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1. HILDA OVERVIEW

Although this report is called a program document, it is not simply a user's guide to running HILDA nor is
it a programmer's guide to maintaining and updating HILDA. Instead it is a guide to HILDA as a program
and as a model for designing and costing a heavy ion fusion (HIF) driver. HILDA represents the work and
ideas of many people; as does the model upon which it is based. The project was initiated by Denis Keefe,
who was then the leader of the LBL HIFAR project. He also suggested the name HILDA, which is an
acronym for Heavy Ion Linac Driver Analysis.

The conventions and style of development of the HILDA program are based on the original goals. It was
desired to have a computer program that could estimate the cost and find an optimal design for Heavy Ion
Fusion induction linac drivers. This program should be able to model near-term machines as well as full-
scale drivers. The code objectives were: (1) A relatively detailed, but easily understood model. (2) Modular,
structured code to facilitate making changes in the model, the analysis reports, and the user interface. (3)
Documentation that defines, and explains the system model, cost algorithm, program structure, and
generated reports. With this tool a knowledgeable user would be able to examine an ensemble of drivers and
find the driver that is minimum in cost, subject to stated constraints.

This document, referred to as the HILDA Program Document (HPD), contains a report section that describes
how to use HILDA, some simple illustrative examples, and descriptions of the models used for the beam
dynamics and component design. Associated with this document, as files on floppy disks, are the complete
HILDA source code, much information that is needed to maintain and update HILDA, and some complete
examplcs. These examples illustrate that the present version of HILDA can generate much useful
information about the design of a HIF driver. They also serve as guides to what features would be useful to
include in future updates. The HPD represents the current state of development of this project.

At its present state of development HILDA is a FORTRAN program that helps a user find minimum-cost
designs of the focusing elements and the acceleration cells that are in the acceleration-transport section of a
heavy ion fusion driver. A user selects stations in this section of the driver and for each station furnishes
data that defines: the particle beam, the design of the focusing and acceleration components, the points in a
parameter space that HILDA scans. A point in that parameter space is defined by the values of: L the lattice
half-period, a the maximum beamlet envelope size, AV the station voltage gain, 7 the focusing element
packing factor.

When run at a station HILDA tries to produce a design at each point in the parameter space, subject to
constraints furnished in the data. If a suitable design can be produced, the design cost $/AV is recorded.
Upon completion of scanning all points in the parameter space, HILDA selects from the ensemble of
successful designs the one that was minimum in cost and writes the complete design to a logfile.

There remains work to be done in extending the program capabilities to include the complete driver in the
search for a minimum cost. The present version of HILDA does not assemble the individual station designs
into a complete acceleration-transport section. However, the station logfiles that HILDA produces contain
all the information that is needed to do this. Also, there remains work to be done in completing the cost
model and more effort should be expended on developing the user interface. At its present stage of
development all these tasks could easily be completed.



2. RUNNING HILDA

A. INTRODUCTION

HILDA has been built to find the minimum-cost design at a particular machine station. When there are
many stations and the data at these stations is different, it is obvious that HILDA needs modules that
provide a simple user interface for setting up the data files. The present version of HILDA does not contain
these modules and thus requires an excessive amount of data handling. Future versions should correct this
deficiency and thus significantly reduce the task of providing data to HILDA. Also, the creation of output
files that can be read by data analysis programs should be simplified. For example, a spreadsheet program is
very useful in analyzing results and it also is able to generate reports. It is now somewhat time consuming
to generate input to such an analysis progr~m using HILDA output.

The basic data structure of HILDA is shown in Figure 2-1, Hilda Module Data Structure. In that figure we
show two stations, which are identified as IDStation = 10 and IDStation = 70. In principal there may be as
many stations as the user wishes. A station is a point along the machine at which a minimum-cost design
is to be produced.

The picture shows the required module data sets. These data sets, which are files that HILDA reads, have the
names module-name.DAT and are listed below:

CalCost1.DAT Beamn parameter data

AlSighBar.DAT Beam dynamics parameters

CostV1.DAT Parameter minimization search space
FeQ20.DAT Fe quadrupole design data

ScQ30.DAT Superconducting quadrupole design'data
StrucCore.DAT Acceleration structure design data '
TranMod.DAT Transport module selection data

The beam parameter data is furnished in one data file, CalCostl.DAT, for all the stations under
consideration. In that file there is a packet of data for each of the stations under consideration. This is
indicated in Figure 2-1, where we have shown two stations.

The other data sets are associated with the HILDA design module of the same name. For example, the data
in the file AlSighBar.DAT is used by the module AlSighBar that calculates beam-dynamic quantities. If the
module’s design data changes at the different stations, then the content of the data file must be updated to the
correct value for the current station. The next version of HILDA will have modules that enable the user to
easily set the contents of these data files.

Much of the design information that is contained in these data sets is fixed for the entire machine. For
example, the price of the amorphous material does not change as a function of the machine station.
However, the tape width used at a particular station might be changed. These data sets contain all the
design information available to the design modules at the current station and for that reason can be rather
large. Thus, we have decided to associate them with the design module rather than the machine station.

Running HILDA consists of establishing the above mentioned module data files and then invoking the
HILDA main program. Onc~ the main program starts, prompts are issued to guide the user. In the
description below of how to run HILDA we shall assume that it has been installed in the user's computing
environment. How to do this installation is described in the section Maintaining Hilda of this program
document.



The beam parameter data file, CalCost1.DAT, defines the stations and the beam parameters at those
stations. For each of these stations there must be a set of data files for the HILDA design modules. This set
must be loaded onto the module. DAT files before executing HILDA. The program is then run to find the
minimum-cost machine at the corresponding station. The results of the run are put on the QUTPUT files
shown in Figure 2-1. The basic output file is identified as CostV1.ann, where nnn is one of the station
numbers furnished in the CalCostl.DAT file. This file contains the minimum-cost design for the station
nnn. The logfile CostV1.LOG can be copied to the file CostV1Log.nnn, if it is of interest. This logfile
may not be of interest; it may contain very little information. Its content depends on the data in the
associated module data file.

To summarize the running of HILDA:
* define the parameters in CalCost1.DAT, the beam parameter data file

* define the data in the remaining module data files for each station in CalCostl. DAT
this data can reside on the files

CostV1.nnn Parameter search space
AlSighBar.nnn Beam dynamics parameters
TranMod.nnn Transport module selection data
FeQ20.nnn Fe quadrupole design data
S$cQ30.nnn Superconducting design data
StrucCore.nnn Acceleration structure data

where nnan is the station number to which the data corresponds.
* ransfer the data to the corresponding module data files with file type DAT
* nun HILDA to find the minimum cost at the station for which the module data files are applicable

* save the file CostVI.NNN that contains the complete information for the minimum-cost design at
IDStation = NNN

* analyze the output and generate reports using, for example, a spreadsheet

The initial creation of the HILDA data files is done with a word processor, or text editor. The examples
fumished here can serve as templates. These files are fully formatted and their contents are meant to be self-
explanatory. New data files can be created by editing the data files in the examples. We give here two
simple, complete examples that serve as a guide on how to set up the data files, how to run HILDA, and
how to interpret the program output obtained.

Again, we note that future editions of HILDA will not require the user to perform the file transfer needed to
set up the module data files at the current station. Also, it will be possible for the user to change parameters
of the data files from within the executing program. However, we emphasize here that HILDA is not a
"black box" that drops out a minimum-cost machine. It has been built to interact with knowledgeable users,
and thus help them arrive at an optimum machine design. As experience is gained in running HILDA its
"black box" capabilities will no doubt be expanded. However, because of the complex nature of the machine
design problem, the need to have a knowledgeable user will probably not change.



Figure 2-1. HILDA Module Data Structure
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B. TWO SIMPLE EXAMPLES

In this section we give two complete HILDA examples. We change slightly the order of the summary
outline given above in the Introduction. We describe first the running of HILDA. In actual order of
occurrence we must first have set up the module data files for the HILDA program. However, in this
example the data files already exist and we can proceed to run the program. These files contain a significant
amount of data and thus require some detailed explanations. Since the parameters in these files appear in the
HILDA generated output, it is necessary that a knowledgeable user understand their contents; also, these
files can be used as templates when furnishing data for other HILDA runs.

Example 1: The 3MV Station of a 4MJ Driver

We point out first that the example described here is in the folder drdMJ @ 3MYV, which is in the folder
MSWI/Hilda/DAT of the Hilda Program Document disks. The ReadMe files in those folders contain
additional information about this example. The information that we present here has been extracted from
files in those folders. This 3MV example and all its output can be reconstructed from the data files in drdMJ
@ 3MV. We also note that the 3MV example set up when HILDA is installed following the instructions
in the HPD section Maintaining HILDA: Installation is precisely the example that we are describing here

Running HILDA on the VAX
It is easy to run HILDA In what follows we assume that:
* HIIDA has been installed by following the instructions in section Maintaining Hilda: Installation
®  you are logged onto your VAX account and that the directory is [USER.HILDA].
® you have executed the LOGIN.COM file that was loaded into this directory
® the installed executable image HILDA.EXE exists in the directory [USER.HILDA.EXE]
® the 3000MYV data files were installed in the directory [USER.HILDA.DAT. DAT3000MV]

Al the above assumptions will be true if you have installed HILDA as recommended.

If these assumptions are true, then follow the steps below.

* Transfer to the execution directory by typing
EXE

¢  Check that you are in the [USER.HILDA .EXE] directory by typing
SHOW DEFAULT
If you are not in this directory something is wrong.

*  Set up the HILDA module data files by typing
SET3MV
At this point the HILDA module data files:
CalCost1.DAT
AlSighBar DAT
CostV1.DAT
TranMod.DAT
ScQ30.DAT
StrucCore.DAT
contain the 3000MYV data of this example.



* Run HILDA by typing

RUNHILDA

The main program HILDA will execute and you will be prompted for input.
Follow the prompts. We comment here on what you will see and what you can
do with the present version. HILDA is a menu driven program. When you type
in one of the menu commands it will proceed to do the task that you have
requested. The present version of the program has a limited user interface. Future
versions will have expanded capabilities. Currently we can ask HILDA to
produce a minimum-cost design at a selected station and we can request that it
terminate execution; i.e., stop and return control to the operating environment.

* Continue with the example by entering in lower case the command
cost
Notice the use of lower case. The menu input to HILDA is case sensitive. You

will be asked at which station to calculate the cost. The station number that we
have used in this example for the 3MV data is station 10,

®* Type in the integer
10
If you type in a station number for which beam data does NOT exist you will
get a message to that effect. HILDA uses the values of the parameters in the
above cited module data files to obtain a cost at a station for which the beam data
is defined in the data set CalCost1.DAT. For this example the content of these
files was set with the command SET3MYV in the instructions above.

As HILDA proceeds to calculate the minimum-cost design for the selected
station it writes messages to the terminal to indicate what is happening. When it
is finished with this design task it will save the results of the design on the file
CostV1.010. The value 010 corresponds to station 10 and similarly for other
station selections. It updates the file name in the data file CostV1.DAT so that
this file name is the name of the file containing the design for the station.

In this particular example there is only one station available.

*  Exit from HILDA by typing the lower case command
stop

* Confirm this desire to stop by typing the upper case command
YES

This completes the actual running of HILDA. Remember, this input is case sensitive.

If there had been more stations with their associated data sets, you could have obtained a minimum-cost
design at another station. However, note that the present version of HILDA would have used the current
data in the module data files. There is no way to update this data from within HILDA, for this version. The
beam data would be as defined in the data file CalCost1.DAT and thus it would be whatever had been set for
the different stations before starting the execution of HILDA. Although it is easy to edit the module data
files using a text editor, future versions of HILDA will have a user interface that allows the user o modify
selected data from within HILDA.

A copy of the terminal output from HILDA for this example is on the HPD Disk that is associated with
this report. It is in the HILDA/Terminal/3MV document that is in the HILDA/Log folder of this example.
You can find the HILDA/Log folder in the drdMJ @ 3MV folder. Sec the Appendix for a guide to the
HPD Disk.



The Output File CostV1.NNN

The basic output file generated during a HILDA run has the name CostV1.NNN where NNN is the station
to which the file corresponds. In this particular example we have produced a design at station 10; so the
output file is CostV1.010. Had we requested designs at other stations, we would also have those files as
HILDA output files.

These CostV1.NNN files represent the latest HILDA output HILDA. This means that we should save them
if we will again calculate a design at the same station. For example, if we run HILDA twice to calculate a
design at station 10, the file CostV1.010 will contain the information pertaining to the second run. This
information has replaced the information for the first run; which information is lost, if it is not transferred
to a differently named file.

These files are logfiles and they contain all the data used and all the results generated for the particular
design that HILDA selected as having the minimum cost. Therefore, the CostV1.010 file generated by this
example contains much information. The sections of this file that contain the data sets read by the HILDA
modules will be better understood after those data files are described in other sections below.

In what follows we present short selections from the file CostV1.010 and describe their contents. The
complete output file for this example can be found in the folder HILDA.LOG, which is in the drdMJ @
3MV folder. The interested reader can find these folders in the HPD disk.

The primary results of the HILDA calculation are at the beginning of the CostV1.010 file and are shown in
Figure 2-2, HILDA Output A. The first three lines of output are for identification purposes showing the
station at which the calculation was done and the date and time for the calculation. The next three lines
indicate that the variable names that appear in this output have standard FORTRAN implicit naming
conventions. This information is not of general interest to most users. However, this file is a logfile and is
readable by the HILDA input routines. Future versions of HILDA will can read these files to analyze the
output and generate reports.

Next is program output that shows the values of the HILDA parameters that give this minimum-cost
design. Following this is the total cost for the station components and how much it costs to furnish one
volt of energy gain.

We note that for this particular example the input data restricted the search to one point in the parameter
space. However, the point that was selected for this example is the point for which HILDA found a
minimum-cost design when it had a rather large grid of points over which it searched. That is why we still
refer to this as the minimum-cost design, even though only one point was looked at.

Next come the input variables that define the beam at this 3MV station of the 4MJ driver. The system
charge Qsys gives the total Coulombs in the beam. Thus, each of the 16 beams carries 1/16th of this
charge. The beam is made up of mercury ions with a charge state of 3. The undepressed tune (single beam,
no space charge) is 72 degrees. The normalized emittance is .000001 & meter-radian.

This output is the primary output from the HILDA minimum-cost design calculation.

In Figure 2-3, HILDA Output B. we show what can be considered as secondary output from the station 10
HILDA run. The first part gives the number of Coulombs in each of the 16 beams. This is the value of the
variable taul, which is the beam pulse-length times the beam current. Next come dimensionless dynamic
quantities for the mercury ions that make up the beam; followed by their magnetic rigidity.

The parameter grid that HILDA scanned over is then shown. For this particular example there is, as we have
mentioned above, only one point in this grid. Usually there would be a parameter range that the user feels is
reasonable. HILDA would then return, in this CostV1.NNN file, the information pertaining to the design
that yields the minimum cost.



When there are many points in the parameter space the calculation can take a considerable amount of
computing time. The time numbers shown are averages. For some points the beam cannot be transported
and HILDA does not attempt to produce a design; these points take very little time. For other points a full
design calculation is performed, but the design is rejected because a constraint is violated. For example, the
acceleration cell might not fit into the available space. These full designs take the longest time.

Even though the nembers for the times are averages, they are useful in estimating needed computer time,
We note that with only one point in the grid this example gives times for the calculation that are too long.
It should be noted that HILDA reads a data file for each module that requires parameter data. However, this
parameter setting is done only once for the initial point in the parameter grid.

The Figure 2-4, HILDA Output C contains output that can be considered to be intermediate results. Each
module in HILDA perfoirms a task that requires variable input, /N, and produces values for output variables,
OUT. There are, usually, local, intermediate quantities calculated by the process. These quantities define the
state of the module for the minimum-cost calculation. They are saved on this output logfile to help
understand the calculation and to help insure that the design corresponds to a correct calculation.

The module CostGrP1 , that finds the cost at each point in the parameter grid, calculated the intermediate
quantities shown here. We should note that when a module generates output, that output is usually written
to a file with filetype OUT. In this case we are looking at the content of the file CostGrPt.OUT. This file
was copied to the file CostV1.010 so it would be saved.

The intermediate quantities shown here come from two modules: AlSighAbar which solves the dynamic
problem and QIT which calculated the shown quantities. The quantity alpha is a parameter relating to the
beam dynamics. This is defined in the section The HILDA Model: Beam Transport Equations of this report.
The parameter sigmaH is the depressed tune of the head of the beam, in each of the 16 beams. The quantity
abar is an average beam size; again see the Hilda Model section of this report.

From the module QIT we have the perveance of the beam, the current, the pulse width (longitudinal length),
the average voltage gain per meter (electric field strength), and the volt-seconds furnished by the acceleration
cell.

As we have previously mentioned, HILDA modules that have significant output write that output to a file
for later recovery. In Figure 2-5, HILDA Output D we show that part of the file CostV1.OUT that has
been copied from the output file created by the module ScQ30.

In each of the HILDA module output files we record the file name, the version of the module that created
the file, and the date and time of the creation of the file. We then print the I/O variables of the module.

The module ScQ30 designs a superconducting quadrupole, so we have as ils variable ocutput two quantities.
The variable dolTArray is the total dollar cost of the SC quadrupole array; in this case a 16 beam array. The
variable roTArray is the outer radius of the array. The acceleration cell designed by the mod.'le StrucCore
must know this dimension, since it must have a core inner diameter that will accommodate this quadrupole
array.

The rest of the information in this ScQ30 output pertains to the design of the superconducting quadrupole.
In the section The Module Data Files: ScQ30.DAT SC Quadrupole Design Data we give a description of
the data file, a portion of which is included here. We also have pictures of the superconducting quadrupole,
see Figure 2-14, StrucCore.DAT. The design parameters that HILDA calculates, which are shown below,
will be more meaningful when reference is made to those pictures.

The calculated parameters shown below each have a descriptive label that should help the reader to
understand how they relate to the pictures in the data set. We note here that this output file is written as a
readable HILDA file. Each item has as its identifier the actual ScQ30 variable name. This file can be
processed by yet to be built HILDA routines that produce input files for programs that analyze the results,
or that produce design drawings of the quadrupole.



We will not, at this time, describe in detail each parameter printed in this output. We note that the output
of the parameters is divided into two parts. The first part refers to one individual SC quadrupole. For this
quadrupole we have radial dimensions, cross-sectional areas, volumes, weights, and costs of the
components. The individual quadrupoles are then bundled together to form an array of quadrupoles. In this
case the number of beams is 16 so there are 16 quadrupoles, or channels, in the array. The second part is for
this quadrupole array; we again show radial dimensions, areas, volumes, weights, and costs.

Following this parameter specification part of the output comes a section that shows the actual materials
used for this design. In the data file ScQ30.DAT, which is described in another section of this report, we
can specify sets of material. A particular selection was made by HILDA in designing the quadrupole for this
minimum cost calculation. We record here that selection, in totality, so that there will be no question later
about what was used for this design. The information tkat appears in this output is described in the section
The Module Dua Files: ScQ30.DAT SC Quadrupole Design Data that treats the complete data file.

Figure 2-6, HILDA Output E is the output files created by the module StracCore. It is similar to the
previous SC quadrupole file in that it has parameters and data that define the minimum-cost design; in this
case the acceleration cell design.

The primary output from this module is the variable dolAStruct, which is the cost of the acceleration cell.
This cell does NOT include the focusing/defocusing quadrupole. This dollar amount is simply the cost of
the cell as determined by its component material costs. The design information in this file should be referred
to the pictures in the data filz StrucCore.DAT, which is described in the section The Module Data Files:
StrucCore DAT Acceleration Cell Design Data.

The file contains sections of information. Again we will not describe each parameter. The first section is
the dollar cost of the components of the cell. This cost is based on the cost of the material used, as obtained
from the aforementioned data file. Next we show the selection parameters used in this design. These, when
associated with the contents of the data file StrucCore.DAT, define the component materials. We next give
component weights, followed by cell and core parameters. The cell and core parameters should be sufficient
to draw a picture of the cell that HILDA has designed.

The parameters for the actual material used in this design are then recorded for future reference. Future
versions of HILDA may modify this output so that the actual names of the material used are recorded in this
outpul. Now it is necessary to use the selection flags to look up the material in the StrucCore.DAT data
file.

In Figure 2-7, HILDA Output F we show an outline of the remainder of the CostV1.010 file. The data
files used by the HILDA modules are copied and recorded in this output file. This is not necessarily
redundant. HILDA is very modular and future versions of HILDA may modify the data file during execution
to help HILDA find a minimum-cost design. The actual data files used are those that are recorded in this
output file. A description of these data files appears in the section The Module Data Files.

The final entry into this logfile is a list of module versions. We have included here one of the version files
for illustrative purposes. This is of no general interest to the user. However, it serves a purpose of verifying
that the HILDA modules have been correctly updated. The version file must be updat~d when HILDA is
updated and modules are changed or added. If this is not done, a message to that effect will appear in this log
of the module versions. This is a redundancy check that the program modules have been carefully updated. It
does not insure that this is the case, but a message that a version file does not agree with the module
version should serve as a wamning to the user that all may not be well in HILDA.

This also is a place where summaries of the modules, their equations, and algorithms can appear. This is
presently not done, but as HILDA is updated it may prove desirous to have such a summary directly
associated with the minimum-cost design. It may not always be possible to recover the exact version of the
module that produced the results in this logfile.

We conclude this discussion of the HILDA output file CostV1.NNN by noting that althouyh the output for
the designed clement may appear to be more than is really required this is not the case. There are many
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cross-checks that can be performed using this output. To insure that data input mistakes have not been
made, these checks should occasionally be done. These checks also build confidence that HILDA is indeed
calculating correct results and designing reasonable elements. This file is meant to be a logfile and as such
itis a record of what went into the calculation and what was produced by the calculation. Unless something
is wrong, or the design criteria or logic has changed, it should be possible to recreate this output by using
the printed input.

HILDA Output File CostV1.0u10

Figure 2-2, HILDA Output A

FILE: CostV1.010

DATE: 91/10/22

TIME: 16:02:51

I/0 variable types:
implicit real (a~h, 0-2)
implicit integer (i=-m)

The optimum value was found at:

RL = 3.4999999%9E-01 : ! half-period [m)
a = 3.5000000E-02 : ! beam radius [m])
delvVv = 7.000000CE+03 : ! voltage gain v)
eta = 4,0000001E-01 : ! packing factor [ ]

The cost is:
costDol = 1.6298813E+05 : ! cost [$]
perVoltDol= 2.3284018E+01 : ! voltage gain cost [$/delV]

The 4input variables for this solution are:

IDStation = 10 : ! station name

Qsys = 1,3333330E-03 ! system charge [C)
numBeam = 16 ! number of beams { ]
Amu = 2.0000000E+02 : ! atomic mass {amu)
q = 3.0000000E+00 : ! charge state [e])
\% = 3,0000000E+00 ! cumulative voltage [MV)
sig0 = 7.2000000E+01 ! undepressed tune (deg)
epsn = 1.0000000E-06 : ! nor. emit., no PI [m-r)

11



Figure 2-3.

HILDA Output B

AlSighAbar
alpha
sigmaH
abar

i}

L]

5.8574492E-01
5.93598%4E+00
2.6977101E-02

!
¢! depressed tune
¢! an ave, beam size

()
(deg)
(m]

Associated quantities are given below:
Process KenVar:
taul = 8.3333311E-05 ! charge per beam {C}
betaGamma = 9.8295826E-03 ! beta * gamma { ]
gamma = 1.0000483E+00 ! Energy/rest Energy [ ]
beta = 9,8291077E-03 ! v/c (]
Brho = 2,0360343E+00 ! magnetic rigidity [T-m]}
Process CostGrPt scanned over the grid:
RLmin = 3,4999999E-01 : ! min. half period {m)
RLmax = 3,4999999E-01 ! max. half period [m)
delRL = 3.4999999E-01 ! grid interval [m])
aMin = 3,5000000E-02 ! min, beam size [m]
aMax = 3.5000000E-02 ! max beam size [m])
dela 3.5000000E-02 ! grid interval [m])
delVmin = 7.0000000E+03 ! min, voltage change (V]
delVmax = 7.0000000E+03 ! max. voltage change (V]
deldelV = 7,0000000E+03 ! grid interval (V)
etaMin = 4.0000001E-01 ! min. packing factor [ )
etaMax = 4,0000001E-01 ! max. packing factor [ ]
delEta = 4,0000001E-01 ! grid interval [}
The time required for the grid scan:
numGrPts = 1.0000000E+00 ! # of grid points {1
delTime = 3.9062500E~-02 ! grid scan time [s]
aveTime = 3.9062500E~02 ! ave., case time {s)
Figure 2-4. HILDA Output C
Associated intermediate Results:
FILE: CostGrPt.OUT VERSION: 910910
DATE: 91/10/22 // 16:02:50
I1/0 variable types
implicit real (a-h,o0~2)
implicit integer (i-m)
IN
IDStation = 10 ! station for this calculation
numBeam = 16 ! number of beams
taul = B8,3333311E-05 ! charge [C])
sig0 = 7.2000000E+01 ! undepressed tune [deg)
betaGamma = 9.8295826E-03 ! beta * gamma
beta = 9,8291077E-03 ! v/c [ ]
Brho 2.0360343E+00 ! magnetic rigidity [T-m)
RL = 3.4999999E-01 ! half period [m]
a = 3.5000000E-02 ! beam radius [m]
delV = 7.0000000E+03 ! voltage galn (V)
eta = 4.0000001E~01 ! packing factor [ ]
ouUT
perVoltDol = 2,3284018E+0l1:! voltage gain cost [$/delV)

12




Figure 2-4.

HILDA Output C (continued)

QIT
perv = 2.0383161E-03 :! perv
current = 2.0049188E+00 ! beam current [A]
taup 4.5720877E-05 :! pulse width [s]
E = 2.0000000E+04 ! ave. volt gain/HLP [V/m]
voltSec = 3.2004613E-01 ! volt seconds [V-5s]
ENDFILE: CostGrPt.OUT
Figure 2-5. HILDA Output D
FILE: ScQ30.0U0T VERSION: 910910
DATE: 91/10/22 // 16:02:49
1/0 variable types .
implicit real (a=h, 0-2)
implicit integer (i-m)
IN
a = 3.500000E-02 :!beam edge radius {m]
RL = 3.500000E-01 :'!'half period (m)
eta 4.000000E-01 :!packing factor [}
Brho 2.036034E+00 :!magnetic rigidity (T-m)
sig0 = 7.200000E+01 :!undepressed tune [deqg)
numBeam = 16 :!'number of beams (1
ouT
dolTArray = 5.585644E+04 :!cost of quad array [$)
roTArray = 5.513123E-01 :!outer radius of quad array [m)
Data and calculated Quadrupole parametaers:
sig0 7.200000E401 :!undepressed tune [deg])
rWire = 6.965000E~02 :!inner wire radius [m]
rWo = 7.965000E-02 :!outer wire radius [m]
drWire = 1.000000E-02 :!wire thickness {m)
BWire = 3.972905E+00 :!field, inner wire radius [T)
BWo = 4.543314E+00 :!field, outer wire radius {T]
Bprime = 5.704099E+01 :'quad., field gradient [T/m)
avd = 1.130178E+09 :'average current density [A/m**2)
R 5.375000E-02 :!aperture radius [m]
drWrap = 5.480373E-03 :!quad wrap, thickness [m)
pitch = 1.732607E-01 :!beam center to center {m)
endMag = 7.965000E~02 :!length of magnet ends [m]
zlMag = 2.993000E-01 :!length of magnet iron [m]
wtScQuad = 3.649901E+01 :!weight of 1 SC quadrupole [kg]
costQuad = 3.003825E+03 :!cost of 1 SC quadrupole [$]
wtTArray = 8.957938E+02 :!weight of SC quad Array [kqg]
dolTArray = 5.585644E+04 :!cost of SC quad Array [$)
SINGLE SC QUADRUPOLE ASSEMBLY
Radial dimensions
drPIC = 2,590000E-02 :!Pipes, Insulation and Cooling {m)
Individual radii
rPipe (1) = 5.375000E-02 :!'Pipes [m)
rPipe (2) = 6.765001E-02 :!Pipes [m]
rIinsul(l) = 5.575000E-02 :!Insulation [m]
rInsul(2) = 6.005000E-02 :!Insulation (ml
rInsul (3) = 6.435000E-02 :!Insulation [m]
rCool (1) = 5.905000E-02 :!Cooling [m]
rcool (2) = 6.335000E-02 :!Cooling [m]
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Figure 2-5. HILDA Output D (continued)

Areas, xy cross-section

XyScQ = 3.001929E-02 :!0One SC quadrupole [m*=*2]
xyWrap = 1.008864E-02 :!Wrap (stress), incl. shell [m**2)
xyCable = 4.690398E~-03 :!Cable, SC + non-SC! [mx*2]
xyPIC = 6.163993E-03 :!Tot. Pipes, Insul. & Cool. [m**2]
xyVac = 9.076258E-03 :!Vacuum, Beam pipe . (mx*2)

Volumes for One SC Quadrupole

volScQ = 8.984773E-C3 :!Complete Quad. [m**3]
volWrap = 3.019529E-03 :!Wrap (stress), incl. shell [m**3]
volCable = 1.403836E-03 :!Cable, SC + non-SC [m*=*3)
volPipe = 4.641217E-04 :!Pipes, total [{m**3)
vollnsul = 1.148701E-03 :!Insulation, total [m**3)
volCool = 2.320608BE-04 :!Cooling, total) [m**3]
VolPIC 1.844883E~-03 :!Tot. Pipes, Insul. & Cool., [m**3)
volVac = 2.716524E-03 :!Vacuum, Beam Pipe . [m**3]

Weights of Components in One SC (Quadrupole

wtScCab = 3.809955E+00 :!SC Cable material [kg]
wtCabs 8.032485E+00 :!non-SC Cable material [kg]
wtCable = 1.184244E+01 :!Total Cable Weight [kg]
wtWrap = 2.465657E+01 :!Outer Wrap, includes shell [kg)
wtPipe = 0.000000E+00 :!Pipe layers [kg)
wtInsul = 0.000000E+00 :!Insulation layers (kg)
wtCool = 0.000000E+00 :!Cooling layers [kq)
wtScQuad = 3.649901E+01 :!Total of one SC Quadrupole [kg)

Costs of Components in one SC Quadrupole

dScCab = 1.142987E+03 :!SC Cable material ($)
dCabs = 4.016242E+02 :!non-SC Cable material [$)
dCable = 1.544611E+03 :!Total Cable, SC + non-SC [$)
dWrap = 6.164143E+02 :!Wrap (stress), includes shell (§)

The rest of the SC Quadrupole (channel)

dPipe = 0.000000E+00 :!Pipes [§]
dInsul = 0.000000E+00 :!Insulation {$)
dCool : 0.000000E+00 :!Cooling [$])
dBalance = 8.427998E+02 :!Pipes, Insulation and Cooling [$)
costQuad = 3.003825E+03 :!Total, one SC Quad. (channel) [$)

COMPLETE ARRAY of numBeam SC Quadrupole channels + Wrap
Radial dimensions

xAScQ = 6.930430E-01 :!Width of the SC Quads [m)
yAScQ = 6.930430E-01 :'!'Height of the SC Quads {m)
dxAOtC = 4,331519E-02 :!Array outer collar,dr [m)
dyAOtC = 4.331519E-02 :!Array outer collar,dr [m]

Areas, xy Cross Section

xyAScQ = 4.803086E-01 :!SC Quadrupole bundle [m**2]
xyAVac = 1.452201E-01 :!Vacuum, Beam Pipes [m**2]
xyAOLC = 1.275820E-01 :!Array outer Collar [m**2]
xyAQuad = 6.078905E-01 :'Array, Total Xy Area [m**2]
Volumes
volAScQ = 1.437564E-01 :!SC Quadrupole bundle [m**3)
volAVac = 4.346439E-02 :!Vacuum, Beam Pipes [m**3)
volAOtC = 3.818528E-02 :!'Array outer Collar [m**3]
volAQuad = 1.819416E-01 :!Array Total xyz space [m**3)
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Figure 2-5. HILDA Output D (continued)

Weights of Array Components (Total for numBeam SC Quads.)

wtAScCab = €,095929E+01 :!SC Cable material [kg)
wtACab$s = 1.285198E+02 :!non-SC Cable material [kg)
wtACable = 1.894790E+02 :!Total Cable Weight {kg)
wtAWrap = 3.945052E+02 :!Outer Quad. Wraps (stress) [kq)
wtAPipe = 0.000000E+00 :!Pipes [kg]}
wtAInsul = 0.000000E+00 :!Insulation layers (kg]
wtACool = 0.000000E+00 :!Cooling layers [kg)
wtAScQ = 5.839842E+02 :!SC Quadrupoles (kg]
wtAOLC = 3,118096E+02 :!Outer Array collar (kq)
wtTArray = 8.957938E+02 :!Total of the Complete Array [kg]
Costs of Array Components (Total for numBeam SC Quads.)
dAScCab = 1.828779E+04 :!SC Cable material ($]
dACabs = 6.425988E+03 :!non-SC Cable material [$)
dACable = 2.471377E+04 :!Total for cable, SC + non-SC [$]
dAWrap = 9,.,862629E+03 :!Quad Wraps (stress) [$]
dAPipe = 0.000000E+00 :!Pipes [$)
dAInsul = 0.000000E+00 :!Insulation layers [$)
dACool = 0.000000E+00 :!Cooling layers (8]
dABalance = 1,348480E+04 :!Total for Pipes,Insul.,Cool. [$]
dAQuad = 4.806120E+04 :!Total for the SC Quads ($)
dAOtC = 7.795239E+03 :!Outer Array collar (8]
dolTArray = 5.585644E+04 :!Total for Array Assembly [$)

DATA LOADED FROM FILE ScQ30.DAT
CHOOSE MATERIALS for the SC Quadrupole

iScCab = 1 :! SC wires [1]
icabs = 1 :! non-5C wire space [
iWrap = 1 ! Wrap (stress) )
iPipe = 1 ! vac. & outer Quad pipes [
nPipe = 2 ! # of pipes ]
drPipe = 2.000000E-03 :! thickness of pipes [m)
iInsul = 1 1! insulation layers

nlnsul = 3 ! # of layers {]
drinsul = 3.300000E-03 ! thickness of layers [m]
iCool = 1 ! cooling layers

nCool = 2 ! & of layers []
drCool = 1.000000E-03 :! thickness of layers [m]

CHOOSE MATERIAL for the Array of numBeam Quadrupoles

iAWrap = 1 :! outer wrap (collar) []

SET LIMITS and PARAMETER VALUES

Quadrupoles
drWmin = 1.000000E-02 :! minimum wire thickness [m)
drWmax = 1.000000E-01 :! maximum wire thickness {m]
dShell = 1.500000E-03 :! outer shell thickness [m]
Non-Quadrupole free space
zQend = 0.000000E+00 :! end packaging for the quads. [m]
fZSpace = 1.000000E-01 :! non-magnet space limit, frac.of L [}
Coefficients for the SC Quadrupcle Calculation:
cRl = 1.250000E+00 :! aperture radius = R = cRl*a+cR2 (]
cR2 = 1.000000E-02 :! [m]
Quadrupole Wrap (stress) scaling paramaters
sWrap = 1.000000E-02 :! wrap thickness for BWrap, rWrap {m])
BWrap = 5.000000E+00 :! field for scaling the Quad. Wrap [T]
rWrap = 1.200000E-01 :! radius used with BWrap [m]
Quadrupole SC wire inner radius 1limit
rWtRL = 5.000000E-01 :! rWire .lt. eta*RL {m)
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Figure 2-S.

HILDA Output D (continued)

Array of numBeam Quadrupoles
fCollar = 2.500000E-01 :! wrap (collar) width, frac. of pitch [])
Quadrupole (channel) Assembly-Complexity Cost factor
BFactor = 3,900000E~01 :! times the Quad {(Wrap + Cable) cost []
Array Assembly-Complexity Cost factor
cAFact = 1.000000E+00 :! times the Array cost (1
MATERIAL USED in the SC Quadrupole Array
Superconducting Cable
iscCab = 1 :! ID # of data set
IDScMat = 'NbTi Niobium Titanium vt
denScMat = 7.600000E+03 :! material density [kg/m**3)
uCScMat = 3.000000E+02 :! unit cost [$/kqg)
qFScMat = 1.000000E+00 :! quantity factor i)
cFScMat = 1.000000E+00 :! complexity factor {1
Current density parameters and Field limits
cJCoeff = 2.900000E+09 :! slope of cJ curve [A/m*x*2)
cJBn = 1.000000E+01 :! numerator B parameter [T)
cJBd = 5.000000E+00 :! denominator B parameter {T)
rLamda = 3.571000E-01 :! S C wire pack. fraction [T)
BWomax = 1.000000E+01 :! B at outer wire, maximum [T)
Non SC Cable
icabs = 1 :! ID # of data set
IDCMat = 'Cu Copper ! HE
denCMat = 8.900000E+03 :! material density [(kg/m**3]
uCCMat = 5.000000E+01 :! unit cost [$/kg]
gFCMat = 1.000000E+00 :! gquantity factor []
cFCMat = 1.000000E+00 :! complexity factor [
Quadrupole Wrap (Stress)
iWrap = 1 :! ID 4 of data set
IDWMat = 'Steel oo
denWMat = 8.165700E+03 :! material density [kg/m**3)
uCWMat = 2.500000E+01 :! unit cost [$/kg]
qFWMat = 1.000000E+00 :! quantity factor [
cFWMat = 1.000000E+00 :! complexity factor ]
Array Outaer Wrap (Collar)
iAWrap = 1 :! ID # of data set
IDAOtMat = 'Steel o
denAOtMat = 8.165700E+03 :! material density [kg/m**3)
uCAOtMat = 2.500000E+01 :! unit cost [$/kqg]
qFAOtMat = 1.000000E+00 :! quantity factor (]
cFAOtMat = 1.000000E+00 :! complexity factor []
Pipes , Vacuum and around Quad outer insulation layer
iPipe = 1 ! ID # of data set
IDPMat = 'No Data on this Material vt
denPMat = 0.000000E+00 :! material density [kg/m**3]
uCPMat = 1.000000E+00 :! unit cost {$/kg]
gFPMat = 1.000000E+00 :! guantity factor (]
cFPMat = 1.000000E+00 :! complexity factor (]
Ingulation (thermal)
ilnsul = 1 :! ID & of data set
IDIMat = 'No Data on this Material LS
denIMat = 0.000000E+00 :! material density [kg/m**3]
uCIMat = 1.000000E+00 :! unit cost [$/kg)
gFIMat = 1.000000E+00 :! quantity factor [
cFIMat = 1.000000E+00 :! complexity factor 0
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Figure 2-5.

HILDA Output D (continued)

Cooling Layers,

data sets

iCool = 1 ' ID # of data set
IDClay = 'No Data on this Material vt
denCLay 0.000000E+00 :! material density [(kg/m**3)
uCCLay = 1.000000E+00 ! unit cost [S$/kg]
qFCLay = 1.000000E+00 :! quantity factor ]
cFCLay = 1.000000E+00 ! complexity factor {)
ENDFILE: §ScQ30.007T
Figure 2-6. HILDA Output E
FILE: StrucCore.OUT VERSION: 910910
DATE: 91/10/22 // 16:02:50
1/0 variable types
implicit real (a=h,0-2)

implicit integer (i-m)
IN
voltSec 3.2004613E-01 :!volt-sec per half per.od [V-5]
numBeams = 16 :!'number of beoams [ ]
roTArray = 5.,5131233E~-01 :louter radius, quad array [m)
voltGain = 6.9999998E-03 :!peak acc. per half period [MV]
halfPeriod = 3.4999999E-01 :!lattice half-period length 'm]
ouT
dolAStruct = 1.071317D+05 :'HLP cost of acc. structure ($)
The intermediate values calculated and returned are:
COST OF COMPONENTS
numdolHlp = 6 :!number of costs returned
dolAm = 3.180715D+04 :!core amorphous material [$]
dolCorH = 1.443943D+04 :!core housing ($]
dolCelH = 2.573705D+04 :'cell housing [$}
dolCCI = 3.896130D+03 t!'core/cell housing insulation ($]
dolGI = 3.107991D+04 :!'gap insulator [$]
dolDiC = 1.720037D+02 :!'dielectric coolant [$)
MATERIALS USED: flags select material from StrucCore.dat
numidMat = 8 :!'# of used material flags returned
idAm = 1 :!'core winding amorphous tape
idWTape = 4 :!lcore tape width
idCsM = 2 :!core submodule housing
idCH = 2 :!'cell housing
idIN = 2 :!'core/cell insulation
idbicC = 4 :!'dielectric coolant
idGP = 6 :!gap vacuum pressure range
idGI = 1 :!'gap insulator
COMPONENT WEIGHTS:
numwtHlp = 20 1'% of weights that are returned
Half Lattice Period weights for the acceleration structure
wtAStruct = 1.078513D+04 :'HLP weight of acc. structure [kg)
wtAm = 6.361431D+03 :lcore amorphous material [kg]
wtCorH = 1.458720D+03 t!lcore housing {kg}
wtCelH = 2.600044D+03 :!cell housing [kg)
wtCCI = 1.887504D+02 i'core/cell housing insulation ([kg]
wtGI = 7.256784D+01 :!'gap insulator {kg])
wtDiC = 1.036167D+02 :!dielectric coolant {kg}
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Figure 2-6. HILDA Output E (continued)

Suk component vweights

wtCore = 6.361431D+03 :lamor, material, per core [kg]
wtCEP = 4,528662D+02 :'housing end plate, per core (kg)
wt COH = 3.786480D+02 :!outer housing, per core {kg]
wtCOB = 1.743392D+02 :linner bobbin, per coro (kg])
wt CHPC = 1.458720D+03 :thousing total, per core {kg)
wtCEI = 5.,450253D+01 :lend plate ins. (2 per core) [kg]
wtCOI = 2,106926D+01 :louter housing (ins./core) [kg)
wtCI = 1.300743D+02 :tinsulation total, per core (kg}
WtCHIE = 5.867611D+01 t'cell hous, {end ins. 1l/core) [kg]
wtCHI = 5.867611D+01 i!cell hous., insulation, total [(kg)
Wt HSGEP = 2.083088D+03 :lcell hous, end plate, pair 1kg)
wt OHR = 4,619303D+02 :!cell hous. supp. ring [kqg]
Wt HSGGI = 5.502587D+01 :!gap insulator support ring (kg]

CELL/CORE PARAMETERS:

numCP = 29 :!'%# of parameters returned

numCore = 1.000000D+00 !4 of cores & PFNs per cell [ ]
celll = 2.936568D-01 :!'z axls, cell length [m)
glL = 1.666667D-01 :!'gap insulator length [m])
pv = 2.000000D-01 :!'required PFN peak per core [MV]
tl = 3.000000D~-02 :!gap insulator width fm)
QAl = 5.634315D~02 :!'support lgth., quad. , etc. {m])
z1lH = 2.000000D-02 :'cell housing widths, z axis [m)
z)PH = 1.000000D-02 :!core housing widths, z axis [m]
z1Ci = 1.015228D-02 :!'z length, core insulator [m]
delTC = 2.000000D-02 tlcore housing top {m]
delBC = 2.000000D-02 tlcore housing bottom [m)
delCH = 2.309401D-02 :!cell housing top [m])
riH = 6.064436D-01 tlinside rad. to acc. gap insul.(m]
delRg = 5.128205D-02 :'radial cell-acc. gap [m]
ciM = 6.877257D-01 :!'core housing inner radius (m]
ric = 7.077256D~01 :!'core inside radius (m]
roC = 1.495241D+00 :loutside radius of core [m)
roCore = 1.525393D+00 :lcore housing outer radius fm)
roHSG = 1.548487D+00 :'cell housing outer radius [m]
acAM = 1.280185D-01 :ltacc., cell amor. mat. area (m**2)
pFAm = 8.0300000~01 :!packing fraction [ ]
aC = 1.600231D-01 ilcore cross sectional area [m**2)
wTape = 2.032000D-01 1lcore amor, mat.tape width [m])
hC = 7.875151D-01 :'height of amorphous material [m]
aRC = 3.875566D+00 :!core amor. mat. h/w ratio (]
fQ = 1.100000D+00 :!'quad array per. supp. factor [ )
gIlLlmax = 2.349255D-01 :!'max. gap ins. length [m])
aRCmax = 4,000000D+00 :!'max. hth/wdth ratio, core [ )
QAlmin = 3.500000D~02 :'min. quad. support length (m]}

MATERIAL DATA Values actually used:
Core amorphous material

denAm = 7.180000E+00 :!'density {gm/cm**3)
cFacAm 1.000000E+00 :!'complexity factor (]
qFacAm = 1.000000E+00 t!quantity factor (1
uCostAm = 5.000000E+00 :'unit cost [S/kg]
pFAm = 8.000000E-01 :!'radial packing fact....... ceeed ]
delBAm = 2 .500000E+00 t1flux swing (T)

Core tape widths
wTape = 2.032000E+01 i!'core tape width {cm])
aRCmax = 4.000000E+00 :'max. height/width ()
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Figure 2-6.

HILDA Output E (continued)

!density
lcomplexity

:'quantity

funit cost

:!density
:lcomplexity
:!quantity
:!tunit cost
:ltelasticity

:!density
t!'complexity
:!'quantity

:'unit cost
s !'break down

:!'density
:lcomplexity

!quantity

:'unit cost
:!'break down

:!density
:!complexity
slquantity
:lunit cost
:'break down

.

strength

1

Core Sub Module housing mataerial
denCSM = 8.165700E+00
cFacCSM = 1.000000E+00
gFacCsM 1.000000E+00
uCostCSM = 9,.898700E+00

Cell Bousing material
denCH = 8.165700E+00
cFacCH = 1.000000E+00
qFacCH =  1.000000E+00
uCostCH = 9.898700E+00
emCH = 3.000000E+01

Core & caell Housing 1Insulation
denIN = 9.850000E-01
cFacIN = 1.000000E+00
qFaclIN = 1.000000E+00
uCostIN = 2.064170E+01
bVoltIN = 1.970000E+02

Gap Insulator
denGI = 3.717000E+00
cFacGl = 1.000000E+00
qFacGI = 1.000000E+00
uCostGl = 4,282876E+02
bVoltGl = 1.200C00E+01

Dielectric coolant
denDiC = 1.800000E+00
cFacDiC = 1.000000E+00
qFachiC = 1.000000E+00
uCostDiC = 1.660000E+00
bVoltDhiC = 3.900000E+01

Acc. Gap Voltage break down
bVRGap = 0.500000E+02

ENDFILE: StrucCore.OUT

factor
factor

factor
factor

mod.

factor
factor

voltage

factor
factor

voltage

factor
factor

voltage

[gm/cm**3]

[gm/cm**3]
0

(]

[$/kg])

{10**6 1lb/in**2)

[gm/cm**3)
(]

[]

[$/kqg]
{kV/cm)

[gm/cm**3)

{(gm/cm**3]
[}

(]

($/kg]
[kV/cm)

[kV/cm]
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Figure 2-7. HILDA Output F

DATA FILES USED

FILE: AlSighAbar .DAT
Image of the file used for the minimum-cost design.
ENDFILE: AlSighAbar.DAT

FILE: ScQ30.DAT
Image of the file used for the minimum-cost design.
ENDFILE ScQ30,DAT

FILE: TranMod.DAT
Image of the file used for the minimum-cost design.
ENDFILE: TranMod.DAT

FILE: StrucCore.DAT
Image of the file used for the minimum=-cost design.
END: StrucCore.DAT

PROCESS VERSIONS:

¢ FILE: KenVar.EQU VERSION: 910910
c SUBROUTINE KenVar

c version = '910910°

¢ ENDFILE: KenVar.EQU

ENDFILE: CostVl1, 010

The Module Data Files

Each HILDA data file discussed below is associated with a HILDA module of the same name The module
will read the file module name DAT 10 get the data it requires. For example, the module Cos!V1 reads the
file CostV1.DAT. As mentioned previously, the data sets should have enough comme:ts to explain
themselves. We limit ourselves to comments on their contents.

CalCostl.DAT Beam Parameter File

At each station that the user intends to use HILDA to find 2 minimum-cost design it is necessary to define
the beam parameters. Those parameter values are furnished in this data file, which is subsequently read by
the HILDA module CalCost. In Figure 2-8, CalCost] DAT below we show the contents of this file. As
we have previously noted, the HILDA 1/O routines can read a fully formatted ASCII data file. The file
shown in Figure 2-8 is a valid HILDA data file, when written as a flat ASCII text file. This means that the
file does not contain any special word processor information, such as special characters that define boldfaced
or outlined text. The flat ASCII text files of this example are in the folder drdMJ @ 3MV that is in the
folder TXT/Hilda/DAT of the HPD disks; see the Apperdix for a guide to these disks.

This naming convention is adhered to throughout the folders on the HPD disks. Those folders that have
MSW in their names contain Microsoft Word documents. Those that have TXT in their names contain the
same files, but these are ASCII text files with no special formatting or graphic pictures. These ASCII text
files can be read by 7 .DA.

The user should now read the file in Figure 2-8. We emphasize that these example data files are meant to be
self-explanatory, so we add some comments rather than repeating the explanations that are in the data file.

In the table of parameter values shown in Figure 2-8 the quantity varName refers to the name of the variable
that receives the value in the column varValue. The convention in the HILDA data files is that the actual
parameter name that is used in the module appears in the data to identify the parameter that is being set. In
the particular data set that we are describing the name is used. In some HILDA data sets this name is simply
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a descriptive identification of the parameter. As a rule, or convention, the names used in these example data
sets should NOT be changed. The numerical value assigned to the name may, ¢i course, be changed to
reflect the user's data,

The same comment applies to the data type; it should NOT be changed. The information in the comment,
which comes after the ! character, is there to describe the variable.

In the particnlar case at hand we have identified the station to be number 10. There is no significance to this
number, other than to correlate the HILDA 1/O files with the station at which the user requests a minimum-
cost design. However, future versions of HILDA should use this information to load the correct data into
the module data files.

The total amount of charge in the beam at this station is 0.00133333 Coulombs. This is transported in 16
beams. The particles that make up the beam have 200 atomic mass units and are ions with a positive charge
state of 3. At this station the cumulative acceleration voltage that the machine has supplied is 3 million
volts. This does NOT mean that the energy of the beam particles is 3MeV. In this particular example it
would be 9MeV, because of the +3 charge state. The undepressed tune (single particle, no space charge) of
the beam is 72 degrees. The normalized emittance of each beam in the 16 beams is 0.000001 meter-radian,
This is the emittance without the factor of 7 that is sometimes included when specifying beam emittance.

All the quantities have the units that appear in the data files. These units appear as comments, however they
should always be included in the data files. Without the units it is not always possible to resolve exactly
what the quantity represents.

In the file CalCost1.DAT we also have a file name, which in this example is shown as CostV1.010. The
name furnished before the run is immaterial. In some data files you may see the file name set to null.
HILDA enters the name of the file that contains the output for the minimum-cost design at the station. In
this case the name will become CostV1.010. This information may not seem useful to the user, at this
time. However, future versions of HILDA can make use of this information when processing run output.

CostVI.DAT Parameter Search Space

This data file, which is shown in Figure 2-9, CostV1.DAT, is associated with the module CostV1 that
does the parameter space scan. HILDA has the free parameters: RL the structure half-period, a the maximum
beam radius, delV the voltage gain that the particular station supplies, and eta the quadrupole packing
fraction. At each point (RL,a,delV eta) in this space HILDA determines if the beam can be transported. If it
cannot be transported, then HILDA will NOT try to find a minimum-cost design; it will skip to the next
point in the parameter space. The data file CostV1.DAT defines the parameter space by setting the limits
and the number of points for each parameter.

The parameter space is scanned from minimum to maximum for each parameter. One or more points must
be specified for each parameter, no parameter may be omitted. If there is one point, then HILDA will use
the minimum value. If there are two points, HILDA uses the minimum and the maximum. Three or more
points divide the parameter interval [min,max] into equal subintervals. For example, specifying three points
will select points at the minimum, the center, and the maximum of the parameter interval.

It should be noted that the module CostV1 has four loops that are the same as shown in the data set. The
inner most loop is eta, the next outer loop is delV, then comes a followed by RL. This order is usually of
no concern to the user. However, it should be kept in mind that for the current station HILDA will set the
structure half-period, the beam size, and the voltage gain, and then search through the possible quadrupole
packing fractions. Upon completion of this scan it will go to the next voltage gain and repeat the process.
It may be that for some situations this is not the best search order.

As we mentioned before, the contents of the logfile CostV1.LOG can vary. This is controlled by setting
iLog in this data file.
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We note here that the inclusion of the comment defining the variable /DSation identifies this data as
belonging to station 10. Future versions of HILDA will probably have this inforration included as data in
this data file, thus eliminating the need to set up the data file for each station. Experience has shown that
the useful scan space is not necessarily the same for all stations. Experience has also shown that it is often
the case that there are really not many points for which the beam can be transported, when the parameter
grid is allowed to span a large range of values. The logfile can be examined to determine those points at
which it may make sense to do a parameter scan using a finer grid.

AlSighBar.DAT Beam Dynamics Parameters

HILDA solves equations that pertain to the dynamics of the beam transport problem. An interested user can
find information pertaining to the model in the section The HILDA Model: Beam Transport Equations of
this report. We note here that the parameters in this data set, shown in Figure 2-10, AlSighAbar . DAT
relate to the solution of the transcendental equadons that HILDA must solve; also that the limits on the
depressed tune are set here. These parameters are not usually changed. This data set is meant to be self-
explanatory when reference is made to the module AlSighAbar and the beam transport equations. As noted
in the data set, there is usnally no reason for the user to modify this data.

TranMod.DAT Transport Module Selection Data

HILDA first asks whether the beam can be transported. For those points in the parameter space for which
the beam CAN be transported, HILDA designs appropriate elements. The module TranMod reads data that
selects which of the available design modules to use. Presently the selection is somewhat limited: HILDA
can design an iron quadrupole and it can design a superconductivity quadrupole. However, future versions
will have a wider selection of design modules. The contents of the TranMod.DAT data file are shown below
in Figure 2-11, TranMod.DAT. The data set is self-explanatory.

FeQ20.DAT Fe Quadrupole Design Data

The HILDA module FeQ20 designs an iron quadrupole. This data set, shown in Figure 2-12, FeQ20.DAT,
furnishes all the necessary design information. The first coefficients are parameters that determine the size of
the vacuum pipe enclosing the beam. We note that the beam radius a that appears in this formula is the
same beam radius parameter that HILDA uses as a free parameter. If it is desired for HILDA to cost a
machine for which the vacuum pipe radius is a fixed size, these coefficients must be adjusted appropriately.
This adjustment was made when HILDA was run on the ILSE example that is included on the HPD disks.

The remaining coefficients are self-explanatory; the user should refer to the picture in the data set to
understand their significance. We note that when this data set is written as a flat ASCII file, the graphic that
constitutes the picture showing the FeQ20 quadrupole will not be written. The data set, without this
graphic, is readable by HILDA.

This particular design module reads only one material set; the Fe material used for both the quadrupole poles
and the return yoke. We furnish the density and the unit cost of this material. The two other factors, cCost
and ¢Cost, can be used to adjust the final cost of the quadrupole. The quantity factor qCost is meant to
reflect the fact that producing these quadrupoles in large quantities can cause the cost to change. Likewise
the complexity factor cCost can be used to adjust the unit cost for the cost of fabricating a complex item.
Both of these factors multiply the cost arrived at when only the unit cost of the material is used. In the
present example they have been set to 1 and thus have no effect on the final cost.

The picture in Figure 2-12 is a schematic transverse view of the quadrupole. The quadrupole is cylindrically
symmetric about the longitudinal z axis. The labels used are the actual variable names used in the module
FeQ20. The output from FeQ20 appears in the final design that is written to the logfile CostV1.010 and
the parameters can be keyed to this picture.



ScQ30.DAT SC Quadrupole Design Data

The module ScQ30 designs a superconducting quadrupole. This module is similar to the module FeQ20.
The ScQ30.DAT data set furnishes information needed for the superconducting quadrupole. This data set is
shown in Figure 2-13, ScQ30.DAT.

The parameters in the section CHOOSE MATERIALS for the SC Quadrupole are used to select the
materials for the namsd components of the SC quadrupole. The three pictures in this data set can be used to
identify the various components. In this example the parameters have been set to select the superconducting
wire as NbTi, the material filling the remainder of the winding space as Cu, and the material around the
coils as steel. We then have the material for the vacuum pipe and the outer containment pipe. We also can
specify data for the thermal insulation layers and for the cooling layers.

The module ScQ30 can read up to 10 data sets for each of these six items. In this particular example we
only have 1, out of the possible 10 that can be read. The material flags are used to load the appropriate
material data set. For example, specifying 1 for the SC wire material causes the module to load the first
material data set. The actual data sets are at the end of this data file.

Note that when we specify the material for the vacuum and outer quadrupole containment pipes we also
specify the number of pipes and the thickness of the pipes; all pipes have the same thickness. This is also
true of the insulation and cooling layers. We specify not only the material but also the number of layers and
the layer thickness In this example no material costing data has been furnished for the pipes, insulation,
and cooling layers. However, ScQ30 must have a data packet to read. Note that for these items the material
density has been set to 0.0 [kg/$] and the cost factors to 1.0. This effectively eliminates the material from
the cost calculation; it adds no weight and contributes nothing to the cost.

The SC quadrupoles are bundled together to form an array of quadrupoles. In the particular example at hand
we specified that there would be 16 beams, so there will be 16 quadrupoles in the array. This array has an
outer wrap. The material for this outer wrap is selected next.

We then specify limits on the minimum and maximum thickness of the SC wire. The actual thickness of
this wire will be determined by ScQ30; within these limits. If the module finds that a thickness less then
the minimum will suffice, the wire will be set to the minimum thickness. If the module determines that the
thickness needs to be greater than the maximum, the design will be flagged as unacceptable for this reason.

The complete array has an outer shell and that shell has a thickness set by the parameter dShell. The
physical length of the magnet can be adjusted using the parameter zQend. It is necessary o have a certain
amount of free space within the half-period. This minimum space is determined by fZSpace, which in this
example is set to 10% of the half-period length.

The next coefficients determine the radius of the vacuum pipe; they are used in the same way as in the iron
quadrupole design. Again, if it is desired to have a constant vacuum pipe size it may be necessary to adjust
these parameters accordingly.

The scaling parameters should NOT be changed, unless the user understands how they are used in the
module ScQ30. The radius limit parameter keeps the quadrupole from being either too short, or too large in
bore. The currently set value keeps the quadrupole from having an inner SC wire radius that is larger than
1/2 the magnetic length of the quadrupole.

The final parameter determines the thickness of the wrap around the whole array. This is presently set to
1/4th the pitch of the beam. The beam pitch is the beam-center to beam-center spacing of the beams. We
treat only square arrays and this is the x, or y, spacing; not the diagonal beam spacing.

Next data is furnished for some cost parameters. The parameter BFactor is used to reflect the material cost
and is added to the cost of the quadrupole. This factor reflects the fact that it costs something to assemble
the individual quadrupoles. The parameter cAFact is used to make it possible to isolate the assembly cost of
the array from the material cost in the cost calculation. For this example it is set to 1 and has no effect.
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The three figures in this data set present a transverse view, an end view of a single SC quadrupole as
designed by ScQ30, and an end view of t*.¢ quadrupole array. The particular example at hand has 16 beams,
a square array of 4 x 4. In the pictures we have shown a square array of 4 beams. The only difference is that
the 16 beam case has more quadrupoles bundled into the array, Again, the labeling uses the variable names
used in the module ScQ30. This should allow the user to understand both this data set and the minimum
design output written to the HILDA output files.

After the figures are the data sets for the materials that comprise the components of the SC quadrupole. The
first of these is for the superconducting cable. The first parameter indicates how many of these data sets
there will be; up to 10 are allowed. The cable material is then identified using a FORTRAN character
constant. Note that this is a string of text enclosed in the single quotation marks. Next come the material
density, the unit cost of the material, and then the quantity and complexity factors. These latter two factors
play the same role here as in the FeQ20 data. They multiply the material cost of the superconducting cable.
Next is a list of four values for parameters pertaining to the superconducting material. These values should
not be changed, unless there use in the module is completely understood. The final parameter for this data
packet is the maximum allowable field allowed at the outer SC wire radius. If the field needed is larger than
this value, the design will not be accepted.

The information furnished for the non- SC Cable, the quadrupole wrap material, array outer wrap material,
pipe material, insulation material, and cooling layers is identical in nature to the similarly named
parameters in the SC cable data packets. We specify the number of data packets, less than or equal to 10;
the identification of the material, the material density and unit cost, and then the quantity and complexity
factors. In each case these later two factors are applied 0 the named quantity; e.g., the cooling layer costs if
they appear in that data packet.

The parameter names in the data are the same as the variable names in the medule that receive these values.
The order and number of parameters in this data set should not be changed. However, more data packets can
be added to the material data sets, provided that the number of data sets for a particular material is correctly
specified. When more data packets are added the comments at the beginning of this data file should be
updated to reflect the extended choice of materials.

StrucCore.DAT Acceleration Cell Design Data

The module StrucCore designs an acceleration-transport module. The basic data for this module is in the file
StrucCore.DAT. This data set, an example of which is given below in Figure 2-14, StrucCore DAT , is
meant to be self-explanatory. The explanation that follows assumes that the reader will read the data set and
will refer to the pictures in that data set. We will key the this explanation to the headings in that data set.

SET ERROR LOGGING TO TERMINAL

HILDA tries to design an acceleration module within certain constraints. For example, the length of the
module must fit into the available space and the cores must not be too large in radii. When it fails to find a
design it will skip to the next parameter point for which a design has been requested. The module StrucCore
can inform the user that the design of the acceleration module has failed, or it can remain silent. This flag is
used to make that choice.

SELECT COMPONENT MATERIALS
The acceleration structure consists of a number of basic components. These are shown in the picture
Acceleration Structure. For each of these basic components a choice is made for the construction material.

In the data that follows we make the material choice. The data packets that define the material characteristics
follow later in the data set. It is, of course, not correct to choose a material for which data does not exist.
As we have previously mentioned, later versions of HILDA will have a user interface that simplifies the
setting of these selection parameters.
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The induction core is wound using amorphous tape. There are available in this data set two specific tape
materials and these tapes come in different widths. The selection is made in the sections labeled:

CORE amorphous tape materials available

CORE amorphous tape widths available

We see from the picture that the cores are stacked longitudinally to form the acceleration module, which we
also refer to as a cell. The materials that are used for making the core housings and the acceleration cell
must be specified. In this particular example there are ten materials available, For the cores we have selected
low carbon steel (welded & machined - 1020) as the material to use for the power lead, outer housing, and
inner bobbin. The cell housing uses the same material; this includes the end plates and inner bobbin of the
acceleration cell.

INSULATION/DIELECTRIC MATERIAL

There are six insulation/dielectric materials available. This material is used as shown in the pictures. The
gap insulator has on one side a vacuum and on the other a dielectric coolant material. We have chosen the
core and cell housing insulation to be polyethylene, the dielectric coolant to be Freon, and the area inside
the gap insulator to be a vacuum. The principal physical parameter of interest for these materials is the
voltage breakdown strength.

GAP INSULATOR MATERIAL.
The insulator for the module is a large concentric ring. In the present data set there is only one material for
this insulator. However, in principal more material data sets could be fumnished.

PULSE FORMING NETWORK

This information is used to determine the number of acceleration cores that are needed at the current station.
HILDA knows the required voltage gain, AV. It will use as many cores as it needs to obtain this voltage
gain. The maximum volts available from each core is supplied by this parameter. The present version of
HILDA does not determine the cost of the pulse forming network. Future versions will include this cost and
will make more extensive use of this paramelter.

MINIMUM LENGTH AVAILABLE FOR QUADRUPOLE SUPPORT, ETC.

The acceleration cell must fit into the available space. There must be free space left for other items; in this
example we have specified that 10% will be left open. This means that the design will not be accepted, if
the cell length exceeds 90% of the of the half-lattice period length.

MAXIMUM AVAILABLE GAP INSULATOR LENGTH

The longitudinal length of the gap insulator is determined by the maximum voltage gain and the voltage
breakdown strength of the inner space, in this case vacuum. If the required length is too long, in this case
greater than 80% of the total length of the acceleration cell, the design will be rejected.

HOUSING THICKNESSES

The parameters that are set here depend, to a large degree, on the size and weight of the structures. Future
versions of HILDA could have the capability of setting them appropriately, after the weights are known.
Presently they are preset by the knowledgeable user. The items to which they refer are shown in the picture
Acceleration Structure. Note that the cell housing thickness parameter z/H refers to the end plates and inner
bobbin of the cell housing. The core housing parameter zIPH refers to the thickness of the core end plates,
one of which can be considered to be part of the power lead. The next three parameters determine the
thickness of the concentric rings that make up the top of the core, the bottom or inner bobbin of the core,
and the top of the cell housing. These are scaled from the values of the parameters zIH and zIPH as
indicated in the data set.

At this point we have selected all the component parameters for the design of the acceleration cell. The data
that follows is, to a large extent, fixed in nature.

ELASTICITY SCALING FACTOR
This is NOT to be changed by the user. It pertains to a scaling formula used in StrucCore that allows for
the use of materials with different elasticity.
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NUMBER OF BEAMS DATA

The radial size of the acceleration cell depends on the number of beams that it must encompass. This size in
tern influences the thickness of the support structures. The data furnished here should only be changed by a
user who understands the use of these parameters inside the module StrucCore.

MATERIAL PROPERTIES

The data that follows pertains mostly to the materials used in the acceleration cell. The information
supplied refers to the cost of the materials and to physical properties that StrucCore needs in order to use the
materials in the cell and module design.

AMORPHOUS CORE TAPES and AMORPHOUS TAPE WIDTHS

The individual packets of data pertain to the properties of the available materials. In these data sets the unit
cost refers to the material cost. The complexity and the quantity factors multiply the unit cost to take
into account other costs associated with the use of the material. Note that these are associated with the
material, not with the component that uses the material. In the present version of HILDA the cost of the
cell is the cost of the components that make up the cell. The cost of the components is determined by the
cost of the constituent material. The cost of the material is the unit cost multiplied by the aforementioned
factors.

We also see that the materials can have associated properties. In particular, the amorphous tape has a
packing factor and a maximum flux swing. The packing factor relates to the winding of the cores; i.c., what
fraction of the core the amorphous tape occupies.

The maximum flux swing is used in StrucCore 0 determine the cross-sectional core area. In this sense this
parameter is not really a limit. It is assumed in StrucCore that the cores will be run with this flux swing
and the total core cross-sectional area is set to give the needed acceleration volts. If a certain cross-sectional
area, core size, is desired then this flux swing must be appropriately set. This was done when HILDA was
run on the ILSE parameters; in that example, which is on the HPD disks, the core sizes were already
determined. For the present version of HILDA, finding the maximum flux swing that gives a specified core
size is non-trivial. This use of the flux swing parameter may be changed in future versions of HILDA.

The tape widths available have an associated height-to-width ratio. This maximum is used to keep the cores
from being too large in diameter. HILDA stacks acceleration cores side-by-side, but not vertically. The
needed cross-sectional area is obtained by stacking cores longitudinally and by making their outer radius as
large as necessary. If this height-to-width ratio is exceeded the design is rejected. For example, the 5 cm tape
cores should not be more than 50 cm thick. These numbers are material dependent and would not usually be
changed by a user, once they are set for the specified material.

CORE MODULES and CELL HOUSING MATERIALS
The matenial data packets that follow all have the same type of information. The parameter emMat is the
elasticity of the material in the units that are shown.

STRUCTURE INSULATION/DIELECTRIC MATERIALS

The physical parameter of interest here is the material's voltage breakdown strength. StrucCore determines
the thickness, or length, of the insulating material by assuming that the material will be run at the voltage
breakdown number. For example, the thickness in the cores and cell of the polyethylene insulation depends
on the 197 kV/cm voliage breakdown value furnished in this data set. This direct use of the voltage
breakdown parameter means that any safety factors that a user feels are necessary should be included in this
number.

The units for all the parameter values are as indicated in the data set. Any unit conversions needed to agree

with the HILDA convention of using MKS units for most of the calculations are done in the module
StrucCore after it has read the parameter data.
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Figure 2-8. CalCostl.DAT

c

c

(]

filename = 'CostV1.010' :character

FILE: CalCostl.DAT
c DATE: 910922
EXAMPLE: drdMJe3Mmv

At each station this data defines the basic parameters of the beam that
is being transported. Upon completion of the cost minimization calculation
at the station, the file CostVl.nnn, where nnn is the value of IDStation,
will contain all the design information,

Basic Beam Data for 4MJ driver at 3.0 MV
varName varValue data type comment

IDStation = 10 iinteger ! station identification #
Qsys = 1,333333e-3 :real ! system charge [C)
= 16 . :integer ! number of beams ()
Amu = 200 ireal ! atomic no. [amu)
q = 3 ireal ! charge state [ ]
v = 3 ireal ! cumulative voltage [MV]
sig0 = 72.0 ireal ! undepressed tune [deg)
epsn = le-6 ireal ! nor. emittance, no pi [m=-x)
t

name of file

There is one group of the above data for each of the stations in the
system. The actual order of the data is immaterial; however, the values
that follow the parameter IDStation are for that IDStation. Thus, each
data group contains 8 values as shown above. The data consists of a
variable name terminated by at least one trailing blank, then an equal
sign followed by the value of the variable, followed by the data type
represented as :<type>. The variable names are as shown above. The
value of each data item is represented by a valid FORTRAN constant. In
particular a 'text string' is used for the string text that names the
file identifier of the file containing the associated Parameter values
found when calculating the minimum cost.

The module CalCost locates the data that corresponds to the given
IDStation. It loads that data and then proceeds to calculate The
minimum cost configuration for the given station.

After this minimum cost configuration is found, the processes involved
save the current state of the IDStation parameters, along with a
fileName pointer that points to the files containing this data.

The module CalCost is then exited and control is returned to the
invoking module. Since the complete state of this minimum cost
configuration is saved, it is possible to process it further. For
example: reports may be generated, plots made, or smoothing techniques
applied; or processes that minimize across the various stations with
respect to given parameters and criteria may be developed and applied.

The sole purpose of the module CalCost is to calculate, for the given
station, the configuration that gives the minimum cost as constrained by

the given constraints,

ENDFILE: CalCostl.DAT
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Figure 2-9. CostV1.DAT

¢ FILE: CostV1l.DAT
¢ DATE: 910923

¢ EXAMPLE: drdMJe3MVv

c Parameters that are assigned values from a data file:

¢ At the current station, HILDA cycles through the points
¢ in the parameter space defined below.

Beam Parameter Range Data for 4MJ driver at 3.0 MV

* varName varValue data type comment

c IDStation 10 tinteger ! station identification #
RLmin = 0.35 ireal ! min. structure half-period (m]
RLmax = 0.35 ireal ! max. structure half-period [m]
numRL = 1 treal L | of grid points [
aMin = 0.035 ireal ! min. beam size (max) (m]
aMax = 0,035 treal ! max. beam size (max) {m)
numa = 1 ireal [ ; of grid points [ ]
delVmin = 7.0E3 ireal ! min. voltage gain (V)
delVmax = 7.0E3 ireal ! max. voltage gain (V]
numDelV = 1 real ] of grid points (]
etaMin = 0,40 :real ! min. quad. packing fraction [ ]
etaMax = 0.40 ireal ! min. quad. packing fraction {1
numEta = 1 ireal [ of grid points [ ]

¢ Set contents of the logfile CostVl.log using the value of iLog
ilog = 3 OK designs logged to terminal, skipped points not logged

1 OK and skipped designs logged to terminal

OK and skipped designs logged to CostV1.LOG

OK designs logged to CostV1,LOG

ONLY Minimum designs logged to CostVl,LOG

1
]
!
1
!
! NO designs logged to CostV1.LOG or to the terminal

D W

c ENDFILE: CostV1.DAT
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Figure 2-10. AlSighAbar.DAT

c FILE: AlSighAbar.DAT
c DATE: 900420

¢ EXAMPLE: drdMJ@3Mv

c Parameters that are assigned values from a data file

* The process AlSighAbar solves a transcendental equation to
* find the value of a root alpha. We furnish here data that
* is pertinent finding that solution. The user would usually have
* NO need to change this data.
c Parametera:

c3 = 0.12 : ! eta coeff., see the process FAlpha
c Used tc¢ find alpha:
* The search for the root alpha is over this interval. This interval
* should be sufficient. However, if it is not, then the process will
* increase the interval.

alphaMin = 1,0e-8 ! min. alpha value

alphaMax = 5,0e00 ! max. alpha value

numdAlpha = 10 : ! num. of search intervals

1

maxTry 2 no. of search interval increases
c Diagnostic printing
iPrint = 3 : print level, cumulative
: 0 no print out

1 accepted root print out

2 all found roots print
3 1/0 variable print out
n

more print out/debug n .ge. 4

* If a root cannot be found in the interval dalpha = (alphaMax - alphaMin)
* then the search is redone in the interval starting at alphaMax and
* ending at alphaMax + dalpha. This is done maxTry times.

c Bounds on the depressed tunae at the head of the beanm:
sigmaHMin = 0.0e00 : ! min, sigmal [deg])
sigmaHMax = 90,0e00 ¢ ! max. sigmaH [deg)

¢ ENDFILE: AlSighAbar.DAT
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Figure 2-11, TranMod.DAT

¢ FILE: TranMod.DAT
¢ DATE: 910923

¢ EXAMPLE: drdMJeasmv

c The module TranMod reads this data to select the

c element type and the design module that is used

c at the current station. This data set can be

c updated as more design modules are placed in HILDA.
iType = {4 :! the element type
iDesign = 30 :! the design module ScQ30

¢ The available selections are shown below:

c ilype Element Type

c 0 Drift space

c . ) Desj ]

c 00 none

c 2 Bending magnet

c {Desi Desi ]

c 00 none

c q Quadrupoles Focusing/Defocussing

c iDesign Design module Elemepnt Desjgned

c 10 EsQl0 Electrostatic, not yet in HILDA

c 20 FeQ20 Magnetic, Fe

c 30 5¢cQ30 Superconducting

c 6 Sextupole

c iDesign Design medule

c 00 none

¢ ENDFILE: TranMod.DAT

Figure 2-12. FeQ20.DAT

¢ FILE: FeQ20.DAT

¢ DATE: 910923

¢ EXAMPLE: drdMJe3Mv

c The process FeQ20 designs an FE magnetic that is basically like

c the ILSE FE magnet described in LBL PUB 5219.

c Parameters that are assigned values from a data file:

¢ Coefficients used in the Quadrupole Magnet Calculation:
cR1 = 1.25 ! aperture radius = R = cRl * a + cR2 [ )
cR2 = 0,01 ! (m]
cdRp = 0.03 ! pipe thickness = delRPipe = cdRp * R [ ]
dRPMin = 0.001 :! minimum pipe thickness [m])
cdRg = 0.10 ! gap width = delRGap = cdRg * R [ ]
dRGMin = 0,002 :! minimum gap width [m]
cdrWire= 0,005 :! wire layer width = delrWire fm)
c ' = cdrWire*Bprime*rWire [m/T]
drWMin = 0.001 :! minimum wire width {m)
drFeMin= 0.002 :! minimum iron width [m)
czlov = 0,75 ! overhang length = zlOver = czlOv * rWire( )
cPitch = 0.00 ! pitch = 2.0D00 rFe + cPitch [m])

c Limits
Bmax = 1.5 :! pole tip field limit (T]
fZSpace= 0,10 ¢! non-magnet space limit, frac. of half-period [ ]
c :! ((fZSpace * RL + mag. length) .le. (RL))

c ¢! where RL = half-period [m]
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Figure 2-12. FeQ20.DAT (continued)

denFe
cCost
qCost
uCost

* Shown

Material costs based on ILSE design, as furnished by C. Fong.
FeQ20 uses the weight of the Fe to get the total cost, The design

module FeQ20 uses this data for costing the quadrupole. There is only
one data set allowed for this version of the module.

8.1657 :! yoke material density Low Carbon steel (g/cm=**3)
1.0 ;! complexity factor { )
1.0 :! quantity factor [
33.0 ;! unit cost of the material [$/kg]}

below is the FeQ20 quadrupole labeled with the variables

* used in FeQ20 and this associated data set.

FeQ20 Quadrupole
ziMag
il -
IRO
delrFe N
WIRE elrWir
COOLING ,etc. GAP delRGap
rFe
: PIPE delRPipe
VACUUM rWire
Raperture
eta*RL

c ENDFILE: FeQ20.DAT
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Figure 2-13. ScQ30.DAT

¢ TFILE: ScQ30.DAT
¢ DATE: 910923

¢ EXAMPLE: drdMJa3Mmv

Parametors that are assigned values from a data file:
Derived from Bob Biere's SC Quadrupole Data in his Thesis.

This data set has only 1 data set for each of the below items.
Up to 10 data sets can be furnished for each item. The actual data
sets are furnished at the end of this ScQ30.DAT data file.

c Item Elag value Material choice

c Quad SC Wire 1 NbTi Niobium Titanium

c Non- SC Wire Space 1 Cu Copper

c Quad Wrap (Stress) 1 Steel

¢ Quad Pipes 1 No Data on this Material
¢ Quad Insulation 1 No Data on this Material
c Quad Cooling layers 1 No Data on this Material
¢ Array outer Wrap 1 Steel

CHOOSE MATERIALS for the SC Quadrupole

iScCab =1 1! material for the SC wires { )
iCabs =1 ¢! material for the non-SC wire space [ ]
iWrap =1 :! material for the Quad Wrap (stress) [ )
iPipe =1 :! material for the vac. & outer Quad pipes [ )
nPipe = 2 ! ¥ of pipes { )
drPipe = 0.0020 :! thickness of pipes {m]
ilnsul =1 ! material for the insulation layers

nlnsul = 3 ! # of insulation layers [ )
drinsul = 0.0033 :! thickness of insulation layers {m)
iCool =1 :! data set for the cooling layers

nCool = 2 ! # of cooling layers { ]
drCool = 0.0010 :! thickness of layers (m]

CHOOSE MATERIAL for the Array of numBeam Quadrupolas
iAWrap =1 ¢! material for the outer wrap (collar)

SET LIMITS and PARAMETERS valuaes

Quadrupoles
Limits on the Quadrupole SC Wire
drWmin = 1,0e-2 :! thickness, minimum {m])
drWmax = 0,10 :! thickness, maximum {m])
dShell = 0.0015 :! thickness of the outer shell {m)
Non-Quadrupole frea apace
zQend = 0.000 :! space used by end packaging for the quad [m]
:! zlMag = zQend + {(eta*RL + zlOver)
fZSpace = 0.10 ¢! non-magnet space limit, frac. of half-period { )
.t

(fZSpace * RL + zlMag) .LE. RL
¢! where RL = half-period (m]
Coefficients used 4in the Superconducting Quadrupole Calculation:
cR1 = 1.25 ¢! aperture radius = R = cRl * a + cR2 [ ]
cR2 0.01 ! (m]
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Figure 2-13. ScQJ0.DAT (continued)

0

»*

* % % * »

»*

»

»* %

*

Quadrupole Wrap (stress) scaling parameters
sWrap = 0,01 :
BWrap = 5,00 ¢! field used for scaling the Quad. Wrap (T)
rWrap = 0,12 :! radius used with BWrap {m]

Quadrupole SC Wire radius 1limit
rWtRL = 0.50 ¢! rWire .1t., eta*RL * rWtRL [

Array of numBeam Quadrupoles
fCollar = 0.25 :! array wrap (collar) width, frac. of pitch [ ]

! wrap thickness used for BWrap, rWrap [m]

COST DATA
Quadrupole (Channel) Assembly-Complexity Cost factor
BFactor = 0,39 :! Multiplies the Quad (Wrap + Cable) cost [ )
Array Assembly-Complexity Cost factor
cAFact = 1.00 :! Multiplies the Array cost [ )

The Superconducting quadrupole that ScQ30 designs is shown below.
The labels are keyed to this data set and to the variables in the
design module.

The quadrupole that is designed is cylindrically symmetric about the
beam center line. The pitch is the distance from beam-center to beam-
center, The individual quadrupoles are then stacked as an array to make
a quadrupole package, or bundle. The stacking is done here and the outer
radius of the bundle is returned for later use.

In Figure 1 is shown a side view of the ScQ30 quadrupole, labeled with
the variables used in ScQ30, In Figure 2 an end view of the same
quadrupole is shown. In Figure 3 an end view is shown for a four beam
array.

The end plates for the SC quadrupole have a nominal length of rWo.
However, that longitudinal length can be changed by supplying a non-zero
value for the parameter zQend. The value of zQend can be positive or
negative. The free space that is left at the ends of the quadrupole, and
hence at the ends of the array package, is determined by the value of
the parameter fzspace, Both of these parameters obtain their values from
data on the file ScQ30.DAT. The length of the quadrupole is determined
by eta, the packing factor, and by RL, the lattice half-period. These
quantities are the current values supplied when the module ScQ30.DAT is
invoked. All volumes, and thus all weights and material costs, use zIlMag
as the longitudinal length. This is not exactly right, however that is
the way this version of ScQ30 does the calculation.

The end-view picture shown in Figure 3 has three insulation layers, two
cooling layers, an inner vacuum pipe and an outer enclosing pipe. The
windings are outside the outer pipe, as shown. This assembly is enclosed
in an outer wrap which itself is covered by a shell. This figure should
be referred to the data in the file ScQ30.DAT. We note that the amount
of conductor that is required is calculated as though it filled the
annular ring of thickness drWire, as shown in Figure 2. Although this is
not quite right, it is the way this version of ScQ30 does the
calculation.

The individual quadrupoles are placed together in a square package as
shown in Figure 3. In order that this be possible, it is necessary that
the number of beams be a perfect square, such as 4, 9, 16, 25, etc,
S5cQ30 checks this condition and completes the quadrupole array design
only if this is the case.
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Figure 2-13. ScQ30.DAT (continued)

* % * * »

»

The outer wrap containing the quadrupole array has a thickness that is
determined by the parameter fCollar. This parameter obtains its value
from the data file ScQ30.DAT. The enclosing circle for the whole
quadrupole array assembly, including the outer wrap, has a radius
roTArray. Any elements that contain the focussing array must have in
inner radius of at least this value. In particular, the acceleration
cores must have an inner bore of this radius, or more, when the
quadrupole array is allowed to penetrate into the cores.,

$cQ30 Quadrupole Side View

Supercmductmg Quadrupole
Side View

1/2 fzspace 1/2 fzspace

—

eta'RL

| tWo + zQend = ( zIMag - eta*RL )2

Il zlMag l'

- !I RL

Quadrupole ends

Quadrupole wrap
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Figure 2-13. ScQ30.DAT (continued)

$cQ30 Quadrupole End View

Superconducting Quadrupole
End View
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ScQ30.DAT (continued)

8¢Q30 Quadrupole Array,

lllllllllllllllllllllllllll

lllllllllllll
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End View

Beams

Outer Array Wrap

Four

Superconducting Quadrupole Array

A four beam example

Figure 2-13.

36




Figure 2-13. ScQ30.DAT (continued)

MATERIAL DATA and COSTS are furnished below,
Each item can have up to 10 material data sets

Superconducting
nScMat =
IDScMat (n) =

denScMat (n)
uCScMat (n)
qFScMat (n)
cFScMat (n)

cJCoeff (n)
cJBn (n)
cJBd (n)
rLamda (n)

=

Cable
1 ¢! # of material data sets
'‘NbTi Niobium Titanium'
7.6e3 ¢! material density (kg/m**3)
300.00 :! unit cost [$/kg]
1.0 :! quantity factor (]
1.0 ! complexity factor ()
Current density parameters and Field limits
2.9%9 :! slope of cJ curve [A/m**2]
10.0 ¢! numerator field parameter [T)
5.0 :! denominator field parameter (T]
0.3571 ! SC wire packing fraction [T)
10.0 ! B at outer wire, maximum [T)

BWomax (n)

Non SC Cable

nCMat
IDScMat (n)
denCMat (n)
uCCMat (n)
qFCMat (n)
cFCMat (n)
Quadrupole
nWMat
IDScMat (n)
denWMat (n)
uCWMat (n)
qFWMat (n)
cFWMat (n)

Wrap

=
=
=

1

:! # of material data sets

'‘Cu Copper'

8.9e3 ! material density [kg/m**3]

50.0 :! unit cost {$/kg)

1.0 :! quantity factor [ ]

1.0 ¢! complexity factor { ]

(Stress) Material
1 1! # of material data sets
'Steel!’

B8.1657e3 :! material density [kg/m=**3)
= 25,0 ! unit cost [$/kg])

1.0 :! quantity factor [ ]

1.0 ! complexity factor [

Array Outer Wrap (Collar) Material

nAOtMat =1 ;' # of material data sets

IDScMat (n) = ‘Steel!’

denAOtMat (n) = 8.1657e3 :! material density [kg/m**3)
uCAOtMat (n) = 25,0 ¢! unit cost [$/kg]
qFAOtMat (n) = 1.0 :! quantity factor [ )
cFAOtMat (n) =1.0 :! complexity factor [ ]

Pipe Mataerial, Vacuum and around Quad outer 4insulation layer

nPMat =1 ¢! # of material data sets

IDScMat (n) = ‘No Data on this Material!'

denPMat (n) = 0.0 ! material density [kg/m**3)
uCPMat (n) = 1.0 ¢! unit cost [$/kg]
qFPMat (n) = 1.0 ! quantity factor (]
cFPMat (n) = 1.0 ! complexity factor [ ]

Ingulation (thermal) Material

nIMat = 1 :! ¥ of material data sets

IDScMat (n) = ‘No Data on this Material'

denIMat (n) = 0.0 ¢! material density [kg/m**3}
uCIMat (n) =1.0 ¢! unit cost [$/kg]
qFIMat (n) = 1.0 +! quantity factor [ )
cFIMat (n) =1.0 ¢! complexity factor (]
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Figure 2-13, ScQ30.DAT (continued)

Cooling Layers, data sets

nCLay = 1 ! # of material data sets

IDScMat (n) = 'No Data on this Material!

denCLay (n) = 0,0 ! material density [kg/m=**3]
uCCLay (n) = 1.0 ! unit cost [$/kg]
gFCLay (n) = 1.0 ¢! quantity factor (]
cFCLay (n) = 1.0 ¢! complexity factor ()

c¢ ENDFILE: ScQ30.DAT

Figure 2-14. StrucCore.DAT

¢ FILE: StrucCore.DAT
¢ Date: 910923
c EXAMPLE: drdMJe3Mv

c Parameters that are assigned values from a data file:
c This data set has been used for the 4MJ Driver Example,.

¢ SET ERROR LOGGING TO TERMINAL

ilog = 0 : ! 0 do not log failed designs to terminal
'l log failed designs to terminal
¢ SELECT COMPONENT MATERIALS for the acceleration module
c Uses data in the data sets below:
¢ CORE amorphous tape mataerials available
c 1 Metglas 2605 S2 - wound and annealed:
c 2 Metglas 2605 CO - wound and annealed:
idAm = 1 : ! tape used
¢ CORE amorphous tape widths available
c 1 5.08 [cm)
c 2 10.16 [cm)
c 3 17.018 (cm}
c 4 20.32 (cm)
idWTape = 4: ! tape width used
¢ CORE/CELL HOUSING materials available
c 1 Low Carbon steel - simple machined - 1020
c 2 Low Carbon steel - welded & machined - 1020
c 3 Aluminum - simple machined 6061
c 4 Aluminum - welded & machined 6061
c 5 Stainless steel - simple machined - 304
c 6 Stainless steel - welded & machined - 304
c 7 sStainless steel - simple machined - 316
c 8 Stainless steel - welded & machined - 316
c 9 Aluminum Casting - sand - raw 356
c 10 Aluminum Casting - sand - 356 w/ simple machining
idcsM = 2 ¢ ! core power lead, outer housing, inner bobbin
idCH = 2 ¢ ! cell housing
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Figure 2-14. StrucCore.DAT (continued)

OO0 00000

* % % %

INSULATION/DIELECTRIC materials

1 NEMA g-10 Composite - machined

2 Polyethylene LP-390-C Dielectric, injection molded
3 Water deionized

4 Freon

5 SFeé

6 Vacuum

idIN = 2 : ! core/cell housing insulation

idbpic = 4 : ! dielectric coolant

idGP = 6 : ! gap operating pressure range

GAP INSULATOR MATERIAL.
1 Alumina - pressure cast & brazed large dia/ to 58" by 1" thick

idGI = 1 : ! gap insulator

PULSE FORMING NETWORK, available PFN peak kilovolts per core
pv = 200.0 : ! 80 - 500 {kV]
The module StrucCore will use this to
determine how many modules are needed to
furnish the required voltage gain.

MINIMUM LIENGTH LEFT AVAILABLE FOR quad. support,etc.
QAl = 10.0 : ! z-axis [$ of half-period length]
MAXIMUM LENGTH AVAILABLE FOR gap insulator.

gILmax = 80.0 : ! z-axis [$% of cell length celll )
HBOUSING THICKNESSES:

station ! ave., of data for weights of 50001b & 11000lb
z1lH = 2.0 : ! cell housing thickness, 50001b/11000lb [em]
zlPH = 1.0 : ! core housing/power lead thickness [em)
proC = 2.0 : ! top of core delTC = proC * z1PH

priM = 2.0 ! bottom of core delBC = priM * z1Ph

proH = 2.0 ! cell housing delCH = proH * zlH

The accelerations structure that is designed is shown in

Figure 1 Acceleration Structure and Figure 2 Acceleration Module
below. The labels used in those figures correspond to the identifiers
used in this data set. These identifiers are the same as used in

the designs module StrucCore that uses this data.
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Figure 2-14. StrucCore.DAT (continued)

Acceleration Structure
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CORE HOUSING 1 COREHOUSING2

GAP INSULATOR

CORECELL INSULATION DIELECTRIC COOLANT

Figure 2: Acceleration Module shows the dimensions of this structure using
labels that are the variables of the StrucCore process. This structure is
cylindrically symmetric about the beam center line. The acceleration structure
occupies a half-lattice period and the focusing quadrupole for that section

is not shown in this picture. However, it must fit into the space 2%*QAl/2.
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Figure 2-14, StrucCore.DAT (continued)

Acceleration Module

power lead

§
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c The data below is basically fixed data. The selections made above
c will use this data.

¢ ELASTICITY SCALING FACTOR for scaling cell housing radius
peM = 10.0 : ! See module StrucCore before changing.
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Figure 2-14. StrucCore.DAT (continued)

c

00

0

NUMBER OF BEAMS DATA:
nBSets = 4 HE

Beam configurations
nBeams (1) = )

nBeams (2) = 16
nBeams (3) = 21
nBeams (4) = 64
4 Beam data:
ti(l) = 2.5 !
£Q(1) = 1.1 N
16 Beam data:
ti(2) = 3 HE
£Q(2) = 1.1 ¢ !
21 Beam data:
ti(3) = 2 HE
£Q(3) = 1.05 : !
64 Beam data:
ti(4) = 4.0 !
£Q(4) = 1,05 !

MATERIAL PROPERTIES
For each material furnish

AMORPHOUS CORE TAPES:

nAmSets = 2

1 Maetglas 2605 Ss2 -
denAm (n) = 17,1800
cFacAm (n) = 1
qFacAm (n) = 1
uCostAm(n) = 5.0
pFAm (n) = 0.80
delBAm (n) = 2.5

1 Metglas 2605 Ss2 -
dernAm (n) = 7.5600
cFacAm (n) = 1
qFacAm (n) = 1
uCostAm(n) = 40.0
pPFAm (n) = 0725
delBAm (n) = 2.5

¥ of sets of beam data, .le. maxBSets
acc. gap insulator thickness lem)
quad array perimeter support factor [ )
acc. gap insulator thickness [cm)
quad array perimeter support factor [ ]
acc. gap insulator thickness [cm]
quad array perimeter support factor {1}
acc. gap insulator thickness [cm)
quad array perimeter support factor [ 1]
a list of properties
! number of material sets, .le. 10 sets
wound and annealed:
! density [g/cm**3)
! complexity factor ()
! quantity factor [l
! unit cost [$/kg]
! radial packing factor { |
: ! flux swing [T)
wound and annealed:
: ! density [g/cm**3)
: ! complexity factor [}
: ! quantity factor {)
! unit cost [$/kq]
! radial packing factor [ )
! flux swing [T]

The cores are sized in StrucCore using the above value of the

flux swing along

AMORPROUS CORE
nWRSets = {4 HE
wTape (1) = 5,08 !
aRCmax (1) = 10.0 !
wTape (2) = 10.16
aRCmax(2) = 8.0 HE
wTape (3) = 17.018 !
aRCmax{3) = 6,00 !
wTape (4) = 20.32 : !
aRCmax(4) = 4.0 HE

with the required voltage gain.

TAPE WIDTHS and corresponding max,
number of width/ratio sets,

width

max. height to width

width

max. height to width

width

max. height to width

! width

max. height to width

aspect

aspect

aspect

aspect

aspect ratios:

.le. 10 sets
fem)
ratio { }
[cm)
ratio { }
[em)
ratio [ }
(em)
ratio { )
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Figure 2-14, StrucCore.DAT (continued)

¢ CORE MODULES and CELL HOUSING materials that are available.
numMat = 10 ! number of materials in this set .le. 20

c 1 Low Carbon steel - simple machined - 1020

denMat (n) = 8,1657 : ! density [gm/cm**3)

cFacMat (n) =1 : ! complexity factor [)

qFacMat (n) =1 : ! quantity factor []

uCostMat {n) = 9.8987 ! unit cost [$/kg)

emMat (n) = 30 ! [10**6 1b/in**2)
c 2 Low Carbon steel - welded & machined - 1020

denMat (n) = 8.1657 : ! density [gm/cm**3}

cFacMat (n) =1 ¢ ! complexity factor (1]

qFacMat (n) =1 ¢ ! quantity factor (]

uCostMat (n) = 9,8987 ! unit cost [$/kg)

emMat (n) = 30 2 ! [10**6 1b/in**2]
c 3 Aluminum -simple machined 6061

denMat (n) = 2,7123 : ! density [gm/cm**3]

cFacMat (n) =1 ¢ ! complexity factor ()

gFacMat (n) =1 1 ! quantity factor 1

uCostMat (n) = 13.8449 ! unit cost [$/kg]

emMat (n) = 10 ! [10**6 1lb/inx**2])
c 4 Aluminum - welded & machined 6061

denMat (n) = 2.7123 ! density (gm/cm**3]

cFacMat (n) =1 ! complexity factor [}

gFacMat (n) =1 ¢ ! quantity factor (]

uCostMat (n) = 17.1959 ! unit cost [$/kg)

emMat (n) = 10 ! [10**6 1b/in**2)
c 5 Stainless steel - simple machined - 304

denMat (n) = 7.9470 ! density [gm/cm**3]

cFacMat (n) =1 ! complexity factor []

qgFacMat (n) =1 ! quantity factor (]

uCostMat (n) = 14,5283 ! unit cost [S/kg)

emMat (n) = 29 ! [10**6 1lb/in**2])
c 6 Stainless steel - welded & machined - 304

denMat (n) = 7.9470 ! density [gm/cm**3)

cFacMat (n) =1 ¢ ! complexity factor [

qFacMat (n) =1 ¢ ! quantity factor []

uCostMat (n) = 17.8790 ! unit cost [$/kqg)

emMat (n) = 29 ! [10**6 1lb/in**2)
c 7 Stainless steel - simple machined - 316

denMat (n) = 7.9470 ! density fgm/cm**3)

cFacMat (n) =1 ¢ ! complexity factor [)

qFacMat (n) =1 ¢ ! quantity factor []

uCostMat (n) = 15.9834 ! unit cost [$/kg]

emMat (n) = 29 ! [10**6 1b/in**2)
c 8 Stainless steel - waelded & machined - 316

denMat {n) = 7.9470 ! density (gm/cm**3)

cFacMat (n) =1 ¢ ! complexity factor [}

gFacMat (n) =1 ¢ ! quantity factor (]

uCostMat (n) = 19,3343 ! unit cost [$/kg)

emMat (n) = 29 ! [10**6 1lb/in**2)
c 9 Aluminum Casting - sgand - raw 356

denMat (n) = 2.7123 ! density [gm/cm**3)

cFacMat (n) =1 : ! complexity factor ]

gFacMat (n) =1 ! quantity factor (]

uCostMat (n) = 9.9427 ! unit cost ($/kg]

emMat (n) =10 ! (10**6 1b/in**2)
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‘Figure 2-14. StrucCore.DAT (continued)

c 10 Aluminum Casting - sand - 356 w/ simple machining
denMat (n) = 2.7123 ¢ ! density [gm/cm**3)
cFacMat {n) =1 : ! complexity factor 0]
qFacMat (n) =1 ¢ ! quantity factor [}
uCostMat (n) = 13.4481 : ! unit cost [$/kg)
emMat {n) = 10 I [10**6 1lb/in**2)

c STRUCTURE INSULATION/DIELECTRIC materials

numInMat = 6 : ! number of materials in this set .le. 20

c 1 NEMA g-10 Composite - machined
denlnMat (n) = 1,9222 ! density [gm/cm**3]
cFaclnMat (n) = 1 ¢+ ! complexity factor {]
qFacInMat (n) =1 ! quantity factor ()
uCostInMat (n) = 27,1827 ! unit cost [$/kg)
VoltInMat (n) = 197,00 : ! voltage breakdown {kV/cm)

c 2 Polyethylene LP-390-C Dielectric, injection moldaed
denlnMat (n) = 0.9850 : ! density [gm/cm**3]
cFacInMat (n) =1 : ! complexity factor (1
qFacInMat (n} =1 ! quantity factor (]
uCostInMat (n) = 20.6417 ! unit cost [$/kqg])
VoltInMat (n}) = 197.00 ! voltage breakdown [kV/cm]

c 3 Water deionized
denlnMat (n) = 1.0000 ! density [gm/cm**3)
cFacInMat (n) =1 ! complexity factor (]
qFacInMat (n) 1 ! quantity factor [1]
uCostInMat (n) = 0.0 ! unit cost [$/kg)
VoltInMat (n) 1.0 ! voltage breakdown [kV/cm)

c 4 Freon .
denInMat (n) = 1.8 ! density [gm/cm**3]
cFacInMat (n) =1 ! complexity factor []
qFacInMat (n) =1 ! quantity factor [
uCostInMat (n) = 1,66 ! unit cost (S/kqg)
VoltInMat {(n) = 39,00 ! voltage breakdown [kV/cm)

c 5 SF6
denInMat (n) = 1.0 ! density [gm/cm**3)
cFacInMat (n) =1 ! complexity factor []
gFacInMat (n) =1 ! quantity factor {)
uCostInMat (n) = 0,0 ! unit cost [$/kg)
VoltInMat (n) = 8.00 ! voltage breakdown [kV/cm)

c 6 Vacuum
denlnMat (n) = 0,0000 ¢ ! density {gm/cm**3)
cFacInMat (n) =1 ¢ ! complexity factor []
gFaclInMat (n) =1 : ! quantity factor ()
uCostInMat (n) = 0.0 ! unit cost [$/kq]
VoltlInMat (n) = 50.000 ! voltage breakdown [kV/cm]

Cc GAP INSULATOR materials
numGI =1 ! number of materials in this set

¢ 1 Alumina - pressure cast & brazed large dia. to 58" by
denGapI (1) = 3.7170 ! density [gm/cm**3)
cFacGapI (1) =1 ! complexity factor )
qFacGapI (1) =1 ! quantity factor [
uCostGapI(1l) = 428.287¢6 ! unit cost [$/kg]
VoltGapi (1) =12.0 ! voltage breakdown [kV/cm]

¢ END: StrucCore.DAT

.le.

1"

10

thick




Analyzing the Output and Generating Reports

The basic output generated during a HILDA run is the file CostVI.NNN. In this example this is
CostV1.010, since the calculation of the minimum-cost design was at station 10. In the discussion below
we refer to this particular file with the understanding that it represents any of the CostV1.NNN files that
HILDA generates.

There is an associated logfile, CostV1.LOG, which in this 3MV example does not contain any information
that we want to save. Therefore, the file was not saved. If we had scanned over a parameter space with many
points, this file could have been used to save information about the rejected designs and information about
the designs that were completed but were not the minimum in cost.

The present version of HILDA does not process the CostV1.010 file. We have analyzed the results for the
cases that we have run by downloading that file into a PC and then using a spreadsheet to analyze the
results and create reports. The fact that these tools are available and well developed should be strongly
considered before time is spent in creating HIL.DA modules that can do these analysis tasks. Future versions
of HILDA will contain modules that enable the user to easily process the CostV1.010 and create a file that
is directiy readable by a spreadsheet, or graphing program. We have presently used a separate program that
converts the file to a tab delimited file; this being a form that most spreadsheet, or graphing, programs will
read. It is strongly recommended that the basic logfile NOT contain tab characters. It has been our
experience that tabs can cause many problems when files are read by different programs in different
environments. The HILDA convention has been NO tabs, unless there is a specific reason for needing them,

In the present example there really is not much to analyze. What we have is a specific design for a
particular station. We could use this output to generate drawings for the design. We could also compare this
solution with nearby solutions, by rerunning HILDA. In the 4MJ driver example, from which this example
is taken, we have seven stations of design output. In that case we can use these files to estimate a total
cost of the complete machine. The complete 4MJ driver example is on the HPD disks.
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Example 2: The 3000MV Station of a 4MJ Driver

We point out first that the example described here is in the folder drdMJ @ 3000MV, which is in the folder
MSWiHilda/DAT of the HPD disks. The ReadMe files in those folders contain additional information about
this example. The information that we present here has been extracted from files in those folders. This
3000MV example and all its output can be reconstructed from the data files in drdMJ @ 3000MV. We also
note that the 3000MV example set up when HILDA is installed following the instructions in the HPD
section Maintaining HILDA: Installation is precisely the example that we are describing here

Running HILDA at the 3000MYV station is little different from running HILDA at the 3MV station. The
difference is that the data must be correct for the 3000MV station. Many of the data files are the same at
both stations. As we have previously noted the beam definition file CalCost1.DAT can contain more than
one station. If the CalCost1.DAT data file for the 3MV example had also contained a data packet for the
3000MYV station, then that file could have been used for both of these examples. It turns out that the basic
data difference for these two examples is the range over which the HILDA parameters are varied. The other
module data files are the same.

The output is, however, different. The program designs a superconducting quadrupole that has parameters
that are appropriate for focusing a high energy beam and the acceleration cell must provide not only space
for this quadrupole, but also must provide a 2.8MV energy gain.

We shall assume in this example that the 3MV example has been read and understood. Thus, we will not
need the detailed explanations that were given in that example.

Running HILDA on the VAX
In the discussion that follows we assume that:
¢ HIIDA has been installed by following the instructions in section Maintaining Hilda: Installation
* you are logged onto your VAX account and that the directory is [USER.HILDA].
¢ you have executed the LOGIN.COM file that was loaded into this directory
* the installed executable image HILDA.EXE exists in the directory [USER.HILDA.EXE]
* the 3000MYV data files were installed in the directory [USER.HILDA.DAT. DAT3000MV]

All the above assumptions will be true if you have installed HILDA as recommended.

If these assumptions are true, then follow the steps below.

*  Transfer to the execution directory by typing
EXE

*  Check that you are in the [USER.HILDA .EXE] directory by typing
SHOW DEFAULT
If you are not in this directory something is wrong.

¢ Set up the HILDA module data files by typing
SET3000MV
At this point the HILDA module data files:
CalCost1.DAT
AlSighBar.DAT
CostV1.DAT
TranMod.DAT
ScQ30.DAT
StrucCore. DAT
contain the 3000MV data of this example.
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Run HILDA by typing
RUNHILDA

The main program HILDA will execute and you will be prompted for input.
Follow the prompts.

¢ Continue with the example by entering in lower case the command
cost

You will be asked at what station to calculate the cost. The station number that
we have used in this example for the 3000MYV data is station 70.

* Type in the integer
70
As HILDA proceeds to calculate the minimum-cost design for the selected
station it writes messages to the terminal to indicate what is happening. When it

is finished with this design task it will save the results of the design on the file
CostV1.070.

In this particular example the data for the parameter search grid has been set for
the 3000MYV station. You can if you wish, ask HILDA to calculate the cost of a
design for one of the other stations that are in the data set CalCost1.DAT.
However, we will instead:

Exit from HILDA by typing the lower case command
stop

°  Confirm this desire to stop by typing the upper case command
YES
This completes the actual running of HILDA.

If you did calculate the cost at another station, say station 60, remember that the present version of HILDA
would have used the current data in the module data files. There is no way to update this data from within
HILDA, for this version. The beam data would be as defined in the data file CalCost1.DAT and thus it
would be correct for station 60, since data for that station is included in the file. However, the search grid
might not be what you wanted to use.

A copy of the terminal output from HILDA for this example is cn the HPD disks that are associated with
this report. It is in the HILDA/Terminal/3000MV document that is in the HILDA/Log folder of this
example. You can find the HILDA/Log folder in the dréMJ @ 3000MV folder; see the Appendix section
Guide to the HPD Disks of this report.

The Output File CostV1.070

The basic output file generated during this HILDA run has the name CostV1.070, since we have produced a
design at station 70. Had we requested designs at other stations, we would also have those files as HILDA
output files from this run.

The CostV1.070 file generated by this example contains much information. In what follows below we
present short selections from the file CostV1.070. The complete output file for this example can be found
in the folder HILDA.LOG , which is in the drdMJ @ 3000MV folder. The interested reader can find these
folders in the HPD disks. We also note that this file is essentially the same file as was generated for the
3MV case; i.e., CostV1.010. A fuller description of the output file CostV1.NNN is given there.
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HILDA Output File CostV1.070
The primary results of the HILDA calculation are at the beginning of the CostV1.070 file and are shown in
Figure 2-15, HILDA Output A.

This output shows the values of the HILDA parameters that give this minimum-cost design. Following
this is the total cost for the station components and the how much it costs to furnish a volt in energy gain.
This output is the primary output from the HILDA calculation at the station 70.

Next come the input variables that define the beam at this 3000MV station. These are the system charge
Qsys, the choice of mercury ions with a charge state of 3, the undepressed tune (single beam, no space
charge) of 72 degrees, and the normalized emittance of .000001 T meter-radian.

In Figure 2-16, HILDA Output B we show secondary output from the HILDA run at station 70. This
consists of: the number of Coulombs in each of the 16 beams, the beam pulse-length times the beam
current, the dimensionless dynamic quantities for the mercury ions, followed by the beam magnetic rigidity.

The parameter grid that HILDA scanned over is then shown. For this example we have only one point.
This point has been set to the parameter values that give the minimum-cost design at the 3000MV station.
This has been taken from the 4MJ example that is in the HPD disks.

The average times for the calculation include reading the data file associated with each of the modules; also
any other setup tasks required for the calculation. If there were many points in the grid we should find that
the average times reported were less per grid point.

The Figure 2-17, HILDA Output C contains intermediate results. The quantity alpha is a parameter relating
to the beam dynamics. The parameter sigmaH is the depressed tune at the head of the beam, in each of the
16 beams; abar s an average beam size. We record the perveance of the beam, the current, the pulse width
(longitudinal length), the average voltage gain per meter (electric field strength), and the volt-seconds
furnished by the acceleration cell. These items are explained in the section The HILDA Model: Beam
Transport Equations of this report.

In Figure 2-18, HILDA Output D is shown that section of the output file CostV1.OUT that has been
copied from the output file created by the module ScQ30. This contains all the design parameter
information for the superconducting quadrupole associated with the minimum-cost design. We should note
that this is not necessarily the minimum-cost quadrupole array. The minimum-cost design is arrived at by
calculating the total cost at the station, in this case the 3000MV station of the 4MJ driver. Thus, HILDA
will have also included the acceleration cell cost when selecting the minimum-cost design.

The variable dolTArray is the total dollar cost of the quadrupole array; in this case a 16 beam array. The
variable roTArray is the outer radius of the array. The acceleration cell designed by the module StrucCore
uses this quantity to determine the core inner diameter needed to accommodate this quadrupole array.

The rest of the information in this ScQ30 output pertains to the design of the superconducting quadrupole.
Previously, in the section The Module Data Files: ScQ30.DAT SC Quadrupole Design Data of the 3MV
example, we have given a description of the module data file and we have shown pictures of the
superconducting quadrupole. The design parameters for station 70 that HILDA calculates are shown below.
They will be more meaningful when reference is made to the pictures in Figure 2-13,

The parameter output is divided into two parts. The first part refers to one individual SC quadrupole. For
this quadrupole we have radial dimensions, cross-sectional areas, volumes, weights, and costs of the
components. The individual quadrupoles are then bundled together to form an array of quadrupoles. In this
case the number of beams is 16; so there are 16 quadrupoles, or channels, in the array. The second part
pertains to the quadrupole array; we again show radial dimensions, areas, volumes, weights, and costs.

Following this specification of design parameters is a section that shows the materials used for this design.
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The Figure 2-19, HILDA Output E is a copy of the output file created by the module StrucCore. It is
similar to the previous SC quadrupole file in that it has parameters and data that define the minimum-cost
design; in this case the minimum-cost acceleration cell.

The primary output from this module is the variable dolAStruct, which is the cost of the acceleration cell.
This cell does NOT include the focusing/defocusing quadrupole. This amount is simply the cost of the cell
as determined by its component material costs, The design information in this file should be referred to the
pictures in the data file StrucCore.DAT. These pictures have been included in this report in the section The
Module Data Files: StrucCore.DAT Acceleration Cell Design Data of the previously described 3MV
example. See Figure 2-14,

The file StrucCore.Out shown in Figure 2-19 contains sections of information. The first section is the
dollar cost of the components of the cell; based on the cost of the material used, as obtained from the
aforementioned data file. Next are the selection parameters used in this design. These, when associated with
the contents of the data file StrucCore.DAT, define the component materials. We next give component
weights, followed by cell and core parameters. The cell and core parameters should give enough information
to draw a picture of the cell that HILDA has designed.

In Figure 2-20, HILDA Output F we show an outline of the remainder of the CostV1.070 file. The data
files used by the HILDA modules are copied and recorded in this output file. This is not necessarily
redundant information. HILDA is very modular and future versions of HILDA may be designed to modify
the daa file during execution, to help HILDA find a minimum-cost design. The actual data files that were
used are those that are recorded in this output file. A description of these data files appears in the section
The Module Data Files. Since these files are essentially the same as for the 3MV example, the reader should
refer to that example for the pictures that illustrate the components.

The final entry into this logfile is a list of module versions. This is usually of no interest to the user.
However, it serves a purpose of verifying the integrity of the HILDA modules. A message that a version
file does not agree with the module version should serve as a warning to the user that all may not be well in
HILDA.

We conclude this discussion of the HILDA output file CostV1.070 by noting that there are many cross-
checks that can be performed using this output. These checks should occasionally be done; to insure that
data input mistakes have not been made. Performing these checks also builds confidence that HILDA is
indeed calculating correct results and designing reasonable elements. This file is a logfile, and as suchitis a
record of what went into the calculation and what was produced by the calculation, Unless something is
wrong, or the design criteria or program module logic has changed, it should be possible to recreate this
output by using the input parameter values recorded in CostV1.070.
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Figure 2-15. HILDA Output A

FILE: CostV1.,070
DATE: 91/10/24
TIME: 15:51:22

1/0 variable types:

implicit real
implicit integer

(a-h,o0-2)
(i-m)

The optimum

value was

found at:

RL = 4,0000000E+00 : ! half period [m]
a = 2,9999999E-02 : ! beam radius [m)
delVv = 2,8000000E+06 : ! voltage gain (V]
eta = 1.0000000E-01 ! packing factor [ )

The cost is:
costDol = 6,4759331E+05 : ! cost (81
perVoltDol= 2,3128332E-01 : ! voltage gain cost [$/delV)

The 4input variables for this solution are:
IDStation = 70 ¢+ ! station name
Qsys = 1,3333330E-03 : ! system charge (C]
numBeam = 16 ¢ ! number of beams [}
Amu = 2.0000000E+02 : ! atomic mass [amu)
q = 3.0000000E+00 : ! charge state le)
v = 3,0000000E+03 : ! cumulative voltage [MV)
sig0 = 7.2000000E+01 : ! undepressed tune (deg)
epsn = 1,0000000E-06 ! nor. emit., no PI {m-r)

Figure 2-16. HILDA Output B

Associated quantities are given below:

Process KenvVar:
taul = 8,3333311E-05 ! charge per beam [C)
betaGamma = 3.1456658E-01 : ! beta * gamma [ ]
gamma = 1.0483092E+00 : ! Energy/rest Energy [
beta = 3.0007041E-01 : ''v/c [ )
Brho = 6.5157227E+01 : ! magnetic rigidity [T=m])

Process CostGrPt scanned over the grid:
RLmin = 4,0000000E+00 : ! min, half period (m]
RLmax = 4,0000000E+00 ! max. half period [m]
delRL = 4.0000000E+00 ! grid interval (m)
aMin = 2.9999999E-02 ! min, beam size [m]
aMax = 2.9999999E-02 ! max beam size [m])
dela 2.9999999E-02 : ! grid interval (m)
delvVmin = 2.8000000E+06 : ! min., voltage change (V]
delVmax = 2,8000000E+06 ! max. voltage change (V]
deldelV = 2.8B000000E+06 ! grid interval V]
etaMin = 1.0000000E-01 ! min. packing factor [ ]
etaMax = 1.0000000E-01 ! max. packing factor [ ]
delEta = 1.0000000E-01 : ! grid interval [ ]

The time required for the grid scan:
numGrPts = 1.0000000E+00 ! # of grid points [ )
delTime = 7,0312500E-02 ! grid scan time [s])

aveTime =

7.0312500E-02

! ave, case time
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Figure 2-17. HILDA Output C

Associated intermediate Reaesults:

FILE: CostGrPt.OUT VERSION: 910910
DATE: 91/10/24 // 15:51:21

1/0 variable types

implicit real {(a=h,0-2)

implicit integer (i~m)

IN
IDStation = 70 ! station for this calculation
numBeam = 16 ! number of beams
taul = B8.3333311E-05 ! charge {C]
sigo0 = 7.2000000E+01 ! undepressed tune [deg)
betaGamma = 3,1456658E-01 ! beta * gamma
beta = 3.,0007041E-01 ! v/c [)
Brho = 6.5157227E+01 ! magnetic rigidity [T-m]
RL = 4.0000000E+00 ! half period [m)
a = 2.,9999999E-02 ! beam radius [m]
delv = 2.8000000E+06 ! voltage gain [V]
eta = 1.0000000E-01 ! packing factor {1
ourT

perVoltDol = 2,3128332E-01:! voltage gain cost [$/delV)

AlSighAbar
alpha = 5,8725291E~01 ! ()
sigmaH = 3.0344951E+00 :! depressed tune {degq])
abar = 2.2546498E-02 :! an ave. beam size [m)
QIT
perv = 1.0956922E-05 :! perv
current = 3.5322086E+02 :! beam current [A)}
taup = 2.5951650E-07 :! pulse width (s]
E = 7.0000000E+05 :! ave. volt gain/HLP [V/m]
voltSec = 7.2664618E-01 ! volt seconds [V-5s])

ENDFILE: CostGrPt.OUT

Figure 2-18. HILDA Output D

FILE: ScQ30.00T VERSION: 910910
DATE: 91/10/24 // 15:51:20

I/0 variable types
implicit real (a-h, 0-2)
implicit integer (i-m)

IN
a = 3.000000E-02 :!beam edge radius [m]
RL = 4.000000E+00 :!'half period (m])
eta = 1,000000E-01 :!packing factor [ )
Brho = 6.515723E+01 :!magnetic rigidity [T-m}
sig0 = 7.200000E+01 :'!undepressed tune [deq]
numBeam = 16 ‘!number of beams [ )
ouT
dolTArray = 8.769912E+04 :!cost of quad array [$)
roTArray = 4.972594E-01 :!outer radius of quad array [m])
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Figure 2-18. HILDA Output D (continued)

Data and calculated Quadrupole parametera:
sigo = 7.200000E+01 :!undepressed tune [deg])
rWire = 6.340000E-02 :!inner wire radius (m)
rWo = 7.340000E-02 :'outer wire radius [m]
drWire = 1.000000E-02 :!wire thickness (m]
BWire = 3.141682E+00 :!field, inner wire radius (T)
Bwo = 3.637215E+00 :!field, outer wire radius [T]
Bprime = 4.955334E+01 :!'quad., field gradient [T/m]
avJ = 1.317847E+09 :!average current density [A/m**2)
R = 4.750000E~02 :'!aperture radius [m]
drWrap = 3.236777E-03 :!quad wrap, thickness [m)
pitch = 1.562736E~01 :!beam center to center (m]
endMag = 7.340000E~-02 :!length of magnet ends [m)
z1Mag = 5.46B000E-01 :!length of magnet iron (m]
wtScQuad = 5.329318E+01 :!weight of 1 SC quadrupole [kg)
costQuad = 4,757089E+03 :!cost of 1 SC quadrupole [$]
wt TArray = 1.316119E+03 :!weight of SC quad Array [kq)
dolTArray = 8,769912E+04 :!cost of SC quad Array [$]
SINGLE SC QUADRUPOLE ASSEMBLY
Radial dimensions
drPIC = 2.590000E-02 :!Pipes, Insulation and Cooling [m]
Individual radii
rPipe (1) = 4.750000E-02 :!'Pipes [m]
rPipe (2) 6.140000E-02 :!Pipes [m)
rInsul{l) = 4,950000E-02 :!Insulation (m]
rInsul (2) = 5,380000E-02 :!Insulation [m]
rInsul (3) = 5.810000E-02 :!'Insulation [m]
rCool (1) = 5.280000E-02 :!Cooling {m)
rcool (2) = 5.710000E-02 :!Cooling [m])
Areas, xy crossection
xyScQ 2.442143E~(2 :!One SC quadrupole [m**2]
xyWrap = 7.495908E-03 :!Wrap (stress), incl., shell [m**2)
xyCable = 4.297699E-03 :!Cable, SC + non-5C! [m**2]
xyPIC = 5.539599E-03 :!Tot. Pipes, Insul. & Cool. [m**2]
xyVac = 7.088219E-03 :!Vacuum, Beam pipe [m**2]
Volumes for One SC Quadrupole
volScQ = 1.335364E-02 :!Complete Quad. [m**3]
volWrap = 4.098763E~03 :!Wrap (stress), incl. shell [m**3]
volCable = 2.349982E-03 :!'Cable, SC + non-SC [m**3)
volPipe = 7.620263E~04 :!Pives, total [m*23]
vollnsul = 1.886015E-03 :!'Insulation, total [m**3]
volCool = 3.810132E-04 :!Cooling, total) [m**3)
volPIC = 3,029053E-03 :!Tot, Pipes, Insul. & Cool. [m**3)
volVac = 3.875838E-03 :!Vacuum, Beam Pipe [m**3)
Weights of Components in One SC Quadrupole
wtScCab = 6.377758E+00 :!SC Cable material (kg™
wtCabs = 1.344615E+01 :!non-SC Cable material {kg)
wtCable = 1.982391E+01 :!Total Cable Weight [kg]
wtWrap = 3.346927E+01 :!'Outer Wrap, includes shell {kqg]
wtPipe = 0.000000E+00 :!Pipe layers [kg)
wtInsul = 0.000000E+00 :!Insulation layers [kg)
wtCool = 0.0000COE+00 :!Cooling layers [kg)
wtScQuad = 5.329318E+01 :!Total of one SC Quadrupole [kg)

/
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Figure 2-18. HILDA Output D (continued)

Costs of Components in one SC Quadrupole
dScCab = 1.913327E+403 :1!SC Cable material [$)
dCabs = 6.723076E+02 :!non-SC Cable material [$)
dCable = 2.585635E+03 :!Total Cable, SC + non-SC [$)
dWrap = 8.367318E+02 :!Wrap (stress), includes shell ($)
The rest of the SC Quadrupole (channel)
dPipe = 0.000000E+00 :!Pipes [$]
dInsul = 0.000000E+00 :!Insulation {$]
dCool = 0.000000E+00 :!Cooling . ($)
dBalance = 1.334723E+03 :!Pipes, Insulation and Cooling [$])
costQuad = 4.757089E+03 :!Total, one SC Quad. (channel) [$)
COMPLETE ARRAY of numBeam SC Quadrupole channels + Wrap
Radial dimensions
xXAScQ = 6.250942E-01 :!Width of the SC Quads [m]
yAScQ = 6.250942E-01 :!Height of the SC Quads {m)
dxAOtC = 3.906839E-02 :!Array outer collar,dr [m)
dyAOtC = 3.906839E-02 :!Array outer collar,dr fm)
Areas, xy Cross Section
xyAScQ = 3.907428E-01 :!SC Quadrupole bundle [m**2]
xyAVac = 1.134115E-01 :!Vacuum, Beam Pipes [m**2)
xyAOtC = 1.037911E-01 :!Array outer Collar [m**2]
XyAQuad 4.945339E-01 :!Array, Total xy Area [m**2]
Volumes
volAScQ = 2.136582E-01 :!SC Quadrupole bundle [m**3)
volAVac 6.201341E-02 :!Vacuum, Beam Pipes (me*3)
VvolAOtC = 5.675295E-02 :!Array outer Collar [m**3]
volAQuad = 2.704111E-01 :!Array Total xyz space [m**3]
Weights of Array Components (Total for numBeam SC Quads.)
wtAScCab = 1.020441E+02 :!SC Cable material {kg]
wtACab$s = 2.151384E+402 :!non-SC Cable material (kg]
wtACable = 3.171825E+02 :!Total Cable Weight [kq])
wtAWrap 5.355083E+02 :!Outer Quad. Wraps (stress) [kg]
wtAPipe = 0.000000E+00 :!Pipes {kg]
wtAInsul = 0.000000E+00 :!'Insulation layers (kg)
wtACool = 0.000000E+00 :!Cooling layers [kg)
wtAScQ = B.526909E+02 :!SC Quadrupoles [kg)
WtAOtC = 4.634276E+02 :!Outer Array collar [kg]
wtTArray = 1.316119E+03 :!Total of the Complete Array (kg}
Costs of Array Components (Total for numBeam SC Quads.)
dAScCab = 3.061324E+04 :!SC Cable material [$)
dACabs = 1.075692E+04 :!non-SC Cable material {$]
dACable = 4.137016E+04 :!Total for cable, SC + non-SC [$§]
dAWrap = 1.338771E+04 :!Quad Wraps (stress) [§])
dAPipe = 0.000000E+00 :!Pipes ($]
dAInsul = 0.000000E+00 :!Insulation layers [$)
dACool = 0.000000E+00 :!Cooling layers [$]
dABalance = 2.135557E+404 :!Total for Pipes,Insul.,Cool. [$]
dAQuad = 7.611343E+04 :!Total for the SC Quads [$)
dAOtC = 1.158569E+04 :!Outer Array collar [$)
dolTArray = 8.769912E+04 :!Total for Array Assembly {s)
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Figure 2-18. HILDA Output D (continued)

DATA LOADED FROM FILE ScQ30.DAT
CHOOSE MATERIALS for the SC Quadrupole
iscCab = 1 t! SC wires { )
icabs = 1 :! non-SC wire space [ ]
iWrap = 1 1! Wrap (stress) [
iPipe = 1 :! vac., & outer Quad pipes [ ]
nPipe = 2 ! & of pipes [}
drPipe = 2.000000E-03 :! thickness of pipes [m])
iInsul = 1 ;! insulation layers
nlnsul = 3 1! # of layers [ )
drInsul = 3.300000E-03 :! thickness of layers {m)
icool = 1 ;! cooling layers
nCool = 2 :! # of layers ()
drCool = 1.000000E-03 :! thickness of layers {m]
CHOOSE MATERIAL for the Array of numBeam Quadrupoles
iAWrap = 1 :! outer wrap (collar) [ )
SET LIMITS and PARAMETER VALUES
Quadrupoles
drWmin = 1.000000E~-02 :! minimum wire thickness [m)
drWmax = 1.000000E-01 :! maximum wire thickness [m]}
dShell = 1.500000E-03 :! outer shell thickness [m]
Non-Quadrupole free space
zQend = 0.000000E+00 :! end packaging for the quads. (m]
fZSpace = 1.000000E-01 :! non-magnet space limit, frac.of L [ )
Coefficients for the Superconducting Quadrupole Calculation:
cR1 = 1,250000E+00 :! aperture radius = R = cRl*a+cR2 {1
cR2 = 1.000000E-02 :! [m]
Quadrupole Wrap (stress) scaling parameters
sWrap = 1.000000E~02 :! wrap thickness for BWrap, rWrap [m]}
BWrap = 5.000000E+00 :! field for scaling the Quad. Wrap [T]
rWrap = 1.200000E-01 :! radius used with BWrap [m]
Quadrupole SC wire inner radius limit
rWtRL = 5.000000E-01 :! rWire .1lt. eta*RL [m])
Array of numBeam Quadrupolaes
fCollar = 2.500000E-01 :! wrap (collar) width, frac. of pitch [ ]
Quadrupole (channel) Assembly-Complexity Cost factor
BFactor = 3.900000E-01 :! times the Quad (Wrap + Cable) cost [ ]
Array Assembly-Complexity Cost factor
cAFact = 1,000000E+00 :! times the Array cost [ )
MATERIAL USED in the SC Quadrupole Array
Superconducting Cable
iScCab = 1 :! ID 4 of data set
IDScMat = 'NbTi Niobium Titanium vt
denScMat = 7.600000E+03 :! material density [kg/m**3)
uCScMat = 3.000000E+02 :! unit cost [$/kg]
qFScMat = 1.000000E+00 :! quantity factor [ ]
cFScMat = 1.000000E+00 :! complexity factor [ ]
Current density parameters and Field limits
cJCoeff = 2.900000E+09 :! slope of cJ curve [A/m**2)
cJBn = 1,000000E+01 :! numerator B parameter [T)
cJBd = 5.000000E+00 :! denominator B parameter [T]
rLamda = 3.571000E-01 :! S C wire pack. fraction [T)
BWomax = 1,000000E+01 :! B at outer wire, maximum [T)
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Figure 2-18. HILDA Output D (continued)

Non SC Cable

.
.

1
.t
HR

1

1

ID # of data set

material density
unit cost
quantity factor
complexity factor

ID # of data set

material density
unit cost
quantity factor
complexity factor

ID # of data set

material density
unit cost
quantity factor
complexity factor

ID # of data set

‘No Data on this Material
i

t
1
!

.
..

material density
unit cost

:! quantity factor

complexity factor

ID # of data set

Data on this Material

material density
unit cost
quantity factor
complexity factor

ID # of data set

'No Data on this Material

.
.

icabs = 1
IDCMat = 'Cu Copper
denCMat = 8.900000E+03
uCCMat = 5.000000E+01
qFCMat = 1.000000E+00
cFCMat = 1.000000E+00
Quadrupole Wrap (Stress)
iWrap = 1
IDWMat = !Steel
denWMat = 8.165700E+03
uCWMat = 2.500000E+01
gFWMat = 1.000000E+00
cFWMat = 1.000000E+00
Array Outer Wrap (Collar)
iAWrap = 1 :
IDAOtMat = 'Steel
denAOtMat = 8.165700E+03
uCAOtMat = 2.5000C0E+01
qFAOtMat = 1.000000E+00
cFAOtMat = 1.000000E+00 :
Pipes , Vacuum and around
iPipe = 1
IDPMat =
denPMat = 0.000000E+00
uCPMat = 1.000000E+00
gFPMat = 1.000000E+00
cFPMat = 1,000000E+00
Insulation (thaermal)
iInsul = 1
IDIMat = 'No
denIMat = 0.000000E+00
uCIMat = 1,000000E+00
gFIMat = 1.000000E+00
cFIMat = 1.000000E+00
Cooling Layers, data sets
iCool 1
IDClay =
denClay = 0.000000E+00
uCCLay = 1.000000E+00
gFCLay = 1.000000E+00
cFCLay = 1.000000E+00
ENDFILE: ScQ30.00T

material density
unit cost
quantity factor
complexity factor

] o !
[kg/m**3])
[$/kg]
[1
[]

L] ol
[kg/m**3]
[$/kg)
{1

i

] o
[kg/m**3]
{$/kqg)
(]
[)

Quad outer insulation layer

L] o)
[kg/m**3]
[$/kg]
()
()

] ot
(kg/m**3)
[$/kg)
[

[}

1 o !
[kg/m**3]
[$/kg)
[

[
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Figure 2-19. HILDA Output E

FILE: StrucCore.OUT

DATE: 91/10/24 // 15:51:21
1/0 variable types
implicit real (a=h,0~2)

implicit integer (i-m)
IN
voltSec = 7,2664618E-01
numBeams = 16
roTArray = 4,9725944E-01
voltGain = 2.8000000E+00
halfPeriod = 4.0000000E+00
our
dolAStruct = 5.598942D+05
The intermediate values
COST OF COMPONENTS
numdolHlp = 6
dolAm = 4,668889D+04

dolCorH
dolCelH
dolCCI
dolGI
dolDiC

6.373007D+04
4,489275D+04
8.903680D+03
3.934876D+05
2.191167D+03

"

MATERIALS USED:
numidMat =
idAm =
idWTape
idCsM =
idCH =
idIN =
idDicC =
idGp =
idGI =

flags

oo s NN B -

COMPONENT WEIGHTS:
numwt Hlp = 20

Half Lattice Period weights

wtAStruct = 2.,298129D+04
wtAm = 9,337778D+03
wtCorH = 6.438227D+03
wtCelH = 4.535217D+03
wtCCI = 4.313443D+02
wtGI = 9.187461D+02
wtDiC = 1.319980D+03

selact

VERSION:

:!volt-sec per half period
:!'number of beams

:louter radius, quad array
:!peak acc. per half period
:!lattice half-period length

:'HLP cost of acc. structure

calculated and returned are:

:!'number of costs returned
:!lcore amorphous material
:lcore housing

:!cell housing

:!'core/cell housing insulation
:!gap insulator

!dielectric coolant

910910

(V-s]
(]
[m]
[MV)
{m]

[s)

[$]
[§)
(]
($]
(8}
[$]

material from StrucCore.dat

14 of
:!lcore
:lcore

winding amorphous tape
tape width

tlcore submodule housing
:!1cell housing

:tcore/cell insulation
:!dielectric coolant

:fgap vacuum pressure range
:!'gap insulator

used material flags returned

:!number of weights that are returned

for the acceleration structure

:'HLP weight of acc. structure [kg]
t!core amorphous material [kqg])
:lcore housing [kgl
:!cell housing [kg)
:!core/cell housing insulation [kg]
:!gap insulator [kg)
:!'dielectric coolant [kg)
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Figure 2-19. HILDA Output E (continued)

Sub component weights
wtCore = 6.669841D+02 :lamor., material, per core {kg]
wtCEP 5.073117D+01 :thousing end plate, per core [kg)
wtCOH = 1.989284D+02 :!louter housing, per core [kg)
wtCOB = 1.594825D+02 :linner bobbin, per core {kg)
wtCHPC = 4.598733D+02 :'housing total, per core [kg]
WwtCEI = 5.714488D+00 :lend plate ins. (2 per core) [kg)
wtCOI = 1.096856D+01 :louter housing (ins./core) [kg]
wtCI = 2.239754D+01 :!insulation total, per core {kq]
wtCHIE = 8.412764D+00 :tcell hous. (end ins. l/core) [kg]
wtCHI 8.412764D+00 :!cell hous. insulation, total {kg]
wt HSGEP = 3.985775D+02 :!'cell hous. end plate, pair [kg]
wtOHR = 3.440581D+03 :!tcell hous. supp. ring [kqg])
wt HSGGI = 6.960581D+02 :!gap insulator support ring (kg]

CELL/CORE PARAMETERS:
numCP =29 :!'# of parameters returned
numCore = 1.400000D+01 :!'# of cores & PFNs per cell [
celll = 3.591196D+00 i1z axis, cell length (m)
gIL = 2.333333D+00 :!gap insulator length [m]
pv = 2.000000D0-01 t!lrequired PFN peak per core [MV])
tl = 3.000000D-02 :lgap insulator width [m)
QAl = 4.088040D-01 :!support lgth., quadrupole, etc. [m)
z1lH = 2.000000D-02 :!cell housing widths, 2z axis [m])
zZ1PH = 1.000000D~02 :!lcore housing widths, z axis (m]
z1Ci = 1.015228D-02 :!z length, core insulator [m)
delTC = 2.000000D-02 :!core housing top [m}
delBC = 2.000000D-02 :!core housing bottom [m]
delCH = 2.309401D-02 :!'cell housing top (m]
riH = 5.469854D-01 :!tinside radius to acc. gap insul.([m)
delRg = 5.128205D~-02 :!'radial cell-acc. gap [m])
riM = 6.282674D-01 :!'core housing inner radius [m]
ric = 6.482674D-01 :!'core inside radius [m]
roC = 7.759823D-01 :loutside radius of core [m]
roCore = 8.061345D-01 :!core housing outer radius [m}
rolsG = 8.292286D-01 :!cell housing outer radius [m]
achAM = 2,906585D-01 :lacc, cell amor. mat. area [m**2]
pFAm = 8.000000D-01 :!packing fraction [ )
acC = 2.595165D-02 :!core cross sectional area [m**2)
wTape 2.032000D-01 :!core amor. mat.tape width [m}
hC = 1.277148D~01 :theight of amorphous material [m])
aRC = 6.285177D-01 :!core amor. mat. h/w ratio [ )
fQ = 1.100000D+00 :!fquad array per. supp. factor [}
glLmax = 2.,872957D+00 :!max. gap ins. length [m]
aRCmax = 4.000000D+00 ¢!'max. hth/wdth ratio, core [ ]
QAlmin = 4.,000000D-01 :!min. quad. support length [m)

MATERIAL DATA Values actually used:

Core amorphous material
denAm = 7.180000E+00 :!density [gm/cm**3]
cFacAm = 1.000000E+00 :!complexity factor [
gFacAm = 1.000000E+00 :!quantity factor [
uCostAm = 5.000000E+00 :tunit cost [$/kg)
pFAm = 8.000000E-01 :!radial packing fact......v.vvuuns []
delBAm = 2.500000E+00 :1flux swing [T)

Core tape widths
wTape = 2.032000E+01 :!tcore tape width [cm)
aRCmax = 4,000000E+00 :!max. height/width 0

57




Figure 2-19. HILDA Output E (continued)

:!density
:!complexity

'quantity

:lunit cost

:!density
t!lcomplexity

'quantity

:'unit cost

:lelasticity

s !density

:!complexity
:lquantity

:lunit cost
:!break down

:!density
:!complexity
:lquantity

tunit cost

:!break down

:!density

!complexity
'quantity

:lunit cost
:!'break down

straength

Core Sub Module housing material
denCSM = 8.165700E+00
cFacCsM = 1.000000E+00
gFacCsSM = 1.000000E+0Q0
uCostCSM = 9,.898700E+00

Cell Housing material
denCH = 8.165700E+00
cFacCH = 1.000000E+00
qFacCH = 1.000000E+00
uCostCH = 9,898700E+00
emCH = 3.000000E+01

Core & caell Housing 1Insulation
denIN = 9,850000E-01
cFacIN = 1.000000E+00
qgFacIN = 1.000000E+00
uCostIN = 2.064170E+01
bVoltIN = 1.970000E+02

Gap Insulator
denGlI = 3.717000E+00
cFacGI = 1.000000E+00
qFacGI = 1.000000E+00
uCostGI = 4.,282876E+02
bVoltGl = 1.200000E+01

Dielectric coolant
denDiC = 1.800000E+00
cFacDiC = 1.000000E+00
qFacDhiC = 1.000000E+00
uCostDiC = 1.660000E+00
bvoltDiC = 3.900000E+01

Acc, Gap Voltage break down
bVRGap = 0.500000E+02

ENDFILE: StrucCore.OUT

factor
factor

factor
factor

modulus

factor
factor

voltage

factor
factor

voltage

factor
factor

voltage

[gm/cm**3)
()

()

[$/kq]

[gm/cm**3)

8]

8]

[$/kg]

(10**6 1lb/in**2]

[gm/cm**3]
[

(]

($/kg]

(kV/cm]

[gm/cm**3)
[)

(]

($/kg])
[kV/cm])

[gm/cm**3]
(]

(]

[$/kg]
[kV/cm]

[kV/cm)

Figure 2-20. HILDA Output F

DATA FILES USED:
See the 3000MV example in the HPD disks

PROCESS

VERSIONS:

See the 3000MV example in the HPD disks

ENDFILE:

CostVv1.010
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The Module Data Files

Each HILDA data file discussed below is associated with a HILDA module of the same name. The module
reads the file module name .DAT to get the data it requires. For example module ScQ30 reads parameter data
from the file ScQ30.DAT.

CalCost1.DAT Beam Parameter File

It is necessary to define the beam parameters for each station that the user intends to use HILDA to find a
minimum-cost design. Those parameter values are set in this data file which is subsequently read by the
HILDA module CaiCost. In Figure 2-21, CalCostl DAT below we show the contents of that file as used
in this example.

This particular data file can contain data for more than one station; for the 4MJ driver example it contained
data for seven stations. The example we are presenting here produces a design for the seventh station, which
we have identified as station 70. This data set could have been used for the 3MV example, since it contains
beam data for the 3MV station. Also this data set could also be shortened to contain only the beam data for
station 70, the 3000MV station.

We should note that HILDA is very modular in design. Future versions of HILDA can in principal have
modules that modify this data file to find what beam parameter values give the minimum-cost design of a
driver. For example, the number of beams could be adjusted. We could easily do that right now with this
version by noting that the station number is simply a way of identifying a data packet. If we wished we
could add more data packets for a given point along the machine and then compare the cost of the various
designs that HILDA produced.

The total amount of charge in the beam at this station is 0.00133333 Coulombs. This is transported in 16
beamlets. The particles that make up the beam have 200 atomic mass units and are ions with a positive
charge state of 3. At this station the cumulative acceleration voltage that the machine has supplied is 3000
million volts. The undepressed tune (single particle, no space charge) of the beam is 72 degrees. The
normalized emittance of each beam in the 16 beams is 0.000001 & [meter-radians).

In the file CalCostl.DAT we also have a file name, which in this example is shown as CostV1.070. The
name fumnished before the run is immaterial. In some data files you may see the file name set to null.
HILDA enters the name of the file that contains the output for the minimum-cost design at the station. In
this case the name became CostV1.070. If no minimum-cost design is found, this file name is not
necessarily updated; the program asks the user what to do.

CostV1.DAT Parameter Search Space

This data file is associated with the module CostV1 that does the parameter space scan. It is different from
the 3MV example data set only in the values of the parameters. The space that is scanned over is limited,
here, to one point; the minimum-cost design parameter values. The structure half-period RL, the maximum
beam radius a, the voltage gain delV' that the station supplies, and the quadrupole packing fraction eta are
set by the data in this file. At each point (RL,a,delV eta) in this space HILDA determines if the beam can
be transported. If it cannot be transported, then HILDA will NOT try to find a minimum-cost design; it will
skip to the next point in the parameter space. The data file CostV1.DAT,shown in Figure 2-22,
CostV1.DAT , defines the parameter space by setting the limits and the number of points for each
parameter. In this particular example we limit the search to one point.

As we mentioned before, the contents of the logfile CostV1.LOG can vary. This is controlled by setting the
paramelter iLog in this data file.
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AlSighBar.DAT Beam Dynamics Parameters

HILDA solves equations that pertain to the dynamical beam transport problem. Information about the
model is in the section The HILDA Model: Beam Transport Equations of this report. We note here that the
parameters in this data are the same for all the stations in the 4MJ driver example from which this example
was extracted. See Figure 2-23, AlSighAbar DAT.

TranMod.DAT Transport Module Selection Data

HILDA first asks whether the beam can be transported. For those points in the parameter space for which
the beam CAN be transported HILDA designs appropriate elements, The module TranMod reads data that
selects which design modules to use. Both stations 10 and 70 use SC quadrupoles, so this data set is the
same for both stations; all the 4MJ driver stations use SC quadrupoles. In principal, this data could have
been sel 1o choose an Fe quadrupole. See Figure 2-24, TranMod.DAT.

FeQ20.DAT Fe Quadrupole Design Data

The HILDA module FeQ20 designs an iron quadrupole. This data set furnishes all the necessary design
information. The module FeQ20 is never used for this example, so this data set is not required to be
present. See Figure 2-25, FeQ20.DAT.

ScQ30.DAT SC Quadrupole Design Data

The module ScQ30 designs a superconducting quadrupole. This module is similar to the module FeQ20.
The ScQ30.DAT data set furnishes information needed for the superconducting quadrupole. This data set is
identical to the one used in the 3MV station. We thus refer the reader to the description in that example. See
Figure 2-26, ScQ30.DAT.

We note, however, that the CostV1.070 file is the final arbitrator as to what parameter values are used for
the SC quadrupole file. It happens that for the examples given here we do not change the selection of
materials; however, it is possible to do that. The information written in the CostV1.070 logfile will
contain the values used for the design that is recorded in that file.

StrucCore.DAT Acceleration Cell Design Data

The module StrucCore designs an acceleration-transport module. The basic data for this module is in the file
StrucCore.DAT. This data set is identical to the one used in the 3MV station. See Figure 2-27,
StrucCore DAT. We thus refer the reader to description in that example. We should note, however, that
both the 3MV and the 3000MV examples have been extracted from the 4MJ driver example. Finding the
minimum-cost design requires much more effort than is implied here. For example, both the 3MV and the
3000MV examples use the same amorphous tape width. However, to determine which of the tape widths
yields a minimum-cost design requires that we run HILDA with the available tape widths. The present
version of HILDA requires that the StrucCore.DAT file be correctly set for each tape width that HILDA
investigates; the user must do this. Future versions of HILDA will contain modules that easily set such
parameters. It is rather straight forward to build modules that automatically search over the tape widths and
choose for us the correct tape width. The modular construction of HILDA can accommodate many useful
extensions.
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Figure 2-21. CalCostl.DAT

c FILE: CalCostl.DAT
c DATE: 910922

c¢ EXAMPLE: drdMJ @ 3000MV
At each station this data defines the basic parameters of the beam that
is being transported. Upon completion of the cost minimization calculation
at the station, the file CostVl.nnn, where nnn is the value of IDStation,
will contain all the design information.

Basic Beam Data for 4MJ driver at 3.0 MV

varName varValue data type comment

IDStation = 10 tinteger ! station identification #

Qsys = 1,333333e-3 :real ! system charge [C]
N = 16 tinteger ! number of beams [ ]
Amu = 200 treal ! atomic no. [amu]
q = 3 sreal ! charge state [ ]
\ = 3 ireal ! cumulative voltage [MV]
sig0 = 72.0 ireal ! undepressed tune [deg}
epsn = le-6 treal ! nor., emittance [m-1)
filename = 'null’ :character ! name of file

Basic Beam Data for 4MJ driver at 10.0 MV

varName varValue data type comment

IDStation = 20 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge {C]
N = 16 tinteger ! number of beams [ ]
Amu = 200 :real ! atomic no. {amu)
q = 3 ireal ! charge state [ ]
v = 10 :real ! cumulative voltage [MV]
sig0 = 72.0 ireal ! undepressed tune [deg])
epsn = le-6 ireal ! nor. emittance [m=-r]
filename = 'null’ :character ! name of file

Basic Beam Data for 4MJ driver at 30.0 MV

varName varValue data type comment

IDStation = 30 rinteger ! station identification #

Qsys = 1,333333e-3 treal ! system charge {c]
N = 16 rinteger ! number of beams {1
Amu = 200 ireal ! atomic no. [amu)
q = 3 ireal ! charge state [ ]
\Y = 30 ireal ! cumulative voltage [MV])
sig0 = 72.0 treal ! undepressed tune [deg)
epsn = le-6 ireal ! nor. emittance {m-r}
filename = 'null’ :character ! name of file
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Figure 2-21.

varName

IDStation
Qsys

N

Amu

q

\Y

sig0

epsn
filename

varName

IDStation
Qsys

N

Amu

q
v

sig0
epsn
filename

varName

IDStation
Qsys

N

Amu

q

A"

sig0

epsn
filename

varName

IDStation
Qsys

N

Amu

q

v

sig0

epsn
filename

Basic Beanm

Bagic Beam

Basic Baeanm

varValue

= 50

= 1,333333e-3
= 16

= 200

= 3

= 300

= 72,0

= le-6

= 'null’

varValue

= 60
= 1,333333e-3
= 16
= 200
= 3
= 1000
72.0
= le-6
= 'null’

varValue

= 70

= 1,333333e-3
= 16

= 200

= 3

= 3000

= 72,0

= le~6

= 'CostV1.070'

Data for 4MJ

Data for d4MJ

Data for 4MJ

CalCostl.DAT (continued)
Basic Beam Data for 4MJ driver at
varValue data type
= 40 :integer
= 1,333333e-3 treal
= 16 :integer
= 200 ireal
= 3 ireal
= 100 rreal
= 72.0 ireal
= le-6 ireal
= 'null’ icharacter

driver at

data type
:integer
ireal
rinteger
ireal
ireal
ireal
sreal
sreal
:character

driver at
data type

:integer
ireal
:integer
:real
rreal
ireal
ireal
treal
:character

driver at

data type
tinteger
:real
tinteger
sreal
sreal
ireal
ireal
ireal
:character

100.0 MV
comment

]

! system charge
! number of beams
! atomic no.

! charge state
! cumulative voltage
! undepressed tune

! nor. emittance

! name of file

300.0 MV
comment

1
! system charge

! number of beams

! atomic no.

! charge state

! cumulative voltage
! undepressed tune

! nor., emittance

! name of file

1000.0 MV
comment

station identification #

number of beams
atomic no.
! charge state
! cumulative voltage
! undepressed tune
! nor. emittance
! name of file

1
! system charge
1
1

3000.0 MV
comment

'

! system charge

! number of beams

! atomic no.

! charge state

! cumulative voltage
! undepressed tune

! nor. emittance

! name of file

station identification #

station identification #

e i o - = = o > " = = -~ 4 = o - T - - - - = a4 - - — R+ o= o o =" -

e e e e S T - e " - o " = .~ - " = = " = = - - - = = " {5 "= v > - - ———

station identification #
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Figure 2-21, CalCostl.DAT (continued)

There is one (1) group of the above data for gach of the stations
in the system. The actual order of the data is immaterial;
however, the values that follow the parameter IDStation are

for that IDStation, Thus each data group contains 8 values

as shown above, The data consists of a variable name terminated
by at least one trailing blank, then an = sign followed by the
value of the variable, followed by the data type represented

as :<type>, The variable names are as shown above. The value

of each data item is represented by a valid Fortran constant.
In particular a ‘'text string' is used for the string text that
names the file identifier of the file containing the associated
parameter values found when calculating the minimum cost.

c ENDFILE: CalCostl.DAT

Figure 2-22, CostV1.DAT

¢ FILE: CostV1.DAT
¢ DATE: 910923

¢ EXAMPLE: drdMJ @ 3000MV
c Parametaers that are assigned values from a data file:
¢ At the current station, HILDA cycles through the points

¢ in the parameter space defined below.

Beam Parameter Range Data for 4MJ driver at 3000.0 MV

* varName varValue data type comment

c IDStation 70 iinteger ! station identification #
RLmin = 4.00 :real ! min. structure half-period [m]
RLmax = 4,00 ireal ! max. structure half-period (m])
numRL = 1 ireal [ of grid points [}
aMin = 0,03 ireal ! min. beam size (max) [m)
aMax = 0.03 rreal ! max. beam size (max) [m]
numa = 1 ireal L of grid points { )
delVmin = 2B800.0E3 ireal ! min. voltage gain (V]
delVmax = 2800.0E3 ireal ! max. voltage gain (V]
numDelV = 1 treal L of grid points [ )
etaMin = 0.10 ireal ! min. quad. packing fraction { )
etaMax = 0.10 1real ! min. quad. packing fraction | )
numEta = 1 ireal I of grid points { ]

¢ Log File printing is set using the value of ilLog.
iLog =3 OK designs logged to the terminal, skipped points not logged
OK and skipped designs logged to the terminal

OK and skipped designs logged to CostV1.LOG

OK designs logged to CostV1,LOG

ONLY Minimum designs logged to CostVi.LOG

NO designs logged to CostV1.LOG or to the terminal

U D WwWwN O

c ENDFILE: CostV1.DAT
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Figure 2-23. AlSighAbar.DAT

FILE: AlSighAbar ,DAT

DATE: 900420

EXAMPLE: dr4MJQ3000MV

This is the same as for the 3MV example. See Figure 2-10.
ENDFILE: AlSighAbar.DAT

(eI I ¢]

(o]

Figure 2-24. TranMod.DAT

¢ FILE: TranMod.DAT
DATE: 910923
c EXAMPLE: dr4MJ@3000MvV
This is the same as for the 3MV example. See Figure 2-11,
¢ ENDFILE: TranMod.DAT

0

Figure 2-25. FeQ20.DAT

¢ FILE: FeQ20.DAT
DATE: 910923
¢ EXAMPLE: dr4MJ@3000MV
This is the same as for the 3MV example. However this 3000MV example does
not use an Fe quadrupole, so the module FeQ20 is never called. This means
that this data set is never read. See Figure 2-12,
¢ ENDFILE: FeQ20.DAT

(4]

Figure 2-26. ScQ30.DAT

¢ FILE: ScQ30.DAT
¢ DATE: 910923
¢ EXAMPLE: dr4MJ@3000MV
This is the same as for the 3MV example. See Figure 2-13,

¢ ENDFILE: $cQ30.DAT

Figure 2-27. StrucCore.DAT

¢ FILE: StrucCore.DAT
DATE: 910923
¢ EXAMPLE: dr4MJ@3000MV
This is the same as for the 3MV example. See Figure 2-14.
¢ END: StrucCore.DAT

[¢]




C. HILDA MODULE DATA FILES

The HILDA modules can, when needed, read one or more associated data files. These files are fully formatted
and as such are meant to be self-explanatory. In this section we give a short explanation of these data files.

HILDA reads the data using HILDA utility modules. It then creates a temporary file that contains only the
data that the module needs; all comments have been removed. The module reads the temporary data file and
that file is then deleted. Exarnples of the HILDA module data files are given above in this report. The reader
should refer to one of these data files. Also the complete data files for the examples are in the example
folders dréMJ @ 3MV, drdMJ @ 3000MV, and dréMJ Data that are on the HPD disks. A guide to these
disks is in the Appendix .

The actual data line is of the following form:
Variable name = value :datatype ! comment [units]

A potential data line cannot contain a ¢, C, or * in column 1. There is an exception: a double asterisk **
in column 1 and 2 can be a potential data line. Any line in a data file that is NOT a potential data line is
simply skipped by the HILDA input routines. If a line is a potential data line, the HILDA input routines
look for an equal sign, =. If the line does not contain an = sign, it is skipped. If the line contains an equal
sign the data value is written to the temporary file for the module to read. The data value is the information
that is to the right of the = sign and to the left of the : symbol.

The data value is assumed to be a valid FORTRAN constant that agrees in type with the type specified in
the data line. If no data type is specified, the FORTRAN implicit convention is used for numbers. Those
variables that begin with i, j, k, I, m, n are integers; the rest are real numbers. The data values in the data
lines are written into the temporary file in the same order as they appear in the data file. This order is the
order that the module reads them and should NOT be changed.

The variable name that appears in the data file is the name of the variable in the module to which the value
is assigned. HILDA has input routines that can find data by the name of the variable. When 1 module uses
such a routine, the data value is assigned to the named variable; the data type is determined by the
information after the colon sign, :.

From the above discussion it is obvious that for some HILDA modules the only necessary information in
the data line is the value of the variable. For others the variable name, value, and data type are required. The
data files in the examples have the correct information, as required by the associated modules. We thus
strongly recommend that the user modify ONLY the data values in the data lines.

The lines that are not data lines are simply comments that explain the data; they can be deleted, or more
comment lines can be added to the data in the file. The temptation is to eliminate all such comment lines.
However, HILDA does not spend much time reading data and it is often the case that the ONLY record of
what the data means is in the comments in the data file. We also point out that the data file will appear in
the HILDA CostV1.NNN logfile and as such serves as a record of the parameter values used in the
minimum-cost design. The information in the comments can be quite informative in that context.

One more comment should be made. Future versions of HILDA will produce files that can be read by

programs that help in analyzing the output. A well-formatted data file, with comments that explain the
contents, is very useful when generating a report about the HILDA run.
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D. ANALYZING HILDA RESULTS

HILDA finds a minimum-cost design and generates output that defines the design. This can be done at
different stations along the machine, and it can be done at the same station with different parameter values.
The primary purpose of HILDA is to find the cost of the design. There are available programs such as
spreadsheets that can analyze the results, compare results at different stations, make estimates and produce
graphs. They can also produce well formatted reports. Future versions of HILDA should expand its
capability to prepare input files for such programs, rather than trying to duplicate their functions.

There is included in the HPD disks, in the folder HILDA on ILSE., the ILSE example. This example

illustrates how a spreadsheet can be used with to analyze the results produced by HILDA. The report in that
folder used the application EXCEL by Microsoft Corporation.
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3. THE HILDA MODEL

A. INTRODUCTION

In this section of the Hilda Program Document we describe the model that furnishes the basis of the HILDA
cost calculation.

As modeled by HILDA, a Heavy Ion Linear Induction Driver consists of an injector, an acceleration-
transport section, a final focus drift-compression section, and an interface to the target chamber. The initial
particle beam for the driver is fumished by the injector. After leaving the injector, induction modules with
specified gap voltages AV accelerate the beam to the design energy. As the beam gains energy and moves
through the system, quadrupole focusing elements are used to keep the beam focused. This is done in the
acceleration-transport section The final focus section compresses and focuses the beam; as required by the
target in the reactor chamber.

At stations selected along the acceleration-transport section HILDA designs acceleration modules and
focusing elements. For each design HILDA estimates the cost of the complete module. The principal
quantity that HILDA furnishes is the dollar cost per voltage gain ($3/AV) at a selected station. See Figure 3-
1, Acceleration-Transport Module Cost. The total cost of the acceleration-transport section can be estimated
by selecting a suitable number of stations along the machine, calculating the cost of the module at each of
these stations and then calculating the total integrated cost. The cost of the driver without the reactor
chamber can be obtained by adding the cost of the injector, the final focus section, and the interface to the
reactor chamber.

The present version of HILDA does not have modules that estimate costs in sections other than the

acceleration-transport section. Because of its modular construction a future version of HILDA could easily
accommodate such modules.

Figure 3-1. Acceleration-Transport Module Cost
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B. BEAM TRANSPORT EQUATIONS

A station in the acceleration-transport section of the driver is selected by the user. At this station HILDA
designs an acceleration-transport module, which consists of an acceleration cell and quadrupole focusing
elements, and then retumns the cost of that module. HILDA determines whether the particle beam can be
transported before designing the module. If the beam cannot be transported there is no reason to proceed
with the module design.

The model that HILDA uses to determine whether the beam can be transported is described in this section.

For each station the user furnishes the primary beam parameters as shown below.

Name value Description Units
Qsys 1.33E-3 total system charge [C]

N 16 the number of beams

Amu 200 number of alomic mass units (amu]
q 3 beam ion charge state

\Y 3 total voltage gain at the current station MV]
sig0 72 undepressed tune, no space charge {deg]

epsn 1.0E-6 normalized emittance, no [m-1]

The parameter values that we describe as user input, i.e., furnished by the user, can be found in the data sets
of the examples furnished in this report; the parameter values have been taken from the 3MV example. See
Example 1 of this report.

After this data has been supplied it is necessary to specify the limits for the parameters that HILDA will
vary as it proceeds to search for a minimum-cost design. The table below identifies the parameters and
shows values taken from the 3MV example in this report.

RLmin 0.35 min. structure half-period {m]
RLmax 0.35 max. structure half-period [m]
numRL 1 number of points

aMin 0.035 min. beam size (maximum) [m]
aMax 0.035 max. beam size (maximum) {m]
numa 1 umumber of points

delVmin 7000 min. voltage gain vl
delVmax 7000 max. voltage gain vl
numDelV 1 number of points
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etaMin 0.40 min. quadrupole packing fraction (]
etaMax 0.40 max. quadrupole packing fraction []
numEta 1 number of points

The search grid parameter values shown here restrict HILDA to exactly one point in the parameter space;
this would not be the case when finding a minimum-cost design.

We have used the HILDA names for the parameters in the above tables. In the rest of this section we will
use the following:

HILDA Equations Description Units
Qsys Q total system charge [C]
N N the number of beams
Amu A number of atomic mass units [amu]
q q beam ion charge state
\% \Y cummulative voltage at the current station MV]
sig0 Co undepressed tune, no space charge (1
epsn €n normalized emittance, no 1t [m-1]
RL L structure half-period [m]
a a maximum beam size [m]
delv AV voliage gain vl
eta n quadrupole packing fraction

With this information available HILDA uses the procedure KenVar to calculate the following quantities.
mg = 931.50 atomic mass unit MeV]
l = QN charge per beamlet [C]
By = sqr(((@V)AmoA)) 2 + 2+ (qV)(moA) ) [
Y = squ( By 2+1) [
B = By (]
Bp = 3107+ By *)AQ) magnetic rigidity (T-m]

HILDA then uses this information to solve equations pertaining to the beam dynamics. The basic equations
used are summarized below. We define the quantities:

Gp = B Magnetic quad. gradient [T/m]
Gg = E'W Electric  quad. gradient [V/m/s]
G = GporGg Quad. gradient

cos(Go) = 1.[(m2(3-2n) (G/Bp)2 L4])/6 undepressed tne

We note that the quantities 6o, M, L, are input parameters and Bp has been calculated. This the above
formula for cos(G) determines the quadrupole strength needed to focus the beam.
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HILDA now solves for two quantities that we call o and a. These are related to the perveance K as will be
shown below. The quantity any, is an average beam radius. The transcendental equation that determines o is
shown below.

cos@ = 1-sinh2(0)[(1- cos(dp) YaZ- 2]

sin(c) = (2Lep/Py) (sinh(o)/or) « [cosh(a) + (sinh(ot)/ar) » sqri( (1 - cos(Gg) ) /2) ]
(1/a2) « [ 1-0.127 (1 - cos(Gp) ] 2

f(a) = cos(0) 2 +sin(o) 2 - 1

HILDA finds o by solving f (&) = 0. Once this quantity is known the quantities ay, and ¢ are found from
the formulas below.

am?2 =  (2Len/PY) * [ (cosh(a) * sinh(o))/ex - (1 - cos(Gp) ) * sinh(cr) sinh 2(a/2) / a3 ]
/ sin(c)
c = sin"! (sin(o))

Now that a; and o are are known it is possible to obtain the perveance K and the current I from
K = (oram/L)?
I = (B 2-BpKR [A)

The pulse length <, average voltage gradient E, and the volt seconds Vg that the induction modules must
furnish follow from the equations that are show below.

T = ()l [s]
E = AV/L [V/m]
Vs = EeLst [V-s]

At this point HILDA has, in principal, solved the beam transport problem. However, it may be that the
parameters selected for this station do not yield a solution. For example, there may be no solution for the
transcendental equation defining o,or the depressed tune & becomes less than the allowed lower limit.

After a solution to the beam transport problem is found, HILDA designs a quadrupole. If a solution is not

found HILDA terminates the calculation and gives the user an opportunity to try a new parameter set. If a
parameter space is being scanned, HILDA goes to the next point in that space.
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C. ACCELERATION-TRANSPORT ELEMENTS

The present version of HILDA has modules that design either a superconducting quadrupole or an iron aided
pulsed quadrupole. The models for these elements are described in this section.

Iron Aided Pulsed Quadrupole

This element is designed by the HILDA module FeQ20. It is assumed that the beam transport problem has
been solved. This means that HILDA has values for the quantities listed below:

a maximum beam edge radius [m]

L transport structure half-period [m]

n quadrupole packing fraction

Co undepressed tune, no space charge [

N the number of beams

Bp magnetic rigidity [T-m]

HILDA uses these, along with design data from the data file associated with FeQ20, to design a quadrupole
array package that will transport the N beamlets. The module writes the design parameters to a file for later
processing and returns as its primary output the two quantities shown in the table below.

doITArray cost of the array [$]
roTArmray outer radius of the quadrupole array {m]

The radial size of the array is needed in the design of the acceleration cell, since the cell must be able to
accommodate the quadrupole array.

A picture of this quadrupole is shown above in Figure 2-12, FeQ20.DAT. This figure is in the section The
Module Data Files of the 3MV example. The discussion below will refer to quantities that are in that
picture. The correspondence is as show below.

Figure 2-12 Equai Descrinti Units
a a maximum beam radius [m]
Raperture R aperture radius [m]
delRPipe Arp pipe thickness [m]
delRGap Arg gap thickness [m]
delrWire ATy wire layer thickness [m]
rWire Tw radius to wire center [m]
delrFe ATg, yoke thickness [m]
rFe Tpe magnet radius [m]
lo overhang length {m]

71



zIMag Im magnet length (m]

Bmax maximum wire field [T]

B' field gradient (T/m]
RL L transport section half-period [m]
ela n quadrupole packing fraction

The module FeQ20 first calculates the beam radius a, the pipe thickness, and the gap thickness as shown
below.

R = 125-a+.01
Arp = 0.03«R
Arg = 0.10 *R

We should note that the constants that appear above are parameter data that FeQ20 reads from its data file.
Thus, they can be easily changed to other values, should that be desirable. We should also note that there is
a data parameter that specifies the minimum pipe thickness and the minimum gap thickness. If the
calculated values are less than these minimum, the minimum allowed values are used.

Next the field gradient needed to transport the beam, the wire radius, and the wire field are calculated as
shown below.

B = sqrt(6+ (1-cos(Go) )/ (3-27)) Bp/(L2 1)
ATy = 0.005+ (B'ry/1.0)

T'w = R+ Arp+Arg+Ary /2

Bwire = Blery

Again we point out that the scaling parameters used in the wire thickness formula are data input parameters.
The quantity Byijre is checked to be sure that it does not exceed the limit Bpax; if it does HILDA
terminates the design at this point in the parameter space.

Next are calculated the magnet overhang and the magnet length as shown below.
10 = 0.75« rw
lm = nL+2 lo

Following this FeQ20 determines the iron thickness, the outer iron radius, and the pitch.
ATg, =  B'ery2/(2+Bmax)

Tw+Arw /2 + ArFe

2 'I'Fe + 0.00

TFe

P

This latter quantity, pitch, is the beam-center to beam-center spacing when there is more than one beamlet.
This is measured horizontally, and is not the diagonal spacing of the beams. This quantity is used to
determine the outer radius of quadrupole array assembly. The present version of HILDA assumes that the
array is square. This is true if the number of beams is a perfect square. A special formula is furnished for the
case of 21 beams.
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We note that the yoke thickness Arg, is scaled from Bmax, which is taken to be 1.5T. In principal the

yoke is thick enough to contain the return flux. The cost of the quadrupole is based on the volume of Fe
that is used. The quadrupole designed here has a cylindirical yoke with thickness Arg. and an inner radius

Ige- It does not contain Fe material in the corners and for this reason the cost of these quadrupole arrays will
be less than if the yoke were rectangular in cross-section.

The volume, weight, and cost of one quadrupole are calculated as

volFelQuad = 7« (2 IFe - AtFe) « Arfe * I [m3]

wiFelQuad = volFelQuad * denfe [kg]

costiQuad = witFelQuad - cCost * qCost » uCost [$]
The weight and cost of the quadrupole assembly for N beams are then calculated.

wtFeQuad = witFelQuad N [kg]

doITAmay = costlQuad N [$]

In the cost calculation there are three cost factors. The factor uCost is the basic cost of the material. The
factor qCost is used to adjust that cost for quantity orders. The parameter cCost refers to a complexity
factor. In the examples in this report the factors qCost and cCost have been set to 1.0. These three items
appear in the FeQ20 data set and can be easily set to appropriate values. The density denFg is also there.

Upon completion of the quadrupole array design, FeQ20 writes out the complete design data set and the
complete set of design parameters. This file is later recovered and included in the logfile for the minimum-
cost design.

Superconducting Quadrupole

This element is designed by the HILDA module ScQ30. It is assumed that the beam transport problem has
been solved. Thus HILDA has values for the quantities

a maximum beam edge radius [m]

L transport structure half-period [m]

n quadrupole pacing fraction

Co undepressed tune, no space charge [r]

N the number of beams

Bp magnetic rigidity [T-m]

HILDA uses these, along with design data from the data file associated with ScQ30 to design a quadrupole
array package that will transport the N beamlets. The module writes the design parameters to a file for later
processing and returns as its primary output the two quantities shown in the table below.

Name Description
dolTArray cost of the array [$]
roTArray outer radius of the quadrupole array [m]

The radial size of the array is needed in the design of the acceleration cell, since the cell must be able to
accommodate the quadrupole array.
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A picture of this quadrupole is shown above in Figure 2-13, ScQ30.DAT. This figure is in the section The
Module Data Files of the 3MV example. There are three pictures in that figure: the first is a transverse
view on one SC quadrupole; the second is an end view of the single SC quadrupole; the third is an end
view of an array that contains four SC quadrupoles. In the discussion that follows we assume that the reader
will refer to those pictures.

We give below a correspondence between: the labels in those figures, the HILDA variables, and the notation
used in this section.

eta n quadrupole packing fraction

RL L transport structure half-period [m]
rWire Rw;j inner wire radius [m]
Wo Rwg outer wire radius [m]
drwire Ay wire thickness [m]
drPipe Ap pipe thickness [m]
drlnsul Ain insulation layer thickness [m]
drCool Aco cooling layer thickness [m]
BWo Bwg field at outer wire radius [T]
Bwire Bw;j field at inner wire radius [Tl

avl <J> average current density at outer wire radius [A/m3)
c Jc critical current density [A/m3)
drWrap Awrap quadrupole stress wrap thickness {m]
wQElem Qw Transverse width of the SC Quadrupole package [m]
pitch p beam-center to beam-center spacing [m]
zIMag Zaquad physical length of the quadrupole package [m]

The module ScQ30 first calculates: the inner radius R of the beam vacuum pipe, the quadrupole field
gradient B, the inner radius Rw; of the quadrupole windings, and the magnetic field strength Bwj at the
inner wire radius. The table below gives the formulas used.

R = 1.25 «a + .01

B = sqri(6+ (1-cos(Go))/(3-2+m) )+ Bp/(L2+m)
RWi = R+ 2'Ap + 3'Ain + 2'A00

Bwj = B'eRwj

We note that for R and Rw; the numerical values of the paramelers are data that is input from the ScQ30
data file. Thus, the values can be changed by editing the data in that file. We also note that the values of the
quantities Ap, Ain, and Aco are also read as parameter data from this file.

The bore size is checked to insure that the magnet bore radius to magnetic length is not too large.
Rwj < 05-7mL
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If this limit is not observed, HILDA terminates the quadrupoie design and goes to the next point in the
parameter space.

The module ScQ30 next solves for the outer wire radius Rwg, the average current density <J> at the outer
wire radius, and the field Bwg at the outer wire radius. The following equations are solved to obtain these
quantities.

Bwp = B'eRwg ]

I = 2.9+109+(10.0 - Bwg) /5.0 [A/m3)
<J> = A [A/m3]
Ho = 4eme1077 [Tm2/A)
fRwo) = InRwg/Rwj) + (1 - Rwj/Rwg)*)/4 - (2:B) / (g*<I>) []
fRwg) = 0 []

Bwg <  Bmax [T

The coefficients that appear in the above equations are read as data from the ScQ30 data file, see Figure
2-13. For reference to that data file we give in the table below the correspondence between the numerical
value, or variable name, and the data name in that file.

ScQ30.DAT  Equation value Description Units
cR1 = 125 aperture beam radius coefficient (]
cR2 = .01 aperture radial clearance {m]
nPipe = 2 # of pipes

nlnsul = 3 # of insulation layers

nCool = 2 # of cooling layers

TIWRL = 0.50 bore size limit factor []
cJCoeff = 29.109 slope of critical current density cJ curve [A/m3)
cJBn;j = 100 numerator field parameter [T]
cJBd; = 50 denominator field parameter (1]
rflamda = A SC wire packing fraction

BWomax = Bpax B at outer wire, maximum [T]

A check is done to insure that the wire thickness is not too thin, or 00 thick, and that the field Bwg at the
outer radius is greater than 0 and less than the maximum Bmax. These limits are furnished as data in the
ScQ30 data file. If for some reason ScQ30 cannot find a solution that satisfies these equations and meets the
limit criteria, the design of the SC quadrupole is terminated and HILDA goes to the next point in the
parameter space.

75



When a solution is obtained the outer wrap Awrap that encloses the quadrupole windings, the horizontal
width Qyw of the SC quadrupole package, and the beam-center to beam-center spacing (pitch) p are calculated
as shown below.

Awrap =  0.01+ (Bwg/5.0) 2+ tW0/0.12)
Qw = 2+ Rwg+Awrap +0.0015)
p = Qw

The square quadrupole modules are stacked together to form a package, that we refer to as the quadrupole
array. This array contains N quadrupoles, where N is the number of beamlets. We assume here that N is a
perfect square, e.g., 1, 2, 4, 16, « « « . This array structure is shown in the third picture of Figure 2-13 that
we previously referred to. The outer radius of the quadrupole array is obtained from the formula below.

roTAmay =  pesqri(2) «(2+0.25 +sqrt(N) ) 2 [m])
The length of the quadrupoles, and thus of the array, is determined and a check is done to insure that it will
fit in the allotted space.

Zquad = MNL+2+«Rwp +0.00)

Zquad < L+(1-0.10)
The coefficients that appear in the above equations are read as data from the ScQ30 data file. For reference to

that data file we give in the table below the correspondence between the numerical value and the data name
in that file.

sWrap = 0.01 wrap thickness used for BWrap, rWrap [m]
BWrap = 5.0 field used for scaling the Quad. Wrap T
rWrap = 0.12 radius used with BWrap [m]
dShell = 0.0015 thickness of the outer shell [m]
fCollar = 0.25 array wrap (collar) width, fraction of pitch []

2Qend =  0.00 space used by quadrupole end packaging (m]
ZSpace = 0.10 no-magnet space limit, fraction of half-period L [m]

At this point in the design the quadrupole array has been completely determined. The rest of the module is
devoted to finding the cost of the array. This cost is determined by finding the amount of material and then
multiplying that by the cost per unit of material. A look at the pictures in Figure 2-13 will show that it is
now necessary for ScQ30 to determine the volumes of the various components. This is a simple, though
rather tedious, calculation. In the discussion that follows we shall sketch out what is calculated.

The module ScQ30 first does the calculations for one quadrupole. All the quadrupoles in the array are
assumed to be the same. It calculates the cross-sectional areas of the:

* quadrupole package
* stress wrap around the windings, includes the shell
* cable, includes the SC and the non-SC cable material
* beam pipe, inside of the vacuum pipe
* pipes, insulation and cooling layers
These components can be easily identified by looking at the second picture in Figure 2-13.
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Next, these cross-sectional areas are multiplied by the quadrupole package length zqyad to obtain the
corresponding volumes. Once the volumes are known ScQ30 proceeds to obtain the weights of the
components:

* SC cable, using the packing factor A

* non-SC cable material

* conductor material, SC plus non-SC

* outer SC quadrupole wrap, includes the outer shell as same as the stress wrap
* pipe layers

* insulation layers

* cooling layers

* total quadrupole package, includes all the above components

The costs are calculated using by multiplying the weights by three quantities: the unit cost [$/kg] of the
material, a quantity factor, and a complexity factor. The values for these parameters are furnished in the
ScQ30 data file.

Note that the present version of ScQ30 does not use the costs of the pipe, insulation, and insulation
materials. Instead it uses a quantity called BFactor in the data set to calculate a cost of everything except the
cable and the wrap. This is done as shown below.

$balance BFactor » ($cable + $wrap)
$quad

Scable + $wrap + Sbalance

At this point in the calculation ScQ30 has obtained the cost of one of the N quadrupole channels that make
up the quadrupole array. These channels are stacked together to form the quadrupole array; this is shown in
the third picture in Figure 2-13.
Cross-sectional areas are determined for the:

* SC quadrupole channels

* beam pipes, vacuum cross-sectional area

* outer array collar

* total array of N quadrupoles, includes the outer wrap

These areas are them muitiplied by the length Zquad to obtain the corresponding volumes. For the
quadrupole array of N channels the following weights are calculated.

* SC cable

* non-SC cable

* outer quadrupole stress wraps

* pipes

* insulation layers

* cooling layers

* quadrupole channels, no outer array collar
¢ outer array collar

* total array assembly
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The array component dollar costs are obtained by multiplying the array channel component costs by the
number of channels N. The outer collar cost is calculated by multiplying the amount of material in the
collar by the unit cost [$/kg], the quantity factor, and the complexity factor. The total cost of the array is
obtained by adding the array outer wrap cost to the cost of N quadrupole channels and them multiplying that
cost by an array complexity factor. The values of the needed parameters are obtained when ScQ30 reads the
data file ScQ30.DAT. Examples of those files are found in the 3MV and 3000MV examples furnished in
this report.

Once the cost calculation is finished the complete set of design parameters and all component areas,
volumes, weights, and costs are written to a file. This information can then be recovered and included in the
logfile that HILDA writes for the minimum-cost design.

The module ScQ30 is now finished with it task of designing and costing an SC quadrupole array Upon exit
it returns the cost of the array, dolTArray, and the outer radius of the array, roTArray.

Acceleration Modules

In the acceleration-transport section of the heavy ion fusion driver HILDA designs focusing elements and
acceleration cells. This section describes the model for the module StrucCore that designs the acceleration
cells. There are two pictures of this structure in the Figure 2-14, StrucCore.DAT, which is in the section
StrucCore DAT Acceleration Cell Design Data of the 3MV example previously discussed in this report.
Refer to those pictures to understand the discussion that follows.

StrucCore designs an acceleration cell that contains induction cores that are concentric with the beam center
line. The cell that the modules are packaged in consists of an outer cell housing, end plates, and an inner
bobbin. A gap insulator, concentric with the beam, is part of the cell inner bobbin. Power leads are brought
in through the outer cell housing to furnish power to the cores. The components are separated by insulation
material that is part of the core modules and the cell housing. The core modules are wound from amorphous
material; the material's flux swing and the required volt-seconds determine the core cross-section areas. The
first picture in Figure 2-14 shows an example of a cell with two induction cores. The module StrucCore can
stack as many cores as are necessary. The present version of StrucCore stacks the cores side-by-side; it can
not stack the cores vertically.

The second picture in that figure shows a cell that is made up of exactly one core module. The labels in that
picture are the names of the corresponding variables in StrucCore. In the discussion that follows we outline
the algorithm that StrucCore uses. The design of the acceleration cell is principally a task of fumishing the
needed amount of amorphous core material, while at the same time meeting specified design constraints.

The acceleration design module StrucCore is invoked only when HILDA has completed a successful design
of the quadrupoles. This means that there are available the quantities shown below. We use the notation and
units that are used in the StrucCore module.

Name Descripti B l icsN Units
Vs volt-sec acceleration per half period Vs [V-s]
nB number of beamlets N

roA outer radius of the quadrupole array [cm]
VG voltage gain per half-period at this station AV kV]
HLP lattice half-period length L [cm]

78



Upon completion of the design of the acceleration cell the following quantities are returned.
dolAStruct total cost of the acceleration cell, including quadrupoles ($]

StrucCore has been developed from notes and information furnished by C. Fong of LBL. The design of the
cell proceeds in a number of steps, which we outline in the discussion that follows. After a minimum-cost
design has been obtained a logfile StrucCore.OUT is written. This file contains the quantities which
completely define the acceleration structure; all the design data and all the calculated quantities are in that
file. It is later included in the logfile that HILDA returns after finding a minimum-cost design.

The StrucCore design steps are presented below in short sections that are appropriately labeled.

Material Data

Material properties are obtained from the StrucCore.DAT file. This file contains flags that define the
selection of materials and the data for those materials. The file is described above in the sections that present
the 3MV example. StrucCore reads data that defines the tape that is used to wind the induction coils. It also
needs to know the material that is used to construct the module that houses the core, and the material that is
used for the cell housing into which the induction core modules are placed. We note that there is an
elisticity modulus scaling factor associated with the cell housing material. StrucCore uses this to determine
how thick to make some of the components in the cell.

The components of the core and the cell are separated electrically by insulation material. It is necessary to
know the voltage breakdown limit of the insulation material. This information is also needed for the cell
gap insulator and the dielectric coolant. We treat the acceleration gap vacuum as a dielectric medium and
furnish a voltage breakdown limit for it.

All the materials have a density that is used to find the material weight. The unit cost furnishes the cost of
the material, once the weight is known. The quantity factor is used to include any price discount that arises
from quantity orders of the material. The complexity factor can be used to adjust the price of the material.
This could represent a special material cost, or it could be used to take into account the assembly of the
components that contain the material, or the intricacy of the part itself,

The unit costs shown here were derived by estimating the cost of accelerator piece parts at driver quantities.
This was done for typical cell parts with assistance from industrial suppliers. Also considered in addition to
the mill run cost of materials were the costs of labor, overhead, profit, and amortized tooling . Here, for a
full scale driver, the quantity and complexity factors are set at 1.0.

These parameters, along with representative values taken from the 3MV example discussed previously in
this report, are shown below.

Core Amorphous Tape Material
Metglas 2605 S2 - wound and annealed

denAm 7.1800 density [gm/cm3]
cFacAm 1 complexity factor (1]
gFacAm 1 quantity factor []
uCostAm 5.0 unit cost ($/kg]
pFAm 0.80 radial packing fraction []
delBAm 2.5 maximum flux swing of material [T}
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Core Tape Width

wTape 20.32 width of arnorphous tape

aRCmax 4.0 maximum @pe wincing height to width aspect ratio
Core Submodule Housing Material

Low Carbon steel - welded & machined - 1020

denCSM 8.1657 density

cFacCSM 1.0 complexity factor

qFacCSM 1.0 quantity factor

uCostCSM 9.8987 unit cost
Cell Housing Material

Low Carbon steel - welded & machined - 1020

denCH 8.1657 density

cFacCH 1.0 complexity factor

qFacCH 1.0 quantity factor

uCostCH 9.8987 unit cost

emCH 30 elasticity modulus scaling factor

Core & Cell Housing Insulation
Polyethylene LP-390-C Dielectric, injection molded

denIN 0.9850 density

cFacIN 1.0 complexity factor

gFacIN 1.0 quantity factor

uCostIN 20.6417 unit cost

bVoltIN 197.00 voltage breakdown limit, dielectric strength
Gap Insulator Material

Alumina - pressure cast & brazed large dia. - to 58" by 1" thick

denGI 3.71170 density

cFacGI 1.0 complexity factor

qFacGl 1.0 quantity factor

uCostGl 428.29 unit cost

bVoltGI 12,0 voltage breakdown limit, dielectric strength
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Dielectric Coolant

Freon

denDiC 1.8 density [gm/cm3)

cFacDiC 1.0 complexity factor [1

qFacDiC 1.0 quantity factor []

uCostDiC 1.66 unit cost [$/kg]

bVoltDiC 39.00 voltage breakdown limit, dielectric strength [kV/cm]
Voltage Breakdown Strengths [kV/cm])

Vdss =  bVoltIN core & cell housing insulation [kV/cm]

Vdsl = bVoltDiC radial insulator gap [kV/cm]

bVRGap =  50.000 acceleration gap vacuum, voltage breakdown limit  [KV/cm]

Limits and Scaling Factors

The induction cores depend on pulse forming networks that supply the required voltage to the cores. There
is a limit to the amount of voltage that can be supplied by the individual PFNs. Space must be left for the
support of the quadrupoles and for other ancillary items. The acceleration cell cannot occupy the complete
half period length. The gap insulator cannot be too long; it must be somewhat shorter than the cell. The
cell housing and the core housing (power lead) cannot be 0o thin. The thickness of the core housing top,
the core housing bottom, and the cel! housing top support ring are all obtained by scaling the housing
thicknesses.

The modulus of elasticity of material used for tie housings is referenced to aluminum and the formula in
StrucCore uses 10 [1001b/in2] as the reference for which the scaling factor is 1.0.

The insulation that separates the cell and core components must not be too thin. If the required voltage
causes the calculated values to be less than these limits, the thicknesses are reset to these limits.

The gap insulator thickness must be specified. And the perimeter support factor must be set. Both of these
take into account the number of beamlets in the transported beam.

All this parameter data is determined by StrucCore before starting to design the acceleration cell.

These parameters and typical values taken from the 3MV example previously discussed in this report are
shown in the iables below.

Maximum PFN Peak Kilovolts per Core
pv 200.0 available PFN peak kilovolts per core Y

Minimum Length for Quadrupole Support
QAl 0.10 z-axis fraction of half-period length []

Maximum Length for Gap Insulator.
glLmax 0.80 z-axis fraction of cell length cellL [1]
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Housing Thicknesses Factors
Average of data for weights of 5000lb & 110001b

zIH 2.0 cell housing thickness

zIPH 1.0 core housing/power lead thickness

proC 2 scaling factor for core housing top

priM 2 scaling factor for core housing bottom

proH 2 scaling factor for cell housing top support ring
Elasticity Scaling Factor for Cell Housing Radius

peM 10 referenced to aluminum for scaling other materials
Miniinum Insulation Thicknesses

zICimin 0.200 minimum insulation thickness

dRgmin 0.500 minimum radial insulator gap space
Insulator Thickness & Perimeter Support Factor

16 beam data

t 3.0 acc. gap insulator thickness

R 1.1 quad array perimeter support factor

Acceleration Cell Design

[cm]
(cm]
[]
(1]
[]

[1081b/in2)

[cm]
{cm]

[cm]
[]

We now proceed to the design of the acceleration-transport cell. This structure is placed around the transport
array; usually an array of focussing or defocussing quadrupoles. We note here that in principal it is possible
to have only a transport array with no acceleration. StrucCore has been designed so that this can be done by
furnishing a voltage gain of zero. When the voltage gain is zero, the cost of the cell is set to zero.

In the tables that follow we show the defining equations and we identify the quantities as they are obtained.
Most of what follows should be self-explanatory. The dimensions that are obtained are shown in the second
picture of Figure 2-14. The parameters used in the calculations have been previously identified above. We
will not comment individually on each of these tables. The headings identify the quantities being c:iculated.

Core & Cell Thicknesses
delTC =  proC « zIPH core housing top
delBC = priM e« zIPH core housing bottom
delCH =  proH e zlH cell housing top support ring
delCH =  delCH - sqri(peM/emCH) resize if material that isn't
aluminum
Limits on Support and Gap Insulator Lengths
QAlmin = QAIl-HLP quad array perimeter support factor

Number of Cores Needed

The number of cores, numCore, needed to furnish the required voltage gain depends on
the available peak PFN voltage. This number must satisfy the relation below.

numCore ¢ pV 2 VG.
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Insulation Width, Radial Insulator Clearance

zICi = max ( pV/Vdss, zICimin )
delRg = max (pV/Vdsl, dRgmin )
Cell Length and Quadrupole Support Length
celllL = 2e¢zlH+ numCore « (3 » 2ICi + 2 « zIPH + wTape)
QAl = HLP-cellL
Check on Cell Length

QAl < HLP-cellL
Set Maximum Gap Insulator Length

gllmax =  gllmax-«cellL
Determine Gap Insulator Length

gIL = max ( numCore * pV / bVRGap, numCore ¢ pV / bVoltGI )
Check on Gap Insulator Length

gL < gllmax
Size the Core

The cross-sectional area of the induction core is determined by the required volt-seconds.
The volt-seconds was calculated in the beam transport section of HILDA. We recall that
this was obtained as Vg = E«Le1; (electric field « half-period » beam pulse length). The
data file StrucCore.DAT furnishes the flux swing for the core material. In principal this
is the maximum flux swing. However, we note that if we wish to have constant size
cores we will have to set the flux swing to a value that is probably other than the
maximum. Future versions of this module should incorporate a way of specifying the
desired core size. The core area and the tape width determine the radial size (height) of the
core. There is a limit to the height/width ratio; too high and the core is not stable. This
ratio is determined here and subsequently checked against that limit. The calculations are

shown below.

acAM = Vs/deIBAm + 1000 core amor. mat. total cross-sec. area
aC =  acAM /numCore / pFAm core module cross-sec. area

hC = aC/wTape core height

aRC = hC/wTape core, height to width ratio

Check that the Core Winding Radius
arRC < aRCMax
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Determine Housing and Core Radii

riH = fQr*r0A cell housing inner radius [cm]
M = riH +tI+delRg core housing inner radius [cm]
riC = riM+ delBC core material inner radius {cm]
roC = r1iC+hC core material outer radius [cm]
roCore = r1oC + delTC + 2ICi core housing outer radius (cm]
roHSG = roCore + delCH cell housing outer radius [cm]

Weights of Core and Cell Materials

The geometric dimensions of the core and cell arc known; it is now possible to calculate the material
weights. This is done by multiplying the volume of the component times the density of the material. Note
that the amorphous material does not occupy all the core module space; the parameter pFAm determines the
fraction of volume that is amorphous material. We use PI = & = 3.14592654 in the following equations

Core Material Weights
wiCore = Pls (roC +riC) » (roC - riC) « amorphous material per core [gm]
wTape ¢ denAm « pFAm module
wtAm =  numCore » wtCore HLP (cell) core Amorphous [gm]
material
Core Submodule Weights
wiCEP =PI (roC + zICi + riC) » (roC + Core Submodule Housing/power  [gm]
zICi - riC) » zIPH ¢ denCSM lead weight (end plate) There are 2
end plates per core housing
wiCOH = PlI+(2¢(roC + zICi) + delTC) » Core Submodule outer housing {gm]
delTC s (2 zIPH+ 2+ 2ICi + weight
wTape) * denCSM
wiCOB =  Ple(2¢riM+ delBC) « delBC » Core Submodule inner bobbin [gm]
. (2 zIPH + 2 « zICi + wTape) « weight
denCSM
wiCHPC = 2« wtCEP + wiCOH + wiCOB Core housing weight per core (gm]
wtCorH =  numCore » wtCHPC HLP weight of the core [gm]
submodule housings
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Insulation Weights for Core & Cell Housing

witCEI

wtCOl

witClI
witCHIE

wiCHI
wiCClI

Pl*(2eriC+hC)shC«zICie
denIN

Ple(2°roC +2zICi)» zICis (2 »
zICi + wTape) « denIN

2 « wtCEI + witCOI
PI » (roCore + (riM - zICi)) «

(roCore - (riM - zICi))  zICi »
denln

wiCHIE

numCore * (WitCI + wtCHI)

Cell Housing Weights
wtHSGEP =

wtOHR

wtHSGGI

wtCelH

witGI

wtDiC

2« (PI « (roHSG + riH) » (roHSG
- riH) ¢ zIH « denCH)

wtOHR=PI « (roHSG + (roCore))
* (roHSG - (roCore)) » (cellL. -2 »
zIH) « denCH

Pl * (2« riH + zIH) » zIH « (cellL
- 29+2zIH - gIL) » denCH

wtHSGEP + wtOHR +
wtHSGGI

Ple(2eriH+ tl)etlegIL .
denGl

(PI'+ (riM + (riH)) « (riM - (riH))
« (celllL -2+ zIH) -
wtHSGGI/denCH - wiGl/denGI) »
denDiC

HLP Component Weights in Kilograms

wiAm
wtCorH
wtCelH
wtCCl
wtGI
wtDiC

1000 « wtAm
1000 « wtCorH
1000 « wtCelH
1000 » wtCCI
1000 » wiGI
1000 » wiDiC
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Core end plate insulation There
are 2 end plates per core housing

Core outer housing insulation

Core insulation weight

Cell housing end insulation per
core module

Cell housing insulation weight

HLP core/cell housing insulation
Note: the end plate weight must
be added to the end of the periodic
cell structure to close the
structure

Cell housing end plates/pair

Cell housing support ring

Gap insulator support ring
HLP cell housing
HLP gap insulator

HLP electric coolant

amorphous core

submodule housing/power leads
cell housing

core housing insulators

gap insulator

dielectric coolant

(gm]
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HLP Component Costs
The dollar cost of the components is obtained by multiplying the weight of the material
by the unit cost. This result is multiplied by the quantity factor and the complexity
factor to obtain the final cots of the component. In the examples presented in this report
these factors are set to 1.

dolAm =  wtAm ¢ cFacAm ¢ gFacAm ¢ amorphous core material (3]
uCostAm

dolCorH =  wtCorH » cFacCSM ¢ qFacCSM « | core housing/power lead material  [$)
uCostCSM

dolCelH =  wtCelH » cFacCH » gFacCH » cell housing material [$]
uCostCH

dolCCI =  wtCCI » cFacIN » gFacIN « core & cell housing insulation (8]
uCostIN

dolGl1 = wiGI « cFacGI « qFacGI « gap insulator material (3]
uCostGlI

dolDiC =  witDiC » cFacDiC » qFacDiC « dielectric coolant [$]
uCostDiC

Total Cell Weight and Cost per HLP

The final task in the calculation is to get the total cost and the total weight of the acceleration cell. This is
done by adding up the component costs.

wtAStruct = wtAm + wtCorH + wtCelH + module weight kgl
wtCCI + wiGI + wtDiC

dolAStruct = dolAm + dolCorH + dolCelH + module cost [$]
dolCCI + dolGI + dolDiC

The design and costing of the acceleration-transport cell is complete. StrucCore writes a file that contains
all the design parameters, all the calculated dimensions, all the component weights, and all the component
costs. This file can later be retrieved and included in the logfile that HILDA produces for a minimum-cost
design.

We note here that this version of StrucCore does not include the cost of the pulse forming networks, nor
does it include any cost associated with power loses in the induction cores. We also note that the volt-
seconds furnished to StrucCore does not include any extended modeling of the rise and fall of the real pulse.
These facts should be included in future versions of this module.

We also recall that the modules are stacked longitudinally. There is no prc vision for radial stacking. We

again comment that there is no direct way to keep the core sizes constan', while staying within material
flux swing limits. Future versions of StrucCore should include these capablities.
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4. MAINTAINING HILDA

A. INSTALLATION

How to install HILDA in a computing environment is discussed in this section. The Hilda Program
Document consists of this report and additionally the contents of the associated floppy disks. The
installation of HILDA consists of transferring the appropriate files from these disks into the current
computer environment. After this transfer the resident FORTRAN compiler can be invoked to create an
executable image. Once the HILDA executable image has been created and the necessary data sets have been
supplied, the program can be run.

How the initial file transfer and data setup are done depends on the user's computing environment. The
Microsoft Word ReadMe document in the folder MSW/HILDA/VAX on the Hilda Program Document
floppy disks describes in detail the installation of HILDA. This document gives instructions on how to
install HILDA for users who have access to the LBL VAX cluster, It contains the VAX command files for
those that do not have such access, but do run on a VAX and wish to install HILDA in that computing
environment. It describes how to transfer (download or copy) the HILDA files from the Hilda Program
Document disks into any computing environment in which FORTRAN is available. This information is
not explicitly repeated here, since it is available in the aforementioned folder. As we have pointed out, the
Hilda Program Document is not just this report but also includes the complete contents of the associated
floppy disks. More information can be found in the APPENDIX of this report.

B. UPDATING CONVENTIONS AND PHILOSOPHY

Updating HILDA is not a difficult task. However, it is a task that should be taken seriously. We mention
this because it is very easy to casually place updates into HILDA and in the process of doing this nullify
the effort that has been put into the documentation of HILDA. The present version of HILDA has been
built in a very specific way. We have consistently written the HILDA modules using the template that is
furnished with this HPD in the folder MSW/Hilda/ALL of the HPD floppy disks. The modules are fully
formatted and are meant to serve as their own documentation. The modules are then written as flat ASCII
files, which are downloaded into the computing environment. Using simple drivers the modules are pre-
tested before being included into the HILDA program. Some examples of these drivers and associated source
code are included in the folder MSW/Hilda/Dnn. By adhering to this convention we end up with the
documentation for the modules at the time they are written. We also insure that the modules that are in the
HILDA document are modules that will execute. The pre-testing allows us to have some experience with
the modules and thus determine that they carry out their tasks appropriately; before installing them in
HILDA. When they are placed into the program they become black boxes that simply take input and furnish
output.

We do not explain here how to update HILDA. This updating should be done by someone who is
experienced in FORTRAN and who will consistently follow the above mentioned convention. The program
is very modular and can easily accommodate other modules. However, it is absolutely necessary to
understand the structure of the modules and how they interact in order to add modules successfully, or to
change the ones that are there. Instructions on the updating of HILDA can be found in the ReadMe files in
the HPD disks; see the APPENDIX; The Hilda Program Document Disk.
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C. FUTURE UPDATES

The most immediate updates for the present version of HILDA deal with the data input that is needed and
the run output is generated. The next level of updates will expand the capabilities of HILDA to cost a
complete machine. HILDA presently finds a minimum-cost design at user chosen stations along the
machine. The costing of a complete inachine requires that the station costs be apprepriately combined.

Input

HILDA needs a better user interface that decreases the amount of data that a user must process when doing a
minimum-cost design for a complete machine. The present version of HILDA has been built to do
minimum-cost designs at a particular machine station. The user should be able to set up the data for all the
stations in the machine before running HILDA. Presently the module data files must be reset if they are not
the same at all machine stations. It is also evident that modules are needed that allow the user to modify the
station data during the HILDA run. These modules are rather easy to build and incorporate into HILDA.

Output

After HILDA has generated minimum-cost designs at the selected stations, it becomes necessary to analyze
the results. It seems appropriate v use standard programs do do this; e.g., a spreadsheet program. The
standard HILDA logfiles presently contain all the design information. What is needed are modules that allow
the user to create files that are appropriate for input to analysis programs. It also seems appropriate to keep
in mind that in the future it will be possible to interface HILDA directly with such programs. By this we
mean that the output from the HILDA can be made available to the analysis program, as HILDA runs. This
could prove quite useful in guiding a user to the proper total machine design in which the parameter
transition between stations was taken into account. The modular construction of HILDA will accommodate
this without disturbing the basic cost algorithms.

Additional Costing Capabilities

A minimum-cost design of a complete machine requires that HILDA be updated to include more
components of the design. We list here some of the items that will be added into the costing algorithms,

* pulse forming network costs
® acceleration core power loses
® linear costs such as vacuum, alignment, and refrigeration

¢ special elements such as: combiners, steering elements, pulse shape correctors

We also should consider including into the costing algorithm an ability to take the individual station costs
and use them to obtain a complete machine cost. Presently this total cost can only be obtained from the
analysis of the HILDA output produced at each station.
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APPENDIX: HILDA PROGRAM DOCUMENT
DISKS

A. GUIDE TO THE HPD DISKS

The complete Hilda Program Document consists of this report and the contents of the associated floppy
disks. These disks contain more information than is in this report. There are three 1.4Mb Macintosh
formatted floppy disks. These are labeled HPD Disk 1-3, HPD Disk 2-3, and HPD Disk 3-3 . The contents
of the three disks are shown below in Figure 5-1, HPD Floppy Disks . The .sit files on these disks are
compressed files. The contain self-unstuffers and can be unstuffed by double clicking on the file icons. The
two files Hilda on ILSE.sit and Hilda/TXT.sit become the folders Hilda on ILSE and Hilda/TXT shown
below in Figure 5-2. The files Hilda/MSW sit 1 and Hilda/MSW.sit 2 contain the contents of the folder
Hilda/MSW shown in Figure 5-2. Readers interested in obtaining the HPD disks can do so by submitting a
request to the authors at the Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720.

Figure 5-1. HPD Floppy Disks
HPD Disk 1-3 HPD Disk 2-3 |

S items 1,215K in disk 201K avaﬂal 1 item 891K in disk 525K aval

Hilda/Msw .sit 1

ReadME

MS Word/ HPD Disk3-3
g @ 1 item 862K in disk 553K avat

Hilda on ILSE.sit  Hilda/TXT sit

Hilda/MSW sit 2

The basic structure of the folders is a ReadMe document and the associated folders at that level. Each folder
has the same structure. The ReadMe document is a Microsoft Word document. The folders that have MSW
in their name are fully fo: matted Microsoft Word documents. Those that have TXT in their name are ASCII
flat text files that can be icad by any word processor, or text editor, that can read ASCII text files. The basic
document is the MS Word file. The text files are the same information, but they are written as text files.
These text files can be downloaded into most computing environments.

The HILDA module source files are in the folder MSW/Hilda/ALL and the HILDA utility source files are in
the folder MSW/Hilda/U. In the folder MSW/Hilda/DATA there are data files for the examples and the
output from these examples. In principal the version of HILDA that is in the source files can read the data
files and produce output files that are the same as those includeu here. The folder MSW/Hilda/EQU contains
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version files for the HILDA modules. There is a folder for creating HILDA on a VAX, which is
MSW/Hilda/VAX.

Most users will not be interested in all of this information. Information about the folder contents con be
obtained by consulting the ReadMe documents in each of the folders. Below in Figure 5-2, HPD/folders:
ReadME the top level ReadME file for the HPD folders is shown.

Figure 5-2. HPD/folders: ReadME

Date: Date: January 27, 1992
File: HPD/folders: ReadME
Subject: HILDA Program Document disks

This folder contains the basic HILDA folders as shown in the figure below.

HPD/folders
6 items 128,388K in disk 10,305K

Hilda/Msy NS Werd/

Lo,

HILDA on ILSE Hilda/TXT

The contents of these folders make up the Hilda Program Document disk, referred to as the HPD
disk. This is really a collection of floppy disks. In each folder is a ReadME file that pertains to the
folders at that level. At the current level we have four folders. The Hilda/MSW and the Hilda/TXT
folders contain essentially the same information. The /MSW folder has fully formatted Microsoft
Word files that make up HILDA and the associate HPD examples. The /TXT folder contains the
same information with the files being flat ASCII files. This means that the /MSW folder files
must be read with Microsoft word, or a word processor capable of reading MS Word files.
However, the /TXT files should be readable by any word or text processor that can read ASCII
files. This is not necessarily a simply a duplication of information. The MS Word files also
contain graphics, pictures that relate to HILDA. No such pictures exist in the /TXT files. Also,
some of the files are not repeated in the /TXT files. This is because the /MSW files are considered
to be the primary documentation files. The /TXT files are images that can be down loaded into
other computing environments.

The folder MS Word contains documents that pertain to the use of the word processor
Microsoft Word with the HPD documents.

The folder HILDA on ILSE contains files that make up an example that was created by
running HILDA on the parameters in the ILSE document, LBL PUB 5219-ILSE, that is
sometimes referred to as the brown book ILSE. This example included here as supplementary
information. It gives a flavor of what HILDA could easily do if it were suitably interfaced with a
spreadsheet program,
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B. INSTALLING HILDA

We reproduce here in Figure 5-3 the file HPD/folder:Hilda/MSW:MSW/Hilda/VAX :Mead Me from the
HPD disks. This file tells how to install HILDA in a VAX computer.

Figure 5-3. Hilda Installation

Date: October 7, 1991
File: HPD/folders:Hilda/MSW:MSW/Hilda/VAX:ReadME
Subject: Installation of HILDA

This folder contains VAX command files for the installation and running of HILDA.,

Installing a VAX Version of HILDA Using the Files in
WEEK:[BENDING.HILDA]

A VAX version of HILDA is available. It is stored on the LBL VAX CSA cluster disks. The
following are step by step instructions on how to install HILDA in a VAX directory. Following
these steps will install HILDA in the user's directory. We shall assume for this example that the
current default directory is [USER). In actual fact it will be whatever directory your current default
directory is.

* Create a directory that will be the root directory for HILDA. In this example we type the
command
CREATE/DIRECTORY [USER.HILDA)
* Make this directory your default directory. In this example we would type the command
SET DEFAULT [USER.HILDA]
It is now necessary to know which LBL VAX CSA cluster disk currently contains the HILDA

files. This can be accomplished by using the DISKSPACE tool; which runs on the LBL VAX
CSA cluster. In this example we assure you have access to this tool.

* Type the command
DISKSPACE BENDING

The output from this command will show an LBL disk logical name on the line that gives the
weekly disk usage for the account BENDING. In this example we assume that this is LBL120 If
it is some number other than 120, use the currently displayed value.

* Define the logical name for the disk that HILDA is on by typing
DEFINE LBLnnn LBL120
NOTE: use the value displayed by the DISKSPACE tool.

* Put all the HILDA .com files into the [USER.HILDA] directory by typing
COPY LBLnnn:[BENDING.HILDA]*.COM.0 *.*.0

¢ Edit the just created LOGIN.COM file to:
* replace rootName in the statement
$ HILDAroot := 'rootName
with the correct HILDA root directory name. In this ~xample the statement becomes
$ HILDAroot = USER.HILDA

* Save this edited file, it is the correct login.com file for HILDA.
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Figure 5-3. Hilda Installation (continued)

Instead of editing the LOGIN.COM file you could type

rootName :== USER.HILDA
However, this symbol definition, which is needed, will vanish when you logoff and you would
have to reestablish this symbol definition each time you login io run HILDA.

* Execute this VAX command file by typing
@LCGIN.COM

It you have any error messages issued during the execution of the command file, you should check
that the above quantitics have been correctly entered.

* Verify that all is right before installing HILDA by typing
SHOW SYMBOL HILDAroot
SHOW LOGICAL LBLnnn

The results returned should agree with what you have been instructed to type in the above
instructions. Up to this point about the only mistake that you can make it to have incorrectly
entered the requested information.

You are now ready to actually install HILDA by creating the directories, transferring the source
files and example data files, and creating the executable image. All the HILDA logicals and
synonyms were set when the above mentioned login.com file was executed. In principal this
login.com file should be executed each time you logon, before you run HILDA.

¢ Install HILDA by typing
getHILDA

In principal you need to do this only once. However, it will correctly reinstall HILDA if done
more than once.

At this point all HILDA logical names and all synonyms have been defined. The HILDA
directories have been defined and the HILDA files put into them. For this example the directories
are:

Directory Contenis

[USER.HILDA.ALL] source modules, if not deleted during installation
[USER.HILDA.UTILITY] utility modules, if not deleted during installation
[USER.HILDA.EQU" version files

[USER.HILDA EXE] execution file, HILDA.exe and all I/O files
[USER.HILDA.DAT) data files and example directories
(USER.HILDA.DAT.DAT3MV] data files for the example 3MV
[USER.HILDA.DAT.DAT3000MV] data files for the example 3000MV
(USER.HILDA.DAT.DAT4MJ] daa files for the example 4MJ driver
[USER.HILDA.DAT.UTILITY] data files for the HILDA utilities

You can use the HILDA synonyms to make any of these directories the default directory. This is
done as shown below.

*To set the current default directory to [USER.HILDA.ALL)] type
ALL

*To set the current default directory 0 {USER.HILDA .UTILITY] type
UTLLITY

92
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* To set the current default directory to be [USER.HILDA.DAT.UTILITY] type
DATUTILITY
* To set the current default directory to be [USER.HILDA.EQU] type
EQU
* To set the current default directory to [USER.HILDA.EXE] type
EXE

The executable image of HILDA along with the version files for the HILDA modules and the data
files for the HILDA utilities are now in the directory [USER.HILDA .EXE]. Again, note that
USER HILDA will be whatever you have chosen above for the HILDA root directory.

To run HILDA it is necessary to have data sets for the modules. These data sets depend on the
problem being run. We have furnished here three data sets. These example data sets are in
[USER.HILDA DAT).

* To set the current default directory to [USER.HILDA.DAT.DR4MJ3] type
DAT3MV

* To set the current default directory to [USER.HILDA.DAT.DR4MJ3000) type
DAT3000MV

* To set the current default directory to [USER.HILDA.DAT.DR4MJ] type
DAT4MJ

Al this point HILDA is completely setup to run, except for the module data sets. These must be
placed into the execution directory [USER.HILDA.EXE]. How to do this is explained in Running
HILDA.

In principal it is the HILDA programmer who modifies any of the HILDA source code. If the user
running HILDA has no need for this source code, it can be deleted. It is recommended that this be
done. Updating HILDA should be done carefully, it is not to be done casually or problems will
arise. If these source files were left during the installation, they can easily be deleted.

* To delete the HILDA module source files and the HILDA utility source files type
noHILDAsource

This does not delete the directory names; thus the HILDA directories still exist. The source code
can be recovered by reinstalling HILDA.

For the Experienced/Expert VAX User

One way to initially setup HILDA is to logon to a computer system that has access to the LBL
VAX CSA cluster and copy from the LBL CSA VAX the complete contents of the directory that
contains HILDA. The present version is in

WEEK:(BENDING.HILDA]
To find the location of this directory type the command
DISKSPACE BENDING

The disk name that is on the weekly usage line is the correct name to use in place of WEEK. If
necessary, a logical name can be defined using the full pathname to the LBL CSA VAX cluster,
with the aforementioned disk as the device name.
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This disk tool is available if you are running in the LBL VAX cluster. If you do not have access
you will have to in some way determine the logical name of the disk that currently contains the
HILDA files.

The complete contents of the HILDA directory can be seen by typing
DIRECTORY WEEK:(BENDING.HILDA...]

where WEEK s replaced by what is shown by DISKSPACE. Note that the device on which the
files in this directory reside can change. So the above DISKSPACE inquiry is necessary to
determine where HILDA is currently located.

If only the executable image of HILDA is desired, it can be copied from the directory
WEEK:[BENDING.HILDA.EXE]. This directory also contains the version files for the modules
and also all utility data files. It does not contain the necessary module data files. The example data
files for these modules are in the directory WEEK:(BENDING.HILDA.DAT].

If no executable code is desired, then use the directory guide shown above to locate the source code
and example date files. Replace USER by BENDING and COPY the desired files to you local
directory; be sure to include in WEEK the pathname to the LBL disk that contains HILDA.

How to Initially Create HILDA Using the Folder TXT/Hilda/VAX

The folder Hilda/TXT contains the ASCII flat files for HILDA. Basically it is a text file image of
the folder Hilda/MSW. The folders that are contained in Hilda/TXT folder have a direct
correspondence to the directories on the VAX. In what what follows we assume that the HILDA
root directory is [USER.HILDA]).

This folder-directory correspondence is show below.

Eolder Directory Contents
TXT/Hilda/ALL [USER.HILDA.ALL) HILDA source modules
TXT/Hilda/U [USER.HILDA.UTILITY] HILDA utility modules
TXT/Hild/EQU [USER.HILDA.EQU] HILDA version files
TXT/Hilda/DAT {USER.HILDA DAT] HILDA data files
Utility Data (USER.HILDA.DAT.UTILITY] Ultility module data files
drdMJ@3MV [USER.HILDA.DAT.DAT3MV] 3MYV example data files
drdMJ@3000MV  [USER.HILDA.DAT.DAT3000MV] 3000MYV example data files
drdMJData [USER.HILDA.DAT.DAT4MJ] 4M] driver data files
TXT/Hilda/VAX [USER.HILDA] HILDA VAX command files

HILDA is initially installed by downloading the ASCII text files in the folder Hilda/TXT to the
computer environment in which HILDA runs. The following describes how to initially setup
HILDA on the VAX.. HILDA can be installed into any FORTRAN computer environment. This
VAX example can be used as a guide as to how to set up the necessary files. Also, this is an
example on one way to set up the files. Obviously there are other ways to do this, the experienced
computer user can install HILDA and the associated files in whatever way is convenient.
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We give below step-by-step instructions for jnitigllycreating HILDA from the folder Hilda/TXT. In
the following it is assumed that a file transfer program is used to transfer the complete contents of
each folder to the current directory. When we say DOWNLOAD FOLDER this means to download
the contents of the named folder into the current directory. We also assume that the contents of the
folder HILDA/Log that is in the data folders will pot be downloaded. This is also true of any
ReadME files that may be in the folders. The ReadME files are not text files, they are in fact
specially formatted word processor files. If they are downloaded, as may happen when using Telnet
FTP, they should be deleted; their VAX image is of not useable. Remember, in each command
that contains a directory reference the example will use

[USER.HILDA]

In actual practice this sill be what you have chosen for the HILDA root directory. The login.com
file will comectly set the VAX logicals and synonyms that are used below.

* Create a directory that will be the root directory for HILDA. In this example would issue the
command
CREATE/DIRECTORY [USER.HILDA]

* Make this directory vour default directory. In this example we would issue the command

SET DEFAULT [USER.HILDA]
* Putin this directory all the .com files that are in the folder TXT/Hilda/VAX.
DOWNLOAD TXT/Hilda/VAX
* Edit the just created LOGIN.COM file to:
* replace rootNwne in the statement
$ HILDAroot = 'rootName
with the correct HILDA r ot directory name. In this example the statement becomes
$ HILDAroot = USE!LHILDA
* Save this edited file, it is the correct login.com file for HILDA.

Instead of editing the LOGIN.COM file you could type
rootName :== USER.HILDA

However, this symbol definition, which is needed, will vanish when you logoff and you would
have to reestablish this symbol definition each time you login to run HILDA.

¢ Execute this VAX command file by typing
@LOGIN.COM

It you have any error messages issued during the execution of the command file, you should check
that the above quantities have been correctly entered.

* To verify that all is right before installing HIL.DA type
SHOW SYMBOL HILDAroot

The results returned should agree with what you have been instructed to type in the above
instructions. Up to this point about the only mistake that you can make it to have incorrectly
entered the requested information.
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You are now ready to actually install HILDA by creating the directories, transferring the scurce
files and example data files, and creating the executable image. All the HILDA logicals and
synonyms were set when the above mentioned login.com file was executed. In principal this
login.com file should be executed each time you logon, before you run HILDA.

At this point all needed logical names and all synonyms have been defined. The HILDA VAX
directories are assumed to be defined. If they are not already created, they can be created by
executing the command

makeHILDAdir

The next step is to download into the appropriate directories the files in the folders
TXT/Hilda/ALL
TXT/Hilda/U
TXT/Hilda/EQU'

TXT/Hilda/DAT
These folders are in the folder HILDA/TXT.

* Set the default directory to [USER.HILDA.ALL] by typing the command
ALL

* Download the Hilda source modules into this directory.
DOWNLOAD folder TXT/Hilda/ALL

* Set the default directory to be [USER.HILDA.UTILITY] by typing the command
UTILITY

* Download the Hilda utility source modules into this directory.

DOWNLOAD folder TXT/Hilda/U
Set the default directory to be [USER.HILDA.DAT.UTILITY] by typing the command

DATUTILITY
* Download the data files for the Hilda utilities into this directory.
DOWNLOAD folder Utility Data
* Set the default directory to be [USER.HILDA.EQU]} by typing ihe command
EQU
Download the Hilda modules version files into this directory.
DOWNLOAD folder TXT/Hilda/EQU

All necessary HILDA files are now in place. The next step is to create the files for executing
HILDA.

* Create the execution file for HILDA by typing the command
makeHILDA

The executable image of HILDA along with the Hilda module version files and the utility data files
are now in the directory [USER.HILDA EXE]. Again, note that user.hilda will be whatever you
have chosen above for the HILDA root directory.
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To run HILDA it is necessary to have data sets for the modules. These data sets depend on the
problem being run. We have furnished here three data sets. These example data sets are in the folder
TXT/Hilda/DAT. To get these examples we download them as follows:

o Set the default directory to [USER.HILDA.DAT.DAT3MV] by typing the command
DAT3IMV

Put the 3MV example data files into this directory.
DOWNLOAD folder drdMJ @ 3MV

Set the default directory to [USER.HILDA.DAT.DAT3000MV] by typing the command
DAT3000MV

Put the 3000MV example data files into this directory.
DOWNLOAD folder drdMJ @ 3000MV

Set the default directory [USER.HILDA DAT.DAT4MJ] by typing the command
DAT4MJ

Put the 3000MV example data files into this directory.
DOWNLOAD folder drdMJ Data

At this point HILDA is completely setup to run, except for the module data sets. These must be
placed into the execution directory [USER.HILDA EXE). How to do this is explained in Running
HILDA.

In principal it is the HILDA programmer who modifies any of the HILDA source code. If the user
running HILDA has no need for this source code, the modules can be deleted. It is recommended
that this be done. Updating HILDA should be done carefully, it is not to be done casually or
problems will arise.

* Delete the HILDA module source files and the HILDA utility source files by typing the
command
noHILDAsource

This completes the task of initially creating HILDA from the folders in Hilda/TXT.

97









