one/many Pomeron vertices having the form illustrated in Fig. 8.22. Again not all of the
graphs necessary for reggeon unitarity, involving only Pomeron intermediate states, will be
generated. It will therefore be necessary to add appropriate odd-signature contributions with
the propagator (7.14). Although we have not demonstrated that this can be done completely
consistently, to all orders, there are no obvious problems. (It is clearly important that
only even numbers of odd-signature reggeons can contribute to an even-signature Pomeron
amplitude.) In effect all of the divergences of the theory in rapidity (due to ap(0) > 1)
are absorbed into the momentum transfer dependent singularities of the vertices and the

signature factor poles of the odd-signature reggeon.

We conclude that the Super-Critical Pomeron is characterized by the existence of a
Pomeron condensate and the existence of a single odd-signature trajectory degenerate with
that of the Pomeron. The odd-signature trajectory produces a vector particle with a mass
given by

AB)=0 = E=M=A/d (7.15)

Of course, if we wish to confirm that a candidate high-energy theory is in the Super-Critical
Pomeron phase we should also confirm the structure of the triple Pomeron vertex (7.12)
and the full structure of the vertices illustrated in Fig. 7.22. As we emphasized in the
Introduction the intercept of the Pomeron is again below one in the Super-Critical phase and
so as in the Sub-Critical phase the high-energy S-Matrix is “trivial” in the sense discussed
in the Introduction—that is all cross-sections go asymptotically to zero. Note that the
analysis of Ref. 30 should be readily adaptable to show that the Critical Scaling Laws develop
consistenily as the Critical Point is é.pproached from either the Sub-Critical or the Super-

Critical Phase.
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8. SUMMARY

We have provided a general basis for the development of multi-Regge theory and the
formulation of the Critical Pomeron as giving the only known non-triviel unitary high-energy
S-Matrix. We emphasised the solution of angular momentum plane unitarity but noted that
the Critical Pomeron has also been‘ shown to satisfy all other derived unitarity constraints.
The Critical point arises as cross-sections are increased to the maximum consistent with
unitarity. Beyond this point the resultant high-energy divergences are absorbed into the
particle singularities associated with the vector particle which emerges in the Super-Critical
Phase. Therefore we have shown, in the abstract and without any reference to gauge theories,
that when a theory (with equal particle and anti-particle cross-sections) is pushed beyond
the unitarity limit the result is the “deconfinement” of a Reggeised vector particle. Qur
ultimate aim is to be able to claim that we have directly discovered the gluon and QCD
within the Pomeron by studying the structure of the interactions of this vector particle. We

shall have made some progress towards this goal by the end of Part 2.

It is clear that the abstract and general nature of the formalism develojed in this
article makes it very difficult to tie up the loose ends that would be involved in any claim
for uniqueness of the Critical Pomeron. However, although we shall not attempt a proof,
we do believe that Regge behavior is intimately correlated with the analyticity properties of
many-particle amplitudes and that Reggeon Unitarity requires that high-energy behavior be
formulated in terms of interacting Regge poles if it is to be consistent with cross-channel uni-
tarity. That the Pomeron must be a single Regge pole is ultimately understood?® in the con-
text of QCD as being a requirement of the factorisation properties needed for “Wee Partons”
when the parton model is combined with a confining and symmetry-breaking vacuum. Since
this combination is probably necessary to get a theory which is both ultra-violet finite and
unitary, we believe the Critical Pomeron is the unique possibility for a strongly-interacting,
confining, theory of the kind that we anticipate is given by QCD. There may, however, be '
a more complicated high-energy S-Matrix which involves some partial deconfinement in the
form of the photon (and the weak-interaction vector bosons). In relation to this we suspect
that a unitary symmetry any bigger than SU(3) is necessarily broken spontaneously because
of (high-energy) unitarity and that a generalised version of the Super-Critical Pomeron may

describe the symmetry-breaking.
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. 4.9

FIGURE CAPTIONS

A General Toller Diagram.

2 Examples of Toller diagrams generating Planar Toller diagrams.

The generation of hexagraph vertices.

A planar Toller diagram generating two hexagraphs.

The thirty-two hexagraphs generated by the eight Toller diagrams of Fig. 2.2(a).
Twisting a hexagraph.

The integration contour for {3.2).

Branch-points emerging from the unphysical side of normal thresholds.
“Infinitesimal” analyticity domains surrounding the normal threshold branch cuts.
A 2-4 amplitude with a “bad” boundary-value.

An allowable cut (discontinuity) through a hexagraph.

The contour C for (4.3).

A T-graph.

A D-graph.

A V-graph.

Cut-plane analyticity in the u-plane.

A hexagraph containing a single V-graph.

The two hexagraphs joined by the V-graph in Fig. 4.6.

A single T-graph with D-graph structures attached.

Allowable cuts of the hexagraphs of Fig. 2.5 and the conjugate Toller diagrams.
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Fig. 4.10 Angular variables and corresponding angular momenta and helicities for a hexagraph.

Fig. 4.11 The elastic-scattering discontinuity in a hexagraph containing a four-particle ampli-

tude.

Fig. 5.1 Cutting a Toller diagram T to give Toller diagrams 7T and Tx.
Fig. 5.2 The product hexagraph H obtained from hexagraphs H; and Hp.
Fig. 5.3 The vi-plane.

Fig. 5.4 Distortion of the vi-integration region as z — oo.

Fig. 5.5 A Toller diagram T; for the internal state :.

Fig. 5.6 Cutting a Toller diagram T to give Ty and Tr for a multiparticle state with Toller

diagram T;.

-7

Fig. A hexagraph for 7; which generates a Regge cut.

[$4]

Fig. 5.8 Examples of distinct internal hexagraphs for Tz and Tg.
Fig. 5.9 Notation for a particular phase-space hexagraph.
Fig. 6.1 The accumulation of multi-Pomeron cuts when ag(0) = 1.

Fig. 6.2 An elastic scattering amplitude as a sum of contributions from all possible Pomeron

Green's functions.

Fig. 6.3 Reggeon Unitarity for Pomerons.

Fig. 6.4 Pomeron interaction vertices.

Fig. 6.5 The E-plane integration contour.

Fig. 6.6 Pomeron graphs to which a renormalization group transfor;nation is applied.
Fig. 6.7 The infra-red fixed-point in the e-expansion.

Fig. 6.8 Comparison of the scaling function for the diffraction peak with ISR data.
Fig. 6.9 Pomeron interaction vertices as hexagraph vertices.

Fig. 6.10 The hexagraph loop expansion for elastic scattering.
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Fig.

Fig.

Fig.

Fig.

6.11

6.13

6.14

6.15

6.16

6.17

Fig. 6.18

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Intermediate states are each represented by a propagator I'; of the form of (6.59).

T he production process is uniformly spread on the rapid.ity axis.

Elastic scattering, as the shadow of the production process, is a Pomeron Regge pole.
The production process for events with twice the average multiplicity.

Varying multiplicity densities on the rapidity axis generate higher-order Pomeron

graphs.

Uncut Pomerons correspond to absorption of the basic production process.
A further cut allowed in hexagraph loops.

The multiplicity distribution for ap(0) < 1.

Diagrams involving vacuum production but no triple Pomeron coupling.

The first approximation to the modification of hadron reggeons as the Pomeron be-

comes Super-Critical.

The cancellation of vacuum production at a “classical” stationary point.
The scattering of Super-Critical hadron reggeons.

Five-fold discontinuities consistent with particle poles in each reggion leg.
Five-fold discontinuities inconsistent with particle poies in each reggeon leg.

The form of hexagraphs which contribute to Regge Cut discontinuities in both the

Pomeron and Reggeon channels of Fig. 7.4.

Multi-channel Pomeron and Reggeon-Pomeron Interactions described by “multiplica-

tive” Reggeon Field Theory rules.

Fig. 7.9 An example of a Pomeron graph with different channels connected.

Fig. 7.10 Hexagraphs corresponding to the component graphs of Fig. 7.9.

Fig. 7.11 The same set of cuts in two distinct hexagraphs.

Fig. 7.12 A graph that contributes to the Super-Critical Theory.
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Fig.

7.13 A Super-Critical Pomeron graph.

ig. 7.14 Generation of a Super-Critical graph of the form of Fig. 7.1.

. 7.15 Five-fold discontinuity of the graph of Fig. 7.14.

ig. 7.16 Generation of the Super-Critical graphs which shift the intercept.

ig. 7.17 Further graphs which do not contribute to the Super-Critical theory.

. 7.18 The perturbative expansion of the Supe:i-Critical Pomeron propagator.
ig. 7.19 Another graph with the wrong discontinuity structure.

ig. 7.20 Reggeon unitarity with the new vertices included.

ig. 7.21 The full reggeon unitarity equation involving the Super-Critical odd-signature partner

to the Pomeron.

ig. 7.22 The structure of higher-order vertices in the Super-Critical expansion.
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