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ABSTRACT 

Convec t i ve  l o s s e s  a r i s i n g  f r o m  buoyancy d r i v e n  f l o w  were c a l c u l a t e d  f o r  a  

two-dimensional  model s i m u l a t i n g  a  s o l a r  c a v i t y  r e c e i v e r .  The TEMPEST code, 

capable o f  f u l l y  th ree-d imens iona l  coup led  t h e r m a l - h y d r a u l i c  . t r a n s i e n t  ca l cu -  

l a t i o n s ,  was used f o r  t h e  s i m u l a t i o n .  P r e d i c t e d  v e l o c i t y  and tempera tu re  

r e s u l t s  f o r  a  2.59 m deep by 2.88 m h i g h  r e c t a n g u l a r  c a v i t y  w i t h  an a p e r t u r e  

opening of 1.72 m were used t o  de te rm ine  c o n v e c t i v e  l o s s e s  f o r  p r e s c r i b e d  

i n t e r i o r  w a l l  t empera tu res  and c a v i t y  o r i e n t a t i o n .  V e l o c i t y  v e c t o r  and tem- 

p e r a t u r e  i s o t h e r m  p l o t s  were used t o  ana lyze  f l o w  c h a r a c t e r i s t i c s .  



NOMENCLATURE 

A area 

Cp s p e c i f i c  h e a t  

d a p e r t u r e  open ing 

D i n t e r i o r  c a v i t y  depth  

hf f o r c e d  c o n v e c t i o n  c o e f f i c i e n t  

h, n a t u r a l  c o n v e c t i o n  c o e f f i c i e n t  

H i n t e r i o r  c a v i t y  h e i g h t  

Tw w a l l  t empera tu re  

Ta ambient t empera tu re  

V v e l o c i t y  

n i n c l i n a t i o n  ang le  

P o  r e f e r e n c e  d e n s i t y  



INTRODUCTION 

One t y p e  of s y s t e m . f o r  g e n e r a t i n g  the rma l  power f r o m  s o l a r  energy  u t i l i z e s  

a  f i e l d  o f  two-ax i s  t r a c k i n g  m i r r o r s  ( c a l l e d  h e l i o s t a t s )  t o  f o c u s  s u n l i g h t  on 

a  c e n t r a l  r e c e i v e r  mounted on a  tower .  C e n t r a l  r e c e i v e r s  have been t h e  s u b j e c t  

of seve ra l  f e a s i b i  1  i t y  and des ign  o p t i m i z a t i o n  research  e f f o r t s  (1,2,3) .  - - -  How- 

ever ,  it i s  apparent  f r o m  even a b r i e f  l i t e r a t u r e  r e v i e w  t h a t  e s t i m a t e s  o f  

c o n v e c t i v e  l osses  f r o m  a  c e n t r a l  r e c e i v e r  are,  a t  bes t ,  tenuous.  The r e s u l t s  

o f  a  workshop on c o n v e c t i v e  l osses  f r o m  c e n t r a l  s o l a r  r e c e i v e r s ( a )  p r o v i d e d  

addSt iona1 ev idence  o f  d i f f i c u l t i e s  i n  t h i s  area.  

C e n t r a l  s o l a r  r e c e i v e r s  can g e n e r a l l y  be c l a s s i f i e d  as e x t e r n a l  o r  i n t e r -  

n a l  ( c a v i t y )  type,  depending upon t h e  g e o m e t r i c a l  c o n f i g u r a t i o n .  N e i t h e r  t y p e  

i s  c u r r e n t l y  amenable t o  adequate a n a l y s i s  t o  de te rm ine  c o n v e c t i v e  l osses .  

E x t e r n a l  r e c e i v e r  c o n f i g u r a t i o n s  c h a r a c t e r i s t i c a l l y  have R a y l e i g h  numbers 

beyond e x p e r i m e n t a l l y  de termined hea t  t r a n s f e r  c o r r e l a t i o n s .  I n  a d d i t i o n ,  w ind 

v a r i a t i o n s  may cause mixed mode losses,  f u r t h e r  c o m p l i c a t i n g  a n a l y s i s .  I n t e r -  

n a l  c a v i t y  r e c e i v e r s  have numerous p o s s i b l e .  g e o m e t r i c a l  ' c o n f i g u r a t i o n s  t h a t  can 

l e a d  t o  c o m p l i c a t e d  f l o w  and, .hence, thermal  response c h a r a c t e r i s t i c s .  O v e r a l l  

heat  t r a n s f e r  c o e f f i c i e n t s  f o r  open c a v i t y  f l o w  a re  v i r t u a l l y  n o n e x i s t e n t .  

The need t o  adequa te l y  de te rm ine  c o n v e c t i v e  l osses  has s e v e r a l  j u s t i f i c a -  

t i o n s .  One i s  economics. C o s t - e f f e c t i v e  m i n i m i z a t i o n  o f  convec t i ve ,  as we91 

as o t h e r ,  l osses  can o n l y  enhance a  sys tem's  o v e r a l l  o p e r a t i o n .  Adequate ly  

( a )  "Convec t i ve  Losses f r o m  C e n t r a l  S o l a r  Rece ive rs , "  Workshop sponsored by 
Sandia-Livermore L a b o r a t o r y  and U.S. Department of Energy, h e l d  a t  D u b l i n ,  
C a l i f o r n i a ,  A p r i l  1979. 



determined c o n v e c t i v e  l osses  would a i d  i n  d e s i g n  a n a l y s i s  and system parameter  

s t u d i e s  used as gu idance f o r  p r o j e c t  development.  Another  j u s t i f i c a t i o n  stems 

from t h e  gu idance t h a t  c o n v e c t i v e  l o s s  e s t i m a t e s  can p r o v i d e  i n  t h e  d e s i g n  o f  

exper iments .  T h i s  i s  e s p e c i a l l y  i m p o r t a n t  f o r  l a r g e - s c a l e  exper iments ,  wh ich  

a re  g e n e r a l l y  expens ive  and t i m e  consuming. 

T h i s  paper  d e s c r i b e s  an e f f o r t  a t  t h e  P a c i f i c  Nor thwes t  L a b o r a t o r y  t o  

model r e l a t i v e  c o n v e c t i v e  l osses  f o r  i n t e r n a l  c a v i t y - t y p e  r e c e i v e r s .  C u r r e n t  

methods a p p l i e d  t o  c o n v e c t i v e  l o s s  ana lyses a r e  b r i e f l y  rev iewed f i r s t .  Next, 

t h e  c a p a b i l i t i e s  o f  t h e  TEMPEST computer code used i n  t h e  PNL work a r e  

desc r ibed .  R e s u l t s  o f  t h i s  s i m u l a t i o n  a r e  t h e n  p resen ted  i n  t h e  f o r m  o f  ve loc -  

i t y  v e c t o r  and tempera tu re  i s o t h e r m  p l o t s  f o r  a  two-dimensional  r e c t a n g u l a r  

c a v i t y  r e c e i v e r  w i t h  p r e s c r i b e d  i n t e r i o r  w a l l  temperatures .  

R e l a t i v e  c o n v e c t i v e  l o s s e s  were determined f o r  a  2.59 m  deep by  2.88 m  

h i g h  c a v i t y  w i t h  a  1.72-m a p e r t u r e  opening.  R e s u l t s  f o r  t h e  a p e r t u r e  o r i e n t e d  

v e r t i c a l  ly ,  ang led 32' t o  t h e  v e r t i c a l ,  and h o r i z o n t a l  l y  a r e  presented.  These 

r e s u l t s  c h a r a c t e r i z e d  t h e  n o n l i n e a r  b e h a v i o r  o f  t h e  r e l a t i v e  c o n v e c t i v e  l o s s  

f o r  v a r i e d  a p e r t u r e  o r i e n t a t i o n .  S i m i l a r  c h a r a c t e r i z a t i o n s  are, p resen ted  f o r  

a  c a v i t y  r e c e i v e r  s c a l e d  up by a  f a c t o r  o f  5 w i t h  two d i f f e r e n t  a p e r t u r e  open- 

i n g  s i z e s .  

BACKGROUND 

A r e v i e w  of l i t e r a t u r e  concerned w i t h  c e n t r a l  r e c e i v e r s  has shown t h a t  

remarkab ly  l i t t l e  s o p h i s t i c a t i o n  i s  c u r r e n t l y  b e i n g  used t o  ana lyze  c o n v e c t i v e  

l osses .  I n  some cases, .no account  f o r  t h e  l o s s  i s  made a t  a1 1. One apparent  



reason i s  t h a t  t h e  c o m p l e x i t y  of t h e  .problem has n e c e s s i t a t e d  making s i m p l i -  

f y i n g  assumpt ions;  t h i s  r e s u l t s  i n  an a n a l y z a b l e  problem, b u t  one wh ich  may be 

o v e r s i m p l i f i e d  t o  t h e  e x t e n t  of r e l a t i v e  use lessness.  U n t i l  r e c e n t l y ,  one o f  

t h e  ma jo r  s t u m b l i n g  b l o c k s  seemed t o  be t h e  l a c k  of exper imen ts  t o  g u i d e  d e s i g n  

ana lyses o f  l a r g e - s c a l e  r e c e i v e r s .  

Consider,  f o r  example, t h e  genera l  schemat ic of a  s i m p l i f i e d  c a v i t y  model 

shown i n  F i g u r e  1. A hea t  ba lance on t h e  system would i n c l u d e :  

Pi - s o l a r  i n s o l a t i o n  f r o m  a  m i r r o r  f i e l d  

OUT - . 
QHX - heat  removed by hea t  exchanger tubes  . 

'cond - heat  l o s t  by c o n d u c t i o n  t h r o u g h  c a v i t y  w a l l s  

iRR - heat  l o s t  by r e f l e c t e d  r a d i a t i o n  

Q ~ L  
- h e a t  l o s t  by c o n v e c t i o n  f l o w  

To determine t h e  r e 1  a t i  ve e f f i c i e n c y  o f  windowed versus w i  ndowless a p e r t u r e s  

o f  such a  s imp le  c a v i t y ,  J a r v i n e n  (1) - c o m p l e t e l y  n e g l e c t e d  c o n v e c t i v e  l o s s e s  

i n  t h e  windowless c a v i t y .  S u b j e c t  t o  some s t r i n g e n t  window c o o l i n g  r e s t r i c -  

t i o n s ,  he conc luded t h a t ,  windowed c a v i t i e s  were ( o r  c o u l d  be)  as the rma l  l y  

I e f f i c i e n t  as windowless r e c e i v e r s .  Indeed, if c o n v e c t i v e  l o s s e s  f o r  t h e  w in-  

dowless c a v i t y  c o u l d  be reasonab ly  es t ima ted ,  r e l a t i v e  t h e o r e t i c a l  windowed 

c a v i t y  e f f i c i e n c i e s  may look  even b e t t e r .  
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FIGURE 1. Hea t  Flows in a  Simplified C a v i t y  Model 



I n  t h e i r  a n a l y s i s  o f  r e c e i v e r s  i n  t h e  300 t o  1 3 0 0 ~ ~  range,  Wu and Wen ( 2 )  - 
u t i l i z e d  g r o s s l y  s i m p l i f i e d  assumptions. Fo r  example, t o  e v a l u a t e  c o n v e c t i v e  

l osses  f r o m  a  c a v i t y  r e c e i v e r ,  t h e y  determined convected h e a t  l o s s  as 

They assumed t h e  c o n v e c t i o n  c o e f f i c i e n t  . i s  t h e  sum o f  a  n a t u r a l  c o n v e c t i o n  

c o e i i  i c i e n t ,  hn, and a t o r c e d  c o n v e c t i o n  c o e f f i c i e n t ,  hf, as 

where 

and 

Equa t ions  ( 3 )  'and ( 4 ) ,  o b t a i n e d  by Wu and Wen f r o m  Reference (4), a r e  s a i d  by - 

them t o  be a p p l i c a b l e  t o  l a r g e  v e r t i c ' a l  p l a t e s  i n  t h e  t u r b u l e n t  range. The 

i n t e r e s t i n g  p o i n t  t h a t  must be no ted  i s  t h a t  t h e  area A i n  E q u a t i o n  ( I ) ,  t o  

wh lch t h e  heat  l o s s  i s  app l i ed ,  i s  t h e  a p e r t u r e  opening area.  The t r e a t m e n t  



o f  an open ing as a  f l a t  p l a t e  i s  somewhat q u e s t i o n a b l e .  F u r t h e r ,  add ing  

c o n v e c t i o n  c o e f f i c i e n t s ,  as i n  Equa t ion  ( 2 ) ,  may be i n c o r r e c t  f o r  mixed mode 

convec t ion .  

I n  another  a n a l y s i s ,  Tracey, Blake,  and Brown ( 3 )  - e v a l u a t e d '  convected 

l osses  f o r  an exper imen ta l  1 MWth c a v i t y .  To do so, t h e y  assumed t h a t  each 

sur f  ace o f  t h e i r  r e c t a n g u l a r  c a v i t y  was a t  c o n s t a n t  (measured) tempera tu re  i n  

an ambient  t empera tu re  f l u i d .  They e v a l u a t e d  a  r e s u l t i n g  c o n v e c t i o n  l o s s  f r o m  

each sur face i n d i v i d u a l l y  as i f  it were i n  a q u i e s c e n t  ambient f l u i d .  T h i s  

method i s  r e l a t i v e l y  s t r a i g h t f o r w a r d  b u t  does n o t  account  f o r  any n o n l i n e a r  

f l o w  i n t e r a c t i o n s  t h a t  may be caused by  m u t u a l l y  p e r p e n d i c u l a r  su r faces .  

A l though  i t  o f f e r s  a  d i s t i n c t l y  b e t t e r  approach t h a n  t h e  p r e v i o u s l y  no ted  

method of Wu and Wen ( 2 ) ,  - t h i s  method would be v e r y  d i f f i c u l t  t o  a p p l y  t o  wind- 

a f f e c t e d  c a v i t i e s .  

D u r i n g  i n i t i a l  t e s t i n g  o f  t h e  BoeingIEPRI c a v i t y ,  c e r t a i n  anomal ies asso- 

c i a t e d  w i t h  uneven h e a t  removal i n  t h e  hea t  exchanger tubes  were no ted  ( 5 ) .  - A 

subsequent f i r s t - o r d e r  a n a l y s i s  was a b l e  t o  answer q u a l i t a t i v e l y  and, t o  a 

l i m i t e d  e x t e n t ,  q u a n t i t a t i v e l y  t h a t  t h e  uneven h e a t i n g  was due t o  c o n v e c t i v e  

f low- induced v e l o c i t i e s  o f  up t o  1.5 mlsec t h r o u g h  t h e  a p e r t u r e  opening.  Cor- 

respond ing  w a l l  t empera tu res  measured i n  t h e s e  t e s t s  v a r i e d  f r o m  a p p r o x i m a t e l y  

1300°c on t h e  back w a l l  t o  t y p i c a l l y  700°C on t h e  hea t  exchanger tubes,  and 

p r o v i d e d  t h e  d r i v i n g  f o r c e  f o r  t h e  buoyancy-induced f l o w .  However, t h e  o n l y  

c o n c l u s i o n s  reached i n  t h e  a n a l y s i s  were t h a t  t h e  f l o w  c o u l d  account  f o r  an 

~ r n ~ x p l a i n ~ d  l o s s  and t h a t  l a r g e  p o r t i o n s  of t h e  a p e r t u r e  open ing were a c t i v e  

i n  t h e  c o n v e c t i o n  process ( 5 ) .  - 



APPROACH 

The approach used i n  t h i s  work was t o  a p p l y  s t a t e - o f - t h e - a r t  numer i ca l  

t echn iques  t o  ana lyze  t h e  c o m p l e x i t i e s  of buoyancy-induced f l o w  i n  c a v i t y - t y p e  

r e c e i v e r  geometr ies .  The computer code used f o r  t h i s  work i s  TEMPEST. T h i s  

u s e r - o r i e n t e d  code, under development a t  PNL, i s  a  f u l  l y -coup led,  three-dimen- 

s i o n a l ,  t r a n s i e n t  hydro thermal  f i n i t e  d i f f e r e n c e  code. I t  i s  capab le  of model- 

i n g  geometr ies  u s i n g  e i t h e r  C a r t e s i a n  o r  c y l i n d r i c a l  c o o r d i n a t e s ,  and employs 

a  t r a n s i e n t  approach t o  a  s t e a d y - s t a t e  s o l u t i o n .  S o l i d s  c o n d u c t i o n  and f l o w  

c o n v e c t i o n  regimes a r e  coup led  i n  t h e  s o l u t i o n  scheme. TEMPEST i s  capab le  o f  

t r e a t i n g  b o t h  s teady  and t r a n s i e n t  boundary c o n d i t i o n s .  

D u r i n g  i t s  development, TEMPEST has been a p p l i e d  t o  numerous t e s t  cases, 

i n c l u d i n g  c l o s e d  c a v i t y  n a t u r a l  c o n v e c t i o n  problems, and has been shown t o  

agree w e l l  w i t h  da ta .  T h i s  work was t h e  f i r s t  a t tempted  a p p l i c a t i o n  o f  TEMPEST 

t o  n a t u r a l  c o n v e c t i o n  i n  an open c a v i t y  geometry. U n f o r t u n a t e l y ,  open c a v i t y  

exper imen ta l  d a t a  a r e  v i r t u a l l y  n o n e x i s t e n t .  L i m i t e d  w a l l  t empera tu re  d a t a  

have been o b t a i n e d  f o r  a  BoeingIEPRI s c a l e d  c a v i t y  r e c e i v e r  c u r r e n t l y  under-  

g o i n g  f i e l d  t e s t s  ( 5 ) ;  - however, no c a v i t y  v e l o c i t y  d a t a  [ w i t h  t h e  e x c e p t i o n  o f  

a  one-poi n t  measurement ( 5 )  - ] were ava i  1  ab le .  Consequent ly ,  t h e  c a l c u l a t e d  

r e s u l t s  p resen ted  i n  t h i s  work c o u l d  n o t  be compared w i t h  data ,  b u t  a r e  i n s t e a d  

suppor ted by arguments t h a t  t h e  computed r e s u l t s  f o l  low p h y s i c a l l y  r e a l i z a b l e  

t r e n d s .  

C e r t a i n  aspec ts  o f  t h e  TEMPEST v e r s i o n  used i n  t h i s  work shou ld  be noted,  

F i r s t ,  t h e  Boussinesq approx ima t ion  was used i n  w r i t i n g  t h e  d i s c r e t e  f o r m  o f  

t h e  c o n s e r v a t i o n  e q u a t i o n s  so l ved  by t h e  code. Second, t h e r e  i s  no t u r b u l e n c e  



model c u r r e n t l y  i n c o r p o r a t e d  i n  t h e  code, b u t  a  c o n s t a n t  t u r b u l e n t  v i s c o s i t y  

may be s p e c i f i e d  as i n p u t .  It was conc luded t h a t  s u f f i c i e n t  r e s u l t s  c o u l d  be 

o b t a i n e d  t o  s a t i s f y  t h e  g o a l s  o f  t h i s  work by pe r fo rm ing  c o n s t a n t  v i s c o s i t y  

c a l c u l a t i o n s .  

The Boussinesq approx ima t ion  i s  more r e s t r i c t i v e  i n  t h e  sense t h a t  

c e r t a i n  l i m i t a t i o n s  t o  t h e  problems t h a t  can be s o l v e d  a r e  o b t a i n a b l e  f r o m  

a n a l y s i s  ( 6 ) .  - E a r l y  i n  t h i s  work, i t was determined t h a t  t h e  Bouss inesq 

approx ima t ion  i n  TEMPEST p rec luded  c a v i t y  ana lyses a t  back w a l l  t empera tu res  

expected i n  f u l l - s c a l e  c e n t r a l  r e c e i v e r  systems. However, it was f u r t h e r  con- 

c l u d e d  t h a t  low- temperature  ana lyses c o u l d  be used a t  t h i s  s tage t o  o b t a i n  

i n f o r m a t i o n  on genera l  t r e n d s  and parameter  tendenc ies  o f  c a v i t y  c o n v e c t i o n  

l oss .  

The BoeingIEPRI c a v i t y  ( 5 )  - was used as t h e  b a s i s  f o r  t h e  model cons ide red  

i n  t h i s  work. A  c r o s s  s e c t i o n  o f  t h e  oc tagona l  c a v i t y  i s  shown i n  F i g u r e  2. 

I n  o p e r a t i o n ,  s o l a r  i n s o l a t i o n  e n t e r s  t h e  a p e r t u r e  opening, r e f l e c t s  o f f  t h e  

back w a l l  a t  t empera tu res  near  1300°C, and i s  absorbed i n  t h e  h e a t  exchanger 

pane ls .  L i m i t e d  exper imen ta l  d a t a  on t h e  c a v i t y  have shown t h a t  t h e  h i g h  w a l l  

temperatures  induce buoyant  f l o w  w i t h  r e s u l t i n g  v e l o c i t i e s  o f  up t o  1.5 mlsec 

o c c u r r i n g  i n  t h e  aper tu re .  

Us ing  t h e  TEMPEST code, v e l o c i t i e s  and temperatures  were computed f o r  a  

s i m p l i f i e d  two-dimensional  geometry t o  demonst ra te  a n a l y s i s  c a p a b i l i t i e s .  The 

geometry u t i l i z e d  was a  model o f  t h e  Boe ing c a v i t y  d i scussed  p r e v i o u s l y .  

A l though  TEMPEST i s  capab le  o f  t r e a t i n g  th ree -d imens iona l  geometr ies ,  o n l y  a  

two-d.imensiona1 f l o w  model was used f o r  exped iency and t o  s i m p l i f y  i n t e r p r e t a -  

t i o n  o f  t h e  r e s u l t s .  A two-dimensional  model i s  r e a d i l y  j u s t i f i e d  i n  terms o f  



FIGURE 2. EPRIIBoeing Cavity Design Showing Assumed Convection 
Flow Pattern 



reduced computation time f o r  parameterizations. Two-dimensional r e s u l t s  a re  

also very useful as a  screening' process p r io r  t o  performing a more de ta i l ed  

three-dimensional analysis .  

RESULTS 

Typical computed veloci ty  and corresponding temperature f i e l d s  are  shown 

in Figures 3 and 4, respectively,  f o r  the  open cavi ty  model. For these ca l -  

cula t ions ,  a  16 x 10 variable grid spacing was used. In l i g h t  of the  previ- 

ously discussed Boussinesq approximation, a  maximum impressed temperature 

difference of 1 0 0 ' ~  was specif ied by s e t t i n g  the  back wall surface tempera- 

tu re ,  T3,  a t  160'C and the  ex te r io r  ambient temperature a t  6 0 ' ~ .  A tempera- 

t u r e  of l lo°C was speci f ied  fo r  simulated heat exchanger surfaces,  as shown in 

Figures 3 and 4. The other  surfaces,  designated as 2 in Figures 3 and 4 ,  were 

t rea ted  as adiabatic ,  modeling highly insulated receiver  walls .  

As shown in' Figures 3 and 4, the  flow pat tern  computed f o r  t h i s  case was 

very steady. With TEMPEST'S t r ans ien t  approach t o  steady s t a t e ,  approximately 

60 t o  70 sec of.CDC 7600 computer time was required f o r  execution. The pre- 

dicted flow in Figure 3 follows t h a t  which would general ly be expected. The 

hot back wall causes a  strong buoyancy force  tha t  drives a  large rec i rcu la t ing  , 

flow region in the  upper portion of the cavi ty .  S igni f icant  sp i l l age  o r  con- 

vective loss i s  readi ly  apparent, as indicated by the  outward flow in the  

upper half of the  aperture opening. The inflowi.ng cold a i r  in the  lower por- 

t ion  of the  aperture i s  heated in the  r ec i rcu la t ing  lower region. 

External t o  the  cavi ty ,  the flow i s  quiescent except f o r  the area near 

the  upper outside wall. I n  t h i s  work, several d i f f e r e n t  ex te r io r  boundary 



LENGTH SCALE: t 1.0 meter , 
VELOCITY SCALE: 0.6 mlsec 

FIGURE 3. V e l o c i t y  Vectors Computed f o r  a  C a v i t y  I n c l i n a t i o n  o f  0" w i t h  t h e  H o r i z o n t a l  
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F I G U R E  4. Tempera tu res  C o n t o u r s  Computed f o r  a  C a v i t y  I n c l i n a t i o n  of  0" 
w i t h  t h e  H o r i z o n t a l  



c o n d i t i o n s  were used t o  i n v e s t i g a t e  t h e  e f f e c t  on t h e  i n t e r i o r  f l o w .  I t  was 

determined t h a t ,  as l ong  as t h e  e x t e r i o r  modeled r e g i o n  extended beyond a  d i s -  

t ance  about equal  t o  t h e  i n t e r i o r  c a v i t y  depth,  t h e  boundary c o n d i t i o n  o f  t h e  

modeled e x t e r i o r  r e g i o n  had no apparent  e f f e c t .  I t  shou ld  be no ted  t h a t  TEM- 

PEST has t h e  c a p a b i l i t y  o f  t r e a t i n g  use r  s p e c i f i e d  t r a n s i e n t  boundary cond i -  

t i o n s  on t h e  e x t e r i o r  modeled r e g i o n .  However, i n  t h i s  work, no a t tempt  was 

made t o  model an e x t e r n a l  w ind and i t s  e f f e c t  on t h e  c a v i t y  f l o w  o r  c o n v e c t i v e  

losses.  

The i so the rms  shown i n  F i g u r e  4 d e p i c t  a  tempera tu re  f i e l d  t h a t  i s  i n  

good agreement w i t h  t h e  p h y s i c a l l y  expected f i e l d .  The c h a r a c t e r i s t i c  i n f l o w  

o f  c o l d  ambient a i r ,  t h e  h o t  and r e l a t i v e l y  s tagnan t  f l u i d  i n  t h e  upper f r o n -  

t a l  area,  and t h e  s teep g r a d i e n t  near  t h e  r e a r  w a l l  a r e  a l l  v i s i b l e .  The 

s t r a t i f i c a t i o n  evidenced by t h e  g radua l  l y  changing,  h o r i z o n t a l  l y - o r i e n t e d  

c o n t o u r  l i n e s  i n  t h e  c e n t r a l  r e g i o n  i s  q u i t e  apparent .  The i so the rms  shown i n  

F i g u r e  4 i n d i c a t e  t h a t  t h e  16 x 10 g r i d  spac ing used does n o t  p r o v i d e  s u f f i -  

c i e n t l y  f i n e  r e s o l u t i o n .  T h i s  mode l i ng  aspect  deserves f u r t h e r  a t t e n t i o n  i n  

f u t u r e  work. 

The Boe ing c a v i t y  c e n t r a l  r e c e i v e r  concept  i s ,  i n  p r a c t i c e ,  des igned t o  

be i n c l i n e d  a t  a  32' ang le  w i t h  t h e  h o r i z o n t a l .  T h i s  i n c l i n a t i o n  uses t h e  

m i r r o r  f i e l d  most e f f e c t i v e l y  and, h e u r i s t i c a l l y ,  decreases c o n v e c t i v e  l o s s .  

I n  F i g u r e  5, v e l o c i t y  v e c t o r  and tempera tu re  f i e l d  p l o t s  a r e  shown f o r  t h r e e  

o r i e n t a t i o n s .  F i g u r e s  5a and 5b r e p e a t  t h e  r e s u l t s  shown i n  F i g u r e s  3 and 4. 

F i g u r e s  5c and 5d a r e  r e s u l t s  f o r  t h e  32' i n c l i n e .  The r e s u l t s  f o r  a  f u l l y  

r o t a t e d ,  down-facing model a r e  i l l u s t r a t e d  by F i g u r e s  5e and 5 f .  
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I t  should be noted t h a t  the veloci ty vectors (arrow lengths)  in Figure 5  

are  normalized t o  the maximum veloci ty occurring in each case.  While the  maxi- 

m u m  i s  defined f o r  each case, caution must be exercised in comparing absolute 

ve loc i t i e s  represented by arrow lengths from one case t o  the  other .  For com- 

parison, the r e s u l t s  in Figure 5  are shown a t  the  same time, t = 200 sec,  into 

. the  simulated t r ans ien t  approach t o  steady s t a t e .  I t  was previously noted t h a t  

the horizontal or ienta t ion  ( A )  was very steady. A t  t = 200 sec,  the  32O angled 

cavity was showinq some oscil1ator.y behavior of the  convective flow throuqh the  

aperture opening. The typical  o s c i l l a t i o n s  were periodic,  l a s t ing  approxi- 

mately 11 sec with var ia t ions  of *5%, about a  mean outflow veloci ty .  This 

observation may indicate tha t  e i t h e r  steady s t a t e  had not yet  been reached or  

t h a t  a  chugging e f f e c t  was being predicted.  Continuation of the  simulated 

t r ans ien t  could be used t o  verify t h i s .  The flow f o r  the 90' rotated cavi ty  
/ 

had d e f i n i t e l y  not reached steady s t a t e .  Due t o  the  s t ab le  flow s i t u a t i o n  of 

the ho t t e s t  wall being on the  top, the  cavi ty  flow should eventual ly reach a  

v i r tua l  s t ab ly - s t r a t i f i ed  condit ion.  As mentioned previously, however, the  

grid s t ruc tu re  used f o r  t h i s  case was not optimal. Hence, no attempt was made 

t o  continue the  ca lcula t ions  beyond the  200-sec point shown in Figures 5e and 

The veloci ty vector plot  of the  32' rotated cavi ty  shows a  f a i r l y  s igni-  

f  icant  decrease in outf lowing veloci ty when compared t o  the  ve r t i ca l  opening. 

This indicates tha t  the  convective loss from the  angled cavi ty  i s  lessened. 

The vec tor  plot  also shows tha t  t h e  large rec i rcula t ion  flow assumed f o r  t h e  

analysis  of the  angled Boeing cavi ty  (compare Figure 2  w i t h  Figure 5c) i s  not 



n e c e s s a r i l y  c o r r e c t .  A s t a b l y - s t r a t i f i e d  upper t r i a n g u l a r  r e g i o n  i s  i n d i c a t e d  

by t h e  iso therms.  As a  r e s u l t ,  t h e  o v e r a l l  buoyant  d r i v i n g  f o r c e  has been 

lessened and, hence, t h e  c o n v e c t i v e  l o s s  decreased. 

The a c t u a l  c o n v e c t i v e  l o s s  f r o m  c a v i t i e s  can be determined f r o m  t h e  

computed v e l o c i t i e s  and temperatures  as 

where t h e  summation i s  c a r r i e d  o u t  across  t h e  computed f l o w  c e l l s  i n  t h e  

a p e r t u r e , o p e n i n g .  QhL r e p r e s e n t s  a  n e t  f l o w  o f  energy  o u t  of t h e  c a v i t y  b y  

c o n v e c t i o n .  T h i s  l o s s  i s  dependent on many f a c t o r s  such as c a v i t y  s i z e ,  

a p e r t u r e - t o - c a v i t y  s i z e  r a t i o ,  and s u r f a c e  temperatures .  .To de te rm ine  these  

e f f e c t s ,  TEMPEST o u t p u t  was used t o  c a l c u l a t e  t h e  c o n v e c t i v e  l o s s ,  s u b j e c t  t o  

v a r i a t i o n  i n  seve ra l  parameters.  The r e s u l t s  a r e  p resen ted  i n  r e l a t i v e  form 

i n  Tab le  1. The l o s s  c a l c u l a t e d  f o r  t h e  p r e v i o u s l y  d iscussed,  two-dimensional  

r e c t a n g u l a r  model i s  used as a  b a s e l i n e  fo . r~compar i son .  

TABLE 1. R e l a t i v e  Convec t i ve  Losses 

Depth H e i g h t  A p e r t u r e  I n c l i n a t i o n  2 e l a t i v e  Loss 
Case D H d Ang'le, a 

'hL1'hL, base 

1 - base case 2.59 m  2.88 m 1.72 m o0 1 .O  



The r e su l t s  are presented as r e l a t i ve  losses f o r  several reasons. F i r s t ,  

radiat ion t rans fe r  from the back wall t o  the heat exchanger surfaces was not 

included in t h i s  work, so actual magnitudes of convective losses cannot be 

related to a percentage-of-total value. Second, i t  i s  somewhat more convenient 

t o  identify parameter trends i n  r e la t ive  form. 

For example, using the modeled Boeing cavity as a base case,  several 

observations can be made from the  r e su l t s  i n  Table 1. Rotating the cavi ty  by 

32" caused a decrease i n  convective loss of, about 36% when compared t o  the  

vert ical  base case. When the cavity was geometrically scaled up by a fac to r  

of 5, the convective loss was multiplied by nearly 5.3 times. This could 

indicate a nonlinear geometry e f f ec t .  When the larger cavity was rotated 

through an angle of 32", there was a 47% decrease i n  convective loss.  Here 

again i s  apparent evidence of nonlinear geometry e f f ec t s .  

To determine the e f fec t  on convective loss of decreasing the aperture 

opening, the opening s ize  was decreased by a fac to r  of 2, while holding a l l  

other parameters the same as the horizontal case. For t h i s  case, the convec- 

t i v e  loss was decreased by 23% from the same s ize  base case. 

The convective losses shown in Table 1 can be t rea ted as only typ ica l ,  

not absolute, r e su l t s .  They represent the outcomes of code calcula t ions  

applied t o  a simplified two-dimensional model and should be treated as such. 

Nevertheless, r e su l t s  of t h i s  type do demonstrate the capab i l i t i e s  of TEMPEST 

in analyzing convection losses in buoyancy-induced cavity flows. 



CONCLUSIONS AND RECOMMENDATIONS 

Convective losses f o r  a  s implif ied model of a  large, cavity-type, cent ra l  

so lar  receiver  were ca lcula ted .  The r e s u l t s  show that ,  within l imi ta t ions  of 

approximations in the  TEMPEST code, cavi ty  thermal-hydraulic c h a r a c t e r i s t i c s  

can be determined. The r e s u l t s  a lso  indica te  t h a t  . the TEMPEST code i s  a  

sophist icated tool f o r  analyzing convective losses,  and could be applied t o  

system design analys is ,  parameterization, and experimental design. 

Velocity vector p l o t s  and temperature contour p l o t s  were calculated in 

t h i s  work f o r  a  s implif ied two-dimensional model of the BoeingIEPRI cav i ty  

rece iver .  These r e s u l t s  showed very c l e a r l y  expected physical t rends f o r  the  

flow f i e l d  and corresponding temperature f i e l d .  A t  an aperture incl  i  nat ion 

angle of 32' from the  v e r t i c a l ,  buoyancy driving forces  are lessened and 

convective losses reduced when compared t o  losses from a cavi ty  with a ve r t i -  

c a l l y  oriented aperture.  For a  five-fold sc.ale-up in cavi ty  s i ze ,  predicted 

r e s u l t s  showed a s l i g h t l y  grea ter  than f ive-fold increase in convective losses.  

A s imi lar  predict ion f o r  a  r e l a t i v e  decrease in aperture s i z e  also showed a 

considerable decrease in convective losses.  

Two shortcomings in the  current  version of TEMPEST hindered more complete 

cavity analysis--the Boussinsq approximation used in formulating the  conserva- 

t ion equations, and a constant (user- input)  turbulent  v i scos i ty  1 imitat ion.  

The Boussinesq approximation i s  r e s t r i c t i v e  in t h a t  i t  l imi t s  the  range of 

densi ty v a r i a t i o n s ' t h a t  may be t rea ted  and, hence, current ly  l i m i t s  TEMPEST'S 

gas flow app l i cab i l i ty  t o  low-temperature d i f ferences .  Relaxation of t h i s  

r e s t r i c ton  through rewrit ing of the  governing equations t o  account f o r  

position-dependent densi ty will  be required t o  be able t o  t r e a t  c a v i t i e s  with 

r e a l i s t i c  back wall temperatures. 



A u s e r - i n p u t  c o n s t a n t  t u r b u l e n t  v i s c o s i t y  i s  perhaps s u f f i c i e n t  t o  con- 

d u c t  p a r a m e t e r i z a t i o n s .  However, t o  more adequa te l y  t r e a t  t u r b u l e n t  e f f e c t s  

on c a v i t y  convec t i on ,  TEMPEST w i  11 have t o  be m o d i f i e d  t o  i n c l u d e  a  t u r b u l e n c e  

model capab le  o f  t r e a t i n g  buoyancy-dominated and s t a b l y - s t r a t i f i e d  f l o w s .  

R e l a x a t i o n  o f  t h e  Boussinesq approx ima t ion  and i n c o r p o r a t i o n  o f  a t u r b u -  

l ence  model i n t o  t h e  TEMPEST code r e q u i r e  f u r t h e r  a n a l y s i s .  P lans  f o r  f u t u r e  

work i n c  l ude :  

a i n v e s t i g a t i o n  o f  t h e  e f f e c t  of nod ing s t r u c t u r e  and spac ing on t h e  c a l c u -  

l a t i o n  o f  c o n v e c t i v e  losses- -Th is  c o u l d  be accompl ished by  v a r y i n g  b o t h  

t h e  number o f  nodes used t o  model a  c a v i t y  and t h e i r  spac ing.  

a i n v e s t i g a t i o n  o f  t r a n s i e n t  e x t e r n a l  c o n d i t i o n s ,  such as w ind - v a r i  a t  ion-- 

T h i s  c o u l d  be per formed u t i l i z i n g  TEMPEST'S c a p a b i l i t i e s  t o  accept  

t r a n s i e n t  boundary c o n d i t i o n s .  

These recommended i n v e s t i g a t i o n s  c o u l d  r e a d i l y  be comple ted w i t h  a  two- 

d imens iona l  model. Subsequent ly ,  more s o p h i s t i c a t e d  nod ing  s t r u c t u r e  w i t h  a  

th ree -d imens iona l  model c o u l d  be examined. 
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