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NONLINEAR SYSTEM VIBRATION
-THE APPEARANCE OF CHAOS
by Norman F. Hunter. Jr., Los Alamos National Laboratory
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ntroguction

sYhat we now consiger 1o be chaotic motions were noled by
Soincare in 1892 where ne describas the motion of a sysiem
ioverned by aitferental equati—ns as having a “sensitive
‘epenagence on imual conations”. ‘'Aore recenily Loreniz
lescripea chaouc benavior in tiuid dynamics and outlinea
xnat 1s now known as the Loremiz attractor!. Chaouc
nehavior has been observed n many lields including physics.
chemusiry, biology ana sociology. The history ot dynamiczl
sysiems and chaouc benhavior 1S described in very readable
‘ormat by Gleick2 ana Abraham and Shaw?,

Chaotic systeams commoniy occur in the context of vibration
lesting because in the tasting of real siructures we oltan
enccunter systems with significant nonlineariies driven by
penodic or random forcing functons. Much ot the classical
chaos descnbed n the lilerature occurs when strongly
nonlinear systems are excited by periodic forces. Chaos like
phenomena aiso occur in the context of sysiems driven by
random forces.

This paper begins with an examination of the diflerential
aquaton for a single degree ol freedom torce exciled osciliator
1ng considers the stale space behavior of linear. noniinear.
1nd chaotic =ingie cegree of freadom systems. The
‘undamental characieristics ol classica' chaos are reviewed:
sensilivity 1o imiual conaiions, pasitive Lyapunov exponents.
:omptex Poincare maps, {ractal properties ol motion in the
ilale space. and broagening ol the power spectrum of the
wystem response. .l'usirated exampias ol chaotc behavior
nciude motion in a two well palenttal - tha chaos beam
inscribed 1n Moond and a hardeming base excited Dulling
svstem. Chaos-ike phenomenon which occur with
~onperiodic forcing are examined In the context ot tha iwo
~oll potantat ang hargening Oufting systems. The paper
-3nciuges with some suggestions tor detacting and modelling
“onnnear or chaolic benavior.

A Single Deqree of Freegom Oscillator
snsidar tha sinale oeqree ol frpredom oscillator shown in

soure A periogic 2avina force  nxcites motion of the
153 M. Tha gifferernval equation gescribing this sysiem is :
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Figure 1
A Force Excited Single Degree ot Freegom
Oscillator

As an exampie choose F'Ms1.10 .wp=2X. w=21 .and

.=2.25%. The siale variables describing the system are the
displacement of the mass, Y, and the velocily of the mass Y'.
This system 1s simulated using vanable stepsize Runga Kutta
aigorithm mpiemented on a Sun 4 Sparkstation. The
acceleration response of the system to sinusoidal forcing is
shown in Figure 2. Sampled values of ine velocity and
displacement plotted in slate space are shown in Figure 3.
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Figure 2

Acceleration Response of a Single Deqree of
Freedom Oscillator Driven by Sinusoidal
Forcing.

Tha stale ot the system at any nma 1 1s rrpresented by a point
'n the two cimansional Y Y' stale space and tha collection o! all
31 tha states resulling from a given sinusiodal drive 'orm an
vzl_liusa whan the system 1s in a steady state condilion. In
Figure J the sequance of states evoive from zaro valoCity and
iaro displacemant to a tinal eliptical dynanuc attractor, 't
~a include Iha phase ol tha driving force as a vanable in our
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Figure 3
Siate Space Represamation of The Transient and Sleady
3jate Responses of the Sinale Dearee ot Freecom
Force Excited Oscillator.

slate sopace representation the euiptical collection of states.
n conjunction with the driving torce, lie on a torus or
doughnut in three dimensional space. This torus is a dynamic
attractor of this system for this sinusowdal drive as all of the
'rajeclories of system states aveniually he on the torus. If. at
a gwven phase of the driving force, the value of the state Is
plotted In two aimensions the resuil is a point, For a iinear
system, the state of the system repeatedly returns to the same
value with each cycle of the dnving torce. This piot of the
state al a qiven phase of the onving torce 1S known as a
Poincare map. As the inear force excited Sysiem approaches
steady state behavior the Poincare map approachas a singie
point as shown in Figure 4.

.’-‘iqure 4
Homecare Map tar tha Linear Foree Excited
Msciliator
A tyriner caaractensnc af oa o lns hinear system o1 worth
annn )nsianr two c15es of svstem rnsponse. #ollowing

wphcatior ot tha  xeitatgn the (ranstent tnsponsn 15 aliowieg
'y gecay and sleady slate responsa obsarved. At snomn
chieey pomt A sman eerlyrbaion 10 the systom stiale oy
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10 percenn is made. This parturbation is generated by
taking the siate values al a ume 1in during steady slate
response and muluplying each value by 1.10. fulure
periurbed ana unpe.turbed responses are then compared. For
this linear sysiem the effect of the perturbation decays wilh
ime ana the perturbed and unperiurbed responsas quickly
become ndistinguishable as shown in Figure 5, whare
acceleraton i1s useg as a measure 0! Sysiem response.
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Figure 5

Output Convergence From Adjacent States for a
Linear Force Exciied System.
(10% Perturbation’.

For a linear system the trajectories ol nearby points in state
space converge. More formally, the Ly2punov exponent
measuras 1he rate ol convergence or divergence of
trajectorias 1n stale space. Tha definition ot The Lyapunov
axponen! 1akas the form:

A
1= 1e 12)

Here an s the imlial distance between two nearby states and d
s \he aistance a nme 1t latar. \ 1S the Lyaponov exponant.
For this knear sysiem we have a negalive Lyapunov @xponent
as the trajeciories of adjac.ant siates in lhe state space
convarge. For a chaolic syslem the Lyaponov expanant is
posilive and represents an average divergence of nearby
slates with time, (n general a system will have a spectrum ot
Lyapunov exponents which delarmina how the dimensions of
angins, a'eas. and volumaes in state space change with ima,

A Single Dogree of Freegom Nonlinear System

For the hnear system dascribed by Equanon 1 ths sinusoidal
rasponse exhausts the possibilities for the steady slale
hahavior of the system to a rinusoidal drive. (n vibration
'nsing wa seidom have syslems this simpie, and further, reai
sysiems often have some componaent ol nonuneanty in thew
‘nrced bahavior. This noniinear lorce componant may he
mmor or it may te a dominant tactor in tha forces invoivad
n tha sysiem. A mora realistic form for a driven osciilator
5 obtainen by moditying equation 1 'o include a nonhnear
'nrm

B (Y LY [T YT & SRR s )

n nauation 3 Mo resionng torce 1s formad from a lnear
amponent and a noniinear componant. Thn magtinudae ol tha



nonhnear component is adjustea by cnanging tha magnitude of
the coetficient a. ~or this cubic nonlineanty the noniinear
restoring force IS symmetric with respect o gisplacement,
and increases with increasing displacement. Eguations of this
type are forms of Duffing’s eguation. whéere a nonlinear
stiffness term 1s aaded to a singie degree of freedom
oscilator. In this case suffness increases with increasing
response ievel so the system ot equauon J is referred to as a
hargening Duffing oscillator. 7o simuiate this System
equation 3 is solved numerically using an acapuve stepsize
Aunga Kutta algonthm. [n contras! lo the linear sysiem the
response characteristics of lne system vary with the
magnitude of the drive. For low arive levels the sysiem
pehaves n a nearly linear fashion. At increased drive levels
the eftects of the nonunear term become increasingly severe.

For a =100.0, F=200.0.0n=21. w=47 and {=4.5% a very
dislorted periodic acceleration response is observed as shown
.n Figure 6.
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Figure 6
Acceleraton Response of the Strongly Excited Hardening
System Orivan by Sinusaidal Excitation.
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This response i1s guite distorted but is nonetheless typical ot
the responses observea at soma frequencies when a real
system 1S sirongly excited by a « 7usoidal drive. Figure 7
sr_iows the Power spacirum of the .ime response shown i
Figure 6. Note the fundameniat response at the driving
‘requency or 1.0 Hz and the presence of numerous discrele
harmonics. The Poincare map for this nonlinear system at
driving pnase Zero consists of a discrele set of thrae points as
shown in Figure 8.
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. Figure 8
Poincare Map for the Strongly Excited Duling
Oscillator of Equaton 3.

The sensitivity of this sysiem to perturbalions is t

making a 1% perturbation 1o the sr;slem siate 12.5ess;gng:
after the force 1s applied to the system. Perturbed and
unperiurbed acceteration response are shown in Figure 9.
Note that this system had not fully achieved a sieady siate
response prior to the perturbation.
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Fiqure Y
f)u‘loul Divararnca From Adjacent States tor a
Slrongty Nonnnear Force Excited System.

1% Perturbation).

_-his parturbatlon of tha state of the strongly noninear
-ystem does nol dncay but resuils in 3 qiobal diftarence in the



cysiem resoonse at all futurc umes. In tact the system
slabilizes at a aifferent steady stale response. This ingicates
hat tor some sels of initial conaitions. the sysiem gescrioed
oy EGuaton 3 is quite sensitive to perturbations of the
:nitial conditions. The average Lyupanov exponent for 1his
System and this excitaticit I1s not posilive. however, as the
system 1s not exhibiting chaonc behavior. At low drive levels
‘he noninear system does not exhibit the sensiivity 1o ininal
conaitions illustrated in Figure 9. The response of the
‘elativelv simple system ol Equation 3 is in tact incredibly
‘iIch n pehavior as drve level and drive frequency are
saried. Mearly linear behavior. jump resonances.
jubernarmonic responses. subharmonic responses. ang
Zhaotlic benavicr all occurd.

Harmonic response generation IS 3 common phenomenon n
<ibration testing and is often observed during sinusoiaal
sweeps. Using random excitation, peaks in the response
speclrum are someumes observed which are related (o
narmonic qeneration rather than airectlly to resonant
oehavior.

“he Deveiopment of Chaotic Behavior

“he Duffing Cscillator descnpbed in Eguation 3 can canibit
:naotic benavior. Examptes ot such behavior are described in
Abranam ana Shaws3. Moon<d, Thompson and Stewan3. ang
Suckenneimer ang Holn:es¥. Exampies ot chaolic behavior of
'hIS equ4lion are shown In computer experiments In Kocak' .

As an wlustrauve example of shaos the equation for a two well
potential or buckled beam will ue u=2&. Consiger the base
axcited system described by equation 4.

T Yt-Y ) —E(Y-Y ) -a(Y-=Y ) =) 1
wnere Y = -1isplacement =i the uariven
mass.
= .1isplacement .: =zhe kase mass.
Y " = input base accelerat:ycn.

n contrast 10 equation 3. the linear stiffness term 1n equation
115 neqalive and the cubic stiffness term 1s posiive. This
sJroduces a situation in which tne system osciilatas in either
31 two polental waelis. Transitoh belween wells may not

ccur or may pe either erratic of periodic, depenaing on the
Jrive level. !n a practical sense equation 4 represents the
soraton of a base excited sysiem with two stable
aquilibtium positions.

Sansider excilation ol this system with a sinusoidal base
iccelaration Yo" = F Sin @t 3t a frequancy close to that

‘haracteristic o! oscillation n one potental weil. For fow
npu! ampnludes F ol base acceleraton the sysiem oscillates
1 one ot the weis. As tne peak basa accelaration F is
ncre4sed, an oscilation level 1s reached at which transitions
selween wells occur In an erratnc manner.  “he relative
1splacement rasponse Y-Yn of this system 1s shown in Fiqure
‘3 far 1 danve amphtudge sulficient tc excile transitions
~niween pelennal weils. A Poincare map of this response
aqerea At a driving phase of zrro degrees 1s Sshowh an
cqure 1Y nuke e naear system where the Poingare map
~48 Jd aingle point and the noninear sysiem wharg thae
mincarn mao consisled of three discrete paints, the Poincare
~ap tor 'ms ¢haohc syslem consists of a campiex Iractal hke
ructure ot points. Thae syslem response does not repeal
cunogicallv yel a complax structure 1s exhibiled in the state
. ny#es with both aensaly populated and forbidden reqions
©nosame sort of struclyre occurs 1N smailer rrqions of the
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Figure 12
Output of the Twa well Potennal Svstem
Excited by a Sinusoigal Drive.
Y

EX T
Figure 11
Poincare Map tor a Two Well Potental
Chaotic System.

Poincare map. Figure 12 shows an expansion of a selected
region of the Poincare map in Figure 11. Densely populaled
and forbidden reqions occur on all length scales in the
‘racta like structures shown in Figures 11 and 12. On the
average, this chaotic system exnibits a strong sensitivity \o
perturbations c! the system state. Fiqure 13 shows tho
unoerturoed and periurbed responses brought about by a 1 %
perturpation of the system state.
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Expansion ot a Reqion in the Poincare Mab for the Two
wall Potenual Chaotic System.
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Figure 13
Sutput Divergence From Adjacent States for a
Two Well Potential Chaotic System.
1% Perurpation).

i sipie. s eltect
Nrile the imtial perturbauon 15 barely i
’ncreases win ume unti the sysiem follows a globally
niterent responsa from about 150 ime samples onward.

“rom a geometrical standpotnt €haos I1s causedq by a strerching
ang tolding ot trajectones in the pnase space. d structyre
slen referreg o as a strange allracior in 1the hlerature

“hree dimensional pctures of strange attractors are shown in

\ number of reterencesd 1.5 6

"ha power specirurn of the response ot this cnaotic system s
it interest ana 15 shown in Figurg 14

nshitule ot Environmaental Sciencey

PROCEEDINGS

ielative ulsoiecesant
Irsembie r30. Inieevain: v 10veriag: =2 Ti-ows: 10000
‘@i, wTr 512, Camnie resa: ¢.390000e~0! satnesnz
“in: 31457430~ 10 Pan: <. 37SB40a+l0 Megn 5.328 1D2a-02

\_'//T

12

3.001

12
(o)
t ETIE AT NITY i o
hY
>

2.0001 by

Uisglaewmnil 182 Alg
e o
i
8 &

4

:
[ Rl gt~ gy gyey oy

3

Ze=1D

Freousrcy \nz)

Figure 14
Power Specirum of a Chaouc System

Note the broad range of frequencies exhibitod in this
response. This broadening of the spectral response Is
charactenstic of chaotic systams. Periodic spikes in the
response are also present. These panodic snikes do nol
indicate that chaos 1s not present but rather imply that
fesponse is more concentrated at cerian frequencias. This
power specirum may be compared to the response spectrum
aof a nonfinear non-chaotic system shown in Figure 7.

Typical Characteristics of Chaos in Systams Driven by
Sinusoidal Excitation.

From the examples shown above some typical charactaristics
of chaos have emerged. Thesa characteristics include:

1. A sensitivily 1o changes in initial conditions. This means
that, on the average, a small perturbation in initial
conaitions causes a large change in ruture behavior. For
lingar sysiems a smuil pariurbation 1n inimial conditions does
not effect long term global behavior. In general. strongly
fonlinear systems may exhibit a sensitivity ta initial
conditions in some regions of the state space. The definitive
measure of 1he averaga Sensilivity to changes n the mnitial
tonditions 1s the Lyapunov exponent. This exponent is positive
for chaolic systems.

2. Fraclal structure of the Poincare map. For a linear system
the Poincare map Is a single powt. For nonhnear, nonchaolic
Systams (n@ Poincaure map consists of a discrete set of points.
For chaotic systems the Pnincare map consists of an infinite
set of poinis arranged in a compisx siructure with both
ailowed and forbidden regions.

1. Broadaning of the power gpecirum of the response. The
response ol a chaolic svystem 10 a sinusoidal drive shows a
road pawer spectrum. For a hnear svstem the power
specirum of the steady siate response Is a Single line at the
driving freauency. in general nonchaolic nonjinear systems
show resoans. al muttipie subharmonics or superharmonics
3l the driving trequancy.



Nonlinear Systems Excited by Ransom Forcing Functions.

The demonstration of chaotic behavior 1S clearly exhibited by
the two welil potential system aescribed by equation 4.
Sinusoidal excitation provides a convenient wav of exhibiting
a fractal structure in the Poincare map and illustrates that a
chaotic system driven by a sine wave can exhibit response
over a broag bana of frequencies. In a pracucal sense.
however, mast strucilural vibration testing 1S conducted with
random ariving forces or acceleratons. The natural guestion
s then: What elfect do rangom driving forces have an the
response of nonunear Systems?

Since the system excitation i1s rangom noise the convenuonal
Poincare map cannot be utilized though a three dimensional
piciure ot the evolution of system states can be deveioped. A
sysiem anven by a given bandw:dth, and a given reahzation ot
Gaussian rangom noise will have a paricular detarministic
response. The sensitivity ot this response 10 perturbations of
state lorms a natural staning point for investigation.

Consider a inear base excited single degree of freedom system
Jriven oy band limited random noise. Using a Runge Kutta
ntegration scneme a Sysiem with a resonant ‘requency of
21137 Hz. and 4 5% damping 1s driven by 3 base
1cceleration input with a flat power specirum trom 0.02 Hz.
'0 8 Hz. Ater tne input has been appned for about 50 seconas
'he systam siale Is periurbed bv 1°% and the perturbed ana
Jnperturoed responses examined. A plot of the perwrbad and
unperurbed responses 1s shown in Figure 15. Just as n the
case ol sinusoidal orive lhere is no detectable difference
between the perturbed and unperturbed responses for this
linear system.
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Figure 15
Jutput Convergence From Adiacent States for a
Lihedr System Driven ov Band
L:mited Random Noise.
1%, Perturbation).

"5y simulate 3 drashcally noniinear systam the base excited
‘w0 will potlenual sysiem descriced by equation 4 15 exciled
~y band hmited rangom noise. a=d tollowing a stabihization
»rriog. the system state 1s perturbed by 1Y%, and porlurbed
\na unpanurbed responses obsarved as shown in Fiqure 16.
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Outout Divergence From Adiacent States for a
Two Well Potenual System Driven by Bana
Limited Rangom Noise.
1% Perturpaton).

't is clear from Figure 16 that the same aivergence [rom
closely adjacent siates occurs with random excitstion as
occurred in the chaclic syslem driven by sine excitation. A
similar divergence of stales occurs in the hardening Duffing
system of equation 3 when the system 1s excited by random
noise as shown in Figure 17.
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Figqure 17
Output Divergence From Adjacent States for a
Hardening Dufting Oscliiator Oriven by Band
Limited Random Noise.
(1% Perturbation).

Simiar divergence ol responsas caused by small
perturbations In the state space occur lhen, tor strongly
nonlinear systems driven by random noise and by sinusoidal
excitaton. In fact. judging from the few axamplos which we
have run, systems onven by random noise secm more
sens!tiva o state perturbations than do systems drnven by
31NUSOIdS assuming a given rms axcitation level in each case.
While the appiicauon ot the term "chaos’ !o some nonhnear



sysliems driven by random noise IS pernaps premature it is
clear that strongly nonlinear systeams driven by random
noise wiil, on the average. have positive Lyapunov exponents
anag that a chaos -ike sensitivily to initial conditions s
oresent.

Chaos-Like 8ehavior In Systems Driven by Random
Excitation.

The apove exampies show that chaos-like sensilivities to
inital conaitions occur in strongly noniinear systems ariven
oy rangom exciation. including a hargening Duffing system
ariven by random noise. Consequenily preaiction of the
respolise ime Seres 0! such Sysiems may be impracucal as
smail errors 1n state estimates will magmly into dilferent
nme mistory resoonses in finite ume.

Modelling Nonlinear Systems from Experimental Data.

Given an expermaenially obsarved response from a system
undergoing a vibration test the input and response time
nistones may be used lo determine the degree ot nonlinearity
present and. in some cases, 10 form an expenmental system
model. For exampie. for a system adriven by sinusoidal
excitaton, generation of subharmonics or supernarmonics
s a clear indication ol nonlinear behavior. The presence of
sirong noniineariues in a System may well lead to chaoltc
nehavior. For systems driven by random excilauon one
mathoa of determining the degree of nonhneanty exnibiled by
Ihe system 1s the construction of a "model” of the sysiem. If
getalled basic design information i1s available a tinite element
mogel or a "lumped mass" model of the sysiem may be
ccastructed prior to tesung. Proper analysis using these
models will predict nonlinear or chaolic behavior. In some
cases. however, a model must be daeveloped using
expenmental data.

One lorm of expenmental model may be consiructed by
assuming that a given mass 15 associated with each
accelerometar location8. The mass associaled with each
accelerometer location and the effective suffness between
locations may conceptually ba computed using the "Force
State Mapping Technique™2.10-11.12_ This technique has been
applied to numerous single degree ot freedom syslems and 1o
saveral cases of three degree of freedom systems. i motion at
'‘he accelerometer locations is lruly representative of the
legrees o! freedom present in the siructure. and sutficiant
neasurement locations are chosen. the method appears
ipplicable o syslems with many degrees ol freecom.

A second form of expanmeantally derived model for nonlinear
systems s descrbed by Farmer’ 3, Casdagii'?,
Crulchtield!5. and Billingsi®. In this method an approximale
rspresentation ol the state space 's constructed from delayed
+alues ol the system response. To illustrate this type ol model
conciger the unknown system shown in Figure 18.
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;nknown Svsiem Qelined by Input-Output
Behavior
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Assuming that the input and response of this system are
sampled at an appropnai@ Sampiing rate a delay coorainate
moael of the system is iormea as shown In equation 5.

'_.-(:)=f{','(t—T‘ ,YE=2TY, ...,y (E~=2T),

wn

':(t),'.:lL-T),...'.:(c—kT)} )

Here the u's represent current and delayed values of the
system nput ana the y's current and delayed vailues of :he
system oulput. Equation 5 impiies that the current output
y(t) Is a function of past outputs and current and past inputs.
If the system 1s linear the function f is a inear combination
of the delayed inputs and oulputs. For nonlinear systems
may be any of numerous types of nonlinear functions.
Application of delay coordinate (or ARMA) models to
nonlinear systems i1s described in a paper by Hunterié  As an
example of the application of such a model consider that we
wish to predict future responses ot a base excited hargening
Dulfing sysiem 10 a tand limited rangom noise excitation.
Application of a nonlinear model of the form described in
Equation S yields a predicted respunse lo the random noise
input. This model response is compared to the actual system
resgonse N Figure 19,
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Companson of Actual ang Predicted Responses for
a Base Excitad Hardening Dulling System Using a
Nonlinear Delay Coordinate Model.

Nonlinear modselling may also be accomplished in the
frequency domain using higher order franster functons based
on Volterra or Weiner sanes'7.18.19  Basically these
lugher order transter functions describe the energy transfer
from pairs or tripiets of frequencies 0 a given response
frequency.

Many lorms of nonunear models exist. The model forms
described 1n this section have all shown some succass In
modelling nonlinear systems but it must be admitted that the
construction ot experimental models for nonlinear vibration
systems is in a very early stage ol development.

Conctusion

Tha behavior of noninear dynamic systems Is drastically and
qualitatively different from that of linear systems. This is
true lor many of the syslems lypically encountered in
vibration tesunqg. Further, models used for linear systems
often (ail in precicting even the general form of the response
for nonhinear systeams. Spaciically:



. Many lorms of nonlinearnty typically encountered in
vibration .ests may lead 10 cnhaotic responses These inciude
systems wnere rauning, buckling. or nonunear stiffness are
ancountered.

2. Nonlinear syslems do not necessarly produce chaolic
responses but Ssuch responses o'llen occur wnen the
nonunearnty 1s strong. Driving systems at high input levels
may lend t0 empnasize nontnear behavior and leag to chaotic
*@sponses.

3. Classical chaouc responses occur when sinusmdal
excination 1s used. Poincare maps and power spectral density
piols provige means of detecung this type of chaotic
penhavior.

4. Chaos-like behavior occurs in sysiems dnven by random
noise. The responses of such systems are very sensitive to
‘ntial condaitions as are the responses of chaotlic sysiems
ariven dy sinusoiqal excitation.

5. hiethoas for the experimental modelling of nontinear
cvstems exist. Thess methods inciuge force state mapping,
Jelav coorainaie modeils. and higher order trequency response
‘uncuons. These moaels are ail in the early stages of
cevelopment.
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