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ABSTRACT

Periodic solutiona of the Hamilton-Jacobi equatior determine invariant tori
in phase space. The Fourier spectrum of a tarus with respect to angular co-
ordinates gives useful information about nonlinear resonances and their po-
tential for causing instabilities. We deacribe a method to solve the Hamilton-
Jacobi equation for an arbitrary accelerator lattice. The method warks with
Fourier modes of the gen:rating function, and imposes periodicity in the
machine azimuth by a shooting method. We give examples leading to three-
dimensional plots in a surface of section. It is expected that the technique
will be useful in lattice optimization.

1. INTRODUCTION

In earlier papers, we proposed direct numerical solution of the Hamilton—Jacobi equation as a mathod
to study particle beam dynamics [1-4]. There are two aspects of the proposal. First, one can compute
invariant surfaces in phase space (tori) by finding solutions that are periodic in s, the arc length along a
reference trajectory {3]. This is in the spirit of canonical perturbation theory, but is more accurate and
simpler to implement, especially at large amplitudes. Second, one can use nonperiodic solutions of the
Hamilton-Jacobi equation to construct symplectic mapa for long-term particle tracking [3,4].

In Ref. (3], we found periodic solutions for accelerator lattices by formulating the Hamilton-Jacobi
equation as an integral equation. In the present paper, we introduce a more efficient technique for finding
perlodic solutions, based on an iterative shooting proceduze.

Other proposals for studying invariant surfaces for accelerators have been pursued in recent years.
Dragt et al. [5], Forest [6], and Forest, Berz and Irwin [7] have developed a perturbative algorithm
to extract normal forms from evolution maps. Guignard and Hegcl [B] have worked with successive
linearizations of the equations of motion in Legrangian form. Michelotti [9] has applied the Deprit
form of perturbation theory. Moshammer and Hagel [10} have implemented secular perturbation theory
applied to the equations of motion. It is difficult to compare efficacy of the various methods since they
have not all been implemented to the same degree, and comparable results on performance are not
readily available. The features of our method that we find appealing are generality, accuracy, large
region of convergence and simplicity of programming.

3. THE HAMILTONIAN
We write the Hamiltonian for two transverse degrees of freedom &s follows:

H(1,®,5) = 87(s) - 1+ f(a)V(L,®) | (2.1)

where 87! is a two-component vector formed from Twiss parameters,

- prie) = ( 172::1 )M A S T E R (2.2)
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The action and angle variables, I = (I1,1), ® = (&,¢3), are related to transverse momenta and
coordinates by {11]
w= ~ @A/AL foin b B con] (23)
2 = (246:(0))"* con i (2.4)

The function f(s) consists of a series of unit steps; it ia equal to 1 over the extent of sach nonlinear
magnet or skew quadrupole and zero elsewhere. For each multipcle, V ia a polynomial in the z,. Fora
sextupole,

V(IL,®) = = (2] -3r,2]) , (2.5)

LR

where S Is constant with dimensions (length)~%. For a skew quadrupole,

V{,®) = Mzyz; . (2.6)

Although the Hamiltonian as deacribed is not entizely general, our raethod dovs allow virtually any
function V (I, ®,s) in place of the second term of (2.1). We car account for Maxwellian fringe fields and

curvature effects. It is not necessary to expand ihe square root in the original relativistic form of the
Hamiltonian.

To account for departures from the design momenti:m, deviations from the off-momentum closed
orbit are used as canonical coordinates. To represint the: Hamiltonian, there are two poesible avenues,
which we call the “explicit” and “implicit” approaches. In the explicit scheme, we use the A functions
for the design orbit anl a dispersion function D(s) to represent the momentum depcndence of the
Hamiltonian explicitly, as in Eq. (¢.12) of Ref. [11]. This gives chromatic terms that arz quadratic in
the coordinstes, which can be treated as part of the perturbation. In the implicit scheme, we simply
use the Hamiltonian in its original form (2.1), but with a different closed reference orbit and different
B functions and multipole strengths for eacl; momentum. The closed orbits and lattice functions are
determined anew trom an auxiliary lattice program each time the momentum is changed. For che present
a:count, we cuppose that the implicit scheme io used.

3. HAMILTON-JACOBI EQUATION

To fiid invariant surfaces In phase space, we seek a canonical transformation (I, ®) — (J, @) such
that the transformed Hamiltonian H) is a function of J alone. For such a transformation, 8J/8s =
0 end 9% /88 = VH,(J), so that J is invuriant and % advances linearly with s, We obtair. the transfor-
mation from a generating function G(J,®,s) such that

1=J+Ga(J,8,s) , . (3.1)
¥ =0+G3(J. 8,9 , (3.2)
whee subscripts denote partial derivatives.

The Hamilton-Jacobi equation is the requirement that the new Hamiltonian H; indeed depend only
on J, . amely,

H(3 + Ga(3,8,5),8,5) + G.(J,®,3) = Hi(J) . (3.3)

.Once the appro riate periodic solution of this partial differential equation for G is known, the invariant
surface is given by (3.1) in explicit form. To represent the surface graphically, we can take a surface of
section at fixed s, and plot X(®, s) versus ®. The invariant J is a fixed parameter chosen at the start.



To find a solution of {3.3), our first step is to expand G in a Fourier series:
G(J,®,9) = Ze‘m'.h(J.s) . (3.4)
m

This is & natural step, since by (3.1) and (2.3, 2.4), the generator G must be periodic in ® with period
2x. Let us now substitute (3.4) in (3.3), choosing (2.1) to be the Hamiltonian. Next, take the inverse
Fourier transform of the resulting equation. We find [writing gm(a) for g (J, 3))

(5"; + im-ﬁ"(a)) gen(8)

14
= —!(a)(sz o/ d@e "™ ® V(] 4 Cg(®,0),8) (3.9)

+ (H(3) -3-57'(s)) 6o
where

Go(®.2) =Y imc™®g(a) . (3.6)

Since (3.6) has no term with m = 0, the set of equations (3.5, 3.6) is a closed syatem for determination
of the amplitudes gm(s), m # 0, which does not depend on the atill unknown function H;(J). In (3.5)
the presence of the action J, a fixed parameter to be chosen at the start, induces J-dependence of the
solution gpm.

We truncate the series (3.6), so that (3.5, 3.6) becomes a finite set of ordinary differential equations,
which may be integrated by a standard numerical algorithm. For the integration, it is convenient to
pass to the “interaction repregentation” by the change of variable

h(a) = ™ Plgn(s) (.7
W(s) = _o/ A7 (u)de . (3.8)
These variables obey, for m # 0,
a";—:‘ = —!(a)f—-:—z-% zurl‘“' V({3 +Ge(®,2),®) , 39)
Ge = Z:Bimc"""('-'('))h,.(a) . (3.10)
me

Here B is a finite set of modes. The property Ly, = h' , reduces the set of amplitudes that must be
considered. A suitable set of independent amplitudes is

’Mn.,n, v h—n.,ma ] "nu.o ’ "O.m:
(3.11)
1<mi< M;,i=1,2

The hyy are constant between magunets where f(s) = 0, so that the region of integration reduces to the
support of f(s).

The determination of H;(J) and go(s) is discussed at the end of Section 4.



4. PERIODICITY, CONTRACTIVE PROFAGATORS AND THE
SHOOTING METHOD

Let C denote the circumference of the reference trajectory. Since (3.1) expresses the invariant surface

I(®, s), and the points s and a+ C are physically identical, the generator & must be periodic in 5. Thus,
we must find solutions of (3.9, 3.10) such that

gm(0) = gm(C) . {4.1)

We enforce periodicity by a shooting algorithm, that is, by an iterative procedure in which we sequentially
adjust the initial value Ay, (D) = g (0) until A, (C) = ™ ¥(C)g,(C) natinfien

hm(C) = "™ hn(0) (4.2)

which ia equivalent to {4.1). Here » = ®(C)/2x is the unperturbed tune.

One requircment on an acceptable shooting algorithm is that it be certain to cor-erge when the
perturbation V ia sufficiently weak (and m,v) + may differs from an integer for all m;, m; in the mode
set chosen). This requirement is not met by a naive iteration

£%(0) — g9(c) = gM(0) -+ gM(C) =gW(O) - --- , (4.3)

where the arrow indicates one integration through the lattice. Here and in the following discussion, we

suppreaa the subscript m, letting § = {gm} or h = {hy,} stand for & vector with Fourier amplitudes as
components.

We form a shooting algorithm that will converge for small V by virtue of the contraction mapping
principle [12]. Let us recall the latter. In a finite-dimensional vector space, let S} eonsist of all vectors z
with |lz{| < b; S} is a complete metric space with metric d(z — y) = ||z — y||, where double bars denote
any vector norm. Suppose that an operator A, in general nonlinear, maps S} into itself

A=) <s (49)

for all z in S;. Suppose also that A is contractive, i.e.,

l1A(z) - AWl < allz—yll, O<a<1 , (4.5)

for all 2,y in S;. Then
z = Afz) (4.6)
has a unique solution in 8. Furthermore, that solution may be computed by iteration, beginning with

any point zj in Sy

Spr1 = AlZy) , P=0,1,2,... , ZaES),Fpz,p~00 . (4.7)

We wish to put the shooting problem in the form (4.6), so that it can be solved by iteration. The
unknown z will be h(0), the value of h at the beginning of the lattice.

We exploit the fact that the propagation operator U for h is small and contractive at small V. This
operator is defined by

U(h(0)) = b(C) - h(o) . (4.8)

To comg ate U(h(0)) one has to integrate the differential equation (3.9) through the lattice, taking h(0)
as initial value. It is clear that U(h(0)) vanishes as V — 0. Aleo, by considering the integral equation
equivalent to (3.9), one can show that U is contractive when dV/31 is sufficiently small [13]. Note that
V and 8V /AJ are simultaneously small in the limit of vanishing magnet strength.



We substitute the definition (4.7) in the periodicity condition (4.2) and rearrange to obtain

hal0) = rzzms—; Un(B(0)) (49)
which may be written as
h(0) = A(h(0)) {4.10)

Now if e3¥™¥ £ | for all mn € B, we can apply the contraction mapping theorem to (4.10) if the magnet
strengtha are sufficicntly small, For small strengths, A maps some set S into itself, and is contractive
on that set.

Note that the corresponding propagator for g, defined as g{C) — g(0), is not small and contractive

for weak magnets, owing to the term im- 87 'g in (3.5). An important step was to pass to the interaction
picture, to eliminate this term.

It is not surprising that the “small divisor,” e?"™¥ _ | appears in (4.9). Such divieors are intrinsic
to the problem of determining invariant tori. They make it impoesible to expand the mode get B without
limit; they become arbitrarily amall at large m, whatever the value of &, and spoil convergence of an
iterative solution. In order \o expand the mode set indefinitely, it is necessary to invoke a sequence of
canonical transformations rather than just one [2]. We find, however, that we can take B so large as
to get acceptably accurate results with one transiormation, provided that we do not work too close to
regions where invariant tori fail to exiat.

Having determined gm(s),m # 0, we can use (3.5) to determine the new Hamiltonian H,({J). We
put m = 0 in (3.5) and integrate on s from 0 to C. The requirement go(0) = go(C) immediately gives a
formula for Hy(J). Inserting that expression for Hj(J), and integrating (3.5) for m = 0 from O to 5, we
obtain go(s). The initial value gy(0) is arbitrary; it corresponds to an arbitrary offset of @ with respect

to @ at s =0, as is seen from (3.2). Knowing H)(J), one can calculate the perturbed tune v, = VH;(J)
by numerical differentiation.

8. NUMERICAL METHOD

We wish to solve (4.9) for h(0). To find U(h(0)), we integrate the differential equations (3.9) over the
interval |0, C), with initial value h(0), using the fourth-order Runge-Kutta method. The sum in (3.10)
and the integral over & in (3.9) are evaluated by the Fast Fourler Transform (FFT). The @ integral is
first discretized with a number of mesh points for ®; at Jeast equal to 2 M;, where M; is the maximum
mode number defined in (3.11). Usually we take 2 M; mesh points for a first try, and 4 M; for refinement;
see Rel. [2], Section 5, for remarks on dizscretization error.

We find that g (s) has rather simple behavior as a function of s over the extent of one wagnet.
For instance, in the case of one transverse degree of freedom at moderate amplitudes, gm(s) is nearly a
quadratic function of s over the extent of a single sextupole, for each m. This implies that the number
of Runge-Kutta steps per magnet can be rather small. One or two steps {four or eight evaluations of the
right hand side in (3.9)] proved to be sufficient in good regions of phase space. As the dynamic aperture
is approached, and more Fourier modes are included, it is necessary to increase the number of steps.

To solve (4.9), we have used simple iteration, as in the contraction mapping theorem, taking as
zeroth iterate the result of lowest order perturbatioa theory. The iteration converges provided that the
invariant action J is not too large. At large J, we apply Newton’s method to solve (4.9), obtaining
convergence up to the dynamic aperture in cases studied to date. The Jacobian matrix required for
the multi-dimensional Newton method was approximated by calculating partial derivatives as divided
differences. That is, with

Fa(B(0)) = ben(0) — s Unm(B(0)) (51)
- we computed divided differences

F(h(0) + Ahe) - F(h(0))
- (5.2)




for some small scalar Ak. A succession of unit vectors e in the various coordinate directions produces
the full set of partial derivatives making up the Jacobian. Thie requires one integration through the
lattice for each e, and therefore is expensive for large problems.

6. EXAMPLES

We give results for one cell of the Berkeley Advanced Light Source {ALS). The ALS has very strong
scxtupoles, and therefore is a demanding case in which to test our method. The cell contains four

sextupoles, and has lattice parameters aa given in Table 1. The values stated are for s at the leading
edge of a magnet.

We first show results for motion in the horizontal plane only, The formalism described above was
transcribed for one degree of freedom. We plot 7{#) versus ¢/2x in the surface of section at s = 0. In each
plot, we show the invariant curve, obtained by solving (4.9), and also points obtained from single-particle
tracking. The points from iracking are all on a single trajectory, starting at the point (I, ) = (1(0),0)
on the invariant curve. Tracking was done by meana of a fourth-order explicit symplectic integrator (14].

Table 1. Berkeley ALS Cell.

2 (leading edge) sy azy Ya,y s As

5.775 14724 ~1.7791 2.4709 —~88.09 .20
10.6957 8.4007 8658

6.875 3.9837 2.2722 2.8191 115.615 .20
1.5798 4167 12217

9.325 3.1367 —1.8628 4.5996 115.615 .20
1.4428 —.2681 2.9279

10.425 2.2972 2.3448 4.8865 —88.09 .20
7.6031 —-7.0624 3.3945

Circumference C = 16.4, Tunes v; = 1.189735, vy = .68157T
5,6,C in meters; S in (meters)™®
Length of sextupole = As

Figure 1 shows the result of simple iterative solution of (4.9) at invariant action J =9-10~7 m.
This corresponds to maximum horizontal displacement at s = 0 of Tpax = 4.5 mm. The calculation was
done with 15 Fourier modes, 1 < |m| < 15, and two Runge-Kutta steps per magnet. The agreement of
invariant curve and tracking is very close. To check the agreement quantitatively, we took 600 points
(2}, 4}) from tracking, and compared them with the corresponding points (I(¢}),4f) on our computed
invariant curve. We formed the measure of error

(o Lo (#) - 1|
P HUTEN]]
and found ¢ = 4.4 -107%. Thia ia a demanding error test, since the normalizing divisor in (6.1) is formed

{rom distortions, i.e., departures from invariant action, rather than the invariant action itself. If the
denominator in {6.1) were replaced by 600 J, the value of ¢ would be considerably smaller.

To judge convergence of an iterative solution of {(4.9), we calculate the quantity
w+1) _ B (0) — nl)(a)||
’ RO (©2)

where |/h{| denotes the sum of the absolute values of the independent Fourier components of h. The
index p denotes the p* iterate, whether obtained in simple iteration or in Newton’s iteration.

(6.1)

L)



The run of Fig. 1 is for a value of J close to the largest that gives unambiguous convergence in the
solution of (4.9) by plain iteration. Consequently, the convergence as measured by r{?} was fairly slow:
we found r(®) = 7.6-104, r(1® = 7.7-10°%, +%) = 16.10°8, ... (%) = 39.10!', The time for 60
iterationa in douhle precinion was leaa than two minutes on a MicroVAX. The pattern of convergence
was in accord with expectations based on the contraction mapping principle, with o in (4.5) around 0.7.

The horizontal dynamic aperture of the ALS as determined by tracking is around 22 mm at s = 0.
To reach such large values, where the nonlinearities are very strong, we find it imperative to solve (4.9)
by Newton’s method. In Fig. 2 wa show results from = Newton iteration at J = 2.22 - 10-%, which
corresponds t0 Tma = 7.1 mm st s = O; this is roughly the aperture required for injection. The
calculation was done with 15 modes, and 12 Runge-Kutta ateps per magnet, the latter being much mere
than necessary. Agreement with tracking is still good, with ¢ = 5.2.107%, Convergence was rapid:
r) = 1.2.1078, #(?) = 4.2.10°1, #(® = 4.1.1071%, ¢(9) = 3.7.10-17, The computing time was about
6.5 minutes for two iterations; this could be divided by 3 if four Runge—Kutta stepa per magnet were
used, probably an adequate number.
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Figure 1. Figure 2.

In Fig. 3 we show a run very close to the dynamic aperture, with J = 2:10~% m and Tguy = 22.4 mm
at 8 = 0. Again, we take 15 modes and 12 Runge-Kutta steps per magnet. Agreement with tracking
is only fair; ¢ = 4.4 -10~2, Convergence ia still impressive: (1) = 1.8. 1073, v(3) = 1.8.10-4, ¢(® =
8.1-1079, r{8) = 2.2.10"1%. The 4% disagreement with tracking arises from taking too few modes. In
Fig. 4, we repeat the case of Fig. 8 but include 63 modes, again with 12 Runge—Kutta steps, and cbtain
¢ = 4.8 - 10~3. Convergence is slightly slower; r(*) = 7,7. 1013, #(5) = 9.7.10-17,
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(o] 0.4 0.8 (o] 0.4 08
. /27 . - $/2m sasras
Figure 3. Figure 4.



With |arge mode seta at large amplitudes, as in the case of Fig. 4, it is necessary to use relatively
many integration steps. For instance, the run of Fig. 4 failed to converge when we tried only five Runge-
Kults steps per magnet. At large amplitudes, the differential equations (3.9) appear to have a property
reminiscent of stiffness, the nllowable step size being determined by the high modes, even though they
play a minor role in the solution.

In Figs. 5 and 6 we show results for motion in two degrees of freedom. The phase space is now
five-dimensional (coordinates I, ¢1, I, $3,9). There are two invariante J1,J3 for sn invariant surface,
which is a three-torus. Taking a surface of section at a = 0, we see that the points (I}, 41, ¢3), or the
points (I3, ¢), ¢2), lie on a two-dimensional surface, which we may plot in three dimensions |1). In Figs. 5
and 6 we plot I /Jy snd I3/J,, respectively, each versus (¢1,¢3)/2x. Here 1 (2) denotes the horizontal
(vertieal) plane of motion.

Il/"'l

Iz/2

Figure 5. Figure 8.

The results shown are for J; = J3 = 5+ 10~7 m, and were obtained by plain iteration using Fourler
modes with jm| < 7 in each variable, and two Runge-Kutta steps per magnet. The agreement with
tracking is quite good in spite of the relatively amall mode set: & = 4.01- 10~4, e = 4.07-10~*. The
iteration gave r{P) decreasing slowly t0 3.7+ 10~ at p = 25; at larger p it began to increase. The 25
iterations required 25.5 minutes on the MicroVAX. Notice that the intersection of coordinate axes is at
0 in the plots; the departure of the surfaces from planarity is quite large.

In two degrees of freedom, the convergence is somewhat poorer than in one at comparable amplitudes.
Moreover, the use of Newton’s method is expensive in two degrees of freedom. We are studying ways
to reduce expense by modified Newton procedures. Another possibility is to avoid Newton's method by
making successive canonical transformations so as to reduce the magnitude of the perturbation, along
the lines suggested in Ref. [2]. This approach seems promising.

It goes without saying that all results in computation of invariant surfaces are strongly dependent on
tunes. We have used the tunesn of Table 1. Slightly different tunes could give better or poorer convergence
of our iterative method.

7. CONCLUSION

We have tested our method in a dificult example, and have found that it gives good accuracy
and a large region of convergence. Further efforts are needed to reduce computation expense at large
amplitudes in strongly nonlinear lattices, especially in two degrees of freedom. There are good prospects
for improvements through modified Newton methods or successive canonical transforms.
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