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Abstract

The stability of a phase-compensated laser beam propagating in a turbulent
absorbing fluid is considered. Small-scale transverse optical perturbations from
turbulence and noise grow in thermal blooming by two instabilities: the uncompensated
stimulated thermal Rayleigh scattering instability, and the closed-loop instability.
Linearized perturbation theory is used to calculate the electric field spectrum as a
Taylor series in time and as a superposition of stable and unstable modes. The
method is applicable to fluids with arbitrary parameter variations along the path.
Compensated perturbations grow exponentially, and uncompensated ones grow
quasi-exponentially. The instability growth rates and the turbulence and noise
excitation strengths are derived for a simple fluid with homogeneous parameters. The
linearized theory of perturbation growth is in good agreement with numerical
simulations of full nonlinear thermal blooming. If the growth rate exceeds the damping
rate from other phenomena then the perturbations grow until limited by nonlinear
saturation, at which point the beam is significantly degraded. At saturation the laser

beam spontaneously breaks into small-scale transverse structures such as filaments or
ribbons.
*Work performed under the auspices of the U. S. Department of Energy by Lawrence

Livermore National Laboratory under contract W-7405-Eng-48, for the U. S. Army in
support of funding order No. W31RPD-7-D4041.



The strongest damping mechanism in the open air typically is wind shear, which
sets a threshold blooming rate and a threshold absorbed irradiance. Below threshold
the perturbations grow linearly, above threshold they grow quasi-exponentially. Other
atmospheric damping phenomena such as diffusion and turbulent mixing have a

smaller effect.



1. Introduction

A laser beam propagating in an absorbing fluid deposits heat, which
consequently changes the fluid's density and refractive index. The induced refractive
index changes tend to defocus the beam, a nonlinear phenomenon colorfully known as
“thermal blooming." Thermal blooming limits the focusability of an intense laser
propagating through the atmosphere.

It is well known that beam perturbations in thermal blooming can grow by the
stimulated thermal Rayleigh scattering(STRS) instability?:2. Small-scale transverse
inhomogeneities of irradiance and phase cause nonuniform heating of the fluid, which
produces inhomogeneities of the refractive index. By propagating through these index
inhomogeneities, the optical inhomogeneities are amplified in space and time. In very
intense beams small fluctuations can grow many orders of magnitude, until either they
reach O(1) and saturate by energy conservation, or they are destroyed by some natural
damping mechanism. The STRS instability occurs whether or not optical fluctuations
are compensated by an active control system. The growth of fluctuations by STRS on
uncompensated or free-running beams has been calculated for initial excitation from
noise!2 and from thermal turbulence distributed along the path3 as would be the case
in the atmosphere.

If one attempts to actively compensate for optical fluctuations in thermal blooming
then a new "closed-loop" instability can occur. There can exist singular modes of the
combined system of propagation path-plus-compensation law which have positive
feedback to the optical inhomogeneities. These modes grow exponentially in time from
an arbitrarily small initial excitation®®. As in the STRS instability, growth continues to
saturation at ®(1) unless stopped by some natural damping mechanism. The closed-
loop propagation instability is distinct from instabilities of the control loop alone; the
closed-loop propagation instability occurs in some "perfect" control loops, e.g. systems

which accomplish perfect phase-only correction, and is not a result of imperfect



implementation of the control law. The exponential growth rates have been calculated
for several compensation methods?.

The growth to saturation of small-transverse-scale perturbations in thermal
blooming may be the limiting physical process which sets a maximum correctable
power for intense laser beams in the atmosphere. Consequently, it is important to
predict the saturation point under conditions of concurrent STRS and closed-loop
instabilities. This requires detailed knowledge of the space and time evolution of
perturbations by thermal blooming. The purpose of this paper is to calculate the
perturbation growth of a thermally bloomed laser beam which is partially phase
compensated, and calculate in particular the initial excitation and growth from

turbulence such as one encounters in the atmosphere.

> Linearized Tt Ty | Bloomi

Thermal blooming is a locally self-defocusing nonlinear propagation
phenomenon. Whole-beam blooming effects are well known and require the full
nonlinear description”:2. But the appropriate tool for studying instabilities of thermal
blooming is the linearized theory of small perturbations. The linearized theory has
been presented elsewhere; the reader will find a rigorous discussion in references 4
and 5. Here we mainly state the underlying assumptions and quote without proof the
results needed later.

We use the standard model of thermal blooming propagation’. The optical

electric field Eexp(i (cot - kz)) obeys the scalar paraxial wave equation,

0z 2 €0
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where ¢ is the dielectric constant at frequency , k = 2n/A is the wavenumber in a
uniform fluid of dielectric constant &g, and a,, is the extinction coefficient. The beam
propagates in the +z direction. This equation is valid for quasimonochromatic light far
from the source, propagating in a neutral nonconducting and nonmagnetic fluid®. This
includes most cases of practical interest, especially laser beams in the atmosphere.

The fluid dielectric constant obeys the advection-diffusion equation with isobaric

heating,
) 2
(§+ voV)t-: = 20Nl al + DV e (2)
where v(z) is the mean transverse fluid velocity, | =| E | 2 is the irradiance, o is the
absorption coefficient, J/U = 1 Tie_ - l—ai is the fluid thermal response,
2eoCp| 9p PoT

and @ is the diffusivity. This equation for the fluid is valid as long as (a) the time scale
for heating is long compared to the acoustic transit time across the beam, so the fluid is
always in pressure equilibrium, and (b) the density changes are too small to affect the
velocity field. The optical and fluid fields are nonlinearly coupled by the absorbed

irradiance.

The evolution of small-scale or localized perturbations can best be studied by

linearizing about a smooth background solution. Choose the background solution to

have uniform irradiance 1, at z = 0 and a self-consistent phase ¢, , that is glo and ¢,
solve Egs. (1), (2) where I = exp (J Ote) is the transmission. The electric field

envelope with log amplitude and phase fluctuations yx, ¢ around lo, ¢o is
E = VT I exp(-igo + y - i0) (3).

The small fluctuation p of the fluid dielectric constant is
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or L= nr;_ono , n =1 (4).

Substituting Eqgs.(3), (4) into (1), (2) and retaining only the first order in the

perturbations gives?

ad _ 1

= = 2kV2¢ (5a)
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(% + V- V)u = -2Iq + @Vzu (6)

where I' = JVZ,oJIO. The equations are Fourier transformed in the transverse xy plane

and Laplace transformed in time to obtain

aA ~

% oo acd (7a)
0z
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—¢ = Kp-acy (7b)
0z

(v + DK - ik - V):L = -21“; + uo (8)

where x is the transverse wavevector, all fields ( x, ¢ and p) are Fourier amplitudes at «,

a, = x2/2k, v is the complex Laplace variable conjugate to time, caret * indicates
Laplace transform, and pu° is the t = 0 refractive index perturbation. Egs. (7) and (8)

can be combined into a second order equation for the irradiance fluctuation F = 2x:
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where  B?(z, V) .
R ax v(z)

and z—: = 2a,<$ . Egs. (7) - (9) determine the growth (or decay) of the perturbation

as a function of z and t.

Perturbation solutions are completely determined by the boundary conditions,
which are the optical fields x, ¢ (or equivalently F, dF/dz) at z = 0 and the refractive
index field u0 att = 0. The perturbations at z > 0, t > 0 are given by four Green
functions, denoted J, K, L and b, integrated over the boundary conditions. We write the
solution in a compact "vector" notation. Intensity and phase perturbations are grouped
into 2 x 1 vectors with i- and ¢-components: F = (F, dF/dz) and p = (0, ). The Green
functions are 2x2 matrices of operators with matrix elements labeled ii, i9, etc. [We

sometimes use the same letter to represent the operator matrix and its i¢p matrix

element; the meaning is always clear from the context.] The solution is 4.5

M
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N
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]

J(40)F(0) + KZf K (2s)pO(s)ds (10)

A
=
G

I

o)

- b(2)J(z|]0)F(0) + KQI L (z|s) u’(s) ds (11).

The subscript x has been dropped since all subsequent analysis will be in the Fourier

domain. Green function J is the homogeneous solution of Eq. (9), that is it obeys

i o -1 |.
%Zzls)ﬁu Jzls) = 0

acp3(z) O



with the boundary condition

3(s|s)=((1)-?).

All other Green functions are constructed from 8 and J:

Rejs) - 30

v(s)
A 0 0
b = !
g -1 o
andL(ds) = -bB)KEs) + 229
v(s)

J is the source Green function; its unstable growth in z and t is well known, and is due
to stimulated thermal Rayleigh scattering (STRS)1-3. K is the turbulence-blooming
interaction Green function; it describes the rapid growth by blooming of perturbations
induced by refractive index turbulence3s.

The Green functions at t = 0, and at all time without thermal blooming, are

COS a¢ Z al sinagz
0 . 2
K’ (z|0) = exp(ik * vt—Dxt) :
— 8¢ Sin agz COS Ay Z

L° (z|0) = exp(ix* vt — Dk2t) §(z)

and J° (zI0) = K°(z) &)
With these Green functions one can derive all the standard results of the classical

theory of propagation through weak turbulence 11,12,



Systems with optical compensation have two beams, an "intense" laser beam
originating at z = 0 and propagating in the +z direction which induces refractive index
changes by absorption, and a reference "beacon" beam originating at z = L and
propagating in the -z direction which is affected by the refractive index but which is too
weak to induce significant index change of its own. The beacon enables one to
observe propagation conditions of the intense beam path with a sensor at the intense
beam transmitter (z = 0). This is known as "return wave sensing". The beacon

perturbation solution vector FP = (FP, -dFP/dz), given the additional boundary

conditions of FR at z = L, is%®

Foz) = °L-2FWL-BWUIF@E (12).

— f (s - z)f L(gnp’(drds

Jb is the beacon Green function without blooming, i.e. the homogeneous solution of Eq. (9)

for I = 0 with beacon wavenumber k,; it is space-invariant and therefore acts as a
correlation kernel. The beacon-blooming Green function

B(L|z) = fjb(s - 2)b(s)d(s|z) ds (13)

gives the beacon effect on intense-beam perturbations. Green function b (z) is
the infinitesimal version of Green function B (L| z). The complete solution in terms of
the boundary conditions and five Green functions is shown in Fig. 1.

A correction system creates an intense beam perturbation at z = 0 based on a
measurement of the beacon perturbation at z = 0. The intense beam produced by
a linear real-time control process is

F() = GFb(0) + f (14)

where G is a 2x2 matrix representing the control law and f is noise. In general G can

mix perturbations at different transverse wavevectors, although we will usually discuss
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the simpler case of G diagonal in k. the beacon solution Eq.(12) into the linear control
process Eq. (14) gives the intense field at z = 0:

FO) = [1+@BWMo)'GlIWLPF L) + Kzfﬁb(s)j E(slr)uo(r)drds)

0 ; (15).

+[1+GBWoO)T
The intense field anywhere else along the path is found by substituting this into the
propagating solution, Eq.(10).

If the operator 1 + GBis singular, i.e. if

det(1 + GB) = A = 0 (16),
then the result of the correction system is unstable in thermal blooming. This is known
as the closed-loop instability4. It is an absolute instability. Control laws generally are
unstable in blooming; stable control laws are the exception. Eq. (16) is a
transcendental equation for the dispersion relation v(x) of the instability.

A common method of optical compensation is phase reversal (also called phase-
only or phase-conjugate correction)--the intense beam is launched with an optical path
difference (OPD) which is the opposite of that on the beacon. This is implemented by
real-time adaptive optics'0. The sensing and correction typically is done on a two-
dimensional lattice of points, which is space-variant, so generally the control system
mixes spatial frequencies (the G operator in Eq. (14) is not diagonal in x-space). For
simplicity we start with an idealized space-invariant model of the adaptive optics which
is diagonal in x (in a later section we discuss how this is extended to a more complete
description of adaptive optics). The control law matrix for this idealized phase-only

correction is
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where g is the control loop gain (perfect correction = 1), and the propagator is

o 1 0

1 +GB]" = (18).
gB(pi 1
A A

InthiscaseA =1 - g §W. The singular behavior of this propagator in thermal blooming

is known as the "phase compensation instability" or PCI.
The various thermal blooming Green functions can be written in closed form for

only a few cases of heating I'(z) and flow velocity v(z).

dp
However, for }a;/a Bz‘ << 1 a WKB approximation to J can be obtained 4:
K

Jislls) = e sl f 19).
o(z]s AT sina !B (19)

The special case of uniform 9, v and I can be solved in closed form?. We study
this case in detail in the next sections. Note that uniform diffusion simply gives a
multiplicative factor of exp(-22t) on all Green functions. If velocity is uniform, i.e.
v(z) = v, the ix - v term in EQ.(8) can be eliminated by transforming to the convected

frame, x — x - vt. With these simplifications, the intense beam Green functions in the

complex plane are
Cos ax Pz sin ax Bz
Jz) = vK@) = ax B (20).
-ax P sinacPz  cos akfz

In the convected frame time domain, the Green functions (i¢p matrix element) neglecting

diffusion are
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K(z,t) = i (T ket [zjn (axz)] (21a)
n=0 (n!)z
and J(zt) = %K(z,t) + K(z0)8(t) (21b).

Here j, is the spherical Bessel function of the first kind, and I'kzt is the radians of phase

shift due to heating for time t. The beacon-blooming Green functions we will use later

are

Bpo = p_-1 [1 - cos Bl cosb? - D sin Bl sin b@] (22a)
B% - b2 B
3 p°- 1 [B
Boi = ai i [— sin B cos bl - cos B sin b@] (22b)
B _ b2 b

where { = a L is a dimensionless measure of the optical path length and the

transverse wavenumber x, and b = k/kp (no relation to blooming operator b below

Eq.(11)).

3. C| 1 G Euncti 11 LBl :
For the uniform fluid the closed-loop Green function for phase-only correction (PC)

can be written in closed form. The turbulent and absorbing fluid extends from z = 0 to

z = L, the beacon is an infinite plane wave at z = L (FP = 0), and the intense field at

z = 0 has phase noise y and log amplitude noise n. Substituting Eqs.(22) and (18) into

(15) gives the field at z = O:

F(0) = 2n (23a)

2
/\’ -~ 1 ~ A ~
F'(0) = 2a¢(0) = Zl:‘l’(k“ v+ 29 Bcpin}

o f M(s) * 1’ (s)ds (23b)
vV Jo
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where prime ’ indicates d/dz, and M/V is the control system response to index fluctuations at

range s,
2
ﬂ(s) = g‘i ol [1 - cosbags] + cosbacs - Q(s)
8 |p? - b2 (24)
p° - 1
with Q(s) = = 2[1 - cos Bag(L - s)cosbay L - ?sin Bac(L - s)sinbagL]|.
B~ -b

Note that A =1 -gQ(0). The field, Eq.(23), is a function only of the noise and the initial

refractive index.

The log amplitude and phase of the intense field at z is

L

;(z) = a,(kf R(z - s)po(s)ds - aKkR(z)f ﬂ(s)uo(s)ds
0 0 (25)

o~ ~~ _ ~ ~~ g N
+ VK (@)1 + vaKK(z)l[w L 9n ‘p'}
A ax

(m)=kfkﬁ-gm@®-MMafmmm@®

0 . o (26)
N an gcpi
ol

V o TS
+ YR (2 + VR ()~
ag A

where K denotes the i¢ matrix element. By inspection of Egs.(25), (26) the closed-loop

turbulence-blooming Green function for phase-only correction is
~PC A o
K (z]s) = K(z)M(s) (7).
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The effect of turbulence on the optical field is

2 = ¢ f K(z-s)u%s) - ¥° f K" (4s)u(s) ds

™

(28).
+ noise
If we expand the Green functions to O(v") and Laplace invert term-by-term, we get
the Green functions as Taylor series in time. The Taylor series are absolutely
convergent for allt > 0. For the special case of g independent of v (which corresponds
to a control loop with instantaneous feedback and infinite bandwidth) and b=1, the

time-dependent PC Green function without diffusion (i matrix element) is

o g w lrwad” & ()T, )
« (Z|S.t) B 2ay ngo n! m2=lo 2m m!(n = m)! (293)

m+ 1;

. {cos u[(2u - w) im@u -w) + w™* 1, (w)]

gl w2 £ (Ol ghifo- 32 £ (7)ol 8]

=0

whereu=a.z, w=as, and

n-1 n -
To) = 1, Talt) = gu 3 (-2—“) I(’I‘)T.(u)[sinujn..(u) +COSUjn-1-1(U)]  (29D).
|=0

This should be compared to the free-running Green function, Eq.(21).
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Of great practical interest is the interaction between blooming and a random field

of initial refractive index perturbations. In this case the appropriate measures of optical

perturbations are the spectra of log amplitude and phase. For a uniform fluid these are

<XX.(Z-1)> = aikz{f fK(z-s,t)K(z-s’,t)(,.xo(s)uo'(s'»dsds’

+ f f KPC (z| s, ) KPC (2] &', ) <u° (s) u* (s)) dsds’

(30a)
-2[ f K(z-s;t)KPC(zls’,t)Re(uo(s)uo'(s’»dsds’
(06’ @ 1) = kz{f j K(z-s0)K(z- st p(s)dsds
+ f f KPC (z| s, ) KPC' (2] &, t)(uo OInd (s’))dsds’

(30b)

-2 f f K (z - s,1)K"® (2] &, 1) Re <;1° (s) ¥ (s’))d sds’

where brackets <> indicate an ensemble average over realizations of the random field.
In the special case of locally homogeneous thermal turbulence, the index

fluctuations have a Kolmogorov spectrum with amplitude characterized by the structure

constant C&(z), which is generally a function of position along the path. Following

Tatarskii'l, the spectra are given by
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b (LY) ~ ak? - 2na° f Ci(e)[K(L-s1) - KP°(L|s,)®ds (31a)
(00 (L) ~ K- 210° f C2E[K (L-s1) - KO(LIs;0] ds  (31b)

where f (uo(s) uo'(s +C)>d§ = 2nd° Cﬁ(s) (32)

is the spectrum of initial turbulent index fluctuations, and @° is the fundamental

Kolmogorov spectrum of a passive contaminant1.12

o _ .033
T 1173
K

)

The transverse coherence length ry of the turbulence is defined as

-3/5

fo = {(0.423)k2 f Ci(s)ds}

The end-of-path electric field spectrum @ = QE;«|2>. In the linearized theory the

field spectrum is equal to the sum of the log amplitude and phase spectra or
variance ® ~ ()" + (0d)* , since these variances are small and the higher-order
correlations can be neglected. We will use the term "field spectrum” interchangebly
with the "sum of the variances of x and ¢", except in situations where the field
perturbation becomes large and the premises of linearized theory are violated.

The field spectrum has three parts: open loop (~K2), closed loop (~KP02) and
mixed (~KKPC). Each part is a Taylor series in time, and the nth term is rather lengthy

to write. The Appendix contains the general formula of the field spectrum for uniform
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5o ss 2,
initial turbulence (Cp independent of z). Here we make some general observations

and numerically evaluate an example.

In the linearized blooming theory the optical spectrum induced by turbulence
always is proportional to the initial index spectrum, as in Eq. (31). This is a direct
consequence of linearity, and holds for any profile I'(z) and v(z). For initially uniform
turbulence the spectrum @ is proportional to N6, where

k rg 18 rg
NT = — = —
8L 4\l

is the turbulence Fresnel number. In a uniform fluid the appropriate measure of

transverse wavenumber k and of path length L is the dimensionless quantity £ = a L or
equivalently the Fresnel number Np of the perturbation,
2 2
oL 4

The appropriate measure of time is the phase shift, due to heating of the fluid by the
uniform background beam for time t, in "radians of blooming" 6 = I'kzt or equivalently

"waves of blooming" N,
I'kzt

2rn

N, =

The initial spectrum with an instantaneous PC feedback loop is

.0243 L 1 sin 2¢

If a wavenumber k is perfectly phase corrected (g(k) = 1) then Eq.(34) means the initial
end-of-path spectrum contains only the scintillation of uncorrected turbulence at x; the
turbulent phase fluctuations at « are completely eliminated. Att >0 (or N, > 0) phase
and log amplitude fluctuations grow by STRS and PCI.

Fig. 2 is an example. The optical spectrum @ is calculated for a path with uniform

I, vand £. The limited spatial resolution of a PC control loop is modeled by a
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wavenumber cutoff kps or equivalently a Fresnel number cutoff Np; perturbations with
Np > Np¢ get some phase correction, while Np < Np are uncorrected. Initially @
contains mainly scintillation below cutoff and is Kolmogorov above cutoff. After
blooming the spectrum below loop cutoff shows PCI exponential growth, with the
shortest wavelengths growing the fastest; the spectrum above cutoff shows STRS
growth.3 Whether the spectral growth is fastest for controlled perturbations or
uncontrolled perturbations, i.e. whether PCI or STRS dominates, depends on the
choice of control loop cutoff Np.

The wave structure function1? is

D(r,6) = 4:{[@(@,9)[1 - Jo(r V2L VT) (35)

where J, is a Bessel function. Fig. 3 shows the structure function for this example. The

Strehl ratio may be calculated in general by an aperture average of the mutual
coherence function exp ( ;— D) , orin linearized theory simply by summing the energy &*

in all perturbations,

Strehl =~ 1-& = 1-j dedeKy
(36),

= 1- 2n§f <D(€, 9)d€ (isotropic)

so long as & is finite (as is the case for perfect phase correction at long wavelengths).

Both methods give the same result in linearized theory.

ol ition Into Singular M
The representation of the PC Green function and wave spectrum as Taylor series
in time (Egs.(29) and (A9) - (A11)) is convenient, but it does not give much physical
insight. In each order many different growth phenomena with different rates are
superimposed and beat together. In this section we clarify the physics by representing

the optical field as a superposition of modes. Each mode has a direct physical
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interpretation. Both growing and damped modes are present. In general an infinite
number of modes are required at each spatial frequency, which is not very tidy. But
every spatial frequency usually has a single dominant mode, so a simple physical
description explains the thermal blooming phenomenology. Our analysis is for phase-
only correction in an atmosphere of uniform I', v and £, but the method is .
generalizable to other control laws and atmospheres.

Consider the intense field fluctuation I?(O) created by the control system in
response to thermal blooming, Eq. (23). The response operator M has the following
singularity structure in the complex v—plane (Fig. 4): (a) an infinite number of poles at
zeros of A, (b) an essential singularity at -Qx? which also is an accumulation point of
poles, (c) poles in g/A at the finite resonances of the control system under load, and
(d) a singularity at e, M (s, V- oo) =g (»c, V- oo) cos bags. The noise contribution to
F(0) has the same singularities. Call v; the zero of A with largest real part; number the
other zeros vj in the order of decreasing real part. Call v_, the pole of g/A with largest
negative real part; number the other poles & in the order of decreasing real pan.
Number the residues Resj in the same way.

For every singularity there is a unique spatiotemporal mode. If the spatial
distribution of index u%(s) has nonzero overlap on Res; (s) then the jth mode is excited.
Also, if the noise ?(v,-) # 0then the jth mode is excited. Modes with Re v; > 0 grow,
modes with Re vj < 0 decay. In the absence of blooming I" =0 and A =1, the properly
designed control system has all the poles of g in the left half-plane, and all modes
decay--i.e. the control system damps all fluctuations. This of course is what we expect
from a feedback control loop. However, with blooming there also are growing
modes(in fact an infinite number of them if one neglects diffusion)which are excited by
the random index field and by noise. With blooming the same control system does not

damp all fluctuations, but must amplify some of them.
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All the spatiotemporal structure of the modes, and the decomposition of the
intense field at any point into its constituent modes, can be found by the following

analysis(which we only sketch here).

1. Invert ﬁ(v) — M(t) by Mellin transform. One can show thatatt >0

Ms,t) = X exp(v,-t) Resfs) + g(oo) 3(t) cos bays ' (37),
i
where the infinite sum is absolutely convergent (Res,, ~ 1/n2) and the essential
singularity does not contribute.
2. Laplace transform M(t) — m(v) to obtain

Ms,v) = X Besis) gle<) cos bags (38).
PV

3. Rearrange M/ as a sum of poles with
-1 .1 (39)
V{V = Vj) Vj (v = Vj) Vv

0 2
where vj = vj + k.

4. Substitute Egs. (38), (39) into (25), (26) to obtain the optical perturbations on

the intense beam at z. Each pole term combines with :l(z), Eq.(20). This gives the

2 )
propagated mode an essential singularity at -2k from B(v), in addition to the pole at v;.
The jth mode has two parts: a part like exp(vjt) 3(2, Vj) that grows (or decays) exponentially,

and a subexponential part from the essential singularity.

5. The jth mode has a multiplicative index source

L
Sj = j n(s) Resg-(s) ds (40a)
0 Vj
and noise source
- A[nB.)
N = Res[L|Y . Res—g—'—n—w')’ (41)
A Kk A k ax

where subscript j indicates a quantity evaluated at v = Vje The singularities at -Qx?

and o~ also have index sources
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. jL . f ﬁ(s,v = -@Kz)
6 = ne(s) ds (40D).
0 l g(oo) cos bays

The limit v — -2 is taken along any contour that avoids all the poles.

With blooming S, = 0. With real control loops g(«) = S = 0.

6. The sources obey a sum rule,

2SS = S.-S (=0 usually) (42)
j#0
);Nj =0 (43).
J

Note that

R T e I

where the contour encloses all the poles and the limit € — 0 avoids the poles. But
this_[ = 0, which proves Eq.(42).

7. For vja first-order zero of A, the sources are

L 2
S = f ds p°(s) 9i IB - [1 - cosbays] + cosbags - Qs) (44)
J 0dA |p? - b2 j
Vj —
oV
vi 1|7 ~ By
N' == —j——— —_ + —(p—- 45 .
! A k[w o l‘ -
Vj-——
oV

8. The essential singularity also contains the open-loop or free-running STRS
contribution from the index field and the noise. We call this the zeroth mode.

By this analysis one obtains the intense optical field perturbation as a
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superposition of the modes:
Flz,t) = 2¢zt) =

Ko, ) *Kpple) + [Kiz, +) + KY2)8()] * 2n() + afK(z, +) + KA2)S)] * 2()
&+ 2 (exp(v,-ot) - 1) iiﬂ&a"—z Kz(Nj - §j)
j Biax (46).

+ X Cz YK (N; - S)) + KA2)x%(So - S.) - K(z. 1) x2S,
i
Here K is the index blooming Green function Eq. (21), K® = K(t=0), superscript dot *

means d/dt, and

oo

n-1 o\n{ o.\m
Clzt) = X X b "ij!ir)m(vi‘) (2 jn(ax2)] (47)

n=2m=1

is the subexponential part of mode j. The relative minus sign between Nj and Sj is by
convention; it is the same minus sign in Egs. (23b) and (28). The transverse
wavenumber x is implied throughout; the field is an infinite superposition of modes at
each transverse spatial frequency. Diffusion is neglected in Eq. (46); with diffusion all
the Green functions and all the modes are multiplied by exp (-2«?t). The exponential
part of mode j is a simple sinusoid in z with longitudinal wavenumber B‘-aK. We will see
in the next sections that at spatial frequencies with good phase correction (g(x) = 1) the
exponential part of mode 1, the fastest growing mode, dominates after a short time.
The modes and the free-running Green functions appear to violate energy
conservation: in the linearized theory each transverse wavenumber is decoupled from
all others, yet the energy in a wavenumber grows in time. But there is no paradox.
Physically there are two energy sources in the linearized theory. First, in the STRS
interaction the background plane wave scatters energy off pinto F. The growth of F is

first order, but the balancing decrease of |, is second order so we do not see it.

Second, the feedback control system can create and amplify perturbations by
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transfering energy from the background plane wave to F. Again the growth of F is first

order, but energy conservation is second order.

6. Fastest Growing Mode with Phase Correct
Phase-only correction with thermal blooming creates the exponentially growing
unstable modes known as the phase compensation instability (PCI)4-6. There is a
simple physical reason for PCl. Warm low-index spots in the fluid defocus the beacon.
Phase reversal correction automatically focuses the intense beam into these spots

heating them further. So phase correction makes hot spots hotter and cold spots

colder.
Fig. 5 shows the dispersion relation of the mode 1 exponential growth rate v, for

perfect phase reversal correction in a uniform fluid. v, is proportional to the "blooming

rate" N, = I'kL/2r (waves/sec). Its asymptotic values are46

47CN7L . . P
Vi o for Np >> 1 (geometric optics limit)
Np (48).
— 4N, for Np << 1 (diffractive limit)

Small-scale or short wavelength perturbations with low Fresnel number are more
unstable than large scales or long wavelengths, because short wavelength phase
perturbations propagate more efficiently into log amplitude variations and consequently
produce more heating over the path. Diffraction of very small scales causes phase and
log amplitude to alternate along the path, so the instability growth rate in the diffractive

limit asymptotes to a constant.

The end-of-path optical spectrum in the exponential part of mode 1 alone is
sin B1@2 2 "
Oy = (XX*>1 + (¢¢*>1 = exp(2v1t) T‘ + ICOS B1q kz«N1 - S1)(N1 - S1)> (49),
1

where brackets <> mean an ensemble average over the noise as well as the random
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. . . o .
index field. The residue factor v{ dA/dvy needed to calculate the source is shown

in Fig. 6; itis @ (1) over the region of practical interest. The mode propagation factor,

ﬂnB182 2 . e :
5 +|cos B1 8{ , iIs shown in Fig. 7. The total energy in mode 1 summed over all
1
spatial frequencies is
b :
& = 2n§ f @y dl (50)
0

where £ is the phase correction cutoff.

In the following sections we calculate the growth of @, from noise and turbulence.
We are especially interested in the large scale or geometric optics limit, since the
Fresnel cutoff of typical phase correctors for the atmosphere is large!?. For simplicity

we assume the beacon and intense wavelengths are equal(b = 1); also we drop the

subscript 1 since all quantities are evaluated at v = v,. Also we assume the noise and

initial index are uncorrelated, <NS*> = 0.

Z. Growth from Noise
We will calculate @, for two noise sources: (a) a pure log amplitude or phase

fluctuation impulse for a short time At, and (b) a stationary Markov noise process. All

noise sources N are calculated from Eq. (45).
The Laplace transform of an impulse perturbation f, for a short time At is

f = f,At. This is substituted into y or 7 in Eq. (45) to give the noise source

5
KN = 1_[%”]09 “"} Vit (51).
vaA dg

av
At frequencies with perfect phase correction N simplifies further, since

9By i _ Bcos? g = 1 (52).

ax sin B¢
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At long wavelengths(¢ — 0) N simplifies even further, since
lim B¢ = w2
£-0 ,
(53).

lim L . /4

£50 9v
Substituting Egs. (48),(52), (53) into (51) and replacing AN, for Ny At the noise source

at large scales is

64 T
kN ~ — ANy (£ = ) 54).
€ o0) 2 x( Yo + 5 No (54)

In the geometric limit of correction, log amplitude noise is most effective at exciting
exponential growth; in this limit the end-of-path perturbation is mainly log amplitude
also.

We compared this theory to numerical simulations of propagation in blooming.
The simulations were done with our computer code, ORACLE, which solves the full
nonlinear wave-fluid problem on a discrete four-dimensional mesh. ORACLE
represents the electric fields by two-dimensional complex number arrays and
represents the fluid as a layered medium with a two-dimensional real density array for
each layer. On each time step ORACLE propagates a beacon pulse backward and an
intense pulse forward by split-operator FFT13; then the density arrays are convected for
one time step and heated by one pulse. The intense beam can be phase compensated
using information on the beacon phase.

The simulations were done for a square beam which fills the transverse mesh,
and also for a round beam with apodized edge. The fluid had uniform I" and v. A pure
sinusoidal intensity perturbation (wavenumber k) was introduced at z = 0 for one time
step, then removed; all subsequent time evolution of this perturbation was due to the

interaction between phase correction and blooming. Perfect phase reversal (g = 1)

was done on every mesh point and time step. The growth rate was measured by |EK|2,

the electric field spectrum at path end. Whole beam Fresnel number N typically was
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~10,000 , much larger than Np. The computations were done on a Cray X-MP in 64-bit

mode, with 128 and 256 transverse zones.

Typical results are shown in Figs. 8 and 9. Fig. 8 compares the analytical and
computational growth rates. The measured dispersion relation is in excellent
agreement with the leading singularity v(x). Fig. 9 compares the numerical time
evolution from ORACLE to the growth of mode 1 from impulse noise, Eqs.(49) and (51).
The agreement is excellent after a short time. [The spectrum eventually decays
because the index perturbation is convected out of the laser beam.] The behavior at
other Fresnel numbers is similar. Evidently, at wavenumbers with good compensation,
mode 1 dominates for N, > 0.1 wave.

We consider two types of Markov noise process (b): (i) noise with a finite
correlation time t., correlation function (o) f(t) = (ff)exp(- i /) and (ii) a discrete
time series with time step At, correlation function ({0)f(t) = (ff)@(t) rect (v2at).

The power spectrum of the Markov process is

. v (v + 1/t)
(v tv)) = ) (55).
1 1-exp (-vAt) (i)

vZ 1 +exp (-vAt)

The two processes have the same form of power spectrum in the low frequency limit

(vtc and vAt << 1) and the high frequency limit (vtc and vAt >> 1). We are mainly

interested in modes with low frequencies (compared to the noise), i.e.,

v{ << 1/t or << 1/At. Digital computer simulation of a noise process with no correlation

between time steps makes a discrete time series. A digital simulation with time step
At << 1/v can be scaled to give the same mode 1 source as a Markov process with
to << 1iv.

The random noise source for mode 1 at low frequencies, assuming uncorrelated

log amplitude and phase, is



2N - 1l s -géwiz},fvtc (0
ENN) [<W> ) | vav2 (i) =6}

In the geometric limit, and with the replacement of AN, for Nite or NaAY/2, this simplifies to

- 2 - -
KANN’) ©50) ANAZLS[€<W>+:—Q<TITI>} (57).
T

The asymptotic form of the propagation factor is

2 2

+ |cos B(’,lz . (58).

(-0) (w2

Substituting these into Eq.(49), the low frequency and long wavelength spectrum from

sin Bl

Markov noise is

2

L exp(2vt) ANkiif n“ & (yy) + ¢{m) (59).

Notice that a spatially white noise process (f independent of k) does not make a white

noise optical spectrum. If the PC cutoff is at large scales, so v « £ over the entire

spectrum, then by Egs. (50) and (59) the total mode 1 energy excited by white noise is

- 3 _ an2 :
& =~ AN, [1024 S ¥ exp(G)(G® - 3G2 + 6G - 6) . 6
5 G4 G4
n )@ - 1) s
256 2[exp(G)(G - 1 1
+ =l X { + ——}
n G2 G?

where G = 8nN;/Npc is the gain at the cutoff wavenumber (not the G control operator

in Eq.(14)), and ¥2 and X? are the phase and log amplitude variances within the cutoff.
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rowth rbul

The mode 1 random index source from Eq.(44) is

L L 2 .
2 - -
K <SS> = f f 9 (s - Q(S)X1 « Q(s')Kuo(s)uo(s’»dsds’ (61).
o Jo | ©0A
V o
ov
In the case of thermal turbulence this can be simplified by the standard Tatarskii
analysis!1:
2 * 2 of 2 g < 2
(ss’) = 2ndo f cls)| 211 - asfas (62)
0 [o]
av

Eq.(62) is the rigorous formulation of a simple intuitive picture--the turbulent "seed" of
instability is a propagation-weighted sum over the path. Cﬁ measures the turbulence
and |1 - Q|2 measures propagation (Green function). The weighting tends to increase
with distance out from the transmitter, as phase fluctuations propagate into amplitude
fluctuations and heating inhomogeneities. Intuitively, with good phase correction the

turbulence at the transmitter should not excite an instability; in fact for g=1 the weighting

1-Q(0)=0.
If the turbulence is uniform or globally homogeneous then the range integral can
be done,
2 [ 2 2
—f 9 111 -qe)ffds = qx) =
L 0 00A
ov

0 Pl . sin?? | sinh 2Im(BL) + | oos?e - sin?¢ | sin 2Re(B0) 63).
0 9A] BP 2Im(BL) BF | 2 Re(pe)
ov

+ 2sinl cos?/[Re(l)

sin” Re(B0) (1_ ) sinh? Im(B@)}}
B

Re(p?) B Im(BL)
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Fig. 10 shows the g function over the range of interest. Substituting Egs.(63) and (33)
into (62) we obtain the mode 1 excitation by uniform turbulence:

£ _ .245 q(lc) _ Lqg
k¥ss’) = 5 T - .01215W (64).
0 K T

The numerical factors are precisely

450 L) 005
3131 ri/e)
and
1 (50\/6 I"%(1/5)
S (POFF2 A . ote1s .
12(12) 26 0.01215

The wave spectrum and Strehl ratio from turbulence are found by substitution of Eq.
(64) into Eqgs.(49) and (36).

Fig. 11 shows the mode 1 end-of-path spectrum growing from initially uniform
turbulence. Notice the strong similarity between @ (Fig. 11) and the full @ (Fig. 2) for
wavenumbers Kk < kps. The initial spectrum at large scales is mainly log amplitude

1/6

: 1 . il
perturbation and decreases gradually as k ®or Np Most of the initial uncorrected

scintillation at large scales couples to mode 1: with perfect phase correction, att =0

im @1 _ 96 . gg5 (65).
L 50 O 4

Phase perturbation becomes more important at small scales. ®4 grows exponentially

in time at rate 2v(x) (Fig. 5). The long wavelength form is

L 81/6 ( )
®;  ~ _ (.0049)=_— exp(ovt (66).
(¢—-0) k N8
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Curiously the initial spectrum (Fig. 11) is quasi-white noise over the wavenumber
range of practical interest, 100 > Np > 1 or 0.15 < xYL/2k < 1.5. Ifthe PC cutoff Npg > 1

then the initial turbulence energy &, in mode 1 is
& = (0.3 radf (67).

Much of this wavenumber range has v o {, = k2. For true white spatial noise with
quadratic gain the amplified energy is

g; = & exp(G% (68)

where G is the gain at the highest wavenumber. If the PC cutoff is sufficiently large, say

Npc =, then the mode 1 energy excited by turbulence will approximately follow

exp 8—nN -1
o _ (03radP exp(@) -1 _ (06radfP — " \Nec €9)
1 N8 Npg G B NEL N;, '

Fig. 12 compares our two analytic predictions of perturbation growth from
turbulence, the Taylor series @(t) (Egs. (A9 ) - (A11)) and the leading exponential
mode ®,(t) (Eqgs.(49) and (64)). Agreement is excellent after a short time. At larger
Fresnel numbers @ becomes exponential even sooner. Evidently mode 1 dominates,

at wavenumbers with good compensation, for N, > 0.1 wave.

. Comparison to Numerical Results with Turbulen
Numerical simulations of thermal blooming in turbulence were done with the
ORACLE code. The simulations used square mesh-filling beams and an atmosphere
with uniform Ci, I, vand £. Each initial density screen had a Kolmogorov spectrum and
Gaussian random phases in Fourier space. The control system response was modeled

by a Fourier filter g(x) applied to the beacon phase before the phase reversal

correction. The filter functions were supergaussian,
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olx) = 2 ()
These filters have a smooth roll-off, but one may think of the nominal PC "cutoff" as the
spatial frequency kp where g(xpc) = 1/2. Fig. 13 shows the analytically-predicted
mode 1 growth rate for various filter shapes. A significant range of wavenumbers was
left uncorrected.

Fig. 14 compares the linearized theory spectrum (sum of x and ¢ variances) to
ORACLE simulations (numerical E-field variance) for three levels of turbulence.
Numerical results are in excellent agreement with linearized theory, as long as the total
energy & in all perturbations is small. This of course is the regime where we expect
linearized theory to do well. The spectrum below cutoff exhibits the PCI exponential
growth of mode 1. [The initial hesitation, and the shift of the PCI peak to a lower
wavenumber, is because the fastest growing mode with filter g(x) is at a wavenumber
slightly less than xp; see Fig. 13. Systematic deviations from theory at the very lowest
wavenumbers are due to non-Kolmogorov amplitudes in the initial density screens.]
The spectrum above cutoff has the STRS growth of mode 0, with asymptotic STRS at
very high wavenumbers!:3. For a mesh-filling beam the Strehl ratio is exactly 1 - &* by
energy conservation. The Strehl ratio, Fig. 15, is dominated by exponential growth to
saturation. Near saturation the spectrum is enhanced at harmonics of kpc, and also at
all the corrected wavenumbers x < xps. At saturation the spectrum flattens and
becomes unstructured, and the Strehl ratio rapidly falls to a low value. The behavior is
similar for other values of the cutoff Np..

Numerical simulations of thermal blooming with good phase correction
(9(x < kpg) = 1 and initial Strehl = 1) show essentially the same spectrum evolution for

all levels of turbulence. With a fixed cutoff k¢, larger initial turbulence makes

saturation occur sooner. But the phenomena of instability excitation and growth up to

saturation are basically independent of initial turbulence. The same linear phenomena,

scaled by N}s/s, account for the spectrum and Strehl ratio at all levels of turbulence.
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The departures of the numerical spectrum from theory near saturation arise from
second and higher order nonlinear interactions ~ F" dropped from the linearized
theory. The mode-beating in these interactions generates perturbations at sum and
difference wavenumbers, making energy cascade to ever-higher spatial frequencies.

Frequency summing enhances the spectrum at harmonics of the largest perturbations,

which typically are near xps. Frequency differencing enhances the spectrum at low
wavenumbers. Harmonics of kp in the spectrum are common evidence of a closed-

loop thermal blooming instability. The harmonics sometimes are masked by strong

uncorrected turbulence at k > xp ¢, but they reappear if open-loop growth is slightly
damped by other phenomena.

At saturation and beyond, the optical and fluid fields break up into three—
dimensional structures. The most common structures are filaments along the
propagation direction. These look like "cells" in the transverse plane, as shown in Fig.
16. The cell size is equal to the PC cutoff wavelength 2 n/xpc, which means the
structures are the result of PCl. Non-isotropic damping phenomena, which we will
discuss later, change the 2D cells into stripes and the 3D filaments into ribbons.

Growth of perturbations by blooming has important consequences for the
numerical simulation of propagation. The open and closed loop instabilities and the
nonlinear cascade make perturbations grow at all wavenumbers out to the Nyquist
frequency of the simulation. If the simulation is continued to sufficiently large blooming
with little or no damping, then the results eventually are dominated by Nyquist noise
and are no longer correct. Numerical results may even begin to violate physical
constraints such as causality. The existence of small-scale thermal blooming
instabilities explains the break-down of good numerical simulations. A large Nyquist
energy, although usually symptomatic of a purely numerical code‘ instability, is in this

case physical and cannot be avoided in undamped thermal blooming.
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10. Discussion

The last few sections analyzed in detail perturbation growth by thermal blooming
in a fluid with uniform properties T, v, and Ci. The results form a complete solution
of linearized propagation in this simple and very idealized fluid. Growth from
turbulence has simple asymptotic forms, Eq.(66) for phase corrected scales
¢ <€pc << 1 and Eq.(A9) for uncorrected scales £ > 1. Intermediate scales £ ~ 1 have
more complex behavior given by the exact forms, Egs.(A9) - (A11) and (49),(63),(65).

The main interest in perturbation growth is how it affects beam focusability.
Perturbations significantly degrade beam focusability and far-field quality when their
total energy summed over all scales approaches 1 radian, or §" ~ 1. [An exceptional
case is when the perturbations are highly structured or have precisely the right phase
between different scales to act as a "phased array" of sources with good far-field beam
quality. This is not expected to occur either spontaneously from random turbulence
excitation or dynamically from nonlinear phase locking.]

Perturbations will grow by thermal blooming if and only if the instability growth
rates exceed the damping rates from other phenomena. Then net growth occurs, until
stopped by (a) convection clearing, or (b) the nonlinear blooming interaction itself, i.e.
the slowdown and saturation of growth when perturbations are large. Of course at
saturation the beam already is degraded.

Ncrit is the amount of blooming, measured in waves, needed to saturate the
perturbations. If the small-scale instabilities are present and growing, then Ncyit is the
threshold for significant beam degradation and the maximum amount of blooming that
can theoretically be compensated. In a laser beam of average power P and diameter
D, N)» « P/D, so Ngiit also sets a maximum correctable power. This constraint often is
more severe than the well-known whole-beam blooming constraint,”.® which sets a

maximum value of Ny/Ng « P/D3.
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Of practical interest is the limitation imposed by perturbation growth on laser
propagation in the atmosphere. In the linearized theory the only damping

phenomenon in a uniform atmosphere is diffusion. Atmospheric diffusivity

2 ~ 0.2 cm?/sec provides strong damping near the Kolmogorov inner scale(typically a
few millimeters) but is too weak to damp scales around r (typically 10cm in visible

light). In our simple uniform atmosphere, perturbations will grow according to
linearized theory until §” ~ 1, and then growth will saturate after the beam is degraded.
It is straightforward to estimate the threshold waves of blooming N needed to
saturate the perturbations induced by turbulence. One can get a rough estimate and a
scaling law from the asymptotic spectra, or a more accurate estimate by integration of

the exact spectrum, Egs. (A9) - (A11). One finds that for appropriate ranges of

atmospheric turbulence (r, ~ 5 - 50cm), path length (L ~ 1 - 3km) and phase control

cutoff (Npg = Ny) the intense beam will be much degraded after only a few waves of

blooming.

However, this estimate has little or no practical significance, because the real
atmosphere and adaptive optics differ from the simple analytical model in some
important respects. In order to predict the saturation point in the real atmosphere we
must consider the effect of: nonuniform distribution of properties, the limited
spatiotemporal response of phase corrective adaptive optics, wind shear along the
path, and velocity turbulence. We discuss each of these in turn.

The variation of T', £ and C;‘: along an atmospheric path is a technical feature
that changes some quantitative details but does not change the general picture of rapid
growth to saturation. The change of parameters is most significant along vertical paths.
Most of the absorption and turbulence is in the planetary boundary layer extending less

than 2km above ground level. Along vertical paths the appropriate length unit is not

total path length L but an absorption scale length L, defined, for example, as the range

where a(L,) T (L,) = e'a(0); the appropriate dimensionless length is £ = a L, and the
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appropriate blooming rate is N) =I'(0)kL,/2n. An infinite atmosphere in which o and T’

decrease exponentially with z is somewhat more unstable than a simple uniform

atmosphere of depth L, because of thermal blooming at long range with small Fresnel

number, although an exponential profile only L, deep (1 e-fold) is somewhat less

unstable than the uniform case because it has blooming concentrated at short range
with larger Fresnel number; see Fig. 17. Nonuniform Cﬁ affects the source term
Eq. (62), but this has only a logarithmic effect on the saturation threshold Nrit.

Real adaptive optics for phase correction would not work quite like the Fourier
gain g(x, v) in linearized theory. Adaptive optics would have a discrete lattice pattern
of sensors and actuators'? with a space-variant response. Unstable correction modes
on a lattice with spacing d are superpositions of k-modes that differ by an integer
multiple of the spatial sampling wavenumber kg = n/d, analogous to Bloch modes in a
solid. The mathematical expression of PC control is Eq. (14) with the G operator
mixing the k-modes but diagonal in the lattice modes. Closed-loop instability growth
occurs whenever the feedback system can create filament and ribbon structures in the
refractive index. With real adaptive optics the feedback would be fixed to the lattice,
while the structures would be fixed in the convected air. In the absence of wind, a null-
seeking PC control system on the discrete lattice would have instabilities which are
similar to the pure Fourier mode theory discussed earlier; the mode 1 growth rate
(fastest growing mode) of the null-seeker is the same as Fig. 5 and Eq. (48), since the
control system could create phase perturbations that are indistinguishable on the lattice
from pure Fourier modes with x < kg . Any wind, even uniform wind, would act to
decouple the feedback (on the discrete lattice) from the refractive index (in the air),
reducing the instability near k4. Consequently, instability growth of a discrete PC
control system would differ significantly from the pure Fourier mode theory whenever
the nascent filament and ribbon structures are convected across the lattice at a rate

comparable to their growth rate, or kg * v ~ v. Also, in the very process of correction
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real adaptive optics probably would create perturbations at wavenumbers above its
own sampling frequency’(fitting error), which would be a source for mode 0 open loop
growth. These features can be modeled in linearized theory'® to estimate their effect
on saturation threshold.

Nonuniform wind velocity, or "wind shear", can significantly damp perturbations.
Optical perturbations grow by creating refractive index perturbations that are correlated
with and reinforce the optical perturbations. In the average convected frame of the fluid
the perturbations are filaments of alternating high and low irradiance, and low and high
index. Motion of one part of the atmosphere relative to another scrambles and breaks
up these filamentary perturbations. The scrambling is a damping process competing

with instability growth. Scrambling occurs only for wavevectors x || ‘Z—v ; thereis
z

. ov
no scrambling for wavevectors k L —.
0z

The effect of wind shear depends on whether or not the damping rate exceeds the
growth rate. We quantify this by a dimensionless shear equal to the ratio of the "rate of
scrambling” to the "rate of blooming". There is some arbitrariness in the definition of
each rate. We define "rate of blooming" as N, and we define "rate of scrambling” as
the velocity variation divided by a scale length.

The velocity variation is quantified by the eigenvalues of the shear tensor. The

shear tensor is defined as

La
C = E—f (V(Z) - VaveXV(Z) - Vave) dZ (70)
a
) La
where Vave = E—f v(z)dz ,
a 0

and the velocity variation is defined as

J1/2

Av, = V12 [eigenvalues]’? = V&[TrC + V(TrCP - 4detC|~ (71).
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If the wind shear is linear z_v a constant independent of z|then
z

Av, = |v(La) - v(0)], Av. = 0 (linear shear) (72a).
If the wind field v(z) is a random function of distance along the propagation direction,
with 1-axis standard deviation o, then

Av, = Y12 oy (random wind) | (72b).

The dominant phenomena fix the scale length. A Fresnel zone width VAL is the
appropriate scale length for scintillations, often the most important perturbation in the
atmosphere. A diffusion scale length proportional to N often is appropriate in
laboratory experiments or other situations of strong thermal diffusion.

Referenced to a Fresnel zone the dimensionless shear? S is defined as

Av, / V4L /n (73)
Na
This is a rigorous scaling parameter like N, and Np, in the sense that the Green

Si

functions depend on wind shear through S, and not on Av,. For example, in a linear

wind shear pattern the B function of Eq. (9) is

ﬁz - 14 _ 16 Np/nt
Y. oni Sy cos (k, v) %
Na Np La

Since the Green functions depend on v(z) through B, Eq. (9), all linear shear profiles
with the same S have the same instability behavior.
The damping effect of linear wind shear is shown in Fig. 18. The mode 1 PC

instability is completely suppressed for all perturbations K”z—v if S, > 5. Damping of the
z

the mode 0 open loop STRS instability is easier, with essentially complete suppression

if S, > 1. Perturbations x L Q‘L are unaffected by linear wind shear. Growth of these
0z

perturbations in linear shear produces three-dimensional ribbon structures that give

the beam a "striped" appearance in the transverse plane, as shown in Fig. 19. The
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. . ov ; ; ;
ribbons align parallel to a— The unstable region of the two dimensional transverse
z

K-space contracts as the value of linear wind shear S, increases, eventually shrinking

ov . ,
down to a narrow band along K”S—. The saturation threshold Ngit only increases
z

logarithmically with S_ as the unstable region of phase space shrinks.

11. Turbulent Flow

Random isotropic wind shear should damp perturbations in all directions.
Turbulent flow generates a random wind field which may provide such damping.
Turbulent flow is common in the atmosphere; one finds it for example in the planetary
boundary layer, which varies in thickness from a few hundred meters to several
kilometers, and in the boundary layer around a moving vehicle.

Kinetic turbulence produces a random wind field which typically is locally isotropic
and homogeneous with Kolmogorov spectrum in the inertial subrange'4. This random
field can be thought of as arising from the rotation of eddies of all sizes between the
inner and outer scale. The small eddies produce a small random variation of velocity in
all coordinates and in particular make the velocity at each range z a random function of
the transverse coordinates and the time. This goes beyond the standard blooming
model’, Egs. (1) and (2), which has v(z) dependent only on range z; we discuss this
later. The large eddies produce a random z-variation of the transverse fluid velocity,
which is unchanged on a time scale much longer than the time needed for instability
growth or wind clearing. The large eddy turbulence is consistent with the standard
model as random wind shear.

Large eddy turbulence can be modeled as a velocity realization of a Gaussian
random function of z with appropriate power spectrum. Every realization is physically
correct att = 0. A time-independent realization remains correct over time intervals

shorter than the time scale of changes in the large eddy rotation (typically several
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seconds or more). For longer times the realization fails to follow the true velocity
dynamics, but the statistical properties of the model are correct at long time if < vu >
correlations are stationary.

A discrete element version of this model is used in the ORACLE code for
propagation simulations!®: 16, ORACLE generates random x and y wind fields as
independent Markov processes in z. The Markov spectrum is determined by a
correlation length L, and a rms fluctuation o,,. The Markov spectrum is a good model of
the long wavelength turbulence at scales as large or larger than the outer scale, and it
matches smoothly to the Kolmogorov spectrum at short wavelengths. The

dimensionless shear of the random wind is

S = Y3 oy (74).

 NawAL,
A nonrandom velocity field is added to represent the average wind profile.

Random isotropic wind shear from large eddy rotation damps perturbations in all
directions. Some ORACLE simulations are shown in Fig. 20. The open-loop STRS
instability is suppressed by a low value of random shear, S ~ 1-2. At low values of
shear the perturbations still grow by exponential PCI, as shown by the example in Fig.

21, and the usual filament and ribbon structures occur. All the instabilities, PCIl as well

as STRS, are suppressed by random shear greater than a threshold value S;;.
With S > S;; the spectrum grows no faster than linearly as the index perturbations
generated by the intense laser are rapidly scrambled, the Strehl ratio declines slowly
without any rapid fall, and the filament and ribbon structures do not occur. S
depends on Npq: a shorter cutoff wavelength means faster PCI growth, which requires
faster scrambling (larger S) for suppression.

The stability threshold in wind shear shear is equivalent to two other thresholds,
which may have more direct physical appeal. Random wind suppresses all instabilities

if the blooming rate is below threshold,
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Na < Nt = 132 0v_ (75).
ScritVALa
or equivalently if the absorbed irradiance is below threshold,
Y3t /A o© :
algl it = — e 76).
alo < Acrit N L. Seorn (76)

If a strong damping phenomenon like random wind shear is present, then Ng;it is
the maximum rate of blooming that can be stably compensated. Nj o P/D? , SO Nerit
also sets a maximum correctable power. The constraint of N3, < Ngiit usually is more
modest than Ny < Ngiit . Consequently, isotropic damping of perturbations by random
wind shear is the preferable condition for atmospheric propagation. Isotropic damping
is provided by naturally occurring large eddy turbulence. Isotropic damping also could
occur in a nonrandom wind field with sufficient shear in both directions. We
studied the random shear threshold with ORACLE simulations. The simulations used
round apodized beams in a model atmosphere with exponential absorption profile. We
identified the threshold (rather imprecisely) by the absence of a rapid Strehl drop
before the wind clearing time. The threshold did not seem to depend on the outer scale

length L, for L, < a few hundred meters. We found the shear threshold for 10 < Np¢ <

40 to be approximately

Sun = Sffz 77),
PC
’ .057) Npc ©
or [ =202 NEGOy (78).
vALg

This means, for example, the threshold absorbed irradiance for instability growth of a

1 um wavelength laser in air (thermal response JW = 8.25x10-4 cm3/J) with a 2 km

absorption depth would be approximately



41

ola lo (W/em?) = (0.15) Npg oy (m/s) (79).

These numerically derived S;; thresholds seem to be proportional to Npg™t.

General theoretical arguments?, valid for infinite beams and very short correlation
length L, predict that the S_;; should be proportional to Nps"1/2. The discrepancy may

be due to the finite beam, the correlation length, or the numerical uncertainty in
identifying S;;;. Much more study is needed to determine the sensitivity of the
threshold to all the propagation parameters.

Small-eddy rotation could produce significant damping if it has a local shear >> 1.
However, the smaller eddies move slower than the large eddies (their faster rotation
rate is more than offset by their smaller size), so scrambling by turbulent flow gets less
effective as scale size decreases. The speed of eddies ~r, in size in the air is usually
much less than large eddy random wind shear, and usually the local shearis < 1, so
we expect that small-eddy or local turbulence in the air typically has only a small effect
on perturbation growth.

Small-eddy rotation also produces turbulent mixing i.e. the local transport of
thermal inhomogeneities inside the beam path. Turbulent mixing breaks up large-
scale thermal structures. Averaged over long time this looks like diffusion, and is
sometimes called "eddy diffusivity". But turbulent mixing is not diffusive over short times
(such as an instability growth time). True diffusion would erase the Kolmogorov
spectrum of thermal fluctuations. Turbulent mixing maintains the Kolmogorov spectrum
in the inertial subrange. It does this by transferring energy to ever-higher
wavenumbers and smaller scales; this is sometimes called a Richarson cascade. The
cascade finally ends at the Kolmogorov inner scale, where viscosity and thermal
diffusion dominate over mixing. Consequently, small-eddy turbulence may excite the

instability at higher wavenumbers while it damps the instability at lower wavenumbers.
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We limited most of our discussion to phase-only correction, but there are other
methods of optical control that should be considered. Methods that control the intensity
as well as the phase of the intense laser beam have lower instability growth rates than
PC, and full electric field conjugation is stable at all controlled spatial frequencies®.
These other control laws have different spectral evolution from PC, and they have
different thresholds. Because it has smaller closed-loop growth rates, full field
conjugation, and intensity and phase control that mimics full conjugation, has a
significantly higher threshold absorbed irradiance for instability growth and a lower

critical shear for instability suppression.

12. Conclusion

We have extended the linearized propagation theory to include the combined
effects of turbulence, thermal blooming and dynamic phase correction. The exact open
and closed-loop Green functions of the simple uniform fluid provide powerful tools to
study these interactions. Some of the complex behavior seen in digital propagation
simulations now can be broken down into simple well-understood growth and damping
phenomena, at least while the perturbations are small. One can predict instability
growth rates and predict excitation strengths from homogeneous turbulence. Of
practical importance, one can understand the thresholds at which damping
phenomena suppress instability growth, and understand the threshold scaling.
Random wind shear from large-eddy rotation seems to be the most powerful damping
effect in the atmosphere. When the instabilities are suppressed, the perturbations on
corrected beams start small and stay small. This of course is precisely the regime
where we expect the linearized theory to work.

If the damping phenomena are too weak then perturbations grow rapidly,
especially at high wavenumbers, until they saturate at large amplitude and degrade the

beam quality. Digital simulations at saturation show nonlinear energy cascading,
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transverse pattern formation, and some evidence of chaos, e.g. strange attractors. The
linearized theory and Green functions alone obviously cannot explain the saturation
dynamics. This regime is of intrinsic interest in the theory of nonlinear wave
propagation, but some further theoretical development is required to fully understand it.
Fortunately this regime is relevant to practical applications mainly by avoidance.

We believe that our methods and some of our results will be useful for other
problems of wave propagation. For example, the closed-form Green functions for
phase correction (without blooming) may be applied to the theory of imaging and

propagation through turbulence.
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Appendix

The general form of the field spectrum can be calculated for the case of uniform

initial turbulence. The spectrum consists of three separate parts: the open loop @,
closed loop @, and mixed @, terms. These are obtained from substituting the
expressions for <xx> and <¢¢'> found in the text (Eqg. (31)) into the definition for the
spectrum, ® = <XX> +L<¢¢'>. At the pathend(z = L):

_.0243 2 2,2
kNS 116 |

L
oy = -—28_p | [k (L-5s,)KP (L]s,1) + B2K(L-5, KT (LIs,D)ds  (A2)
kN'?'/G 811/6 0

O = k_ﬁ%% f [P (Us, 1) + a2KP% (s, D] ds (A3).

Taylor series expansions for each term are obtained from the generalized two-time
spectrum @(t, t) = <x(t) % (t» + <¢ (o (t)) This reduces to the ordinary single-time
spectrum when t’=t. The generalized spectrum consists of three parts corresponding
to the open loop, closed loop, and mixed terms given above. The series expansions for
Egs. (A1), (A2), and (A3) are obtained by first inverting the double Laplace transforms
of the corresponding terms in the two-time spectrum, then setting t'=t. The double

Laplace transforms of the terms corresponding to Egs. (A1), (A2), and (A3) are

L
oL = ﬁf [R(L-s, R (L-5,v) + 2R(L-5,)R(L-s,v]]ds (Ad)
T 0
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L
ou = 020 [ [R(Lo )R Lisv) + RIL-8 VIR (L) 9
T 0

+ aZR(L-s,v)K(Lls,v) + a2R(L-s,v)K™(L]s, V)] ds

L _
o = e f RO(LIsRC (Ls,v) + 2RC(Ls RO LIs V| (ao)
0

After the substitutions RPC(ZI s) = R(z) M (s), R(z) = sin(aKBz)/vaKB , each of these

expressions becomes a sum of terms of the form

L_[Av)a(v) - a()F(V)] (A7).

v -V

The double inverse transform of (A7) is given by

fm-aw+a-w-a«+mm (A8)

where f and g are the inverse Laplace transforms of F and G respectively. Repeated
application of this result gives the general inverse transform for each part of the
generalized spectrum. Taylor expansions of each term allow the time integral to be
evaluated. The final expressions for the parts of the single-time spectrum are obtained

by setting t’ = t:
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.0243L 0 sin (2¢
ot - ol g ] -
.y Lo [27(€ jn () sin € - hn (¢) cos 2)]
T T n ¢} €08
M
+(n+1)¢ 2 (r?])( mrl_1 )am(n - 1)(hm(e)jn-m-1(€) B Jm(?/) hn-m-1(?/)) (A9)
m=0
<DM(€,6) = -_-_Qz_‘l?Lg’)z (-20p ;‘: _3q(p-1)
kN15_/6€11/6 0=2 - q!(p-q-'])!
. 1 p; (-1)" Tm(€) Dg+1,p-q-m(¢)
29+ (q+1)! ,_o m!g™ (p-q-m)!
q+1 -
) 1 > (1" Tnd®) Dp-q.q+1-m (%)
2P 90p-q)l no m1L™ (+1-m)!
w (‘49)p : (‘1)me(e) Do,p+1-m(€) Dp+1.0(€)
* -0 P! mZ_‘,o miegm  (P+1-ml  2p+1(py4q)] Gy
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o (0.0 0243L o 26 aq(p-1)
CL( ) kN§r/6€”/6 h 3 q%oq!(p q 1)!

Aol mnd m!n!
- P2 Tale

+ X 5‘-!(4—;—) ) m(l)Ao,p-m”(@) (A11)
p=0 m=0

oo p q P-q m+n
+ ¢sinlcosl X (2—6)p b q; 2 X Y™ " Ta-n() To-a-m(¢) Bmn (£)

o0\ &) g0 @!P-atl o 5 @-nlp-q-m)!
where
Q(_eyn+n ) . ' ' .
Am(8) = — (1 + cos?2[im-1(2€)in (2) - jm (22) jn-1 (20)]
+ m?: N cos? € jm-1(20) jn-1(2€)}
+ P4 snPe in (20) ¥ Jalh-alY) (€)in-a (% (A12a)
2"ml 4. G'(n - Q!

i) 3 i) jm-q(e)J .

2™nl 4o a'(m - q)!
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Ao (¢) = (—n?l') cos (2€)ja (2¢) - [% cos*® + sinlcosf(1 + cosz(l)] in-1(20)

M ;insin‘;?,cos@q;o(a)iq(@)jn-q(e)}, n>1 (A12b)
Ao(t) = 0 (A12c)
Bnn(¢) = im (20) n (22) N P < < jp(e)jm-p(e)qu)jn-q(e)’ (A13)
m! n! PR e fmp p!g!(m-p)!(n-qg)!
Dmn(¢) = €sin€ 28jn(¢)in(22)-2mijm-1(8)in(28) + im-1(8)in-1(2¢)
¢2 : _
2@ 2 [3]iOn-o 0
- L cos (28 jm-1()jn(20) (A14a)

- @m - 0)jm-1(€) jn-1(22) - 26 jm(€)jn-1(2¢)] , m,n 21

Don (¢) = 32—8$in (22) jn-1(22) - 22 cos (22) jn (22)
+ %[COSQ]}](@) - sinljn-1(2)] + ncos?€ijn.1(20)

€% sin (22)

2n+1

> (”)jq(e)jn.q(e) Cns (A14b)
q=0 '
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Do (¢) = €cos€jm(€) - Lsin€jm-1(¢) - 2mcosLjm-1(¢) , m

> 1 (A14c)
Doo(¢) = 0 (A14d)
n-1 en_m
Ta(0) = -g¢ X (5) (r';]) T (©)[sin Ln-m (€) + €08 Lin-m-1(¢)] . (A15a)
m=0
To(¢) = 1 (A15b)
ha(¢) = nin(8) - Ljn-1(¢) (A16)
anp(n) = f[h -1 +tP"-(1-tP"(1 + t)”] dt , (A17)

M,, is the integer part of n/2 - 1, Qp is the integer part of p/2 - 1, and j, (¢) are the

spherical Bessel functions of order n. The numerical factor in Egs. (A9) - (A11) is
precisely

1_(2_5_)1/6 '8 (1/5)
616

~0.0243 .
2 (1/6)
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iqur |
1. Linear theory of thermal blooming. The boundary conditions are the field
fluctuations F at path start and FP at path end, and the initial index fluctuation p°
everywhere along the path. The five Green functions are J, J°, K, L, B. The solution
is the field fluctuation F at path end and FP at path start. The control law G relates
F to FP.
2. Time evolution of the wave spectrum with turbulence and thermal blooming in a
homogeneous medium. There is perfect phase correction at all Fresnel numbers down
to Nps = 10. Turbulence Fresnel number Ny = 7.85.
3. Time evolution of the wave structure function with turbulence and thermal
blooming, for the same parameters as Fig. 2.
4. Singularities of the phase correction response kernel M in the complex v-plane.
Mellin transform over the contour C gives M in the time domain. Singularities in the
right half-plane correspond to exponentially growing modes. Singularities in the left
half-plane correspond to exponentially damped modes. The accumulation point is an
essential singularity corresponding to open-loop growth.
5. Dispersion relation of the most unstable mode in a homogeneous medium. Npis
the Fresnel number of the perturbation which is perfectly phase corrected. The growth
rate is normalized to the blooming rate Nj.
6. Residue denominator of the most unstable mode for perfect phase correction in a
homogeneous medium. The value at Np — « is n/4.
7. Propagation factor of the most unstable mode for perfect phase correction in a
homogeneous medium.
8. Comparison of theoretical and numerical dispersion relations for a homogeneous
medium. Solid line is the analytical calculation, Eq. (16); circles are numerical results
of the ORACLE code. Code simulations for many different physical dimensions have

been plotted in terms of the dimensionless scaling parameters Np and Ny, .
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9. Comparison of theoretical and numerical spectrum growth in a homogeneous
medium excited by an impulse perturbation. Solid line is the analytical calculation, Eq.
(54); circles are the ORACLE simulation. The conditions are

Np =2, 1, =0.1, and AN, =0.0216.

10. Turbulence coupling factor of the most unstable mode for perfect phase correction
in a homogeneous medium.

11. Exponential part ,Eq. (49), of the spectrum of the most unstable mode in a
homogeneous medium, for perfect phase correction of turbulence. The mode
amplitude grows exponentially from the initial coupling to the turbulence, Eq. (64).

12. Comparison of the full wave spectrum to the spectrum of the most unstable mode
in @ homogeneous medium, for perfect phase correction of turbulence at Np = 1 and
Nt = 7.854. The full spectrum is Egs. (A9 )- (A11); the leading mode spectrum is

Egs. (49) and (64).

13. Dispersion relation of the most unstable mode in a homogeneous medium for
various phase correction loop filters. The filter function has the form

g(Np) = 2 NecMNef' ith Npg = 4.

14. Comparison of theoretical and numerical spectra for phase correction of
turbulence and thermal blooming. Solid lines are the linearized theory spectra (sum of
% and ¢ variances); symbols are the code spectra (numerical E-field variance). The
spectra are labeled with the accumulated OPD from thermal blooming. Phase control
gain function is supergaussian with Nps = 7.85 and n = 10. The atmosphere has
uniform absorption, wind speed and turbulence. The simulation is done in the
convected frame (v = 0). The mesh-filling beam has Nf = 1000. The spectra are scaled
by N?’s. Code results are averaged around a circle in x-space at the indicated radius
wavenumber. "Max PCI" indicates the wavenumber with the largest growth rate.

(a) Nt = 4909, (b) Ny =196, (c) Ny =7.85.

15. Strehl ratio of the ORACLE simulations in Fig. 14.
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16. Typical transverse structures produced in numerical simulations of thermal
blooming. These plots are from the ORACLE simulation of Fig. 14c at 1.7 waves of
blooming. They show the intense beam at the end of the atmospheric path, in the near
field. (a) Grey-shade plot of irradiance (dark means high irradiance). (b) Grey-shade
plot of phase modulo (2 &) (dark means +=r , light means - n). Cell size = phase
correction cutoff wavelength.

17. Dispersion relation of the most unstable phase corrected mode for various
blooming profiles. The absorbed irradiance decreases exponentially with range along
the path, I'(z) = I', exp(-z/Lg). The total length of the path varies from 1 to 7 e-foldings.
18. Damping effect of linear wind shear in a medium with uniform heating. (a) WKB
theory dispersion relation of the most unstable phase corrected mode, as a function of
the linear shear parameter along the perturbation. (b) Comparison of theoretical and
numerical dispersion relations with linear wind shear. Solid lines are slices through
the WKB analytical result in (a); circles are ORACLE simulations. (c) Spectrum from

ORACLE simulations of uncorrected turbulence in thermal blooming with linear wind

shear. Turbulence N = 0.785. These spectra are time averaged over 4.5 to 9 waves
of blooming, and are taken along the axis in x-space parallel to the direction of linear
shear. Squares are S = 0, triangles are S = 0.886, circles are S = 1.77.

19. Effect of linear wind shear on instability growth in an ORACLE simulation of

turbulence and blooming. The atmosphere has uniform absorption, wind speed and

turbulence, the collimated beam has N = 2000, the PC control loop has a

supergaussian filter with Npc = 4 and n = 10, turbulence Nt = 20, N, = 10 waves/sec,

and shear S = 10 along the vertical axis. Pictures are at 2.3 waves of blooming.
(a) Grey-shade plot of irradiance at the end of the atmospheric path(dark means high

irradiance). Perturbations grow into stripes aligned to the wind shear. (b) Grey-shade

plot of far field irradiance in the (x, , Ky) plane. The x = 0 boresight is at the center of
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the picture. The near field stripes give a diffraction pattern appearance in the far field.
Energy is bunched at harmonics of the PC cutoff.
20. Damping effect of random wind shear. The atmosphere has exponentially

distributed absorption, Hufnagel-Valley turbulence'’, and a Markovian wind velocity

profile with dimensionless shear S. The round collimated beam has N = 4800, the PC
control loop has a supergaussian filter with Nps = 10 and n = 10, turbulence Ny = 20,
and N = 10 waves/sec.

21. Perturbation growth below the shear threshold. ORACLE parameters are from
Fig. 20, with S = 1.72. The spectrum is summed over a ring in the far field at the

indicated radius angle.
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Singularities of the phase correction reponse kernel M in the complex

v-plane. Mellin transform over the contour C gives M in the time domain.
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corrected. The growth rate is normalized to the blooming rate N, .
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Figure 5b
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Figure 6
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Residue denominator of the most unstable mode for perfect phase
correction in a homogeneous medium. The value at Np --> < is 4.
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Figure 7a
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Propagation factor of the most unstable mode for perfect phase correction
in @ homogeneous medium.
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Figure 8
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Growth rate / Nx (Nepers/wave)

Comparison of theoretical and numerical dispersion relations for a
homogeneous medium. Solid line is the analytical calculation, Eq.(16);
circles are numerical results of the ORACLE code. Code simulations for
many different physical dimensions have ben plotted in terms of the

dimensionless scaling parameters Np and N, .
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Figure 9
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Comparison of theoretical and numerical spectrum growth in a
homogeneous medium excited by an impulse perturbation. Solid line is the
analytical calculation, Eq.(54); circles are the ORACLE simulation. The
conditions are Np = 2, ng = 0.1, and AN, = 0.0216 .



Figure 10
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Turbulence coupling factor of the most unstable mode for perfect phase
correction in a homogeneous medium.
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Figure 11
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Exponential part Eq.(49) of the spectrum of the most unstable mode in a
homogeneous medium, for perfect phase correction of turbulence. The
mode amplitude grows exponentially from the initial coupling to the
turbulence Eq.(64).
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Figure 12
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Comparison of the full wave spectrum to the spectrum of the most unstable
mode in a homogeneous medium, for perfect phase correction of
turbulence at Np = 1 and Nt = 7.854. The full spectrum is Egs.(A9)-(A11);

the leading mode spectrum is Eqs.(49) and (64).

MMO011-U-4338-1



Figure 13
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Dispersion relation of the most unstable mode in a homogeneous medium
for various phase correction loop filters. The filter function has the form

g(Np) = 2 MNee™Ne)" yith Npg = 4.
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Figure 13
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Dispersion relation of the most unstable mode in a homogeneous medium
for various phase correction loop filters. The filter function has the form

. n
g(Np) = 2 NP™e)™ with Npg = 4.
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Figure 14a

Spatial frequency xfL/2k

Comparison of theoretical and numerical spectra for phase correction of
turbulence and thermal blooming. Phase control filter function is
supergaussian with Npc = 7.85 and n = 10. The atmosphere has uniform

absorption, wind speed and turbulence . The simulation is done in the
convected frame(v = 0). The mesh-filling beam has Ng = 1000. The

spectra are scaled by Ny%/6. Code results are averaged around a circle in

K-space at the indicated radius wavenumber. "Max PCI" indicates the

wavenumber with the largest growth rate.
" (a) Ny =4909
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Figure 14b
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Figure 14c
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Figure 15
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Strehl ratio of the ORACLE simulations in Fig. 14.
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Figure 16a
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Irradlance

Typical tranverse structures produced in numerical simulations of thermal
blooming. These plots are from the ORACLE simulation of Fig. 14c at 1.7
waves of blooming. They show the intense beam at the end of the
atmospheric path, in the near field. Czll size = phase correction cutoff

wavelength.
(a) Grey-shade plot of irradiance(dark means high irradiance).



Figure 16b
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(b) Grey—shade plot of phase modulo (2r) (dark means +r, light means -x).
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Figure 17
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Dispersion relation of the most unstable phase corrected mode for various
blooming profiles. The absorbed irradiance decreases exponentially with

range along the path, I(z) = I'yexp(-z/L,). The total length of the path
varies from 1 to 7 e-foldings.
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Figure 18a

(a)

Growth rate
Ny,

Damping effect of linear wind shear in a medium with uniform heating.
(a) WKB theory dispersion relation of the most unstable phase corrected
mode, as a function of the linear shear parameter along the perturbation.



Figure 18b

Growth rate [N, (Nepers/wave)

(b) Comparison of theoretical and numerical dispersion relation with linear
wind shear. Solid lines are slices through the WKB analytical result in (a);
circles are ORACLE simulations.
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Figure 18c
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(c) Spectrum from ORACLE simulations of uncorrected turbulence in
thermal blooming with linear wind shear. Turbulence Nt = 0.785. These
spectra are time averaged over 4.5 to 9 waves of blooming, and are taken
along the axis in x-space parallel to the direction of linear shear. Squares
are S =0, triangles are S = 0.886, circles are S = 1.77.
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Figure 19a

(a) near fleld Irradlance

Effect of linear wind shear on instability growth in an ORACLE simulation
of turbulence and blooming. The atmosphere has uniform absorption, wind
speed and turbulence, the collimated beam has Ng = 2000, the PC control

loop has a supergaussian filter with Npc = 4 and n = 10, turbulence

Nr = 20, Ny = 10 waves/sec, and shear S = 10 along the vertical axis.
Pictures are at 2.3 waves of blooming.

(a) Grey-shade plot of irradiance at the end of the atmospheric path(dark
means high irradiance). Perturbations grow into stripes aligned to the wind
shear. , '



Figure 19b

(b) far fleld irradlance
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(b) Grey-shade plot of far field irradiance in the (x, , xy) plane. Thex =0

boresight is at the center of the picture. The near field stripes give a
diffraction pattern in the far field. Energy is bunched at harmonics of the
PC cutoff.



Figure 20

1-0 I L ISéé‘ési
0.9 ”

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1} A

ollllllLll]lllllllLl

0 0.5 1.0 1.5 2.0
Time (sec)
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Damping effect of random wind shear. The atmosphere has exponentially

distributed absorption, Hufnagel-Valley turbulence'’, and a Markovian
wind velocity profile with dimensionless shear S. The round collimated
beam has Ng = 4800, the PC control loop has a supergaussian filter with

Npc = 10 and n = 10, turbulence Nt = 20, and Nk = 10 waves/sec.
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Figure 21
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Perturbation growth below the shear threshold. ORACLE parameters are
from Fig. 20, with S = 1.72. The spectrum is summed over a ring in the far

field at the indicated radius angle.





