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Abstract

A method is presented for smoothing and differentiating noisy data given on a rectangular 
grid. The method makes use of a one-dimensional smoothing algorithm to construct the 
solution to an associated two-dimensional problem. Smoothing parameter selection is 
automated using a technique that does not require prior knowledge of the amount of 
noise in the data. Numerical examples are provided demonstrating the application of the 
method.

Introduction

The need for functional representations of data given on a two-dimensional domain arises 
in a variety of fields. Depending upon whether the data is noisy or not, an approximating 
function is constructed to pass either near to (smoothing) or through (interpolation) the 
data points. The function can then be used to provide estimates for the data and its 
spatial derivatives over the entire domain. Two example applications are the contouring 
of geologic surfaces and the differentiation of Moire fringe pattern data to obtain strain 
fields.

Polynomial spline functions have been widely used for both interpolating and smoothing 
empirical data. One of the major advantages of spline functions is their ability to pass 
smoothly through a large set of data points, contrary to what often occurs when a single, 
higher order polynomial function is used to interpolate data. Continuity of lower order 
derivatives also makes splines well-suited for numerical differentiation of data.

In a previous paper, dynamic programming was applied to the problem of smoothing 
one-dimensional data with splines, including selection of the smoothing parameter [1]. 
The method applies to the general case of unequally weighted and unequally spaced data. 
This paper is an extension of the above method for application to data given on a two- 
dimensional rectangular grid. In the interest of brevity, attention is restricted to bicubic 
spline approximation of data given on a uniform rectangular grid. Generalization of the 
method to higher order splines, nonuniform grids, and unequal weighting of the data is 
easily programmed, but requires a more lengthy explanation. .
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The two-dimensional smoothing algorithm is presented after a brief review of spline 
functions, one-dimensional smoothing, and smoothing parameter selection. Examples 
of smoothing and differentiating simulated data with bicubic splines are provided. We 
conclude with a brief summary of the merits and shortcomings of the present approach.

Background

An example of a cubic spline function having “knots” at *1,... ,«5 is shown in Figure 1. 
Between each adjacent pair of knots the spline is a separate cubic polynomial in the 
independent variable x. The cubic spline and its first and second derivatives are con­
tinuous throughout the interval [®!,®b]- The third derivative is piecewise constant with 
discontinuities occurring at the knots.

Consider the case of data given at ®i,..., ®n, where ®,+i = X{ + h (i = 1,..., ra — 1). For 
the knot sequence a cubic spline, /(®), can be represented as a combination of
n -f 2 basis functions

where

Si(®) = 1
s2(®) : 
*3(*) :

si+3(®) = <

n+2
f(x) = £ Ci«i(®)

t=l
(1)

(® - ®l)

(® — *i)2/2
0 for x < X{

(® — ®i)3/6 for Xi < x < ®i+i
h3/6 -|- h2(x — ®i+i)/2 + h(x — Xi+i)2/2 for ® > ®j+i

(2)

For the one-dimensional problem, the object is to determine the coefficients, Cj, in Eq. 1 
that will result in a smoothly varying approximation to the data. Stated more precisely,

Given: a set of data Zi taken at ®i (i = 1,... ,n) and a smoothing parameter, n (>0).

Find: the cubic spline minimizing the functional

Mf) = f2(f(xi) ~ zi)2 + V dx (3)

A method for finding the / that minimizes <j>i is given in the Appendix.

The value of the smoothing parameter can greatly affect the solution. In the limiting 
case of fi approaching zero, the spline function, /, passes through each data point. For



extremely large values of /i, the third derivative of / is forced to zero throughout the 
interval [xi,xn], resulting in a least squares quadratic fit.

The goal in selecting the smoothing parameter, n, is to obtain a solution that passes 
near the data points while remaining reasonably smooth. Using values of fi that are too 
large often causes oversmoothing, resulting in a loss of the low frequency content of the 
data. Choosing /i too small also gives unsatisfactory results, especially when derivatives 
are estimated.

One technique that has been used successfully to choose the smoothing parameter in one­
dimensional problems is generalized cross validation [2]. This technique is particularly 
useful for situations where there is not prior knowledge of the amount of noise in the 
data. Another technique, described later, is used when estimates of the levels of noise in 
the data are known. Regardless of whether the level of noise in the data is known or not, 
selection of the smoothing parameter requires the trace of the so-called influence matrix 
[2] and an iterative process of minimization.

The motivation for the current work was an interest in determining whether or not the 
methods developed for smoothing one-dimensional data could be extended to data given 
on a two-dimensional domain. A very helpful reference in our study was a paper by 
Hu and Schumaker [3]. In their paper the authors considered smoothing data given on a 
rectangular grid with tensor-product B-splines as basis functions. They did not, however, 
address the issue of selecting the smoothing parameter for cases where there is no prior 
knowledge of noise levels. Making use of the results in Reference 3, it was deduced that a 
one-dimensional smoothing algorithm could be used in the solution of an associated two- 
dimensional problem for data given on a rectangular grid. Furthermore, it also became 
clear that generalized cross validation could be used to select the smoothing parameter.

One-Dimensional Smoothing

As was mentioned previously, a technique has been developed for solving the one-dimensional 
smoothing problem based on a dynamic programming approach. The method consists 
of a backward and a forward “sweep” through the data and is outlined in the Appendix. 
Conceptually, the smoothing process can be viewed as a transformation of the data, z;, 
into the constants c* appearing in Eq. 1. This transformation is illustrated pictorially in 
Figure 2.

The constants c;, as well as the values of the cubic spline and its derivatives at the knots, 
are calculated in a recursive fashion. Between two adjacent pair of knots (x^ < x < a;;+i) 
the spline is given by the equation

f(x) = f(Xi) + ^ 

dx
(x - ®i) -f

dx2
(x - Xif/2 -|- ci+3(x - Xif/Q

*•

(4)



Equation 4 is preferred over Eq. 1 for evaluating the spline between knots because it 
requires fewer calculations.

As a model of errors inherent in experimental measurements, consider the expression

*» = tfC*.) + e; t = 1,..., n (5)

where <7 is a smooth curve representing the measured quantity. The scalars e; are assumed 
to be random errors satisfying

EM = 0 (6)
EM = 0 for i j (7)
EM = a2 for i = j (8)

where £?[•] denotes mathematical expectation.

Reference 2 suggests two methods for selecting the smoothing parameter depending upon 
whether or not the amount of noise in the data is known beforehand. If an estimate of <r2 
is given, the smoothing parameter is taken as the value of fi that minimizes the function

^00 = (l/«) H(/(*i) - zif + (2(r2/n)TrA - <r2 (9)
«=i

R is an unbiased estimate of the true mean square error [2]. When c2 is not known, 
the smoothing parameter is taken as the minimizer of the generalized cross validation 
function

(Vn) — 2*)2
= (1 - (l/n)7YA)2 (10)

In Eqs. 9 and 10, A is the influence matrix and Tr denotes the trace. Determining the 
value of n that minimizes R or V requires an iterative approach. The influence matrix 
is a function of the smoothing parameter, n, and linearly transforms the data into the 
values of the spline at the knots

/ fM )
Oil ®12 • • • Oln < Zl >

f(x2)

=
021 022 • • • 02n 22

< /(*n) J
. Onl On2 • • • ann .

V 2n )

(11)

An efficient procedure for calculating Tr(A) = £”=1 an is provided in the Appendix.



Two-Dimensional Smoothing

For the two-dimensional problem, the data, zy, is assumed to be given on a uniform 
rectangular grid (®i, j/j); t = 1,... ,n, j = 1,... ,n. The grid spacing in the ®-direction 
is given by ®{+i = Xi + h while the spacing in the y-direction is j/j+i = yj + h. Basis 
functions for the y-direction are defined similarly to those for the ®-direction.

«i(y) = 1 
My) = (y-yi) 
My) = (y-yi)2/2

Ms(y) =
o

(y-yj)3/6_
h3/6 + h2(y - y>+i)/2 + h(y - yj+i)2/2

for y < yj 
for yj <y < yj+i 
for y > yj+1

(12)

With reference to Eqs. 1 and 12, a bicubic spline function, f(x,y), can be expressed as 
a combination of products of basis functions in the ® and y-directions.

n+2 n+2
/(*»y) = £ ]C ciMx)sj(y) (13)

»=X j=l

The bicubic spline and its derivatives d^k+l^ f /(dxkdyl) (k,l = 0,1,2) are continuous over 
the entire rectangular grid because of the continuity of the basis functions and their 
derivatives.

The two dimensional smoothing problem requires finding the bicubic spline minimizing 
the functional, fa, defined by

Mf)
n n

E $!(/(*» Vi)+
»=i j=i

dy

(14)

Because of the special structure of Eq. 14, the solution to the one-dimensional problem 
can be directly applied to the two-dimensional case. This extension was deduced by 
examining the solution scheme given in Reference 3. The coefficients, Cij, in Eq. 13 
which result in the minimization of fa can be obtained through a two-step process. This 
process is outlined below and illustrated in Figure 3.

1. Pick a value for the smoothing parameter fi (see Eq. 14).

2. Smooth the n rows of data one at a time using the one-dimensional solution scheme 
(see Appendix). In essence, this amounts to transforming each row of data, Zij 
(i = 1,..., n), into the constants (i = 1,..., n + 2). The transformation referred 
to is the one depicted in Figure 2.



3. Using the results of Step 2, smooth each column of c^- using the one-dimensional 
solution scheme with h = h. This amounts to transforming each column of c;j 
(j = 1,.. •, n), into the constants Cij (j = 1,..., n + 2).

Steps 2 and 3 above may be reversed without affecting the solution. That is, the columns 
of data can be smoothed first and then the rows. The number of calculations required in 
Steps 2 and 3 is proportional to nn. The two-dimensional counterparts of Eqs. (9) and 
(10) used in smoothing parameter selection are given by

RM

VW

- 2«)3 + “5rI>A! -<r!nn T-f nni=i j=i

- zny
nn " , • ,t=i j=i

(1 - -^7YA2)5 
nn

(15)

(16)

where A2 is the influence matrix for the two-dimensional problem. Letting A and A 
denote the influence matrices for smoothing in the x and y-directions, respectively, it can 
be shown that the trace of the influence matrix for the two-dimensional problem is given 
by the product of the traces of A and A.

Tr(A2) = Tr(A)Tr(A) (17)

Equation (17) is essential for smoothing parameter selection because both Eqs. (15) and 
(16) require Tr(A2).

Numerical Examples

We now present some numerical examples of smoothing and differentiating data given 
on a rectangular grid. In all of the examples, data was simulated at the grid points by 
adding white noise, e^, to a known function, g(x,y), of the independent variables x and
y-

Zij = 9{xi,yj) + tij (18)
Eieij] = 0 (19)

E[eijeki} = 0 for i ^ fc or ; ^ / (20)
E[eij€kl] = cr2 {or i = k and j = l (21)



The true mean square error, R(fi), is defined to be the average squared error between 
the bicubic spline, f(x,y), and the noise-free data, g(x,y).

R(fi) = £(/(*<» Vi) ~ $(*i» Vi))2 (22)
nn i=ij=i

For smoothing data, fi should be chosen so that R is minimized. The true mean square 
error can be calculated directly for simulated data; however, this is not possible for most 
applications because the noise-free data is not known. For the purposes of this study, the 
inefficiencies /g and ly are defined as a measure of how well the smoothing parameter is 
chosen.

r = r{^a)

R RM 
 Riw) 

v ~ R{m)

(23)

(24)

where pv, and /ifl are the minimizers of R, V, and iZ, respectively (see Eqs. 15, 16, 
and 22). Inefficiencies close to unity indicate near optimal selection of the smoothing 
parameter.

The first example considers the set of data

Xi = 0.2(i — 1) i = l,..., 51 (25)
Vi = 0.2(i-l) j = 1, • • •, 51 (26)

»(*'») = sin (w)sin (w) (27)

White noise with <7=0.01 and <7=0.05 was added to g{x,y) per Eq. 18 to simulate real 
data. The inefficiencies and ly are listed in Table 1 for five different sets of noise added 
to the data. The inefficiencies all have values near unity, indicating that the smoothing 
parameter was selected in a near optimal manner. The most encouraging result was that 
reasonable values for fi were chosen even when it was assumed that <r was not known.

The functions f(x,y), g(x,y), and the noisy data along the row defined by y=3 are 
plotted in Figure 4 for one of the data sets in which <7=0.05. The smoothing effect of the 
bicubic spline is evident from the figure.

The second example is taken from Reference 4.

X{ = 0.3(i — 6) i = l,..., 11 
Vj = 0.3(;-6) ; = 1,...,11

g(x,y) = exp(-x2 - y2)

(28)
(29)
(30)



Again, white noise with tr=0.01 and <r=0.05 was added to g(x,y) to simulate real data. 
Figure 5 illustrates the variation of the functions R, R, and V with the smoothing 
parameter, p, for one of the data sets where (r=0.01. Notice that the minimizing values 
of /x for all three functions are near each other. The inefficiencies 1$ and iy for this 
example are listed in Table 2.

Two comments should be made regarding the effects of the number of grid lines, n and 
n, on the results. Comparing the values of the true mean square errors in Tables 1 and 
2, it is clear that the spline approximation of the data in example 1 is better than that 
for example 2. When the number of grid lines in example 1 was reduced to n = n = 11, 
values for the true mean square error were comparable to those for example 2. In general, 
it has been observed that by increasing the number grid lines, and hence data points, 
better approximations to the data are possible. A second observation is that increasing 
the refinement of the grid causes the generalized cross validation function to become 
less sensitive to changes in the smoothing parameter, resulting in a less clearly defined 
minimum.

We conclude this section with some examples of numerical differentiation of the data 
given in the first example. Because the function used to generate the data was known, 
it was possible to make comparisons between the known derivatives and those estimated 
with the bicubic spline. In the examples, <7=0.01 and the smoothing parameter was 
chosen by minimizing the generalized cross validation function.

Comparisons between exact and estimated derivatives are shown in Figures 6 through 8 
along the row defined by j/=3. Figures 6 and 7 show comparisons for the first derivatives 
df/dx and df /dy and indicate excellent agreement. A comparison of the second deriva­
tive d2f/(dxdy) is given in Figure 8 and shows good overall agreement. Higher order 
derivatives are typically more difficult to estimate than lower order ones and the errors 
are usually most pronounced at the endpoints.

Conclusions

A previously developed smoothing algorithm for one-dimensional problems is extended 
to handle situations where data is given on a rectangular grid. The method involves 
smoothing the data in the two different grid directions using the one-dimensional algo­
rithm to obtain a bicubic spline approximation of the data. In addition to smoothing, 
the bicubic spline also provides estimates for the first two derivatives of the data.

Selection of the smoothing parameter, (i, is automated by finding the minimizer of one 
of two functions. When the amount of noise in the data is unknown, the value of fi 
minimizing the generalized cross validation function is used. Minimization of another 
function, Eq. 15, is used for selecting fi if there is prior knowledge of the noise levels. 
Both techniques are shown to select near optimal values for the smoothing parameter in 
the examples. Good estimates for the derivatives of simulated data are also obtained.



Because of the special structure of the rectangular grid and the smoothing functional, the 
two-dimensional problem lends itself to an efficient method of solution. The number of 
computations required for an ra by n grid of data is proportional to rara. Although efficient, 
the method is restricted to situations where data is given on a structured rectangular 
grid.
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Appendix

This section summarizes the steps required for smoothing uniformly spaced data and for 
calculating the trace of the influence matrix. A more detailed description of the method 
can be found in Reference 1.

Smoothing is accomplished by a backward and forward sweep through the data. The 
steps are summarized below:

1. Begin the backward sweep by calculating the matrix R„ and vector sn from Eqs. (Al- 
A3).

2. Calculate the matrices Rn-i, • • •, R-i and the vectors sn_!,..., Sx using the recursive 
equations in (A5), storing the scalars dk and prSfc and the vectors h^M for k — 
ra,...,2.

3. Begin the forward sweep by calculating the starting vector fj from Eq. (A6).

4. Sweep forward calculating the scalars <7i,..., <7n-i and vectors fa,... ,fn using the 
equations in (A7).

5. The coefficients c* appearing in Eq. 1 are given by the equations in (A8).



The following equations are used in the smoothing procedure (fi = h 5fi is the normalized 
value of the smoothing parameter and I is the identity matrix).

f,=

/

V

/(*i)
hdf(Xi)

L2rf2/(*.)
h

\

/

/l 1 1/2 \
M = 0 1 1

\0 0 1 /

/l 0 0 
L = 0 0 0

Vo 0 0

Ml)

(A2)

Rn = L S„ —2Lzn (A3)

di+i — 1/(2/* + 2prRi+ip) h»+i — 2Rj+ip (A4)

Hi — L + MT(Ri+i — (dj+i/2)hj+ih^.1)M Sj — —2Lzi + Mr(I —dj+ihj+ip'r)si+i
(A5)

fa = -(l^JRj-^a (AG)

# =-di+afp^+a + h^Mfi] fi+1 = Mf; + p</i (^47)

ci=fa(l) c2 = f1(2)/h c3 = fa(3)//i2 ci+3 = gi/h3 for i = 1,... ,n - 1
(*48)

When interpolating data (^i=0), it is recommended that ]Z be given a value of 1 in the 
calculation of dn and d2 to avoid numerical problems. The quantities R;, hi, and di need 
only be calculated for one row, or column, of the grid because they do not depend upon 
the data.

Calculating the trace of the influence matrix, A, is also accomplished in a recursive 
manner:

1. Calculate the matrices Xi through Xn using Eqs. (A9) and (A10).



2. Calculate the trace of the influence matrix, A, from Eq. (All).

Mi = M - diphjM E, = -dippT (XS)

Xi = Rr1 Xi = MjXi-iMf - 2Ei (X10)

Tr(A) = £xi(l,l)
(>111)



Table 1. Inefficiencies associated with the two different methods for selecting the smoothing parameter in Example 1.

Noise Set (7 R{nv) h Iv Noise Set a R{pr) R^r) R(nv) Ir Iv
1 0.01 2.47e-6 2.50e-6 2.50e-6 1.01 1.01 6 0.05 3.35e-5 3.54e-5 3.59e-5 1.06 1.07
2 0.01 2.41e-6 2.42e-6 2.42e-6 1.00 1.00 7 0.05 3.38e-5 3.44e-5 3.45e-5 1.02 1.02
3 0.01 2.66e-6 2.67e-6 2.66e-6 1.00 1.00 8 0.05 3.71e-5 4.12e-5 4.12e-5 1.11 1.11
4 0.01 2.55e-6 2.63e-6 2.69e-6 1.03 1.05 9 0.05 4.52e-5 4.52e-5 4.52e-5 1.00 1.00
5 0.01 2.46e-6 2.46e-6 2.47e-6 1.00 1.00 10 0.05 3.46e-5 3.48e-5 3.47e-5 1.01 1.00

Table 2. Inefficiencies associated with the two different methods for selecting the smoothing parameter in Example 2.

Noise Set a R{pr) R(nv) Ir Iv Noise Set a R^r) R(ftp) R(fiv) Ir Iv
11 0.01 2.94e-5 3.04e-5 3.36e-5 1.03 1.14 16 0.05 6.96e-4 7.04e-4 6.98e-4 1.01 1.00
12 0.01 2.39e-5 2.42e-5 2.49e-5 1.01 1.04 17 0.05 6.93e-4 6.93e-4 7.05e-4 1.00 1.02
13 0.01 3.28e-5 3.31e-5 3.28e-5 1.01 1.00 18 0.05 6.03e-4 6.18e-4 6.06e-4 1.02 1.01
14 0.01 2.12e-5 2.15e-5 2.15e-5 1.01 1.01 19 0.05 6.84e-4 7.13e-4 7.19e-4 1.04 1.05
15 0.01 4.39e-5 4.40e-5 4.39e-5 1.00 1.00 20 0.05 4.87e-4 4.87e-4 4.88e-4 1.00 1.00



Figure 1. Example of a cubic spline function defined for the knots Xi = i
(t = 1,.. .5). The plot was generated using Eq. 1 with n = 5, Cj = 1, 
c3 = —0.4, c3 = 2, c4 = —0.8, cB = -2.8, c« = 0.4 and cr = 0.3.

Zl Z2 ZZ Z4 2n_i Zn

o o o o ••• o o

Cl c2 C3 C4 C5 c6 ^n+1 ^+2

Figure 2. Illustration of one-dimensional smoothing. The data Zi is transformed into 
the coefficients c, (see Eqs. 1 and 3).
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Step 2
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2 Z{j

1=7
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• • • 2 Cij

• • • 1 =;
4 5 6

Figure 3. Illustration of the two-dimensional smoothing process for n=4 and n=3. 
The first step transforms each row of data into the constants Cij 
(t = 1,... ,n + 2, j = 1,... ,n). The second step transforms each column of 
Cij into the constants Cjj (t = 1,... ,n + 2, j = 1,... ,n + 2). Both 
transformations are based upon the one used for the one-dimensional 
problem (see Fig. 2). The net result is a transformation of the data, Z{j, 
into the coefficients, c^-, of the bicubic spline function (see Eq. 13).
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Figure 4. Plot of the noise-free function, g, the bicubic spline, /, and the noisy data 
along a row defined by y =3 for example 1 (c = 0.05).



r
,6

,v

i 1111| i 11111|

i i 111 ni i i 1111ii

Figure 5. Variation of the functions R, R, and V with the smoothing parameter, fi, 
for example 2 (<r = 0.01).
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Figure 8. Comparison of the estimated and exact derivative df/dx along the row 
defined by y=3 for example 1 (<r = 0.01).
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Figure 7. Comparison of the estimated and exact derivative df/dy along the row 
defined by y=3 for example 1 (<y = 0.01).
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Figure 8. Comparison of the estimated and exact derivative 82f/{dxdy) along the 
row defined by y=3 for example 1 (<r = 0.01).


