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Livermore, CA 94550 
(415) 423-6270 
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Abstract 

The stability of a phase-compensated laser beam propagating in a turbulent 

absorbing fluid is considered. Small-scale transverse optical pert'urbations from 

turbulence and noise grow in thermal blooming by two instabilities: the uncompensated 

stimulated thermal Rayleigh scattering instability, and the closed-loop instability. 

Linearized perturbation theory is used to calculate the electric field spectrum as a 

Taylor series in time and as a superposition of stable and unstable modes. The 

method is applicable to fluids with arbitrary parameter variations along the path. 

Compensated perturbations grow exponentially, and uncompensated ones grow 

quasi-exponentially. The instability growth rates and the turbulence and noise 

excitation strengths are derived for a simple fluid with homogeneous parameters. The 

linearized theory of perturbation growth is in good agreement with numerical 

simulations of full nonlinear thermal blooming. If the growth rate exceeds the damping 

rate from other phenomena then the perturbations grow until limited by nonlinear 

saturation, at which point the beam is significantly degraded. At saturation the laser 

beam spontaneously breaks into small-scale transverse structures such as filaments or 

ribbons. 

*Work performed under the auspices of the U. S. Department of Energy by Lawrence 
Livermore National Laboratory under contract W-7405-Eng-48, for the U. S. Army in 
support of funding order No. W31 RPD-7-04041. 
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The strongest damping mechanism in the open air typically is wind shear, which 

sets a threshold blooming rate and a threshold absorbed irradiance. Below threshold 

the perturbations grow linearly, above threshold they grow quasi-exponentially. Other 

atmospheric damping phenomena such as diffusion and turbulent mixing have a 

smaller effect. 
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1. Introduction 

A laser beam propagating in an absorbing fluid deposits heat, which 

consequently changes the fluid's density and refractive index. The induced refractive 

index changes tend to defocus the beam, a nonlinear phenomenon colorfully known as 

"thermal blooming." Thermal blooming limits the focusability of an intense laser 

propagating through the atmosphere. 

It is well known that beam perturbations in thermal blooming can grow by the 

stimulated thermal Rayleigh scattering(STRS) instability 1,2. Small-scale transverse 

inhomogeneities of irradiance and phase cause nonuniform heating of the fluid, which 

produces inhomogeneities of the refractive index. By propagating through these index 

inhomogeneities, the optical inhomogeneities are amplified in space and time. In very 

intense beams small fluctuations can grow many orders of magnitude, until either they 

reach ~(1) and saturate by energy conservation, or they are destroyed by some natural 

damping mechanism. The STRS instability occurs whether or not optical fluctuations 

are compensated by an active control system. The growth of fluctuations by STRS on 

uncompensated or free-running beams has been calculated for initial excitation from 

noise 1,2 and from thermal turbulence distributed along the path3 as would be the case 

in the atmosphere. 

If one attempts to actively compensate for optical fluctuations in thermal blooming 

then a new "closed-loop" instability can occur. There can exist singular modes of the 

combined system of propagation path-plus-compensation law which have positive 

feedback to the optical inhomogeneities. These modes grow exponentially in time from 

an arbitrarily small initial excitation4-6. As in the STRS instability, growth continues to 

saturation at ~(1) unless stopped by some natural damping mechanism. The closed-

loop propagation instability is distinct from instabilities of the control loop alone; the 

closed-loop propagation instability occurs in some "perfect" control loops, e.g. systems 

which accomplish perfect phase-only correction, and is not a result of imperfect 



l 

4 

implementation of th_e control law. The exponential growth rates have been calculated 

for several compensation methods4. 

The growth to saturation of small-transverse-scale perturbations in thermal 

blooming may be the limiting physical process which sets a maximum correctable 

power for intense laser beams in the atmosphere. Consequently, it is important to 

predict the saturation point under conditions of concurrent STAS and closed-loop 

instabilities. This requires detailed knowledge of the space and time evolution of 

perturbations by thermal blooming. The purpose of this paper is to calculate the 

perturbation growth of a thermally bloomed laser beam which is partially phase 

compensated, and calculate in particular the initial excitation and growth from 

turbulence such as one encounters in the atmosphere. 

2. Linearized Theory of Thermal Blooming 

Thermal blooming is a locally self-defocusing nonlinear propagation 

phenomenon. Whole-beam blooming effects are well known and require the full 

nonlinear description 7,9. But the appropriate tool for studying instabilities of thermal 

blooming is the linearized theory of small perturbations. The linearized theory has 

been presented elsewhere; the reader will find a rigorous discussion in references 4 

and 5. Here we mainly state the underlying assumptions and quote without proof the 

results needed later. 

We use the standard model of thermal blooming propagation7. The optical 

electric field Eexp(i (cot - kz)) obeys the scalar paraxial wave equation, 

2 ik (~ + aa) E = V
2
E + k2 

(~ - 1) E 
az 2 Eo 

v2 = a2 + a2 
ax2 ay2 

(1) 



'I 

5 

where Eis the diele~tric constant at frequency w, k = 2rrf)., is the wavenumber in a 

uniform fluid of dielectric constant Ea, and ae is the extinction coefficient. The beam 

propagates in the +z direction. This equation is valid for quasimonochromatic light far 

from the source, propagating in a neutral nonconducting and nonmagnetic fluids. This 

includes most cases of practical interest, especially laser beams in the atmosphere. 

The fluid dielectric constant obeys the advection-diffusion equation with isobaric 

heating , 

(! + v · v) e = -2eoJ\t a I + fl!v'e 

where v(z) is the mean transverse fluid velocity, I = I E 1
2 is the irradiance, a is the 

absorption coefficient, ftl, = 1C [~T oE - 1. oE] is the fluid thermal response, 
2Eo p op P oT 

(2) 

and 2> is the diffusivity. This equation for the fluid is valid as long as (a) the time scale 

for heating is long compared to the acoustic transit time across the beam, so the fluid is 

always in pressure equilibrium, and (b) the density changes are too small to affect the 

velocity field. The optical and fluid fields are nonlinearly coupled by the absorbed 

irradiance. 

The evolution of small-scale or localized perturbations can best be studied by 

linearizing about a smooth background solution. Choose the background solution to 

have uniform irradiance 10 at z = 0 and a self-consistent phase <j>0 , that is 5'10 and <!>0 

solve Eqs. (1 ), (2) where 5' = exp (- r aa) is the transmission. The electric field 

envelope with log amplitude and phase fluctuations X, <I> around 10 , <l>o is 

E - ~ exp (- i<!>o + x - i<j>) 

The small fluctuation µ of the fluid dielectric constant is 

(3). 
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µ E - ea -
.2Eo 

or µ = n - no n re no -

Substituting Eqs.(3), (4) into (1 ), (2) and retaining only the first order in the 

perturbations gives4 

ax = __ 1 v2 <I> 

az 2k 

a<1> = k(µ + _1_ v2 x) 
az 2k2 

2 
-2rx + flJV µ 

(4). 

(Sa) 

(Sb) 

(6) 

where r = JVL.a5'10. The equations are Fourier transformed in the transverse xy plane 

and Laplace transformed in time to obtain 

(7a) 

(7b) 

(v + flJ·l - he · v}~ = 
...... 0 

-2rx + µ (8) 

where 1e is the transverse wavevector, all fields ( X, <I> andµ) are Fourier amplitudes at K, 

aK = 1e2/2k, v is the complex Laplace variable conjugate to time, caret " indicates 

Laplace transform, and µ0 is the t = 0 refractive index perturbation. Eqs. (7) and (8) 

can be combined into a second order equation for the irradiance fluctuation F = 2x: 
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-
V 

p2 (z, v) = 1 + 2kr(z) , v (z) = v + .0(z)~ - iK · v(z) 
aK v (z) 

(9) 

dF ,,..... 
and dz = 2a~ . Eqs. (7) - (9) determine the growth (or decay) of the perturbation 

as a function of z and t. 

Perturbation solutions are completely determined by the boundary conditions, 

which are the optical fields X, <1> (or equivalently F, dF/dz) at z = 0 and the refractive 

index field µOat t = 0. The perturbations at z > 0, t > 0 are given by four Green 

functions, denoted J, K, Land b, integrated over the boundary conditions. We write the 

solution in a compact "vector" notation. Intensity and phase perturbations are grouped 

into 2 x 1 vectors with i- and <1>-components: F = (F, dF/dz) andµ= (0, µ). The Green 

functions are 2x2 matrices of operators with matrix elements labeled ii, i<J>, etc. [We 

sometimes use the same letter to represent the operator matrix and its i<j> matrix 

element; the meaning is always clear from the context.] The solution is 4,5 

i=(z) = J{zjo)i=(o) + K" f i<(zjsJµ0 (s)ds (10) 

K'~(z) = - b(z)J(zlo)F(o) +if [(zls)µ0 (s)ds (11 ). 

The subscript K has been dropped since all subsequent analysis will be in the Fourier 

domain. Green function J is the homogeneous solution of Eq. (9), that is it obeys 

dJ(z Is) 

dz 

-1 

0 
)J(zls) = O 
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with the boundary condition 

J (s Is) = ( ~ ~ ) . 

" All other Green functions are constructed from J3 and J: 

"' 
i< (zl s) = 

J (zj s) 

v(s) 

and [(zj s) = -b(z) K(zj s) + 8(z - s) 
v(s) 

0 

0 ) 

J is the source Green function; its unstable growth in z and tis well known, and is due 

to stimulated thermal Rayleigh scattering (STRS)1-3. K is the turbulence-blooming 

interaction Green function; it describes the rapid growth by blooming of perturbations 

induced by refractive index turbulence3. 

The Green functions at t = 0, and at all time without thermal blooming, are 

K
0 

(z I 0) = exp(ilc • vt-.0x:2t) 

L
O 

(zlO) = exp(ix: • vt - .0x:2t) 8(z) 

and J 0 (z lo) = K0 (z) 8(t) 

With these Green functions one can derive all the standard results of the classical 

theory of propagation through weak turbulence 11, 12. 
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Systems with optical compensation have two beams, an "intense" laser beam 

originating at z = O and propagating in the +z direction which induces refractive index 

changes by absorption, and a reference "beacon" beam originating at z = Land 

propagating in the -z direction which is affected by the refractive index but which is too 

weak to induce significant index change of its own. The beacon enables one to 

observe propagation conditions of the intense beam path with a sensor at the intense 

beam transmitter (z = 0). This is known as "return wave sensing". The beacon 

perturbation solution vector fb = (Fb, -dFb/dz), given the additional boundary 

conditions of Fb at z = L, is4,5 

"'b "'b "'b "' "' 
F (z) = J (L - z) F (L) - 8 (Lj z) F (z) (12). 

2 "'b " 0 1L is + K J (s - z) 
0 

L (sl r) µ (r) d rd s 

Jb is the beacon Green function without blooming, i.e. the homogeneous solution of Eq. (9) 

for r = O with beacon wavenumber kb; it is space-invariant and therefore acts as a 

correlation kernel. The beacon-blooming Green function 
L 

B (LI z) = f ;)h (s - z) b (s) J (sl z) d s (13) 

gives the beacon effect on intense-beam perturbations. Green function b (z) is 

the infinitesimal version of Green function B (Lj z). The complete solution in terms of 

the boundary conditions and five Green functions is shown in Fig. 1. 

A correction system creates an intense beam perturbation at z = O based on a 

measurement of the beacon perturbation at z = 0. The intense beam produced by 

a linear real-time control process is 

i= (o) = a fb (o) + 1 (14) 

where G is a 2x2 matrix representing the control law and f is noise. In general G can 

mix perturbations at different transverse wavevectors, although we will usually discuss 
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the simpler case of G_ diagonal in K. the beacon solution Eq.(12) into the linear control 

process Eq. (14) gives the intense field at z = O: 

F(o) = (1 + GB(L10)]"1 
a(Jb(L)fb(L) + -/ f Jb(s) f [(~r)µ0 (r)drds) 

+ [ 1 + o s (Ll o)] ·1 t 
(15). 

The intense field anywhere else along the path is found by substituting this into the 

propagating solution, Eq.(10). 
,,...._,,... 

If the operator 1 + G B is singular, i.e. if 

det ( 1 + o s) = ~ = o (16), 

then the result of the correction system is unstable in thermal blooming. This is known 

as the closed-loop instability4. It is an absolute instability. Control laws generally are 

unstable in blooming; stable control laws are the exception. Eq. (16) is a 

transcendental equation for the dispersion relation v(K) of the instability. 

A common method of optical compensation is phase reversal (also called phase­

only or phase-conjugate correction)--the intense beam is launched with an optical path 

difference (OPD) which is the opposite of that on the beacon. This is implemented by 

real-time adaptive optics 1 o. The sensing and correction typically is done on a two­

dimensional lattice of points, which is space-variant, so generally the control system 

mixes spatial frequencies (the G operator in Eq. (14) is not diagonal in K-space). For 

simplicity we start with an idealized space-invariant model of the adaptive optics which 

is diagonal in K (in a later section we discuss how this is extended to a more complete 

description of adaptive optics). The control law matrix for this idealized phase-only 

correction is 

0 

0 
(17) 
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where g is the contr<;>I loop gain (perfect correction = 1 ), and the propagator is 

[1 + as] ·1 1 0 
= (18). 

"" 
g B(j) i 1. 
~ ~ 

"" In th is case~ = 1 - g B(j)(j). The singular behavior of this propagator in thermal blooming 

is known as the "phase compensation instability" or PCI. 

The various thermal blooming Green functions can be written in closed form for 

only a few cases of heating r(z) and flow velocity v(z). 

However, for ,~~1aKP2 << 1 a WKB approximation to J can be obtained 4: 

(19). 

The special case of uniform 2> , v and r can be solved in closed form4. We study 

this case in detail in the next sections. Note that uniform diffusion simply gives a 

multiplicative factor of exp(-2> K2t) on all Green functions. If velocity is uniform, i.e. 

v(z) = v, the iK · v term in Eq.(8) can be eliminated by transforming to the convected 

frame, x-? x - vt. With these simplifications, the intense beam Green functions in the 

complex plane are 
1 . A --sin aic ,._,z 

J (z) = v K (z) = aic J3 (20). 

cos ak J3z 

In the convected frame time domain , the Green functions (icp matrix element) neglecting 

diffusion are 
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K (z, t) - ~ (-r kztr [ . ( )] L.J z Jn aKz 
n ... o (n !)2 

(21 a) 

a 
and J(z,t) = - K(z,t) + K(z,O) o(t) 

at 
(21 b). 

Here jn is the spherical Bessel function of the first kind, and rkzt is the radians of phase 

shift due to heating for time t. The beacon-blooming Green functions we will use later 

are 

2 
"' B<pq> = p -

1 [1 - cos pe cos be - ~ sin pe sin be l 
p2 _ b2 p 

= a~ P
2 

-
1 

[~ sin pe. cos be. - cos pe sin be.] 
p2 _ b2 b 

(22a) 

(22b) 

where e = ~L is a dimensionless measure of the optical path length and the 

transverse wavenumber K, and b = k/kb {no relation to blooming operator b below 

Eq. ( 11 )) . 

3, Closed-Loop Green Function of Thermal Blooming 

For the uniform fluid the closed-loop Green function for phase-only correction (PC) 

can be written in closed form. The turbulent and absorbing fluid extends from z =Oto 

z = L, the beacon is an infinite plane wave at z = L (Fb = 0), and the intense field at 

z = O has phase noise 'I' and log amplitude noise n. Substituting Eqs.(22) and (18) into 

(15) gives the field at z = 0: 

F(o) = 2n 

"' 1[ 2
"' "'] F' ( O) = 2aK <1> ( O) = ~ : 'I' + 2g Bcp i Tl 

L 

-~ ( M (s) l µ0 (s) ds 
V lo 

(23a) 

(23b) 
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where prime 'indica_tes d/dz, and M/v is the control system response to index fluctuations at 

ranges, 

.......... 

M(s) 

(24) 

2 

with Q (s) = p -
1 

[1 - cos paK (L - s) cos baK L - .b_ sin paK (L - s) sin baK L] . 
p2 _ b2 p 

Note that ~ = 1 - gQ(O). The field, Eq.(23), is a function only of the noise and the initial 

refractive index. 

The log amplitude and phase of the intense field at z is 

~ iz il ~ 0 ~ .......... 0 
x(z) = aKk K(z - s)µ (s)ds - aKkK(z) 

0 

M(s)µ (s)ds 

(25) 

$ (z) ; k ff<., (z - s) µ0 (s) ds - k K' (z) [ M (s) µ0 (s) ds 
(26) 

v ~ ~ ~ 1 [~ g~ B i] 
+ - K" (z) 11 + v K' (z) - 'I' + <p 

aK ~ aK 

where K denotes the icp matrix element. By inspection of Eqs.(25), (26) the closed-loop 

turbulence-blooming Green function for phase-only correction is 
~PC ~ .......... 
K (zls) = K(z)M(s) (27). 



14 

The effect of turbule~ce on the optical field is 

"' 2 r "' O 2 t "'PC o 
F (z) = K Jo K (z - s) µ (s) - 1e Jo K (~ s) µ (s) ds 

(28). 

+ noise 

If we expand the Green functions to ~(v-n) and Laplace invert term-by;-term, we get 

the Green functions as Taylor series in time. The Taylor series are absolutely 

convergent for all t > 0. For the special case of g independent of v (which corresponds 

to a control loop with instantaneous feedback and infinite bandwidth) and b=1, the 

time-dependent PC Green function without diffusion (icp matrix element) is 

KPC (zi S, t) = _[_ I, (2r kt/aKr ± ( -1 rTn _ m (u) 

2aK n .. o n! m .. o 2m m! (n - m) ! 
(29a) 

• {cos U [(2U - wr + 1 jm (2u -W) + Wm + 1 jm (w)] 

where u = a~, w = aKs, and 

n - 1 I 

To(u) = 1, Tn(U) = -gu l~O(-;r- (~)T1(u)[sinujn-1(u) + COSUjn-1-du)] (29b). 

This should be compared to the free-running Green function, Eq.(21 ). 
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4, Growth of Turbulence-Induced Perturbations 

Of great practical interest is the interaction between blooming and a random field 

of initial refractive index perturbations. In this case the appropriate measures of optical 

perturbations are the spectra of log amplitude and phase. For a uniform fluid these are 

(x;c.(z,t)) = ~k2 {f f K(z - s,t)K(z - s',t)/,i0 (s)µ0 .(s'))dsds' 

- 2 f f K (z - s; t) KPC (zl s', t) Re /,i
0 

(s) µ
0

• (s')) d s d s'} 

($<1 .. (z,1)) = k2 {f f K'(z - s,t)K'(z - s',t)/,i
0

(s)µ
0
.(s'))dsds' 

L 1L + 1 
0 

KPC' (zl s, t) KPC' (zl s', t) (,,0 (s) µ o· (s')) d s d s' 

(30a) 

(3Gb) 

- 2 f f K' (z - s, I) KPC' (zl s', t) Re (,,
0 

(s) µ
0

• (s')) d s d s') 

where brackets <> indicate an ensemble average over realizations of the random field. 

In the special case of locally homogeneous thermal turbulence, the index 

fluctuations have a Kolmogorov spectrum with amplitude characterized by the structure 

constant ca(z), which is generally a function of position along the path. Following 

Tatarskii 11 , the spectra are given by 
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(<1><1>. (L, tJ) - k2 . 21t<I> 
0 f c! ( s) [ K' (L - s, t) - KPC' (LI s; tJ] 2 

d s (31 b) 

where f (,, 0 
{s) µ o· {s +i;)) di; = 2it<I>

0 c! (s) 

is the spectrum of initial turbulent index fluctuations, and (J)o is the fundamental 

Kolmogorov spectrum of a passive contaminant11, 12 

<1)0 = .033 
11 /3 

1( 

The transverse coherence length r O of the turbulence is defined as 

[ 1L i-3/5 
r0 = (0.423) k2 

0 

c! (s) ds 

(32) 

(33). 

The end-of-path electric field spectrum (J) = ~ EKl2). In the linearized theory the 

field spectrum is equal to the sum of the log amplitude and phase spectra or 

variance (J) .:. <xx)* + (<!><!>)* , since these variances are small and the higher-order 

correlations can be neglected. We will use the term "field spectrum" interchangebly 

with the "sum of the variances of x and <I>", except in situations where the field 

perturbation becomes large and the premises of linearized theory are violated. 

The field spectrum has three parts: open loop (-K2), closed loop (-KPC2) and 

mixed (-KKPC). Each part is a Taylor series in time, and the nth term is rather lengthy 

to write. The Appendix contains the general formula of the field spectrum for uniform 
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initial turbulence (c! independent of z). Here we make some general observations 

and numerically evaluate an example. 

In the linearized blooming theory the optical spectrum induced by turbulence 

always is proportional to the initial index spectrum, as in Eq. (31 ). This is a direct 

consequence of linearity, and holds for any profile r(z) and v(z). For initially uniform 

turbulence the spectrum <l> is proportional to NT-5/6, where 
2 2 

NT = k r o = 1t r o 
8L 411.L 

is the turbulence Fresnel number. In a uniform fluid the appropriate measure of 

transverse wavenumber Kand of path length Lis the dimensionless quantity e. = aKL or 

equivalently the Fresnel number NP of the perturbation, 
2 2 

7C k 7C 
Np = -2- = 

2K L 4e. 
The appropriate measure of time is the phase shift, due to heating of the fluid by the 

uniform background beam for time t, in "radians of blooming" 8 = rkzt or equivalently 

"waves of blooming" NA, 

N,., = rkzt 
21t 

The initial spectrum with an instantaneous PC feedback loop is 

<l>(t = 0) = .0243 L [1 + !_(g2(t )- 2g(t))(1 + sin2€-)~ (34). 
k Nrs t 11 ts 2 2t J 

If a wavenumber K is perfectly phase corrected (g(K) = 1) then Eq.(34) means the initial 

end-of-path spectrum contains only the scintillation of uncorrected turbulence at K; the 

turbulent phase fluctuations at Kare completely eliminated. At t > 0 (or NA> 0) phase 

and log amplitude fluctuations grow by STRS and PCI. 

Fig. 2 is an example. The optical spectrum <l> is calculated for a path with uniform 

r, v and 2J. The limited spatial resolution of a PC control loop is modeled by a 
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wavenumber cutoff ~PC or equivalently a Fresnel number cutoff Npc; perturbations with 

Np> Npc get some phase correction, while Np< Npc are uncorrected. Initially <I> 

contains mainly scintillation below cutoff and is Kolmogorov above cutoff. After 

blooming the spectrum below loop cutoff shows PCI exponential growth, with the 

shortest wavelengths growing the fastest; the spectrum above cutoff shows STRS 

growth.3 Whether the spectral growth is fastest for controlled perturbations or 

uncontrolled perturbations, i.e. whether PCI or STRS dominates, depends on the 

choice of control loop cutoff Npc· 

The wave structure function 12 is 

(35) 

where J0 is a Bessel function. Fig. 3 shows the structure function for this example. The 

Strehl ratio may be calculated in general by an aperture average of the mutual 

coherence function exp {- ~ o), or in linearized theory simply by summing the energy {;* 

in all perturbations, 

Strehl ~ 1 - f{ - 1 - f f <I> d1Cx dKy 
(36), 

= 1 - 2< f <1>(e, e)de (isotropic) 

so long as e· is finite (as is the case for perfect phase correction at long wavelengths). 

Both methods give the same result in linearized theory. 

s. Decomposition Into Sirn;iular Modes 

The representation of the PC Green function and wave spectrum as Taylor series 

in time (Eqs.(29) and (A9) - (A 11 )) is convenient, but it does not give much physical 

insight. In each order many different growth phenomena with different rates are 

superimposed and beat together. In this section we clarify the physics by representing 

the optical field as a superposition of modes. Each mode has a direct physical 
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interpretation. Both growing and damped modes are present. In general an infinite 

number of modes are required at each spatial frequency, which is not very tidy. But 
t 

every spatial frequency usually has a single dominant mode, so a simple physical 

jl 

!t 

description explains the thermal blooming phenomenology. Our analysis is for phase­

only correction in an atmosphere of uniform r, v and f/J, but the method is , 

generalizable to other control laws and atmospheres. 

Consider the intense field fluctuation F(O) created by the control system in 

-response to thermal blooming, Eq. (23). The response operator M has the following 

singularity structure in the complex v-plane (Fig. 4): (a) an infinite number of poles at 

zeros of!)., (b) an essential singularity at -.0~ which also is an accumulation point of 

poles, (c) poles in g/1). at the finite resonances of the control system under load, and 

(d) a singularity at oo, M (s, v ~ oo) = g (K, v ~ oo) cos bal(s. The noise contribution to 

F(O) has the same singularities. Call v1 the zero of!). with largest real part; number the 

other zeros vi in the order of decreasing real part. Call v_1 the pole of g/1). with largest 

negative real part; number the other poles v_i in the order of decreasing real part. 

Number the residues Resi in the same way. 

For every singularity there is a unique spatiotemporal mode. If the spatial 

distribution of index µO(s) has nonzero overlap on Resi (s) then the jth mode is excited. 

Also, if the noise f {vi) -# O then the jth mode is excited. Modes with Re vi > O grow, 

modes with Re vi< O decay. In the absence of blooming r =0 and!). =1, the properly 

designed control system has all the poles of g in the left half-plane, and all modes 

decay--i.e. the control system damps all fluctuations. This of course is what we expect 

from a feedback control loop. However, with blooming there also are growing 

modes(in fact an infinite number of them if one neglects diffusion)which are excited by 

the random index field and by noise. With blooming the same control system does not 

damp all fluctuations, but must amplify some of them. 
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All the spatiotemporal structure of the modes, and the decomposition of the 

intense field at any point into its constituent modes, can be found by the following 

analysis(which we only sketch here). 

1. Invert M(v) ~ M(t) by Mellin transform. One can show that at t > O 

M(s, t) = L exp(vit) Resls) + g(oo) 8(t) cos ba~ 
j 

where the infinite sum is absolutely convergent (Resn - 1/n2) and the essential 

singularity does not contribute. 

2. Laplace transform M(t) ~ M(v) to obtain 

(37), 

M(s, v) = L Resj(s) + g(00) cos baKs (38). 
V -Vj 

--3. Rearrange rvvv as a sum of poles with 
1 1 1 

= 
\\V - Yj) vf(v - Yj) 

0 2 
where Vj = vi + .0K . 

- 0 
YVj 

(39) 

4. Substitute Eqs. (38), (39) into (25), (26) to obtain the optical perturbations on 

the intense beam at z. Each pole term combines with J(z), Eq. (20). This gives the 

propagated mode an essential singularity at -.0K 
2 

from ~(v), in addition to the pole at vi· 

The jth mode has two parts: a part like exp(vit)J(z, vJ that grows (or decays) exponentially, 

and a subexponential part from the essential singularity. 

5. The jth mode has a multiplicative index source 

Sj = 1' µ"(s) Re~{s) ds 
o Vj 

(40a) 

and noise source 

Ni = Res(~) 'Vj + Res (gi) (~ Bcpi)i 
~j k ~j k aK 

(41) 

where subscript j indicates a quantity evaluc!ted at v = vi. The singularities at -.0 K2 

and oo also have index sources 
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So 

The limit v ~ -.0K2 is taken along any contour that avoids all the poles. 

With blooming S0 = 0. With real control loops g(oo) = S
00 

= 0. 

6. The sources obey a sum rule, 

L Sj = Soo - So 
j ;t 0 

Note that 

( = 0 usually) 

(40b). 

(42) 

(43). 

lim lL ds µ0 (s) (-1 . f dv M(s, v~ - M(s, 
00

) - [ M(s, -.0K2) - M(s, oo)J} 
E ~ 0 27tl V - E 

0 

where the contour encloses all the poles and the limit£~ O avoids the poles. But 

this f = 0, which proves Eq.(42). 

7. For vi a first-order zero of~. the sources are 

(44) 

Vj 1 ["' "' Bq, i] Nj = -- - 'I' + 91'1 -a~ k alC j 
(45). 

Vj-
dVj 

8. The essential singularity also contains the open-loop or free-running STAS 

contribution from the index field and the noise. We call this the zeroth mode. 

By this analysis one obtains the intense optical field perturbation as a 
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superposition of the _ modes: 

F(z, t) = 2x{z, t) = 

K(•, t) *1lµ~·) + [K'(z, •) + K0'(z)o(-)] * 211(-) + aJK(z, •) + K0(z)o(-)] " 2'!'{•) 

+ L (exp(vft) - 1) sin PiaKz 1l(Ni - Sj) 
i PiaK (46). 

Here K is the index blooming Green function Eq. (21 ), Ko= K(t=O), superscript dot • 

means d/dt, and 

00 n -1 { o)n ( o )m 
~ ~ -rkz/vj Vj t [ . ( )] 
"-' "-' 1 1 z Jn aKz 

2 1 
n. m. 

n= m= 

(47) 

is the subexponential part of mode j. The relative minus sign between Nj and Sj is by 

convention; it is the same minus sign in Eqs. (23b) and (28). The transverse 

wavenumber K is implied throughout; the field is an infinite superposition of modes at 

each transverse spatial frequency. Diffusion is neglected in Eq. (46); with diffusion all 

the Green functions and all the modes are multiplied by exp (-.0K2t). The exponential 

part of mode j is a simple sinusoid in z with longitudinal wavenumber pjaK. We will see 

in the next sections that at spatial frequencies with good phase correction (g(K)"" 1) the 

exponential part of mode 1, the fastest growing mode, dominates after a short time. 

The modes and the free-running Green functions appear to violate energy 

conservation: in the linearized theory each transverse wavenumber is decoupled from 

all others, yet the energy in a wavenumber grows in time. But there is no paradox. 

Physically there are two energy sources in the linearized theory. First, in the STAS 

interaction the background plane wave scatters energy offµ into F. The growth of Fis 

first order, but the balancing decrease of 10 is second order so we do not see it. 

Second, the feedback control system can create and amplify perturbations by 
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transfering energy f~om the background plane wave to F. Again the growth of Fis first 

order, but energy conservation is second order. 

6. fastest Growing Mode with Phase Correction 

Phase-only correction with thermal blooming creates the exponentially growing 

unstable modes known as the phase compensation instability (PCl)4-6. There is a 

simple physical reason for PCI. Warm low-index spots in the fluid defocus the beacon. 

Phase reversal correction automatically focuses the intense beam into these spots 

heating them further. So phase correction makes hot spots hotter and cold spots 

colder. 

Fig. 5 shows the dispersion relation of the mode 1 exponential growth rate v1 for 

perfect phase reversal correction in a uniform fluid. v1 is proportional to the "blooming 

rate" N,. = rkU2n (waves/sec). Its asymptotic values are4,6 

4nNA. f N 1 ( t . t· 1· 't) v1 ~ or p >> geome nc op 1cs 1m1 
Np (48). 

for Np << 1 (diffractive limit) 

Small-scale or short wavelength perturbations with low Fresnel number are more 

unstable than large scales or long wavelengths, because short wavelength phase 

perturbations propagate more efficiently into log amplitude variations and consequently 

produce more heating over the path. Diffraction of very small scales causes phase and 

log amplitude to alternate along the path , so the instability growth rate in the diffractive 

limit asymptotes to a constant. 

The end-of-path optical spectrum in the exponential part of mode 1 alone is 

where brackets <> mean an ensemble average over the noise as well as the random 
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0 
index field. The residue factor v1 cM/av1 needed to calculate the source is shown 

in Fig. 6; it is© (1) over the region of practical interest. The mode propagation factor, 

2 I 012 + cos P1 '1 , is shown in Fig. 7. The total energy in mode 1 summed over all 
1 

spatial frequencies is 

e; = 2< r <!>1 cJe (50) 

where lpc is the phase correction cutoff. 

In the following sections we calculate the growth of <1>1 from noise and turbulence. 

We are especially interested in the large scale or geometric optics limit, since the 

Fresnel cutoff of typical phase correctors for the atmosphere is large 1 o. For simplicity 

we assume the beacon and intense wavelengths are equal(b = 1 ); also we drop the 

subscript 1 since all quantities are evaluated at v = v1. Also we assume the noise and 

initial index are uncorrelated, <NS*> = 0. 

Z, Growth from Noise 
We will calculate <1>1 for two noise sources : (a) a pure log amplitude or phase 

fluctuation impulse for a short time l1t, and (b) a stationary Markov noise process. All 

noise sources N are calculated from Eq. (45). 

The Laplace transform of an impulse perturbation f0 for a short time l1t is 

f = foi1t. This is substituted into 'V or~ in Eq. (45) to give the noise source 

kN = ;,.. [ 'l'o 
v­

av 

At frequencies with perfect phase correction N simplifies further, since 

= 
peas e 
sin p e for g = 1 

(51) . 

(52). 
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At long wavelengths(f ~ 0) N simplifies even further, since 

Ii m (3t = rr/2 e.~o 

. od~ 
l1m V -

e.~o av = rr/4 

(53). 

Substituting Eqs. (48), (52), (53) into (51) and replacing ~Ni for ~h ~t , the noise source 

at large scales is 

kN (e :o) :: t.Ni. ( C'l'o + ; Tlo) (54). 

In the geometric limit of correction, log amplitude noise is most effective at exciting 

exponential growth; in this limit the end-of-path perturbation is mainly log amplitude 

also. 

We compared this theory to numerical simulations of propagation in blooming. 

The simulations were done with our computer code, ORACLE, which solves the full 

nonlinear wave-fluid problem on a discrete four-dimensional mesh. ORACLE 

represents the electric fields by two-dimensional complex number arrays and 

represents the fluid as a layered medium with a two-dimensional real density array for 

each layer. On each time step ORACLE propagates a beacon pulse backward and an 

intense pulse forward by split-operator FFT13; then the density arrays are convected for 

one time step and heated by one pulse. The intense beam can be phase compensated 

using information on the beacon phase. 

The simulations were done for a square beam which fills the transverse mesh, 

and also for a round beam with apodized edge. The fluid had uniform rand v. A pure 

sinusoidal intensity perturbation (wavenumber K) was introduced at z = O for one time 

step, then removed; all subsequent time evolution of this perturbation was due to the 

interaction between phase correction and blooming. Perfect phase reversal (g = 1) 

was done on every mesh point and time step. The growth rate was measured by IEK1 2, 

the electric field spectrum at path end. Whole beam Fresnel number NF typically was 
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-10,000 , much large_r than Np, The computations were done on a Cray X-MP in 64-bit 

mode, with 128 and 256 transverse zones. 

Typical results are shown in Figs. 8 and 9. Fig. 8 compares the analytical and 

computational growth rates. The measured dispersion relation is in excellent 

agreement with the leading singularity v(K). Fig. 9 compares the numerical .time 

evolution from ORACLE to the growth of mode 1 from impulse noise, Eqs.(49) and (51 ). 

The agreement is excellent after a short time. [The spectrum eventually decays 

because the index perturbation is convected out of the laser beam.] The behavior at 

other Fresnel numbers is similar. Evidently, at wavenumbers with good compensation, 

mode 1 dominates for N" ~ 0.1 wave. 

We consider two types of Markov noise process (b): (i) noise with a finite 

correlation time tc, correlation function (Ko) ((t)) = (f () exp(-1~ /tc), and (ii) a discrete 

time series with time step ~t. correlation function ((o) ((t)) = (f () e(t) rect (v2~t). 

The power spectrum of the Markov process is 

(t (v) f*(v)) = (ff*) 

1 

V (v + 1/tc) 

1 1 - exp (-v~t) 

v2 1 + exp (-v~t) 

(i) 

(55). 

(ii) 

The two processes have the same form of power spectrum in the low frequency limit 

(vtc and v~t << 1) and the high frequency limit (vtc and v~t >> 1 ). We are mainly 

interested in modes with low frequencies (compared to the noise), i.e., 

v1 << 1/tc or<< 1/~t. Digital computer simulation of a noise process with no correlation 

between time steps makes a discrete time series. A digital simulation with time step 

~t << 1 /v can be scaled to give the same mode 1 source as a Markov process with 

tc << 1/v. 

The random noise source for mode 1 at low frequencies, assuming uncorrelated 

log amplitude and phase, is 
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1 [( 'V'I' *) + (rm*) lg Bcp f] { vtc H~r ra.l • vdV2 

(i) 

(ii) 
(56). 

In the geometric limit, and with the replacement of ~N,. for N,.tc or N,.~t/2, this simplifies to 

(57). 

The asymptotic form of the propagation factor is 

2 
sin pe, I 012 

+ cos Pv 
p 

(58). 

Substituting these into Eq.(49), the low frequency and long wavelength spectrum from 

Markov noise is 

(59). 

Notice that a spatially white noise process (f independent of K) does not make a white 

noise optical spectrum. If the PC cutoff is at large scales, so v oc e, over the entire 

spectrum, then by Eqs. (50) and (59) the total mode 1 energy excited by white noise is 

r/1 ,::: ~N / 1024 e,3 'P2[exp(G)(G
3 - 3G

2 
+ 6G - 6) 

,. \ 5 PC 4 
7t G (60) 
+ 256 e, x2 [exp(G)(G - 1) + J_]} 
~ ~ G2 G2 

,,... 

where G = 81tN,./Npc is the gain at the cutoff wavenumber (not the G control operator 

in Eq.(14)), and 'P2 and x 2 are the phase and log amplitude variances within the cutoff. 
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8. Growth from Turbulence 

The mode 1 random index source from Eq.(44) is 

g 
2 

(1 - Q(s) ~ 1 - a·(s')Xµ 
0
(s) µ 

0

·(s')) d s d s' 
oa~ 

V -
av 

In the case of thermal turbulence this can be simplified by the standard Tatarskii 

analysis 11 : 

2 0 J,L 2 g 2 2 
"" 2rck <I> Cµ(s) 11 - Q(s)I d s 

o o a<'.1 
V -

av 

(61 ). 

(62). 

Eq.(62) is the rigorous formulation of a simple intuitive picture--the turbulent "seed" of 

instability is a propagation-weighted sum over the path. c! measures the turbulence 

and 11 - 012 measures propagation (Green function). The weighting tends to increase 

with distance out from the transmitter, as phase fluctuations propagate into amplitude 

fluctuations and heating inhomogeneities. Intuitively, with good phase correction the 

turbulence at the transmitter should not excite an instability; in fact for g=1 the weighting 

1 - Q(O) = 0. 

If the turbulence is uniform or globally homogeneous then the range integral can 

be done, 

2 t 
L Jo 

V 

2 2 
g 11 - Q{s)I d s -

oa~ 
V 

2 f[cos2e. + sin
2
l ] sinh 21m(pl ) 

\ IPl2 21m(pl) 
+ COS v - --

[ 

20 sin2l ] sin 2Re(Pl ) 

IPl2 2 Re(Pl) 
(63). 

+ 2 sinl cost [Re(l) sin2 Re(Pl ) - Im (l) _si_n_h2_1_m_(P_l_)]) 
P Re(Pl) P lm(PO 
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Fig. 1 O shows the q function over the range of interest. Substituting Eqs.(63) and (33) 

into (62) we obtain the mode 1 excitation by uniform turbulence: 

k~ss·) = ·245 q(K) = .01215 L q 
rg13 K 11 ;3 kNf'6 e, 1116 

(64). 

The numerical factors are precisely 

~{50)116 r5'6(1/5) = 0.245 

3 3 r2(1/6) 

and 

_1 {5O)
116 r 16 

( 1 / 5) = 
12 12 r2(1/6) 

0.01215 . 

The wave spectrum and Strehl ratio from turbulence are found by substitution of Eq. 

(64) into Eqs.(49) and (36). 

Fig. 11 shows the mode 1 end-of-path spectrum growing from initially uniform 

turbulence. Notice the strong similarity between <I>1 (Fig. 11) and the full <I> (Fig. 2) for 

wavenumbers K < Kpc· The initial spectrum at large scales is mainly log amplitude 

perturbation and decreases gradually as K
113 

or Np 116. Most of the initial uncorrected 

scintillation at large scales couples to mode 1: with perfect phase correction, at t = O 

lim 
e. -) 0 

~ = .9-6. = .985 
<I> 7t4 

(65). 

Phase perturbation becomes more important at small scales. <I>1 grows exponentially 

in time at rate 2v(K) (Fig. 5). The long wavelength form is 

L e, 116 
<I>1 "' (.0049)- - exp(2vt) 

(e-) o) k Nf'6 
(66). 
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Curiously the i~itial spectrum (Fig. 11) is quasi-white noise over the wavenumber 

range of practical interest, 100 > Np > 1 or 0.15 < KY U2k < 1.5. If the PC cutoff Npc > 1 

then the initial turbulence energy f; 1 in mode 1 is 

(;
1 

::: (0.3 rad)2 

NS/6 N 
T PC 

(67). 

Much of this wavenumber range has v oc e oc K2. For true white spatial noise with 

quadratic gain the amplified energy is 

= e
1 

exp(G) - 1 
G 

(68) 

where G is the gain at the highest wavenumber. If the PC cutoff is sufficiently large, say 

Npc ~ 1t, then the mode 1 energy excited by turbulence will approximately follow 

Eq.(68) with G = 81tN,/Npc: 

,:; (0.3 rad)2 exp(G) - 1 

NS/6 N G 
T PC 

exp ( B1t N,.) - 1 
(.06 rad)2 Npc 

----'------'---

Nr6 N,. 
(69). = 

Fig. 12 compares our two analytic predictions of perturbation growth from 

turbulence, the Taylor series <l>(t) (Eqs. (A9 ) - (A 11 )) and the leading exponential 

mode <I>1 (t) (Eqs.(49) and (64)). Agreement is excellent after a short time. At larger 

Fresnel numbers <l> becomes exponential even sooner. Evidently mode 1 dominates, 

at wavenumbers with good compensation, for N"' ~ 0.1 wave. 

9. Comparison to Numerical Results with Turbulence 

Numerical simulations of thermal blooming in turbulence were done with the 

ORACLE code. The simulations used square mesh-filling beams and an atmosphere 
2 

with uniform Cµ, r, v and f!J. Each initial density screen had a Kolmogorov spectrum and 

Gaussian random phases in Fourier space. The control system response was modeled 

by a Fourier filter g(K) applied to the beacon phase before the phase reversal 

correction. The filter functions were supergaussian, 
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These filters have a smooth roll-off, but one may think of the nominal PC "cutoff" as the 

spatial frequency Kpc where g(Kpc) = 1 /2. Fig. 13 shows the analytically-predicted 

mode 1 growth rate for various filter shapes. A significant range of wavenumbers was 

left uncorrected. 

Fig. 14 compares the linearized theory spectrum (sum of x and <I> variances) to 

ORACLE simulations (numerical E-field variance) for three levels of turbulence. 

Numerical results are in excellent agreement with linearized theory, as long as the total 

energy r;· in all perturbations is small. This of course is the regime where we expect 

linearized theory to do well. The spectrum below cutoff exhibits the PCI exponential 

growth of mode 1. [The initial hesitation, and the shift of the PCI peak to a lower 

wavenumber, is because the fastest growing mode with filter g(K) is at a wavenumber 

slightly less than Kpc; see Fig. 13. Systematic deviations from theory at the very lowest 

wavenumbers are due to non-Kolmogorov amplitudes in the initial density screens.] 

The spectrum above cutoff has the STRS growth of mode 0, with asymptotic STRS at 

very high wavenumbers 1,3. For a mesh-filling beam the Strehl ratio is exactly 1 - f;* by 

energy conservation. The Strehl ratio, Fig. 15, is dominated by exponential growth to 

saturation. Near saturation the spectrum is enhanced at harmonics of Kpc, and also at 

all the corrected wavenumbers K < Kpc· At saturation the spectrum flattens and 

becomes unstructured, and the Strehl ratio rapidly falls to a low value. The behavior is 

similar for other values of the cutoff Npc· 

Numerical simulations of thermal blooming with good phase correction 

(g(K < Kpc)"" 1 and initial Strehl "" 1) show essentially the same spectrum evolution for 

all levels of turbulence. With a fixed cutoff Kpc, larger initial turbulence makes 

saturation occur sooner. But the phenomena of instability excitation and growth up to 

saturation are basically independent of initial turbulence. The same linear phenomena, 

scaled by Ni-516
, account for the spectrum and Strehl ratio at all levels of turbulence. 
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The departure~ of the numerical spectrum from theory near saturation arise from 

second and higher order nonlinear interactions - Fn dropped from the linearized 

theory. The mode-beating in these interactions generates perturbations at sum and 

difference wavenumbers, making energy cascade to ever-higher spatial frequencies. 

Frequency summing enhances the spectrum at harmonics of the largest perturbations, 

which typically are near Kpc· Frequency differencing enhances the spectrum at low 

wavenumbers. Harmonics of Kpc in the spectrum are common evidence of a closed­

loop thermal blooming instability. The harmonics sometimes are masked by strong 

uncorrected turbulence at K > Kpc, but they reappear if open-loop growth is slightly 

damped by other phenomena. 

At saturation and beyond, the optical and fluid fields break up into three­

dimensional structures. The most common structures are filaments along the 

propagation direction. These look like "cells" in the transverse plane, as shown in Fig. 

16. The cell size is equal to the PC cutoff wavelength 2 1t/Kpc, which means the 

structures are the result of PCI. Non-isotropic damping phenomena, which we will 

discuss later, change the 20 cells into stripes and the 30 filaments into ribbons. 

Growth of perturbations by blooming has important consequences for the 

numerical simulation of propagation. The open and closed loop instabilities and the 

nonlinear cascade make perturbations grow at all wavenumbers out to the Nyquist 

frequency of the simulation. If the simulation is continued to sufficiently large blooming 

with little or no damping, then the results eventually are dominated by Nyquist noise 

and are no longer correct. Numerical results may even begin to violate physical 

constraints such as causality. The existence of small-scale thermal blooming 

instabilities explains the break-down of good numerical simulations. A large Nyquist 

energy, although usually symptomatic of a purely numerical code instability, is in this 

case physical and cannot be avoided in undamped thermal blooming. 
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1 o, Discussion 

The last few sections analyzed in detail perturbation growth by thermal blooming 

in a fluid with uniform properties r, v, and c!. The results form a complete solution 

of linearized propagation in this simple and very idealized fluid. Growth from 

turbulence has simple asymptotic forms, Eq.(66) for phase corrected scales 

e. <€-pc<< 1 and Eq.(A9) for uncorrected scales e. ~ 1. Intermediate scales e. - 1 have 

more complex behavior given by the exact forms, Eqs.(A9) - (A 11) and (49),(63),(65). 

The main interest in perturbation growth is how it affects beam focusability. 

Perturbations significantly degrade beam focusability and far-field quality when their 

total energy summed over all scales approaches 1 radian, ore· - 1. [An exceptional 

case is when the perturbations are highly structured or have precisely the right phase 

between different scales to act as a "phased array" of sources with good far-field beam 

quality. This is not expected to occur either spontaneously from random turbulence 

excitation or dynamically from nonlinear phase locking.] 

Perturbations will grow by thermal blooming if and only if the instability growth 

rates exceed the damping rates from other phenomena. Then net growth occurs, until 

stopped by (a) convection clearing, or (b) the nonlinear blooming interaction itself, i.e. 

the slowdown and saturation of growth when perturbations are large. Of course at 

saturation the beam already is degraded. 

Ncrit is the amount of blooming, measured in waves, needed to saturate the 

perturbations. If the small-scale instabilities are present and growing, then Ncrit is the 

threshold for significant beam degradation and the maximum amount of blooming that 

can theoretically be compensated. In a laser beam of average power P and diameter 

D, N"' oc P/D, so Ncrit also sets a maximum correctable power. This constraint often is 

more severe than the well-known whole-beam blooming constraint,7,9 which sets a 

maximum value of Nt.fNF oc P/03. 
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Of practical interest is the limitation imposed by perturbation growth on laser 

propagation in the atmosphere. In the linearized theory the only damping 

phenomenon in a uniform atmosphere is diffusion. Atmospheric diffusivity 

fl) - 0.2 cm2/sec provides strong damping near the Kolmogorov inner scale(typically a 

few millimeters) but is too weak to damp scales around r0 (typically 10cm in visible 

light). In our simple uniform atmosphere, perturbations will grow according to 

linearized theory until e· - 1, and then growth will saturate after the beam is degraded. 

It is straightforward to estimate the threshold waves of blooming Ncrit needed to 

saturate the perturbations induced by turbulence. One can get a rough estimate and a 

scaling law from the asymptotic spectra, or a more accurate estimate by integration of 

the exact spectrum, Eqs. (A9) - (A 11 ). One finds that for appropriate ranges of 

atmospheric turbulence (r0 - 5 - 50cm), path length (L - 1 - 3km) and phase control 

cutoff (Npc > NT) the intense beam will be much degraded after only a few waves of 

blooming. 

However, this estimate has little or no practical significance, because the real 

atmosphere and adaptive optics differ from the simple analytical model in some 

important respects. In order to predict the saturation point in the real atmosphere we 

must consider the effect of: nonuniform distribution of properties, the limited 

spatiotemporal response of phase corrective adaptive optics, wind shear along the 

path, and velocity turbulence. We discuss each of these in turn. 

The variation of r, fl) and C~ along an atmospheric path is a technical feature 

that changes some quantitative details but does not change the general picture of rapid 

growth to saturation. The change of parameters is most significant along vertical paths. 

Most of the absorption and turbulence is in the planetary boundary layer extending less 

than 2km above ground level. Along vertical paths the appropriate length unit is not 

total path length L but an absorption scale length La defined, for example, as the range 

where a(La) 5°'(La) = e-1a(O); the appropriate dimensionless length is e = aKLa, and the 
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appropriate blooming rate is NA.= r(O)kLa/21t. An infinite atmosphere in which a and r 

decrease exponentially with z is somewhat more unstable than a simple uniform 

atmosphere of depth La because of thermal blooming at long range with small Fresnel 

number, although an exponential profile only La deep (1 e-fold) is somewhat less 

unstable than the uniform case because it has blooming concentrated at short range 

with larger Fresnel number; see Fig. 17. Nonuniform C~ affects the source term 

Eq. (62), but this has only a logarithmic effect on the saturation threshold Ncnt· 

Real adaptive optics for phase correction would not work quite like the Fourier 

gain g(JC, v) in linearized theory. Adaptive optics would have a discrete lattice pattern 

of sensors and actuators 10 with a space-variant response. Unstable correction modes 

on a lattice with spacing d are superpositions of JC-modes that differ by an integer 

multiple of the spatial sampling wavenumber JCd = n/d, analogous to Bloch modes in a 

solid. The mathematical expression of PC control is Eq. (14) with the G operator 

mixing the JC-modes but diagonal in the lattice modes. Closed-loop instability growth 

occurs whenever the feedback system can create filament and ribbon structures in the 

refractive index. With real adaptive optics the feedback would be fixed to the lattice, 

while the structures would be fixed in the convected air. In the absence of wind, a null­

seeking PC control system on the discrete lattice would have instabilities which are 

similar to the pure Fourier mode theory discussed earlier; the mode 1 growth rate 

(fastest growing mode) of the null-seeker is the same as Fig. 5 and Eq. (48), since the 

control system could create phase perturbations that are indistinguishable on the lattice 

from pure Fourier modes with K < Kd. Any wind, even uniform wind, would act to 

decouple the feedback (on the discrete lattice) from the refractive index (in the air), 

reducing the instability near JCd. Consequently, instability growth of a discrete PC 

control system would differ significantly from the pure Fourier mode theory whenever 

the nascent filament and ribbon structures are convected across the lattice at a rate 

comparable to their growth rate, or KcJ • v - v. Also, in the very process of correction 
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real adaptive optics probably would create perturbations at wavenumbers above its 

own sampling frequency (fitting error), which would be a source for mode O open loop 
.l 

growth. These features can be modeled in linearized theory18 to estimate their effect 

on saturation threshold. 

Nonuniform wind velocity, or "wind shear", can significantly damp perturbations. 

Optical perturbations grow by creating refractive index perturbations that are correlated 

with and reinforce the optical perturbations. In the average convected frame of the fluid 

the perturbations are filaments of alternating high and low irradiance, and low and high 

index. Motion of one part of the atmosphere relative to another scrambles and breaks 

up these filamentary perturbations. The scrambling is a damping process competing 

with instability growth. Scrambling occurs only for wavevectors 1e II av ; there is 
az 

no scrambling for wavevectors 1e J_ av . 
az 

The effect of wind shear depends on whether or not the damping rate exceeds the 

growth rate. We quantify this by a dimensionless shear equal to the ratio of the "rate of 

scrambling" to the "rate of blooming". There is some arbitrariness in the definition of 

each rate. We define "rate of blooming" as NA., and we define "rate of scrambling" as 

the velocity variation divided by a scale length. 

The velocity variation is quantified by the eigenvalues of the shear tensor. The 

shear tensor is defined as 

where 

C = -1 1La (v(z) - VaveXv(z) - Vave) dz 
La 

0 

Vave = -1 1La V (z) dz , 
La 

0 

and the velocity variation is defined as 

(70) 

tw± - fil[eigenvalues]112 = i5[Tr C ± ~(Tr C)2 - 4 det c]1 12 
(71 ). 
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If the wind shear is linear(!: a constant independent of z) then 

~ V + = I V (La) - V { 0) I , ~V- = 0 (linear shear) (72a). 

If the wind field v(z) is a random function of distance along the propagation direction, 

with 1-axis standard deviation av, then 

(random wind) (72b). 

The dominant phenomena fix the scale length. A Fresnel zone width ill is the 

appropriate scale length for scintillations, often the most important perturbation in the 

atmosphere. A diffusion scale length proportional to ,/IE often is appropriate in 

laboratory experiments or other situations of strong thermal diffusion. 

Referenced to a Fresnel zone the dimensionless shear4 S is defined as 

S± = ~V+/~4ALa/rc 
N,. 

(73). 

This is a rigorous scaling parameter like NA and Np, in the sense that the Green 

functions depend on wind shear through S± and not on ~v ±. For example, in a linear 

wind shear pattern the p function of Eq. (9) is 

p2 = 1 + 16 Np/7c 
0 

v . S+ ( ) z - - 27C I - - COS K V -
N,. ,/Np ' La 

Since the Green functions depend on v(z) through p, Eq. (9), all linear shear profiles 

with the same S+ have the same instability behavior. 

The damping effect of linear wind shear is shown in Fig. 18. The mode 1 PC 

instability is completely suppressed for all perturbations K II av if S+ > 5. Damping of the 
az 

the mode O open loop STRS instability is easier, with essentially complete suppression 

if S+ > 1. Perturbations K ..Lav are unaffected by linear wind shear. Growth of these 
az 

perturbations in linear shear produces three-dimensional ribbon structures that give 

the beam a "striped" appearance in the transverse plane, as shown in Fig. 19. The 



38 

ribbons align parallel to av. The unstable region of the two dimensional transverse . az 
1<:-space contracts as the •value of linear wind shear S+ increases, eventually shrinking 

down to a narrow band along K 11 av. The saturation threshold Ncrit only increases 
az 

logarithmically with S+ as the unstable region of phase space shrinks. 

11. Turbulent Flow 

Random isotropic wind shear should damp perturbations in all directions. 

Turbulent flow generates a random wind field which may provide such damping. 

Turbulent flow is common in the atmosphere; one finds it for example in the planetary 

boundary layer, which varies in thickness from a few hundred meters to several 

kilometers, and in the boundary layer around a moving vehicle. 

Kinetic turbulence produces a random wind field which typically is locally isotropic 

and homogeneous with Kolmogorov spectrum in the inertial subrange 14. This random 

field can be thought of as arising from the rotation of eddies of all sizes between the 

inner and outer scale. The small eddies produce a small random variation of velocity in 

all coordinates and in particular make the velocity at each range z a random function of 

the transverse coordinates and the time. This goes beyond the standard blooming 

model7, Eqs. (1) and (2), which has v(z) dependent only on range z; we discuss this 

later. The large eddies produce a random z-variation of the transverse fluid velocity, 

which is unchanged on a time scale much longer than the time needed for instability 

growth or wind clearing. The large eddy turbulence is consistent with the standard 

model as random wind shear. 

Large eddy turbulence can be modeled as a velocity realization of a Gaussian 

random function of z with appropriate power spectrum. Every realization is physically 

correct at t = 0. A time-independent realization remains correct over time intervals 

shorter than the time scale of changes in the large eddy rotation (typically several 
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seconds or more). ~or longer times the realization fails to follow the true velocity 

dynamics, but the statistical properties of the model are correct at long time if < vµ > 

correlations are stationary. 

A discrete element version of this model is used in the ORACLE code for 

propagation simulations 15, 16. ORACLE generates random x and y wind fields as 

independent Markov processes in z. The Markov spectrum is determined by a 

correlation length Le and a rms fluctuation av. The Markov spectrum is a good model of 

the long wavelength turbulence at scales as large or larger than the outer scale, and it 

matches smoothly to the Kolmogorov spectrum at short wavelengths. The 

dimensionless shear of the random wind is 

(74). 

A nonrandom velocity field is added to represent the average wind profile. 

Random isotropic wind shear from large eddy rotation damps perturbations in all 

directions. Some ORACLE simulations are shown in Fig. 20. The open-loop STRS 

instability is suppressed by a low value of random shear, S - 1-2. At low values of 

shear the perturbations still grow by exponential PCI, as shown by the example in Fig. 

21, and the usual filament and ribbon structures occur. All the instabilities, PCI as well 

as STRS, are suppressed by random shear greater than a threshold value Scrit· 

With S > Scrit the spectrum grows no faster than linearly as the index perturbations 

generated by the intense laser are rapidly scrambled, the Strehl ratio declines slowly 

without any rapid fall, and the filament and ribbon structures do not occur. Scrit 

depends on Npc: a shorter cutoff wavelength means faster PCI growth, which requires 

faster scrambling (larger S) for suppression. 

The stability threshold in wind shear shear is equivalent to two other thresholds, 

which may have more direct physical appeal. Random wind suppresses all instabilities 

if the blooming rate is below threshold, 
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N. ~ < N. . - V3rc av 
/1, ent = -------'---

Serit~ 
(75). 

or equivalently if the absorbed irradiance is below threshold, 

ala lo < Acrit = ~ {F: <Jv -- ---
Jvi. La Scrit 

(76). 

If a strong damping phenomenon like random wind shear is present, then Nerit is 

the maximum rate of blooming that can be stably compensated. NA oc P/D2 so Nerit , 

also sets a maximum correctable power. The constraint of NA < Nerit usually is more 

modest than NA< Nerit. Consequently, isotropic damping of perturbations by random 

wind shear is the preferable condition for atmospheric propagation. Isotropic damping 

is provided by naturally occurring large eddy turbulence. Isotropic damping also could 

occur in a nonrandom wind field with sufficient shear in both directions. We 

studied the random shear threshold with ORACLE simulations. The simulations used 

round apodized beams in a model atmosphere with exponential absorption profile. We 

identified the threshold (rather imprecisely) by the absence of a rapid Strehl drop 

before the wind clearing time. The threshold did not seem to depend on the outer scale 

length Le, for Le< a few hundred meters. We found the shear threshold for 1 O < Npc < 

40 to be approximately 

Scrit :;::: 

or Ncrit ;:::: 

54±2 
Npc 

(.057) Npc <Jv 

~ 

(77), 

(78). 

This means, for example, the threshold absorbed irradiance for instability growth of a 

1 µm wavelength laser in air (thermal response Jvi. = 8.25x1 o-4 cm3/J) with a 2 km 

absorption depth would be approximately 
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ala 10 (W/cm2) "" (0.15) Npc av (m/s) (79). 

These numerically derived Scrit thresholds seem to be proportional to Npc-1 · 

General theoretical arguments4, valid for infinite beams and very short correlation 

length Le, predict that the Scrit should be proportional to Npc-112. The discrepancy may 

be due to the finite beam, the correlation length, or the numerical uncertainty in 

identifying Scrit· Much more study is needed to determine the sensitivity of the 

threshold to all the propagation parameters. 

Small-eddy rotation could produce significant damping if it has a local shear>> 1. 

However, the smaller eddies move slower than the large eddies (their faster rotation 

rate is more than offset by their smaller size), so scrambling by turbulent flow gets less 

effective as scale size decreases. The speed of eddies -r0 in size in the air is usually 

much less than large eddy random wind shear, and usually the local shear is< 1, so 

we expect that small-eddy or local turbulence in the air typically has only a small effect 

on perturbation growth. 

Small-eddy rotation also produces turbulent mixing i.e. the local transport of 

thermal inhomogeneities inside the beam path. Turbulent mixing breaks up large­

scale thermal structures. Averaged over long time this looks like diffusion, and is 

sometimes called "eddy diffusivity". But turbulent mixing is not diffusive over short times 

(such as an instability growth time). True diffusion would erase the Kolmogorov 

spectrum of thermal fluctuations. Turbulent mixing maintains the Kolmogorov spectrum 

in the inertial subrange. It does this by transferring energy to ever-higher 

wavenumbers and smaller scales; this is sometimes called a Richarson cascade. The 

cascade finally ends at the Kolmogorov inner scale, where viscosity and thermal 

diffusion dominate over mixing. Consequently, small-eddy turbulence may excite the 

instability at higher wavenumbers while it damps the instability at lower wavenumbers. 
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We limited most of our discussion to phase-only correction, but there are other 

methods of optical control that should be considered. Methods that control the intensity 

as well as the phase of the intense laser beam have lower instability growth rates than 

PC, and full electric field conjugation is stable at all controlled spatial frequencies4. 

These other control laws have different spectral evolution from PC, and they have 

different thresholds. Because it has smaller closed-loop growth rates, full field 

conjugation, and intensity and phase control that mimics full conjugation, has a 

significantly higher threshold absorbed irradiance for instability growth and a lower 

critical shear for instability suppression. 

12. Conclusion 

We have extended the linearized propagation theory to include the combined 

effects of turbulence, thermal blooming and dynamic phase correction. The exact open 

and closed-loop Green functions of the simple uniform fluid provide powerful tools to 

study these interactions. Some of the complex behavior seen in digital propagation 

simulations now can be broken down into simple well-understood growth and damping 

phenomena, at least while the perturbations are small. One can predict instability 

growth rates and predict excitation strengths from homogeneous turbulence. Of 

practical importance, one can understand the thresholds at which damping 

phenomena suppress instability growth, and understand the threshold scaling. 

Random wind shear from large-eddy rotation seems to be the most powerful damping 

effect in the atmosphere. When the instabilities are suppressed, the perturbations on 

corrected beams start small and stay small. This of course is precisely the regime 

where we expect the linearized theory to work. 

If the damping phenomena are too weak then perturbations grow rapidly, 

especially at high wavenumbers, until they saturate at large amplitude and degrade the 

beam quality. Digital simulations at saturation show nonlinear energy cascading, 
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transverse pattern formation, and some evidence of chaos, e.g. strange attractors. The 

linearized theory and Green functions alone obviously cannot explain the saturation 

dynamics. This regime is of intrinsic interest in the theory of nonlinear wave 

propagation, but some further theoretical development is required to fully understand it. 

Fortunately this regime is relevant to practical applications mainly by avoidance. 

We believe that our methods and some of our results will be useful for other 

problems of wave propagation. For example, the closed-form Green functions for 

phase correction (without blooming) may be applied to the theory of imaging and 

propagation through turbulence. 
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Appendix 

',1 
i 

The general form of the field spectrum can be calculated for the case of uniform 

initial turbulence. The spectrum consists of three separate parts: the open loop <l>oL• 

closed loop <l>cL• and mixed <l>M terms. These are obtained from substituting the 

expressions for ~X *) and (cpcp*) found in the text (Eq. (31 )) into the definition for the 

spectrum, <l> = ~X *) + (cpcp*). At the path end (z = L): 

<l>oL = ·
0243 1L [K'

2 
(L - s, t) + a2 K2 (L - s, t)l ds (A 1) 

kN rs €,. 11 /6 
0 

K J 

= - ·
0243 

2 il [K' (L - s, t) KPC' (LI s, t) + a! K (L - s, t) KPc (LI s, t)l ds 
kNfse,111s o J 

<l>cL = .0243 1L [Kpc-2 (L.j s, t) + a! KPc2 (L.j s, t)] ds 
kNfs e, 1116 

(A3). 

Taylor series expansions for each term are obtained from the generalized two-time 

spectrum <I>{t, t') = ~ (t) x· (t')) + (<P (t) <P. (t')). This reduces to the ordinary single-time 

(A2) 

spectrum when t' = t. The generalized spectrum consists of three parts corresponding 

to the open loop, closed loop, and mixed terms given above. The series expansions for 

Eqs. (A 1 ), (A2), and (A3) are obtained by first inverting the double Laplace transforms 

of the corresponding terms in the two-time spectrum, then setting r = t. The double 

Laplace transforms of the terms corresponding to Eqs. (A 1 ), (A2), and (A3) are 

¢oL = ·
0243 1L [R' (L - s, vlf<' (L - s, v') + a! K (L - s, v) K (L - s, v')l ds (A4) 

kNfs e,1116 
0 

J 
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(A5) 

2 "' ( ) "'PC ( ) 2 "' ( ) "'PC ( )il + al( K L - s, v K LI s, v' + al( K L - s, v' K LI s, v J ds 

<l>cL (A6). 

"'PC "' ..-... "' ( ) After the substitutions K (zl s) = K(z) M (s), K(z) = sin al(j3z / val(j3 , each of these 

expressions becomes a sum of terms of the form 

1 
[ F(v) G (v') - G {v) F {v')] 

V - v' 
(A?). 

The double inverse transform of (A?) is given by 

D (, _ ,) g{t' + ,) _ g(, _ ,)(,, + ,)] di (AB) 

where f and g are the inverse Laplace transforms of F and G respectively. Repeated 

application of this result gives the general inverse transform for each part of the 

generalized spectrum. Taylor expansions of each term allow the time integral to be 

evaluated. The final expressions for the parts of the single-time spectrum are obtained 

by setting t' = t: 
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<I>oL{e. e) = _.0_24_3_L_(1 _ ~ 1 _ sin (2t)J + 
k Nfs-e,111s el 2€-

<I>M(e, e) = - .0243 L g { i (-2e)P ; aq (p- 1) 
kNs1so111s ql(p-q-1)! 

T v p-2 q =0 

• 1 L (-1 r Tm ( €,) Dq + 1, p -q -m ( €,) 
[ 

p-q 

2q + 1 ( q + 1 ) ! m = o m I €, m ( p - q - m) I 

+ i (-4ef [ i (-1rTm(t) Do,p+1-m(t) _ Dp+1, 0 (e) ]} 
p .. o P I m. o m I e_m (p + 1 - m) ! 2P + 1 (p + 1) I 

(A10) 
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<l>cL (€-, (9.) = .0243 L g2 [ i (28 JP ~ aq (p - 1) 
k Ns1s e 111s e q! (p _ q _ 1), 

T p=2 q::O 

q+1 p-q 
• L L Tm(l )Tn(l) Aq-n+ 1 p-q-m(e} 

n=O m=O m!n! · 

00 p 

+ L _1 (49)P L Tm(t) 11 _ (e) 
! €, m I '""'<>, P m + 1 

p - 0 p m=O 
(A 11) 

€, €, €, i (28)P i 1 i p:Eq (-er+nTq-n(t)Tp-q-m(t) Bmn(e)J 
+ sin cos P=O T q .. o q!{p-q)! n=O m=O (q-n)!{p-q-m)I 

where 

Arnn (t ) = 
ml nl 
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(-er 
cos (2C) in (2C) - [; cos4C + sin C cos e(1 + cos2C)] in-d2e) Aon(e) = - nl 
. I· 

" 

+ ~ sin3 C cos C i ( ~ ) iq (C) in . q (C)} , n~1 (A 12b) 
2 q-0 

Aoo (e) = 0 ' 
(A12c) 

Bmn (e) = 
jm (2e) jn (2e) + _f__ :i i jp (e) jm -p (e) jq (e) jn -q (e) (A13) m!n! 2m+n 

O O 
p!q!(m -p)!(n-q)I ' pn q = 

Dm n (e) = e sin e 2e jm (e) jn (2e) -2m jm. de) jn (2e) + e jm. de) jn -d2e) 

~ n J -~jm-de) :E (n )jp(e)jn-p(e) 
2 p=O p 

- e cos e[2e jm-de) jn (2e) (A14a) 

- (2m-n)jm-1(e)jn.1{2e)- 2ejm(e)jn.1{2e)J, m,n~1 

Don (e) = ~e sin (2e) jn -1 (2e) - 2e cos (2e) jn (2e) 

e 
+ -[ COS e jn (e) - sine jn -de)] + n COS

2 e jn -d2e) 2n 

n 

_ e
2 

sin (2e) :E ( n )jq(e)jn -q(e) . n ~ 1 
2n + 1 q= O q 

(A 14b) 
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Dao (e) = 0 (A14d) 

n -1 ( €,)" _ m 
Tn(e) = -gf L -2 (~) Tm(e)[sinfin-m(t ) + cosfin-m-df )], 

m-0 

(A15a) 

T0 {f) = 1 (A15b) 

(A16) 

(A17) 

Mn is the integer part of n/2 - 1, OP is the integer part of p/2 - 1, and in (€-) are the 

spherical Bessel functions of order n. The numerical factor in Eqs. (A9) - (A 11) is 

precisely 

1 (25)1/6 r 516 
(1/5) - - = 0.0243 . 

6 6 r2 (1/6) 
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FiQure Captions 

1. Linear theory of thermal blooming. The boundary conditions are the field 

fluctuations Fat path start and Fb at path end, and the initial index fluctuation µ0 

everywhere along the path. The five Green functions are J, Jb, K, L, 8. The solution 

is the field fluctuation Fat path end and Fb at path start. The control law G -relates 

F to Fb. 

2. Time evolution of the wave spectrum with turbulence and thermal blooming in a 

homogeneous medium. There is perfect phase correction at all Fresnel numbers down 

to Npc = 10. Turbulence Fresnel number Nr = 7.85. 

3. Time evolution of the wave structure function with turbulence and thermal 

blooming, for the same parameters as Fig. 2. 

4. Singularities of the phase correction response kernel M in the complex v-plane. 

Mellin transform over the contour ~ gives M in the time domain. Singularities in the 

right half-plane correspond to exponentially growing modes. Singularities in the left 

half-plane correspond to exponentially damped modes. The accumulation point is an 

essential singularity corresponding to open-loop growth. 

5. Dispersion relation of the most unstable mode in a homogeneous medium. Np is 

the Fresnel number of the perturbation which is perfectly phase corrected. The growth 

rate is normalized to the blooming rate NA.. 

6. Residue denominator of the most unstable mode for perfect phase correction in a 

homogeneous medium. The value at Np~ oo is rr/4 . 

7. Propagation factor of the most unstable mode for perfect phase correction in a 

homogeneous medium. 

8. Comparison of theoretical and numerical dispersion relations for a homogeneous 

medium. Solid line is the analytical calculation, Eq. (16); circles are numerical results 

of the ORACLE code. Code simulations for many different physical dimensions have 

been plotted in terms of the dimensionless scaling parameters Np and NA. 
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9. Comparison of theoretical and numerical spectrum growth in a homogeneous 

medium excited by an impulse perturbation. Solid line is the analytical calculation, Eq. 

(54); circles are the ORACLE simulation. The conditions are 

Np= 2, 110 = 0.1, and ~NA= 0.0216. 

10. Turbulence coupling factor of the most unstable mode for perfect phase correction 

in a homogeneous medium. 

11. Exponential part ,Eq. (49), of the spectrum of the most unstable mode in a 

homogeneous medium, for perfect phase correction of turbulence. The mode 

amplitude grows exponentially from the initial coupling to the turbulence, Eq. (64). 

12. Comparison of the full wave spectrum to the spectrum of the most unstable mode 

in a homogeneous medium, for perfect phase correction of turbulence at Np= 1 and 

NT= 7.854. The full spectrum is Eqs. (A9 )- (A 11 ); the leading mode spectrum is 

Eqs. (49) and (64). 

13. Dispersion relation of the most unstable mode in a homogeneous medium for 

various phase correction loop filters. The filter function has the form 

g(Np) = 2-(Npc;/Npr , with Npc = 4. 

14. Comparison of theoretical and numerical spectra for phase correction of 

turbulence and thermal blooming. Solid lines are the linearized theory spectra (sum of 

x and <I> variances); symbols are the code spectra (numerical E-field variance). The 

spectra are labeled with the accumulated OPD from thermal blooming. Phase control 

gain function is supergaussian with Npc = 7.85 and n = 10. The atmosphere has 

uniform absorption, wind speed and turbulence. The simulation is done in the 

convected frame (v = 0). The mesh-filling beam has NF= 1000. The spectra are scaled 

by Nr6
• Code results are averaged around a circle in 1(-Space at the indicated radius 

wavenumber. "Max PCI" indicates the wavenumber with the largest growth rate. 

(a) NT= 4909, (b) NT= 196, (c) NT= 7.85. 

15. Strehl ratio of the ORACLE simulations in Fig. 14. 
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16. Typical transve_rse structures produced in numerical simulations of thermal 

blooming. These plots are from the ORACLE simulation of Fig. 14c at 1.7 waves of 

blooming. They show the intense beam at the end of the atmospheric path, in the near 

field. (a) Grey-shade plot of irradiance (dark means high irradiance). (b) Grey-shade 

plot of phase modulo (2 1t) (dark means +1t , light means - 1t). Cell size""' phase 

correction cutoff wavelength. 

17. Dispersion relation of the most unstable phase corrected mode for various 

blooming profiles. The absorbed irradiance decreases exponentially with range along 

the path, r(z) = r O exp(-z/La). The total length of the path varies from 1 to 7 e-foldings. 

18. Damping effect of linear wind shear in a medium with uniform heating. (a) WKB 

theory dispersion relation of the most unstable phase corrected mode, as a function of 

the linear shear parameter along the perturbation. (b) Comparison of theoretical and 

numerical dispersion relations with linear wind shear. Solid lines are slices through 

the WKB analytical result in (a); circles are ORACLE simulations. (c) Spectrum from 

ORACLE simulations of uncorrected turbulence in thermal blooming with linear wind 

shear. Turbulence NT= 0. 785. These spectra are time averaged over 4.5 to 9 waves 

of blooming, and are taken along the axis in K-space parallel to the direction of linear 

shear. Squares are S = 0, triangles are S = 0.886, circles are S = 1. 77. 

19. Effect of linear wind shear on instability growth in an ORACLE simulation of 

turbulence and blooming. The atmosphere has uniform absorption, wind speed and 

turbulence, the collimated beam has NF= 2000, the PC control loop has a 

supergaussian filter with Npc = 4 and n = 10, turbulence Nr = 20, N,., = 1 O waves/sec, 

and shear S = 1 O along the vertical axis. Pictures are at 2.3 waves of blooming. 

(a) Grey-shade plot of irradiance at the end of the atmospheric path(dark means high 

irradiance). Perturbations grow into stripes aligned to the wind shear. (b) Grey-shade 

plot of far field irradiance in the (Kx , Ky) plane. The K = 0 boresight is at the center of 
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the picture. The ne?r field stripes give a diffraction pattern appearance in the far field. 

Energy is bunched at harmonics of the PC cutoff. 

20. Damping effect of random wind shear. The atmosphere has exponentially 

distributed absorption, Hufnagel-Valley turbulence17, and a Markovian wind velocity 

profile with dimensionless shear S. The round collimated beam has NF= 4800, the PC 

control loop has a supergaussian filter with Npc = 1 O and n = 10, turbulence NT= 20, 

and t,h. = 1 O waves/sec. 

21. Perturbation growth below the shear threshold. ORACLE parameters are from 

Fig . 20, with S = 1. 72. The spectrum is summed over a ring in the far field at the 

indicated radius angle. 
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Linear theory of thermal blooming. The boundary conditions are the field 
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fluctuation µO everywhere along the path. The five Green functions are J, 
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path start. The control law G relates F to Fb. 

99-00-0289-1439 (11) 

AH-<J~U-3821-ff-00-<1219-1431 (11) 



Figure 2 

lnltlal 
Kolmogorov 

1 0 ~ ..___.__.__._............_____.__._ ....................... ...____.___._ .................... 

10-1 1 10 

Spatial frequency x: v U2k 

Time evolution of the wave spectrum with turbulence and thermal blooming 
in a homogeneous medium. There is perfect phase correction at all 
Fresnel numbers down to Npc = 1 o. Turbulence Fresnel number 
Nr = 7.85. 
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Time evolution of the wave structure function with turbulence and thermal 
blooming, for the same parameters as Fig. 2. 
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Singularities of the phase correction reponse kernel M in the complex 
v-plane. Mellin transform over the contour C gives M in the time domain. 
Singularities in the right half-plane correspond to exponentially growing 
modes. Singularities in the left half-plane correspond to exponentially 
damped modes. The accumulation point is an essential singularity 
corresponding to open-loop growth. 
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Dispersion relation of the most unstable mode in a homogeneous medium. 
Np is the Fresnel number of the perturbation which is perfectly phase 
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corrected. The growth rate is normalized to the blooming rate N,.,. 

TCF-Se2-U-525l-5 



.0
 

lO
 

Q
) 

.... ::, 
C

J) 

u::: 

C
L 

z -­ .... 



Figure 6 
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Residue denominator of the most unstable mode for perfect phase 
correction in a homogeneous medium. The value at Np --> 00 is 7t/4 . 
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Propagation factor of the most unstable mode for perfect phase correction 
in a homogeneous medium. 
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Figure 8 

N -1 
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Comparison of theoretical and numerical dispersion relations for a 
homogeneous medium. Solid line is the analytical calculation, Eq.(16); 
circles are numerical results of the ORACLE code. Code simulations for 
many different physical dimensions have ben plotted in terms of the 
dimensionless scaling parameters Np and ~A . 
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Comparison of theoretical and numerical spectrum growth in a 
homogeneous medium excited by an impulse perturbation. Solid line is the 
analytical calculation, Eq.(54); circles are the ORACLE simulation. The 
conditions are Np= 2, 110 = 0.1, and ~NA= 0.0216 . 
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Turbulence coupling factor of the most unstable mode for perfect phase 
correction in a homogeneous medium. 
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Exponential part Eq.(49) of the spectrum of the most unstable mode in a 
homogeneous medium, for perfect phase correction of turbulence. The 
mode amplitude grows exponentially from the initial coupling to the 
turbulence Eq.(64). 
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Comparison of the full wave spectrum to the spectrum of the most unstable 
mode in a homogeneous medium, for perfect phase correction of 
turbulence at Np= 1 and Nr = 7.854. The full spectrum is Eqs.(A9)-(A 11 ); 
the leading mode spectrum is Eqs.(49) and (64). 
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Dispersion relation of the most unstable mode in a homogeneous medium 
for various phase correction loop filters. The filter function has the form 

-(N dN )" 
g(Np) = 2 P P , with Npc = 4. 
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Dispersion relation of the most unstable mode in a homogeneous medium 
for various phase correction loop filters. The filter function has the form 

-(N dN )" 
g(Np) = 2 P P , with Npc = 4. 
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Comparison of theoretical and numerical spectra for phase correction of 
turbulence and thermal blooming. Phase control filter function is 
supergaussian with Npc = 7.85 and n = 10. The atmosphere has uniform 
absorption, wind speed and turbulence . The simulation is done in the 
convected frame(v = 0). The mesh-filling beam has NF = 1000. The 

spectra are scaled by Nrs1s. Code results are averaged around a circle in 

K-space at the indicated radius wavenumber. "Max PCI" indicates the 
wavenumber with the largest growth rate. 
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Figure 14c 
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lrradlance 

Typical tranverse structures produced in numerical simulations of thermal 
blooming. These plots are from the ORACLE simulation of Fig. 14c at 1.7 
waves of blooming. They show the intense beam at the end of the 
atmospheric path, in the near field. ()II size = phase correction cutoff 
wavelength. · 

(a) Grey-shade plot of irradiance(dark means high irradiance). 



Figure 16b 

(b) Grey-shade plot of phase modulo (2n) (dark means +n, light means ·re). 
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Dispersion relation of the most unstable phase corrected mode for various 
blooming profiles. The absorbed irradiance decreases exponentially with 
range along the path, r(z) = r0exp(-z/La). The total length of the path 
varies from 1 to 7 a-foldings. 
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Figure 18a 
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Damping effect of linear wind shear in a medium with uniform heating. 
(a) WKB theory dispersion relation of the most unstable phase corrected 
mode, as a function of the linear shear parameter along the perturbation. 
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(b) Comparison of theoretical and numerical dispersion relation with linear 
wind shear. Solid lines are slices through the WKB analytical result in (a); 
circles are ORACLE simulations. 
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(c) Spectrum from ORACLE simulations of uncorrected turbulence in 
thermal blooming with linear wind shear. Turbulence NT= 0.785. These 
spectra are time averaged over 4.5 to 9 waves of blooming, and are taken 
along the axis in IC-space parallel to the direction of linear shear. Squares 
are S = 0, triangles are S = 0.886, circles are S = 1.77. 
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Figure 19a 

(a) near fleld lrradlance 

Effect of linear wind shear on instability growth in an ORACLE simulation 
of turbulence and blooming. The atmosphere has uniform absorption, wind 
speed and turbulence. the collimated beam has NF = 2000, the PC control 
loop has a supergaussian filter with Npc = 4 and n = 10, turbulence 

• 
Nr = 20, NA = 1 O waves/sec, and shear S = 10 along the vertical axis. 

Pictures are at 2.3 waves of blooming. 
(a) Grey-shade plot of irradiance at the end of the atmospheric path(dark 
means high irradiance). Perturbations grow into stripes aligned to the wind 
shear. 



Figure 19b 

(b) far field lrradlance 

·-~~ 
' .,. 

.. 
" • . t• 

(b) Grey-shade plot of far field irradiance in the (Kx , Ky) plane. The 1e = O 
boresight is at the center of the picture. The near field stripes give a 
diffraction pattern in the far field. Energy is bunched at harmonics of the 
PC cutoff. 



Figure 20 
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Damping effect of random wind shear. The atmosphere has exponentially 
distributed absorption, Hufnagel-Valley turbulence 11, and a Markovian 
wind velocity profile with dimensionless shear S. The round collimated 
beam has NF = 4800, the PC control loop has a supergaussian filter with 

• 
Npc = 1 O and n = 10, turbulence Nr = 20, and N,., = 1 O waves/sec. 
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Perturbation growth below the shear thresh.old. ORACLE parameters are 
from Fig. 20, with S = 1.72. The spectrum is summed over a ring in the far 
field at the indicated radius angle. 
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