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ABSTRACT

Fokker-Planck-type equations occur quite often in different domains of physics and
applied mathematics as various realizations of a generic degenerate parabolic equation.
Even in the simplest situations, the analysis of the general Fokker-Planck equation is
difficult and has been mostly confined to the linear case, where partial results have been
obtained in showing existence, uniqueness, regularity, and completeness of eigenfunctions.
In the present paper, we present a canonical integral approach that solves, in principle, the
most general linear or nonlinear Fokker-Planck-type equations. The method is formal in
the sense that it does not provide per se the means to prove existence and uniqueness of the
solution in an abstract setting. The formalism is based on the Green’s functions and their
natural extensions to nonlinear systems and allows one to compute the solution (assumed
to exist uniquely), by using a canonical iterative scheme. We present several applications
of the integral approach in connection with previously developed methods and results.
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1. INTRODUCTION

This paper is devoted to the presentation of an integral approach for solving Fokker-
Planck-type equations.! The general Fokker-Planck equation is a degenerate parabolic
equation of the form

ug + Z (biw)z; — Z (@ijuy; )v; + Z (ait)y; —au— f=0 (1.1)

where the probability distribution function v € R4 depends on position z € 2; C R™,
velocity v € 2, C R™, m < n, (a;;) is a strictly positive definite matrix, and time ¢ > 0.
To specify the solutions of Eq. (1.1), additional restrictions have to be imposed in the form
of: (i) initial condition at ¢ = 0, and (ii) boundary conditions at the boundaries 92, and
O, of the domains ©; and 2, respectively.

Initial-boundary value problems involving Fokker-Planck-type equations occur
frequently in reaction-diffusion systems, ecology and biology, electron scattering, kinetic
theory, aerosol dynamics, and various stochastic phenomena. The corresponding problems
may be linear or nonlinear, stationary or time-dependent, scalar or vector (multi-
component). In the linear case, the functions b;, a;j,ai,a, and f are independent of w.
In the stationary case, none of the functions appearing in the equation depend on time.
In the vector version, the distribution u has more than one component, u € (R4)*.

Several examples are listed below forn =1,m =1,k =1.

1. Burgers’ equation:
U+ UUy — Uz = 0 (1.2)

2. Homogeneous Fokker-Planck equation:

U+ VUy — Uyy = 0 (1.3)

3. Nonhomogeneous time-dependent Fokker-Planck equations:

Up+ VUz + VUy — Uy =0, (1.4)
Ut + VU, — Uyy =0 (1.5)



4. Nonhomogeneous stationary Fokker-Planck equations:

VUg + VUy — Uyy —au =0, (1.6)

VUy — Uyy = 0. (1.7)

Even in the linear case, the rigorous analysis of the Fokker-Planck equation is difficult
and far from being complete. Partial results have been obtained in showing existence,
uniqueness, regularity, and completeness of eigenfunctions, by using a host of standard
and/or problem-tailored methods.2~18

In this paper, we present some aspects of the integral approach used in solving
the Fokker-Planck equation. The first two sections are devoted to a canonical integral
formalism that can be applied, in principle, to all the cases embodied in Eq. (1.1). The
method is formal in the sense that it does not provide per se the means to prove existence
and uniqueness of the solution in an abstract setting. These issues have to be handled
separately, in a problem-determined context. The final section of the paper exemplifies
some typical situations. Each example uses a different variant of the integral approach
thus showing the versatility and potential of the method.

2. GENERAL INTEGRAL FORMALISM

The linear or nonlinear system can be represented in abstract form as

N(u) + 6B(u) = f + 8¢ (2.1)

where N(u) describes the linear or nonlinear equation, B(u) represents linear or nonlinear
boundary conditions, f is the volume source, and ¢ represents the boundary sources
(including initial conditions). The source terms f and g include all inhomogeneities, so we
can consider, without loss of generality, that N(0) = 0 and B(0) = 0. The §é distributions
multiplying the boundary terms in (2.1) allow a formally unified abstract treatment of both
evolution equations and initial/boundary conditions. These é distributions are associated
with the direct boundary space of the problem,'® being uniquely specified for each well-
posed specific problem under consideration.

The system (2.1) represents an equation for the function u belonging to a linear
functional space £(2) endowed with an inner product denoted by <, >. For simplicity, we
shall assume £(Q) = L*(Q); throughout this work,  denotes the set (including the time
domain for time-dependent problems) that defines the phase space for Eq. (2.1). Since we
include the boundaries in the formal treatment, 2 is a closed set, containing the boundaries
of the phase space underlying the problem.



We assume that the first Gateaux derivatives of the operators appearing on the left-
hand side of Eq. (2.1) exist, and they are defined?® by

[N'(u) + 6B'(w)|h S {(d/de)[N (u + k) + 6B(u + eh)]}eco . (2.2)

In the linear case, the Gateaux derivative is independent of u; in general, (i.e., in the
nonlinear case), these operators depend nonlinearly on u but act linearly on the vector h.
Thus, the operator adjoint to N'(u) + é§B’'(u) is defined via the usual linear duality:

< [N'(u) + 6B'(w)]h,v >=< h, [N"*(u) + §*B" (w)]v >, (2.3)

where v is an arbitrary function from the dual space £*(2) = £(Q2). In Eq. (2.3), N"*(u)
is the formal adjoint of N'(u), and B"™(u) includes all surface terms required in defining
the actual adjoint. Note in (2.3) that the operator 6* is not the same § distribution as
in (2.1) or (2.2), but is a distribution associated with the adjoint boundary space of the
problem.!® To highlight this distinction, we use the symbolical notation é*. The exact
significance and the differences between the § and §* symbols will become clearer in the
sections devoted to applications.

Following the theory developed in Refs. 21 and 22, we define the operators

L(u)hd—_S:f /0 N'(eu)hde [3(u)hd=e£ /0 B'(eu)hde (2.4)

and

L*(u)vd=ef/0 [N'(eu)]*vde ﬂ*(u)vdzef/o [B'(ew)]*vde , (2.5)

that still act linearly on A and v, respectively, while retaining a nonlinear parametric
dependence on u. Like the variational operators, the integrated operators L(u), B(u),
L*(u), B*(u), are still related by the linear duality relation

L*(u) + 66*(w) = [L(u) + 68(u)]" (26)
We note also the important relationship satisfied by L(u) and B(u):

[L(u) + 668(u)]u = N(u) + 6B(u) . (2.7

In the linear case, N and L coincide and do not depend on u. Equation (2.7) underscores
the important role played by the integrated operators L, 3: in contradistinction to the
variational operators N', ', it is the pair of integrated operators {L(u),S(u)} that
replicates exactly the original nonlinear system (2.1) when applied to u. We define then



the backward (retarded) and forward (advanced) propagators, G, and Gy, as the inverses
of the operators L(u) + 88(u) and L*(u) + 6**(u), respectively:

[L(u) + 68(w)]Gu = 1 (2.8)

[L*(u) + 6*B*(w)]Gy =1 (2.9)

where 1 denotes the unit operator. In the linear case, when L and # do not depend on u,
the propagators are the ordinary Green’s functions of the problem. Equations (2.8) and
(2.9) can be written in terms of formal integral kernels as

[L(u(2)) + 68(u(2))]G(u(z); z, ') = 6(z — &') (2.10)

and

[L*(u(z)) + 6"B%(u(2))]G*(u(z); 2,2") = 6(z — 2") (2.11)

where z is a shorthand notation for the generic variable in the phase space domain 2
(including its boundaries).

Since the operators L(u) + 63(u) and L*(u) + 6*8*(u) act linearly on the respective
propagators, the relationships between the propagators and the expression for the solution
u in terms of these propagators can be derived, as previously noted, in the same spirit as
for the usual Green’s functions formalism in linear theory.23:?¢ Thus, forming the inner
products of (2.10) and (2.11) with G*(u(z); z,z") and G(u(z); =, '), respectively, leads to
the reciprocity relation?!22

G*(u(z); z,2') = G(u(z"); o', 7) (2.12)
which, in the linear case, reduces to the ordinary reciprocity relation between Green'’s

functions.

The solution u of the original nonlinear system (2.1) is obtained in terms of the forward
propagator G, as follows by using Eqs. (2.5) and (2.7):

u=< u,§ > — < Nu)+6éBu),Gy > + < f+69,G; >
=< u,[L*(w) + 8B*W))G: > — < [L(u) + 68(w)|u,G% > + < f+6g,4° >

=< f+89,G; >=< Gy, f+6bg > .
(2.13)
In terms of integral kernels (2.13) reads



u(z) = / G(u(z); z,2')[f(z') + 6g(a")]da’ = / G*(u(z'); 2", 2)[f(2") + bg(a")]d’

? ? (2.14)
that, once the propagators are expressed in terms of u, can be viewed as a nonlinear
integral equation for u. In the linear case, G and G* do not depend on u, and (2.13)
and (2.14) simply express the solution as the propagation of the sources via the ordinary
Green’s functions.

3. INTEGRAL EQUATIONS FOR PROPAGATORS

By applying the formalism developed in the previous section, the original nonlinear
problem has been reduced to a linear problem of finding G* as the solution of Eq. (2.11),
where u is assumed to be a known function. In the following, we shall sketch a general
canonical method of carrying out such an inversion.

Consider (2.10) for a known vector u® and (2.11) for the actual solution % of the original
system (2.1), i.e.,

[L(u®) + 6B(u®)]Gyo = 6(z — z") (3.1)

and

[L*(@) + 6*B*(@)]G; = 6(z — z") . (3.2)
Forming the inner product of (3.1) and (3.2) with G% and G0, respectively, yields

< [L(u®) + 6B(u®)]|Gyo, Gi > =G% (3.3)

and

< Gyo,[L*(@) + 8*B*(2)]G; > =Gyo . (3.4)
Using the duality relationship (2.6) and subtracting (3.4) from (3.3) leads to

Gy = Gut < Guo,[L*(u0) + 6°F*(w0) — L*(@) — 8" F* (@G} > . (35)

Equation (3.5) is a closed-form nonlinear integrodifferential equation satisfied by the
forward propagator G;. A similar equation is satisfied by the backward propagator G;.

Note also that (3.5) is exact and its nonlinear character occurs, not from closure
approximations, but reflects exactly the nonlinearities of the original system (2.1).
Moreover, it gives a practical recipe for finding the propagator via an iteration scheme.
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Because it retains the full nonlinear information contained in the original problem
(2.1), Eq. (3.5) may be rather cumbersome. Moreover, it yields only the propagator, so
the solution to the original system must subsequently be computed from the convolution
expressions given by (2.13) or (2.14).

An alternative, and sometimes more efficient approach, is to obtain an
integrodifferential equation, similar to (3.5), for the solution @ itself. For this purpose, we
note that since the function u? is known, Eq. (3.1) can, in principle, be solved to obtain G0
and thus G%, as the inverse of the linear operators L(u®) 4+ §3(u®) and L*(u®) + 6*8*(u°),
respectively. Actually, the whole idea of this method is to choose u’ in such a way that
the propagators G0 and G, are readily available. Then, the solution i can be obtained
by using (3.1), (3.2), and (2.1), the linearity of the operators L* and $*, and performing
the following sequence of operations:

i =< i,[L*u®) + 6*B*(u®)]Gro >

= < @, [L*@) 4 §*B*(@)]Gro > + < i, [L*(w°) + 6*B*(u°) — L*(&) — §*B*(@)]G%o >
< [L(@) + 868(@))it, Gro > + < @, [L*(u®) + 6*B*(u®) — L*(@) — 6*B*(1)]G2e >

=< f+8¢,Gho > + < @, [L*(u®) + 6*B*(u®) — L*(@) — §*B*(@)|Gro > .

(3.6)

In the linear case, L* and $* do not depend on the unknown solution % and thus (3.6)
reduces to (2.14) with G* independent of u, and solving (2.1) reduces to calculating the
ordinary Green’s function of the problem. In special situations, this can be done by using
auxiliary problems!® or eigenfunction expansions'® (see the examples in Section 4.2 and

4.3).

In the general situation, the linear case may turn out to be more complicated from an
iterative viewpoint than the nonlinear case. This is due to the fact that G* is the actual
Green’s function of the problem and may be rather difficult to obtain. In this case, one
computes first G* via a perturbative scheme along the following lines:

If L* 4+ 6*B* is not readily invertible, we start with a simpler operator L§ + 6*83
that is readily invertible, namely [L} + §*33]™! = G§. Then, we write L* + §*3* as
Ly + 6*B + Lt + 6*B; and compute G*(u®) via the usual perturbative series

G* =G+ Gy(1 — (L] + 8"B1)Gg) T (L] + 8" BY)G, -

In the case of the linear Fokker-Planck equation, rigorous results for this scheme have been
obtained by Weber,* IIin,® and Eidel’man.1®



4. ILLUSTRATIONS OF THE INTEGRAL APPROACH
4.1. A Nonlinear Equation: Applying the Propagator Method
In order to illustrate some basic aspects of the canonical formalism described in the

previous section, we consider the equation

N(u) = ugy —2uuz +2u, =0 z€eRy (4.1)

with the boundary conditions

u(0)=0
(4.2)
uy(0)=1.
The solution is readily obtained in the form
T
u(z) = Pl (4.3)

We want to obtain this solution by applying the integral formalism based on propagators.
It is easy to see that

L(u)G = Gzz —uG; — u ;G + 2G, (4.4)
L*(u)G* = G3, +uG; — 2G} . '

By choosing u® = 2, we solve the equation

L*(2)(G%0)zz = (Go)ze = 6(z — ') 5 Go(z,z') =0 x>z
and get

z—z2' >z

-~ _
Go(z',z) = { 0

—0(z—z') z>4a
0 <z’

' -z ' >z

G:o(.’II,CL‘,) = { 0

<z <z

(Gro)er (2, @) = {
Thus, (3.6) becomes



u(z) = / (f(2') +8(c") - 0+ 8/(") - 1) Gola’, 2)da’ =

- / " () (u(z') — 2)(=8(z — 2'))dz’ =
. . (4.5)
- /0 §(z")(—6(z — z'))dz' + ‘/0‘ u(z')(u(z') — 2)dz’ =

1+ /01' u(z')(u(z") — 2)dz’ .

One verifies that this integral equation is solved by —%

z+41°

4.2. Deriving the Green’s Function from an Auxiliary Problem

As mentioned before when the auxiliary propagator G, cannot be computed, like in
the previous section, one can apply a perturbative formalism for finding it. While having
the advantage of being applicable to both nonlinear and linear problems, the perturbative
scheme may turn out to be cumbersome, and alternative methods are desirable. One such
method is described in the following example. Let us solve the linear one-dimensional
boundary value problem

Au d:efvuz — Uy =0 veER (4.6)

with boundary conditions

u(0,v) = g(v) veER,. (4.7)

Unlike the Green’s function of the usual stationary Fokker-Planck equation, Eq. (1.6), the
Green’s function of the problem (4.6) cannot be found explicitly in terms of eigenfunctions
by the method of Ref. 15. This is because the essential spectrum of the differential operator
U — —U,y is Ry, and is not separated from zero, as required by the method in Ref. 15.
Gorkov!? was able to obtain an explicit solution of (4.6) by using a singular integral
equation, but that approach is rather complicated.

An alternative method for deriving the Green’s function for problem (4.6) has been
proposed by Eidelman?5:2% and we apply it here to solve (4.6). Consider the forward
Green’s function G* for the time-dependent problem

Gr 4 A*G* =GF —vG: — G, =1, ze€R, veR, (4.8)

whose solution with kernel



V3 1 (v—0o")? 3 ( , vt )2
—— — exp{ — - =lz—z + t t>0
g*(wavataw’7v1v0)= 2m ¢ P 4 t 2 (49)

0 t<0

was found by Kolmogoroff.2

The crucial observation is that the forward Green’s function G* whose kernel is defined
as

G”"(a:,v,:t:',v')d=ef / G*(z,v,t,z',v',0)dt =
0

V8 [ dt exp{_(:l:—x’) ——3—<x—x'+”*2'”'t)2} (4.10)

2 J, t?

satisfies the equation A*G* = 1 and therefore solves the problem (4.6). Indeed, by applying
formula (2.14) and letting  — 0.4, one obtains an integral equation for the unknown part
of the distribution u(0,v), v € R_:

0 o0
u(0,v) ——/ v'G*(0,v',0,v)u(0,v')dv’ = / v'G*(0,v',0,v)g(v')dv’ veR_.
0

- (4.11)
Once u(0,v), v € R_, the solution at z > 0 is obtained from (2.14)
o o]
u(z,v) = / v'G*(0,v', z,v)u(0,v")dv’ . (4.12)

This method does not depend on the dimensions of the problem. Since for the three-
dimensional time-dependent problem the Green function is also known,® this solves
otherwise untreatable stationary three-dimensional problems. The application of this
procedure to spherical geometry is reported in Ref. 18.

4.3. Integral Equations from Eigenfunction Expansions

In this section, we shall solve directly the integral equation for the solution itself,
therefore avoiding the computation of the Green’s function. We shall apply the formula
(3.6) to the linear stationary one-dimensional problem (1.6) with a > € > 0 to show how
to take advantage of the eigenfunction expansions when they exist.}?:16

Adapting the results obtained in Ref. 12 for a = 0 to the present case (a > 0), we write
the solution of the kinetic half-space problem in the form
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u(0,0) = Y cnpn(v), (4.13)

u(0,v) = g(v), v €ER4 (4.14)

where we take into account!? that: (i) the spectrum is discrete, (ii) zero does not belong

to it, and (iii) ¢n(v) are normalized, [, @n@mwdv = bnm (w is the full range weight).

The coefficients ¢,, can be computed by using full range formulas,12-14-16

Cn = /°° ©(0,v)pq(v)wdv = /0°° g(v)pn(v)wdv — /0°° u(0, —v)pn(—v)wdv . (4.15)

—00

By using these coefficients in Eq. (4.13) and projecting the solution on positive and
negative velocities, we obtain two (equivalent) integral equations for the unknown part
of the distribution at the boundary, u(0,v),v € R_, namely:

o) = X on{ [ a0 Yento o’ = [ a0, Ypul-vyude'} v e Ry (420

n>0
u(0,v) = gtpn(v) {/000 g(v")pn(vwdv' — /0°° u(0, —v')cpn(—v')wdv'} v € R_ (4.17)

These equations are the ones obtained by Mayyal* for the Fokker-Planck equation and by
Klaus et al. in the abstract formulation of the Fokker-Planck-type equations.!®

To solve these equations, one applies the standard techniques, i.e., multiply (4.16) by
¢m(v), m > 0, and integrate over the full range to get

Cm = /000 g(v")om (v Ywdv' — Z /°° cn@n(—v)pm(—v" ) Ywdv' m>0. (4.18)

n>0 0
An equivalent system is obtained by multiplying (4.16) by ¢,,(—v), m <0, to get
0= / g(v")pm (v HYwdv' — Z / en@n(—v )pm (v )wdv' m<0, (4.19)
0 n>0 V0

from where one gets ¢, via truncation. Once ¢, are known, the distribution at the
boundary is given by (4.13), v € R and the full solution is obtained via a semigroup
reconstruction.!?16
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5. CONCLUSIONS

We have presented several aspects of an integral approach for solving Fokker-Planck
type equations. The general formalism yields integral equations for the Green’s functions
(linear case) or propagators (nonlinear case) associated with the original problem. In
general, these integral equations have to be solved iteratively, but compact solutions can
be obtained sometimes by specific artifacts (like in Section 4.2).
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