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COMPUTATZONAL PHYSICS AT THE NATIONAL ENERGY RESEARCH 
SUPERCOMPUTER CENTER *

Arthur A. Mirin, Group Leader 
Computational Physics Group 

National Energy Research Supercomputer Center 
Lawrence Livermore National Laboratory

The principal roles of the Computational Physics Group are (1) to develop 
efficient numerical algorithms, programming techniques and applications 
software for current and future generations of supercomputers, (2) to develop 
advanced numerical models for the investigation of plasma phenomena and the 
simulation of contemporary magnetic fusion devices, and (3) to serve as a 
liaison between the Center and the user community; in particular, to provide 
NERSC with an application-oriented viewpoint and to provide the user community 
with expertise on the effective usage of the computers. In addition, many of 
our computer codes employ state-of-the-art algorithms that test the 
prototypical hardware and software features of the various computers.

Our group currently consists of six physicist/mathematicians: Dave 
Anderson, Gary Kerbel, Alice Koniges, Art Mirin, Mike McCoy and Dan Shumaker. 
Three students in the Applied Science Department of the Univresity of 
California, Davis (Paul Amala, Dave Martin and Greg Tomaschke) are working with 
us while pursuing their graduate degrees.

This document describes the activities of the Computational Physics Group 
and was prepared with the assistance of the various Group members. The first 
part contains overviews on a number of our important projects. The second 
section lists our important computational models. The third part provides a 
comprehensive list of our publications.
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I. Project Overviews
This section contains overviews of a number of our past and present research 
efforts.
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PROJECT OVERVIEW

National Energy Research Supercomputer Center 
Computational Physics Group

Efficient Numerical Algorithms and Programming Techniques
D.V. Anderson, A.E. Koniges and A.A. Mirin 

February 1990

In magnetic fusion plasma modeling with fluid or particle simulation 
techniques, it is often necessary to study phenomena over time scales long 
compared to the basic wave propagation times. Within the Computational Physics 
Group at the NERSC emphasis has been given to such long time scale phenomena, 
where for example, various resistive MHD problems, spatial diffusive transport, 
phase space transport (Fokker-Planck equation), as well as equilibrium and 
stability calculations have been studied [1-3]. The parabolic or elliptic 
PDE's that result share the common feature of being stiff and thus require 
implicit solution techniques.

To solve these matrix problems efficiently we have successfully combined 
powerful new methods of numerical analysis with the vectorization capabilities 
of the computers. The Preconditioned Conjugate Gradient (PCG) algorithms have 
been extended [4,5] and several publicly available code modules have been built 
[6-10,29] and optimized for the Cray-1, Cray X-MP, and Cray-2 computers.

For example, the modules ICCG2 and ILUGG2 solve the symmetric and 
asymmetric 9-banded matrix systems that frequently arise in 2-D problems.
ICCG3 and ILUCG3 solve the corresponding 3-D problems for various band counts 
(7, 15, 19, or 27). These codes are largely vectorized except for the 
recursive loops, which have been coded for maximal scalar speed. An alternate 
method [11,12] of performing preconditioned conjugate gradient, based on cyclic 
reduction and which avoids tight recursions, has been used to develop the fully 
vectorized codes FVICCG and FVILUCG [13],

A variation of ILUCG called ILUBCG2, which uses the biconjugate gradient 
method, was introduced recently. In the solution of a coupled set of plasma 
stability equations, the ILUBCG method was shown to yield faster convergence 
than the ILUCG methods [14]. We therefore provided the BCG method as an 
alternative to the basic CG method in our solvers. Rather than use the BCG 
algorithm in the form used by Mikic [14], we developed a new form of the 
algorithm which naturally divides the work into two equal-sized parts [15].
This allowed us to multitask the BCG method, taking advantage of the bilateral 
symmetry. The multitasking algorithm gives a wall-clock-time speed-up of 40% 
over the unitasking BCG version which in turn is about 30% faster than the 
preconditioned CG solver; thus the overall speedup of the new solver was about
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80%. We also recently built ILUBCG2-11, which is an eleven banded solver 
appropriate for 2D problems with singly periodic boundary conditions.

Recent plasma physics applications, including a field solver for the 3-D 
particle simulation code QN3D, have required routines suitable for coupled PDE 
systems. For this purpose new solvers that employ preconditioned conjugate 
gradient techniques were developed [16]. Both two and three dimensional 
problems are treated by the codes CPDES2 [17] and CPDES3 [18], respectively.
In each of these the user may choose to use either the standard conjugate 
gradient method or the bi-conjugate gradient method. In the former convergence 
is guaranteed, while in the latter the rate of convergence is faster. These 
routines exploit the vector gather/scatter hardware available on the Cray-2 
(and other recent computers) to produce a fully vectorized calculation. We 
identified four loops in the code where the indirect vectorization is 
implemented and where nearly all of the time is spent. Timings of these loops 
seemed to show that there was considerable room for optimization. We built a 
version of CPDES3 that used assembly code to optimize the execution of the 
loops employing indirect vectorization. The vectors encountered were not long 
enough for us to achieve a factor of four speedup that an asymptotic analysis 
(for long vectors) indicated. Instead we gained only a -20% improvement in 
performance. Recently, we have learned of techniques employing "supernodes" 
that will allow us to use direct vectorization in future versions of CPDES2 and 
CPDES3.

In addition, we began investigating other iterative methods and various 
preconditioning techniques to determine which are the best methods both for our 
physics problems and for the multitasking environment. In a collaborative 
effort with the University of Texas Center for Numerical Analysis, we obtained 
the ITPACK 3 software [19] and used it for comparison tests of various methods.

We investigated the use of incomplete matrix inversion as a 
preconditioner. A special test code, PINK, was built to solve the same 
9-banded systems that ILUBCG2 treats. It was determined that this form of 
preconditioning is effective but not nearly as good as incomplete 
factorization. However, PINK is fully vectorizable and parallelizable and thus 
may represent a viable approach for future sparse matrix solvers based on PCG 
techniques.

A survey of iterative solvers was conducted to determine what packages are 
being used and/or are available at the NERSC. It was found that apart from the 
ITPACK routines and the authors' own solvers, very few routines are available 
[20,21].

In addition to our work on iterative techniques, we have developed a 
direct matrix solver for block banded systems in which the blocks are dense
[22]. Such a matrix form occurs in several 3-D applications where spectral 
representations are used in two coordinates and finite element or finite 
difference methods are used in the third. The code in question, PAMS 
(Parallelized Matrix Solver), exploits three levels of parallelism, namely: a) 
functional unit overlap, b) vectorization, and c) multitasking. This 
applications code is one of the fastest running on the Cray-2, where its 
average speed has been measured to be 1.25 Gflops in a timesharing environment
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and 1.26 Gflops in a stand-alone environment, representing an improvement over 
the results presented in Ref. [23]. Sustained speeds, measured over intervals 
of several seconds, have exceeded 1.5 Gflops. We are in the process of 
replacing some of the basic Cal-2 subroutines with even faster ones to obtain 
further improvements in speed.

The matrix system solved by PAMS is also encountered in many other 
physics, engineering, and other technical disciplines. As such, it can be used 
as a benchmark calculation for purposes of comparing computers. Since most 
supercomputers will employ both multitasking and vectorization, it is important 
that the benchmark algorithms exploit both of these features efficiently. In 
collaboration with Ecole Polytechnique Federale de Lausanne, we have tested 
several supercomputers including the Cray X-MP, Cray-2, NEC SX-2, Fujitsu 
VP-200, CDC-205, and the Piper version of the ETA-10 [24]. Of these machines 
the NEC SX-2 has performed extremely well. For pure Fortran versions of PAMS, 
we've obtained 440 Mflops (compared to 140 Mflops multitasking on the Cray-2). 
Only when assembly code is used in PAMS does the Cray-2 outperform the SX-2.

Many applications in plasma physics use finite Fourier representations. 
When the equations are discretized, they often become large-scale matrix 
systems in which the form is block multi-diagonal with dense blocks. In a 
plasma stability application, each matrix element was found to be given by 
large integrals over the "angular" coordinates. It was discovered that many of 
these matrix elements could be computed one block at a time by recognizing that 
the angular integrals have the form of inner products, which allows their 
computation via matrix-matrix multiplication. Since many such matrix blocks 
are required, multitasking can be invoked. The concept has been tested in the 
MULFI (Multiple Flux Tube Integrals) routine and very high speeds on the Cray-2 
(up to 1730 Mflops) have been obtained. We have incorporated this procedure 
into the 3D-MHD stability code TERPSICHORE [25,30] to make it the fastest 
scientific computer code running on a Cray Supercomputer (in the sense that it 
won first place in the 1989 Cray Research Gigaflop Performance Awards contest).

In a somewhat related effort we undertook a study of our major physics 
codes to learn where multitasking could be used to improve the performance of 
our multiprocessor computers - the Cray X-MP and the Cray-2. The VEPEC code 
(Vector Potential Equilibria Code) for tandem mirror calculations was one of 
our main test beds in this regard. Many different segments of the code, of 
varying granularities, were converted to multitasking and subsequently tested. 
The comparatively small memory of the X-MP tends to limit the granularities 
such that multitasking there is not often advantageous. In contrast, the 
Cray-2, with its larger memory and four processors, gives good multitasking 
performance over a wide range of granularity. The Douglas-Gunn algorithm (3-D 
ADI) which solves the implicit Ampere's equation was multitasked to give 
roughly a factor of 3 speedup. As such it represents the most difficult 
conversion within the VEPEC code, and by inference we believe that most of the 
remaining unitasking code segments could enjoy significant improvements in 
performance by straight forward conversions to multitasking.

Recent developments in automatic multitasking now allow us to implement 
these techniques with very few additional instructions beyond standard Fortran. 
Although the earlier form of multitasking, now dubbed macrotasking, is
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obsolete, we still have learned a great deal from our experience with it 
because we became familiar with those algorithms that are amenable to parallel 
execution.

Our multitasked simulation code (SIMU) uses the concept of ensemble 
averaging to solve a prototypical three-wave interaction problem. The use of 
ensemble averaging, as opposed to time-averaging, turns the problem into an 
ideal candidate for multitasking. Since realizations of the dynamical equation 
can be grouped into arbitrary-sized packets, the multitasking nature of the 
code can be adapted for machines with arbitrary numbers of processors - from 
four to four thousand.

In order to run SIMU and guarantee reproducible results independent of the 
multitasking, we require a means of producing strings of random numbers for 
each process. This problem is very important in all Monte-Carlo calculations 
run on multiprocessor computers. We have devised a method for producing 
independent strings based on hopping through a random number sequence at large 
intervals and picking up a seed for each process [26]. This method is 
particularly useful for our application and shows promise for use in general 
Monte-Carlo codes.

Another important issue is the degree of multiprocessing efficiency one 
should expect to get under CTSS, which is an intense time-sharing environment. 
In this regard we have used our 3-D MHD code TEMCO to study multitasking 
performance as a function of task size and code field length. This has led to 
a theoretical model designed to predict the the multiprocessing performance 
under CTSS [27]. We have found in general that the CTSS scheduler allows good 
overlap provided the code is large and the task string (i.e., the set of tasks 
which are available to run consecutively on a processor) is of medium-to-large 
granularity.

In addition to our research into multitasking, we have been playing the 
roles of teacher, consultant, and collaborator in our interactions with our 
colleagues at other institutions. At many workshops and conferences we have 
presented the methods, strategies, and results of multitasking with the 
intention of convincing other workers of its viability. For example, we 
presented a review of parallel computing in plasma physics which concluded that 
most of the computational methods used therein can be straightforwardly 
modified to enjoy the performance advantages of multitasking [28], With the 
advent of automatic multitasking, we expect many more computer users will be 
parallelizing their codes than was previously the case. We continue to explore 
what incentives, including modifications of the charging algorithm, could bring 
more people into the multitasking community.
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PROJECT OVERVIEW
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G.D. Kerbel, M.G. McCoy and A.A. Mirin 

February 1990

Over the past several decades there has been a tremendous increase in 
computer power. Most of this increase has been due to improvements in 
hardware. Electrical components have now become so efficient, however, that 
more recently the concentration has been on improving the architecture of the 
computer. This has led to shared memory multiprocessor supercomputers such as 
the Cray-2 and the Cray-YMP. Although these multiprocessor devices have had a 
substantial impact on high speed computing, it has been recognized that a more 
cost effective approach might be to link together very large numbers of slower, 
cheaper processors, each with its own local memory. Such massively parallel 
computers, although not general purpose, have performed quite impressively in a 
number of problem areas, and the computing community is now beginning to think 
in terms of their use as production machines in the not-too-distant future.

The NERSC Computational Physics Group has begun an investigation into the 
suitability of the massively parallel technology for modeling plasma phenomena. 
Research has been carried out in two separate but related areas -- kinetics 
(using the Fokker-Planck approach) and turbulent transport.

PLASMA FOKKER-PLANCK. The Fokker-Planck equation, which is related to the 
Boltzmann equation of kinetic theory, can be used to model collisional 
relaxation in an ionized gas. In its full generality, the Fokker-Planck 
operator models time dependent phenomena in six dimensional phase space. 
However, certain common symmetry and ordering assumptions can often be made, 
allowing the dimensionality to be reduced to four -- two spatial and two 
velocity coordinates. When the magnetic field is uniform or when the particle 
bounce motion operates on a time scale sufficiently faster than other phenomena 
of interest, one spatial variable may be eliminated, reducing the 
dimensionality to three. And when diffusion across flux surfaces is small 
relative to velocity space dynamics, the other spatial coordinate may also be 
eliminated, leaving only two velocity coordinates.

A widely used code which invokes the assumptions discussed above is FPPAC
[1], which solves the multispecies, uniform magnetic field,
two-velocity-space-dimensional Fokker-Planck operator. During 1989 FPPAC was 
converted to run on the Connection Machine 2 (CM2), which is a massively 
parallel device manufactured by Thinking Machines Corp. The CM2 consists of up 
to 65536 single bit processors, each with 8 kbytes of random access memory.
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Groups of 32 processors share Weitek floating point hardware. The CM2 is an 
SIMD device -- that is, all processors performing an operation must perform the 
same operation. This feature makes the device more restrictive but easier to 
program. Programs may be written in either assembly language or specialized 
extensions of Fortran, C or Common Lisp.

The conversion of FPPAC involved a number of steps. Variables had to be 
allocated either to the CM2 or its front end, and algorithms had to be arranged 
to minimize data flow, both between the CM2 and the front end and between the 
portions of local memory associated with the different processors. The 
Cray-optimized algorithms had to be replaced with ones minimizing the number of 
parallel steps. In particular, the procedure to compute the various moments of 
the distribution functions was recast so that it utilizes an algorithm to 
compute all partial sums of a sequence of numbers using a minimum number of 
parallel operations. The time integration procedure, which involves the 
solution of parallel tridiagonal systems, is carried out using a parallel form 
of cyclic reduction. This work was accomplished using the Fortran compiler.

Results on the Connection Machine have been found to be in good agreement 
with those of the Cray. The time required to solve the parallel tridiagonal 
systems is found to be comparable (if one were to extrapolate up to a 
65536-processor CM2) [2]. The time required to compute the Fokker-Planck 
coefficients, however, is competitive only for very fine meshes and long 
Legendre expansions. That is because the CM2 matrix multiply routine is tuned 
for very large matrices. Moreover, such calculations have to be run using 64 
bit arithmetic in order to be able to represent the wide range of exponents.

The next step is to convert FPPAC to the BBN Butterfly II and to compare 
performance between that machine, the CM2 and the Cray. Another related 
project which is just getting under way is that of a Monte Carlo Fokker-Planck 
calculation on the Butterfly II. Here massive parallelism might be harnessed 
to obtain more accurate statistical estimates of radial diffusion coefficients.

PLASMA TURBULENCE. One of the most challenging problems in plasma physics 
is to understand and perhaps control plasma transport in tokamaks. In 
principle, collisional transport processes can be described well by the 
Fokker-Planck approach above. In cases where the only significant cross field 
drift velocity is the magnetic or "grad-B" drift, neoclassical transport theory 
has used this approach. Yet there is a great deal of experimental evidence 
that transport in magnetic confinement devices is largely controlled by 
strongly turbulent convective processes which are the result of the nonlinear 
coupling of unstable modes of collective particle motion. The description of 
this type of process is computationally inaccessible by the Fokker-Planck 
approach at this time.

To resolve this difficulty, a fluid approach is taken [3]. After Fourier 
transformation of the simplified fluid equations, the nonlinear mode coupling 
takes the form of a convolution of the Fourier modes of the fields. In 
practice, the evaluation of this nonlinear coupling convolution takes the 
lion's share of the computer time in the Cray-2 version of the algorithm. As 
much as a factor of ten speedup could be gained simply by eliminating this
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bottleneck. It has been the express purpose of this research to determine if 
and how this can be accomplished using the Connection Machine.

At the beginning of the project, the Cray-2 direct method routine for 
evaluating the convolution required 1.5 seconds to execute on our base case. 
This routine is exercised once per timestep for each field. Since the scheme 
is necessarily not fully implicit due to the nonlinearity, the timestep must be 
dynamically controlled to assure accuracy and stability. The comparatively 
small requisite timestep is the reason that optimization of the convolution 
computation is so important. Optimization performed on this routine in the 
early stages of the project resulted in a speedup on the Cray-2 so that the 
direct method now executes on the Cray-2 in .68 seconds on the base case.

Estimates based on CM2 floating point unit throughput suggested the 
possibility of speedup factors from ten to forty on the CM2. To realize this 
speedup, the numbers to be combined must be delivered to the floating point 
units as fast as they can be processed. What on the Cray-2 amounts to 
unrolling loops and generating common subexpressions to minimize the fetches 
from memory to the vector registers translates on the CM2 to requiring that 
communications be local (or nearest neighbor). Using this condition as a guide 
has led to the development of a local parallel vector-indirection CM2 direct 
convolution algorithm which has proven to be competetive with a single 
processor of the Cray-2 for the base case.

The scaling of this algorithm's performance with problem size is quite 
favorable for the CM2 and unfavorable for the Cray-2. The computation time 
scales roughly with the number of modes, N, on the CM2, but as "N squared" on 
the Cray. One quarter of the CM2 is utilized for this base case; using more of 
the CM2 is necessary to benefit from these economics of scale [4]. Increasing 
the problem size beyond the full CM machine size gains in computational 
efficiency due to the pipelining inherent in using virtual processor ratios 
greater than unity, but in that case scaling reverts to "N squared". Further 
substantial gains in performance (as much as a factor 5) can be realized by 
recoding the vector-indirection algorithm at the CM2 assembly language level.

Recognizing the advantages of pseudospectral techniques for problems 
larger than the base case, an optimized FFT convolution routine has been 
developed for the Cray-2 to compare with the direct method. It is further 
intended that a similar capability be developed using optimized CM2 FFT 
routines developed by Johnsson, et. al. [5] and the appropriate comparisons 
performed.

Beyond the SIMD CM2 approach to the problem, both of these algorithms can 
be directly implemented on the MIMD BBN TC-2000 currently planned for 
installation in March 1990 at LLNL. The technique involves a time advancement 
scheme executed on a per processor basis with the modes parcelled out among the 
processors in the cluster. Each processor retains all mode information for a 
subset of the total set of modes being followed by the computation in its local 
memory. This arrangement is different from the CM2 data decomposition in which 
each processor retains only a single radial datum for a given mode in its local 
memory. The mode coupling is then computed by copying the mode data to shared 
memory, performing the convolution with each processor doing a single radius
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(flux surface) at a time. Returning the convolved fields to the appropriate 
local memories then completes the iteration.

What remains of the numerical algorithm necessary for the complete fluid 
turbulence calculation, putting the convolution algorithm aside, is the scheme 
for evolving an array of transport equations for the fields (pressure, parallel 
velocity, potential and vorticity), which are coupled linearly as well as 
nonlinearly. The algorithm developed for FPPAC using cyclic reduction could 
prove useful in this regard and needs to be compared with a parallel block SOR 
scheme for speed and accuracy on the CM2. It is likely that another scheme 
could prove more optimal on the BBN machine in this regard, and this is a topic 
of current study.

In addition to the above studies, we are presently in the process of 
forming an Office of Energy Research wide focus group in the area of massively 
parallel computing, with an eye toward the production environment. Toward this 
end we are looking into the possibility of using an intelligent data base to 
access appropriately catalogued information through the use of a network data 
retrieval system. Since the field of massively parallel computing is quite 
new, the ratio of neophyte to experienced users is quite high. It is our 
intention to provide a service that could, at a minimum, help accelerate the 
new user along the learning curve by pointing to critical basic information 
related to individualized interests. As a medium range goal, we are working 
towards the capability of providing network access to a distributed hypertext 
system for collaborative research in the area of massively parallel computing. 
Here the first level of data acquisition is represented by citations and text 
of published articles. Built on this foundation are articles and documents of 
a less formal nature supplied by individual or institutional subscribers, and 
at the top level, notes and personalized links to the cataloged data with 
access restricted by the respective individual owners. More experienced users 
could use the environment as a communication tool to increase the productivity 
of the collaborative activity in which they are involved.
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Non-uniform magnetic field effects (toroidicity) can play an essential 
role in determining plasma behavior. The electrical conductivity parallel to 
the magnetic field in a tokamak is strongly affected by the presence of a 
population of trapped electrons. Also, cyclotron resonance heating and the 
production or support of steady plasma currents to allow steady state operation 
of tokamaks are significantly affected by the magnetic field non-uniformity 
[1].

The bounce averaged Fokker-Planck code CQL (Collisional Quasi-Linear) was 
developed to allow the simulation and study of tokamak heating and current 
drive experiments [2,3], The collision operator module can be relativistic (to 
order fif}'), multispecies, and nonlinear. The fully relativistic quasilinear 
resonant diffusion operator module functions as an integral part of the 
Fokker-Planck time evolution model.

The consideration of these and other physical effects has required the 
analysis of a number of theoretical problems, the solutions to which provide 
the framework for the numerical methods utilized in CQL. Three illustrative 
examples follow: (1) Orbits which are nearly trapped but oppositely directed 
are topologically adjacent in velocity space and can populate each other 
through collisional or resonant wave/particle diffusion. Boundary layer jump 
conditions at the trapped/passing boundary are rigorously enforced by the 
numerical algorithm so as to maintain density conservation down to round-off;
(2) The wave/particle interaction for a spectrum of waves including the effects 
of collisional gyrophase diffusion can be represented by a generalization of 
the method of integrating over unperturbed orbits. The generalization involves 
including a phase decorrelation factor which reduces contributions to the 
trajectory integral from the remote past due to intervening random events. The 
integrals occuring in a particular (numerical) experiment can be located in a 
precomputed database using certain dimensionless parameters relating 
wave/paticle interaction autocorrelation, collisional diffusion, and bounce 
time scales. This technique reduces the associated cpu time at runtime from 
intractable levels to unnoticable levels; (3) The plasma equilibrium used for 
the Fokker-Planck calculation can be generated independently by an equilibrium 
solver and read by CQL from a standardized format eqdsk file. Physical effects 
dependent on the plasma equilibrium, including the configuration of 
wave/particle resonances and the plasma trapping rate for neutral beams, are
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computed consistently with the prior eqdsk equilibrium. Iteration through an 
external loop in which the equilibrium is adjusted quasistatically is thus 
prescribed.

The resonant diffusion (RF) module models the effects of Landau and 
cyclotron wave-particle interactions in tokamaks. Lower-hybrid and multiple 
harmonic cyclotron resonance heating and current drive scenarios are examples 
of problems of current interest which can be explored in this way. The 
evaluation of trajectory integrals for each gyro-orbit resonance through 
suitably scaling a universal function corresponds to bounce-averaging the 
wave/particle interaction operator. The collision operator is bounce-averaged 
directly by numerical integration. An auxiliary quasilinear module (VLF) is 
designed to study low frequency wave microstability. Here, high and low wave 
frequency are gauged relative to the bounce or transit frequency of guiding 
centers in the tokamak magnetic field.

Two numerical algorithms are available to compute solution distribution 
functions. If the time evolution of the plasma is of interest, the code 
employs an operator splitting technique, advancing in incremental time steps At 
whose magnitude is dictated by physical and numerical considerations. However, 
if the steady state alone is required, the differencing of the operators is 
fully implicit, and an extremely large (non-physical) time step is employed.
The resulting sparse matrix is inverted with Gaussian elimination. For linear 
problems a solution is obtained with one matrix inversion. This inversion 
routine has been optimized for the Cray-2 within the physics group. It is 
capable of reaching speeds up to 400 MFLOPS on the F machine (the newer Cray-2 
at NERSC). For example, the cpu time required to invert a problem with 100 
theta mesh points and 100 speed (or momentum) mesh points is about .5 sec. To 
invert a system with 150 theta mesh points and 250 speed mesh points requires 
4.2 sec of cpu time (with additional memory and system charges, of course).
This code has been released to the community and to our knowledge is the 
fastest sparse matrix solver for matrices of order 1000 to 60000. For higher 
orders, iterative methods become more competitive. In one mode of operation, 
the implicit solver advances the system from one steady state to another, 
relaxing the wave spectrum to a state of balance where not only is the particle 
distribution steady, but so also are the wave amplitudes. This sort of 
computation can be done without monopolizing computing resources only because 
the matrix inversion engine is highly optimized.

The program CQL is currently being applied systematically to a number of 
problems and is undergoing further development as well. In collaboration with 
R. W. Harvey of GA Technologies, the code has been augmented by the addition of 
a radial coordinate, r [4], The radial coordinate is introduced through a 
special module (TD) designed to manage profile data, disk I/O, and other 
information which exists in the extended 3-D domain. When this (TD) module is 
active we refer to the thus augmented code as CQL(3D). In this application the 
Fokker-Planck operator is time-advanced independently on a number of flux 
surfaces, and a 2-D wave transport equation is solved to determine the locally 
resolved wave energy density. This corresponds roughly to the calculation of a 
ray trajectory field. Wave polarizations and group velocities are represented 
on a 2-D mesh. The parallel wave number is taken to be a constant of the ray 
motion, a rather good approximation for ECH, which is less satisfactory for
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lower hybrid wave propagation. The wave field information is then used to 
recompute the resonant diffusion coefficients in order to obtain a 
self-consistent picture of power absorption. The wave transport equation 
employs a fully relativistic dispersion relation routine, which has been 
benchmarked independently. The algorithm neglects reflections, assuming single 
pass absorption. For ECH this is usually adequate in large tokamaks. With 
this tool, we can examine global effects of inside and outside launch scenarios 
in DIII-D and in ITER. With modest modifications, a k|| spectrum can be added 
(currently we assume a single k||) . Other researchers outside our group are 
using CQL (2-D) to estimate current drive efficiency for the proposed ITER 
experiment. With the global enhancement to CQL represented by CQL(3D), we can 
compare with and elucidate the explorative single flux surface CQL(2D) studies.

For less absorptive plasmas, a more elaborate ray tracing calculation 
involving multiple reflections is required. Efforts in this area have recently 
resulted in a new module (ULH), a lower hybrid and fast wave excitation module. 
The basic concepts are along the line of Bonoli, et al. [5] except that here 
the distribution function and the diffusion coefficients are 2D bounce 
averaged. The ULH routines interact dynamically with a Brambilla's ray tracing 
code [14], which provides the necessary wave characteristics and ray data to 
CQL(3D). The code utilizes the ULH routines to determine the RF diffusion 
coefficients, then it solves for the updated distribution functions on the flux 
surfaces. Finally, using the new distributions, the rays are individually 
damped to capture the local absorption data which is used to recompute the 
diffusion coefficients. If necessary, CQL(3D) calls the ray tracing code to 
extend rays which are not fully damped. This process is repeated to 
convergence.

As a benchmark calculation for CQL(2D) the effect of trapped electrons on 
electrical conductivity was examined. The enhanced resistivity was tabulated 
as a function of inverse aspect ratio, e, and Zeff- For the case Ze££=l, where 
theoretical estimates exist [8], CQL agrees with theory for all values of e to 
within 2 percent [2,3] (agreement is best where theory is most accurate). 
Runaway production rates as a function of e have been calculated as well. CQL 
has been applied to study fusion reactivity enhancement by ICRF heating [6,7]. 
In the study heating was applied to one plasma species and the consequent 
reactivity enhancement was characterized by dividing the resulting 
bounce-averaged fusion rate by that obtained for an equivalent Maxwellian. 
Enhancement in high Q cases varied from 1.3 to 2.0. A more recent application 
of the code [9,10] examines the relative merits of inside vs. outside launch 
schemes for ECH current drive with particular attention to relativistic 
effects. This work appeared in Physical Review Letters [9],

Currently, code development is proceeding in a number of directions.
First the zero banana width restriction has been relaxed to allow the 
calculation of non-Maxwellian corrections to neoclassical transport 
coefficients. This involves adding a finite banana width bounce-average and 
computing the (linearized) fluxes to neighboring flux surface velocity 
ensembles. The calculation takes place in two fully integrated modules 
developed by G. Tomaschke (WF and TR). This development can provide a useful 
tool for studying the effects on the transport matrix of a variety of 
non-classical mechanisms, including those depending on transfer of parallel
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momentum between waves and particles. Enhanced transport due to neutral beam 
driven suprathermal tail distributions can also be studied with these modules. 
Some analytic work in this area has been done by Catto, et. al. [12]. Similar 
phenomena relating to tails driven by ICRF have been studied by Chang, 
et. al. [13].

Second, the code CQL(3D) has been augmented by the addition of an MHD 
equilibrium code and a neutral beam deposition code, NFREYA. CQL(3D) itself 
has been modified so that it can accept equilibrium code output and perform 
bounce-averages consistent with the non-circular plasma cross-sections. This 
allows the calculation of neutral beam heating current drive efficiencies in 
ITER where this measure of efficiency is of considerable importance in reactor 
design studies. Employing the wave transport calculation for ECH or the lower 
hybrid module (ULH) described above, CQL(3D) is capable of modeling ECH, LH and 
neutral beams simultaneously. This could prove useful in examining synergistic 
effects in dual heating/current drive schemes for ITER.

An international cooperative effort has begun in 1990 (NERSC, GA,
Princeton and Varennes(Quebec)) to implement the combination of CQL(3D) with 
the Princeton transport code (TSC) developed by Steve Jardin [15]. This would 
allow global simulation of tokamak performance while retaining considerable 
kinetic detail. The Fokker-Planck calculation concentrates on the modeling of 
tail phenomena resulting from RF driven resonant diffusion or neutral beams, 
and the transport code describes the radial diffusion of thermal particles and 
energy transport. This approach, while not as complete as might result from a 
fully coupled 3-D calculation including finite banana width effects, does allow 
for more timely results. This code might first be applied to simulate the 
LHCD-PBX-M experiment at Princeton and the LH experiment at Garching, West 
Germany.

Third, efforts are proceeding to refine the ray optics calculations for 
ECRH, and the consequent quasilinear development of the underlying 
distributions. There exist several wave propagation codes in the community. 
Most of the codes are based on simpler models of the plasma supporting the 
waves', usually warm plasma, uniform field theory. The intent of the 
coordination is to provide a computational environment based on a kinetic model 
of the plasma in which to integrate wave propagation computations with 
Fokker-Planck/quasilinear computations. Whereas it might be argued that the 
propagation physics does not depend strongly on details of the non-Maxwellian 
underlying distributions, the wave damping physics does rely on the details of 
the quasilinear development of the distributions, especially for strongly 
driven systems. The mechanism by which this coordination is effected relies on 
the fact that the plasma absorbs (or emits) power from the wave field through 
resonant interaction between the particles and the waves. The constants of the 
motion of interacting particles determine where the resonant interaction 
occurs, thus providing a relationship between the phase space density and the 
local absorptivity of the plasma. Hence, coordination can be enforced between 
the time evolution of the local power spectrum and the local spectral 
absorptivity. Recent work by Carreras et. al. [11] make the linkage of these
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two approaches for studying ion cyclotron tokamak excitation possible though no 
firm commitment for collaboration in this regard has yet materialized.

Fourth, we have developed the (VLF) facility in CQL to investigate 
properties of the marginally stable state, in which weak Alfven turbulence 
persists in the presence of a driving reservoir of free energy due to the 
introduction of high energy neutral beams. This module has been used in 
production mode to study effects on current drive efficiency of weak turbulence 
including the significant influence of electron Landau damping [16],

Finally, a rather comprehensive effort has been undertaken to benchmark 
the entire code against a number of other codes in the community designed to 
perform in various limits accessible also to CQL. As part of this effort we 
generalized our mesh refinement scheme to operate in a mode which removes mesh 
dependence where it can obscure the direct comparison with independently 
obtained results. Additionally, we are preparing a comprehensive user manual 
for the code including case studies, theoretical bases and limitations, 
numerical algorithm descriptions, and complete cross reference indexing of 
internal and input variables. This project is quite time-consuming and is 
likely to proceed along with further code development during the future. It is 
our intention to maintain this documentation as we update the code as a set of 
texinfo directories for distribution with the sources.
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The NERSC Computational Physics group, since its inception in 1974, has 
been engaged in studies of resistive magnetohydrodynamics. Even prior to the 
formation of the C.P. Group, linear incompressible time dependent codes for 
Cartesian and cylindrical geometries were developed by J. Killeen [1,2].

In the mid 1970's a compressible, linear, cylindrical, finite-beta code 
modeling the effects of isotropic viscosity and thermal conductivity was 
written [3]. Eigenmodes and their growth rates as functions of mode number, 
Lundquist number and wall radius, with respect to the force free 
(RFP-applicable) Bessel Function Model equilibrium, were computed. The effects 
of finite viscosity were modeled. Studies involving other equilibria were 
carried out.

A linear, incompressible Cartesian code allowing equilibrium flow was 
developed [4]. It was demonstrated that a finite equilibrium velocity, 
although having little effect on the eigenmodes themselves, would result in a 
lower growth rate and a smaller instability range in wave number space. Linear 
calculations (without equilibrium flow) for the double tearing mode were 
carried out. The resulting eigenfunctions, rather than having a spike at each 
singular surface, tended to be large over the region connecting the singular 
surfaces [5,6], A study of rippling modes was also undertaken [7]. It was 
shown that these modes could indeed develop provided there was a gradient in 
the zeroth order resistivity. The transition from pure tearing to pure 
rippling was demonstrated.

A two-dimensional nonlinear code solving the compressible, primitive 
equations in orthogonal curvilinear coordinates was developed [8]. The 
nonlinear evolution of the tearing mode in a sheet pinch was demonstrated [6]. 
Nonlinear calculations of the double tearing mode were carried out. It was 
shown that the two islands would come closer and closer together, creating an 
extended region susceptible to cross-field transport [6]. Calculations of 
axisymmetric and helical tearing modes in a Reversed Field Pinch using the 
Bessel Function Model equilibrium were undertaken, showing that the m=l mode 
was the most dangerous due to its larger growth rate and extended period of 
growth [9]. Simulations of resistive interchange modes in a RFP were also 
carried out using an equilibrium known to be stable to tearing modes [10]. It 
was demonstrated that the m=0 mode was the most dangerous.
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Also in the 1970's a three-dimensional compressible, nonlinear code using 
orthogonal curvilinear coordinates was written [11]. It was shown that the 
ni-l,n-l resistive kink in a box evolved nonlinearly to a slow-growing m“3,n=l 
mode, and that the m—l,n—1 mode in a square cross-sectional torus evolved to a 
steady axisymmetric state.

In the early 1980's a linear, incompressible 2-D code for toroidal 
geometry was developed [12], This code would accept equilibria depending on r 
and z and solve for perturbations of the form f(r,z)exp(in0). Studies of the 
Field Reversed Theta Pinch were carried out, showing that equilibria ranging 
from elliptical to highly racetrack were unstable to internal tilting modes
[13].

A compressible, linear, cylindrical finite-beta code, including tensor 
viscosity and thermal conductivity and the effects of Hall terms in Ohm's law, 
and solving for separate ion and electron temperature perturbations, was 
developed and released to the user community [14,15], This code was used to 
simulate resistive interchange modes in a Reversed Field Pinch. Calculations 
were carried out for various values of poloidal and toroidal mode number, 
Lundquist number, Suydam parameter, Hall parameter, thermal conductivity and 
viscosity, with respect to equilibria known to be stable to tearing modes. It 
was shown that in the cold ion limit sufficiently large Hall terms would cause 
all modes tested to become stable, but that for warm ions (T^ = Te) these modes 
were stable only when a classical tensor thermal conductivity was also 
included; inclusion of a classical tensor viscosity did not have that large an 
effect.

A 3-D compressible, finite beta, nonlinear code in cylindrical coordinates 
(r,^,z), using a spectral representation in 4> and finite differences in r and 
z, and applicable to both toroidal and cylindrical geometry (in the latter case 
the z coordinate may be treated pseudospectrally), was developed [16,17]. In 
one application this code, along with four other 3-D codes (developed at other 
institutions), simulated the identical problem in RFP dynamics [18]. Of these 
five codes, three are compressible and two are incompressible. It was 
demonstrated that the three compressible codes agree with each other and the 
two incompressible codes agree with each other, but that the compressible and 
incompressible models show qualitatively different behavior. Most importantly, 
for a certain set of initial and boundary conditions the compressible codes 
predicted field reversal maintenance while the incompressible codes did not.
In a related application this code was used to show that erroneous results 
could occur from an inconsistency between the constant current boundary 
condition in an RFP and other commonly used boundary conditions, especially 
when Hall terms were included in Ohm's law [19].

The 3-D nonlinear code was used extensively to model the CTX gun-injected 
Spheromak at LANL [17]. These simulations were carried out in toroidal 
geometry. For the decaying Spheromak the initial conditions consisted of a 
linearly unstable equilibrium together with toroidal eigenmodes. Calculations 
were performed for various values of Lundquist number S and Hall parameter, 
various initial perturbation levels, various mesh sizes and mode numbers, etc. 
The 3-D magnetic fields were then evaluated with a field line tracing code. It 
was demonstrated that saturation occurs, followed by reconnection and formation
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of a new magnetic axis, the new configuration being closer to a Taylor minimum 
energy state than the original one.

The 3-D nonlinear code has been modified to include implicit differencing 
[20-22]. For the purposes of economizing computer time, a multitasked 
"semi-implicit" technique has been implemented. Hall terms have also been 
included in the semi-implicit formalism. Generally a one-to-two order of 
magnitude speed improvement is realized. A study of the effectiveness of the 
semi-implicit method in accurately modeling Hall term effects in toroidal 
geometry is in progress [23].

The 3-D code has recently been used to model the internal tilt mode in a 
Field Reversed Configuration [24], Preliminary results show agreement with the 
code of Milroy, et al. in the linear regime for cases without Hall terms. 
Calculations with Hall terms are in progress.

The most recent application of TEMCO has been to model the injection of 
compact toroids into a tokamak plasma. For simplicity, the CT is initialized 
at rest in a uniform magnetic field modified to exclude the CT. The rate at 
which the CT reconnects with the tokamak determines when and where the fuel and 
flux are dumpled. This is measured using a field line tracing code. 
Calculations to date indicate that the CT will last 7 to 10 CT-Alfven times 
before reconnecting, which is much shorter than anticipated [25], This means 
that larger than expected CT's will have to be injected, but less often.
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Turbulence is a primary candidate to explain anomalous transport and the 
resulting loss of confinement in tokamak plasmas. Fluid-equation based 
turbulence models have had qualitative success in explaining some observed 
trends in the scaling of energy confinement times in tokamaks. However, 
detailed studies of these equations are needed to provide an adequate 
understanding of the underlying dynamics. We have investigated and developed a 
number of techniques for the numerical study of plasma turbulence. We use both 
closure theory and direct simulation to study the coupled sets of nonlinear 
equations. By reducing the complexity of the phyical problem, we have been 
able to test and develop a number of schemes based on the standard closure 
approximation theory developed originally for the study of Navier-Stokes 
turbulence. We have modified and rederived these theories in order to 
incorporate properties of the plasma equations not contained in related 
Navier-Stokes turbulence modeling. The primary differences are the occurrence 
of complex field quantities, the presence of linear damping and driving via 
complex linear terms, and the non-diagonal coupling of two or more field 
quantities in the system. By combining our study of closure theory with direct 
numerical simulation, we are able to have some measure of the accuracy and 
applicability of the closure. We note that since closure theories for strong 
turbulence are not based on standard perturbation theory, but rather 
renormalized perturbation theory without a small parameter, it is not possible 
to estimate a priori the error in a given closure theory. Thus, numerical 
simulation of the primitive (unclosed) equations is necessary to validate the 
applicability of the closure theory.

We have augmented our analytic development of the closure theory equations 
with sophisticated numerical techniques to handle their computational solution. 
A standard closure theory which can be applied to our system is the direct 
interaction approximation (DIA) of Kraichnen. However, naive application of 
the DIA for complex physical systems would not be computationally feasible. We 
have therefore investigated several means of simplifying both the time history 
integrations and the spatial convolutions present in full DIA calculations.
One of these procedures is based on using Fade approximates to the 
characteristic-time integral parametrizing correlations in the system. This 
method eliminates the need for the introduction of ad hoc parameters (usually 
based on estimates of the eddy viscosity) in models of the Markovian type.
Other approximations based on the physics of the turbulent steady state are



-28-

useful for simplifying the numerical computation. In particular, we have shown 
that the fluctuation-dissipation relation is a reasonable approximation for a 
damped-driven system in steady state. One scheme (FDDIA) incorporates this 
approximation, and in doing so, eliminates costly integrations which are 
present in full DIA calculations. Finally, in order to make full DIA 
calculations possible for certain anisotropic problems, we implement fast 
transform methods for the spatial convolutions. Together with our 
collaborators from the Center for Compressible Turbulence at LLNL, we are 
developing a full-DIA code to study two-field plasma turbulence equations. The 
development of this code will be a multi-year effort, but it should be 
sufficiently general to handle a variety of equations.

In the area of direct numerical simulation, we are developing and using a 
two-field simulation code, written primarily by our post-doctoral researcher, 
to study the dynamics of the Hasegawa and Wakatani model of drift wave 
turbulence. We are in the process of bench-marking this new code, adding 
graphics and analysis packages, and applying it to study the statistical 
dynamics of the system. Preliminary results show the importance of the 
cross-correlation between the density and potential fields in determining 
relaxation rates. We note that the cross-correlation has been traditionally 
neglected in analytic estimates of transport coefficients and in certain 
closure theories. Eventually, we hope to be able to compare results of the DIA 
code with the direct numerical simulation code.
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It is well-known that certain instabilities on the MHD timescale cannot be 
treated by the fluid models of MHD theory but require detailed modeling of the 
kinetic effects of the ions to get reasonable agreement with experiment. In 
the case of the tilting mode in Field-Reversed Configurations [1], a full 3-D 
treatment is required as well.

The estimated requirements of memory and calculational speed of such a 
calculation are well-matched to the Cray-2 capabilities. Consequently, a 3-D 
plasma particle simulation code, QN3D, that exploits most of the new features 
of the Cray-2 has been constructed [2,3]. To eliminate inessential high 
frequency physics the code uses a zero mass fluid model to represent the 
electrons and a reduced set of Maxwell's equations to model the electromagnetic 
fields.

Unlike earlier particle codes that required disk memory and scalar 
interpolation, new algorithms that allow every phase of the calculation to be 
vectorized and multitasked have been developed. Tedious coding of buffered 
disk memory and the concomitant waste of CPU time have been eliminated. The 
interpolation of grid data to the particles and the interpolation of particle 
data to the grid have been coded in terms of indirect indices and execute in 
vector mode via the hardware gather and scatter instructions. A particle 
sorting scheme to satisfy the vectorization constraint that scatter operations 
must be one-to-one has been developed [4]. The parallel algorithms in this 
code are executed using both vectorization and multitasking. Typically, the 
parallel work is partitioned into k subsets or tasks, where k is the number of 
processors. Within each subset or task, vectorization is employed to further 
optimize the calculation. Exploiting both forms of parallel computation 
results in a computing speed about 16 times that of a Cray-1.

QN3D successfully modeled the normal modes of a cold plasma [7]. It was 
also applied to the rotational instability of a rigid rotor [8]. In the latter 
case the growth rates generally agree with those computed from Harned's 2-D PIC 
code [9]. We also observed the nonlinear saturation of the rotational 
instability.
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More recently, simulations of the internal tilt mode have been carried out 
[10,11]. It is found that in the small gyroradius limit, the rate of growth 
agrees with MHD predictions, but that at large gyroradius, kinetic effects have 
a stabilizing influence.

Some problems were encountered when FRC tilt mode simulations were run for 
a long time (a few MHD tilt mode times). These problems were mainly due to 
failure of the field solver to converge and also the apearance of an m=4 
distortion. The m-4 distortion is associated with the use of Cartesian 
coordinates. This problem could be eliminated by using a larger number of grid 
points in the x-y plane; however in a 3-D problem this is not a practical 
solution. Research is under way to eliminate these problems.

One alternative approach is to solve the field equations in cylindrical 
coordinates. The code using this approach is called HQC. In either version, 
the field solve has recently been simplified by the elimination of the vacuum 
region; instead a uniform background density is used in the entire 
computational domain.

Another method that is being tried is modification of the field equations 
to include some electron inertia effects. This leads to an evolution equation 
for the electron current [12] . This approach was recently introduced by E. 
Horowitz.

The 3-D MHD code, TEMCO, also developed at NERSC, has been used to compute 
growth rates in the MHD limit. The comparison of the growth rates from these 
two codes can give an indication of the importance of ion kinetic effects.

These codes may also be used to model the formation dynamics of the FRC. 
This would involve initializing with some cylindrical distribution of particles 
and fields and tracking the evolution of the field lines. The translation 
experiment, in which the FRC is formed in one region and then moved into 
another region, could also be modeled. This could be simulated by starting 
with an FRC equilibrium and then applying a magnetic field which is asymmetric 
about the z-0 plane. This would accelerate the FRC in the z direction. The 
effect of the acceleration on the plasma and field line structure could then be 
studied.

QN3D is also being used to model the expansion of a high energy plasma 
surrounded by a plasma of lower energy. This study has direct bearing on 
several others, including compact torus injection into a tokamak and dynamics 
of the Earth's magnetotail. Particularly in this latter application kinetic 
effects are important since the magnetic field is low, and thus the ion 
gyroradius is usually large compared to the size of the plasma.
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In magnetic fusion research the most popular plasma confinement devices 
use a toroidal chamber and externally applied magnetic fields to restrain the 
plasma. In the tokamak a large toroidal current driven in the plasma produces 
a large poloidal field which supplements the applied fields. The stellarator, 
on the other hand, has no toroidal plasma currents but relies entirely on the 
externally applied fields for confinement.

Since several 3D equilibrium codes are available to generate model 
equilibrium configurations, we have restricted our interest to the analysis of 
their stability properties. In our new code, TERPSICHORE, developed in 
collaboration with European colleagues, we use the relatively simple model of 
ideal magneto-hydrodynamics (MHD) to investigate the linear stability of these 
configurations [1,3]. TERPSICHORE generalizes previous treatments in which the 
stability of two-dimensional equilibria were studied. While earlier and even 
present tokamaks have small deviations from axisymmetry, proposed reactor 
designs will have much larger departures from axisymmetry. Thus, to be 
realistic, one must perform a full 3D analysis to ensure that all possibly 
unstable modes are evaluated. In the development of TERPSICHORE, our 
contribution to the collaboration has been mainly in the areas of building 
eigenvalue solvers and in developing efficient algorithms for the 
computationally intensive portions of the code [2], Evidently, we have 
succeeded in optimizing this code because TERPSICHORE had the distinction of 
placing first in the 1989 Gigaflop Performance Awards Contest sponsored by Cray 
Research, where it achieved 1.7 Gigaflops sustained speed averaged over the 
run.

To get started we use the equilibrium code of Hirshman, VMEC [4], to 
provide the plasma equilibrium configuration. From it TERPSICHORE reads input 
data specifying equilibrium quantities such as the geometry of the flux tubes 
and the magnetic fluxes contained therein. The flux tubes are specified by 
their R and Z coordinates expressed in terms of the Fourier coefficients of the 
double finite Fourier series of these cylindrical components. The first phase 
of the calculation reconstructs the input equlibrium and tests its validity. 
Since the coordinate system optimum for the stability analysis differs from 
that best for the equilibrium calculation, a mapping from the equilibrium 
coordinates to the Boozer coordinates, of the stability analysis, is done next. 
After applying the energy principle to obtain the corresponding Euler-Lagrange
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equations, these are discretized by double Fourier series (over the angle-like 
coordinates) and by finite elements radially. This results in a matrix 
eigenvalue problem in which the matrix elements depend on combinations of 
double flux tube integrals. Since similar flux tube integrals comprise the 
overwhelming proportion of the work in the reconstruction and mapping phases of 
the calculation, it is important to optimize their evaluation. The matrices 
encountered in this analysis consist of multidiagonal structures with dense 
blocks. We evaluate the elements of these matrices a block at a time by using 
the MULFI technique which exploits the matrix-matrix product routine (MXM) to 
great advantage. In fact these matrix blocks can be evaluated in parallel at 
speeds up to 1.7 or 2.0 gigaflops for the Cray-2 or Cray Y-MP computers, 
respectively.

The last phase of the calculation is the solution of the eigenvalue system 
by the method of inverse vector iteration. In doing this it is necessary to 
solve a linear matrix system which we accomplish either by employing the PAMS 
or PAMERA algorithms [2]. Although this solution phase of the calculation 
typically requires less than five percent of the arithmetic operations, we also 
use optimal BLAS3 type routines (MXM and MINV) here.

TERPSICHORE, in its present form, is being used to study the stability of 
stellarators, particularly the Helias stellarator design for the Max Planck 
Institute in Garching, FRG. It is proving to be a very efficient tool in the 
Helias design where, for example, it took only 20 seconds of wall time on the 
Cray Y-MP to execute 35 billion floating-point operations to complete the 
stability analysis of each prospective design. With this kind of efficiency we 
can do extensive parameter studies of many candidate designs of fusion 
experiments and reactors. We are keen on using it to explore the feasibility 
of constructing the "race-track Tokamak" which could not be analysed with 
previously available tools [5,6], Thus TERPSICHORE represents a big advance in 
the theoretical modelling of fusion plasmas as well as a very efficient tool 
for making these studies affordable.
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In the mid-to-late 1970's and very early 1980's the National Energy 
Research Supercomputer Center (NERSC) Physics Group did extensive modeling of 
neutral beam heated tokamaks. Our first application was that of investigating 
the Two Component Torus with our 2D nonlinear Fokker-Planck code [1,2].
Shortly thereafter this same code was used to model the Counterstreaming Ion 
Torus [3].

As successful as these calculations were, it was clear that a zero spatial 
dimensional model could not supply sufficiently accurate results. In 1975 the 
Fokker-Planck/Transport Code (FPT) was written. This code was revolutionary in 
that it was the only radial transport code to treat the nonlinear evolution of 
the energetic ion distribution functions in 2-D velocity space [4,5],

The FPT code was first applied to the Counterstreaming Ion Torus [6], In 
order to accurately and efficiently determine the fusion rate, a very efficient 
algorithm was developed to perform the five-fold velocity-space integration 
necessary for the determination of the fusion reactivity [7,8].

In 1977 it was proposed that extra beam lines be added to PDX. Extensive 
parameter studies in support of this proposal were carried out using FPT [9],
At the same time a substantial effort was undertaken to include self-consistent 
treatments of neutral transport and neutral beam deposition. Monte Carlo codes 
of Hughes and Post [10] and Lister, et al. [11] were acquired, improved and 
incorporated into FPT, culminating in presentations at Grenoble [12] and 
Innsbruck [13],

In late 1978 the question of whether or not neutral tritium beams should 
be injected in TFTR was addressed, and results were presented at a TFTR review 
meeting chaired by John Clarke [14]. It was shown (see [15]) that for D on T 
operation with tritium gas puffing, the continuous deuterium fueling of the 
central region would result in a thermal plasma dominated by deuterium, and 
that it would be necessary either to inject tritium neutral beams or pellets in 
order to properly fuel the central region. It was also shown that fusion 
performance was very sensitive to the assumed diffusion rate of bulk ions and
*The studies reported here assume a uniform magnetic field.
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moderately sensitive to the ion thermal conductivity and the energetic ion 
diffusion rate.

In 1979 and 1980 the FPT code was used to model the PLT experiment 
[16,17]. Time dependent simulations of the beam injection phase of PLT were 
carried out, assuming a uniform concentration of carbon and iron impurities and 
a gas puffing rate dynamically adjusted to match experimental measurements of 
the line averaged density. Neutron fluxes generally to within thirty percent 
of the experimentally measured values were predicted, with best agreement at 
low density and high power. It was demonstrated that most of the fusion 
neutrons result from beam-target reactions, and at low density almost as many 
are produced from beam-beam reactions.

In 1982 and 1983 FPT was used to model the DITE experiment at Culham 
Laboratory [18]. Injection of hydrogen into both hydrogen and deuterium 
plasmas was considered. The effects of both high and low Z impurities were 
modeled, along with the effect of beam impurity charge exchange on the 
radiative power loss. Transverse diffusivities and conductivities were derived 
which accurately represent the experimental data both with and without 
injection over a wide range of discharge parameters.

More recently FPT has been used to model the energetic ions in TFTR [19]. 
The transport mechanisms have been ignored, and instead experimental profiles 
of electron density and temperature and estimates of ion temperature have been 
specified. The neutron flux has been compared with experimental measurements. 
Equally important, the origin of the fusion neutrons has been analyzed. In a 
number of the cases the majority of the neutrons have come from beam-beam 
reactions. For the 1986 supershots excellent agreement between code and 
experiment is obtained [20].

FPT has also been used to study neutral beam current drive in TIBER [21]. 
Here too the transport mechanisms have been ignored and profiles of electron 
density and electron and ion temperature have been specified. Values of 
current drive efficiency comparable to those of rf scenarios have been 
obtained. A poloidal field and bootstrap current consistent with steady-state 
current drive are calculated.

Over the past couple of years a number of tokamak simulations 
concentrating on rf heating and current drive and utilizing a 
bounce-averaged/quasilinear model CQL have been carried out. This work is 
described in a separate document.

The FPT and CQL models are discussed in a recent book [22].
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Simulations of the Davis Diverted Tokamak

D.E. Shumaker 
January 1989

The Davis Diverted Tokamak (DDT) is a small toroidal device which is being 
constructed by the University of California, Davis and located at LLNL. It has 
a major radius of 45 cm. and a minor radius of 15 cm. Poloidal divertor coils 
are placed outside of the vacuum chamber on the top and bottom. The plasma 
current will be 10 kA, and the maximum toroidal magnetic field will be 9 kG.
DDT will use lower hybrid current drive at 800 MHz. Some of the experiments to 
be done with the DDT are:

(1) beat-wave current drive;
(2) current drive and profile shaping due to a lower hybrid wave;
(3) low-high mode transition; and
(4) MHD stability of the axisymmetric mode.

The NERSC Computational Physics Group has been providing some 
computational support for the DDT experiment. Numerical studies of equilibrium 
and axisymmetric MHD stability have been carried out [1]. Both of the studies 
use a code developed at Princeton, TSC [2]. TSC can simulate both active and 
passive feedback systems in plasma devices which contain divertors and the 
associated separatrix in the magnetic field structure. Flux-surface-averaged 
transport equations are used to model the evolution of plasma parameters. A 
free plasma boundary separates the plasma and vacuum regions. Ohmic heating 
coils can also be included [3,4].

Another area which we intend to study is the effect of lower hybrid 
current drive on the stability of the axisymmetric mode. Lower hybrid current 
drive has been shown to produce electron distributions which appear to contain 
an anisopropic high energy tail [5]. The shape of the plasma current profile 
can be controlled by the input frequency or the plasma density. In previous 
experiments the tail of the distribution near the surface of the plasma seemed 
to be more energetic, which should lead to a more highly conductive plasma on 
the outside of the device. For a given loop voltage this could result in a 
redistribution of the current with a larger fraction of the current flowing on 
the plasma surface. This change in the current profile would produce a large 
change in the plasma inductance and the resulting redistribution of current 
could then have a significant effect on the axisymmetric mode. By making 
changes in the resistivity profile in the TSC code we hope to study this
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phenomenon. The effectiveness of passive stabilization depends on the 
closeness of the conductors to the plasma, or more exactly, how close the eddy 
currents in the passive conductors are to the currents in the plasma. Thus a 
redistribution of the current profile to the outside could make passive 
stabilizations more effective.
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Equilibrium and Transport of the Field-Reversed Configuration
D.E. Shumaker 
January 1989

The National Energy Research Supercomputer Center (NERSC) has conducted 
numerical studies of the Field-Reversed Configuration (FRC). This document 
describes 2-D equilibrium calculations and 1-1/2-D transport simulations. 
Nonlinear particle simulations of ion kinetic effects on the tilt mode are 
described in a separate Project Overview, "Plasma Simulations Using a 3-D 
Particle Code." Some of this work has been done in collaboration with Los 
Alamos National Laboratory in support of the FRX-C and FRX-C/T experiments [1].

The 2-D axisymmetric MHD equilibrium code (EIV) uses finite elements and a 
flux-surface coordinate system [2]. Adiabatic quantities are used to specify 
the equilibrium. This method has been quite successful in generating elongated 
equilibria similar to the ones seen in the FRX-C experiment at Los Alamos [3], 
These equilibria are difficult and/or more time-consuming to produce by other 
methods. Diagnostics from the code have been shown to give close agreement 
with side-on interferometry data from the FRX-C experiment. Since this code 
uses adiabatic variables, it is easy to simulate compression studies of the FRC 
by computing a series of equilibria with different boundary conditions.

A code (EQV) has also been developed which determines a 2-D axisymmetric 
Vlasov equilibrium for the FRC. The distribution functions for the ions and 
electrons are assumed to be given in terms of the Hamiltonian and the canonical 
angular momentum. The code can also compute equilibria for zero electron 
temperature plasmas. In this case the electrostatic potential is an input 
quantity. This latter version of the code is used to generate initial 
conditions for the 3-D hybrid particle simulations. These equilibria also can 
have ion flow, which may be important in the stabilization of the tilt mode.

The transport code CTT assumes that the plasma evolves through a sequence 
of equilibria. This calculation proceeds by alternating between solutions of 
the 2-D equilibrium equation and the simultaneous solution of three 1-D 
transport equations [5,6]. It can be shown that some plasma quantities such as 
density, temperature and pressure are functions of the flux surface label.
One-dimensional transport equations for these quantities are obtained by 
averaging the 3-D transport equations over the flux surfaces. The code 
presently solves equations for ion density, electron entropy and ion entropy. 
Two-dimensional equilibria are needed to determine the position of the flux 
surfaces and certain flux surface averaged quantities which appear in the
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transport equations. Various physical processes have been added to the 
transport equations, including classical transport, collisional transfer of 
energy from ions to electrons, radiation cooling due to impurities, loss on the 
open field line region due to flow along the field lines, and lower-hybrid 
drift anomalous diffusion.

CTT has been useful for studying the effect of various processes on tne 
confinement times. Comparisons have been made between CTT simulations and 
FRX-C experiments. For the high density experiments (20 mTorr) there is good 
agreement when the electron-ion collision frequency used in the simulation is 
multiplied by a factor of about 9 at the o-point. For the low density 
experiments (5 mTorr) this factor must be 22, and in order to increase the 
electron energy transport the electron-electron collision frequency must be 
increased by a factor of 70.
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Fokker-Planck Analyses of Mirror Systems
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December 1987

Since its inception in 1974, the Computational Physics Group of the 
National MFE Computer Center has been carrying out Fokker-Planck studies of 
mirror systems. Much of this work has been in collaboration with the Mirror 
Program at LLNL; a more recent effort has involved the joint participation of 
SAIC (La Jolla).

Virtually all of these studies have utilized the general Fokker-Planck 
package FPPAC [1]. This widely-used package, developed at the NERSC in the 
late 1970's and available over the network, computes the coefficients of the 
complete nonlinear, multispecies, 2-D velocity-space Fokker-Planck collision 
operator and time integrates the corresponding finite difference equations. In 
addition to the mirror applications discussed here, FPPAC has been used to 
analyze toroidal systems. (A study completed in 1982 concluded that fusion 
reactivity in TFTR would not be appreciably affected by distortions of the bulk 
ions from Maxwellians [2].) Our Fokker-Planck models are discussed in a recent 
book [3].

A chronological summary of our mirror applications follows.

Collisional Loss of Electrostatically Confined Species
Our 2-D nonlinear Fokker-Planck code has been used to compute the endloss 

rate of electrons and electrostatically confined ions in a multispecies, 
multiply-charged plasma with the intention of comparing the results with 
analytic formulae developed by Cohen [4]. It has been found that the code 
results and the theoretical results scale quite similarly with the potential to 
temperature ratio for Ze^/T >2, but that the generalized Pastukhov expressions 
tend to vary more slowly with mirror ratio R, especially in the case of ions 
[4]. The prediction that the only Z-dependence is through the product ZR has 
been verified by the code results.

Classical Ion Confinement in a Tandem Mirror Plug
Our 2-D nonlinear Fokker-Planck code has been used to develop a heuristic 

model for classical ion confinement in a magnetic mirror, the idea being to 
replace expensive 2-D Fokker-Planck computations with simple expressions 
describing particle and energy confinement [5]. The resulting formulae involve 
an appropriate weighting of drag and pitch angle scattering times, and are
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valid to within 10% over a wide range of mirror ratio, temperature, potential, 
injection energy and injection angle.

Electrostatically Trapped Electrons in Thermal Barrier Tandem Mirrors
Results of our 2-D nonlinear Fokker-Planck code have been compared to 

analytic expressions for the density and energy of electrostatically trapped 
electrons in the thermal barrier of a tandem mirror, valid for small to 
intermediate mirror ratios, with and without passing particles [6]. The 
objective has been to ascertain the range of applicability of those analytic 
formulae. It has been found that the numerical results and the theoretical 
predictions agree to within 20% for most values of mirror ratio, energy, and 
passing-to-trapped density ratio. Further calculations have been carried out 
which demonstrate electron heating and detrapping by strong rf diffusion for 
parameters appropriate to TMX-U.

Plasma Performance of the Central Cell of a Cat-D Tandem Mirror Reactor
A particle and power balance assessment of a conceptual tandem mirror 

reactor has been carried out using our 2-D nonlinear Fokker-Planck code [7]. 
This has required solution of the Fokker-Planck equations for the distribution 
functions of the five ionic species. Results have compared favorably with 
those of a 0-D simulation code of SAIC [8]. It has been concluded that the 
central cell of a Cat-D fueled reactor can achieve ignition with a reasonable 
confining potential in the 45-70 keV temperature range provided alpha ash 
buildup is strictly controlled.

Trapping Rate of Passing Ions in Tandem Mirror End-Cells
The trapping rate of passing ions in tandem mirror end-cells has been 

studied using our 2-D nonlinear Fokker-Planck code. A generalization of the 
Futch-LoDestro Scaling law [9] which takes into account the dependence on 
potential-to-temperature ratio has been developed [10]. It has been found that 
the dependence on ^/T, which was ignored in Ref. [9], can be quite strong. It 
has also been found that in multi-ion mixtures, the drag between ions of 
differing charge-to-mass ratio is as important as angle scattering in 
determining the trapping rate [11].
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Members of the NERSC physics group have played a predominant role in the 
calculation of mirror equilibria - even prior to the establishment of the 
Computer Center [1-2]. The VEPEC [3-5] program (Vector Potential Equilibrium 
Code) has been evolving over the last several years in concert with the 
progression of the experiments from simple mirrors to the tandem configuration, 
with the improvements in the field of numerical analysis, and with better 
theoretical models. An overriding emphasis in these calculations has been to 
build realistic models that include the important effects without too many 
unsubstantiated idealizations which limit other models to small regions of 
parameter space.

For example, we wish to compute accurately both in paraxial regimes (where 
A»l) and in short-fat configurations (where A~l) . Here, A is the aspect 
ratio, defined as the ratio of the axial gradient scale length to the radial 
one. This is an important issue because mirror devices tend to be of the 
latter variety while many methods of computing their equilibria are restricted 
to the former.

In its first version, VEPEC computed the equilibrium of a single minimum-B 
mirror on a 3D uniformly spaced Cartesian grid using finite difference 
techniques to solve the nonlinear Ampere's equation of the theory.
Electrostatic effects were ignored and only one species of plasma was 
permitted. Its pressure was obtained in an ad-hoc fashion. The fields of 
realistic coil sets were computed precisely by the ABCXYZ code, and the 
boundary conditions were self-consistently derived from the multipole 
expansion. The Douglas-Gunn algorithm efficiently solved the resulting system 
of nonlinear equations. Confinement properties of single particles were 
studied with the orbit code ORBXYZ.

Studies were done of simple mirror devices that have aspect ratios of 
order unity (A~l), such as the 2XIIB and the MFTF-A single cell configuration. 
They demonstrated the modified long thin mirror ratio enhancement formula, 
confirmed the assumption of omnigenous drift surfaces for fusion energy 
deuterons, and validated the superiority of using the vector potential instead 
of the alternative magnetic induction as the dependent variable [3],
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With the introduction of tandem mirrors the code was extended to represent 
multiple plasma species in a multi-region device on a nonuniform Cartesian 
grid. To maintain good accuracy a finite element collocation method, based on 
tri-cubic B-splines, was introduced to perform the discretization. In this 
process the old 7 point operator stencil was replaced by a 27 point operator. 
The physics of tandem mirror ion confinement required inclusion of 
electrostatics on an equal footing with magnetostatics. The zero dimensional 
code ESTEQ was developed to do special electrostatic equilibria.

Calculations of tandem mirror magnetostatic and electrostatic equilibria 
for the TMX and the TMX-Upgrade demonstrated the existence of plasma sheaths
[5], as predicted by others. Good fits to experimentally determined 
electrostatic potentials were computed.

Theoretical and experimental developments regarding sloshing ions, thermal 
barriers, ECH, and ICH have required that the models represent the very highly 
anisotropic distributions that are associated with these phenomena. 
Collaborations with MIT have resulted in better ad-hoc pressure models [6], 
while a more recent effort with the mirror program at Livermore has led to the 
inclusion of self-consistent Vlasov models [7] in the latest 3-1/2 D version of 
the code. No other mirror equilibrium code to date can model these complicated 
features of tandem mirrors. Very detailed studies of complex configurations 
are now underway on the Cray-2. Its memory would allow realistic studies of 
TARA to proceed.

Recently, very careful comparisons have been made with equilibria 
determined from the paraxial theory. In calculations of radial transport, 
knowledge of the detailed shapes of the drift surfaces is critical. The drift 
surfaces obtained from the paraxial equilibrium calculations have been compared 
to those of VEPEC. It has been estimated that the paraxial calculations become 
inaccurate below aspect ratios A~100; very few realistic mirror configurations 
have larger aspect ratios. We have computed very good agreement between VEPEC 
and the high beta paraxial theory for A=250. The low beta model of Pearlstein, 
Kaiser and Newcomb has been installed in the code itself for more detailed 
comparisons [9],

In the areas of numerical analysis, algorithmic developments and 
optimization, VEPEC has been revised to make best use of new methods and 
features. It is now highly vectorized. The iterations converge very rapidly 
compared to most codes using the reduced MHD formulation. Multitasking has 
been introduced to the implicit solver and to other portions of the code.
Where implemented the resulting speedup factor is typically 3. All other time 
consuming portions of the code are multitaskable and may be so treated as 
circumstances permit.
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Computation of Vacuum Magnetic Fields - Application: HELIAC

A.A. Mirin 
January 1986

A method has been developed for computing the vacuum magnetic field inside 
a toroidal domain created by helically winding a poloidal cross-section about a 
circle [1]. A nonorthogonal coordinate system conforming to the shape of the 
torus is used. The magnetic scalar potential is Fourier analyzed in the 
poloidal and toroidal directions. Finite differencing is used in the radial 
direction. The resulting system of difference equations is block tridiagonal, 
the order of each block equal to the total number of Fourier harmonics.

This technique has been applied to helical axis stellarators [2]. The 
boundary of the domain is taken to be an outer magnetic surface. The aim is to 
produce realistic configurations possessing magnetic wells (for stability), 
favorable transform with low shear (to avoid resonant rational surfaces), and 
small variation of

Q “ df/B

(to minimize parallel currents). The resulting magnetic field, which is 
generated by skin currents flowing along equipotential contours on the 
boundary, is analyzed using a field line integration code. Configurations 
having a shallow well and favorable beta limitations and Q variations have been 
constructed.

This method is quite efficient for scanning large ranges of parameter 
space since expensive Biot-Savart integrations need not be performed. For some 
of the more optimistic cases, the skin currents have been discretized into a 
modular coil system and the resulting magnetic field compared to that of the 
continuum. This discretization has usually resulted in a magnetic field of the 
same transform and Q variation but having less favorable well properties.
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II. Computational Models Developed at NERSC

This section lists the various computer programs developed by the Computational 
Physics Group.
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TABLE 1. NERSC TIME INDEPENDENT CODES

CODE CONTACT CHARACTERISTICS AND APPLICATIONS
CYLEQ D.V. ANDERSON 2D (R,Z), Bicubic Splines, Finite

Element, Tensor Pressure; Tandem
Mirrors, Compact Toroids

VEPEC D.V. ANDERSON 3D (X,Y,Z), Tricubic Splines,
Finite Element, Vector Potential,
Tensor Pressure, Ambipolar Effects,
Vlasov Species; Tandem Mirrors

ABCXYZ
TPSIC

D.V. ANDERSON Auxiliary codes for VEPEC

HILLSV D.V. ANDERSON Auxiliary code for CYLEQ
EIV D.E. SHUMAKER 2D, Flux Coordinates, Finite Elements, 

Open and Closed Field Lines; Compact 
Toroids

EQV D.E. SHUMAKER 2D, Kinetic Equilibria, Flux Coordinates, 
Finite Elements, Open and Closed Field 
Lines; Compact Toroids

VAFIS A.I. SHESTAKOV* 3D, Double Fourier Series, General 
Coordinates; Stellarators, HELIAC

TUBE A.A. MIRIN Field Line Tracing Code; General Magnetic 
Fields

STABCRIT D.V. ANDERSON 2D (R,Z) Ballooning Modes, Energy 
Principle

TERPSICHORE D.V. ANDERSON 3D Displacements of 3D Toroidal
Equilibria; Tokamaks, Stellarators

*Currently in CP-Division (LLNL)
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TABLE 2. NERSC TIME DEPENDENT MHD CODES

CODE CONTACT CHARACTERISTICS AND APPLICATIONS
TEMCO A.A. MIRIN 3D (R.^.Z), Nonlinear, Semi-Implicit, 

Resistive, Fourier Expansion in <f>, 
Viscous, Hall terms; Compact Toroids, 
RFP

RIPPLE VI A.I. SHESTAKOV* 2D (R,Z), Linear, Nonaxisymmetric 
Perturbations, Implicit, Resistive; 
Compact Toroids

ALIMO A.I. SHESTAKOV* 2D (R,Z), Linear, Axisymmetric 
Perturbations, Implicit, Resistive; 
Compact Toroids

RIPPLE V A.I. SHESTAKOV* ID (y), Linear, Implicit, Equilibrium 
Flow

RIPPLE IV A.I. SHESTAKOV* ID (r), Linear, Implicit, Resistive; 
Tokamaks, RFP

ODRIC A.A. MIRIN ID (r), Linear, Implicit, Resistive, 
Compressible, Tensor Viscosity,
Tensor Thermal Conductivity,
Hall terms, Two-Fluid; Tokamaks, RFP

*Currently in CP-Division (LLNL)
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TABLE 3.

CODE CONTACT
TMT A.A.. MIRIN
FPT A.A., MIRIN

CTT D.E., SHUMAKER

TRANSPORT A.A MIRIN
LDL M.G., McCOY

CHARACTERISTICS AND APPLICATIONS
ID (R); Tandem Mirrors

Combined Fokker-Planck/Transport, 
ID (R) plus 2D (V,0); Tokamaks
ID (Poloidal FIux)/2D Equilibrium; 
Compact Toroids
ID (R); Tokamaks
2D (R,V); Electron Transport; 
Tokamaks

NERSC TRANSPORT CODES
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CODE

TABLE 4.

CONTACT

NERSC FOKKER-PLANCK CODES

CHARACTERISTICS AND APPLICATIONS
HYBRID II A.A. MIRIN 2D (V,0), Nonlinear, Multispecies 

Ions; Mirrors and Tokamaks

TDMFP A.A. MIRIN 2D (V,0), Nonlinear, Multispecies
Ions and Electrons; Mirrors

TDMSZ A.A. MIRIN 3D (V,0,Z), Nonlinear, Multispecies 
Ions and Electrons

FPPAC M.G. McCOY
A.A. MIRIN

2D (V,0), Nonlinear, Multispecies
Ions; General Package

ISOTIONS A.A. MIRIN ID (V), Nonlinear, Multispecies
Ions and Electrons; Mirrors and 
Tokamaks

CQL M.G. McCOY 
G.D. KERBEL

2D (V,0), Nonlinear, Bounce Average, 
Multispecies Ions, Quasilinear rf, 
Relativistic, Noncircular Cross- 
sections; Tokamaks

CQL3D M.G. McCOY 
G.D. KERBEL

3D (r,V,0), Nonlinear, Bounce Average 
Multispecies Ions and Electrons,
RF with Wave Damping, Relativistic, 
Noncircular Cross-sections; Tokamaks

RFT G.D. KERBEL Trajectory Integral Propagator and 
Data Base Generator for CQL

ORB G.D. KERBEL Guiding Center Hamiltonian Orbit
Code used in Conjunction with CQL
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TABLE 5. NERSC PLASMA TURBULENCE CODES

CODE CONTACT PURPOSE
SIMU A. E. KONIGES
SCAT A.E. KONIGES
HAWC J.A. CROTINGER*

A.E. KONIGES
MEDIA A.E. KONIGES

P. A. AMALA
W.P. DANNEVIK+

Ensemble Averaging 
3-Wave Closure
Drift Wave Simulation - Hasegawa 
and Wakatani Model
Multifield DIA Closure Code

* Plasma Physics Research Institute, Postdoctoral Researcher 
+ Center for Compressible Turbulence
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TABLE 6. NERSC ITERATIVE MATRIX SOLVERS

CODE CONTACT PURPOSE
ICCG2 D. V. ANDERSON 2D Synunetric, Scalar
ICCG3 D.V. ANDERSON 3D Symmetric, Scalar
ILUCG2 D.V. ANDERSON 2D Asymmetric, Scalar
ILUCG3 D.V. ANDERSON 3D Asymmetric, Scalar
ILUBCG2 A. E. KONIGES 2D Asymmetric, Scalar
CPDES2 D.V. ANDERSON 2D Asymmetric, Vector
CPDES3 D.V. ANDERSON 3D Asymmetric, Vector
MTBCG2 A. E. KONIGES 2D Asymmetric, Scalar

MTCS2 A. E. KONIGES 2D Asymmetric, Vector

MTCS3 A. E. KONIGES 3D Asymmetric, Vector
ILUBCG2-11 A.E. KONIGES 2D 11-Banded
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TABLE 7.

CODE CONTACT
VEPEC D.V. ANDERSON
MTBCG2
MTCS2
MTCS3

A.E. KONIGES

QN3D D.E. SHUMAKER
HQC
SIMU A.E. KONIGES
PAMS D.V. ANDERSON
TEMCO A.A. MIRIN
TERPSICHORE D.V. ANDERSON

PURPOSE

Plasma Equilibria 

Iterative Matrix Solvers

Particle Code

Turbulence
Direct Matrix Solver 
MHD Evolution/Stability 
MHD Stability

NERSC MULTITASKING CODES
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III. Publications
This section lists publications of the NERSC Computational Physics Group. 
They are arranged according to ten categories.
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D.E. Shumaker, "Numerical Calculation of Equilibrium for the Field-Reversed 
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Supercomputer Applications, in press.

Reports, Extended Abstracts and Invited Seminars
C.H. Finan, III, "MAFC076-Magnetic Field Code," UCRL-51804 (1975).

C. H. Finan, III, and B. McNamara, "MAFJ-Some Simple Additions to MAFCO," 
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R.P. Freis, C.W. Hartman, J. Killeen, A.A. Mirin and M.F. Uman, "Numerical 
Studies of Toroidal Magnetic Field Configurations," UCRL-78041 (1976).
A.A. Mirin, M.F. Uman, C.W. Hartman and J. Killeen, "An Analytic Representation 
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J.C. Taylor and J.V. Taylor, "The Elipti Code-Part 1," UCRL-79328 (1977).
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Calculations of Field Reversed Theta Pinch Equilibria Based on a Generalized 
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Heliac Geometry," Fourth Int'l. Stellarator Workshop (Cape May, 1982).
A.I. Shestakov and A.A. Mirin, "A Fourier Method to Solve 3-D Problems in 
Heliac Geometry," Tenth Conf. on the Numerical Simulation of Plasmas, San Diego 
(1983), 2C12.
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