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Abstract

The formalism of Analytic Multi-Regge Theory is developed as a basis for the study

of abstract Critical and Super-Critical Pomeron high-energy behavior and for related

studies of the Regge behavior of spontaneously broken gauge theories and the Pomeron

in QCD.

Asymptotic domains of analyticity for multiparticle amplitudes are shown to follow

from properties of Field Theory and S-Matrix Theory. General asymptotic dispersion

relations are then derived for such amplitudes in which the spectral components are

described by the graphical formalism of hexagraphs. Further consequences are distinct

Sommerfeld- Watson representations for each hexagraph spectral component, together

with a complete set of angular momentum plane unitarity equations which control the

form of all multi-Regge amplitudes. Because of this constraint of "Reggeon Unitarity"

the Critical Pomeron solution of the Reggeon Field Theory gives the only known "non-

trivial" unitary high-energy S-Matrix.

By exploiting the full structure of multi-Regge amplitudes as the Pomeron becomes

Super-Critical, the simultaneous modification of hadrons and the Pomeron can be

studied. The result is a completely consistent description of the Super-Critical Pomeron

appearing in hadron scattering. Reggeon Unitarity is satisfied in the Super-Critical

Phase by the appearance of a massive "gluon" (Reggeised vector particle) coupling

pair-wise to the Pomeron.
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1. INTRODUCTION

QCD is now firmly established as the gauge theory of the strong interaction. It

is commonly believed that the theory can be calculated in the ultra-violet region via the

parton model and perturbation theory and that in the infra-red region it can at least be

approximated via lattice gauge theory. An optimist might believe that it is only a matter

of time before the continuum limit of lattice QCD is proved to exist, giving a confining,

unitary, theory of hadrons and giving the parton model at short distances. This article

is most directly aimed at the pessimist (or realist) who is persuaded (persuadable) that

coupling the current infra-red and ultra-violet understanding of QCD is a major challenge

for which new technology may be at least desirable, if not mandatory. The general purpose

of the article, which will be published in two separate parts, is to provide a comprehensive

analysis and review of how Analytic Multi-Regge Theory, when applied to the problem of

the Pomeron in QCD, provides both new technology and a simultaneous confrontation with

infra-red and uitra-violet properties of the theory.

A primary ambition of the article, and of this first part in particular, is to demonstrate

that the vacuum quantum number multi-Regge region of the strong-interaction multiparticle

S-Matrix is close to being determined by the very powerful general principles of analyticity

and unitarity. We can then argue that in this truly mixed infra-red/ultra-violet kinematical

regime, unitarity provides an explicit challenge to the complete formulation of QCD. This

argument will provide the dominant theme of the second part of the article, which will contain

all the analysis of gauge theories and of QCD in particular. We shall see that ultimately

confinement, chiral symmetry-breaking, asymptotic freedom and the parton-model, and even

the quark flavor spectrum all couple together in the problem of obtaining a fully unitary

high-energy S-Matrix within QCD.

During the barren years of quantum field theory (for the strong interaction) the most

sophisticated analyticity methods were developed1'2 to study multi-Regge behavior and its

inter-relation with unitarity. However, the resulting formalism is not well-known, nor is

its underlying basis well understood. Consequently the early Sections of this article will

be devoted to a broad and fairly comprehensive development of the subject. The essen-

tial results are first that in the multi-Regge asymptotic regime there are relatively simple

many-variable domains of analyticity and corresponding multiparticle dispersion relations



are valid. Secondly consequent generalised Sommerfeld-Watson representations exist which

lead to asymptotic behavior strongly constrained by "cross-channel" multiparticle unitarity

continued in the complex angular momentum plane. At the Regge pole level the asymptotic

amplitudes obtained from these representations were shown1'3'4'5 to coincide (in all essential

respects) with those calculated directly from "dual models". Such amplitudes are, of course,

now understood as tree-level string theory amplitudes and so it follows that the multi-Regge

form of string theory amplitudes is just that imposed by the requirements of analyticity

and unitarity. Not surprisingly these requirements do not determine, or even constrain, the

number and nature of the quantum numbers involved in a string theory.

The strongest constraints are actually on multi-Regge behavior involving the Pomeron—

where no quantum numbers are exchanged. The concept of the Pomeron was originally purely

phenomenological. It was introduced6 as a Regge pole with vacuum quantum numbers which

is responsible for the energy independence (up to logarithms) of total cross-sections. How-

ever, it became clear, even before the advent of QCD, that the Pomeron is at the core of

a fundamental high-energy, strong-interaction, "vacuum problem". This is the problem of

producing a non-trivial high-energy S-Matrix which is consistent with both direct-channel

and cross-channel unitarity. We shall call a high-energy S-Matrix non-trivial if all total

and inclusive cross-sections do not go to zero asymptotically. Producing such an S-Matrix

is a "vacuum problem" in that those channels which are related to physical cross-sections

via optical theorems necessarily involve "vacuum" quantum number exchange. It is the

fundamental importance of angular momentum plane unitarity1-7 (Reggeon Unitarity) for a

non-trivial high-energy S-Matrix that suggests the problem is best analysed in the language

of Regge theory and the Pomeron. However, the derivation of further "direct-channel"

unitarity constraints8"11 and several "no-go theorems"4'12'13 emphasised that even in this

formalism finding a solution would be far from easy.

Note that since the resulting large transverse momentum cross-sections do not de-

crease with energy, the requirement within QCD that perturbation theory and the parton-

model are valid in the ultra-violet region actually determines that the high-energy S-Matrix

must be non-trivial. Therefore QCD must provide a solution to the full high-energy vacuum

problem if it is indeed a complete theory of the strong interaction with all the properties

we would like! As we already implied above we shall find that within QCD the high-energy

vacuum problem is intimately related to the full vacuum problem.



The basic reason that Pomeron amplitudes are so constrained, and the high-energy

problem correspondingly difficult, is that "multi-Pomeron" exchanges (Regge Cuts) are also

required by unitarity and they are necessarily as important in the asymptotic S-Matrix as

single Pomeron exchange. Consequently there is an unavoidable "strong-coupling" problem

- the major constraint on which is that of Reggeon Unitarity. This is explicitly satisfied in

the (perturbative) formalism of Pomeron Reggeon Field Theory.13'14 Indeed it was a very

elegant application16'17 of renormalisation group methods to the Reggeon Field Theory, in

the mid-70's, which finally produced an infra-red fixed-point, scaling solution of Reggeon

Unitarity for the Pomeron. This solution, the "Critical Pomeron", is a vital part of the basic

argument which this article advances. We shall emphasise that the Critical Pomeron is both

completely formulated and absolutely calculable and also gives the only known non-trivial

unitary high-energy S-Matrix. We shall argue both that it is crucial to the consistency of

QCD that the Critical Pomeron be the true high-energy behavior and also that QCD explains

why the Critical Pomeron occurs!

The foremost problem posed by our general purpose is clearly that of making direct

contact between the abstract Pomeron formalism developed before QCD and the explicit

formulation of a non-abelian gauge theory. It is quite probable that a large N topological

expansion has a straightforward correspondence with the general Pomeron Reggeon Field

Theory perturbation expansion18. However, this correspondence is only qualitative and

certainly does not allow us to discuss the detailed dynamical question of the Criticality of

the Pomeron. Fortunately a direction in which to proceed is provided by the answer to

another question which was also posed, and studied, before the advent of QCD.

As part of its formulation it is clear that the Critical Pomeron is a "phase-transition"

point for a class of "Sub-Critical" Pomeron theories in which the asymptotic S-Matrix is triv-

ial - that is total cross-sections go to zero asymptotically as a power of the energy (the power

decreasing to zero as the critical point is approached). The question is whether there exists

a "Super-Critical Phase" and if so what are its distinguishing properties. There was much

controversy surrounding this subject in the late 70's. Several authors19"21 advocated an

"Expanding Disc" solution of the problem which (at least) saturates the energy dependence

of the Froissart bound and so potentially gives a non-trivial S-Matrix in the sense discussed

above. We argued then (and have re-emphasised recently22 in the context of minijet models)

that the large transverse momentum dependence of the Expanding Disc inevitably violates

Reggeon Unitarity. Indeed this was the case for all explicit versions of this solution that



could be constructed21.

We should point out that our criticism of the Expanding Disc "solution" of Reggeon

Field Theory applies to all high-energy models or "theories" giving Froissart bound saturat-

ing energy dependence ("Froissarton11 behavior). That is such behavior is almost certainly

in direct contradiction with angular momentum plane unitarity and therefore is inconsistent

with the basic analyticity and crossing properties of the hadron S-Matrix. Indeed, if this

form of high-energy behavior could be made to satisfy some form of Reggeon Unitarity, all of

our discussion of the constraints placed on QCD in the multi- Regge region would be empty.

It is almost trivial to obtain Froissarton behavior as a first approximation in a wide variety of

circumstances and if there were no problem with unitarity there is little doubt that it would

arise as the exact high-energy behavior in almost all such circumstances. It would then be

futile to look for any deep constraint on a theory by studying the high-energy S-Matrix. This

is clearly the very opposite of our point of view. We believe the constraint of producing a

unitary Pomeron is the deepest of constraints on a theory. (As an aside we might mention

that the problem of producing a consistent reggeised graviton is a generalised Super-Critical

Pomeron problem in string theories, whose solution probably involves the sister trajectories

and hence23 the detailed algebraic structure of such theories, in an intricate manner. This

almost certainly places a very strong constraint on such theories—perhaps even selecting the

desired unique theory!)

Our major contribution24 to the Super-Critical Pomeron controversy was to advocate

a solution to the problem which is again characterised by asymptotically decreasing cross-

sections, that is a "trivial" high-energy S-Matrix. The distinction from the Sub-Critical

phase is the presence of a "Pomeron Condensate" together with an odd-signature compo-

nent of the Pomeron associated with a vector particle. At the Critical point the vector

particle decouples while its mass simultaneously goes to zero. The problem with this so-

lution was always that we were unable to find a formulation for introducing the Pomeron

Condensate which unambiguously defined the graphical rules of the theory and clearly sat-

isfied Reggeon Unitarity. Nevertheless we became convinced that this solution described the

(partial) deconfinement of a gauge theory and that the Reggeised massive vector particle we

had found emerging out of the Critical Pomeron would provide a key to the exact nature of

such an underlying theory. We then began studying the possible connection of the Regge be-

havior of massive gauge theories to the high-energy behavior of QCD. Our hope was that we

would uncover the Super-Critical Pomeron theory we had proposed and that the ambiguity



in the rules would somehow be resolved by the gauge theory context. A number of articles

published over the years25"27 have gradually elaborated the physics that we have come to

believe underlies the relation of the Super-Critical Pomeron to spontaneously broken QCD.

This relationship will, of course, be extensively covered in the second part of this article.

As our direct study of the Pomeron within QCD developed we found that the in-

evitable confrontation with confinement involved several deep issues that actually required

a full exploitation of multi-Regge theory for their resolution. Specifically, it was necessary

to simultaneously study both the formation of hadrons (as Reggeons) and the Pomeron by

studying appropriate multi-Regge amplitudes. We then realised that almost the same issues

were involved in the ambiguities of defining the Super-Critical Phase and so their resolution

should be similar. Following this idea through, we have now found that if we consider a multi-

Regge amplitude in which we can simultaneously study the modification of the Pomeron and

the modification of hadrons by the Pomeron, then the introduction of a Pomeron Conden-

sate leads to an unambiguous theory. (In this context a hadion is simply a massive particle

lying on a Regge trajectory). The full discontinuity structure of multi-Regge amplitudes

and Regge cuts is involved in the formulation but the outcome is a straightforward set of

graphical rules. Reggeon Unitarity is explicitly satisfied, with the properties of the resulting

Super-Critical Pomeron exactly as we had previously conjectured.

It seems therefore that, after more than ten years of (intermittent) study, we can

finally claim to have solved the problem of the Super-Critical Pomeron. The description

of this solution actually provides a self-contained motivation for this part of our article in

that all of the analyticity properties and multi-Regge theory that we develop and review

are necessary background for the presentation of the Super-Critical Pomeron. However, this

material will also be an essential background for our analysis of QCD in the second part of

the article. More importantly perhaps we believe that the abstract formalism of Analytic

Multi-Regge Theory will eventually prove to be very powerful for studying many aspects of

gauge theories, string theories and perhaps more general theoretical formalisms. Most of the

review material incorporated in this article is not appropriately presented elsewhere and it

surely provides an essential basis for future development of the subject.

We shall discuss explicitly the relationship between the phase structure of QCD and

the Pomeron phase transition in the second part of the article. This will make it clear that

the Super-Critical Pomeron provides a vital bridge between the perturbative Regge behavior



of an entirely massive gauge theory (in which the gauge symmetry is completely broken)

and the Pomeron of unbroken QCD. That is the Super-Critical Pomeron describes a partial

breaking of the SU(3) gauge symmetry of QCD down to SU(2). The extraction of the theory

with unbroken SU(2) symmetry from completely massive (spontaneously broken) QCD is an

infra-red problem that will be a major topic in part two.

The outline of this Part is as follows. We begin in Section 2 with a description of

the multiparticle angular variables that we utilise for all of the analyticity and Regge theory

analysis. The introduction of these variables is extensively described in several articles1'4'28'29.

However, there is almost no usage of them in current research work. We give a brief but

complete, in principle, description which is aimed directly at the applications in the following

Sections. The over-riding virtue of the angular variables is that they provide a complete and

unconstrained set of independent Lorentz-invariant variables for a general TV-point amplitude.

Section 3 is devoted to a description of the domains of analyticity of multiparticle am-

plitudes and related asymptotic dispersion relations. We discuss the basis of these properties

in Field theory and S-Matrix theory. Both the generality of the material and the presen-

tation distinguish this Section from previous related discussions. The Section closes with

a complete description, utilising "hexagraphs"1, of the break-up of a general multiparticle

amplitude into spectral components via an asymptotic dispersion relation. The essence of

the general multi-Regge theory developed in Section 4 is that each hexagraph spectral com-

ponent has a distinct Sommerfeld-Watson Representation utilising distinct Froissart-Gribov

Continuations. We emphasise the inter-relation of the particle pole structure of a hexagraph

spectral component with the asymptotic discontinuity structure. This inter-relation is essen-

tial in the formulation of the Super-Critical Pomeron. We also note a connection with the

structure of sister Regge trajectory contributions in multiparticle string-theory amplitudes.

The complete Reggeon Unitarity equation for a general hexagraph Froissart-Gribov

amplitude is the subject of Section 5. That angular momentum plane unitarity is effectively

diagonalised by the break-up of a general amplitude into hexagraph spectral components is

an essential element in the derivation. In Section 6 we move on to the relationship between

Reggeon Unitarity and Reggeon Field Theory for the Pomeron. We then present a brief

review of both the formulation and some key features of the Critical Pomeron.

Section 7 contains our new formulation of the Super-Critical Pomeron. An important

point is that once all of the necessary background multi-Regge theory is in place, it is clear



that the appropriate "classical solution" defining the Pomeron condensate is a symmetric

stationary point which always appeared to have many virtues as a candidate "vacuum" but

was thought to give an unstable perturbation expansion30. The new formulation we present

produces a straightforwardly stable expansion with the unstable classes of graphs simply

absent.

Section 8 summarises our view of the general significance of the Pomeron phase tran-

sition for the high-energy vacuum problem, in preparation for the analysis of QCD in the

second part of the article.



2. MULTIPARTICLE KINEMATICS

Regge theory is, in a sense, generalized partial-wave analysis. Not surprisingly there-

fore to apply such an analysis to a multiparticle amplitude we must first introduce a set

of angular variables. Although we shall make little direct use of these variables in the sec-

ond part of the article, involving the analysis of QCD, they play a basic role in the initial

dispersion theory and complex angular momentum theory. Therefore a reader wishing to

understand these basic formalisms must have a working knowledge of the angular variables.

We shall therefore elaborate their properties rather more pedantically than in previous arti-

cles. We shall do this by first giving an excessively pedantic treatment of elastic scattering

which will then generalize in a straightforward manner.

2.1 Elastic Scattering

A four-point amplitude is a function of the four on-mass-shell momenta satisfying

p2 = m2 . = 1,2,3,4 (2.1)

which if incoming particles carry positive energy and outgoing particles carry negative energy

satisfy momentum conservation in the form

I> = ° (2-2)
t=i

There are three obvious Lorentz-invariant variables

a = (Pi + P2)2, t = (Pi + Pa)2 and u = (Pl + p4)
2 (2.3)

which, of course, satisfy
4

s-M + u = £ m 2 . (2.4)
i=i

If pi and p2 are incoming particles (and for simplicity we take m2 = m2 i = 1 , . . . 4) then

the physical region is

I : s>4m2, t,u<Q. (2.5)

There are two other physical regions in which pi and p4, and p\ and p3, are respectively

incoming momenta, that is
I I : u > 4 m 2 , i , s < 0 , (2.6)

III: t>4m2, 5 , M < 0 . (2.7)

8



We introduce the i-channel center-of-mass scattering angle by the following procedure.

First we define Lorentz frames F\,..., F4 in which the external momenta /?,- respectively have

the standard form

p? = (m, 0,0,0). (2.8)

Next we define further standard frames F\ and P2 in which Q = (pi + p3) has the standard

form

Q°=(Q, 0,0,0) t = Q2>0. (2.9)

In Fi we also require that p\ and pz lie in the z-t plane. Therefore to transform from frame

F\ to F\ we can apply a boost az{Q in the z-t plane such that

Pi = a*(C)P? = (m c o s h C. 0> 0."»sinh fl cosh C = TT"- (2.10)
2m

In F2 we similarly require that p2 and p4 lie in the (z-t) plane, so tthat p2 in particular has

the form (2.10) but with the sign of the time component reversed.

Since Q has the form Q° in both frame F\ and F2 it follows that these two frames

differ by a Lorentz transformation g such that

gQ° = Q°. (2.11)

That is g belongs to the "little group" of Q° which, since Q° is timelike, implies that

g e SO(3). (2.12)

We can parameterize SO(3) as

0 < < ? < 7 T
g - uz{p)ux(0)uz{v) , (2.13)

0 < V, \l < 27T

where u2 and ux are respectively rotations about the z and x zy.es.

We can express invariant variables in terms of fi, 6, and v by computing all the

relevant external momenta in one particular standard frame. To compute s, for example, we

can compute pi and p2 in frame F\. pi already has the form (2.10), while p2 has this form

in frame F2. Therefore we apply g to p2 in the form (2.10) to obtain its form in Fj. That is

we first calculate

uz(u){-m cosh (, 0,0, m sinh () = (-m cosh £, 0,0, m sinh (), (2.14)

9



and then

ux(9)(—m cosh C, 0,0, TZ sinh Q = (—m cosh £, 0, m sinh £sin 5, m sinh £ cos 0), (2.15)

and finally applying uz(fi) gives

•p-i = (—m cosh C, m sinh £ sin 9 sin /*, m sinh ( sin 5 cos /J, m sinh £ cos 6). (2.16)

Utilizing (2.10) and (2.16) directly we find that

5 = (Pl + p2)2 = -2m2 cosh2 ( - 2m2 sinh2 ( cos $ + 2m2 (2.17)

= -2m 2 sinh2 ((1 + cos 6) (2.18)

Similarly ve find

« = (Pi + P-.)2 = ( L ] ? T Z 2
2 ~ ^ ( 1 - cos 9). (2.20)

Clearly we recognize 9 as the usual 2-channel center of mass scattering angle which

we have simply introduced in a rather elaborate way. Note that while the invariants s and

u are independent of the azimuthal angles fi and u, these angles would appear in the spin-

dependence of amplitudes if we considered particles with spin. Analogous angles will play

an important role in the multiparticle amplitudes we consider shortly.

Note that the constraint (2.4) is automatically satisfied by the parameterization (2.19)

and (2.20) and so t and z = cos 6 can be used as independent unconstrained variables. The

three physical regions are then

I. t < 0, z > 1,

II. t<0, z<-\ (2.21)

III. t > 4m2 - 1 < z < 1.

Since (2.19) and (2.20) express cos 9 as a function of invariant variables only it is clear that

although introduced in a frame-dependent manner it is really a Lorentz-invariant variable.

We refer to I and II as direct channels. Regge singularities in the cross-channel or t-channel

III describe high-energy scattering in the direct channels.

10



We can also introduce the variables i and z in the direct channels. Since t < 0 we

replace the standard form (2.9) in the frames F\ and F-i by

Q° = (0,0,0, Q) t = - Q 2 < 0. (2.22).

We change (2.10) only in that sinh£ = Q/2rn (instead of cosh£). (2.12) is replaced by

5 €SO(2,1) , (2.23)

and so we write

- O O < /? < CO
g = u,(n)ax(p)uz(v) , (2.24)

0 < H,V<2T

where ax is now a boost in the x — t plane. In frame F\, (2.16) is replaced by (note that p2

is now an incoming momentum)

p2 = (TO cosh ( cosh j3, m cosh £ sinh j3 cos fi, m cosh ( sinh j3 sin (i, m sinh Q , (2.25)

so that now

s = (Pl + p2)
2 = 2m2 cosh2 C cosh /3 - 2m2 sinh2 C + 2m2 (2.26)

= i^Jl (cosh 0+lh (2.27)

and so we can directly identify z = cosh 0 and, of course, recover the parameterization (2.21)

of the ^-channel physical region. To recover the parameterization (2.21) of the u-channel we

can simply add the "TCP" transformation

g : z — cosh fi -* -z (2.28)

as an extension of SO(2,1) and include the s and u-channels in the same little group param-

eterization.

It will also be useful for the following to extend our elastic scattering kinematical

analysis to the unphysical situation of particles with spacelike masses. That is we now

consider replacing (2.8) by

p? = (0,0,0,p) - p 2 = m 2 < 0 . (2.29)

11



If Q remains spacelike we now replace (2.10) by

° ) c o s < ? i = ^ . (2.30)

To obtain the equivalence of the independence of fi and v in (2.17)-(2.20) we must replace

the parameterization (2.13) of SO(2,1) by one of the form

g = ay{a)gay{f) - oo < a, 7 < 00. (2.31)

In fact, if we choose g = ax(/3) we do not cover the whole group. Instead we have to use

both
g = ax{j3) — 00 < /? < 00 allowing both cosh,5 > 1 and cosh/3 < —1

and

g = uz{0) 0 < 0 < 2TC. (2.32)

Repeating (2.14) to (2.16) gives that in / \ , for § = ax(/3),

p2 = (psin^sinh/5cosha, psin^cosh/3, psin</>sinh/3sinha, —pcos<f>) (2.33)

or for g = uz(0)

p2 = (psin<6sin0sinha, psin^cosfl, psin ^sin^cosha, —pcos^) (2.34)

and hence
5 = -2p2 sin2 4>z + 2p2 cos2 <f> - 2p2 (2.35)

= < ^ ( , + l), (2.36)

where now z = cosh/3 and z = cos# in the parameterization (2.32). In effect the three

physical ranges of z appearing in (2.21) all describe "physical" real momenta when the

external masses are spacelike.

Finally we note that we can also consider one set of external momenta, px and p3 say, to

be timelike (and sum to a spacelike vector) while allowing the remaining two momenta to be

spacelike. In this case we could repeat the above analysis using yet another parameterization

of SO(2,1) namely

g = uz(ti)ax(0)ay(~,) -00 < /?, 7 < oc (2.37)

0 < n < 2TT.

12



Our next task is to generalize the above discussion to an arbitrary multiparticle

amplitude.

2.2 Toller Diagrams and Little Group Variables

For a multiparticle amplitude there are many possible sets of angular variables.1'4'28'29

They are distinguished by the Toller diagram with which they are associated. A Toller

diagram is a tree diagram with only three-point vertices. For every Toller diagram there is

a distinct set of angular variables and, as we shall describe in the next Section, a distinct

asymptotic dispersion relation. We use a general formalism to introduce the variables and

use the above discussion to be more specific when necessary.

For an ./V-point amplitude we denote the external momenta as Pi, i = 1 , . . . , N and

introduce internal momenta Qj, j = 1 , . . . , N — 3 for each internal line of the Toller diagram

as illustrated in Fig. 2.1. The Qj are defined by imposing momentum conservation at each

vertex (following the momentum flow of the incoming momenta). Next we introduce three

standard Lorentz frames at each vertex (including the external vertices) in each of which one

of the three momenta entering the vertex has a standard form. To be specific we can utilize

(2.9) ((2.8)) if Qj (Pi) is timelike or (2.22) ((2.29)) if Qj [Pi) is spacelike. We denote as gj

the Lorentz transformation—associated with the internal line j—which transforms between

the two standard frames for Qj defined respectively at the two vertices to which the line j

is attached. Since Qj has the same form Q® in both standard frames gj necessarily belongs

to the little group of Q° implying (as above) that

gj € SO(2,1) if Qj is spacelike
(2.38)

gj £ S0(3) if Qj is timelike.

We also introduce the Lorentz transformations Qk transforming between the standard

frames defined for Qj and Qk respectively, at the same vertex. Note that Qk is a function

of tj = Q), tk = Ql and tt = (Qj -f Qkf only. In analogy with (2.10) and (2.14)-(2.16) we

can combine the gj and (jk (together with Qj transformations defined analogously to the Qk,

but at external vertices) to determine any of the external momenta in any of the standard

frames associated with the Toller diagram. Consequently for the Appoint amplitude Mn we

can write

- • -,PN) = MN (tu...,<N-3,3I,• • • , 9 N - 3 ) • (2.39)

13



If we initially consider all the Qj to be timelike then we can use the parameterization

(2.13) for the gj. We can also take all the £,-* and dj to be boosts az(Q in the z-t plane. In

this case the uz rotations clearly commute with the az and as a result the external invariant

variables depend only on combinations Wjk = fij — vk of the azimuthal angles. (This is a

generalization of the independence of s and u of p and v in (2.19) and (2.20)). The net

effect is that the angular variables for each Toller diagram reduce always to the (3./V — 10)

independent variables which we know it is possible to find for an JV-point amplitude. There

are always

(N - 3) U variables (= Q})

(N — 3) Zj variables (= cos 6j)

{N - 4) ujk variables(= elu>'*)

(3N - 10) variables. (2.40)

Just as t and z were an unconstrained, Lorentz invariant, independent set of variables for the

elastic amplitude, so for each Toller diagram the tj, ZJ, and Ujk variables are an unconstrained

Lorentz invariant set for the TV-point amplitude, given the complicated (Gram-determinant)

constraints satisfied by the complete set of momentum or invariant variables for a general am-

plitude, this is a remarkable simplification, which is particularly important for the dispersion

relations we describe in the next Section.

Before discussing the details of spacelike kinematics for a general Toller diagram we

first introduce an extended tree-diagram notation which can be used to distinguish both

the "direct channels" in which the Qj are spacelike and the "cross-channels" in which these

momenta are timelike.

2.3 Hexagraphs, Cross-Channels, Direct Channels and Twisting

We begin by first introducing a set of planar Toller diagrams for each Toller diagram.

These are obtained by considering all scattering processes for which all the Qj are spacelike.

Each distinct process is then drawn as proceeding via the particular Toller diagram, but in

a plane and with the incoming particle lines drawn vertically entering the diagram from the

bottom and the outgoing particles similarly exiting from the top. The Qj lines are drawn

horizontal when they don't meet internal vertices and close to horizontal when they do. An

example of the resulting set of planar Toller diagrams obtained from a simple Toller diagram

is shown in Fig. 2.2. We shall not distinguish processes differing by the TCP transformation

of incoming particles into outgoing particles. The set of planar Toller diagrams is in one to
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one correspondence with the set of direct channels for a general Toller diagram.

From the set of planar Toller diagrams we generate a further set of diagrams called

hexagraphs. A hexagraph has the same number of vertices as the original Toller diagram

but all lines are drawn either horizontal or at 60° (or 120°). Hexagraphs are constructed

by substituting for each of the vertices of a planar Toller diagram the sets of vertices shown

in Fig. 2.3 (As illustrated the number of vertices substituted depends on the number of

external lines entering the vertex.) By joining the available vertices with horizontal lines in

all possible manners the complete set of hexagraphs is formed. Examples of this construction

are shown in Fig. 2.4 and 2.5. If incoming particles are now considered to enter a hexagraph

from the left of the diagram and outgoing particles to exit from the right then (up to a TPC

transformation) each hexagraph represents a unique cross-channel. To illustrate this we can

think of each internal horizontal line of the diagram as representing a resonance and each

vertex as representing resonance formation or decay. For this to be kinematically possible,

if Qj is the horizontal momentum line entering a vertex and Qj+i and Qj+2 the other two

momenta we must have

Qi>Qj+i+Qi+7, (2.41)

and so
X(tj,tj+l,ii+2) = t) + t2

j+1 + t)+2 - 2tjtj+1 - 2tj+1tj+2 - 2ti+2tj (2.42)

= - (Qi + Qj+i + Q:+2){Qj + Qi+i - Qi+2)

x {Qi - Qj+i + Qj+7){-Qi + Qj+i + Qj+2) (2.43)

> 0 (2.44)

That is A > 0 is satisfied at all vertices in a cross-channel. However, distinct cross-channels

can be distinguished by which factors in (2.43) are positive and which negative at each

vertex. This is what the hexagraph describes. The horizontal line at the vertex is the largest

momentum.

Note that the hexagraph can also be used to count the variables of the Toller diagram.

That is each 03- (and each tj) can be associated with the corresponding horizontal line of the

hexagraph, while each Ujk can be associated with an internal sloping line. In this case the

0j can be thought of as conjugate to the angular momentum of the corresponding resonance

while the uijk are conjugate to the helicity of the corresponding resonance. Of course, the

scattering process does not have to take place by the resonance formation illustrated by the

hexagraph—it is simply that this process is kinematically possible.
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Although a hexagraph is drawn in a plane the scattering process described is not at all

planar. Indeed if one half of a hexagraph is rotated through 180° (perpendicular to the plane

of the paper) about one horizontal line relative to the other half so that the diagram is again

drawn in a plane as illustrated in Fig. 2.6, the same cross-channel is described. Therefore

each cross-channel is described by a class of hexagraphs related by twisting. The process of

twisting a hexagraph (or a planar Toller diagram) about a horizontal line is, however, impor-

tant for distinguishing direct channels because it defines the multiparticle generalization of

signature. Note that the (unique) direct channel associated with a hexagraph is immediately

obtained by simply recovering the original planar Toller diagram from the hexagraph.

The angular variables can be straightforwardly introduced in any physical region by

the procedure described above. In general some of the little groups will be spacelike and

some will be timelike, that is some gj will belong to SO(2,1) and some to SO(3). Also

even if all the Qj meeting at a vertex are spacelike the vertex may still be timelike in

that (2.41) is satisfied. In general we call a vertex timelike if X(tj,tj+i,tj+2) > 0 and

spacelike if A(i^,tj+1,*j+2) < 0. For spacelike internal lines joining two timelike vertices

the parameterization (2.24) of SO(2,1) must be used, if a timelike and spacelike vertex are

joined (2.37) must be used while for two spacelike vertices (2.32) has to be used.31

For our purposes it will be sufficient to describe as direct-channels those (parts of)

physical regions in which all the Qj are spacelike and all the internal vertices are spacelike.

We can then generalize (2.21) to say that in each cross-channel, in addition to (2.44) we

have

tj>4:m2, -1<ZJ<1, - 1 <cosw j i : < 1 (2.45)

while in each direct-channel, (2.44) is reversed and also

tj<0, Zj>loi<-1 coshwjt > 1 or < - l . (2.46)

(Although for vertices with just one external particle we must retain —1 < cosujjk < 1 to

remain in a physical region.) A twist about a horizontal line of a hexagraph changes the

sign of the corresponding Zj and, for any sloping line attached directly to this line (not via

a vertex), the sign of the corresponding Ujk-

2.4 Invariants and Angular Variables

Some detailed calculations of expressions for invariant variables in terms of angular
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variables can be found in Ref. 2. Here we simply list some properties that are particularly

important in the following.

2a) If we define Vj = etl9;, that is Zj — \ (VJ + v~lj, and Ujk as above then all factors of

i in expressions for invariants (coming from sin Oj and sina>jfc) cancel. The relation

between all invariants and the u's and v's is real and analytic.

2b) When all the UJ'S are large (or all the z/s) we obtain for an invariant smn = (pm + pn)
2

•~^ ~ Sinh Cm;! vji (cosh £ji j 2 + COS Wj, j2 ) Vj2 • • • Vjr_,

(2.47)
x (cosh Qr_ijr + cos wjr_lir) vir sinh Qrn,

which implies that for any invariant smn...r = (pm + pn + . . . + pT)

c ^ r

t)zhzk---zj., (2.48)

~ sinh (m>i sinPjjUj]j2(cos&j2

where now ji , j 2 , • • • >U denotes the longest path through the tree diagram linking any

two of the external momenta contained in smn...T.

2c) When all the Ujk's are large we similarly obtain

J + 1)Ui2J3"-Uir-2.Jr-l

(2.49)
x (cos 8jr_, + l) ujr_ujr sin 8ir sinh (jrTi.

2d) When Z{ = Vj = ±1 (#, = 0,TT) the associated line can be contracted out of the

tree diagram for the purpose of calculating invariants. The azimuthal angles at the

contracted vertices are added or subtracted according to whether Zj = ±1 .

2e) Similarly when Zj = ±1, Zj+1 = ±1 and COSUJJ+I = ±1 both the j and j + 1 lines can

be contracted from the diagram and under analogous conditions any number of lines

can be contracted out.

2f) If pn and pm are separated by one internal line only, then snm is linearly related to the

associated z (simple examples of this being (2.19) and (2.20)).
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It will be important in the following that the singularities of amplitudes as functions

of the invariant variables have a very similar asymptotic structure in terrr~ of either the Zj

variables or the Ujk variables because of the similarity of (2.47) and (2.49).
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3. Multiparticle Asymptotic Dispersion Relations

Any standard book on elementary Regge theory covers the relationship between the

analyticity properties of (four-particle) momentum-space amplitudes and complex angular

momentum theory. However, the development of a comparable relationship for multipar-

ticle amplitudes took many years since the relevant analyticity properties are much more

complicated. In particular it is necessary to concentrate on "asymptotic analyticity proper-

ties". To explain this concept and also to give a self-contained development for those who

wish to avoid going back to the "standard" books of the 60's we first describe in detail the

asymptotic dispersion relation for an elastic amplitude.2

3.1 The Asymptotic Dispersion Relation for Elastic Scattering

Consider a scalar (for simplicity) elastic scattering amplitude 4̂(>s, t). The analyticity

property most immediately derived from field theory32 is "cut-plane analyticity" for large s

at spacelike t. That is A(s, t) has a domain of analyticity

D = {\s\> s0, lms ^ 0 , / fixed < 0} . (3.1)

Applying the Cauchy formula to the contour shown in Fig. 3.1 gives

1 r ds'A(s',t) 1 r ds'A(s',t) 1 i ,A(s',t)

^T 4 (S'-s) + 2^1 L (s'-s) + 2̂ 11|*;|if ds (s^Ty (3-2)

where
A(s, t) = A(s + i 0, t) - A(s - i 0, t) = 2i Im A(s, t). (3.3)

In early applications of dispersion relations the third term in (3.2) played a crucial

role in relating low and high energy data.33 Consequently it was important to know the

precise details of the low-energy cut structure. However, if we are interested only in the

leading Regge behavior of the amplitude then we need just the first two terms and as the

following argument shows the third term can be ignored. Suppose that

A(s,t) ul~xP+(t>ait) +/M0(-s)°(t), (3.4)

(there could also be additional Ins dependence—the important feature is that the power

behavior is ^-dependent) and suppose also that somewhere in an interval ta < t < tb (which
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could even be complex) a(t) increases through —1. In the full interval

(3.5)

while in some subinterval

2TH 7|,'|=fi (5' - s)
R e a ( 0 < - l . (3.6)

Consequently we can begin with Rea(i) < — 1 and take R —* 00 leaving only the integral

over \s'\ = s0 in (3.1). Analytic continuation to Rea(t) > —1 then gives that the first two

terms dominate and we can write

(3.7)
2TTI \Ji+ Ji-J [s' - s)

where Ao gives sub-dominant asymptotic behavior provided Rea(i) > — 1 and the /+ and /_

integrals are defined by analytic continuation from Rea(t) < — 1. The integrals /+ and /_

are over the intervals (s0,00) and (—00, — SQ) respectively, with the precise value of s0 being

irrelevant. (3.7) is the simplest example of an "asymptotic dispersion relation".

We should emphasize that the asymptotic dispersion relation is not qualitatively

different from the exact dispersion relation. It simply drops some irrelevant details from the

complete relation (irrelevant for our purposes, that is). We do not mean to imply that the

asymptotic dispersion relation is in any sense "only valid asymptotically".

3.2 Analyticity Properties of Many-Particle Amplitudes

The analytic structure of many-particle amplitudes is much more complicated than

that of elastic amplitudes and for many years physicists despaired of deriving any general-

ization of (3.2). An iV-point amplitude is a function of 3AT — 10 independent variables only

but there are ~ AH invariants with threshold singularities in each of them. Even if some

invariants are fixed (away from their thresholds) there is still an enormous complexity of

simple thresholds to consider. In addition there is a very rich structure of higher-order Lan-

dau singularities for many-particle amplitudes. Finally the many variable generalization of

Cauchy's theorem (which we discuss shortly) is in general very difficult to apply. Altogether

it seemed that any simple generalization of (3.2) was very unlikely to exist.
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Fortunately if we consider (3.7) rather than (3.2) we can find a generalization which

is precisely what we require to provide a general basis for multi-Regge theory. Our major

purpose will be to simply describe the structure of the resulting "asymptotic dispersion

relations". Our intention is to exploit this structure in our development of multi-Regge theory

rather than to dwell on an axiomatic derivation of the relations. Nevertheless we do want

to describe why we believe they are natural consequences of the two most well-established

formalisms used for deriving analyticity properties, that is Axiomatic Field Theory (AFT)

and Axiomatic 5-Matrix Theory (AST). We shall therefore briefly review what can be said

with respect to deriving the dispersion relations within each formalism. Of course, AFT and

AST are, as far as is known, mutually consistent and in a sense complimentary to each other.

Note that as in our discussion of (3.7), we do not expect the asymptotic dispersion

relations for multiparticle amplitudes to be only valid asymptotically. We expect their essen-

tial structure to be preserved at finite momenta but with a multitude of (for our purposes)

"inessential complications".

3.3 Axiomatic Field Theory

AFT has many starting points and distinct formalisms within it. However, the basic

ingredient is always space-time fields <f>%(x) which as operators can create (or destroy) the

particles of the theory from (or into) the vacuum. As an imposition of microcausality such

fields are assumed to commute at space-like separations

[4>i(x), &(»)] = 0 (x-y)2<0 \/i,j. (3.8)

In this case the 5-Matrix elements of the theory can be related by reduction formulae to the

Fourier transforms of "retarded" Greens functions, the simplest example of which is

G(p) = f d'xei>-'{O\0(*o)4>(x)<KO)\O), (3.9)

(where 0(y) = 1, y > 0; 0(y) = 0, y < 0). Provided that the retarded Greens functions

are well-defined distributions—that is they are polynomially bounded—then their Fourier

transforms have extensive analyticity domains because of the convergence provided by the

Fourier exponential factors of the form exp [ip • x]. For example G(p) is analytic in the

"forward-tube"

(Imp)2 > 0 Imp0 > 0. (3.10)
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The general AFT program formulated by Bros, Epstein and Glaser32'34"36 introduces

a complete set of "Generalized Retarded Functions" (GRF's) defined from all the field-

operators in the theory. Each GRF is analytic in a particular tube or "cone" which is a

generalization of (3.10). In addition each GRF gives an S-Matrix element as a boundary-

value from within this tube. For an iV-point amplitude a general tube is defined by

, 2

>0 ^ Imp .0 .0 VA, (3.11)

where A is any channel, that is any subset of the external momenta pi ...PN, and (3.11)

must be satisfied with either the > or the < sign operative in the second term for all A.

Distinct tubes and therefore distinct GRF's are then defined by the possible combinations

of choices for the £ signs. By use of the "Edge of the Wedge" theorem34 it is straightforward

to extend analyticity within the tubes to "partial tubes" in which any of the pi are real and

spacelike. If all of the pi are real and spacelike then all the GRF's defined from a given set

of field operators coincide. This implies that they are all (off mass-shell) continuations of

the same analytic function.

For the 4-point amplitude we can use our kinematic analysis of Section 3.2 for spacelike

external momenta to immediately see the origin of the dispersion relation (3.2). Going to

frame F\ we have by definition that p\ and pz are spacelike and have the form

Pi = (0,0, p sin <f>,p cos (j>), pz = (0 ,0 , —p sin 4>,p cos cf>), (3.12)

while (2.33) gives, on taking a = 7 = 0

p2 = (psin<^sinh/?, psin<j>cosh0,0,—pcos<j>) (3.13)

PA = (—psm<f>smhfi,— p sin <£ cosh/?,0,— pcos<f>) (3.14)

If we allow z — cosh /? to be complex so that

2Imz = Im cosh/3 = Im \peiS + -e~is\ = \p - - sinS (3.15)

2 Im sinh 0 = Im \peiS + — e""] = \p + -1 sin S (3.16)

then all momenta apart from p2 and p4 are real and spacelike and

psin<f> . ( \ l l F l l \
Imp2 = - Imp 4 = —-—sin<5 \p + - , \p ,0,0 . (3.17)



Consequently
2 2 > 0 Imp2o = -Imp4 0 ~ Imz. (3.18)

That is the cut z-plane and hence, from (2.19), the cut s-plane is contained in the

analyticity domain given by the GRF (partial) tubes.

We see that the analyticity domain of Fig. 3.1 is obtained straightforwardly from AFT

for spacelike masses. It is nevertheless a major exercise in the use of analytic completion

theorems to show32-34 that this domain survives the continuation onto the physical mass

shell. In a sense the continuation on mass-shell could be sidestepped for our purposes. We

have no intention of being rigorous in our analysis since we intend in any case to input the

assumption of Regge behavior. (When analyzing non-abelian gauge theories we shall discuss

the extent to which this is an assumption.) As we shall see our major interest is in the

analytic structure of reggeon amplitudes. Since the reggeons carry spacelike momenta we

could derive their analyticity properties directly from field-theory amplitudes with spacelike

external momenta simply by assuming that the reggeons couple directly to spacelike. states.

The analysis of (3.12)-(3.1S) extends naturally to an JV-point amplitude regarded

as a function of the (N — 3) Zj-variables if all the external p.; and all the internal Qj are

spacelike. From (3.15)- (3.18) we see that applying a complex boost to a real spacelike

momentum vector automatically takes the momentum vector into a tube of the form (3.10).

More generally if the imaginary part of the initial four momentum already satisfies (3.10)

and in addition the real part is a spacelike vector then both properties are preserved by a

complex boost. As a result the application of successive "complex z," transformations—

with the cosh w,* and £,- kept real—automatically takes all the momenta involved into a tube

of the form (3.11). Since the product of Zj transformations satisfies

COsh [jS,- + /? i+1 + /3 j+2 + • • • + fij+r] , ,, ^ . . . . . .o, , COsh ft COsh fij+i • • • COsh 03+r (3-19)

= ZjZj+i . . . Zj+r, (3.20)

the result is that analyticity in the tubes (3.11) transfers "asymptotically" into analyticity

in the "zj-cones" bounded by the "cuts"

I m [ n * ; ) = 0 VA, (3.21)
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where now A is any subset of j = 1 , . . . , N — 3 associated with adjacent lines in the Toller

diagram. Note that we would also obtain a very similar cut structure asymptotically in

terms of the Ujk variables.

The analytic!ty domain given by the compliment of (3.21) is just what we require to

write the asymptotic dispersion relations we shall describe. From (2.48) it is clear that all

normal threshold cuts, that is

ImSmn...r = 0 Vmn.. . r , (3.22)

lie asymptotically within the cuts (3.21). Consequently analyticity outside of the cuts (3.21)

provides a natural generalization of the cut-plane analyticity for the four-point amplitude

illustrated in Fig. 3.1

To the extent that we are prepared to ignore (or sidestep) the very considerable prob-

lem of analytic continuation in the masses the above description shows why the dispersion

relations are a natural consequence of AFT. (Although a much more detailed discussion of

the relationship between (3.11) and (3.21) could clearly be given.) We shall postpone dis-

cussion of the structure of the discontinuities across the branch cuts (3.21) until after our

discussion of 5-Matrix theory.

3.4 Axiomatic 5-Matrix Theory

Axiomatic 5-Matrix Theory (AST) has been given a solid foundation37 by starting

from the principle of macrocausality. This principle says that all interactions between parti-

cles fall-off exponentially under space-time dilations unless the interaction can be transmitted

by the exchange of (interacting) stable particles. This leads to the existence of (infinitesimal)

domains of analyticity for 5-Matrix elements in the immediate neighborhood of physical re-

gions. Note that while macrocausality is thought to be consistent with the microcausality

property of AFT a direct relationship has yet to be established. It is thought that unitar-

ity of the 5-Matrix has to be combined with the microcausality property of AFT to derive

macrocausality. This is effectively the purpose of the "non-linear program" of AFT in which

"asymptotic completeness" is added as an additional axiom to allow the mixing of unitarity

properties with the off-shell analyticity domains of AFT.

Given the local analyticity which follows from macrocausality it is possible, within

AST, to study the minimal singularity structure required by unitarity and to analyze the
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discontinuity formulae implied. A heuristic way to understand the basic results37'38 of AST

is as follows. First write the 5-Matrix as S = 1 + R+ and its Hermitian conjugate as

S+ — 1 — R~. The unitarity equation SS+ = 1 can be written formally as

R+ = r ? 7 F (3-23)

" • (3-24)

Using a conventional bubble diagram notation for R+ and R~ and inserting intermediate

states into (3.24) we obtain for a general connected part of /?+

(3.25)

where the sum is over all kinematically possible connected (minus) bubble diagram functions.

(Note that all internal lines are on mass-shell in such diagrams.)

The series (3.25) displays explicitly all possible normal-threshold and higher-order

Landau singularities, in the sense that new terms appear in the series whenever such a (gen-

eralized) threshold is passed. The sum of these new terms actually defines the discontinuity

at such a threshold. As a result the total discontinuity across all thresholds in a partic-

ular channel is then defined as the sum of all terms in (3.25) which have a phase-space

integration in the relevant channel. Extending this argument multiple discontinuities can

be defined from (3.25) by keeping those term which have all the corresponding phase-space

integrations. Consequently it is possible to given an 5-Matrix definition of amplitudes on

all sides of normal threshold cuts. The main consequence is that there are good and bad

boundary-values onto the "unphysical" sides of normal threshold cuts.

Amplitudes obtained as bad boundary-values have the very undesirable property that

the higher-order Landau singularities they contain produce multiple complex cuts extend-

ing from the real normal threshold cuts as illustrated in Fig. 3.2. Conversely the good

boundary-value amplitudes have a neighborhood of analyticity close to the physical region.
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The higher-order Landau singularities are real and contained within the (product of) the

normal thresholds.

To write a dispersion relation we clearly require global analyticity properties of the

kind discussed above. To "derive" global analyticity domains from AST necessarily requires

some form of maximal analyticity assumption or principle. The simplest such principle is that

all 5-Matrix amplitudes with the same number of external particles are boundary-values of

the same analytic function (generalized crossing) and have only those singularities required by

unitarity. Adopting this principle the analyticity domain of Fig. 3.1 for the elastic amplitude

can be derived by first showing that the infinitesimal analyticity domain illustrated in Fig. 3.3

and involving both physical and unphysical sides of the normal threshold cuts, is consistent

with unitarity. This is in fact the case since there are no bad boundary-values for the elastic

amplitude. Consequently maximal analyticity says that the infinitesimal domain of Fig. 3.3

(derived fron̂  microcausality plus unitarity) can be extended to the global domain of Fig. 3.1.

Generalizing this last argument to multiparticleamplitudes requires that we start with

infinitesimal domains analogous to those shown in Fig. 3.3. We can then appeal to maximal

analyticity to extend such domains to global domains if and only if there are no complex

cuts extending uncontrollably out into the complex plane. Consequently an AST derivation1

of the asymptotic dispersion relations amounts to demonstrating that bad boundary-values

are not involved in the analyticity domain utilized. Remarkably, adding imaginary parts to

Zj variables (only) does not allow invariants to acquire bad boundary-value imaginary parts.

We shall not attempt to prove this in general here but instead give an elementary example.

For the 2-4 amplitude shown in Fig. 3.4 a bad boundary-value is

s-HO, CT-HO, s i - z O , s2-i0, (3.26)

whereas in the asymptotic limit associated with the Toller diagram of Fig. 3.1 we have from

(2.48)

s ~ z1z2z3, 5i ~ Z1Z2, s2 ~ z2z3, a <- z2, (3.27)

and no combination of imaginary part signs for the z/s will give (3.26).

We see therefore that the dispersion relations follow in AST from maximal analyticity

plus the existence of good boundary-values. (The details, of course, depend on some further

properties which we discuss shortly.) At first sight the principle of maximal analyticity may

seem somewhat arbitrary. However, it is satisfied, to the extent of existing knowledge, by

26



all Feynman diagrams and therefore in perturbation theory to all orders (ignoring possible

complications from renormalization and regularization) when the S-Matrix can be denned.

(Of course, the 5-Matrix is not defined perturbatively in QCD because of infra-red diver-

gences.) There is also a body of knowledge on how the "physical solution" of any differential

equation is always "maximally analytic" as a function of the parameters involved. In fact

this line of argument is brought to its most sophisticated by Japanese mathematicians who

have suggested (and in some cases demonstrated) that the discontinuity formulae satisfied

by 5-Matrix elements can be regarded as infinite order "pseudo-differential" equations. The

maximal analyticity assumption then appears closely related to Sato's conjecture39 that

the 5-Matrix is a holonomic microfunction—that is it is a solution of a maximally over-

determined system of pseudo-differential equations.

The most complete argument for the dispersion relations perhaps comes from com-

bining the AFT and AST arguments. That is the AFT analysis shows that the needed

global analyticity domains are present for spacelike masses while the AST analysis shows

that these domains are not violated by any singularities emerging from the physical regions

on mass-shell. Since it is very hard (if not impossible) to imagine any source of singularities

disconnected from the physical regions the AST analysis shows the AFT domains should be

preserved on mass-shell.

Our next task will be to describe the asymptotic relations in detail. (Afterwards

we will briefly comment on the extent to which we can derive them directly for the study

of QCD which is our ultimate purpose.) For each multipartide amplitude there will be a

separate dispersion relation for each Toller diagram introduced in the last Section. (Although

as we shall describe some individual contributions can appear in more than one dispersion

relation.)

The dispersion relation for a particular Toller diagram is derived by regarding the

AT-point amplitude as a function of the i,-, Zj and Ujk variables introduced in the last Section.

That is we write

M(pi,...,pN)=M(tu...,ttl-3, Zi,...,Zjv_3, Ul2,...,UjV-4,N-3)- (3.28)

We then fix all U in a direct-channel region. We further fix the Ujk at physical values and

regard the amplitude as a function of the (N — 3) z;-variables, to which we apply the many-

variable generalization of the Cauchy formula—that is the "Bargman-Weil" integral formula.
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We begin by describing this formula in the most directly applicable manner.2

3.5 The Bargman-Weil Formula

Suppose a function f(z) = / ( z i , . . . , zn) is analytic in a domain D that is the whole

space Cn minus a set of cuts Cm where

1

(3.29)

(Clearly we anticipate that sm is an invariant variable and cm the corresponding normal

threshold cut.) If Ix is the intersection of n such cuts we define the multiple discontinuity

at z £ Ix as

A = (Xl,..., AB) (3.30)

where the sum is over all combinations of ± signs and n' is the number of minus signs. The

theorem says we can write

?) + A * ) , (3-31)

where the sum is over all sets of n cuts X and f° includes possible contributions from

intersections of less than n cuts together with the "sphere" at infinity and

The generalized dispersion denominators qXrn must satisfy

qXm(z,z')-(z'-z) = l. (3.33)

We would ultimately like the contributions (3.32) expressed as integrals over the

invariant variables s\m. If we simply change variables to the 5^m and write (3.32) in the
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form

(3.34)

(3.33) will be satisfied if the numerator £>A(z,z') is the determinant of any set of functions

p^t satisfying

sxm{z) - sXm(z') = 2 > L ( ? , i')(zt ~ zfi. (3-35)

Note that this implies that

(3-36)

In a general application of the Bargman-Weil formula the numerator Dx(z, z') can

be very complicated (if the s\m{z) are sufficiently complicated functions). However, in the

special circumstance that the s\m are simple polynomials (or entire functions) of the ZJ we

can expect to write

D'\z,z) = Dx(z,z)+ \sXl{z) - sXl(z')\ E?(z,z') + ...+ \sXn(z) - sXn(z')\ E*{z,z'), (3.37)

where the E^(z, z') are also polynomials (or entire functions). Substituting (3.37) into (3.34)

the first term gives a very simple expression

(3.38)

while the remaining terms in (3.37) cancel at least one denominator in (3.34) and so can be

included in the f° term appearing in (3.31).

Our assumption of multi-Regge asymptotic behavior which generalizes (3.4) (and

which we describe in greater detail in later Sections) will be that

,u)^ ^^ i lW' ( 1 '> (3.39)
i=i
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(where again there may also be (In Zj)B' factors). Since this asymptotic form represents a

function with n = (N — 3) cuts in the ^-variables it can only originate from the fx{z) terms

in (3.31). Also in the same sense that SQ was irrelevant in (3.7), non-leading functions of

the Zj appearing in the s\m(z) can be dropped in writing that part of the f*(z) which can

generate the asymptotic form (3.39). Consequently we can write as an asymptotic dispersion

relation

where we can use the asymptotic form (2.48), which expresses all invariants as polynomials in

thezj, to justify writing each of the Mx(t,z,u) in the simple form (3.38). M°(t,z,u) contains

all non-leading multi-Regge behavior. Therefore the problem of writing the full asymptotic

dispersion relation reduces to enumerating the complete set of multiparticle discontinuities

(3.30).

3.6 The Steinmann Relations and Multiple Discontinuity Formulae

From the AFT analysis in Section 3.3 leading to (3.21) it is clear that all of the

multiple discontinuities involved lie in the set (3.21). At first sight this implies that too

many cuts intersect to apply the Bergman-Weil formula. However, the Steinmann relations

imply that only (N — 3)-fold multiple discontinuities occur. In AFT the Steinmann relations

are linear relations between the GRF's involved as boundary-values in the distinct tubes

(3.11). Multiple discontinuities are defined in analogy with (3.30) as multiple differences

between GRF's with ±z"0 replaced by £ for the subsets A of (3.11). The Steinmann relations

simply state that there is no double discontinuity for two overlapping a, innels.

In the AFT context a channel is a subset of the external momenta p\.. -PN-3 and

two channels overlap if they include common momenta but neither set is contained entirely

in the other. If all the Qj of a Toller diagram are spacelike and all the external momenta p,-

are also spacelike, then each maximal set of non-overlapping channels can be characterized

by a conjugate Toller diagram—that is a tree diagram which again contains only three-point-

vertices but which has no internal lines in common with the original Toller diagram. The

non-overlapping channels are the internal momenta of the conjugate diagram. Since there

are again (JV —3) internal lines it is clear that all multiple discontinuities involve only (Ar —3)

(or less) channels.
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Within AFT therefore the multiple discontinuities contributing to (3.40) for a par-

ticular Toller diagram are in one to one correspondence with the "conjugate" set of Toller

diagrams. The discontinuities can be directly evaluated in terms of GRF's or, if complete

sets of states corresponding to the tree diagram are inserted, as products of amplitudes.36 Of

course, all of the AFT formalism is for spacelike masses and if physical intermediate states

are used we are effectively assuming asymptotic completeness.

Within AST a channel refers to an invariant (the "mass" of the momentum involved

in the AFT formalism) and multiple discontinuities involve the definition (3.30). It is non-

trivial to show1 that the Steinmann relations can be analogously applied as above because and

only because just good boundary-value amplitudes are involved. The multiple discontinuity

formulae derived"18 can also be shown to be identical to those derived in the AFT context.
Consequently the identical asymptotic dispersion relation is derived off mass-shell from the

AFT formalism and ou mass-shell from the AST formalism.

A further feature of the asymptotic nature of the dispersion relation is that many

invariant cuts coincide asymptotically. Because of (2.48) all invariants 5mn...r having the

same longest path through the Toller diagram (linking any two of the external momenta)

coincide asymptotically. However, only multiple discontinuities involving (N — 3) asymptot-

ically distinct invariant cuts can contribute to the multi-Regge behavior (3.39). Therefore

we further modify our description of (3.40) by insisting that the Mx originate from N — 3-

fold discontinuities involving asymptotically distinct cuts only. This brings us to our final

classification of discontinuities.

3.7 Hexagraph Classification of Multiple Discontinuities

Given a particular hexagraph we define an allowable discontinuity as in any chan-

nel defined by a set of external particles such that the minimal path (cut) drawn through

the graph connecting all the particles involved enters and exits only between 60° lines as

illustrated in Fig. 3.5.

Any set of (N — 3) non-overlapping cuts which are asymptotically distinct with re-

spect to a particular Toller diagram correspond to a unique hexagraph if all (N — 3) cuts

are required to be allowable. This is because allowing each cut to enter and exit appro-

priately, determines the choice of hexagraph vertices at each vertex of the Toller diagram.
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Consequently we can re-express the asymptotic dispersion relation (3.40) in the final form

M(Pu...PN)= £ MH(Pu...,pN) + M°, (3.41)
Her

where M° again contains all non-leading multi-Regge behavior and the sum is over all hex-

agraphs H generated by the Toller diagram T. Each "hexagraphical component" MH is

further written as

MH= J2M°(PU...,PN), (3.42)

where now the sum is over all sets C of (N — 3) asymptotically distinct, non-overlapping,

cuts which are (all) allowable cuts of the hexagraph. If we denote the invariant cuts of a

particular C as ( s j , . . . , SAT_3) then from (3.38) we can write

s[... ds'N_3A
c(t, w, s\, s'2,..., s'N_3)

where from (3.30)

Ac(t, w, Sl..., 5w_3) = J2(-l)n'M(t>™> s i ± i0> S2 ± *0, • • •, SN-3 ± *0), (3.44)

and the asymptotic relation (2.48) is used to change variables from Z\,..., ^ _ 3 to s\,..., SJV_3.

(3.41)-(3.44) is our final complete description of the asymptotic dispersion relation for

an JV-point amplitude associated with each Toller diagram. Clearly it is trivial to introduce

the simple (unique) Toller diagram for the elastic amplitude such that (3.7) is expressed

in the form (3.40)-(3.44) showing that we have indeed formulated a direct multiparticle

generalization of (3.7). We close by discussing briefly the extent to which we expect the

foregoing discussion to apply either directly or indirectly to QCD.

The 5-Matrix of QCD presumably involves hadrons only and it is quite possible, if

not probable, that hadrons are not describable by off mass-shell fields of the kind required to

apply the AFT formalism above. In this case we would have to appeal to the AST formalism

alone. (Of course, we have emphasized that the AFT results can be viewed as simply making

plausible the maximal analyticity assumption of AST.) However, the starting point for our

direct construction of the Pomeron in QCD will be the perturbative Regge behavior of the

spontaneously broken massive theory. The perturbation theory of a (completely massive)
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spontaneously broken gauge theory should satisfy all the assumptions of the AFT (and the

AST) formalism. In this case all of the asymptotic dispersion relation formalism and all of the

following multi-Regge theory should directly apply—given that the perturbative high-energy

behavior does indeed sum up to Regge behavior, as all existing calculations imply.
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4. PARTIAL-WAVE EXPANSIONS, FROISSART-GRIBOV
CONTINUATIONS AND SOMMERFELD-WATS ON

TRANSFORMATIONS

In this Section we shall set up the basic machinery for applying complex angular

momentum theory to many-particle amplitudes. An essential feature of the formalism is that

each hexagraph amplitude has a distinct Sommerfeld-Watson (S-W) representation and each

multiple discontinuity (that is each term in the asymptotic dispersion relation) corresponds

to a distinct analytically continued Froissart-Gribov (F-G) partial-wave amplitude. Again

we begin by briefly reviewing the elementary elastic scattering formalism.

4.1 Elastic Scattering

The familiar partial-wave expansion is

2e+l)at(t)Pt{z), (4.1)
t=o

where the Pt{z) are Legendre polynomials and

dzA(z,t)Pe(z) (4.2)

= f dzA(z,t)Qe(z), (4.3)

where C is the contour shown in Fig. 4.1. Moving this contour out using Cauchy's theorem

gives (if, for simplicity, we ignore Ao in (3.7))

Since the second-type Legendre function Q((z) satisfies

2 1/2]] (4.5)

it follows that if a.((t) is defined for complex £ from (4.3) then the contribution from the

right-hand cut

«?(*) = ^ / / + dz'Qt(z')A(z\ t) (4.6)
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satisfies the Carlson condition for uniqueness (of a function defined initially for integer t

only), that is

\a.( [t)\ Ss e v < —. yt.t)

Re<>0

Using the further property that for integer I

we can define "signatured" F-G continuations from even and odd t respectively, that is

«*(0 =[«?(*) ±aftO] A (4-9)

where a\(i) is defined exactly the same as af(t) but with Qt(z) —+ Qi(—z), that is

Behavior of the form (4.7) for af(t) allows us to make a S-W transformation and

rewrite (4.1) as

or equivalently

A(z,t) =AR(z,t) + AL(z,t) (4.12)

Comparing (4.13) and (4.11) we see that the signatured representation can be viewed simply

as a consequence of the right-hand and left-hand cuts having identical representations apart

from the change of sign of z. The importance of signature is, of course, that f-channel

unitarity equations are diagonalized by signatured partial-wave amplitudes. We shall discuss

this further in the next Section.

4.2 Multiparticle Partial-Wave Expansions

It is straightforward to generalize (4.1) to an iV-point amplitude expressed as a func-

tion of a particular set of Toller variables since (4.1) is simply a special case of harmonic
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analysis on SO(3). For a general function f(g) on S0(3) we can write

E E De
nn,(9)atnn; (4.14)

where the Dl
nn,(g) are representation functions. In particular for the parameterization (2.13)

we have

Dl
nn>(9) = ^dU^in>U' (4-15)

Since d^O) = ^(cos 6), (4.14) gives (4.1) for a function that is independent of fi and v.

Using (4.14) we can write immediately

oo

MN(t,g1,...,gN-3)= J2 E ••• E E

Dn:n[ ( # ) • • • Z)^l3,nJ/3(ffW-3)^1,n1,nS,.../A,_3,»iv-3,n'N_3(0-n:n[

Since each MN in fact depends only on combinations of the azimuthal angles fij and u, there

is an additional constraint on the sums on nj,n'j in (4.16). If we temporarily adopt the

convention that at a vertex where lines j , k,£ meet, the Lorentz transformations gj,gk,ge are

defined to transform from this particular vertex to adjacent vertices then this constraint

takes the form

rij + nk + nt = 0. (4.17)

After this constraint is imposed there are (N — 4) independent n and n' indices in (4.16)

(considering spiniess external particles) which are "conjugate" to the (iV — 4) independent

azimuthal angles u>jk discussed in the last Section.

For a particular hexagraph we can associate each lj with the corresponding horizontal

line of the graph and an appropriately chosen ra^ = rij with each sloping line of the graph.

With the resonance interpretation of the hexagraph discussed in Section 2.3 the fj's are the

angular momentum of the relevant resonance while the n / s are the corresponding helicities.

It is then helpful to identify three subgraphs contained in a general hexagraph and to rebuild

the partial-wave expansion (4.16) using a partial-wave for each subgraph.

A T-graph is, as illustrated in Fig. 4.2, analogous to a 2-2 scattering amplitude. If
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the scattering takes place through a state (resonance) with angular momentum £,• then

Tt, ~ <.„.(*,•) s < + n j J , n ; i + S > ) > (4-18)

where n^, rij2 and n^, n^ are the helicity indices associated with the sloping lines of the

T-graph and £j is the angular momentum associated with the central horizontal line.

A D-graph is, as illustrated in Fig. 4.3, analogous to a decay of a state (resonance)

with angular momentum £j and helicity n,-, that is

Dt} ~ e^^zj) ~ uyfy^Jzj). (4.19)

A V-graph is, as illustrated in Fig. 4.4, analogous to a virtual transition, that is

Vt, ~ e'n'w<,n;(*;KnW = t t f C j ^ K ) 1 1 * . (4-20)

The partial-wave expansion (4.14) is reproduced by choosing a particular hexagraph of the

original Toller diagram, writing Tt3, Dtj and Vt} factors for each corresponding subgraph of

the hexagraph (identifying n, and n'j labels where appropriate) multiplying by a partial-wave

amplitude and summing over £j, rij and n'j labels.

It is, of course, trivial that a Toller diagram partial-wave expansion can be rewritten

in a distinct way for each hexagraph. What is non-trivial is that this will allow us to write

a distinct S-W transform for each hexagraph amplitude. Before discussing this in detail we

first discuss the transform40 of the simple Fourier sums that are involved in the expansion

(4.16).

4.3 The Sommerfeld-Wai-son Transform of a Fourier Series

Consider the expansion

/(u)= £ anu
n, (4.21)

n=—oo

which we assume converges in some annulus around \u\ = 1. If f(u) has the cut-plane

analyticity illustrated in Fig. 4.5, then we can write

/(«) = />(«) + /<(«), (4.22)
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where

1+ is the right-hand cut in |w| g 1 and / " the corresponding left-hand cut. Since

" 1 />( t0 , (4-24)| = l

the contour can be closed to zero for n < 0, while for rc > 0 the contour can be moved out

to give

Consequently signatured continuations can be defined as above

o±(«) = / du u"""1 A(w) ± /_ d t i f -up- 1 A(«), (4.26)

and an S-W transform written

/ ^ £ ar(n) [(-u)n + run]. (4.27)

Clearly it is straightforward to derive a similar representation for /<(u) in tei-ms of

signatured continuations a^.(n). However, if we wish to study the asymptotic limit \u\ —> oo,

we can move the contour to the left in (4.27) giving contributions from the singularities of

a^(re) and from the poles of the [sin TTI]~ factor. These last contributions will be inverse

powers of u which will in general simply cancel the series expansion of /<(«). Therefore

the \u\ —* oo "Regge behavior" of f(u) (given by the dynamical singularities of af(n)) is

entirely contained in the representation(4.27). Of course, for an amplitude that is a function

of cosw = 5 (u -f ^J the behavior as \u\ —* oo must be identical to that for |u| —> 0.

4.4 Problems for Many-Variable Transforms

Each hexagraph (amplitude) has multiple discontinuities in (N — 3) variables (if the

i-variables are below threshold), while there are (2iV — 7) angular variables available to
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describe the corresponding cuts. From (4.3)—(4.13) or (4.23)-(4.27) it is clear that the

existence of a continuation to complex angular momentum or helicity (and the subsequent S-

W representation) is a direct reflection of cut-plane analyticity in the corresponding complex

plane. It might seem therefore that the most obvious multiparticle procedure would be to

simply look for a continuation to complex values of each of the (N—3) £j as a reflection of the

(N — 3)-fold multiple discontinuities. However, it is clear from (3.21) that we have something

more complicated than simple cut-plane analyticity in each 2j-variable. To illustrate some

of the issues involved we consider first a function f(u\,u2) of two u-type variables.

If f{ui,U2) is analytic for |«i|, |u2| ~ 1 then we can write

/(Ul,ti3)= x ; f; ur1«?«»!»,. (4.28)

Suppose also that for large Uj and u2 there are (right-hand) cuts in the planes

I m u i = 0 , Imuiu2 = O (4.29)

associated with the asymptotic behavior

4+V. (4.30)

From (4.23)-(4.27) it is clear that we should simply take / to be a function of «i and

U\U2 and carry out the corresponding S-W transform, that is we rewrite (4.28) as
+OO +OO

f(uuu2) = J 2 E u?-n2(ulU2)
n*anin2 (4.31)

ri2=— oo Tli—«2=—oo

Re(ni-i)=-1/2 S m ^ m n j )

+ ( E E + E E ) "I""?**- . (4-32)
\n2=—oo nj— n2=—oo »2=—oo JIJ —nj=—00/

(for simplicity we have omitted signature). Pulling the nx and n2 contours to the left we

expect to pick up poles at n\ = a + /? and n2 = /? while the contributions of the poles at

integer n2 and n\ — n2 are cancelled by the sums in (4.32). Consequently we obtain

(4.33)
sin ir{a + p) sin v
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From this simple manipulation there are a number of general points we can make.

Firstly we note that the "kinematic poles" or "phase-factors" [sin x(a -f /3)]"1 and [sin TT/?]"1

arising from the S-W procedure actually distinguish in' which variables the asymptotic cut

structure appears even though the location of the helicity (or angular momentum) plane

singularities does not. Secondly we see that only a subset of the sums in the partial-wave

expansion is responsible for building up the asymptotic behavior that is of interest. In this

case it is the subset

n2 > 0, ni > n2. (4.34)

If the function f(ui,u2) also had branch-points (with a simultaneous discontinuity) in v,2

and v,iu2 than the corresponding asymptotic behavior would be generated from the part of

the partial-wave expansion satisfying (4.34) but with n\ and n2 interchanged. Note that the

FG continuation a(??i,«2) has to be defined as a two variable generalization of (4.25) that is

(for right-hand cuts only)

a(nin2) = J duidu2A(ui,uiu2)u^ni~lu^ni~\ (4.35)

U|U2>(U|U2)°

and this will only satisfy the Carlson condition for uniqueness (4.7), in the half-planes corre-

sponding to (4.34). To obtain the formula (4.35) it is necessary to apply the Bargman-Weil

theorem (3.32) (which can be regarded as the many-variable generalization of Cauchy's the-

orem) to the two-variable version of (4.24). In fact this is straightforward because there are

no singularities of uj"ni~1u2""2~1 in the finite «i or u2 planes that would interfere with the

two-variable contour manipulation.

This last point has a very important general significance because if we were to at-

tempt a two-variable generalization of (4.2)-(4.10), the singularities of Qt(z) at z = ±1

would directly prevent the appropriate two-variable contour manipulation. (In addition to

integrals over the double discontinuities of the function there would be integrals over single

discontinuities together with a discontinuity of one of the Qt(z)). As a result it is essentially

impossible to define a simultaneous continuation to complex values of two or more £j vari-

ables (we shall qualify this shortly). Fortunately we can exploit the similarity of the analytic

structure with respect to the Zj and Ujk variables emphasized in the last two Sections and ob-

tain multiple helicity continuations even though multiple angular momentum continuations

cannot be denned.
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The above discussion is intended to explain in general terms why the distinct sets

of cuts associated with each term in the multiparticle dispersion relation (3.42) require a

distinct S-W transform procedure. One important property of the hexagraph notation is

that it classifies together all those sets of cuts for which continuations in the same helicity

and angular momentum variables are made. However, distinct sets of cuts associated with

the same hexagraph do differ in terms of constraints of the form (4.34) on the parts of the

partial-wave expansion that are S-W transformed. We shall first give the rules for which

continuations exist for a particular hexagraph amplitude and then briefly outline how we

demonstrate the existence of such continuations.

4.5 Froissart-Gribov Continuations for Hexagraph Amplitudes

As is clear from subsection 4.3 the negative helicity terms in all partial-wave expan-

sions can be handled analogously to the positive helicity sums and simply produce cancel-

lations in all discussions of asymptotic behavior. Therefore we shall adopt conventions for

azimuthal angles that allow us to always consider all helicities to be positive in the follow-

ing. We describe the rules for F-G continuations in terms of the T, D and V subgraphs of a

hexagraph.

In each Vj we can take n, complex with (£j — rij) and (rij — n'j) held fixed at integer

values. In each Dj we take n, and n'j complex with (£j — n,) held fixed at an integer value.

In each Tj we can take all three of lj,nj and n'j complex. (Note that each ra-label appears in

two subgraphs, although the corresponding u is associated with only one subgraph.) These

rules imply that the helicity labels, which are attached to sloping lines of the hexagraph, are

always coupled (that is differ only by an integer) to the angular momentum associated with

the corresponding horizontal line of the hexagraph.

It is interesting to note that the continuations we make correspond, in the case when

no v'j's are present in the hexagraph, to continuing the total cross-channel angular momentum

to complex values, together with all the helicities of (cross-channel) subchannels. In no case

is the angular momentum of a subchannel continued separately from the helicity. When

Vj's are present the total angular momentum of the cross-channel is not used as a variable.

Instead, the scattering can be regarded as made up of subprocesses for which the total

angular momenta and subchannel helicities are analytically continued.

We begin the general construction of F-G amplitudes by discussing the Vj subgraphs
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first. For simplicity consider a hexagraph AH(z,u, t) with a single Vj subgraph, for example

that shown in Fig. 4.6. We consider first the analyticity properties of the partial-wave

amplitude obtained by performing just the 2j-integration, that is we consider

dzA";teWte,«> <)• (4-36)

The cuts of A^n n, include those of AH which are independent of Zj together with branch

cuts arising from collisions of the branch points of AH with the end-points Zj = ±1. It is

important that because of the allowable discontinuity rule of Section 3.7, AH has no cuts

depending on just Zj (and no other angular variables) and also no cuts depending on Uj but

not u'j (or vice-versa). (Both of these features follow because a path defining an allowable

discontinuity cannot exit at either of the vertices to which the Vj graph is attached.) The

location of the resulting end-point branch cuts can then be determined by simply contracting

out the j'-line of the hexagraph to effectively give a smaller hexagraph as described in 2d.

The resulting branch-cuts will be functions of the variables u — UJU'J or u' = UJ/U'J depending

on whether they are generated at the Zj = +1 or Zj — — 1 end-points respectively. The cuts

which are functions of u will have no double discontinuity with those which are functions

of u' since they are generated at distinct end-points. If we now carry out the Uj and u'j

projections we can write

Kl=i
(4.37)

2 |«>i

By moving the u-contour out to enclose the cuts of Afnn, we can define a F-G continuation

to complex rij + n'j with rij — n'j fixed at an integer value. We cannot simultaneously move

out the u'-contour because of the absence of double discontinuities in u and u'. This absence

also implies that a^nn,(z,u,t) will have branch-cuts in only those invariant variables which

are independent of both u and u'. Effectively then afnn, has the branch-cut structure of the

two hexagraphs which are joined by the Vj-graph in the original hexagraph. In the case of
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Fig. 4.6 this is the two hexagraphs of Fig. 4.7. Clearly for hexagraphs with many u/s we

proceed similarly to the above and arrive at an amplitude with the cut-structure of a product

of hexagraphs all containing no Vj subgraphs.

We now have to consider only hexagraphs that contain a single T subgraph with an

arbitrary number of Z>-graphs attached to each leg as illustrated in Fig. 4.8 [The most general

hexagraph contains an arbitrary number of such structures connected by V-graphs.] The cor-

responding F-G amplitude can be defined straightforwardly by simply applying the analogue

of (4.2)-(4.4) to the 2, projection associated with the T graph after applying (4.23)-(4.27)

to each of the Uj-projections associated with the Z?-graphs. We need only the generalization

of (4.2)-(4.3) which is provided by the formula

disc f(l + ;)"-¥•(! - z^eUz)} = 1(1 + z)=^(l - z)"^<„,(*) „ > n>
-i<z<i L J I (4 3 8 j

where P3~n{z) is a polynomial for j — n = N an integer and t3
nn,(z) is a "second-type"

representation function. The appropriate powers of (1 -f z) and (1 — z) needed to apply this

formula always emerge, if the integrals over the u-variables are performed first, because of

the factors s i n ^ , (cos0J2 + 1) etc. appearing in (2.49). The asymptotic behavior needed to

check the Carlson condition is

^ ^ ^ ^ ( 4 ' 3 9 )

which is a simple extension of (4.5). In general the additional factors in (4.38) will imply

the Carlson condition is satisfied in the half-plane

Re(j - n) > 0. (4.40)

An additional property of the eJ
nn,(z) and d3

nn,(z) functions that we shall need in the

following is their "fixed-pole" structure. At the "nonsense" point j — n — 1, e}
nn,(z) has an

inverse square-root branch-point and

21-»r(2j+2)

(4.41)
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It will also be important that #nn,(z) has an inverse square-root branch point at j — n' — 1

and when also j = n we have a particularly simple result, that is

The F-G continuation of a hexagraph of the form of Fig. 4.8 has the general form

dz{\ + 2)»>/
A

M , .+, (4.43)
X I ] J dujup-11] /_, dz^AH(z, zu . • •, u,,..., <),

where the integration over the region A x A will be around the non-zero multiple discon-

tinuities Ac of Afj. From (4,41) and (4.42) the continuation to £, ri\,..., UM, complex (from

ni + n,2 > n3 + n4, say) and with £\ — n j , . . . ,£M ~ "A/ kept fixed has branch-points at

— t\ = n6 - 1, (4.44)

The "residue" at the product of such singularities reduces (apart from a normalization factor

due to (4.41) and (4.42)) to the simple integral

£ f ds[. ..ds'M+lD{z,uu. ..uM,s[,... , 4 / + 1 ) A c ( s ' i , . . . , 5 ^ + 1 ) , (4.45)
C€HJ

where Ac is given by (3.44) and D(z,«, .s') is the relevant Jacobian. For large z and u

this Jacobian is simply a product of factors ly/ij ^~1^2(tj,tj+i,tJ+2> for each vertex of the

hexagraph.

To obtain a signatured F-G amplitude we have to add together all hexagraphs related

by twisting—with a positive or negative sign for each twist (according to the signature

associated with the line twisted). For the residues at a nonsense singularity to not cancel

(by virtue of a contour in (4.45) being closable to zero), the nonsense point must be wrong-

signature. For example, the nonsense singularity at £ = ni + n^ — 1 in (4.44) will be

wrong-signature if TT\-T<I — —1 where r, T\ and T2 are the signatures associated with £, n^
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and ri2 respectively. "Nonsense, wrong-signature, fixed-poles", which are products of the

branch-points we have discussed, will play a vital role in the generation of Regge cuts in

unitarity integrals discussed in the next Section.

Since there is only one z-integration manipulated in arriving at (4.43) there is, as

discussed above, no multivariable problem. Similarly there is no such problem for the simul-

taneous continuation to complex values of €,-'s corresponding to T-graphs linked by V-graphs

(together with some number of ZJ-graphs in general)—this being the only exception to the

statement in subsection 4.4 that two or more ^ 's cannot be simultaneously continued. This

exception is possible because as we have described there is effectively a factorization of the

cut-structure involved.

Signature is introduced in general into the F-G and S-W transformation procedure by

adding together all hexagraphs differing simply by a twist as described in Section 3. A single

twist can be treated as simply changing the sign of the angular variable (associated with the

line about which the twist is made) whose conjugate variable (£j or n,) is taken complex. In

effect then (4.9) and (4.13) simply generalize by the presence of corresponding minus signs

associated with twisting—the twist of the hexagraph representing the right-hand cut in the

elastic amplitude to give the left-hand cut hexagraph being the simplest example of a twist.

The F-G amplitudes define by the above procedure will satisfy the Carlson uniqueness

condition only in appropriate half-planes in analogy with (4.34). This will determine the

form of the corresponding S-W transformation as we will illustrate on some examples in the

next subsection.

4.6 Sommerfeld-Watson Representations of Hexagraph Amplitudes

Rather than giving a general description of the construction of S-W representations

we shall give a detailed description of the representations for a small number of individual

hexagraphs. This will illustrate the general construction but will also enable us to make

some important special comments associated with the particular hexagraphs we choose.

Consider first the Toller diagram of Fig. 2.2. There are three Zj variables, two Ujk

variables and three ^-variables. Altogether there are thirty-two hexagraphs associated with

this Toller diagram (if we distinguish hexagraphs differing by a twist) all of which are drawn

in Fig. 2.5. The sets of branch-cuts in each type of hexagraph are illustrated in Fig. 4.9.

As illustrated in Fig. 4.9a each of the hexagraphs in Fig. 2.5a has only one sets of cuts, as
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do each of the graphs in Fig. 2.5d. Similarly Fig. 4.9a illustrates that all the hexagraphs of

Fig. 2.5c also contain only one set of cuts. In contrast half of the hexagraphs of Fig. 2.56

contain three sets of cuts as illustrated in Figs. 4.9b-d while the other half contain the two

sets illustrated in Figs. 4.9e and / . Altogether the thirty-two hexagraphs generate forty-

four sets of three cuts and so there are forty-four terms in the corresponding asymptotic

dispersion relation as described in Ref. 2.

We describe first the S-W representation for the first hexagraph of Fig. 2.5a which

has the cut structure shown in Fig. 4.9a. The angular variables and corresponding angular

momenta and helicity labels are shown in Fig. 4.10. This hexagraph contains one T-graph

and two .D-graphs and so the partial-wave expansion has the form

Af]{z1,Z2,Z3,u1,u2,ti,t2,t3) ~Yll
ThDi2Dhatn (4.46)

In

= E^n^K^U^K'^Knti). (4.47)
in

A F-G continuation can be defined to complex £\, nj and n2. The corresponding asymptotic

cut structure is in the variables z\, Uj and u2 and is given by (in the limit Zi,v.i, U2 —* °o)

523 = (P2 + Pzf ~ *i (4.48)

5236 = {P2 + P3 + Pef ~ yn = [{z\ - l ) V 2 {z\ - l)1 / 2] u, (4.49)

5is = (Pi + Ps)2 ~ 2/123 £ [(*? - i)1/3((4 - l)1 / 2] ulU2 (4.50)

From the F-G formula, or by comparing with (4.31)-(4.34) we see that we can expect

the analogous constraints to (4.34) following from the asymptotic relations (4.48)-(4.50) to

be

£i > m, "i > n2, n2 > 0, (4.51)

that is the F-G formula would show that it is in the three complex half-planes

- rai) > 0, Re(n, - n2) > 0, Ren2 > 0, (4.52)
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that the Carlson condition for uniqueness is satisfied. The corresponding S-W transform is

dri2 u2
2

AH 8 J sin7rn2 J sin7r(ni — 712) J
l ( ) f (£

sin7rn2 J sin7r(ni — 712) J si

= ~l Re(ni-n2) = - f Re(£1-n1) = - |
simr(£i —

00x IT

(4.53)

where the sum £ is over that part of (4.47) not reproduced by the integrals in (4.53).

As discussed above we expect £ to simply cancel non-Regge behavior produced from the

integrals in the asymptotic limits we study.

From the definitions of PN(z), y\2 and ^i23 in (4.38), (4.49) and (4.50) respectively

we can rewrite (4.53) in the form

H~J sin irnasimrfm - na) sin v^ - mf1*3^2 ^ [Zl)

x E *>JVl(*a)^s(*3)awlMi(*i,n1,n2,<) (4.54)

where now, since all of the asymptotic cut structure of AH has been represented by the S-W

integrals we expect the polynomial sums over Ni and iV2 to be convergent in the asymptotic

regions we study.

Unitarity determines (see the next Section and Ref.l) that the Regge singularities of

aN1N2(^uni^n2) occur at values of £t,£2 = raj + JV2 and £3 = n2 + ]V2. As a consequence an

asymptotic expansion for the multi-Regge region zi,z2,z3 —* 00, with u\ and u2 fixed, can

be obtained by pulling back the l\, nj and n2 contours in (4.54). In particular Regge poles

at £1 = au £2 = a2, £3 — a3 will give

AH ~ E ^p^\py V ( 2 2 U i r-N, fo^)..-* (4.55)
S^SS j^sinjrQr3smx(a2-a3)smjr(ai - a2) J ; v y v ;
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Ct\ Of2 5 , a 3 OO
x i3ai°i«3ua2 «iuoa "s_ (4.56)

sin 7ra3 sin r(a2 — a3) sin 7T(QI — a2) ^^7^=0

Again we see that the [sin wo^]"1, [sin 7r(a2 — 03)]" ' , . . . factors reflect the asymptotic cut

structure of AH- In fact the Steinmann relations discussed in the last Section determine that

this must be the case. To see this we rewrite (4.56) in the form

ii,u2) (4-57)

(4.58)

which implies that asymptotically

disc aH ~ sin7r(a! - CC2)AH (4.59)
O23

disc aH ~ sin ir(a2 - a3) AH (4.60)

dkc aH ^ sin Tra3Aff. (4-61)

Consequently each discontinuity cancels one of the poles in the a;-variables—which for the

purposes of the Steinmann relations we regard as poles in the ^-variables. Therefore the

triple discontinuity of AH indeed has no poles in the ^-variables. Since the 1,-channels

overlap the discontinuity channels, the Steinmann relations imply this must be the case.

In the "helicity-pole" limit zi, u2, u$ —+ 00 we obtain from the same Regge poles

a very similar (but simpler) expression to (4.58) by again pulling back the t\, n2 and n3

contours in (4.54) giving

AH Z ^OO -: —f^ r , r (4.62)
5|_1.00 sin Tra3 sin tr{a2 — a3) sin 7r(ai — a2)

~*§" o a *3 6 " ' 3 *? | - : f ^ 2 ! • ; T- (4-63)
sm 7r a 3 sm TT(Q:2 — a3) sin x(a i — a2)

So in terms of invariants we have the same result as (4.58) but with the distinction that the

vertex function involved is a single (analytically-continued) partial-wave amplitude. This

emphasizes the close relationship between the Uj-dependence and Zj-dependence of ampli-

tudes in the asymptotic region which is, of course, a consequence of the presence of only

(N — 3) cuts (in general) for (2iV — 7) variables. It will be very important in the following

that helicity-pole limits have the advantage of isolating a single partial-wave amplitude. This

48



is because the unitarity properties of such an amplitude can be straightforwardly studied.

Note that the helicity-pole limit (4.62) is not a physical region limit although for the more

complicated hexagraphs studied in later Sections the analogous limits will be.

We consider next the first hexagraph of Fig. 2.56 whose cut structure is shown in

Fig. 4.96-d. This is a more complicated example since there are three sets of cuts contained

in the same hexagraph. Fig. 4.9b gives cuts in

536 ~Z2 (4.64)

^236 ~J/l2 (4.65)

Sis ~ 2/123 (4.66)

Fig. 4.9c gives cuts in

536 ~ z2 (4-67)

5364 ~ [{zj - l) V2 (4 ~ l) iy2] "2 = V23 (4.68)

Si5 ~ 2/123 (4.69)

while 4.9d gives cuts in

526 = (P2 + P4f ~ y12 (4.70)

S^ = (P3 + Ps)2 ~ 2/23 (4.71)

5is =2/123 (4.72)

For all three cases the F-G continuation made is to complex ni, n2 and l-i with t\ — n\ =

TVjand 3̂ — ^2 = N2 held fixed at integer values. However, the set of asymptotic cuts

(4.64)-(4.66) leads to the constraints (analogous to (4.34))

4 > n , , nx > n2, n2 > 0 (4.73)

and the corresponding S-W transform is

x £ PNl(zi)PN'(z3)afllNa(ti,nun2,t) (4.74)
N,,N2=0 \ /
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which is very similar to (4.54). The S-W transform for the sets of cuts (4.67)-(4.69) is the

same but with nj *-* n2.

The S-W transform of the dispersion integral corresponding to (4.70)-(4.72) has,

however, some distinctive features. The Carlson condition requires that the S-W transform

be made on the half-plane sums

£7 - "i > 0, £2-n2> 0, ri! + n2 - £2 > 0, (4.75)

while the distinct analytic definition of d(
nin2{z) for n\ %n2 requires that we treat these two

cases separately. In practice there will be two terms in the transform, with the first having

the form

I f dnidn2d£2 .,-»,n«,-»i/ )
8 J , sin7r(^2-n,)sin7r(721-n2)sin7r(nj+n2-£2) 2

R ( ' )

PNl{zi)PN2{zz)aNyN2(Z2,nun2,t)

(4.76)

while the second has the same form but again with n\ <-> n2.

Consider now the contribution of Regge poles at £x = a j , l2 = «2, h = ot3, to the

helicity-pole limit z2, u\, u2 -+ oo of (4.76). Pulling back the £2, nj and n2 contours as usual

gives

P ^ ( 4 - 7 7 )r-
1 + a3 — a2j

Since
22^123, (4.78)

it is straightforward to rearrange the power behavior in (4.77) to give, from (4.70)-(4.72)

sin ir(a2 — a\) sin Tr{ot\ — a3) sin 7r(ai + a3 — a2)'

which cannot be the complete asymptotic behavior giving the triple discontinuity of (4.70)-

(4.72) because the pole factors in the denominator are not cancelled in the triple discontinuity
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and there would be a conflict with the Steinmann relations. However, the second term (with

rii *-* n2 in (4.76)) resolves the problem. Because of Regge pole factorization this gives

essentially the same residue apart from a phase-factor e"^"1-"2) (arising from the rij «-» n2

definition of d3
nin2 and so we obtain

i is ^ « a*, Poo | l e , ^ g o ^

— Q;2)sin7r(ai - a3) [sin7r(a2 - ax) sin 7r(a2 - a3)

0*1—i>2 Qcr2~l>3 Qa2~al 0010203
•-'26 1->34 ^ 0 0

~ sin 5r(ai + a3 — a2) sin ir(a2 — «i) sin 7r(a2 — a 3 ) '

which is now of the form imposed by the Steinmann relations.

(4.81)

The combination of cuts (4.70)-(4.72) is also interesting from another perspective. It

was omitted from all the early studies of multi-Regge factorization. It does not occur, for

example, in the ladder model of Regge behavior. However, the general formalism certainly

allows it to be present and it can, as we have shown, be incorporated with only minor

subtleties in our S-W formalism. It has the very interesting property that the Regge pole

in the i2-channel automatically decouples if we continue to particle poles in the <j and t3

channels since there are no poles at ai = 0 or 03 = 0 in (4.81) (in contrast to (4.56) or

(4.63)). Effectively the last constraint in (4.75) implies that the amplitude cannot give an

infinite set of partial-waves in the ^-channel when n^ and ra2 are fixed at finite integers.

This last property and its generalization will play a fundamental role in our analy-

sis of the Super-Critical Pomeron in Section 7. It also manifests itself in a very different

context. Namely the manner that sister Regge trajectories41 appear in string (or originally)

dual models. Such trajectories appear for the first time in the multi-Regge configurations

corresponding to Fig. 2.2 and indeed do not couple in four-point functions. The property is

easily generalized by noting that a triple cut configuration which is to give a four-particle

amplitude at particle poles in the t\ and <3 channels must have the 536 (or z2) discontinuity

which becomes the total energy of the amplitude. In fact only the hexagraphs of Fig. 2.5i do

have the appropriate discontinuity. The hexagraphs in Figs. 2.5a, c and d have the appro-

priate discontinuity and pole structure to produce elastic scattering amplitudes in the z\, Z\

and zz, and z3 channels respectively. The cut structure of Fig. 4.9d which gives (4.70)-(4.72)

is distinct in that it cannot reduce to elastic scattering at particle poles in any combination

of i-channels. It is totally a multiparticle amplitude. When we go to more complicated

hexagraphs such as, for example, that shown in Fig. 4.11 there will be many multiple dis-
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continuities which do not include elastic scattering discontinuities. For example, in Fig. 4.11

there are altogether eight sets of five allowable discontinuities, only four of which contain the

M2 discontinuity which muot be present to give a four-particle amplitude at poles in each of

the t\, t2, <3 and ^-channels. We shall return to this example in Section 7.

The above examples should be sufficient to illustrate, in principle at least, how the

S-W transform is obtained for the multiple discontinuities in a general hexagraph.
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5. REGGE CUTS AND REGGEON UNITARITY FOR
HEXAGRAPH AMPLITUDES

In the previous Section we have seen how the analytic structure of many-particle am-

plitudes is reflected directly in the existence of hcxagraph F-G amplitudes and the resultant

S-W representations. The most powerful consequences of the formalism will, however, be

the results of this Section. We shall see that we can obtain a complete translation of the

full multiparticle unitarity equations to the complex angular momentum and helicity planes

of a general hexagraph. (The multiparticle unitarity equations referred to here are those

applying in the hexagraph cross-channel.) In analogy with previous Sections we begin with

an elaborate discussion of elastic unitarity.

5.1 Two-Particle Unitarity

The discontinuity of any amplitude across the two-particle threshold in any channel

is well-established. We can write, in standard 5-Matrix notation

disc

(5.1)

(5.2)

(5.3)

A circle represents the connected part of an .S'-Matrix element, while a square denotes the

full 5-Matrix (or its Hermitian conjugate). The channel in which the discontinuity has been

taken is clear both from the grouping of the initial and final states shown on the left-hand

side and the intermediate states displayed on the right-hand side. In addition a minus sign

indicates that an amplitude is evaluated below the cuts associated with the states grouped

with this sign.

53



The hatches in (5.1)—(5.3) indicate an arbitrary number of external lines but if we

take single lines in each case we obtain the familiar elastic unitarity equation

The phase-space-space integral involved is the same in all cases, that is if Q is the external

4-momentum,

h(Q) = * j d4Pld
iP26\Pl + P2 - Q)6+(P? - m2)6+(P* - m2) (5.5)

2 - m2)6+ ((Q - Pxf - m2) , (5.6)

where m is the mass of internal state particles. Choosing Q = (y/i, 0,0,0) we can write

, (5.7)

and using polar coordinates (r, 6,/J.) for Pi gives

r2dr 6+ (l -
( 5 - 8 )

= • /> (« ) /* (5-9)

where

and

is the usual SO(3) group integration in the parameterization (2.13). The additional azimuthal

integration over v that we have introduced is redundant unless the internal state particles

carry spin.

It is straightforward to make a partial-wave projection of (5.2) or (5.3). We first

introduce a Toller diagram T for the amplitude A whose discontinuity is taken—with the

"i-channel" involved chosen as one of the t-channels of the diagram. Cutting the Toller

diagram through this particular line defines diagrams TL and TR for each of the amplitudes
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AL and AR appearing on the right-hand side as illustrated in Fig. 5.1. The group integration

(5.11) can then be directly written as an integration over gi, the Lorentz transformation

corresponding to the t line of TL- If ga and g are respectively transformations associated

with the 2-line in TR and T then we have

9 ft = 9~Ll9- (5.12)

Consequently if we display the appropriate part of the partial-wave expansion (4.16) for each

of A, Ai and AR by writing

= Y.atD^g) (5.13)

(5.14)
1=0

where we have suppressed all other group-variables and even the helicity-labels indicating

the matrix form of both Dt and at, we can write (5.2) say, in the form

disc A{g) = ip(t) j dgLAL{gL)AR (gl'g) . (5.15)

We then use the group representation properties of the De, that is

De(gZ1g)=D((gZ1)De(g) (5.16)

and

JdgLDe(gL)Dtr fa1) = 6u,/(2e + I) (5.17)

to obtain the partial-wave projection of (5.15) as

^SC at = WTTfW (5.18)

The diagonalization of unitarity equations by partial-wave projection is, of course,

well-known to be a powerful tool. For us the importance of these equations will be in their

continued validity at complex values of the angular momenta (and helicities) involved. An

example of this is provided by the elastic unitarity equation obtained from the particular

version (5.4) of (5.2). The Carlson condition for uniqueness implies that since (5.18) holds
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for all integer £ it immediately holds (for each signature) for complex £. Note that in this

special case there are no additional helicities involved and at ~ a\ = aj(t), r = ±1 as defined

by (4.9), and a't = af = o,Te(t)*. Conseque, ily (3.18) gives for complex £ (since ar
e(t) is real

analytic as a function of i)

The power of this equation is most immediately illustrated by supposing that a[{t)

has a "fixed-pole" singularity at £ = a. In this case (5.19) would give

(5.20)
t-a t-a

which is inconsistent unless there is an essential singularity (infinite-order pole) or the residue

/? = 0. So fixed-poles are not allowed by elastic unitarity. In contrast a Regge pole at t = a(t)

gives no problem but (5.19) implies

ip(t) 0(t)P*(t)
' - a(t) <-.a«) (2£ + !)(£- a(t)) (a(t) - a'(t)) ( 5 ' 2 ^

- a ' ( 0 ] (5.22)

Our derivation of (5.18) was actually valid for arbitrary amplitudes involved in (5.2)

or (5.3). We simply suppressed all additional variables. Note that since all remaining gi in

the Toller diagram T (besides g) can be identified with the corresponding transformations in

TL or TR, (5.18) applies directly to the full partial-wave amplitudes obtained by projecting

with respect to all <?,•.

Unfortunately, perhaps, we cannot continue (5.18) directly to complex £ when arbi-

trary multiparticle amplitudes are involved. As we have demonstrated in previous Sections

we must first decompose a multiparticle amplitude into hexagraph amplitudes and then con-

tinue to complex angular momenta and helicities in a distinctive manner for each hexagraph.

The vital question is therefore whether (5.18) can be broken down into component equations

for hexagraph amplitudes?
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5.2 Hexagraph Diagonalization of Unitarity Equations

We shall now argue that the unitarity equation is further diagonalized by hexagraph

amplitudes. First we note that if we substitute specific hexagraphs HL and HR for AL

and AR in (5.2) we naturally obtain a specific product hexagraph H by contracting out the

phase-space lines as illustrated in Fig. 5.2.

The unitarity integral represented by (5.2) (or (5.3)) clearly contains all discontinuities

of the product hexagraph. Such cuts correspond to cuts either through just one of the AL and

AR or to a cut through both amplitudes which avoids the phase-space lines. The combination

of cuts in each amplitude with the phase-space integration will certainly give this last form of

cut in the complete integral. It follows then that the product of HL and HR in the unitarity

integral contributes to the product hexagraph H on the left-hand side of (5.2) or (5.3). We

now argue that for Regge behavior (in the t-channel) generated in the unitarity integral, the

product of HL and HR contributes only to H.

If we parameterize g as in (2.13) and then consider the Regge limit z = cosO —> oo

it follows from (5.12) that, since we have chosen gi as integration variables, we must have

ZR = cos 0R —+ oo (or possibly cos /HR —• oo) if the integration region remains finite in the

Regge limit. The form (5.3) for the discontinuity equation implies we can take AL to be a

physical amplitude while AR is evaluated below its ^-channel cut. Consequently if the Regge

behavior of AL is due to singularities at £ = a,-(t), the Regge behavior of AR will be due

to singularities at i = a*(t). Therefore Regge behavior of A associated with singularities at

£ = cti(t) cannot arise from the Regge behavior of AR and can only arise if the integration

region does not remain finite but is instead pushed out into the Regge region of AL- That

this happens can be seen by considering Fig. 5.3. This shows the VL = e.'Bl plane. We

can suppose that the integration over \IL (and VL) has been performed with branch-points

generated by the cuts of AL and AR hitting the end-points at cos///, = ±1. At these points

(5.12) reduces to

9 = 0L ± $R, (5.23)

and so for 6 6 (0,ir) the physical region 8R € (0, TT) maps into the Wi-plane as shown in

Fig. 5.3. The cuts of AL (which are independent of 6) and the cuts of AR (which do depend

on 0) are both shown. It is then clear that as z —> oo (or equivalently v = el8 —» oo) the cuts

of AH do indeed move out in the 'j£,-plane dragging the integration contour into the large VL
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Regge region as shown in Fig. 5.4. Furthermore the only singularities (of the integral over

vi) generated out in the Regge region where the Regge behavior of AL is exposed are those

involving pinches (of the integration contour) by a combination of branch-points of both

AL and AR. But these are just the cuts present in the product hexagraph. Consequently

Regge behavior associated with singularities at i = Qi(t) contributes only to the product

hexagraph. By considering the form (5.2) for the discontinuity formula and by choosing gn

rather than gi as integration variables we can similarly show that Regge behavior associated

with singularities at £ = a"(t) also contributes only to the product hexagraph.

Once (5.18) is written as an equation for hexagraph amplitudes (with at the partial-

wave projection for H and af and af respectively the partial-wave projections for HL and

HR) it can immediately be continued to all allowed complex values of the angular momen-

tum and helicity labels on both sides of the equation. This is because the appropriate

continuations allowed by the rules of Section 5.5 coincide on both sides of the equation.

We now move onto the technically much more complicated problem of the generation

of Regge cuts in multiparticle unitarity integrals. We have elaborated the above argument

for hexagraph diagonalization in detail in part because we shall give only an outline of a

similar (but much more complicated) argument for the general hexagraph diagonalization of

the production of Regge cuts.

5.3 Partial-Wave Diagonalization of Multiparticle Unitarity

We begin with the general discontinuity formula for a multiparticle intermediate state

of an arbitrary amplitude. That is we write, similarly to (5.1)-(5.3)

disc ,

(5.24)

(5.25)

(5.26)
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Each set of hatched lines again represents a particular set of particles (and not a sum over

such sets). The i in the square-box in (5.24) indicates that the discontinuity is that due

to a particular intermediate state i in the discontinuity channel; i— is the inverse

of the physical 5-Matrix defined with respect to this state (which, of course, defines the

internal phase-space integrations). The i— in (5.25) and (5.26)—which will be the formulae

we actually use—indicates that an amplitude is evaluated below the i-cut and all sub-channel

cuts associated with the phase-space. The complete set of discontinuity formulae of the form

(5.24), together with the discontinuity formulae for general Landau singularities, is equivalent

to the full set of coupled unitarity equations for all S-Matrix amplitudes. We shall consider

only states with an even number of particles since these directly generate multireggeon cuts.

The odd number states generate directly reggeon/particle cuts (which do not contribute to

high-energy scattering in the cross-channel) or alternatively reggeon cuts involving reggeons

which couple only to odd number particle states.

The next step, in analogy with (5.9), is to write the phase-space integration in (5.24)-

(5.26) in terms of angular variables. For this purpose we introduce a Toller diagram T,-

which directly describes the phase-space integration variables. This new form of Toller

diagram is a tree-diagram connecting an initial-line representing the incoming momentum Q

to final particles representing the phase-space state as illustrated in Fig. 5.5. Starting from

some standard frame si for Q we can introduce Lorentz transformations g, for each of the

internal lines of the diagram and a gi for SL (just as we did for amplitudes in Section 3). A

generalization of (5.5)—(5.11) then gives for the i phase-space integral /,-(* = Q2)

Ii(t) = i jdp(t,tu.-.tj,...) fdgLJ[d9j (5.27)
J J i

where (apart from numerical factors—powers of 2ir etc.)

(5.28)

There is a A-function, defined by (2.42), for each internal vertex, including those involving

the internal particles—for which the corresponding "tj" is the mass2. The integration region

is defined by

X(tj,tj+1,tj+a)>0 Vj (5.29)
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if tj is the largest momentum2.

As in our discussion of two-particle unitarity we denote the amplitude whose discon-

tinuity we are considering as A and choose a Toller diagram T (in which the j-channel is one

of the 2-channels) to denote the variables we use to describe A. We denote by AL and An the

constituent amplitudes involved in the integrals of (5.25) and (5.26)—the latter being the

formula we shall initially discuss. We introduce Toller diagrams TL and TR for AL and AR

by cutting T at the i-line and joining Ti to each of the sub-diagrams formed as illustrated

in Fig. 5.6. We can choose the same gj for TL and TR at all internal phase-space lines but

at the i line, if the transformations g, gL and gR are chosen respectively for T, TL and TR,

they must again be related by (5.12). By choosing the standard frame SL for T< to be the

corresponding (external) frame of TL we can regard the internal phase-space integral (5.27)

as expressed directly in terms of the variables of TL-

Having written the phase-space in the form (5.27) it is straightforward to obtain

a partial-wave projection and diagonalization of (5.25) or (5.26) by again utilizing (5.12)-

(5.17). However, before giving explicit formulae we first wish to discuss the diagonalization

of the equations by hexagraphs. Suppose we consider a Regge (or helicity) limit in which the

parameters of g are taken large. If AL is a physical amplitude with Regge behavior associated

with (.k = <*k{tk), where k = 1,...N now labels the internal lines of the Toller diagram

attached to particles as illustrated in Fig. 5.6, we can expose Regge behavior associated with

all of the afc(ifc) only if the phase-space integration is pushed out into the corresponding

asymptotic regions by the cuts of AR, in analogy with Fig. 5.4. This means that AR must

have sufficient cuts in (invariant) variables that depend on the parameters of g and also

involve the internal particles. If we decompose AR into hexagraph amplitudes we know that

each amplitude has simultaneous cuts in only a limited set of angular variables. We can find

hexagraphs with appropriate cuts to distort the contour into helicity-pole limits where all the

&k{tk) will be exposed but not to distort it into Regge regions. Demanding the appropriate

helicity-pole asymptotic behavior determines the internal hexagraph structure of AL and

demanding the appropriate cuts to distort the phase-space determines the internal hexagraph

structure of AR. The external hexagraph structure of both AL and AR is determined by

requiring that the cut structure of the hexagraph component of A selected be reproduced by

the cuts of AL and AR.
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Following this discussion through in detail shows that Ai and An must have the

same hexagraph structure as A externally while the internal 7^-lines must all be ZMines

as illustrated in Fig. 5.7. Note that Ac and An can have distinct .D-line structures as

illustrated in Fig. 5.8. In general such distinct hexgraphs describe distinct asymptotic cut

structures. However, at the phase-space boundary where (as we shall discuss) the Regge

cuts are generated, A = 0 VA or

^ V / ^ + V / ^ Vj, (5.31)

This implies that all the Qj (of X1,) are parallel and the asymptotic cut structures associated

with the various possible D-line structures cannot be distinguished. The distinct hexagraphs

are then distinguished only by the i-channels in which their Regge singularities appear and

not by their cut structure.

The hexagraph projection of (5.3) (or (5.2)) therefore has the form

disc H = iJdpJdgLl[ dgj HL(gL, ...,9j,.. .)HR (g^g, . . . , # , . . . ) , (5.32)

and the partial-wave projection takes the form

disc a? = : [dp £ afa a% (5.33)

We have suppressed all the external hexagraph partial-wave labels (angular momenta and

helicities) and formally indicated the sums over the internal helicity labels n and angular

momenta N = £ — n of all the D-graphs in Ti. (Note that we must choose a particular

hexagraph for Ti and use it for both HL and HR to carry through the following analysis.)

The continuation of (5.33) to complex t is achieved by an adaptation of the S-W

transform procedure of the last Section. The sums over N converge for complex £ (in analogy

with the corresponding S-W sums). The first Z?-graph in Ti contributes a sum of the form

= EE . (5-34)
\n, )
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which, in the particular case that there are no additional Z)-graphs in Ti, we can define for

complex £ as

, p _ y> s i n f ( l - r ' ) r dnxdn2r dnxdn2

' s i n f (ni - r i ) s i n f ("2 - Ta) s i n f (̂  - «i - "a - (T' ~ (TX' + r2')

-nx,-n2},

(5.35)

where r ' = ^(1 — T), T/ = ^(1 — 77). Inserting (5.35) into (5.33) defines a signatured

continuation to complex £, using the appropriate continuations of a,>fr-n and a & . If nx is

coupled to an additional Z?-graph, as illustrated in Fig. 5.9, then the factor [sin | (n i — Tj'

in (5.35) is replaced by an analogous expression to (5.35) that is

- 1

b< fe sin f (n3 - ri) sin f (n4 - r4') sin f (n2 - «3 - »»4 - (rf - (r^ + T^))) "

(5.36)

Similarly if n2 is coupled to an additional D-graph the factor [sin | (n 2 — Tj)] is replaced

by an analogous expression. This process is repeated until the complete sum over n in (5.33)

is similarly represented.

Regge cuts are generated in the continuation of (5.33) by the combination of inter-

nal Regge poles with the nonsense singularities (4.44) and the helicity integrals (5.35) and

(5.36). From (4.41) and (4.42) it follows that each of afjyn and a^& will have square root

nonsense wrong-signp.ture singularities in their complex (angular momentum and helicity)

continuations, which combine to give poles to be inserted in the integrals (5.35) and (5.36).

Therefore we insert such a fixed-pole into (5.33) for each vertex of Ti not involving particles

and use such poles to perform as many helicity integrations of the form (5.36) as possible.

This will leave only the helicity integrals for hexagraph lines attached directly to the internal

particles. If we also keep only the N = O part of (5.33) we then obtain the "fixed-pole"
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contribution due to a 2Af particle state, that is

disca («) ~ s in - ( t -T ) > / dp-—— ——— - — —

(5.37)

where m j , . . . TUM now label the helicities coupled to internal particles and NL and NR are

fixed-pole residues of aHl{£) and aHn(£) respectively. If we extract an appropriate Jacobian

factor (cf. D of (4.45)) in defining NL and NR we can write

(5.38)
[\v*(t,t1,t2)...»n(tj,tj+1,tj+2)f

/2'

where each pk is a two-particle phase-space factor (5.10) and there is a A1/2 factor for each

non-particle vertex of T;. The £M factor in (5.37) originates from the denominator factor

sin f {£ - ni - n2 - r' + T[ + T2') in (5.35) or sin f (n2 - n3 - n4 - T[ + T̂  + T^) in (5.36).

When evaluated at a nonsense, wrong-signature, point such a factor gives (—1) for two even-

signature Regge poles, (+1) for two odd-signature Regge poles and (-1) for an even/odd-

signature combination.

If we also perform the mjt integrations in (5.37) by picking up the Regge poles of NL

at rrik = <**(£*) k = 1, . . . ,M (the corresponding poles of NR will be at mjt = al(tk)) we

can use the factorization property

N Bu
NL(C,m,...) ~ ak™ , (5.39)

" " mk->ak nik — Ok

and exploit the unitarity equation (5.18) to eliminate both pk and /?*. We then obtain

LTT RTT

Na ~Na

' disc ar{£) ~ sin £(f - T')£M f dp-r — ^— . (5.40)

The Af-reggeon cut is generated in (5.40) by the nonsense-pole factor hitting the

boundary of the phase-space (5.31). This implies that
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and at t = 0 the branch-point is located at

t = «A#(0) = <*i(0) + • • • aM(0) -M + l. (5.42)

In the simple case ak(tk) = a(tk), k = 1,. . . M the location is given for all t by

t = OJI/(0 = Ma (J^j -M + l. (5.43)

To derive a complete discontinuity formula from (5.40) we write it in the general

"matrix" form

a{£) - a\£) = r(*)a(*)a'(/), (5.44)

where T(£) denotes the phase-space which generates the cut. Since a'(£) does not contain the

reggeon cut generated by T(£) but a(£) does, (5.44) implies (if Si is the £-plane discontinuity)

6ta(£) = [S(r(£)]a(t)a(r), (5.45)

where ± implies the amplitude is evaluated above or below the reggeon cut involved. From

the formal structure of (5.45) we can now derive a general discontinuity formula for an

M-reggeon cut in any t-channel of any hexagraph F-G amplitude in the form

(5.46)

This formula, that is reggeon unitarity, has been known7 (apart from signature factor

details) for over twenty years and it has also been understood for a long time that it provides

a general, model-independent basis for the Reggeon Field Theory. This will be the subject of

the next Section. However, for the purposes of this article, it is vital that (5.46) holds for a

general hexagraph and so controls far more than just elastic scattering and the RFT. As we

shall see it is the consequences of (5.46) for the formation of bound-states whose scattering

is also controlled by (5.46) that will enable us to study the Pomeron phase-transition and

also analyze infra-red divergences in QCD.

It is important to emphasise that although our discussion has been specific to singu-

larities generated by Regge poles it could clearly be carried through to at least locate the

trajectory of "multi-Reggeon" singularities generated by any initial "reggeon" singularity.
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In particular if the initial singularity is due to an Expanding Disc, the two-particle unitarity

equation (5.18) continued to complex £ implies that this singularity occurs in all (vacuum)

channels. "Multi/Expanding Disc" singularities will then be generated by the foregoing

analysis. The difficulty is that the phase-space integration in the analog of (5.40) will in-

volve additional integrations over the full branch-cuts of all the contributing "discs". Since

these branch-cuts will overlap in the discontinuity formula analagous to (5.46) the result is

ambiguous and there is no well-defined discontinuity.

The ambiguity of (5.46) when the basic singularities are branch-points can be viewed

as resulting from the lack of sufficient locality for such states in rapidity and impact parameter

space. In contrast Regge pole states are well- localised and so a multi-Regge pole state is

well defined. Although it would be difficult to prove conclusively it seems very unlikely that

(5.46) is actually a well-defined equation if the contributing singularities are anything other

than Regge poles or Regge cuts generated from Regge poles. Certainly we can say that

Regge poles and their multi-Reggeon cuts (or "thresholds") are the only form of angular

plane singularity structure known to satisfy full multioarticle unitarity in the cross-channel.
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6. REGGEON FIELD THEORY AND THE CRITICAL
POMERON

Reggeon Field Theory (RFT) has been derived and formulated from many different

starting points since Gribov's seminal paper,14 and we shall describe some of them in this

Section. First we want to emphasize the viewpoint that RFT is a technical device for

obtaining a scaling solution of the reggeon unitarity equations for the particular case of an

even-signature Pomeron regge pole, with trajectory j = a%(t), where the intercept is

o»(0) = 1. (6.1)

Note that when (6.1) holds we also have, from (5.43), that

aMS(0) = 1, (6.2)

where j = a\m(t) is the trajectory of the .M-Pomeron '~ut. Therefore all the Pomeron singu-

larities accumulate at one point as illustrated in Fig. 6.;. and we must look for a simultaneous

solution of all the corresponding discontinuity formulae.

The idea that high-energy diffraction scattering is described by a Pomeron with unit

intercept has a lengthy phenomenological history. Here we shall be emphasizing the theo-

retical virtues and attractions of this idea. Most immediately we shall concentrate on the

existence of a renormalization group solution of the reggeon unitarity equations in terms of

infra-red fixed-point behavior.

6.1 Reggeon Unitarity Phase-Space for Pomerons

The initial significance of considering an even signature Regge pole satisfying (6.1) is

that we can neglect the signature factors in (5.46), that is for small values of all t\

&w ~ ( - I ) " " 1 , sin | ( a , - T[) sin | ( a M - r'M) ~ sin | ( £ - r ') ~ 1. (6.3)

In this case (5.46) can be conveniently rewritten by introducing the usual RFT variables,

that is energies E{ and two-dimensional ("transverse") momenta k{ where

ti = l - Ei and U = fc? Vi (6.4).
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We can then write (with Ak = 1 — ak(tk))

M \ , M

k=l / J k k=\

=$• energy conservation + energy-shell (6.5)

=; inomentum conservation + phase-space integration. (6-6)

Consequently the even-signature elastic amplitude aT(£,t) will satisfy the corresponding

reggeon unitarity equation (5.46) if it can be written in the form

aT(£,t) = F (E,P) = f; Fnm(E,k2), (6.7)

where

Fnm (E, k2) = / flj dEifkiS [E-Y. EI) 62(k-£

X Gnm (El, • • • En, E[, . . . , Em,k\, • • • tm kl! • • • Mm) >

and the Gnm are Pomeron "Greens functions" satisfying the unitarity equation

Gnm (E + ie,k) - Gnm (E-ie,k) = ] O " 1 ) P

- (^ + ie> A) G™. (^ - ie, k).

(6.9)

The gn are general couplings of n-Pomerons to the external particles. Equations (6.8) and

(6.9) are illustrated in Figs. 6.2 and 6.3.

6.2 The RFT Graphical Expansion

It is straightforward to write a general solution to (6.9) in terms of a (non-relativistic)
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Feynman graph expansion involving arbitrary non-singular (but momentum dependent) ver-

tices. That is we take as inverse propagator

= [E - A o + a>ah? + «Zk4 + • • • ] , (6.10)

where now Ao = 1 — ctff(O). Therefore for Ao > 0, single Pomeron exchange gives total

cross-sections going to zero (as S~A°) and so gives a trivial high-energy S-Matrix (in the

sense discussed in the introduction).

As three-point function (with the notation of Fig. 6.4) we take

r ° 2 = * ( r 0 + r01g + r02kl + foxE, + • • • ) . (6.11)

As four-point functions

T?,3 = (Ao + AoiiJ + \02kl + XmEi + • • •) (6.12)

(6.13)

and so on. We write down the complete set of topologically distinct diagrams with a loop

integration / dEtPk. for each loop, together with momentum and energy conservation im-

posed at each vertex. The ^.-integration is over the whole plane, while the ^-integration can

be taken to be down the imaginary axis. The factor of i in (6.11) (and all vertices for odd

numbers of Pomerons) reproduces the (—l)r factor in (6.9) when the usual Feynman graph

cutting rules are applied.

A lagrangian can be written in terms of fields which are functions of conjugate vari-

ables to E and k.. ^(x, y) and t{>(z, y) are respectively Pomeron creation and destruction

operators with x the impact parameter conjugate to k_ and y the rapidity (~ In s ~ In z)

conjugate to E. In this case

+ y M V + r 0 ^ 2 + rmtfaVfy + • • •] (6.14)
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6.3 The Renormalization Group

Next we discuss the implementation of a Wilson renormalization group transformation

on the effective Lagrangian (6.14). This transformation can be formulated in a variety of

ways. The most direct, in our opinion, is to integrate out regions of energy and momenta

in the Fevnman graphs generated by (6.10)-(6.13). (For this purpose it will be preferable

to bend the i?-contours away from the imaginary axis as illustrated in Fig. 6.5). The most

sophisticated view of the RFT that we have written for the Pomeron is perhaps to suppose

that we can write a complete effective lagrangian involving all hadronic Regge poles such

that all reggeon unitarity equations are satisfied. In the neighborhood of j = 1, t = 0 (i.e.

E ~ k2 ~ 0) only the Pomeron trajectory is relevant and so integrating out all \E\ > fi,

say, and also all |fc2| > fi will (for n sufficiently small) lead to an effective field theory for

Pomerons only, with a cut-off /i in the Feynman graphs.

We can specifically illustrate the renormalization group transformation /x —+ /J /2 by

considering the three-Pomeron graphs of Fig. 6.6. Integrating over E and k in the region

I* > \E\, |fc2| > fi/2 and expanding the result as a Taylor series in i?i, kt, J?2, £2 gives

ro(fi) -» ro(fi/2) through

. . . . (6.15)

The complete transformation is defined by carrying out this procedure on all graphs.

If we carry out a general transformation y. —> p[(, and then rescale E and k_ by

E -+ (E, k2 -> (k\ (6.16)

the cut-off in the Feynman graph expansion remains formally unchanged. However, each

parameter g in the lagrangian (6.14) will change by

9->C99 + 9\ (6.17)
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where va is the canonical dimension of g and g' depends on all the other parameters of the

lagrangian. The original values of parameters with ug < 0 will be completely suppressed

after a sequence of such transformations. Therefore if a fixed-point in parameter space is

approached by such a process the bare parameters with vg < 0 must be "irrelevant" (in

Wilson's terminology) to the existence of the fixed-point. Consequently we can look for a

fixed-point by keeping only those parameters with positive canonical dimension. In our case

we have

"A0 = 1, ^0 = 2 ^ = 0 , . . . . (6.18)

6.4 The Critical Pomeron

By expanding the theory in powers of t = 4 — D, where D is the number of transverse

dimensions, we can show that there is indeed a fixed-point at finite values of r and A (the

renormalized values of r0 and Ao), that is at

4^
r2 = — £ , A = 0(=a f f(0) = l ) . (6.19)

Assuming this fixed-point persists to e = 2, the corresponding theory describes an interacting

Pomeron satisfying (6.1) and so potentially gives the non-trivial theory that we are looking

for. The theory has the "universality" property familiar from critical phenomenon behavior

in phase-transition theory and thus is referred to as the Critical Pomeron. In this case

universality implies that the asymptotic predictions of the theory can be calculated without

knowledge of the initial bare parameters of the lagrangian (6.14), except that A = 0 must

be satisfied. A is analogous to temperature (or renormalized mass) in this context. Given

that A = 0 the /^-function for r can be calculated and this shows that the fixed-point is

indeed "infra-red stable" as illustrated in Fig. 6.7, so that the theory is driven to this point

in the "infra-red" region E ~ k2 ~ 0. To calculate specific properties of the resulting critical

theory it is simpler to use the Gellmann-Low form of the renormalization group applied to

the theory containing only the relevant parameters.

6.5 Renormalization Group Analysis

We study the triple Pomeron theory with bare lagrangian

2 [ ] (6-20)
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and renormalized lagrangian

corresponding to the renormalizations

and

a' = z-'a'o

3/2 - l

r = z3' zx r0.

(6.22)

(6.23)

(6.24)

The renormalization constants are determined by normalization conditions,the most straight-

forward being

dE E=-Et.,k
2=O

dki[-2 = —a

In general we should also impose A = 0, which is equivalent to

= 0.

(6.25)

(6.26)

(6.27)

(6.28)

In practice, however, computations are made by combining the e-expansion with

perturbation theory. Within the e-expansion setting Ao = 0 is sufficient to impose A = 0

and so satisfy (6.28) automatically. (6.25)-(6.27) are then simply equations for zi, z2 and

z3. Note that a general Green's function satisfies

(6.29)

The independence of EN of the bare Greens functions leads to the renormalization

group equation

= 0, (6.30)
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where g is the dimensionless coupling

9{EN) ~

with 7, /? and ( defined by

a'o,T0 fixed

= EN
dEN ct'Q1ro fixed

a'o,ro fixed

(6.31)

(6.32)

(6.33)

(6.34)

The well-known solution to Eq. (6.30) is

(6.35)

where t = In <f

% = - j 9 (5 (0 ) . 5(0) = 5, (6.36)

(6.37)

(6.35) provides the most simple scaling laws for the Critical Pomeron. Within the

e-expansion

4 ^ 4(83r)2

7 = ~

(6.38)

(6.39)

(6.40)

and so we find the fixed-point (6.19) of 0. For r^1 } , (6.35) implies that

(6.41)
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where g = gi is the fixed-point zero of /? and z — 1 — C,(a'. Setting A:2 = 0 gives directly

r?ltl)(E1k
2 = 0)s~oE

1->l«i)t (6.42)

giving the well-known Critical Pomeron result15'16 for the total cross-section

< 7 T ^ [In s]\ (6.43)

where

V = -*f(9?) = ^ + O(e2). (6.44)

Since rj > 0 the Critical Pomeron theory is indeed non-trivial. Much more elaborate scaling

properties can be derived by adopting more general renormalization conditions than (6.25)-

(6.27) so that a transverse momentum scale kN is introduced in addition to the energy scale

EN- A line-integral representation of F^i) of the form42

^ f g ] (6.45,

can be combined with the more general scaling forms obtained and the e-expansion to give43

(to lowest order in e)

where r\ is given implicitly by

The general scaling law

- " ^ J (6.48)
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is then obtained with F given explicitly by

J-ioo (_«,)!+«/" [1 + f}(l + £/24)]2 Kt•77(l + £/24)]27ri

with
2i = (-w)-1-*'*4, (6.50)

and

6r§ J •

(6.4S) gives the diffraction peak shown in Fig. 6.8, which is not that far from the data44

at ISR energies. Unfortunately the O(e2) calculations do not improve the agreement.45 At

the higher collider energies of the CERN SppS and the Fermilab Tevatron collider there are

apparently far greater deviations from Critical Pomeron behavior.46

Apart from the rising total cross-section and diffraction peak scaling given by (6.43)

and (6.48) respectively, other well-known scaling properties of the Critical Pomeron are the

rising and peaking of the central plateau

and also central region KNO scaling of the multiplicity moments

(n") ~ Cp{nY". (6.52)

We shall not, however, attempt a comprehensive review of Critical Pomeron scaling proper-

ties here, even though a suitable review does not exist in the literature. Further references

can be found in Refs. 47 and 18.

In a sense the Critical Pomeron is the summit of Multi-Regge theory and abstract

Pomeron theory. The Reggeon Unitarity equations derived in the last Section are essentially

sufficient to determine the Reggeon Field Theory rules for all multi-Regge regions directly

related to measurable physical cross-sections. This is illustrated for high-mass diffractive

production in Ref. 49 where the triple-Regge RFT rules are derived. The same rules are
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directly derived from "hybrid" Feynman graphs in Ref. 43 and the triple Pomeron analogue

of (6.48) is calculated. In general we anticipate that the RFT formulation of the Critical

Pomeron, when combined with Reggeon Unitarity, provides a complete non-trivial high-

energy S-Matrix as we claimed in the Introduction.

Although all Critical Pomeron Greens Functions have scaling behavior at (or close

to) zero momentum transfer, it is straightforward to show that a simple Pomeron pole and

multi-Pomeron cuts emerge for positive momentum transfer42. This ensures that Reggeon

Unitarity, and therefore full multiparticle cross-channel unitarity, is satisfied by the Critical

theory. It has also been shown50'51 that the Critical Pomeron satisfies all known direct

channel unitarity constraints. From the above analysis it might appear that theory can only

be calculated in the e— expansion (which is presumably not a very good approximation at

e = 2). However, while this is true as a matter of practise at present, it certainly is not true

in principle. In particular it has been shown52 that a phase-transition is indeed present in

the physical number of dimensions.

Since the Critical Pomeron is completely formulated and is (in principle) absolutely

calculable without reference to any underlying theory it clearly provides a uniquely attractive

possibility for the high-energy behavior of hadron amplitudes. At present it is also the only

known unitary possibility. As we emphasised in the last Section it is very likely that Reggeon

Unitarity requires that high-energy behavior be built up from Regge poles. That it involve

a single Pomeron pole only might (as we discuss in Part 2) be a deeper requirement of QCD

and the strong interaction.

In determining the significance of the Critical Pomeron phase- transition within QCD

an important part of our understanding will come from the properties of the Critical Pomeron

interaction with secondary Regge trajectories.

6.6 The Critical Pomeron and Secondary Regge Trajectories

From (5.42) we note that the Regge cut O:RMI(t) due to one distinct reggeon and

M-Pomerons has the intercept

«RMff(0) = OTR(O) + M (aff(0) - 1) (6.53)

and so when as(0) = 1 we have also

<*RMIF(0) = an(0). (6.54)
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That is the RMIPcuts all collide with the R trajectory at t = 0 in close similarity to the

collision ofPcuts and pole illustrated in Fig. 6.1.

The renormalization group has been used to study the RMPcollision with both a

"boson" Regge pole with "bare" trajectory53

j = a0 + at + • • •, (6.55)

and54 with a "fermion" with "bare" trajectory

j = a o + / 3 ' \ A + a ' t + ---. (6.56)

In both cases fixed-points were found giving scaling behavior similar to (6.42) (or (6.46)) for

the reggeon propagator. In the case of the fermion (6.56) the inverse propagator is argued

to have the form
2 1 [ / Z ] (6.57)

where z = k?/£1+" and £ = E— (1 — (*£), with aft the renormalized fermion intercept. The

form (6.57) arises only if an appropriate fixed-point exists. Such a fixed-point does exist in

the e-expansion but it is only partially infra-red stable.

The inverse propagator (6.57) has some very interesting properties. First the renor-

malized trajectory has the form

€ = C ( k 2 ) 1 / u + ---, (6.58)

where C is determined by a zero of [<f>i{z) + -^/z<j>2{z)]. This is the same analytic form as

the Pomeron trajectory (although the coefficient C is not the same) and, since v ~ 1 in the

e-expansion, can be expected to give an almost linear trajectory. Secondly, since the sign of

y/z in (6.57) is determined by the parity of the fermion trajectory, it can be shown54 that

(6.57) actually describes a parity doublet of trajectories for t = —k2 < 0 while for t > 0 only

one parity trajectory is present on the physical sheet of the £-plane.

Although (6.57) has been developed to describe fermion trajectories it could also

describe parity-doublet boson trajectories with only one parity present for positive t (where

particles are generated). There have in fact been phenomenological arguments55 that the

pion trajectory should be parity-doubled for negative t. Note that for a pion with m\ = 0,
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the RMlPpile-up described by (6.54) actually takes place at the particle pole, i.e. t — m£ = 0.

Consequently the t = 0 singularities, of Regge residue functions etc., related to the Critical

Pomeron behavior are very likely to be inter-related with the (Adler) zeroes of pion scattering

amplitudes. In fact before the advent of QCD there was much discussion56 of how the t = 0

behavior of Regge amplitudes might be deeply connected to the PCAC structure of pion

amplitudes. We are here adding the extra suggestion that the Critical Pomeron should also

be part of the physical solution. Of course, the whole subject has been barely discussed in

the context of QCD. We shall return to the inter-relation of chiral symmetry breaking and

the Critical Pomeron in QCD in the second part of this article.

For the next Section the most important result of the secondary trajectory analysis is

that the Critical Pomeron interactions dominate the "bare" reggeon so completely that even

the nature (parity in particular) of the particle states on the trajectory is basically modified.

In attempting to define a Super-Critical Pomeron, as we shall do, it will be vital to take into

account the Pomeron component of the particle states.

6.7 RFT From Hexagraph Products

The above construction of RFT was completely abstract with no physical properties

ascribed to the individual graphs. We shall now outline two further constructions—the first

making contact with the multiple discontinuity hexagraph structure of amplitudes discussed

in previous Sections. The final construction will be completely phenomenological.

Our purpose now is to view the RFT perturbation theory graphs as built up by a

process of "sewing" hexagraph amplitudes together. For this it is necessary to rewrite all

graphs in the time-ordered (that is rapidity-ordered in this context) Rayleigh-Schrodinger

form. This is achieved by performing all energy loop integrations. The resulting expansion

can be represented by the set of distinct hexagraph loops which are obtained by joining

all hexagraph tree diagrams together in all possible ways. If the rapidity-ordering of the

vertices in any graph is ambiguous (the rapidity-axis is thought of as increasing along the

horizontal lines of the hexagraph) distinct orderings define distinct graphs. The gn must

also be represented by generalized hexagraph vertices as illustrated in Fig. 6.9 and if vertices

other than the triple Pomeron vertex are to be present corresponding new hexagraph vertices

must also be introduced. The hexagraph loop expansion for the elastic scattering amplitude

involving only triple Pomeron vertices is illustrated in Fig. 6.10.

The amplitude for a particular hexagraph loop diagram is obtained by first allowing
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transverse momenta to flow along all internal lines (with momentum conservation at each

vertex) and writing /d2jb for each loop. A propagator is then written for each intermediate

state, which in this case is each distinct set of horizontal lines cut by a single vertical line-^as

illustrated in Fig. 6.11. The corresponding propagator is

, (6.59)

where the sum is over the horizontal lines involved. The vertices are now functions of the

transverse momenta only.

In the rapidity-ordered formulation the propagators (6.59) correspond directly to

the nonsense fixed-pole factor [£ — 1 — J2(ak — I)]"1 appearing in the discontinuity formula

(5.40). Consequently the RFT expansion can be thought of as resulting from the iteration
TT

of (5.40) beginning with a Regge-pole approximation for the Na . Since we know precisely

how "s-channel" discontinuities of hexagraph amplitudes are taken it is clear that building

up graphs in this manner, in principal at least, allows us to explicitly discuss the s-channel

discontinuity content of general RFT graphs. For the even signature Pomeron the dropping

of signature factors through (6.2) implies that taking discontinuities involves only the re-

moval (or changing sign) of factors of i in vertices. Before giving the rules for "cut RFT"

which make this explicit we first discuss a very simple physical motivation for RFT in terms

of multiparticle production processes. This physical picture underlay most physicists' un-

derstanding of RFT during the years of its development.57'58

6.8 RFT as an Effective Field Theory of Multiplicity Fluctuations

We suppose that in first approximation all hadrons are produced by an elementary

process. That is the particles of an average multiplicity event are uniformly spread across

the rapidity axis (apart from short-range fluctuations) and with a sharp cut-off (exponential)

in transverse momentum. A multiperiphal model for pion production, or ladder diagrams

in \<f>3 scalar field theory, would be good realizations of such a production process. In fact

the representation of the production process as in Fig. 6.12 can be thought of either as

representing the actual (multiperipheral) amplitude or as representing the distribution of

particles on the rapidity-axis. When elastic scattering is calculated through unitarity as

indicated in Fig. 6.13 the output will be a shrinking diffraction peak—that is a Regge pole,
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with trajectory cns(t) say. We shall assume that events with close to the average multiplicity

are well-reproduced by this production process.

We next assume that events with close to twice the average multiplicity can similarly

be represented by the same production process doubled up on the rapidity axis as illustrated

in Fig. 6.14. If the basic process produces Regge pole behavior

A(s,t)~Saril\ (6.60)

then the "doubled-up" process will give two Pomeron Regge cut behavior, that is

Q2aj.(t)-1

A{s,t) . (6.61)

Similarly we assume that events with three times the average multiplicity are well repre-

sented by three Pomerons and so on. (These assumptions are realized in suitably transverse-

momentum cut-off field-theoretic models.)

If we move on to discuss events with distinct multiplicity densities on distinct portions

of the rapidity-axis we will generate more complicated RFT graphs as illustrated in Fig. 6.15.

In general then each W-Pomeron intermediate state corresponds to a multiplicity density of

JV-times the average multiplicity on the corresponding portion of the rapidity-axis. How-

ever, because of the different possibilities for taking discontinuities in underlying Feynman

graphs (or because of the possible discontinuities through a hexagraph—in the hexagraph

construction discussed above) each RFT graph also represents a variety of processes besides

the basic multiplicity fluctuation that we have so far associated with it.

The complete set of physical processes associated with a particular RFT graph cor-

responds to the possible discontinuities of the graph. These are the allowable cuts through

the associated hexagraph loop diagram—with the additional possibility that a cut entering

a vertex through a horizontal line can exit simultaneously through both slanting lines as

illustrated in Fig. 6.16 if these lines are part of a hexagraph loop. This is because the for-

mation of loops allows distinct cuts in a hexagraph tree diagram to coincide as a single cut

of a loop amplitude. The basic multiplicity fluctuation interpretation of an RFT graph de-

scribed above corresponds to cutting all Pomerons in the graph. In general uncut Pomerons

represent the absorption of some basic production process as illustrated in Fig. 6.17.

The complete set of cut RFT graphs, with the AGK cutting rules57 incorporated, is

described59 by the "cut Reggeon Field Theory" (CRFT). This involves both cut and uncut
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propagators, with the uncut propagators given both +ie and — ie prescription. That is we

have propagators

and vertices

(6.62)

(6.63)

C c
c

The corresponding lagrangian involves three Pomeron creation operators tp+, ^>_, ipc and

three destruction operators i/>+, ^>_, tpc and has the form

=£°+ + £°_ + £°c + f fa ) ^ ( )

^ ( ^ V V ^ ^ ) (6.64)

($

with each of the free terms £° , £° and £° the same as in (6.14) or (6.20). The lagrangian

Cc generates the full set of discontinuities of all RFT graphs and allows at least the formal

5-channel unitarity properties of the theory to be discussed.

If ttff(O) < 1, that is Ao > 0, the interaction graphs will not significantly disturb the

multiplicity distribution given by the "non-enhanced" graphs of the form Fig. 6.13, Fig. 6.14

etc. and the full multiplicity distribution will look as illustrated in Fig. 6.18 with peaks

at the average multiplicity, twice the average multiplicity etc. As Ao approaches Aoc, the

bare-value giving the A = 0 Critical Pomeron, the peaks in the multiplicity distribution
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merge to give a KNO distribution satisfying (6.52). Consequently the Critical Pomeron can

be understood as a critical phenomenom of multiplicity fluctuations producing KNO scaling.

We shall come back to this interpretation in the second part of this article.
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7. THE SUPER-CRITICAL POMERON

In this Section, we address the question of what could be the new phase approached

as the Pomeron becomes Critical. This question was first asked before QCD was accepted

as the underlying strong interaction theory and so at that time it was very unclear that a

Pomeron with A o < 0 could or should make any sense, since this corresponds to (a first

approximation with) total cross-sections increasing like S~^°. At the time there was no

conception of a new hadronic phase that might be reached in a Pomeron phase transition.

Now, of course, we understand that QCD has more than one distinct phase and it is clearly

plausible that the Critical Pomeron is related to one of the anticipated phase-transitions. In

this case we should be able to identify a Super-Critical phase with distinct properties.

7.1 Classical Vacua for Ao < Aoc

The effective RFT lagrangian near the Critical Pomeron fixed-point is the simple

triple Pomeron theory with the lagrangian (6.20). For Ao 3> 0, the perturbation expansion

described in the last Section defines the theory. It is a super-renormalizable theory and

so the perturbation expansion is expected to be Borel summable. The critical behavior

occurs at some Ao = Aoc and it can be shown that without a transverse momentum cut-off

Aoc = —oo. With a cut-off we have42

0. (7.1)

To define a (cut-off) theory with Ao <C Aoc, we can look for a classical field configuration

minimizing the "potential"

Imposing

dV dV

dtp dtp K '

we immediately find four stationary points, that is

I ip = ^ = 0 (7.4)
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II ^ = 0,̂  = — (7.5)

2zAn -
III $ = ,̂V> = 0 (7.6)

IV V = <£ = ^ (7.7)

I is, of course, the "vacuum" used to define the original perturbation expansion giving

the subcritical theory. The asymmetry of II and III with respect to $ *-* ip implies that the

perturbative theory developed around either of these points breaks Lorentz invariance and

so does not give an acceptable theory. IV seems therefore to be the obvious choice to use to

define a new theory. Shifting each of ip and $ by (7.7) and dropping a constant leads to

(7-8)

This has reversed the sign of the intercept (or "mass") term and so potentially gives

a sensible theory for Ao -C 0. However, (7.8) also contains the two source terms =ja-'^2 and

— ̂ •ip2, and previously this has always led30 to the rejection of this theory. The path-integral

which, formally at least, represents the theory defined by (7.8) is not well-defined because

of the source terms. The problem can be seen to arise diagrammatically if we consider the

perturbation expansion in powers of ro. This requires the summation of an infinite series

involving the source terms at each order. Consider in particular the series of Fig. 7.1 in zero

transverse dimensions. We obtain

°° 1
y x

and so instead of having a Pomeron pole with intercept less than one, we have a double-pole

with intercept one. This problems persists in two transverse momentum dimensions if the

diagrams of Fig. 7.1 are indeed present in the theory.

In fact all previous attempts to define a Super-Critical Pomeron theory have been

based on trying to combine II and III in some manner or utilizing classical "instanton"

solutions linking I, II, and III. The expanding disc solution19"21 , which certainly saturates

the Froissart bound and may even violate it, is obtained by keeping I as the vacuum and
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letting transitions to II and from III back to I contribute to scattering amplitudes. All of

our previous efforts24 to define a Super-Critical theory have been based on utilizing II as

the vacuum on one half of the rapidity axis and III as the vacuum on the other half. We

now believe that when the Super-Critical problem is properly formulated, it is clear that IV

provides the correct answer and that the problematic graphs of Fig. 7.1 (and many others of

a related form) do not in fact appear in the theory. The key to understanding this resolution

of the problem is the multiparticle hexagraph formalism of previous Sections.

7.2 The Physical Significance of the Pomeron Vacuum

Our introduction of RFT in the last Section was as a diagrammatic solution of the

reggeon unitarity equations. This provides a well-defined formulation which is effectively

what emerges from all field-theoretic or string models generating the RFT directly. However,

when we consider changing the "vacuum" in the formalism, we at first sight lose all control

of the physical significance of the diagrams we are manipulating. It is particularly difficult to

determine what the physical significance of the Pomeron source diagrams might be. Since it

is these diagrams that cause the problems in our attempt to define a Super-Critical theory,

understanding their physical significance \s clearly crucial. In fact since the Pomeron is only

defined by the scattering of hadrons, it would seem that the "Pomeron vacuum" can only

be redefined by some underlying redefinition of hadron states. But this apparently takes us

into the full problem of the hadronic vacuum which surely can not be discussed solely within

the RFT formalism.

Fortunately, there is a sense in which we can bring the redefinition of a hadron, as

the Pomeron becomes Critical, into our formalism and this will ultimately be sufficient to

resolve the vacuum problems. We noted in Sect. 6.6 that all secondary (hadron) trajectories

are significantly modified by Pomeron Regge cuts as the Pomeron becomes Critical. We

shall now argue that it is this redefinition which gives a well-defined meaning to the set of

Super-Critical Pomeron graphs associated with the new vacuum IV above.

We shall assume that as the Pomeron becomes Super-Critical, it is a good initial

approximation to consider the new hadron reggeons as differing from the old simply by the

presence of an infinite sum of Pomerons with zero energy and momentum as illustrated in

Fig. 7.2 The relative weighting of the terms with different number of Pomerons is actu-

ally determined by the vacuum expectation value (VEV) IV. That is in terms of diagrams,

the choice of a classical stationary point for the Pomeron VEV can be thought of as simply
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achieving the cancellation of the vacuum production processes illustrated in Fig. 7.3. Requir-

ing this cancellation determines therefore the relative weighting of (N + 1) to N Pomerons

in a reggeon for all TV and directly fixes the value of the VEV.

We now need to consider the scattering of the new reggeons via Pomeron graphs

with the additional requirement that the reggeons are forming bound-state particles. This

means that we must necessarily consider the complicated scattering process illustrated in

Fig. 7.4 and to discuss bound-state formation by the reggeon we must consider the hexagraph

structure of the amplitudes involved.

7.3 Hexagraph Analysis of the Scattering of Bound-States Formed by Regge Cuts

As discussed in Section 4 we can isolate a single partial-wave which satisfies straight-

forward Reggeon Unitarity equations by exploiting helicity-pole limits. Therefore we define

each of the reggeon + Pomeron sum configurations in Fig. 7.4 by (physical) helicity-pole

limits of the hexagraph amplitude defined by Fig. 4.11. From our description of the S-W

representations of hexagraph amplitudes in Section 4 we also know that particle poles appear

accompanying Regge pole behavior only for the appropriate multiple discontinuity structure.

Consequently, if the scattering illustrated in Fig. 7.4 is to contain dynamically generated par-

ticle poles in each reggeon channel (by the reggeon plus zero-energy Pomeron sum), not only

must it correspond to the hexagraph of Fig. 4.11, but in addition the amplitude must con-

tain a multiple discontinuity set which is consistent with the presence of particle poles in

each channel. The possible five-fold discontinuities are illustrated in Fig. 7.5. There are

also discontinuity sets, analogous to those of Fig. 4.9d in the hexagraph of Fig. 2.5b, which

are inconsistent with the presence of the desired particle poles and these are illustrated in

Fig. 7.6.

Since we are considering the contribution of Pomeron Regge cuts in each hexagraph

channel, we also know from Section 5 that the Regge cut discontinuities in each individual

contribution to the sums of Fig. 7.4 can be described in terms of the fixed-pole residues of

hexagraph amplitudes of the form shown in Fig. 7.7. Consequently, our task is to construct

the general set of "RFT graphs" with Regge cut discontinuities of the form illustrated in

Fig. 7.7, which aLo have momentum space discontinuities of the form of Fig. 7.5. This will

give us the desired bound-state amplitudes of the form of Fig. 7.4.

To study the Super-Critical Pomeron therefore we are apparently faced with the major

theoretical problem of constructing RFT graphs for a general multiparticle hexagraph. (This
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goes beyond the problem of constructing RFT for physical cross-sections discussed in th>

last Section—for which we asserted Reggeon Unitarity is sufficient.) There is clearly no

problem in formulating rules for the RFT graphs in which all Pomercn or reggeon/Pomeron

interactions are confined to one hexagraph ^-channel, that is graphs of the form of Fig. 7.8

which correspond directly to hexagraphs of the form of Fig. 7.7. The rules developed for a

single ^-channel, as described in the last Section, just apply ("multiplicatively") to each of

the channels involved. In general, however, we can expect to have RFT graphs involving

arbitrary numbers of Pomeron interactions and connecting the different i-channels. A simple

graph of this form is shown in Fig. 7.9. New problems necessarily arise in formulating RFT

rules for such graphs, as we now discuss.

An apparent problem occurs if we consider the Regge cuts corresponding to the

dashed lines in Fig. 7.9. According to the above discussion each discontinuity should be

expressible in the form given by (5.46) in terms of nonsense, fixed-pole, hexagraph amplitudes

of the form illustrated in Fig. 7.7. The component amplitudes of Fig. 7.9 correspond to the

hexagraphs shown in Fig. 7.10 which do not have the appropriate form. However, the

multiple discontinuities of the graphs in Fig. 7.10 do actually coincide with particular sets

contained in the appropriate hexagraphs, as illustrated in Fig. 7.11. Consequently, the graphs

of Fig. 7.10 do indeed contain the necessary fixed-pole residues to give the Regge cuts picked

out in Fig. 7.9 and in this particular case there is no problem. In other graphs discussed

below, this problem will result in their elimination.

The second problem we encounter with Fig. 7.9 is that although we expect such

a configuration to contribute to the Regge cuts s îown, we can not find a natural way to

express the graph in terms of transverse momentum integrals. We can not simultaneously

replace all three Regge cut discontinuities by transverse momentum integrals, as we did for

the complete single-channel reggeon unitarity equation in (6.8) and (6.9). The transverse

momentum planes involved are distinct and so there is no natural way to let transverse

momentum flow through Fig. 7.9. Fortunately we can determine the contribution of this

graph to the reggeon scattering amplitude of Fig. 7.4 (involving zero energy and momentum

Pomerons) by studying the forward amplitude related to the "Di-Triple Regge" inclusive

cross-section60'61, since this involves only a single transverse momentum plane, and the RFT

rules for this cross-section are determined by straightforward extension of the arguments of

Ref. 49. Indeed it is clear that if the Pomerons involved in the outer discontinuities of Fig. 7.9

carry zero energy and transverse momentum so that there is no outer loop integrations

86



then the graph has an unambiguous form as a single transverse momentum integral with

the propagators illustrated in Fig. 7.12. Placing each of the external reggeon propagators

[Ei — Aft(ii)]"1, [E2 — Afl(<2)]~1 on shell and summing over the rapidity orderings of the

internal vertices gives an amplitude

where t = q2 and we have factored off Pomeron/reggeon and external particle vertices. If

each of the zero energy Pomerons is weighted by the VEV of IV above, then we obtain

exactly the Super-Critical graph of Fig. 7.13.

We can effectively construct the complete set of hexagraph loops contributing to the

reggeon scattering of Fig. 7.4 in the same manner as for F:g. 7.12. A very important element

of the procedure is that we are to construct amplitudes with the discontinuity structure of

Fig. 7.5 only and reject those with discontinuities corresponding to Fig. 7.6. We must also

ensure that all Regge cut contributions involve amplitudes with discontinuities consistent

with the hexagraph structure of Fig. 7.7. These requirements make a very interesting se-

lection of potential graphs if we construct discontinuities according to the CRFT rules of

the last Section. For example, consider the graph of Fig. 7.14 which potentially generates a

Super-Critical graph of the form of Fig. 7.1. Applying the cutting rules shows this contains

only the cuts of Fig. 7.15, which are in fact of the form of Fig. 7.6, and so this graph is

rejected since it does not contribute to an amplitude with the necessary bound-state poles.

Following the above analysis through in detail for a general graph, we find that all

"desirable" graphs of the Super-Critical theory of IV above contribute to the relevant multiple

discontinuities. The intercept is shifted by the set of graphs shown in Fig. 7.16 and the

cancellation of Fig. 7.3 will take place if the reggeon states contain appropriately weighted

numbers of Pomerons as discussed above. None of the graphs of Fig. 7.1 contributes, or

graphs of the form Fig. 7.17, for example, which would produce similar problems if they did

contribute. The full reggeon graphs generating the Super-Critical graphs of Fig. 7.17 (and all

graphs with a related structure) are actually eliminated because the amplitudes that would

give the necessary Regge cut discontinuities in the reggeon channels do not have the right

(momentum-space) cut structure to contribute to the hexagraphs of Fig. 7.7. (Therefore

such graphs do not generate the Regge cuts that they appear to and so are essentially

meaningless.) We conclude that if we take the Super-Critical Pomeron to be defined by
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reggeon scattering, then a consistent set of graphs is generated corresponding to the "new

vacuum" of IV above. The vital point being that the actual source diagrams contributing

are only a subset of those naively generated by the potential (7.8).

The lowest order Super-Critical graphs generated by reggeon scattering are shown in

Fig. 7.18. Note that the graph of Fig. 7.19 is absent because the corresponding reggeon graph

has only the discontinuity structure of Fig. 7.6. This last graph has always been present in

our previous (unsuccessful) attempts at formulating the Super-Critical theory. There is no

immediate problem (from the RFT viewpoint) caused by the presence of graphs of this form,

but its absence follows straightforwardly from the present procedure. In fact the absence of

this graph is the key to understanding the reggeon unitarity, that is intermediate reggeon

state properties, of the Super-Critical theory. A problem we were never able to resolve

satisfactorily in our previous approaches.

The one-loop graphs of Fig. 7.18 at first sight give a two-Pomeron discontinuity of

the form illustrated in Fig. 7.20 with a new triple Pomeron vertex

which therefore vanishes at zero transverse momentum. However, the unitarity product of

Fig. 7.20 will include a "cross-product" of the form generated by Fig. 7.19 which is absent

from Fig. 7.IS. Therefore, this contribution must be subtracted from Fig. 7.20. But Fig. 7.19

can be written directly in the form

[E - A»(*)] / <rk 7 r-f H ; 7 ry (7.13)
' '"(k2)A((k-q)^[E-A(k2)-A({k-g)^] K '

which is exactly the contribution to the Pomeron propagator of a two vector Regge pole state

with propagator

The second factor is the particle-pole which is the small A approximation to the "signature

factor" [sin | A ] - 1 associated with an odd-signature reggeon in the discontinuity formula

(5.46). Furthermore, since we must subtract the discontinuity due to (7.13) and it already



has a negative sign, we must add a positive two vector contribution to the reggeon unitarity

equation. From (5.46) this is the correct sign for a two-reggeon cut contribution due to odd-

signature reggeons. The full one-loop reggeon unitarity equation can therefore be represented

as in Fig. 7.21.

If we consider arbitrary high-order graphs in the Super-Critical expansion, we also find

new one/many Pomeron vertices having the form illustrated in Fig. 8.22. Again not all of the

graphs necessary for reggeon unitarity, involving only Pomeron intermediate states, will be

generated. It will therefore be necessary to add appropriate odd-signature contributions with

the propagator (7.14). Although we have not demonstrated that this can be done completely

consistently, to all orders, there are no obvious problems. (It is clearly important that

only even numbers of odd-signature reggeons can contribute to an even-signature Pomeron

amplitude.) In effect all of the divergences of the theory in rapidity (due to as(0) > 1)

are absorbed into the momentum transfer dependent singularities of the vertices and the

signature factor poles of the odd-signature reggeon.

We conclude that the Super-Critical Pomeron is characterized by the existence of a

Pomeron condensate and the existence of a single odd-signature trajectory degenerate with

that of the Pomeron. The odd-signature trajectory produces a vector particle with a mass

given by

A(k2) = 0 => £2 = M2 = A/a ' (7.15)

Of course, if we wish to confirm that a candidate high-energy theory is in the Super-Critical

Pomeron phase we should also confirm the structure of the triple Pomeron vertex (7.12)

and the full structure of the vertices illustrated in Fig. 7.22. As we emphasized in the

Introduction the intercept of the Pomeron is again below one in the Super-Critical phase and

so as in the Sub-Critical phase the high-energy 5-Matrix is "trivial" in the sense discussed

in the Introduction—that is all cross-sections go asymptotically to zero. Note that the

analysis of Ref. 30 should be readily adaptable to show that the Critical Scaling Laws develop

consistently as the Critical Point is approached from either the Sub-Critical or the Super-

Critical Phase.

89



8. SUMMARY

We have provided a general basis for the development of multi-Regge theory and the

formulation of the Critical Pomeron as giving the only known non-trivial unitary high-energy

S-Matrix. We emphasised the solution of angular momentum plane unitarity but noted that

the Critical Pomeron has also been shown to satisfy all other derived unitarity constraints.

The Critical point arises as cross-sections are increased to the maximum consistent with

unitarity. Beyond this point the resultant high-energy divergences are absorbed into the

particle singularities associated with the vector particle which emerges in the Super-Critical

Phase. Therefore we have shown, in the abstract and without any reference to gauge theories,

that when a theory (with equal particle and anti-particle cross-sections) is pushed beyond

the unitarity limit the result is the "deconfinement" of a Reggeised vector particle. Our

ultimate aim is to be able to claim that we have directly discovered the gluon and QCD

within the Pomeron by studying the structure of the interactions of this vector particle. We

shall have made some progress towards this goal by the end of Part 2.

It is clear that the abstract and general nature of the formalism develo^d in this

article makes it very difficult to tie up the loose ends that would be involved in any claim

for uniqueness of the Critical Pomeron. However, although we shall not attempt a proof,

we do believe that Regge behavior is intimately correlated with the analyticity properties of

many-particle amplitudes and that Reggeon Unitarity requires that high-energy behavior be

formulated in terms of interacting Regge poles if it is to be consistent with cross-channel uni-

tarity. That the Pomeron must be a single Regge pole is ultimately understood25 in the con-

text of QCD as being a requirement of the factorisation properties needed for "Wee Partons"

when the parton model is combined with a confining and symmetry-breaking vacuum. Since

this combination is probably necessary to get a theory which is both ultra-violet finite and

unitary, we believe the Critical Pomeron is the unique possibility for a strongly-interacting,

confining, theory of the kind that we anticipate is given by QCD. There may, however, be

a more complicated high-energy S-Matrix which involves some partial deconfinement in the

form of the photon (and the weak-interaction vector bosons). In relation to this we suspect

that a unitary symmetry any bigger than SU(3) is necessarily broken spontaneously because

of (high-energy) unitarity and that a generalised version of the Super-Critical Pomeron may

describe the symmetry-breaking.
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FIGURE CAPTIONS

Fig. 2.1 A General Toller Diagram.

Fig. 2.2 Examples of Toller diagrams generating Planar Toller diagrams.

Fig. 2.3 The generation of hexagraph vertices.

Fig. 2.4 A planar Toller diagram generating two hexagraphs.

Fig. 2.5 The thirty-two hexagraphs generated by the eight Toller diagrams of Fig. 2.2(a).

Fig. 2.6 Twisting a hexagraph.

Fig. 3.1 The integration contour for (3.2).

Fig. 3.2 Branch-points emerging from the unphysical side of normal thresholds.

Fig. 3.3 "Infinitesimal" analyticity domains surrounding the normal threshold branch cuts.

Fig. 3.4 A 2-4 amplitude with a "bad" boundary-value.

Fig. 3.5 An allowable cut (discontinuity) through a hexagraph.

Fig. 4.1 The contour C for (4.3).

Fig. 4.2 A T-graph.

Fig. 4.3 A Z)-graph.

Fig. 4.4 A V-graph.

Fig. 4.5 Cut-plane analyticity in the u-plane.

Fig. 4.6 A hexagraph containing a single V-graph.

Fig. 4.7 The two hexagraphs joined by the V-graph in Fig. 4.6.

Fig. 4.8 A single T-graph with J9-graph structures attached.

Fig. 4.9 Allowable cuts of the hexagraphs of Fig. 2.5 and the conjugate Toller diagrams.
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Fig. 4.10 Angular variables and corresponding angular momenta and helicities for a hexagraph.

Fig. 4.11 The elastic-scattering discontinuity in a hexagraph containing a four-particle ampli-

tude.

Fig. 5.1 Cutting a Toller diagram T to give Toller diagrams Ti and TR.

Fig. 5.2 The product hexagraph H obtained from hexagraphs HL and HR.

Fig. 5.3 The t>£-plane.

Fig. 5.4 Distortion of the ^-integration region as z —* oo.

Fig. 5.5 A Toller diagram Ti for the internal state i.

Fig. 5.6 Cutting a Toller diagram T to give Ti and TR for a multiparticle state with Toller

diagram T,-.

Fig. 5.7 A hexagraph for T, which generates a Regge cut.

Fig. 5.S Examples of distinct internal hexagraphs for TL and TR.

Fig. 5.9 Notation for a particular phase-space hexagraph.

Fig. 6.1 The accumulation of multi-Pomeron cuts when ap(0) = 1.

Fig. 6.2 An elastic scattering amplitude as a sum of contributions from all possible Pomeron

Green's functions.

Fig. 6.3 Reggeon Unitarity for Pomerons.

Fig. 6.4 Pomeron interaction vertices.

Fig. 6.5 The E-plane integration contour.

Fig. 6.6 Pomeron graphs to which a renormalization group transformation is applied.

Fig. 6.7 The infra-red fixed-point in the e-expansion.

Fig. 6.8 Comparison of the scaling function for the diffraction peak with ISR data.

Fig. 6.9 Pomeron interaction vertices as hexagraph vertices.

Fig. 6.10 The hexagraph loop expansion for elastic scattering.
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Fig. 6.11 Intermediate states are each represented by a propagator I\- of the form of (6.59).

Fig. 6.12 Ihe production process is uniformly spread on the rapidity axis.

Fig. 6.13 Elastic scattering, as the shadow of the production process, is a Pomeron Regge pole.

Fig. 6.14 The production process for events with twice the average multiplicity.

Fig. 6.15 Varying multiplicity densities on the rapidity axis generate higher-order Pomeron

graphs.

Fig. 6.16 Uncut Pomerons correspond to absorption of the basic production process.

Fig. 6.17 A further cut allowed in hexagraph loops.

Fig. 6.18 The multiplicity distribution for aff(O) < 1.

Fig. 7.1 Diagrams involving vacuum production but no triple Pomeron coupling.

Fig. 7.2 The first approximation to the modification of hadron reggeons as the Pomeron be-

comes Super-Critical.

Fig. 7.3 The cancellation of vacuum production at a "classical" stationary point.

Fig. 7.4 The scattering of Super-Critical hadron reggeons.

Fig. 7.5 Five-fold discontinuities consistent with particle poles in each reggion leg.

Fig. 7.6 Five-fold discontinuities inconsistent with particle poies in each reggeon leg.

Fig. 7.7 The form of hexagraphs which contribute to Regge Cut discontinuities in both the

Pomeron and Reggeon channels of Fig. 7.4.

Fig. 7.8 Multi-channel Pomeron and Reggeon-Pomeron Interactions described by "multiplica-

tive" Reggeon Field Theory rules.

Fig. 7.9 An example of a Pomeron graph with different channels connected.

Fig. 7.10 Hexagraphs corresponding to the component graphs of Fig. 7.9.

Fig. 7.11 The same set of cuts in two distinct hexagraphs.

Fig. 7.12 A graph that contributes to the Super-Critical Theory.
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Fig. 7.13 A Super-Critical Pomeron graph.

Fig. 7.14 Generation of a Super-Critical graph of the form of Fig. 7.1.

Fig. 7.15 Five-fold discontinuity of the graph of Fig. 7.14.

Fig. 7.16 Generation of the Super-Critical graphs which shift the intercept.

Fig. 7.17 Further graphs which do not contribute to the Super-Critical theory.

Fig. 7.18 The perturbative expansion of the Super-Critical Pomeron propagator.

Fig. 7.19 Another graph with the wrong discontinuity structure.

Fig. 7.20 Reggeon unitarity with the new vertices included.

Fig. 7.21 The full reggeon unitarity equation involving the Super-Critical odd-signature partner

to the Pomeron.

Fig. 7.22 The structure of higher-order vertices in the Super-Critical expansion.
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