SEP 30 1998

SANDIA REPORT |
SAND98-1618 RECE ;

Unlimited Release 0 :
-/ Printed August 1998 - UCF 14

'1‘\ ST \(
,r.,'.]«\',w . OST/

i M T)::/Q\ ;\(
v Efje’&tiv\l’\];e of SMSS: A Simple Strategy

Aran/d\@ample Implem entatlon

David Hensinger

Prepared by

Sandia National Laboratorles

Albuquerque New Mexico 87185 and leermore California 94550

Sandia-is-a multlprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company for. thé United States Department of
Energy under Contract DE-AC04-94AL85000.

d for,public release; further dissemination unlimited.

Approve /

. Sandia National Laboratories

/

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

SAND 98-1618
Unlimited Release
Printed August 1998

Effective Use of SMSS: A Simple Strategy
and Sample Implementation

- David Hensinger
Engineering Sciences Center
Thermal Sciences

Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM 87185-1010

Abstract

The purpose of this document is to present a strategy for effectively using SMSS (Scaleable
Mass Storage System) and to distribute a simple implementation of this strategy. This
work was done as a stopgap measure to allow an analyst to use the storage power of SMSS
in the absence of a more user friendly interface. The features and functionality discussed in
this document represent a minimum set of capabilities to allow a useful archiving interface
functionality. The implementation presented is the most basic possible and would benefit
significantly from an organized support and documentation effort.

Acknowledgments
Thanks to Reyna Haynes lending me her expertise on SMSS.

Contents

TRErOAUCEION o e vreeneneracserenccssnssscsssnssosssssossessossvasossnnassssssssssssnsocnnssssssscsnncecs

Problem Statement........... ceccsecessessne teeeeeesessssesessasserecsasarsrsnsesastsssstessrsassones

Weaknesses of the FTP Interface t0 SMSS....cvvuriinieininnseiiinriininnss st senssaenens
Functionality Needed in the SMSS INEIfaCe......cceurmirrirasnnareesteteecte sttt

Sample Utility Implementation, fIp_SaVe....ccccceeeicricacearenncosescncerecucnstararennsocncees

The FUNCHONAHEY OF FIP_SAVE...veveevrmrererserserserisessestseenitsarenras s s s s es st s st n st
An Example Session USINg ftP_SaVe.....eoueuririrertnireseet ettt st
The FULULE OF FIP_SAVE veveuvruirurrsrrrensereessenteesiisissns et sttt sttt sttt st

SUIMIMAT Y. e vevensesscsssossrnsnssssnenssssssessssenonasnssssstetesnotototasasessotassrssestonanarasssecs

Appendix A: Listing of ftP_save..cceeeeereuiereareeiieireiienitiarecteestatasnasnnennnesencenes

DiStriDULION . eeuereereeeseeseensssassessssssosssssostosssssssasansanssorssssssessnssssssssssacserascsss

Introduction

This report documents a simple strategy for effectively using SMSS. It also supplies a
utility called ftp_save, which implements this strategy for single file storage and retrieval.

Problem Statement

Weaknesses of the FTP Interface to SMSS

The SMSS (Scaleable Mass Storage System) is an automated tape based archiving system
designed for the long term storage of the terabytes of output produced by large scale super-
computer simulations. It is available through an FTP interface from almost every classified
or unclassified networked file system at Sandia. A file is stored to SMSS by initiating an
FTP session with SMSS, making directories and changing directories to create a storage
location, and then putting the file. A file is restored from SMSS by connecting via FIP,
changing directories to locate the file and then ‘getting’ the file. Data stored in SMSS
resides on tapes that are mounted by a robot. The tape retrieval and mounting process adds
significant latency to the storage and retrieval process

The FTP interface to SMSS is clumsy for several reasons:

1. On a UNIX file system, much of the information describing the contents of a file is
carried in the path of the file. For example a file located in
/home/joe_user/overheat._project/simulation/static/ will probably deal with the results of
a static simulation relevant to a project called overheat. In order to preserve this
information in SMSS the entire directory structure needs to be recreated on SMSS
before a file is stored. This is currently a tedious process.

2. Because the data stored to SMSS is often the result of expensive and time-consuming
computations, there should be provisions to prevent the overwriting of data. Currently,
data can be overwritten and deleted in SMSS simply by putting a file of the same name
in the same location on SMSS.

3. The FTP interface does not quickly allow listing of a directory within SMSS. This
makes it difficult to know what has been saved to SMSS from within a file-based
directory structure.

4. An additional weakness of SMSS, which is not directly related to the FTP interface, is
that the connection to SMSS goes under different names on different systems. The
variety in the naming of the SMSS connection is necessary to allow different hardware
connections to SMSS from the same file system; however, the provision of at least one
domain name that resolves to an SMSS session on each system would greatly simplify
SMSS access for users who routinely work on multiple file systems. One way to
provide this may be an environment variable set in a system.cshre file defining the
variable DEFAULT_SMSS to the most reliable domain name for the SMISS connection

from that system.

Functionality Needed in the SMSS Interface

The interface to SMSS should satisfy several minimum requirements described here.
These requirements are satisfied by the sample implementation of ftp_save. Ftp_save
creates a pointer file (an executable script) that saves and retrieves files. It does not itself
directly perform the saving and retrieving function.

When a file is saved to SMSS a pointer to that file should remain in the directory on the
disk-based file system from which the file was sent to SMSS. This provides a constant
reminder to the user of what has been stored on SMSS from that directory. Without this
pointer a user must connect to SMSS and ed down the directory structure to list the
contents of a directory. The latency involved in SMSS access prevents rapid queries.

The pointer remaining in the directory of origin should include all the information required
to retrieve the file from SMSS. If the pointer includes all of this information, then the
retrieval process and storage process can be automated, and it is much less likely the file’s
location on SMSS will be forgotten by the user.

As long as all of the information required to store or retrieve a file is in the pointer to the
file, then it should be possible to copy the pointer to another directory, tar it into an
archive, or even move it to SMSS without its becoming invalid.

The pointer should have a unique name based on the name of the file saved to SMSS. This
prevents overwriting pointers with new pointers as more files are saved to SMSS. This
becomes useful when numerous data files are generated in the same directory and then
stored on SMSS.

When a file is saved to SMSS its it should automatically be saved with the same relative
path from /home or / as it had on the directory system of origin. This duplicates the
contextual information which helped to define the contents of the original file. An
alternative to replicating directory structures on SMSS is to add the directory structure
information to the file name.

A file saved to SMSS should be saved with a unique name on SMSS to prevent
overwriting data. This does not mean that the file needs a unique name before it is saved to
SMSS or that it must be retrieved with the unique name it bears on SMSS. Unique name
extensions such as the day, date, and time are preferred over unique garbage strings.

Sample Utility Implementation, ftp_save

The sample implementation discussed here satisfies all of the requirements listed above for
the archiving and retrieval of a single file to and from SMSS. The name of this utility is
ftp_save.

The Functionality of fip_save

The process of using ftp_save as a front end to SMSS begins with the invocation of
ftp_save with the file to be saved as an argument. F tp_save creates an executable script
file that has several functions: it will automatically store the target file on SMSS, it will
automatically retrieve the target file from SMSS, and it serves as a movable pointer to the
file stored on SMSS

The file created by ftp_save is given a unique name based on the name of the original
target file. This name will also be the name of the file when it is stored on SMSS. The
name consists of the original file name with the time, day of the week, month, and calendar
date and .image postpended. When the pointer file is invoked, it looks to see if the target
file is in the present working directory. If the file is in the present working directory, it
connects to SMSS via FTP, replicates the present working directory on SMSS, and saves
the target file to SMSS under its own unique name. If the file is not in the present working
directory, it connects to SMSS via FTP and changes directory to the location where the file
was saved and retrieves the file into the present working directory under its original name.

After a file has been archived to SMSS using a script produced by ftp_save, the file can
safely be deleted on the local disk based file system. The executable script remains as a
pointer and automated retrieval method for the archived file. All of the information required
to retrieve the file is stored inside the script and is independent of the location name of the
script file. The file can be renamed or moved and it will still recover the stored file from

SMSS provided it can connect to SMSS. Invoking ftp_save does not store or retrieve the
file. Invoking the script which is the pointer file does that.

Part of the reliability of the strategy used by ftp_save is due to the way it creates
executable scripts to do all of the work. Any modifications to ftp_save have no impact
on pointer files previously created with earlier versions of ftp_save. Ftp_save does not
even need to be available for the pointer files to function.

An Example Session Using ftp_save

A sample session using ftp_save to store and retrieve a file named huge_file to and from
SMSS would look like this:

%ls

huge_file

Spwd

/home/joe_user/working

$ftp_save huge_file

%ls

huge_file huge_file.1503Thu May2198.image
% huge_file.1503Thu_May2198.image

Name (smssl-atm:joe_user) :Passive mode off.
Verbose mode on.

257 MKD command successful

250 CWD command successful.

257 MKD command successful.

250 CWD command successful.

200 PORT command successful.

150 Opening BINARY mode data connection for
huge_file.1510TheMay2198.

226 transfer complete.

221 Goodbye.

%rm huge_file

%1ls

huge_file.1503Thu _May2198.image

$ huge_file.1503Thu_May2198.image

Name (smssl-atm:joe_user) :Passive mode off.
Verbose mode on.

250 CWD command successful.

250 CWD command successful.

200 PORT command successful.

150 Opening BINARY mode data connection for
huge file.1510TheMay2198.

226 transfer complete.

221 Goodbye.

% 1s

huge_file

It was assumed in this session that the user has already gotten a kerberos ticket to allow
access to SMSS. After this session, a copy of huge_file called
huge_file.1503Thu_May2198. image remains on SMSS in the directory
/home/joe_user/working

The Future of ftp_save

Ftp_save is not intended to be the foundation of a comprehensive data archiving
environment, but it is intended to demonstrate that significant functionality can be provided
to analysts by some relatively simple tools. Analysts need a supported and documented
archive management environment that surpasses the functionality of ftp_save. In the
absence of a supported environment, ftp_save is a quick and dirty tool, available now, to
help analysts manage data archiving.

Summary

A strategy for effective use of SMSS was presented in the form of a set of minimum
requirements for a useful interface. An implementation of a utility called ftp_save
satisfying these requirements was presented. Ftp_save automates the context based
archiving and retrieval of files to and from SMSS, and it provides a pointer to stored data.
It was built quickly to serve the pressing needs of analysts who required a way to manage
mass storage within their problem solving environment. Although it could benefit from a
substantial re-write, its simple strategy does allow it to reliably provide a significant amount
of functionality.

it et b - T

Appendix A: Listing of ftp_save

#!/bin/csh
ftp_save -~ a dumb as nails ftp script builder to save a file to smss
ftp_save filename

ftp_save creates a file called filename.hourminutemonthdayyear.image
this file when executed looks for filename and if it exists ftp's
the file to smss in the same directory location it is currently
located in. If the file filename does noe exist then it gets

the file from smss.

this allows versions of the same file to be stored on smss
and keeps a record of the stored file as the .image file

Feb 5 4:44 PM
David Hensinger Department 9622 845-0961

sk gk ook ik Sk Sk e 3k SHe Sk e R 3k dk 3 3k 3k 4k 3k Sk

set the_time=‘date +%H%M%a%b%d%y"
echo $the_time

set starters=‘pwd | tr "/" " "
echo "#\!/bin/csh” >! $1.$the_time.image

echo "if (-f " $1") then" >> $1.$the_time.image

echo "/usr/local/bin/ftp smssl-atm << eoi" >> $1.4the_time.image

N

whoami >> $1.$the_time.image
echo "binary" >> $1.$the_time.image
echo "verbose on" >> $1.S$the_time.image

foreach item ($starters)
echo "mkdir "$item >> $1.Sthe_time.image
echo "cd "$item >> $1.$the_time.image
end
echo "put " $1 $1.5the _time >> $1.$the_time.image
echo "quit® >> $1.5the_time.image
echo "eoi" >> $1.$the_time.image
echo "else" >> $1.$%the_time.image
echo "/usr/local/bin/ftp smssl-atm << eoi" >> $1.%the_time.image
whoami >> $1.S$the_time.image
echo "binary" >> $1.Sthe_time.image
echo "verbose on" >> $1.S$the_time.image
foreach item ($starters)
echo "mkdir "$item >> $1.$the_time.image
echo "cd "$item >> $1.S$the_time.image
end
echo "get " $1.$the_time $1 >> $1.%the_time.image
echo "cquit" >> $1.$the_time.image

echo "eoi" >> $1.%the time.image
echo "endif" >> $1.S5the_time.image

chmod +x $1.Sthe_time.image

Distribution

Internal Distribution:
1 MS 0151
1 MS 0841
1 MS 1002
1 MS 1010
1 MS 1010
1 MS 0835
10 MS 0835
1 MS 9018
2 MS 0899
2 MS 0619

G. Yonas, 9000

P. Hommert, 9100

P. J. Eicker, 9600

M. E. Olson, 9622

A. L. Ames, 9622

T. C. Bickel, 9113

D. M. Hensinger, 9113

Central Technical Files, 8940-2

Technical Library, 4916
Review & Approval Desk, 12690

For DOE/OSTI

