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ABSTRACT 
Periodic solutions of the Hamilton-Jacobi equation determine invariant tori 
in phase space. The Fourier spectrum of a torus with respect to angular co­
ordinates gives useful information about nonlinear resonances and their po­
tential for causing instabilities. We describe a method to solve the Hamilton-
Jacobi equation for an arbitrary accelerator lattice. The method works with 
Fourier modes of the gen rating function, and imposes periodicity in the 
machine azimuth by a shooting method. We give examples leading to three-
dimensional plots in a surface of section. It is expected that the technique 
will be useful in lattice optimization. 

1. INTRODUCTION 
In earlier papers, we proposed direct numerical solution of the Hamilton-Jacobi equation as a method 

to study particle beam dynamics [1-4]. There are two aspects of the proposal. First, one can compute 
invariant surfaces m phase space (tori) by finding solutions that are periodic in s, the arc length along a 
reference trajectory [3], This is in the spirit of canonical perturbation theory, but is more accurate and 
simpler to implement, especially at large amplitudes. Second, one can use nonperiodic solutions of the 
Hamilton-Jacobi equation to construct symplectic maps for long-term particle tracking [3,4]. 

In Ref. [3), we found periodic solutions for accelerator lattices by formulating the Hamilton-Jacobi 
equation as an integral equation. In the present paper, we introduce a more efficient technique for finding 
periodic solutions, based on an iterative shooting procedure. 

Other proposals for studying invariant surfaces for accelerators have been pursued in recent years. 
Dragt, et al. [5], Forest [6], and Forest, Berz and Irwin [7] have developed a perturbative algorithm 
to extract normal forms from evolution maps. Guignard and Hegel [B] have worked with successive 
linearizations of the equations of motion in Lcgrangian form. Michelotti [9] has applied the Deprit 
form of perturbation theory. Moshammer and Hagel [10] have implemented secular perturbation theory 
applied to the equations of motion. It is difficult to compare efficacy of the various methods since they 
have not all been implemented to the same degree, and comparable results on performance are not 
readily available. The features of our method that we find appealing are generality, accuracy, large 
region of convergence and simplicity of programming. 

3 . THE HAMILTONIAN 

We write the Hamiltonlan for two transverse degrees of freedom &s follows: 

H ( I , » , . ) = f l - , W - l + /(«)V(I 1») , (2.1) 

where / 3 - 1 is a two-component vector formed from Twiss parameters, 
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The action and angle variables, I = (/i,/>), • = (tfi.^a), are related to transverse momenta and 
coordinates by | l l] 

H-WAW)1"^*-^"*] . (2.3) 
x i =(2/ < f t (a) ) 1 / 1 coa«\ . (2.4) 

The function /(«) consists of a series of unit steps; it is equal to 1 over the extent of each nonlinear 
magnet or skew quadrupole and zero elsewhere. For each multipcle, V is a polynomial in the X{. For a 
sextupole, 

» • ( ! . • ) - f ( * ! - 3 x 1 « 5 ) , (2.5) 

where 5 is constant with dimensions (length)"'. For a skew quadrupole, 

V j I , » ) = M i t i l . (2.S) 

Although the Hamiltonian aa described is not entirely general, our method docs allow virtually any 
function V(I, w,a) in place of the second term of (2.1V We can account for Maxwellian fringe fields and 
curvature effects. It is not necessary to expand the square root in the original retativistir form of the 
Hamiltonian. 

To account for departures from the design momentum, deviations from the off-oiomenium closed 
orbit are used as canonical coordinates. To represent the Hamtltonian, there are two possible avenues, 
which we call the "explicit" and "implicit" approaches. In the explicit scheme, we use the 0 functions 
for the design orbit anJ a dispersion function D{a) to represent the momentum dependence of the 
Hamiltonian explicitly, ss in Eq. (i.12) of Ref. [11]. This gives chromatic terms that are quadratic in 
the coordinates, which can be treated as part of the perturbation. In the implicit schtme, we simply 
use the Hamiltonian in its original form (2.1), but with a different dosed reference orbit and different 
/J functions and multipole strengths for each momentum. The closed orbits and lattice functions are 
determined anew from an auxiliary lattice program each time the momentum is changed. For the present 
a xount, we suppose that the implicit scheme io used. 

3 . HAMILTON-JACOBI EQUATION 
To ftid invariant surfaces In phase space, we seek a canonical transformation (I, • ) -» (J, 9) such 

that the transformed Hamiltonian Hi us a. function of J alone. For such a transformation, 03/ds = 
0 and dV/ds = VHi(J), so that I is invariant and 9 advances linearly with a. We obtain, the transfor­
mation from a generating function G(J,#,a) such that 

I = J + G # (J ,» ,a ) , (3.1) 
• = # + Gj(J,»,a) , (3.2) 

where subscripts denote partial derivative*. 
The Hamilton-Jacobi equation is the requirement that the new Hamiltonian Hi indeed depend only 

on J, ..amefy, 

tf{J + G # ( J , » , a ) , » , « ) + G . ( J , « M = fl,(J) . (3.3) 

Once the appropriate periodic solution of this partial differential equation Tor G is known, the invariant 
surface is given by (3.1) in explicit form. To represent the Burface graphically, we can take a surface of 
section at fixed s, and plot !(*,«) versus ». The invariant 3 is a fixed parameter chosen at the start. 
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To find a solution of (3.3), our first step is to expand G in a Fourier Beries: 

C(J,*,*) = £ V m - B m ( J , . ) . (3.4) 
m 

This is a natural step, since by (3.1) and (2.3, 2.4), the generator G must be periodic in • with period 
2JT. Let us now substitute (3.4) in (3.3), choosing (2.1) to be the Hamiltonian. Next, take the inverse 
Fourier transform of the resulting equation. We find [writing am(a) for 9m(J,s)] 

= ~f{t)(27)5 / * • - * - • VP + G»(».«) .») ( 3 5 ) 

0 

+ ( i r i ( j ) - j - / r , W)«»o 

whore 
G.(»,«) = £ \ m e , m •»„(«) . (3.6) 

Since (3.6) has no term with m = 0, the set of equations (3.S, 3.6) is a closed system for determination 
of the amplitudes 0m(<O>m T4 0> which does not depend on the still unknown function H\(3). In (3.5) 
the presence of the action J, a fixed parameter to be chosen at the start, induces J-dependence of the 
solution gm. 

We truncate the series (3.6), so that (3.5, 3.6) becomes a finite set of ordinary differential equations, 
which may be integrated by a standard numerical algorithm. For the integration, it is convenient to 
pass to the "interaction representation" by the change of variable 

fcm(-)=«*n*(*)ftn(») , (3.7) 

9(s) = ffi~l(u)du . (3.8) 
0 

These variables obey, for m / 0, 

^ i = " / w S W ^ / ' l * e " ™ " v ( J + G * ( * , ' ) ' * ) ' ( 3 9 ) 

o 

G# = £ line*" <•-*<•»»„(«) . (3.10) 
DIES 

Here B is a finite set of modes. The property / i m = h'_m reduces the set of amplitudes that must be 
considered. A suitable set of independent amplitudes is 

»tni,m3 * »-mi,mi , hmifl , no,fiii 
(3.11) 

1 < mi< Mi , •'= 1,2 . 

The h m are constant between magnets where /(a) = 0, so that the region of integration reduces to the 
.support of /(*). 

The determination of Hi (J) and ffo(s) is discussed at the end of Section 4. 



4. PERIODICITY, CONTRACTIVE PROPAGATORS AND THE 
SHOOTING METHOD 
Let C denote the circumference of the reference trajectory. Since (3.1) expresses the invariant surface 

1(4, a), and the points a and a + C ait physically identical, the generator C must be periodic in a. Thus, 
we must find solutions of (3.9, 3.10) such that 

8m(0) = «m(C) . (4.1) 

We enforce periodicity by a shooting algorithm, that is, by an iterative procedure in which we sequentially 
adjust the initial value h m (0) = j m ( 0 ) until fcm(C) = eim •<< 7>om(C) satis6es 

hm{C) = «**• "Am(0) , (4.2) 

which ia equivalent to (4.1). Here V = 9(C)/2x is the unperturbed tune. 
One requirement on an acceptable shooting algorithm ia that it be certain to cor erge when the 

perturbation V is suiiiciently weak (and m\V\ + m 2 fj differs from an integer for all mi.mj in the mode 
set chosen). This requirement is not met by a naive iteration 

gW(0)-*gC)(C) = g ( " ( 0 ) - . K < , ) ( c ) = g W ( 0 ) - . . . , (4.3) 

where the arrow indicates one integration through the lattice. Here and in the following discussion, we 
suppress the subscript m, letting g = {flm} or h = { h m } stand for a vector with Fourier amplitudes as 
components. 

We form a shooting algorithm that will converge for Bmall V by virtue of the contraction mapping 
principle [12]. Let us recall the latter. In a finite-dimensional vector space, let 5j consist of all vectors z 
with | | i | | <b\ ,St is a complete metric space with metric d(x -y) = \\x - u||, where double bars denote 
any vector norm. Suppose that an operator A, in general nonlinear, maps Sj into itself 

PMII<* . («) 
for all x in Sb. Suppose also that A is contractive, i.e., 

IW*)-*WII<«ll*-irll. ° < « < i . (*-5) 
for all i , v in Sj. Then 

x = A(z) (4.6) 

has a unique solution in Sj. Furthermore, that solution may be computed by iteration, beginning with 
any point xo in Sj: 

*s+i = A(xt) , p = 0,1,2, . . . , x o e S j . x , - » x , p - » o o . (4.7) 

We wish to put the shooting problem in the form (4.6), so that it can be solved by iteration. The 
unknown x will be b(0), the value of h at the beginning of the lattice. 

We exploit the fact that the propagation operator V for h is small and contractive at small V. This 
operator is defined by 

l/(h(0)) = h(C) - h(0) . (4.8) 

To connate C/(h(0)) one has to integrate the differential equation (3.9) through the lattice, talcing h(0) 
as initial value. It is dear that f/(h(0)) vanishes as V —» 0. Also, by considering the integral equation 
equivalent to (3.9), one can show that V is contractive when dV/dl is sufficiently small [13]. Note that 
V and dVjdl are simultaneously small in the limit of vanishing magnet strength. 

4 



We substitute the definition (4.7) in the periodicity condition (4.2) and rearrange to obtain 

fc-(0) = - K H . l - 1 y-(h(0)) , (4.9, 

which may be written as 
h(0) = A(h(0)) . H .ID) 

Now if e>»'™ * ^ 1 for all m € B, we can apply the contraction mapping theorem to (4.10) if the magnet 
strengths are sufficiently small. For small strengths, A maps some set S^ into itself, and is contractive 
on that set. 

Note that the corresponding propagator for g, defined as g[C) - g(0), is not small and contractive 
for weak magnets, owing to the term i n v / J - l g in (3.S). An important step was to p<um to the interaction 
picture, to eliminate this term. 

It is not surprising that the "small divisor," eUim* - 1, appears in (4.9). Such divisors are intrinsic 
to the problem of determining invariant tori. They make it impossible to expand the mode set B without 
limit-, they become arbitrarily small at large m, whatever the value of I/, and spoil convergence of an 
iterative solution. In order to expand the mode set indefinitely, it is necessary to invoke a sequence of 
canonical transformations rather than just one |2].We find, however, that we can take B so large as 
to get acceptably accurate results with one transformation, provided that we do not work too close to 
regions where invariant tori fail to exist. 

Having determined 9m(«)im ^ 0, we can use (3.5) to determine the new Hamiltonian Mi (J). We 
put m = 0 in (3.5) and integrate on a from 0 to C The requirement fo(0) = go(C) immediately gives a 
formula for Hi(J). Inserting that expression for Hi (J), and integrating (3.5) for no - 0 from 0 to a, we 
obtain ffo(s). The initial value 0D(O) is arbitrary; it corresponds to an arbitrary offset of 9 with respect 
to w at t — 0, as is seen from (3.2). Knowing H\{3), one can calculate the perturbed tune vl = VH\{J) 
by numerical differentiation. 

5. NUMERICAL METHOD 
We wish to solve (4.0) for h(0). To find f/(h(0)), we integrate the differential equations (3.9) over the 

interval \0,C], with initial value h(0), using the fourth-order Runge-Kutta method. The sum in (3.10) 
and the integral over * in (3.9) are evaluated by the Fast Fourier Transform (FFT). The 9 integral is 
first discretized with a number of mesh points for •,- at least equal to 2 M,-, where Mj is the maximum 
mode number defined in (3.11). Usually we take 2 Afj mesh points for a first try, and 4 Af, for refinement; 
see Ref. [2], Section 5, for remarks on discretization error. 

We find that gm[a) has rather simple behavior as a function of a over the extent of one magnet. 
For instance, in the case of one transverse degree of freedom at moderate amplitudes, gm[s) is nearly a 
quadratic function of a over the extent of a single sextupole, for each m. ThiB implies that the number 
of Runge-Kutta steps per magnet can be rather small. One or two steps [four or eight evaluations of the 
right hand side in (3.9)] proved to be sufficient in good regions of phase space. As the dynamic aperture 
is approached, and more Fourier modes are included, it is necessary .to increase the number of steps. 

To solve (4-9), we have used simple iteration, as in the contraction mapping theorem, taking as 
zeroth iterate the result of lowest order perturbation theory. The iteration converges provided that the 
invariant action J is not too large. At large J, we apply Newton's method to solve (4.9), obtaining 
convergence up to the dynamic aperture in cases studied to date. The Jacobian matrix required for 
the multi-dimensional Newton method was approximated by calculating partial derivatives as divided 
differences. That is, with 

FD,(h(0)) = h m ( 0 ) - ^ J ; 7 - r T l / 1 1 1 ( h ( 0 ) ) (5.1) 

we computed divided differences 
F(h(0) + Afte) - F(h(0)) 
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for some small scalar Ah. A succession of unit vectors e in the various coordinate directions produces 
the full set of partial derivatives making up the Jacobian. This requires one integration through the 
lattice for each e, and therefore is expensive for large problems. 

6. EXAMPLES 
We give results for one cell of the Berkeley Advanced Light Source (ALS). The ALS has very strong 

scxtupoles, and therefore is a demanding case in which to test our method. The cell contains four 
sextupoles, and has lattice parameters as given in Table 1. The values stated are for a at the leading 
edge of a magnet. 

We first show results for motion in the horizontal plane only. The formalism described above was 
transcribed for one degree of freedom. We plot 1(4>) versus (6/2* in the surface of section at s - 0. In each 
plot, we show the invariant curve, obtained by solving (4.0), and also points obtained from single-particle 
tracking. The points from tracking are all on a single trajectory, starting at the point (I,<j>) - (7(0),0) 
on the invariant curve. Tracking was done by means of a fourth-order explicit symplectic integrator |14|. 

Table 1 . Berkeley ALS Cell. 

a (leading edge) A* «*.» *«.» S As 

5.775 1.4724 -1.7791 2.4799 -88.09 .20 

10.6957 8.4007 .8658 

6.875 3.9837 2.2722 2.8191 115.615 .20 

1.5798 .4167 1.2217 

9.325 3.1367 -1.9628 4.5996 115.615 .20 

1.4428 -.2681 2.9279 

10.425 2.2972 2.3448 4.8865 -88.09 .20 

7.6031 | -7.0624 3.3945 

Circumference C - 16.4, Tunes vt = 1.189735, v¥ = .681577 
t,0,C in meters; S in (meters)-

Length of sextupole = As 

Figure 1 shows the result of simple iterative solution of (4.9) at invariant action J = 9 • 10~T m. 
This corresponds to maximum horizontal displacement at a = 0 of z m a x = 4.5 mm. The calculation was 
done with 15 Fourier modes, 1 < |m| < 15, and two Runge-Kutta steps per magnet. The agreement of 
invariant curve and tracking is very close. To check the agreement quantitatively, we took 600 points 
(/;,<£') from tracking, and compared them with the corresponding points (/(<£{•),$) on our computed 
invariant curve. We formed the measure of error 

t=mmizjh, (6.i) 

and found i = 4.4 • 1 0 - s . This IB a demanding error test, since the normalizing divisor in (6.1) is formed 
from distortions, i.e., departures from invariant action, rather than the invariant action itself. If the 
denominator in (6.1) were replaced by 600 J, the value of i would be considerably Bmaller. 

To judge convergence of an iterative solution of (4.9), we calculate the quantity 

r ( , + i ) _ ||b>+0(0)-l»M(0)|| 
||taW(0)|| 

(6.2) 

where ||h|[ denotes the sum of the absolute values of the independent Fourier components of h. The 
index p denotes the p , h iterate, whether obtained in simple iteration or in Newton's iteration. 
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The run of Fig. 1 is for a value of J close to the largest that gives unambiguous convergence in the 
solution of (4.S) 07 plain iteration. Consequently, the convergence as measured by rW was fairly slow: 
we found r<«> = 7.0 l<r 4 , r<,0> = 7.7 - M r 1 , r(») = l.e • 10"*, • • • r<«°) = 3.9 1 0 1 1 . The time for 60 
iterations in double precision was hjaa than two minutes on a MicroVAX. The pattern of convergence 
was in accord with expectations baaed on the contraction mapping principle, with a in (4.5) around 0.7. 

The horizontal dynamic aperture of the ALS as determined by tracking is around 22 mm at • = 0. 
To reach such large values, where the nonlinearities are very strong, we find it imperative to solve (4.9) 
by Newton's method. In Fig. 2 wa show results from a Newton iteration at J = 2.22 • 10"*, which 
corresponds to x m a I = 7.1 mm at s — 0; this is roughly the aperture required for injection. The 
calculation was done with 15 modes, and 12 Runge-Kutta steps per magnet, the latter being much more 
than necessary. Agreement with tracking is still good, with e — 5.2 • 10~ 5. Convergence was rapid: 
rl» = 1.2 • 10" 8, A1) = 4.2 • lO" 1 1, r(5) = 4.1 • 10" w , r(«) = 3.7 • 10-". The computing time waa about 
6.5 minutes for two iterations; this could be divided by 3 if four Runge-Kutta steps per magnet were 
used, probably an adequate number. 

9.50 

, 9.25 

'9.00 

^B.75 

8.50 

/ V 

Figure 1. 

0.4 0.8 
$/2tr 

Figure 2. 

In Fig. 3 we Bhow a run very close to the dynamic aperture, with J = 2 • 1 0 - 5 m and x m „ = 22.4 mm 
at a = 0. Again, we take 15 mode* and 12 Runge-Kutta steps per magnet. Agreement with tracking 
1B only fair; « = 4.4 • 10"'. Convergence is still impressive: r-W = 1.8 • 10 - ' , rW = 1.8 • 1 0 - 4 , rW = 
8.1 • 1 0 - B , rM = 2.2 • 10~ 1 8 . The 4% disagreement with tracking arises from taking too few modes. In 
Fig. 4, we repeat the case of Fig. 3 but Include 63 modes, again with 12 Runge-Kutta steps, and obtain 
t = 4.8 • 1 0 _ a . Convergence is slightly slower r(«) = 7.7 • 10"", r<B) = 9.7 • 10" 1 7. 
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With large mode sets at large amplitudes, as in the case of Fig. 4, It la necessary to use relatively 
many integration steps. For instance, the run of Fig. 4 failed to converge when we tried only five Runge-
Kutta steps per magnet. At large amplitudes, the differential equations (3.9) appear to have a property 
reminiscent of stiffness, the allowable step slse being determined by the high modes, even though they 
play a minor role in the solution. 

In Figs. 5 and 0 we show results for motion in two degrees of freedom. The phase space is now 
five-dimensional (coordinates / i , & ,/] ,&,«)• There are two invariants Ji,Jt for an invariant surface, 
which is a three-torus. Taking a surface of section at a = 0, we see that the points ( / I . ^ I . ^ J ) , or the 
points [h,4i>fa), lie on a two-dimensional surface, which we may plot in three dimensions | l ] . In Figs. 5 
and 6 we plot li/Ji and h/Ji, respectively, each versus (sli,fVi)/2*. Here 1 (2) denotes the horizontal 
(vertical) plane of motion. 

J, = J ? = 5 • 10 Ji< J 2 = 5 - i a 7 

Figure 5. Figure 6. 

The results shown are for Ji = Jj = S- 10~T m, and were obtained by plain iteration using Fourier 
modes with )m| < 7 in each variable, and two Runge-Kutta steps per magnet. The agreement with 
tracking is quite good in spite of the relatively small mode set: £i = 4.01 • 1 0 - 4 , ei = 4.07 • 10~ 4. The 
iteration gave rM decreasing slowly to 3.7 • 10~ s at p = 25; at larger p it began to increase. The 25 
iterations required 25.5 minutes on the Micro VAX. Notice that the intersection of coordinate axes is at 
0 in the plots; the departure of the surfaces from planarity is quite large. 

In two degrees of freedom, the convergence is somewhat poorer than in one at comparable amplitudes. 
Moreover, the use of Newton's method is expensive in two degrees of freedom. We are studying ways 
to reduce expense by modified Newton procedures. Another possibility is to avoid Newton's method by 
making successive canonical transformations so as to reduce the magnitude of the perturbation, along 
the lines suggested in Ref. [2]. This approach seems promising. 

It goes without saying that all results in computation of invariant surfaces are strongly dependent on 
tunes. We have used the tunes of Table 1. Slightly different tunes could give better or poorer convergence 
of our iterative method. 

T. CONCLUSION 
We have tested our method in a difficult example, and have found that it gives good accuracy 

and a large region of convergence. Further efforts are needed to reduce computation expense at large 
amplitudes in strongly nonlinear lattices, especially in two degrees of freedom. There are good prospects 
for improvements through modified Newton methods or successive canonical transforms. 
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