
LBL--31917

DE93 001533

The HILDA Program*

E. CLOSE, C. FONG, and E. LEE

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

October 30, 1991

* This work was supported by the Director, Office of Energy Research, Office of Fusion
Energy, Inertial Fusion Energy Division, U.S. Department of Energy under Contract
No. DE-AC03-76SF00098. "

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

CONTENTS
e

1. HILDA OVERVIEW 1

2. RUNNIN G HILD A 3

A. Introduction 3

B. Two Simple Examples 6
Example 1: The 3MV Station of a 4MJ Driver 6
Example 2: The 3000MV Station of a 4MJ Driver 46

. C. HILDA Module Data Files 65
D. Analyzing HILDA Results 66

3. THE HILDA MODEL 67
A. Introduction 67

B. Beam Transport Equations 68
C. Acceleration-Transport Elements 71

Iron Aided Pulsed Quadrupole 71
Superconducting Quadrupole 73
Acceleration Modules 78

4. MAINTAINING HILDA 87
A. Installation 87

B. Updating Conventions and Philosophy 87
C. Future Updates 88

Input 88
Output 88
Additional Costing Capabilities 88

APPENDIX: HILDA PROGRAM DOCUMENT DISKS 89

A. Guide to the HPD Disks 89
B. Installing HILDA 91

111

LIST OF FIGURES
ii

Figure 2-1. HK.DA Module Data Structure 5

Figure 2-2. H/LDA Output A 11

Figure 2-3. HILDA Output B 12

Figure 2-4. HILDA Output C 12

Figure 2-5. HILDA Output D 13

Figure 2-6. HILDA Output E 17

Figure 2-7. HILDA Output F 20

Figure 2-8. CalCostl.DAT 27

Figure 2-9. CostV1.DAT 28

Figure 2-10. A1SighAbar.DAT 29

Figure 2-11. TranMod.DAT 30

Figure 2-12. FeQ20.DAT 30

Figure 2-13. ScQ30.DAT 32

Figure 2-14. StrucCore.DAT 38

Figure 2-15. HILDA Output A 50

Figure 2-16. HILDA Output B 50

Figure 2-17. HILDA Output C 51

Figure 2-18. HILDA Output D 51

Figure 2-19. HILDA Output E 56

Figure 2-20. HILDA Output F 58

Figure 2-21. CalCostl.DAT 61

Figure 2-22. CostV1.DAT 63

Figure 2-23. A1SighAbar.DAT 64

Figure 2-24. TranMod.DAT 64

Figure 2-25. FeQ20.DAT 64

Figure 2-26. ScQ30.DAT 64

Figure 2-27. StrucCore.DAT 64

Figure 3- In Acceleration-Transport Module Cost 67

Figure 5-1. HPD Floppy Disks 89

Figure 5-2. HPD/folders: ReadME 90

Figure 5-3. Hilda Installation 91 .

iv

1. HILDA OVERVIEW
o

Although this report is called a program document, it is not simply a user's guide to running HK.DA nor is
. it a programmer's guide to maintaining and updating HILDA. Instead it is a guide to HILDA as a program

and as a model for designing and costing a heavy ion fusion 0-IIF) driver. HR.DA represents the work and
ideas of many people; as does the model upon which it is based. The project was initiated by Denis Keefe,
who was then the leader of the LBL HIFAR project. He also suggested the name HILDA, which is an
acronym for Heavy Ion Linac Driver Analysis.

The conventions and style of development of the HILDA program are based on the original goals, lt was
desired to have a computer program that could estimate the cost and find an optimal design for Heavy Ion
Fusion induction linac drivers. This program should be able to model near-term machines as well as ful|-
scale drivers. The code objectives were: (1) A relatively detailed, but easily understood model. (2) Modular,
structured code to facilitate making changes in the model, the analysis reports, and the user interface. (3)
Documentation that defines, and explains the system model, cost algorithm, program structure, and
generated reports. With this tool a knowledgeable user would be able to examine an ensemble of drivers and
find the driver that is minimum in cost, subject to stated constraints.

This document, referred to as the HR.DA Program Document 0-lt'D), contains a report section that describes
how to use HILDA, some simple illustrative examples, and descriptions of the models used for the beam
dynamics and component design. Associated with this document, as files on floppy disks, are the complete
HILDA source code, much information that is needed to maintain and update HILDA, and some complete
examples. These examples illustrate that the present version of HILDA can generate much useful
information about the design of a HIF driver. They also serve as guides to what features would be useful to
include in future updates. The HPD represents the current state of development of this projecL

At its present state of development HILDA is a FORTRAN program that helps a user find minimum-cost
designs of the focusing elements and the acceleration cells that are in the acceleration-transport section of a
heavy ion fusion driver. A user selects stations in this section of the driver and for each station furnishes
data that defines: the particle beam, the design of the focusing and acceleration components, the points in a
parameter space that HILDA scans. A point in that parameter space is defined by the values of: L the lattice
half-period, a the maximum beamlet envelope size,/iV the station voltage gain, 71the focusing element
packing factor.

When run at a station HILDA tries to produce a design at each point in the parameter space, subject to
constraints furnished in the data. If a suitable design can be produced, the design cost $/AV is recorded.
Upon completion of scanning ali points in the parameter space, HILDA selects from the ensemble of
successful designs the one that was minimum in cost and writes the complete design to a logf'de.

There remains work to be done in extending the program capabilities to include the complete driver in the
search for a minimum cost. The present version of HILDA does not assemble the individual station designs
into a complete acceleration-transport section. However, the station logfiles that HILDA produces contain
ali the information that is needed to do this. Also, there remains work to be done in completing the cost
model and more effort should be expended on developing the user interface. At its present stage of
development ali these tasks could easily be completed.

2. RUNNING HILDA
)

A. INTRODUCTION
a

HILDA has been built to find the minimum-cost design at a particular machine station. When there are
many stations and the data at these stations is different, it is obvious that HILDA needs modules that
provide a simple user interface for setting up the data fries.The present version of HILDA does not contain
these modules and thus requires an excessive amount of data handling. Future versions should correct this
deficiency and thus significantly reduce the task of providing data to HILDA. Also, the creation of ou_t,t
f'flesthat can be read by data analysis programs should be simplified. For example, a spreadsheet program is
very useful in analyzing results and it also is able to generate reports, lt is now somewhat time consuming
to generate input to such an analysis progr'_musing HILDA output.

The basic data structure of HILDA is shown in Figure 2-1, Hilda Module Data Structure. In that figure we
show two stations, which are identified as IDStation = 10 and IDStation = 70. In principal there may be as
many stations as the user wishes. A station is a point along the machine at which a minimum-cost design
is tobe produced.

The pictta'e shows the required module data sets. These data sets, which are files that HILDA reads, have the
names modu/e-name.DAT and are listed below:

CalCostl.DAT Beamparametexdata

AISighBar.DAT Beam dynamics parameters

CostV1.DAT Parameter minimization search space

FeQ20.DAT Fe quadrupoledesign data

ScQ30.DAT Superconductingquadrupoleresign'data

StrucCore.DAT Acceleration slructuredesign data

TranMod.DAT Transport module selection data

The beam parameter data is furnished in one data file, CalCostl.DAT, for ali the stations under
consideration. In that file there is a packet of data for each of the stations under consideration. This is
indicated in Figure 2-1, where we have shown two stations.

The other data sets are associated with the HILDA design module of the same name. For example, the data
in the file AISighBar.DAT is used by the module AISighBar that calculates beam-dynamic quantities. If the
module's design data changes at the different stations, then the content of the data file must be updated to the
correct value for the current station. The next version of HILDA will have modules that enable the user to
easily set the contents of these data files.

Much of the design information that is contained in these data sets is fixed for the entire machine. For
example, the price of the amorphous material does not change as a function of the machine station.
However, the tape width used at a particular station might be changed. These data sets contain ali the
design information available to the design modules at the current station and for that reason can be rather
large. Thus, we have decided to associate them with the design module rather than the machine station.

" Running HILDA consists of establishing the above mentioned module data files and then invoking the
HILDA main program. Once the main program starts, prompts are issued to guide the user. In the
description below of how to run HILDA we shall assume that it has been installed in the user's computing

• environment. How to do this installation is described in _le section Maintaining Hilda of this program
document.

The beam parameter data file, CalCostl.DAT, defines the stations and the beam parameters at those
stations. For each of these stations there must be a set of data files for the HILDA design modules. This set
must be loaded onto the module.DAT files before executing HILDA. The program is then run to find the
minimum-cost machine at the corresponding station. The results of the run are put on the OUTPUT files
shown in Figure 2-1. The basic output file is identified as CostV 1.nnn, where nnn is one of the station
numbers furnished in the CalCostl.DAT file. This file contains the minimum-cost design for the station
nnn. The logfile CostVI.LOG can be copied to the file CostV1Log.nnn, if it is of interest. This logfile
may not be of interest; it may contain very little information. Its content depends on the data in the
associated module data file.

To summarize the running of HILDA:

• define the parametersin CalCostl.DAT, the beam parameter data f'de

• _ _ data in the remaining module data files for each station in CalCostI.DAT
this data can reside on the files

CostV 1.nnn Parameter search space

AISighBar.nnn Beam dynamicsparameters

TranMod.nnn Transportmodule selection data

FeQ20.nnn Fe quadrupoledesigndata

ScQ30.nnn Superconductingdesign data
StrucCore.nnn Accelerationstructuredata

where nnn is the station number to which the data con'esponds.

• transfer _ data to the corresponding module data files with f'detype DAT

• _ HILDA to find the minimum cost at the station for which the module data files are applicable

• save the _ CostV 1,NNN that contains the complete information for the minimum-cost design at
IDStation = NNN

• analyz_I_ _ and generate reports using, for example, a spreadsheet

The initial creation of the HILDA data files is done with a word processor, or text editor. The examples
furnished here can serve as templates. These files are fully formatted and their contents are meant to be self-
explanatory. New data files can be created by editing the data files in the examples. We give here two
simple, complete examples that serve as a guide on how to set up the data files, how to run HILDA, and
how to interpret the program output obtained.

Again, we note that future editions of HILDA will not require the user to perform the file transfer needed to
set up the module data files at the current station. Also, it will be possible for the user to change parameters
of the data files from within the executing program. However, we emphasize here that HILDA is not a
"black box" that drops out a minimum-cost machine, lt has been built to interact with knowledgeable users,
and thus help them arrive at an optimum machine design. As experience is gained in running HILDA its
"black box" capabilities _villno doubt be expanded. However, because of the complex nature of the machine
design problem, the need to have a knowledgeable user will probably not change.

Figure 2-1. HILDA Module Data Structure

i ii,,

CalCostl.DAT

IDStation= 10 IDStation=70
BeamParameters BeamParameters

t 6
!
i_

I

W W

ml hLlr

/',, ',,
i

AISighAbar.DAT CostV1.nnn AlSighAbar.DAT CostV1.mm

CostV1.DAT CostVI.DAT

TranMod.DAT TranMod.DAT

._.. ,,, i

ScQ30.DAT CostV1.LOG ScQ30.DAT CostV1.LOG

FeQ20.DAV FcQ20.DAT

SlrucCore.DAT StrucCore.DAT

DATA OUTPUT DATA OUTPUT

B. TWO SIMPLE EXAMPLES
In this section we give two complete HILDA examples. We change slightly the order of the summary
outline given above in the Introduction. We describe first the running of HILDA. In actual order of
occurrence we must first have set up the module data files for the HILDA program. However, in this
example the data Ides already exist and we can proceed to run the program. These flies contain a significant
amount of data and thus require some detailed explanations. Since the parameters in these f'des appear in the
HILDA generated output, it is necessary that a knowledgeable user understand their contents; also, these
files can be used as templates when furnishing data for other HILDA runs.

Example 1: The 3MV Station of a 4MJ Driver
We point out first that the example described here is in the folder dr4MJ @ 3MV, which is in the folder
MSW/Hilda/DAT of the Hilda Program Document disks. The ReadMe files in those folders contain
additional information about this example. The information that we present here has been extracted from
f'des in those folders. This 3MV example and ali its output can be reconstructed from the data files in dr4MJ
@ 3MV. We also note that the 3MV example set up when HILDA is installed following the instructaons
in the HPD section Maintaining HILDA: Installation is precisely the example that we are describing here

Running HILDA on the VAX

It is easy to run HILDA In what follows we assume that:

• HIIDA has been installed by following the instructions in section Maintaining Hilda: Installation

• you are logged onto your VAX account and that the directory is [USER.HILDA].

• you have executed the LOGIN.COM file that was loaded into this directory

• the installed executable image HILDA.EXE exists in the directory [USER.HILDA.EXE]

• the 3000MV data f'des were installed in the directory [USER.HILDA.DAT. DAT3000MV]

Ali the above assumptions will be true if you have installed HILDA as recommended.

If these assumptions are true, then follow the steps below.

• Transfer to the execution directory by typing
EXE

• Check that you are in the [USER.HILDA.EXE] directory by typing
SHOW DEFAULT

If you are not in this directory something is wrong.

• Set up the HILDA module data files by typing
SET3MV

At this point the HILDA module data flies:
CalCostl.DAT

AlSighBar.DAT
CostV1.DAT

TranMod.DAT

ScQ30.DAT
StrucCore.DAT

contain the 3000MV data of this example.

• Run HILDA by typing
RUNH ILDA

. The main program HILDA will execute and you will be prompted for input.
Follow the prompts. We comment here on what you will see and what you can
do with the present version. HILDA is a menu driven program. When you type
in one of the menu commands it will proceed to do the task that you have
requested. The present version of the program has a limited user interface. Future
versions will have expanded capabilities. Currently we can ask HILDA to
produce a minimum-cost design at a selected station and we can request that it
terminate execution; i.e., stop and return corttrol to the operating environment.

• Continue with the example by entering in lower case the command
cost

Notice the use of lower case. The menu input to HILDA is case sensitive. You
will be asked at which station to calculate the cost. The station number that we
have used in this example for the 3MV data is station 10.

• Type in the integer
10

If you type in a station number for which beam data does NOT exist you will
get a message to that effect. HILDA uses the values of the parameters in the
above cited module data files to obtain a cost at a station for which the beam data

is defined in the data set CalCostl.DAT. For this example the content of these
files was set with the command SET3MV in the instructions above.

As HILDA proceeds to calculate the minimum-cost design for the selected
station it writes messages to the terminal to indicate what is happening. When it
is finished with this design task it will save the results of the design on the file
CostV1.010. The value 010 corresponds to station 10 and similarly for other
station selections, lt updates the file name in the data file CostV 1.DAT so that
this file name is the name of the file containing the design for the station.

In this particular example there is only one station available.

• Exit from HILDA by typing the lower case command

stop

• Confirm this desire to stop by typing the upper case command
YES

This completes the actual running of HILDA. Remember, this input is case sensitive.

If there had been more stations with their associated data sets, you could have obtained a minimum-cost
design at another station. However, note that the present version of HILDA would have used the current
data in the module data files. There is no way to update this data from within HILDA, for this version. The
beam data would be as defined in the data file CalCostl.DAT and thus it would be whatever had been set for
the different stations before starting the execution of HILDA. Although it is easy to edit the module data
files using a text editor, future versions of HILDA will have a user interface that allows the user to modify
selected data from within HILDA.

A copy of the terminal output from HILDA for this example is on the HPD Disk that is associated with

this report, lt is in the HILDA/Terminal/3MV document that is in the HILDA/Log folder of this example.
You can find the HILDA/Log folder in the dr4MJ @ 3MV folder. See the Appendix for a guide to theHPD Disk.

The Output File CostV1.NNN

The basic output file generated during a HILDA run has the name CostV 1.NNN where NNN is the station
to which the file corresponds. In this particular example we have produced a design at station 10; so the
output file is CostV1.010. Had we requested designs at other stations, we would also have those files as
HILDA output files.

These CostV1.NNN fries represent the latest HILDA output HILDA. This means that we should save them
if we will again calculate a design at the same station. For example, if we run HILDA twice to calculate a
design at station 10, the file CostV1.010 will contain the information pertaining to the second run. This
information has replaced the information for the first run; which information is lost, if it is not transferred
to a differently named file.

These files are logfiles and they contain ali the data used and ali the results generated for the particular
design that HILDA selected as having the minimum cost. Therefore, the CostV1.010 file generated by this
example contains much information. The sections of this file that contain the data sets read by the HILDA
modules will be better understood after those data files are described in other sections below.

In what follows we present short selections from the file CostV1.010 and describe their contents. The
complete output file for this example can be found in the folder HILDA.LOGo which is in the dr4MJ @
3MV folder. The interested reader can find these folders in the HPD disk.

The primary results of the HILDA calculation are at the beginning of the CostV1.010 file and are shown in
Figure 2-2, HILDA Output A. The first three lines of output are for identification purposes showing the
station at which the calculation was done and the date and time for the calculation. The next three lines
indicate that the variable names that appear in this output have standard FORTRAN implicit naming
conventions. This infolrnation is not of general interest to most users. However, this file is a logfile and is
readable by the HILDA input routines. Future versions of HILDA will can read these files to analyze the
output and generate reports.

Next is program output that shows the values of the HILDA parameters that give this minimum-cost
design. Following this is the total cost for the station components and how much it costs to furnish one
volt of energy gain.

We note that for this particular example the input data restricted the search to one point in the parameter
space. However, the point that was selected for this example is the point for which HILDA found a
minimum-cost design when it had a rather large grid of points over which it searched. That is why we still
refer to this as the minimum-cost design, even though only one point was looked at.

Next come the input variables that define the beam at this 3MV station of the 4MJ driver. The system
charge Qsys gives the total Coulombs in the beam. Thus, each of the 16 beams carries 1/16th of this
charge. The beam is made up of mercury ions with a charge state of 3. The unrepressed tune (single beam,
no space charge) is 72 degrees. The normalized emittance is .003001 x meter-radian.

This output is the primary output from the HILDA minimum-cost design calculation.

In Figure 2-3, HILDA Output B. we show what can be considered as secondary output from the station 10
HILDA run. The first part gives the number of Coulombs in each of the 16 beams. This is the value of the
variable taul, which is the beam pulse-length times the beam current. Next come dimensionless dynamic
quantities for the mercury ions that make up the beam; followed by their magnetic rigidity.

The parameter grid that HILDA scanned over is then shown. For this particular example there is, as we have
mentioned above, only one point in this grid. Usually there would be a parameter range that the user feels is
reasonable. HILDA would then return, in this CostV1.NNN file, the information pertaining to the design
that yields the minimum cost.

When there are many points in the parameter space the calculation can take a considerable amount of
computing time. The time numbers shown arc averages. For some points the beam cannot be transported
and HILDA does not attempt to produce a design: these points take very little time. For other points a full

. design calculation is performed, but the design is rejectedbecause a constraint is violated. For example, the
acceleration cell might not fit into the available space.These full designs take the longest time.

Even though the numbers for the times are averages, they are useful in estimating needed computer time.
We note that with only one point in the grid this example gives times for the calculation that are too long.
It should be noted that HILDA reads a data file for each module that requires parameter data. However, this
parametersetting is done only once for the initial point in the parametergrid.

The Figure 2..4, HILOA Output C contains output that can be considered to be intermediateresults. Each
module in HILDAperforms a task that requiresvariable input, IN, and produces values foroutput variables,
OUT. There arc, usually, local, intermediate quantifies calculated by the process. These quantifies define the
state of the module for the minimum-cost calculation. They arc saved on this output logfile to help
understand the calculation and to help insure that the design corresponds to a correct calculation.

The module CostGrPt, that finds the cost at each point in the parameter grid, calculated the intermediate
quantities shown here. We should note that when a module generates output, that output is usually written
to a file with filetypc OUT. In this case we are looking at the content of the file CostGrPt.OUT. This file
was copied to the f'deCostV1.010 so it would be saved.

The intermediate quantities shown here come from two modules: AISighAbar which solves the dynamic
problem and QIT which calculated the shown quantities. The quantity alpha is a parameter relating to the
beam dynamics. This is defined in the section The HILDA Model: Beam Transport Equations of this report.
The parameter sigmatt is the depressed tune of the head of the beam, in each of the 16 beams. The quantity
abar is an average beam size; again see the Hilda Model section of this report.

From the module QIT we have the perveance of the beam, the current, the pulse width (longitudinal length),
the average voltage gain pcr meter (electric field strength), and the volt-seconds furnished by the acceleration
cell.

As we have previously mentioned, ttILDA modules that have significant output write that output to a file
for later recovery. In Figure 2-5, HILDA Output D we show that pan of the file CostV1.OUT that has
been copied from the output file created by the module ScQ30.

In each of the HILDA module output files we record the file name, the version of the module that created
the file, and the date and time of the creation of the file.We then print the I/O variables of the module.

The module ScQ30 designs a superconducting qua&upole, so we have as its variable output two quantities.
The variable dolTArray is the total dollar cost of th_ SC quadrupole array; in this case a 16 beam array. The
variable roTArray is the outer radius of the array. The acceleration cell designed by the mod:Ae StrucCore
must know this dimension, since it must have a core inner diameter that will accommodate this quadrupole
array.

The rest of the information in this ScQ30 output pertains to the design of the superconducting quadrupole.
In the section The Module Data Files: ScQ30.DAT SC Quadrupole Design Data we give a description of
the data file, a portion of which is included here. We also have pictures of the superconducting quadrupole,
see Figure 2-14, StrucCore_AT. The design parameters that HILDA calculates, which are shown below,
will be more meaningful when reference is made to those pictures.

The calculated parameters shown below each have a descriptive label that should help the reader to
understand how they relate to the pictures in the data set. We note here that this output file is written as a

• readable HILDA file• Each item has as its identifier the actual ScQ30 variable name. This file can be
processed by yet to be built HILDA routines that produce input files for programs that analyze the results,
or that produce design drawings of the quadrupole.

We will not, at this time, describe in detaileach parameterprintedin this output.We note that the output
of the parametersis divided into two parts. The firstpartrefers to one individual SC quadrupole. For this
quadrupole we have radial dimensions, cross-sectional areas, volumes, weights, and costs of the
components. The individual quadrupoles are then bundled together to form an array of quadrupoles. In this
case the number of beams is 16so there are 16 quadrupoles, or channels, in the array. The second part is for
this quadrupole array; we again show radial dimensions, areas, volumes, weights, and costs.

Following this parameter specification part of the output comes a section that shows the actual materials
used for this design. In the data file ScQ30.DAT, which is described in another section of this report, we
can specify sets of material. A particular selection was made by HILDA in designing the quadrupole for this
minimum cost calculation. We record here that selection, in totality, so that there will be no question later
about what was used for this design. The information _at appears in this output is described in the section
The Module Data Files: ScQ30.DAT SC Quadrupole Design Data that treats the complete data file.

Figure 2-6, HILDA Output E is the output files created by the module StracCore. lt is similar to the
previous SC quadrupole file in that it has parameters and data that define the minimum-cost design; in this
case the acceleration cell design.

The primary output from this module is the variable dolAStruct, which is the cost of the acceleration cell.
This cell does NOT include the focusing/defocusing quadrupole. This dollar amount is simply the cost of
the cell as determined by its component material costs. The design information in this file should be referred
to the pictures iii the data file StrucCore.DAT, which is described in the section The Module Data Files:
StrucCore.DAT Acceleration Cell Design Data.

The file contains sections of information. Again we will not describe each parameter. The first section is
the dollar cost of the components of the cell. This cost is based on the cost of the material used, as obtained
from the aforementioned data file. Next we show the selection parameters used in this design. These, when
associated with the contents of the data file StrucCore.DAT, define the component materials. We next give
component weights, followed by cell and core parameters. The cell and core parameters should be sufficient
todraw a picture of the cell that HILDA has designed.

The parameters for the actual material used in this design are then recorded for future reference. Future
versions of HILDA may modify this output so that the actual names of the material used are recorded in this
outptm Now it is necessary to use the selection flags to look up the material in the StrucCore.DAT data
file.

In Figure 2-7, HILDA Output F we show an outline of the remainder of the CostV1.010 file. The data
files used by the HILDA modules are copied and recorded in this output file. This is not necessarily
redundant. HILDA is very modular and future versions of HILDA may modify the data file during execution
to help HILDA find a minimum-cost design. The actual data files used are those that are recorded in this
output file. A description of these data files appears in the section The Module Data Files.

The final entry into this logfile is a list of module versions. We have included here one of the version files
for illustrative purposes. This is of no general interest to the user. However, it serves a purpose of verifying
that the HILDA modules have been correctly updated. The version file must be updat_xl when HILDA is
updated and modules are changed or added. If this is not done, a message to that effect will appear in this log
of the module versions. This is a redundancy check that the program modules have been carefully updated, lt
does not insure that this is the case, but a message that a version file does not agree with the module
version should serve as a warning to the user that ali may not be well in HILDA.

This also is a piace where summaries of the modules, their equations, and algorithms can appear. This is
presently not done, but as HILDA is updated it may prove desirous to have such a summary directly
associated with the minimum-cost design, lt may not always be possible to recover the exact version of the
module that produced the results in this logfile.

We conclude this discussion of the HILDA output file CostV 1.NNN by noting that althou_;h the output for
the designed element may appear to be more than is really required this is not the case. There are many

10

cross-checksthatcanbeperformedusingthisoutput.To insurethat datainputmistakeshavenot been
made,thesechecksshouldoccasionallybedone.ThesechecksalsobuildconfidencethatHILDA isindeed
calculatingcorrectresultsanddesigningreasonableelements.This file ismeanttobe a logfileandassuch

• it isa recordof whatwentintothecalculationandwhatwasproducedby thecalculation.Unlesssomething
i_ wrong,orthe designcriteriaor logichaschanged,it shouldbepossibleto recreatethisoutputbyusing
the printed input.

HILDA Output File CostVl.010

Figure 2.2. HILDA Output A

rILE: CostVl.010

DATE: 91/10/22
TIME: 16:02:51

I/O variable types:
implicit real (a-h,o-z)

implic[t integer (i-m)

The optimum value was found at:

RL = 3.4999999E-01 : ! half-period [mi

a = 3.5000000E-02 : ! beam radius lm]

delV = 7.0000000E+03 : ! voltage gain [VI

eta = 4.0000001E-01 : ! packing factor []

The cost is:

costDol = 1.6298813E+05 : ! cost [$]

perVoltDol= 2.3284018E+01 : ! voltage gain cost [$/delV]

The input variables for this solution are:

IDStation = I0 : ! station name

Qsys = 1.3333330E-03 : ! system charge lC]

numBeam = 16 : ! number of beams []

Amu = 2.0000000E+02 : ! atomic mass [amu]

q = 3.0000000E+00 : ! charge state [e]

V = 3.0000000E+00 : ! cumulative voltage [MV]

sig0 = 7.2000000E+01 : ! undepressed tune [deg]
epsn = 1.0000000E-06 : ! nor. emit., no PI [m-r]

11

Figure 2-3. HILDA Output B
ii i

Associated quantities are given below:

Process KenVar:

tauI = 8.3333311E-05 : ! charge per beam lC]

betaGamma = 9.8295826E-03 : ! beta * gamma []

gamma = 1.0000483E+00 : ! Energy/rest Energy []

beta = 9.8291077E-03 : ! v/c []

Brho = 2.0360343E+00 : ! magnetic rigidity IT-mi

Process CostGrPt scanned over the grid:
RLmin = 3.4999999E-01 : ! min. half period lm]

RLmax = 3.4999999E-01 : ! max. half period [mi

delRL = 3.4999999E-01 : ! grid interval lm]

aMin = 3.5000000E-02 : ! min. beam size [mi

aMax = 3.5000000E-02 : ! max beam size lm]

dela = 3.5000000E-02 : ! grid interval [mi

delVmin = 7.0000000E+03 : ! min. voltage change [VI

delVmax = 7.0000000E+03 : ! max. voltage change IV]

deldelV = 7.0000000E+03 : ! grid interval [VI

etaMin = 4.0000001E-01 : ! min. packing factor []

etaMax = 4.0000001E-01 : ! max. packing factor [J

delete = 4.0000001E-01 : ! grid interval []

The time required for the grid scan:

numGrPts = I.O000000E+00 : ! # of grid points []

delTime = 3.9062500E-02 : ! grid scan time Is]

aveTime = 3.9062500E-02 : ! ave. case time [si

Figure 2-4. HILDA Output C

Associated intermed_ ata Results :

FILE: CostGrPt.OUT VERSION: 910910

DATE: 91/10/22 // 16:02:50

I/O variable types

implicit real (a-h,o-z)

implicit integer (i-m)

IN

IDStation = i0 ' station for this calculation

numBeam = 16 ' number of beams

tauI = 8 3333311E-05 ! charge ICI

sig0 = 7 2000000E+OI ! undepressed tune [deg]

betaGamma = 9 8295826E-03 ! beta - gamma

beta = 9 8291077E-03 ! v/c []

Brho = 2 0360343E+00 ! magnetic rigidity IT-m]

RL = 3 4999999E-01 ! half period [mi

a = 3 5000000E-02 ! beam radius [m]

delV = 7 O000000E+03 ! voltage gain [VI

eta = 4 0000001E-01 ! packing factor []

OUT

perVoltDol = 2.3284018E+01:! voltage gain cost [$/delV]

A1SighAbar

alpha = 5.8574492E-01 :! [j

sigmaH = 5.9359894E+00 :! depressed tune [deg]

abar = 2.6977101E-02 :! an ave. beam size [mi

12

Figure 2-4. HILDA Output C (continued)
|

QIT
• perv = 2.0383161E-03 :! perv

current = 2.0049188E+00 :! beam current lA]

taup = 4.5720877E-05 :! pulse width [si

E = 2.0000000E+04 :! ave. volt gain/HLP IV/m]

voltSec = 3.2004613E-01 :! volt seconds [V-s]

ENDFILE: CostGrPt.OUT

Figure 2-5. HILDA Output D
ill i

FILE: ScQ30.OUT VERSION: 910910

DATE: 91/10/22 // 16:02:49

I/O variable types
implicit real (a-h,o-z)

implicit integer (i-m)

IN

a = 3.500000E-02 :!beam edge radius lm]

RL = 3.500000E-01 :!half period [mi

eta = 4.000000E-01 : !packing factor []

Brho = 2. 036034E+00 :!magnetic rigidity IT-m]

sig0 = 7.200000E+01 : !undepressed tune [deg]

numBeam = 16 :!number of beams []

OUT

dolTArray = 5.585644E+04 :!cost of quad array [$]

roTArray = 5.513123E-01 :!outer radius of quad array [mi

Data and calculated Quadrupole parameters :

sig0 = 7.200000E+01 :!undepressed tune [deg]

rWire = 6.965000E-02 :!inner wire radius [mi

rWo = 7.965000E-02 :!outer wire radius [m]

drWire = 1.000000E-02 :!wire thickness [mi

BWire = 3.972905E+00 :!field• inner wire radius [TJ

BWo = 4.543314E+00 :!field, outer wire radius IT]

Bprime = 5.704099E+01 :!quad., field gradient [T/m]

avJ = 1.130178E+09 :!average current density lA/m**2]

R = 5.375000E-02 :!aperture radius [m]

drWrap = 5 480373E-03 :!quad wrap, thickness lm]

pitch = 1 732607E-01 :!beam center to center [mi

endMag = 7 965000E-02 :!length of magnet ends [mi

zlMag = 2 993000E-01 :!length of magnet iron [m]

wtScQuad = 3 649901E+01 :!weight of 1 SC quadrupole . [kg]

costQuad = 3 003825E+03 :!cost of 1 SC quadrupole [$]

wtTArray = 8 957938E+02 :!weight of SC quad Array [kg]

dolTArray = 5 585644E+04 :!cost of SC quad Array [$]

SINGLE SC QUADRUPOLE ASSEMBLY

Radial dimensions

drPIC = 2.590000E-02 :!Pipes, Insulation and Cooling [mi
Individual radii

rPipe (I) = 5.375000E-02 :!Pipes [m]

• rPipe (2) = 6.765001E-02 :!Pipes [m]

rInsul (i) = 5. 575000E-02 :!Insulation [mi

rInsul(2) = 6.005000E-02 : !Insulation i_]

rInsul(3) = 6.435000E-02 :!Insulation lm]

rCool (I) = 5.905000E-02 : !Cooling [mi

rCool (2) = 6.335000E-02 : !Cooling [mi

13

Figure 2-5. HILDA Output D (continued)

Areas, xy cross-section
xyScQ = 3.001929E-02 :!One SC quadrupole [m''2]

xyWrap = 1.008864E-02 :!Wrap (stress), incl. shell lm**2]

xyCable = 4.690398E-03 :!Cable, SC + non-SC! [m**2]

xyPIC = 6.163993E-03 :!Tot. Pipes, Insul. & Cool. [m**2]

xyVac = 9.076258E-03 :!Vacuum, Beam pipe . [m**2]

Volumes for One SC Quadrupole

volScQ = 8.984773E-03 :!Complete Quad. [m**3]

volWrap = 3.019529E-03 :!Wrap (stress), incl. shell [m**3]

volCable = 1.403836E-03 :!Cable, SC + non-SC [m"*3]

volPipe = 4.641217E-04 :!Pipes, total [m**3]

volInsul = 1.148701E-03 :!Insulation, total [m**3]

volCool = 2.320608E-04 :!Cooling, total) [m**3]

volPIC = 1.844883E-03 :!Tot. Pipes, Insul. & Cool. [m'*3]

volVac = 2.716524E-03 :!Vacuum, Beam Pipe . [m**3]

Weights of Components in One SC Quadrupole

wtScCab = 3 809955E+00 :!SC Cable material [kg)

w_CabS _ 8 032485E+00 :!non-SC Cable material [kg]

wtCable = 1 184244E+0! :!Total Cable Weight [kg)

w_Wrap = 2 465657E+01 :!Outer Wrap, includes shell [kg]

wtPipe = 0 000000E+00 :!Pipe layers [kg]

wt Insul = 0 O00000E+00 :!Insulation layers [kg]

w11Cool = 0 000000E+00 :!Cooling layers [kg]

w_ScQuad = 3 649901E+01 :!Total of one SC Quadrupole [kg]

Costs of Components in one SC Quadrupole

dScCab = 1.142987E+03 :!SC Cable material [$]

dCabS = 4.016242E+02 :!non-SC Cable material [$]

dCable = 1.544611E+03 :!Total Cable, SC + non-SC [$]

dWrap = 6.164143E+02 :!Wrap (stress), includes shell [$]

The rest of the SC Quadrupole (channel)

dPipe = O.000000E+00 :!Pipes ($]

dInsul = 0.000000E+00 :!Insulation [$]

dCool : O.000000E+00 :!Cooling [$]

dBalance = 8.427998E+02 :!Pipes, Insulation and Cooling [$!
costQuad = 3.003825E+03 :!Total, one SC Quad. (channel) [$)

COMPLETE ARRAY of numBeam SC Quadrupole channels + Wrap
Radial dimensions

×AScQ = 6.930430E-01 :!Width of the SC Quads [m]

yAScQ = 6.930430E-01 :!Height of the SC Quads [mi

dxAOtC = 4.331519E-02 :!Array outer collar,dr lm)

dyAOtC = 4.331519E-02 :!Array outer collar,dr [m]

Areas, xy Cross Section

xyAScQ = 4.803086E-01 :!SC Quadrupole bundle [m*_2]

×yAVac = 1.452201E-01 :!Vacuum, Beam Pipes [m**2]

xyAOtC = 1.275820E-01 :!Array outer Collar [m**2]

×yAQuad = 6.078905E-01 :!Array, Total xy Area [m*'2]

Volumes

volAScQ = 1.437564E-01 :!SC Quadrupole bundle [m*_3]

volAVac = 4.346439E-02 :!Vacuum, Beam Pipes [m**3]

volAOtC = 3.818528E-02 :!Array outer Collar [mt*3]

volAQuad = 1.8!9416E-01 :!Array Total xyz space lm**3]

14

Figure 2-5. HILDA Output D (continued)
i

Weights of Array Components (Total for numBeam SC Quads.)

• wtAScCab = 6.095929E+01 :!SC Cable material [kg

wtACabS = 1.285198E+02 :!non-SC Cable material [kg

wtACable = 1.894790E+02 :!Total Cable Weight [kg

wtAWrap = 3.945052E+02 :!Outer Quad. Wraps (stress) [kg

" wtAPipe = 0.000000E+00 :!Pipes [kg

wtAInsul = 0.000000E+00 :!Insulation layers [kg

wtACool = 0.000000E+00 :!Cooling layers [kg

wtAScQ = 5.839842E+02 :!SC Quadrupoles [kg

wtAOtC = 3.118096E+02 :!Outer Array collar [kg

wtTArray = 8.957938E+02 :!Total of the Complete Array [kg

Costs of Array Components (Total for numBeam SC Quads.)

dAScCab = 1.828779E+04 :!SC Cable material $]

dACabS = 6.425988E+03 :!non-SC Cable material $]

dACable = 2.471377E+04 :!Total for cable, SC + non-SC $]

dAWrap = 9.862629E+03 :!Quad Wraps (stress) $]

dAPipe = 0.O00000E+00 :!Pipes $)

dAInsul = 0 000000E+00 :!Insulation layers $]

dACool = 0 000000E+00 :!Cooling layers $]

dABalance = 1 348480E+04 :!Total for Pipes, Insul.,Cool. $]

dAQuad = 4 806120E+04 :!Total for the SC Quads $]

dAOtC = 7 795239E+03 :!Outer Array collar $]

dolTArray = 5 585644E+04 :!Total for Array Assembly $]

DATA LOADED FROM FILE ScQ30.DAT

CHOOSE MATERIALS for the SC Quadrupole

iScCab = 1 :! 5C wires []

iCabS = 1 :! non-SC wire space []

iWrap = 1 :! Wrap (stress) []

iPipe = 1 :! vac.& outer Quad pipes []

nPipe = 2 :! # of pipes []

drPipe = 2.000000E-03 :! thickness of pipes [mi

iInsul = 1 :! insulation layers

nInsul = 3 :! # of layers []

drlnsul = 3.300000E-03 :! thickness of layers lm]

iCool = 1 :! cooling layers

nCool = 2 :! # of layers []

drCool = 1.000000E-03 :! thickness of layers lm]

CHOOSE MATERIAL for the Array of numBeam Quadrupoles

iAWrap = 1 :! outer wrap (collar) []

SET LIMITS and PARAMETER VALUES

Quadrupoles

drWmin = 1.000000E-02 :! minimum wire thickness lm]

drWmax = 1.000000E-01 :! maximum wire thickness lm]

dShell = 1.500000E-03 :! outer shell thickness lm]

Non-Quadrupole free space

zQend = 0.000000E+00 :! end packaging for the quads, lm]

fZSpace = I.O00000E-OI :! non-magnet space limit, frac.of L []

Coefficients for the SC Quadrupole Calculation:

cRI = 1.250000E+00 :! aperture radius = R = cRl*a+cR2 []

• cR2 = 1.000000E-02 :! lm]

Quadrupole Wrap (stress) scaling parameters

sWrap = 1.000000E-02 :! wrap thickness for BWrap, rWrap [mi

• BWrap = 5.000000E+00 :! field for scaling the Quad. Wrap IT]

rWrap = 1.200000E-01 :! radius used with BWrap [mi

Quadrupole SC wire inner radius limit

rWtRL = 5.000000E-01 :! rWire .lt. eta*RL [mi

15

Figure 2-5. HILDA Output D (continued)
lm. i

Array of numBeam Quadrupoles

fCollar = 2.500000E-01 :! wrap (collar) width, frac. of pitch [] *

Quadrupole (channel) Assembly-Complexity Cost factor

BFactor = 3.900000E-01 :! times the Quad (Wrap + Cable) cost []

Array Assembly-Complexity Cost factor

cAFact = 1.000000E+O0 :! times the Array cost []

MATERIAL USED in the SC Quadrupole Array
Superconducting Cable

iScCab = 1 :! ID # of data set

IDScMat = 'NbTi Niobium Titanium ' :!

denScMat = 7.600000E+03 :! material density [kg/m**3]

uCScMat = 3.000000E+02 :! unit cost [$/kg]
qFScMat = 1.000000E+00 :! quantity factor []

cFScMat = 1.000000E+00 :! complexity factor []

Current density parameters and Field limits

cJCoeff = 2.900000E+09 :! slope of cJ curve lA/m*'2]

cJBn = 1.000000E+01 :! numerator B parameter [TJ
cJBd = 5.000000E+00 :! denominator B parameter [TJ

rLamda = 3.571000E-01 :! S C wire pack. fraction IT]

BWomax = 1.000000E+01 :! B at outer wire, maximum IT]

Non SC Cable

iCabS = 1 :! ID # of data set

IDCMat = 'Cu Copper , :!

denCMat = 8.900000E+03 :! material density [kg/m**3]

uCCMat = 5.000000E+01 :! unit cost [$/kg]

qFCMat = 1.000000E+00 :! quantity factor []

cFCMat = 1.000000E+00 :! complexity factor []

Quadrupole Wrap (Stress)
iWrap = 1 :! ID # of data set

IDWMat = 'Steel , :!

denWMat = 8.165700E+03 :! material density [kg/m**3]

uCWMat = 2.500000E+01 :! unit cost [$/kg]

qFWMat = 1.000000E+00 :! quantity factor []

cFWMat = 1.000000E+00 :! complexity factor []

Array Outer Wrap (Collar)

iAWrap = 1 :! ID # of data set

IDAOtMat = 'Steel , :!

denAOtMat = 8.165700E+03 :! material density [kg/m*_3]

uCAOtMat = 2.500000E+01 :! unit cost [$/kg]

qFAOtMat = 1.000000E+00 :! quantity factor []

cFAOtMat = 1.000000E+00 :! complexity factor []

Pipes , Vacuum and around Quad outer insulation layer
iPipe = 1 :! ID # of data set

IDPMat = 'No Data on this Material , :!

denPMat = 0.000000E+00 :! material density [kg/m"*3]

uCPMat = 1.000000E+00 :! unit cost [$/kg]

qFPMat = 1.000000E+00 :! quantity factor []

cFPMat = 1.000000E+00 :! complexity factor []

Insulation (thermal)

iInsul = 1 :! ID # of data set

IDIMat = 'No Data on this Material , :!

denIMat = O.O00000E+O0 :! material density [kg/m**3]

uCIMat = I.O00000E+O0 :! unit cost [$/kg]

qFIMat = 1.000000E+00 :! quantity factor [] .

cFIMat = 1.000000E+00 :! complexity factor []

16

Figure 2-5. HILDA Output D (continued)
i

Cooling Layers, data sets
• iCool = 1 :! ID # of data set

IDClay = 'No Data on this Material ' :!

denCLay = 0.000000E+00 :! material density [kg/m**3]

uCCLay = 1.000000E.00 :! unit cost [$/kg]

qFCLay = 1.000000E+O0 :! quantity factor []

cFCLay = 1.000000E+00 :! complexity factor []

ENDFILE: ScQ30.OUT

Figure 2-6. HILDA Output E
i i i

FILE : StrucCore. OUT VERSION : 910910
DATE : 91/10/22 // 16 : 02 : 50

I/O variable types

implicit real (a-h,o-z)

implicit integer (i-m)

IN

voltSec = 3.2004613E-01 :!volt-sec per half perl.od IV-si

numBeams = 16 :!number of [-_.ams []

roTArray -- 5.5131233E-01 :!outer radius, quad array [mi

voltGain = 6.9999998E-03 :!peak acc. per half period [MV]

halfPeriod = 3.4999999E-01 :!lattice half-period length 'mi

OUT

dolAStruct = 1.071317D+05 :!HLP cost of acc. structure [$]
The intermediate values calculated and returned are :

COST OF COMPONENTS

numdolHlp = 6 :!number of costs returned

dolAm = 3.180715D+04 :!core amorphous material [$]

dolCorH = 1.443943D+04 :!core housing [$]

dolCelH = 2.573705D+04 :!cell housing [$]

dolCCI = 3.896130D+03 :!core/cell housing insulation [$]

dolGI = 3. I07991D+04 :!gap insulator [$]

dolDiC = i. 720037D+02 :!dielectric coolant [$]

MATERIALS USED: flags select material from StrucCore.dat

numidMat = 8 :!# of used material flags returned

idAm -- 1 :!core winding amorphous tape

idWTape = 4 :!core tape width

idCSM = 2 :!core submodule housing

idCH = 2 :!cell housing
idIN = 2 :!core/cell insulation

idDiC = 4 :!dielectric coolant

idGP = 6 :!gap vacuum pressure range

idGI = 1 :!gap insulator

COMPONENT WEIGHTS :

numwtHlp = 20 :!# of weights that are returned

Half Lattice Period weights for the acceleration structure

• wtAStruct = 1.078513D+04 :!HLP weight of acc. structure Ikg]

wtAm = 6.361431D+03 :!core amorphous material [kg]

wtCorH = 1.458720D+03 :!core housing [kg]

wtCelH = 2. 600044D+03 :!cell housing [kg]

• wtCCl = 1.887504D+02 :!core/cell housing insulation [kg]

wtGI = 7.256784D+01 :!gap insulator [kg]

wtDiC = 1.036167D+02 :!dielectric coolant [kg]

17

Figure 2-6. HILDA Output E (continued)
i ii i

Sub component weights

wtCore = 6 361431D+03 :!amor. material, per core [kg]

wtCEP = 4 528662D+02 :!housing end plate, per core [kg]

wtCOH = 3 786480D+02 :!outer housing, per core [kg]

wtCOB = i 743392D+02 :!inner bobbin, per core [kg]

wtCHPC = 1 458720D+03 :!housing total, per core [kg

wtCEI = 5 450253D+01 :!end plate ins. (2 per core) [kg

wtCOI = 2 I06926D+01 :!outer housing (ins./core) [kg

wtCI = 1 300743D+02 :!insulation total, per core [kg

wtCHIE = 5 867611D+01 :!cell hous. (end ins. 1/core) [kg

wtCHI = 5 867611D+01 :!cell hous. insulation, total [kg

wtHSGEP = 2 083088D+03 :!cell hous. end plate, pair [kg

wtOHR = 4 619303D+02 :!cell hous. supp. ring [kg

wtHSGGI = 5.502587D+01 :!gap insulator support ring [kg

CELL/CORE PARAMETERS:

numCP = 29 :!# of parameters returned

numCore = 1.000000D+00 :!# of cores & PFNs per cell [

cellL = 2.936568D-01 :!z axis, cell length [m

gIL = 1.666667D-01 :!gap insulator length [m

pV = 2.000000D-01 :!required PFN peak per core [MV

tI = 3.000000D-02 :!gap insulator width [m

QAI = 5 634315D-02 :!support igth., quad. , etc. [m

zlH = 2 000000D-02 :!cell housing widths, z axis [m

z/PH = 1 O00000D-02 :!core housing widths, z axis [m

zlCi = 1 015228D-02 :!z length, core insulator [m

delTC = 2 000000D-02 :!core housing top [m

delBC = 2 000000D-02 :!core housing bottom [m

delCH = 2 309401D-02 :!cell housing top [m

riH = 6 064436D-01 :!inside rad. to acc. gap insul.[m

delRg = 5 128205D-02 :!radial cell-acc, gap [m

rim = 6 877257D-01 :!core housing inner radius [m

ric = 7 077256D-01 :!core inside radius [m

roC = 1 495241D+00 :!outside radius of core [m

roCore = 1 525393D+00 :!core housing outer radius [m

roHSG = 1 548487D+00 :!cell housing outer radius [m

acAM = 1.280185D-01 :!acc. cell amor. mat. area lm**2

pFAm = 8 030000D-OI :!packing fraction [

aC = 1 600231D-01 :!core cross sectional area [m**2

wTape = 2 032000D-01 :!core amor. mat.tape width [m

hC = 7 875151D-01 :!height of amorphous material [m

aRC = 3 875566D+00 :!core amor. mat. h/w ratio [

fQ = I 100000D+O0 :!quad array per. supp. factor [

gILmax = 2 349255D-01 :!max. gap ins. length [m

aRCmax = 4.000000D+00 :!max. hth/wdth ratio, core [

QAlmin = 3.500000D-02 :!min. quad. support length [m

MATERIAL DATA Values actually used:

Core amorphous material

denAm = 7 180000E+O0 :!density [gm/cm**3]
cFacAm = 1 000000E+00 :!complexity factor []

qFacAm = 1 000000E+00 :!quantity factor []

uCostAm = 5 000000E,00 :!unit cost [$/kg] "

pFAm = 8 000000E-01 :!radial packing fact []

delBAm = 2 5000OOE+O0 :!flux swing IT]

Core tape widths

wTape = 2.032000E+01 :!core tape width [cm]

aRCmax = 4.000000E+00 :!max. height/width []

18

Figure 2-6. HILDA Output E (continued)

Core Sub Module housing material

' denCSM = 8.165700E+00 :!density [gm/cm**3]

cFacCSM = 1.000000E+00 :!complexity factor []

qFacCSM = 1.000000E+00 :!quantity factor []

uCostCSM = 9.898700E+00 :!unit cost [$/kg].

Cell Housing material

denCH = 8.165700E+00 :!density [gm/cm**3]

cFacCH = 1.000000E+O0 :!complexity factor []

qYacCH = 1.000000E+00 :!quantity factor []

uCostCH = 9.898700E+00 :!unit cost [$/kg]

emCH = 3.000000E+01 :!elasticity mod. [10"'6 ib/in**2]

Core & cell Housing Insulation

denIN = 9.850000E-01 :!density [gm/cm**3]

cFacIN = I.O00000E+00 :!complexity factor []

qFacIN = 1.000000E+00 :!quantity factor []

uCostIN = 2.064170E+01 :!unit cost [$/kg]

bVoltIN = 1.970000E+0_ :!break down voltage [kV/cm]

Gap Insulator

denGI = 3.717000E+00 :!density [gm/cm**3]

cFacGI = 1.000000E+00 :!complexity factor []

qFacGI = 1.000000E+00 :!quantity factor []

uCostGI = 4.282876E+02 :!unit cost [$/kg]

bVoltGI = 1.200000E+01 :!break down voltage [kV/cm]

Dielectric coolant

denDiC = 1.800000E+00 :!density [gm/cm**3]

cFacDiC = 1.000000E+00 :!complexity factor []

qFacDiC = 1.000000E+00 :!quantity factor []
uCostDiC = 1.660000E+00 :!unit cost [$/kg]
bVoitDiC = 3.900000E+01 :!break down voltage [kV/cm]

Acc. Gap Voltage break down strength

bVRGap = 0.500000E+02 :! [kV/cm]

ENDFILE: StrucCore.OUT

19

Figure 2-7. HILDA Output F

DATA FILES USED :
1

FILE: AiSighAbar.DAT

Image of the file used for the minlmum-cost design.

ENDFILE: AISighAbar.DAT

FILE: ScQ30.DAT

Image of the file used for the minimum-cost design.
ENDFILE ScQ30.DAT

FILE: TranMod. DAT

Image of the file used for the minimum-cost design.
ENDFILE: TranMod. DAT

FILE: StrucCore. DAT

Image of the file used for the minimum-cost design.
END: StrucCore. DAT

PROCESS VERSIONS:

c FILE: KenVar.EQU VERSION: 910910
c SUBROUTINE KenVar

c version = '910910'

c ENDFILE: KenVar.EQU

ENDFILE: CostVl.010

The Module Data Files

Each HILDA data file discussed below is associated with a HILDA module of the same name The module
will read the file module nameDAT to get the data it requires. For example, the module Cos,'V1 reads the
file CostV1.DAT. As mentioned previously, the data sets should have enough comme:_,ts to explain
themselves. We limit ourselves to comments on their contents.

CaiCostl.DAT Beam Parameter File

At each station that the user intends to use HILDA to find a minimum-cost design it is necessary to define
the beam parameters. Those parameter values are furnished in this data file, which is subsequently read by
the HILDA module CalCost. In Figure 2-8, CalCost1.DAT below we show the contents of this file. As
we have previously noted, the HILDA I/O routines can read a fully formatted ASCII data file. The file
shown in Figure 2-8 is a valid HILDA data file, when written as a flat ASCII text file. This means that the
file does not contain any special word processor information, such as special characters that define boldfaced
or outlined text. The flat ASCII text files of this example are in the folder dr4MJ @ 3MV that is in the
folder TXT/Hilda/DAT of the HPD disks; see the Appe_,,dix for a guide to these disks.

This naming convention is adhered to throughout the folders on the HPD disks. Those folders that have
MSW in their names contain Microsoft Word documents. Those that have TXT in their names contain the
same files, but these are ASCII text files with no special formatting or graphic pictures. These ASCII text
files can be read by --T.DA.

The user should now read the file in Figure 2-8. We emphasize that these example dam files are meant to be
self-explanatory, so we add some comments rather than repeating the explanations that are in the data file.

In the table of parameter values shown in Figure 2-8 the quantity varName refers to the name of the variable •
that receives the value in the column varValue. The convention in the HILDA data files is that the actual
parameter name that is used in the module appears in the data to identify the parameter that is being set. In
the particular data set that we are describing the name is used. In some HILDA data sets this name is simply

20

a descriptive identification of the parameter.As a rule, or convemion, the names used in these example dam
sets should NOT be changed. The numerical value assigned to the name may, oi course, be changed to
reflect the user'sdata.

0

The same comment applies to the data type: it should NOT be changed. The information in the comment,
which comes after the ! character, is there to describe the variable.

In the particular case at hand we have identified the station to be number 10. There is no significance to this
number, other than to correlate the HILDA I/O files with the station at which the user requests a minimum-
cost design. However, future versions of HILDA should use this information to load the correct data into
the module data fries.

The total amount of charge in the beam at this station is 0.00133333 Coulombs. This is transported in 16
beams. The particles that make up the beam have 200 atomic mass units and are ions with a positive charge
state of 3. At this station the cumulative acceleration voltage that the machine has supplied is 3 million
volts. This does NOT mean that the energy of the beam particles is 3MEV. In this particular example it
would be 9MEV, because of the +3 charge state. The undepressed tune (single particle, no space charge) of
the beam is 72 degrees. The normalized emittance of each beam in the 16 beams is 0.000001 meter-radian.
This is the emittance without the factor of n that is sometimes included when specifying beam emittance.

Ali the quantities have the units that appear in the data files. These units appear as comments, however they
should always be included in the data files. Without the units it is not always possible to resolve exactly
what the quantity represents.

In the file CalCostl.DAT we also have a file name, which in this example is shown as CostVl.010. The
name furnished before the run is immaterial. In some data files you may see the file name set to null.
HILDA enters the name of the file that contains the output for the minimum-cost design at the station. In
this case the name will become CostV1.010. This information may not seem useful to the user, at this
time. However, future versions of HILDA can make use of this information when processing run output.

CostV1.DAT Parameter Search Space
This data file, which is shown in Figure 2-9, CostV1.DAT, is associated with the module CostV1 that
does the parameter space scan. HILDA has the free parameters: RL the structure half-period, a the maximum
beam radius, delV the voltage gain that the particular station supplies, and eta the quadrupole packing
fraction. At each point (RL,a,delV,eta) in this space HILDA determines if the beam can be transported. If it
cannot be transported, then HILDA will NOT try to find a minimum-cost design; it will skip to the next
point in the parameter space. The data file CostV1.DAT defines the parameter space by setting the limits
and the number of points for each parameter.

The parameter space is scanned from minimum to maximum for each parameter. One or more points must
be specified for each parameter, no parameter may be omitted. If there is one point, then HILDA will use
the minimum value. If there are two points, HILDA uses the minimum and the maximum. Three or more
points divide the parameter interval [min,max] into equal subintervals. For example, specifying three points
will select points at the minimum, the center, and the maximum of the parameter interval.

lt should be noted that the module CostV 1 has four loops that are the same as shown in the data set. The
inner most loop is eta, the next outer loop is delV, then comes a followed by RL. This order is usually of
no concern to the user. However, it should be kept in mind that for the current station HILDA will set the
structure half-period, the beam size, and the voltage gain, and then search through the possible quadrupole

• packing fractions. Upon completion of this scan it will go to the next voltage gain and repeat the process.
lt may be that for some situations this is not the best search order.

, As we mentioned before, the contents of the logfile CostV1.LOG can vary. This is controlled by setting
iLog in this data file.

21

We note here that the inclusion of the comment defining the variable IDStation identifies this dataas
belonging to station 10. Future versions of HILDA will probably have this informaUon included as data in
this data file, thus eliminating the need to set up the data file for each station. Experience has shown that
the useful scan space is not necessarily the same for ali stations. Experience has also shown that it is often e
the case that there are really not many points forwhich the beam can be transported, when the parameter
grid is allowed to span a large range of values. The logfile can be examined to determine those points at
which it may makesense to do a parameterscan using a finergrid.

AISighBar.DAT Beam Dynamics Parameters

HILDA solves equations that pertain to the dynamics of the beam transportproblem. An interested user can
find information pertaining to the model in the section The HILDA Model: Beam Transport Equations of
this report. We note here that the parameters in this data set, shown in Figure 2-10, AISighAbar.DAT
relate to the solution of the transcendental equations that HILDA must solve; also that the limits on the
depressed tune are set here. These parameters are not usuaLlychanged. This data set is meant to be serf-
explanatory when reference is made to the module AISighAbarand the beam transport equations. As noted
in the data set, there is usually no reason for the userto modify this data.

TranMod.DAT Transport Module Selection Data

HILDA first asks whether the beam can be transported. For those points in the parameter space for which
the beam CAN be transported, HILDA designs appropriate elements. The module TranMod reads data that
selects which of the available design modules to use. Presently the selection is somewhat limited: HR.,DA
can design an iron quadrupole and it can design a superconductivity quadrupole. However, future versions
will have a wider selection of design modules. The contents of the TranMOd.DAT data file are shown below
in Figure 2-11, TranMod.DAT. The data set is self-explanatory.

FeQ20.DAT Fe Quadrupole Design Data

The HILDA module FeQ20 designs an iron quadrupole. This data set, shown in Figure 2-12, FeQ20.DAT,
furnishes ali the necessary design information. The f'u'stcoefficients are parameters that determine the size of
the vacuum pipe enclosing the beam. We note that the beam radius a that appears in this formula is the
same beam radius parameter that HILDA uses as a free parameter. If it is desired for HILDA to cost a
machine for which the vacuum pipe radius is a fixed size, these coefficients must be adjusted appropriately.
This adjustment was made when HILDA was run on the ILSE example that is included on the HPD disks.

The remaining coefficients are self-explanatory; the user should refer to the picture in the data set to
understand their significance. We note that when this data set is written as a flat ASCII file, the graphic that
constitutes the picture showing the FeQ20 quadrupole will not be written. The data set, without this
graphic, is readable by HILDA.

This particular design module reads only one material set; the Fe material used for both the quadrupole poles
and the return yoke. We furnish the density and the unit cost of this material. The two other factors, cCost
and qCost, can be used to adjust the final cost of the quadrupole. The quantity factor qCost is meant to
reflect the fact that producing these quadrupoles in large quantities can cause the cost to change. Likewise
the complexity factor cCost can be used to adjust the unit cost for the cost of fabricating a complex item.
Both of these factors multiply the cost arrived at when only the unit cost of the material is used. In the
present example they have been set to 1and thus have no effect on the final cost.

The picture in Figure 2-12 is a schematic transverse view of the quadrupole. The quadrupole is cylindrically
symmetric about the longitudinal z axis. The labels used are the actual variable names used in the module "
FeQ20. The output from FeQ20 appears in the final design that is written to the logfile CostV1.010 and
the parameters can be keyed to this picture.

22

ScQ30.DAT SC Quadrupole Design Data
The module ScQ30 designs a superconducting quadrupole. This module is similar to the module FeQ20.

t The ScQ30.DAT data set furnishes information neededfor the superconducting quadrupole. This data set is
shown in Figure 2-13, ScQ30.DAT.

The parameters in the section CHOOSE MATERIALS for the SC Quadrupole are used to select the
' materials for the nam**.dcomponents of the SC quadrupole. The three pictures in this data set can be used to

identify the various components. In this example the parameters have been set to select the superconducting
wire as NbTi, the material filling the remainder of the winding space as Cu, and the material around the
coils as steel. We then have the material for the vacuum pipe and the outer containment pipe. We also can
specify data for the thermal insulation layers and for the cooling layers.

The module ScQ30 can read up to 10 data sets for each of these six items. In this particular example we
only have 1, out of the possible 10 that can be read. The material flags are used to load the appropriate
material data set. For example, specifying 1 for the SC wire material causes the module to load the first
material data set. The actual data sets are at the end of this data file.

Note that when we specify the material for the vacuum and outer quadrupole containment pipes we also
specify the number of pipes and the thickness of the pipes; ali pipes have the same thickness. This is also
true of the insulation and cooling layers. We specify not only the material but also the number of layers and
the layer thickness In this example no material costing data has been furnished for the pipes, insulation,
and cooling layers. However, ScQ30 must have a data packet to read. Note that for these items the material
density has been set to 0.0 [kg/$] and the cost factors to 1.0, This effectively eliminates the material from
the cost calculation; it adds no weight and contributes nothing to the COSL

The SC quadrupoles are bundled together to form an array of quadrupoles. In the particular example at hand
we specified that there would be 16 beams, so there will be 16 quadrupoles in the array. This array has an
outer wrap. The material for this outer wrap is selected next.

We then specify limits on the minimum and maximum thickness of the SC wire. The actual thickness of
this wire will be determined by ScQ30; within these limits. If the module finds that a thickness less then
the minimum will suffice, the wire will be set to the minimum thickness. If the module determines that the
tifickness needstobegreater than the maximum, the design will be flagged as unacceptable for this reason.

The complete array has an outer shell and that shell has a thickness set by the parameter dShell. The
physical length of the magnet can be adjusted using the parameter zQend, lt is necessary to have a certain
amount of free space within the half-period. This minimum space is determined by fZSpace, which in this
example is set to 10% of the half-period length.

The next coefficients determine the radius of the vacuum pipe; they are used in the same way as in the iron
quadrupole design. Again, if it is desired to have a constant vacuum pipe size it may be necessary to adjust
these parametersaccordingly.

The scaling parameters should NOT be changed, unless the user understands how they are used in the
module ScQ30. The radius limit parameter keeps the quadrupole from being either too short, or too large in
bore. The currently set value keeps the quadrupole from having an inner SC wire radius that is larger than
1/2 the magnetic length of the quadrupole.

The final parameter determines the thickness of the wrap around the whole array. This is presently set to
" l/4th the pitch of the beam. The beam pitch is the beam-center to beam-center spacing of the beams. We

treat only square arrays and this is the x, or y, spacing; not the diagonal beam spacing.

' Next data is furnished for some cost parameters. The parameter BFactor is used to reflect the material cost
and is added to the cost of the quadrupole. This factor reflects the fact that it costs something to assemble
the individual quadrupoles. The parameter cAFact is used to make it possible to isolate the assembly cost of
the array from the material cost in the cost calculation. For this example it is set to 1 and has no effect.

23

The three figures in this data set present a transverse view, an end view of a single SC quadrupole as
designed by ScQ30, and an end view of f_e quadrupole array. The particular example at hand has 16 beams,
a square arrayof 4 x 4. In the pictureswe have shown a square array of 4 beams. The only difference is that r
the 16 beam case has more quadrupolesbundled into the array.Again, the labeling uses the variable names
used in the module ScQ30. This should allow the user to understand both this data set and the minimum
design output written to the HILDAoutput files.

After the figuresare the dam sets for the materials thatcomprise the components of the SC quadrupole.The
lust of these is for the superconductingcable. The f'trstparameter indicates how many of these data sets
there will be, up to 10 are allowed. The cable material is then identified using a FORTRAN character
constant.Note that this is a stringof text enclosed in the single quotationmarks. Next come the material
density, the unitcost of the material,and then the quantityand complexity factors. These latter two factors
play the same role here as in the FeQ20 data. They multiply the materialcost of the superconductingcable.
Next is a list of four values for pm'ameterspertaining to the superconductingmaterial.These values should
notbe changed, unless there use in the module is completely understood.The final parameterfor this data
packetis the maximumallowable fieldallowed at the outerSC wire radius. If the field needed is larger than
this value, thedesign will not beaccepted.

The information furnished for the non- SC Cable, the quadrupole wrapmaterial,arrayouterwrap material,
pipe material, insulation material, and cooling layers is identical in nature to the similarly named
parameters in the SC cable data packets. We specify the number of data packets, less than or equal to 10;
the identification of the material, the material density and unit cost, and then the quantity and complexity
factors. Ineach case these latertwo factors are applied to the named quantity; e.g., the cooling layercosts if
they appear in that data packet.

The parameter names in the data are the same as the variable names in the module that receive these values.
The order and number of parameters in this data set should not be changed. However, more data packets can
be added to the material data sets, provided that the number of data sets for a particular material is correctly
specified. When more data packets are added the comments at the beginning of this data file should be
updated to reflect the extended choice of materials.

StrucCore.DAT Acceleration Cell Design Data
The module StrucCore designs an acceleration-transportmodule. The basic data for this module is in the f'de
StrucCore.DAT. This data set, an example of which is given below in Figure 2-14, StrucCore.DAT, is
meant to be self-explanatory. The explanation that follows assumes that the reader will read the data set and
will refer to the pictures in that data set. We will key the this explanation to the headings in that data seL

SET ERROR LOGGING TO TERMINAL

HILDA tries to design an acceleration module within certain constraints. For example, the length of the
module must fit into the available space and the cores must not be too large in radii. When it fails to find a
design it will skip to the next parameter point for which a design has been requested. The module StrucCore
can inform the user that the design of the acceleration module has failed, or it can remain silent. This flag is
used to make that choice.

SELECT COMPONENT MATERIALS

The acceleration structure consists of a number of basic components. These are shown in the picture
Acceleration Structure. For each of these basic components a choice is made for the construction material.

In the data that follows we make the material choice. The data packets that define the material characteristics
follow later in the data set. lt is, of course, not correct to choose a material for which data does not exist.
As we have previously mentioned, later versions of HILDA will have a user interface that simplifies the
setting of these selection parameters.

24

The induction core is wound usingamorphoustape. There are available in this data set two specific tape
materials and these tapes come indifferent widths. The selection is made in the sections labeled:

CORE amorphous tape materials available
CORE amorphous tape widths available

We see from the picture that the coresare stacked longitudinally to form the acceleration module, which we
also refer to as a cell. The materials that are used for making the core housings and the acceleration cell
must be specified. In this particular example there are ten materials available. For the cores we have selected
low carbon steel (welded & machined - 1020) as the material to use for the power lead, outer housing, and
inner bobbin. The cell housing uses the same material; this includes the end plates and inner bobbin of the
accelerationcell.

INSULATION/DIELECTRICMATERIAL
There are six insulation/dielectric materials available. This material is used as shown in the pictures. The
gap insulator has on one side a vacuum and on the other a dielectric coolant material. We have chosen the
core and cell housing insulation to be polyethylene, the dielectric coolant to be Freon, and the area inside
the gap insulator to be a vacuum. The principal physical parameter of interest for these materials is the
voltage breakdown strength.

GAP INSULATOR MATERIAL.
The insulator for the module is a large concentric ring. In the present data set there is only one material for
this insulator. However, in principal more material data sets could be furnished.

PULSE FORMING NETWORK
This information is used to determine the number of acceleration cores that are needed at the current station.

I-I/LDAknows the required voltage gain, AV. lt will use as many cores as it needs to obtain this voltage
gain. The maximum volts available from each core is supplied by this parameter. The present version of
HILDA does not determine the cost of the pulse forming network. Future versions will include this cost and
will make more extensive use of this parameter.

MINIMUM LENGTH AVAILABLE FOR QUADRUPOLE SUPPORT, ETC.
The acceleration cell must fit into the available space. There must be free space left for other items; in this
example we have specified that I0% will be left open. This means that the design will not be accepted, if
the cell length exceeds 90% of the of the half-lattice period length.

MAXIMUM AVAILABLE GAP INSULATOR LENGTH

The longitudinal length of the gap insulator is determined by the maximum voltage gain and the voltage
breakdown strength of the inner space, in this case vacuum. If the required length is too long, in this case
greater than 80% of the total length of the acceleration cell, the design will be rejected.

HOUSING THICKNESSES

The parameters that are set here depend, to a large degree, on the size and weight of the structures. Future
versions of HILDA could have the capability of setting them appropriately, after the weights are known.
Presently they are preset by the knowledgeable user. The items to which they refer are shown in the picture
Acceleration Structure. Note that the cell housing thickness parameter zlH refers to the end plates and inner
bobbin of the cell housing. The core housing parameter zlPH refers to the thickness of the core end plates,
one of which can be considered to be part of the power lead. The next three parameters determine the
thickness of the concentric rings that make up the top of the core, the bottom or inner bobbin of the core,
and the top of the cell housing. These are scaled from the values of the parameters zlH and zlPH as
indicatedin the data set.

At this point we have selected ali the component parameters for the design of the acceleration cell. The data
, that follows is, to a large extent, fixed in nature.

ELASTICITY SCALING FACTOR

This is NOT to be changed by the user. lt pertains to a scaling formula used in StrucCore that allows for
the use of materials with different elasticity.

25

NUMBER OF BEAMS DATA
The radialsize of theacceleration cell depends on thenumberof beams that it must encompass. This size in
tern influences the thicknessof the supportstructures.The datafurnished hereshouldonly be changed by a w
user who understandsthe use of these parameters inside the module StrucCore.

MATERIAL PROPERTIES
The data that follows pertains mostly to the materials used in the acceleration cell. The information
suppliedrefers to the cost of the materialsand to physicalpropertiesthat StrucCoreneeds in orderto use the
materialsin the cell andmodule design.

AMORPHOUS CORETAPES and AMORPHOUS TAPE WIDTHS
The individualpacketsof datapertain to the propertiesof the available materials. In these datasets the unit
cost refers to the materialcost. The complexity and the quantity factors multiply the unit cost to take
into account other costs associated with the use of the material. Note that these are associated with the
material, not with the component that uses the material.In the present version of HILDA the cost of the
cell is the cost of the components that make up the cell. The cost of the components is determined by the
cost of the constituentmaterial. The cost of the material is the unit cost multiplied by the aforementioned
factors.

We also see that the materialscan have associated properties. In particular, the amorphous tape has a
packing factorand a maximumflux swing. The packingfactorrelates to the windingof the cores; i.e., what
fractionof the core the amorphoustapeoccupies.

The maximumflux swing is used in StrucCoreto determinethe cross-sectional core area. In this sense this
parameteris not really a limit. It is assumed in StrucCore that the cores will be run with this flux swing
and the total core cross-sectionalarea is set to give the needed acceleration volts. If a certaincross-sectional
area, core size, is desired then this flux swing mustbe appropriatelyset. This was done when HILDAwas
run on the ILSE parameters:in that example, which is on the HPD disks, the core sizes were already
determined. For the presentversionof HILDA, finding the maximum flux swing thatgives a specified core
size is non-trivial.Thisuse of the flux swing parametermay be changed in futureversionsof HILDA.

The tape widths availablehave an associated height-to-widthratio. This maximum is used to keep the cores
from being too large in diameter. HILDA stacks acceleration cores side-by-side, but not vertically. The
needed cross-sectional area is obtainedby stacking cores longitudinallyandby making their outerradiusas
largeas necessary. If this height-to-widthratio is exceeded the design is rejected.For example, the 5 cmtape
cores shouldnot be morethan50 cm thick. These numbersare material dependentand would not usually be
changed by a user,once they areset for the specifiedmaterial.

CORE MODULES andCELLHOUSING MATERIALS
The material data packets that follow ali have the same type of information.The parameteremMat is the
elasticity of the materialin the units thatare shown.

STRUCTURE INSULATION/DIELECTRICMATERIALS
The physical parameterof interest here is the material'svoltage breakdownstrength.StrucCoredetermines
the thickness, or length,of the insulating material by assuming that the material will be runat the voltage
breakdownnumber. For example,the thicknessin the cores and cell of the polyethylene insulation depends
on the 197 kV/cm voltage breakdown value furnished in this data set. This direct use of the voltage
breakdown parameter means that any safety factors that a user feels are necessary should be included in this
number.

The units for ali the parameter values are as indicated in the data set. Any unit conversions needed to agree
with the HILDA convention of using MKS units for most of the calculations are done in the module
StrucCore after it has read the parameter data.

26

Figure 2-8. CalCostl.DAT

c FILE: CalCostl.DAT

c DATE: 910922

c EXAMPLE: dr4MJ@3MV

At each station this data defines the basic parameters of the beam that

is being transported. Upon completion of the cost minimization calculation

at the station, the file CostVl.nnn, where nnn is the value of IDStation,

will contain all the design information.

Balic Beam Data for 4MJ driver at 3.0 MV

varName varValue data type comment

IDStation = I0 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge [C]

N = 16 :integer ! number of beams []

Amu = 200 :real ! atomic no. [amu]

q = 3 :real ! charge state []

V = 3 :real ! cumulative voltage [MV]

sig0 = 72.0 :real ! undepressed tune [deg]

epsn = le-6 :real ! nor. emittance, no pi [m-r]
filename = 'CostVi.010' :character ! name of file

There is one group of the above data for each of the stations in the

system. The actual order of the data is immaterial; however, the values

that follow the parameter IDStation are for that IDStation. Thus, each
data group contains 8 values as shown above. The data consists of a

variable name terminated by at least one trailing blank, then an equal

sign followed by the value of the variable, followed by the data type
represented as :<type>. The variable names are as shown above. The

value of each data item is represented by a valid FORTRAN constant. In

particular a 'text string' is used for the string text that names the

file identifier of the file containing the associated Parameter values

found when calculating the minimum cost.

The module CalCost locates the data that corresponds to the given

IDStation. It loads that data and then proceeds to calculate The

minimum cost configuration for the given station.

After this minimum cost configuration is found, the processes involved

save the current state of the IDStation parameters, along with a

fileName pointer that points to the files containing this data.

The module CalCost is then exited and control is returned to the

invoking module. Since the complete state of this minimum cost

configuration is saved, it is possible to process it further. For

example: reports may be generated, plots made, or smoothing techniques
applied; or processes that minimize across the various stations with

respect to given parameters and criteria may be developed and applied.

The sole purpose of the module CalCost is to calculate, for the given

station, the configuration that gives the minimum cost as constrained by
the given constraints.

c ENDFILE: CalCostI.DAT

27

Figure 2-9. CostV1.DAT
iiii

c FILE: CostVI.DAT
c DATE: 910923

c EXAMPLE: dr4MJ@3MV

c Parameters that are assigned values from a data file:

c At the current station, HILDA cycles through the points

c in the parameter space defined below.

Bem Parameter Range Data for 4MJ driver at 3.0 MV

* varName varValue data type comment
-- ----

c IDStation i0 :integer ! station identification #

RLmin = 0.35 :real ! min. structure half-period [mi

RLmax = 0.35 :real ! max. structure half-period [mi

numRL = 1 :real ! # of grid points []

aMin = 0.035 :real ! min. beam size (max) [m]

aMax = 0.035 :real ! max. beam size (max) [mi

numa = 1 :real ! # of grid points []

delVmin = 7.0E3 :real ! min. voltage gain [VI

delVmax = 7.0E3 :real ! max. voltage gain {VI

numDelV = 1 real ! # of grid points []

etaMin = 0.40 :real ! min. quad. packing fraction (]

etaMax = 0.40 :real ! min, quad, packing fraction []

numEta = 1 :real ! # of grid points []

C Set contents of the logfile CostVl.log using the value of iLog

iLog = 3 ! OK designs logged to terminal, skipped points not logged

! 1 OK and skipped designs logged to terminal

! 2 OK and skipped designs logged to CostVI.LOG

! 3 OK designs logged to CostVI.LOG

! 4 ONLY Minimum designs logged to CostVI.LOG

! 5 NO designs logged to CostVI.LOG or to the terminal

c ENDFILE: CostVI.DAT
i i|i i

28

Figure 2-10. AISighAbar.DAT
,,,,,,,, i

c rILE: A1SighAbar.DAT
* c DATE: 900420

c EXAMPLE: dr4MJ@3MV

c Parameters that are assigned values from a data file

* The process AiSighAbar solves a transcendental equation to

* find the value of a root alpha. We furnish here data that

* is pertinent finding that solution. The user would usually have
* NO need to change this data.

c Parameters:

c3 = 0.12 : ! eta coeff., see the process FAlpha

c Used te find alpha:

* The search for the root alpha is over this interval. This interval

* should be sufficient. However, if it is not, then the process will
* increase the interval.

alphaMin = 1.0e-8 : ! min. alpha value

alphaMax = 5.0e00 : ! max. alpha value

numdAlpha = I0 : ! num. of search intervals

maxTry = 2 : ! no. of search interval increases

c Diagnostic printing

iPrint = 3 : ! print level, cumulative

: ! 0 no print out

: ! 1 accepted root print out

: ! 2 all found roots print

: ! 3 I/O variable print out

: ! n more print out/debug n .ge. 4

* If a root cannot be found in the interval dalpha = (alphaMax - alphaMin)

* then the search is redone in the interval starting at alphaMax and

* ending at alphaMax • dalpha. This is done maxTry times.

c Bounds on the depressed tune at the head of the beam:

sigmaHMin = 0.0e00 : ! min. sigmaH [deg]

sigmaHMax = 90.0e00 : ! max. sigmaH [deg]

c ENDFILE: AlSighAbar.DAT

29

Figure 2-11. TranMod.DAT

c FILE: TranMod.DAT

¢ DATE: 910923

c EXAMPLE: dr4MJ@3MV

c The module TranMod reads this data to select the

c element type and the design module that is used
c at the current station. This data set can be

c updated as more design modules are placed in HILDA.

iType = 4 :! the element type

iDesign = 30 :! the design module ScQ30

C The available selections are shown below:

C _ Element Type

C 0 Drift space

c iDesiGn Desiun mod_/_

c O0 none

c 2 Bending magnet

C _ Des_on module

c 00 none

c 4 Quadrupoles Focusing/Defocussing
c iDesian DesiQn module Element Des_aned

c i0 EsQI0 Electrostatic, not yet in HILDA

c 20 FeQ20 Magnetic, Fe

c 30 ScQ30 Superconducting

c 6 Sextupole

c _ Design module

c 00 none

c ENDFILE: TranMod. DAT

Figure 2-12. FeQ20.DAT
i i i w|

c FILE: FeQR0.DAT
c DATE: 910923

c EXAMPLE : dr4MJQ3HV

c The process FeQ20 designs an FE magnetic that is basically like
c the ILSE FE magnet described in LBL PUB 5219.

c Parameters that are assigned values from a data file:

c Coefficients used in the Quadrupole Magnet Calculation :

cRI = 1,25 :! aperture radius = R =cRl • a + cR2 []

cR2 = 0 01 :! [mi

cdRp = 0 03 :! pipe thickness = delRPipe = cdRp * R []

dRPMin = 0 001 :! minimum pipe thickness [mi

cdRg = 0 i0 :! gap width = delRGap = cdRg • R []

dRGMin = 0 002 :! minimum gap width [mi

cdrWire= 0 005 :! wire layer width = delrWire [mi

c :! = cdrWire*Bprime* rWire [m/T]

drWMin = 0.001 :! minimum wire width lm]

drFeMin= 0.002 :! minimum iron width [m]

czlOv = 0.75 :! overhang length = zlOver = czlOv * rWire[]

cPitch = 0.00 :! pitch = 2.0D00 rFe + cPitch [m]

c Limits

Bmax = 1.5 :! pole tip field limit IT] •

fZSpace= 0.I0 :! non-magnet space limit, frac. of half-period []
c :! ((fZSpace • RL •mag. length) .le. (RL))

c :! where RL = half-period lm]

30

Figure 2-12. FeQ20.DAT (continued)
i1|| ii

Material coats based on ILSE design, as furnilhed by C. Fong.

' FeQ20 uses the weight of the Fe to get the total cost• The design

module FeQ20 uses this data for costing the quadrupole. There is only
one data set allowed for this version of the module.

denFe = 8.1657 :! yoke material density Low Carbon steel [g/cm**3]

cCost = 1.0 :! complexity factor []

qCost - 1.0 :! quantity factor []

uCost = 33.0 :! unit cost of the material [$/kg]

* Shown below is the FeQ20 quadrupole labeled with the variables
* used in FeQ20 and this associated data set.

reQ20 Quadrupole

zlMag

IRON

COOLING ,etc. GAP delRGap
rpt

.......... :-,:..._-.-___ PIPE -- delRPipe _

vACUUM rw_ l J_
Rapertme

"'-.... -"""-"-"- '<'_i_"';-::"":"':""':"':"':"':'"""-':":":"__i i _i

 :ili '" ;"";;;;;";';;";";"...-.....,....,.......................:::

eta* RL

c ENDFILE : FeO20. DAT

31

Figure 2-13. ScQ30.DAT
iii i

c FILE: ScQ30.DAT

c DATE: 910923

c EXAMPLE: dr4MJ@3MV

Parameters that are assigned values from a data file:
Derived from Bob Biere's SC Ouadrupole Data in his Thesis.

This data set has only I data set for each of the below items.

Up to I0 data sets can be furnished for each item. The actual data
sets are furnished at the end of this ScQ30.DAT data file.

C _ _ Material choice

c Quad SC Wire 1 NbTi Niobium Titanium

c Non- SC Wire Space 1 Cu Copper
c Quad Wrap (Stress) 1 Steel

c Quad Pipes 1 No Data on this Material
c Quad Insulation 1 No Data on this Material

c Quad Cooling layers 1 No Data on this Material

c Array outer Wrap 1 Steel

CHOOSE MATERIALS for the SC Quadrupole

iScCab = 1 :! material for the SC wires I]

iCabS = 1 :! material for the non-SC wire space []

iWrap = 1 :! material for the Quad Wrap (stress) []

iPipe = 1 :! material for the vac. & outer Quad pipes []

nPipe = 2 :! # of pipes []

drPipe = 0.0020 :! thickness of pipes [mi

ilnsul = 1 :! material for the insulation layers

nlnsul = 3 :! # of insulation layers []

drlnsul = 0.0033 :! thickness of insulation layers [mi

iCool = 1 :! data set for the cooling layers

nCool = 2 :! # of cooling layers (]

drCool = 0.0010 :! thickness of layers [m]

cReesE MATERIAL for the Array of numBeam Quadrupoles
iAWrap = 1 :! material for the outer wrap (collar)

SET LIMITS and PARAMETERS values

Quadrupoles

Limits on the Quadrupole SC Wire

drWmin = 1.0e-2 :! thickness, minimum [mi

drWmax = 0.]0 :! thickness, maximum {m]

dShell = 0.0015 :! thickness of the outer shell lm]

Non-Quadrupole free space

zQend = 0.000 :! space used by end packaging for the quad [mi

:! zlMag = zQend + (eta*RL + zlOver)

fZSpace = 0.i0 :! non-magnet space limit° frac. of half-period []
:! (fZSpace * RL • zlMag) .LE. RL

:! where RL = half-period [mi

Coefficients used in the Superconducting Quadrupole Calculation:

cRI = 1.25 :! aperture radius = R =cRl * a + cR2 []

cR2 = 0.01 :! [mi

32

Figure 2-13. ScQ30.DAT (continued)
i ii i iiiiiii

Quadrupole Wrap (stress) foaling parameters
sWrap = 0.01 :! wrap thickness used for BWrap, rWrap lm]

BWrap = 5.00 :! field used for scaling the Quad. Wrap JT]

rWrap = 0.12 :! radius used with BWrap [mi

Quadrupole SC Wire radius limit

rWtRL = 0.50 :! rWire .It. eta*RL * rWtRL []

Array of numBeam Quadrupoles

fCollar = 0.25 :! array wrap (collar) width, frac. of pitch []

COST DATA

Quadrupole (Channel) Assembly-Complexity Cost factor

BFactor = 0.39 :! Multiplies the Quad (Wrap + Cable) cost []

Array Assembly-Complexity Cost factor

cAFact = 1.00 :! Multiplies the Array cost []

c The Superconducting quadrupole that ScQ30 designs is shown below.
c The labels are keyed to this data set and to the variables in the

c design module.

• The quadrupole that is designed is cylindrically symmetric about the

• beam center line. The pitch is the distance from beam-center to beam-

* center. The individual quadrupoles are then stacked as an array to make

• a quadrupole package, or bundle. The stacking is done here and the outer
• radius of the bundle is returned for later use.
w

• In Figure 1 is shown a side view of the ScQ30 quadrupole, labeled with
w the variables used in ScQ30. In Figure 2 an end view of the same

• quadrupole is shown. In Figure 3 an end view is shown for a four beam

• array.

• The end plates for the SC quadrupole have a nominal length of rWo.

• However, that longitudinal length can be changed by supplying a non-zero

• value for the parameter zQend. The value of zQend can be positive or

• negative. The free space that is left at the ends of the quadrupole, and

• hence at the ends of the array package, is determined by the value of

• the parameter fzspace. Both of these parameters obtain their values from

• data on the file ScQ30.DAT. The length of the quadrupole is determined

• by eta, the packing factor, and by RL, the lattice half-period. These

• quantities are the current values supplied when the module ScQ30.DAT is

• invoked. Ali volumes, and thus all weights and material costs, use zlMag

" as the longitudinal length. This is not exactly right, however that is
" the way this version of ScQ30 does the calculation.

• The end-view picture shown in Figure 3 has three insulation layers, two

• cooling layers, an inner vacuum pipe and an outer enclosing pipe. The

• windings are outside the outer pipe, as shown. This assembly is enclosed

• in an outer wrap which itself is covered by a shell. This figure should
• be referred to the data in the file ScQ30.DAT. We note that the amount

• of conductor that is required is calculated as though it filled the

• annular ring of thickness drWire, as shown in Figure 2. Although this is
• not quite right, it is the way this version of ScQ30 does the

• * calculation.
*

• The individual quadrupoles are placed together in a square package as

" shown in Figure 3. In order that this be possible, it is necessary that

• the number of beams be a perfect square, such as 4, 9, 16, 25, etc.

• ScQ30 checks this condition and completes the quadrupole array design
• only if this is the case.
w

33

Figure 2-13. ScQ30.DAT (continued)
I i iii i mill i

* The outer wrap containing the quadrupole array has a thickness that is

* determined by the parameter fCo11dr. This parameter obtains its value

* from the data file ScQ30.DAT. The enclosing circle for the whole

" quadrupole array assembly, including the outer wrap, has a radius

* roTArray. Any elements that contain the focussing array must have in

* inner radius of at least this value. In particular, the acceleration

* cores must have an inner bore of this radius, or more, when the

" quadrupole array is allowed to penetrate into the cores.

SaQ30 Quadrupole Side View

Superconducting Quadrupole
Side View

Quadrupoleends _]

Quadrupolewrap _

34

Figure 2-13. ScQ30.DAT (continued)
IIIII I

SeQ30 Quadrupole End View

Superconducting Quadrupole
End View

1

Beam ml insulation D wrap

vacuum [-7 cooling, etc. _ shell W

pipe winding

35

Figure 2-13. ScQ30.DAT (continued)
i i i ml i iii i iii i i

ScQ30 Quadrupole A=ray, Fou_ Beama

Superconducting Quadrupole Array
End View

::::::::::::::::::::::::::

i

I AIf°_b_a_exampleI

36

Figure 2-13. ScQ30.DAT (continued)
i ii i iiiii _| iii

MATERIAL DATA and COSTS are furnished below.

Each item can have up to 10 material data sets

Superconducting Cable
nScMat _ 1 :! # of material data sets

IDScMat (n) = 'NbTi Niobium Titanium'

denScMat(n) = 7.6e3 :! material density [kg/m**3]

uCScMat (n) = 300.00 :! unit cost [$/kg]

qFScMat (n) = 1.0 :! quantity factor []

cFScMat (n) _ 1.0 :! complexity factor []
Current density parameters and Field limits

cJCoeff (n) = 2.9e9 :! slope of cJ curve lA/m**2]

cJBn (n) = i0.0 :! numerator field parameter (TJ

cJBd (n) = 5.0 :! denominator field parameter IT]

rLamda (n) = 0.3571 :! SC wire packing fraction (TJ

BWomax (n) = I0.0 :! B at outer wire, maximum [T]

Non SC Cable

nCMat - 1 :! # of material data sets

IDScMat (n) = 'Cu Copper'

denCMat(n) = 8.9e3 :! material density [kg/m**3]

uCCMat (n) = 50.0 :! unit cost [$/kg]
qFCMat (n) = 1.0 :! quantity factor []

cFCMat (n) = 1.0 :! complexity factor []

Quadrupole Wrap (Stress) Material
nWMat = I :! # of material data sets

IDScMat(n) = 'Steel'

denWMat(n) = 8.1657e3 :! material density [kg/m**3)

uCWMat (n) = 25.0 :! unit cost [$/kg]

qFWMat (n) = 1.0 :! quantity factor []

cFWMat (n) = 1.0 :! complexity factor []

Array Outer Wrap (Collar) Material
nAOtMat = 1 :! # of material data sets

IDScMat (n) = 'Steel'

denAOtMat(n) = 8.1657e3 :! material density [kg/m**3]

uCAOtMat (n) = 25.0 :! unit cost [$/kg]

qFAOtMat (n) = 1.0 :! quantity factor []

cFAOtMat (n) = 1.0 :! complexity factor []

Pipe Material, Vacuum and around Quad outer insulation layer
nPMat = 1 :! # of material data sets

IDScMat (n) = 'No Data on this Material'

denPMat(n) = 0.0 :! material density [kg/m**3]

uCPMat (n) = 1.0 :! unit cost [$/kg]

qFPMat (n) = 1.0 :! quantity factor []

cFPMat (n) = 1.0 :! complexity factor []

Insulation (thermal) Material

nlMat = 1 :! # of material data sets

IDScMat (n) = 'No Data on this Material'

, denlMat(n) = 0.0 :! material density [kg/m**3]

uCIMat (n) = 1.0 :! unit cost [$/kg]

qFIMat (n) = 1.0 :! quantity factor [] •

cFIMat (n) = 1.0 :! complexity facto_ []

37

Figure 2-13, ScQ30.DAT (continued)
iii iii

Cooling Layers, data sets

nCLay = 1 :! # of material data sets

IDScMat (n) = 'No Data on this Material'

denCLay(n) = 0.0 :! material density [kg/m**3]

uCCLay (n) = 1.0 :! unit cost [$/kg] .
qFCLay (n) = 1.0 :! quantity factor []

cFCLay (n) = 1.0 :! complexity factor []

c ENDFILE : SaQ30. DAT

Figure 2-14. $trucCore.DAT

c rILE: StrucCore.DAT

c Date: 910923

c EXAMPLE: dr4MJ@3MV

c Parameters that are assigned values from a data file:

c This data set has been used for the 4MJ Driver Example.

c SET ERROR LOGGING TO TERMINAL

iLog = 0 : ! 0 do not log failed designs to terminal

: ' I log failed designs to terminal

c SELECT COMPONENT MATERIALS for the acQeleration module
c Uses data in the data sets below:

c CORE amorphous tape materials available
c 1 Metglas 2605 S2 - wound and annealed:

c 2 Metglas 2605 CO - wound and annealed:

idAm = 1 : ! tape used

C CORE amorphous tape widths available

c 1 5.08 [cm]

c 2 I0.16 [cm]

c 3 17.018 [crni

c 4 20.32 [cm]

idWTape = 4: ! tape width used

c CORE/CELL HOUSING materials available

c 1 Low Carbon steel - simple machined - 1020

c 2 Low Carbon steel - welded & machined - 1020

c 3 Aluminum - simple machined 6061
c 4 Aluminum - welded & machined 6061

c 5 Stainless steel - simple machined - 304

c 6 Stainless steel - welded & machined - 304

c 7 Stainless steel - simple machined - 316
c 8 Stainless steel - welded & machined - 316

c 9 Aluminum Casting - sand - raw 356

c I0 Aluminum Casting - sand - 356 w/ simple machining

idCSM = 2 : ! core power lead, outer housing, inner bobbin
idCH = 2 : ! cell housing

38

Figure 2-14. StrucCore.DAT (continued)
i

c INSULATION/DIELECTRIC materials

c 1 NEMA g-10 Composite - machined

c 2 Polyethylene LP-390-C Dielectric, injection molded
c 3 Water deionized

c 4 Freon

c 5 SF6

c 6 Vacuum

idIN = 2 : ! core/cell housing insulation
idDiC = 4 : ! dielectric coolant

idGP = 6 : ! gap operating pressure range

c GAP INSULATOR MATERIAL.

c i Alumina - pressure cast & brazed large dia/ to 58" by i" thick

idGI = 1 : ! gap insulator

c PULSE FORMING NETWORK, available PFN peak kilovolts per core
pV = 200.0 : ! 80 - 500 [kV]

* The module StrucCore will use this to

* determine how many modules are needed to

" furnish the required voltage gain.

c MINIMUM L_NGTH LEFT AVAILABLE FOR quad. support,etc.

QAI = i0.0 : ! z-axis [% of half-period length]

c MAXIMUM LENGTH AVAILABLE FOR gap insulator•

gILmax = 80.0 : ! z-axis [% of cell length cellL]

c HOUSING THICKNESSES:

c station ! ave. of data for weights of 50001b & ll0001b

zlH = 2.0 : ! cell housing thickness, 50001b/ll0001b [cm]

zlPH = 1.0 : ! core housing/power lead thickness [cm]

proC = 2.0 : ! top of core delTC = proC * zlPH

priM = 2.0 : ! bottom of core delBC = priM * zlPh

proH = 2.0 : ! cell housing delCH = proH * zlH

" The accelerations structure that is designed is shown in

* Figure 1 Acceleration Structure and Figure 2 Acceleration Module

* below. The labels used in those figures correspond to the identifiers

* used in this data set. These identifiers are the same as used in

* the designs module StrucCore that uses this data.

39

Figure 2.14. StrucCore.DAT (continued)

Acc.leratlon Structure

CELL HOUSING

CORE 1 CORE 2

....... ,i_̧̧
CORE HOUSING1 COREHOUSING2

.,

_. GAP INSULATOR

CORF._ELL INSULATION DllZ]_FCTRIC COOLANT

BEAMCENTERLINE li

Figure 2: Acceleration Module shows the dimensions of this structure using
labels that are the variables of the StrucCore process. This structure is

cylindrically symmetric about tlae beam center line. The acceleration structure

occupies a half-lattice period and the focusing quadrupole for that section

is not shown in this picture. However, it must fit into the space 2*QAI/2.

40

Figure 2-14. StrucCore.DAT (continued)

Acceleration Modulo

power lead

wTape

delBC
Qm/2

IILP

II I I

c The data below is basically fixed data. The selections made above
c will use this data.

c ELASTICITY SCALING FACTOR for scaling cell housing radius

peM = i0.0 : ! See module StrucCore before changing.

41

Figure 2-14. StrucCore.DAT (continued)
i li i i

c NUMBER OY BEAMS DATA:

nBSets = 4 : ! _ of sets of beam data, .le. maxBSeUs

c Beam configurations
nBeams (I) = 4

nBeams (2) = 16
nBeams (3) = 21

nBeams (4) - 64

c 4 Beam data:

tj(1) = 2.5 : ! acc. gap insulator thickness [crni

fQ(1) = I.I : ! quad array perimeter support factor []

c 16 Beam data:

ti(2) = 3 : ! acc. gap insulator thickness [cm]

fQ(2) = I.I : ! quad array perimeter support factor []

c 21 Beam data:

tj(3) = 2 : ! acc. gap insulator thickness [cm]

fQ(3) = 1.05 : ! quad array perimeter support factor []

c 64 Beam data:

ti(4) = 4.0 : ! acc. gap insulator thickness [cm]

fQ(4) = 1.05 : ! quad array perimeter support factor []

c MATERIAL PROPERTIES

c For each material furnish a list of properties

c AMORPHOUS CORE TAPES:

nAmSets = 2 : ! number of material sets, .le. i0 sets

c 1 Metglas 2605 S2 - wound and annealed:

denAm (n) = 7.1800 : ! density g/cm**3]

cFacAm (n) = 1 : ! complexity factor]

qFacAm (n) = 1 : ! quantity factor]

uCostAm(n) = 5.0 : ! unit cost $/kg]

pFAm (n) = 0.80 : ! radial packing factor]

delBAm (n) = 2.5 : ! flux swing T]

c 1 Metglas 2605 $2 - wound and annealed:

denAm (n) = 7.5600 : ! density g/cm**3]

cFacAm (n) = 1 : ! complexity factor]

qFacAm (n) = 1 : ! quantity factor]

uCostAm(n) = 40.0 : ! unit cost $/kg]

pFAm (n) = 0725 : ! radial packing factor]

delBAm (n) = 2.5 : ! flux swing T]

* The cores are sized in StrucCore using the above value of the

* flux swing along with the required voltage gain.

c AMORPHOUS CORE TAPE WIDTHS and corresponding max. aspect ratios:
nWRSets = 4 : ! number of width/ratio sets, .le. I0 sets

wTape (i) = 5.08 : ! width [cm]

aRCmax(1) = I0.0 : ! max. height to width aspect ratio []

wTape (2) = 10.16 : ! width [cm]

aRCmax(2) = 8.0 : ! max. height to width aspect ratio []

wTape (3) = 17.018 : ! width [cm]

aRCmax(3) = 6.00 : ! max. height to width aspect ratio []

wTape (4) = 20.32 : ! width [cml

aRCmax(4) = 4.0 : ! max. height to width aspect ratio []--

42

Figure 2-14. StrucCore.DAT (continued)

c CORE MODULES and CELL HOUSING materials that are available.
numMat = i0 : ! number of materials in this set .le. 20

c 1 Low Carbon steel - simple machined - 1020

denMat (n) = 8.1657 : ! density [gm/cm**3]

• cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = I : ! quantity factor []

uCostMat (n) = 9.8987 : ! unit cost [$/kg]

emMet (n) = 30 : ! [10"'6 lh/in**2]

c 2 Low Carbon steel - welded & machined - 1020

denMat (n) = 8.1657 : ! density [gm/cm**3]

cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 9.8987 : ! unit cost [$/kg]
emMat (n) = 30 : ! [10"'6 ib/in**2]

c 3 Aluminum -simple machined 6061

denMat (n) = 2.7123 : ! density [gm/cm**3]

cFacMat (n) = I : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 13 8449 : ! unit cost [$/kg]

emMat (n) = I0 : ! [10"'6 Ib/in**2]

c 4 Aluminum - welded & machined 6061

denMat (n) = 2.7123 : ! density [gm/cm**3]

cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCos%Mat (n) = 17 1959 : ! unit cost [$/kg]
emMet (n) = i0 : ! 10"'6 Ib/in**2]

c 5 Stainless steel - simple machined - 304

denMat (n) = 7.9470 : ! density [gm/cm**3]

cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 14 5283 : ! unit cost [$/kg]
emMat (n) = 29 : ! 10"'6 ib/in**2]

C 6 Stainless steel - welded & machined - 304

denMat (n) = 7.9470 : ! density [gm/cm**3]

cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 17 8790 : ! unit cost [$/kg]

emMat (n) = 29 : ! 10"'6 Ib/in**2]

c 7 Stainless steel - simple machined - 316

denMat (n) = 7.9470 : ! density [gm/cm**3]

cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 15 9834 : ! unit cost [$/kg]

emMat (n) = 29 : ! 10"'6 ib/in**2]

C 8 Stainless steel - welded & machined - 316

denMat (n) = 7.9470 : ! density [gm/cm**3]
cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 19 3343 : ! unit cost [$/kg]

emMat (n) = 29 : ' 10"'6 Ib/in**2]

c 9 Aluminum Casting - sand - raw 356

denMat (n) = 2.7123 : ! density [gm/cm**3]

cFacMat (n) = I : ! complexity factor []

, qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 9.9427 : ! unit cost [$/kg]

emmet (n) = I0 : ' 10",6 ib/in**2]

43

'Figure 2-14. StrucCore.DAT (continued)
Hill III

c 10 Aluminum Casting - sand - 356 w/ simple machining

denMat (n) = 2.7123 : ! density [gm/cm**3]

cFacMat (n) = 1 : ! complexity factor []

qFacMat (n) = 1 : ! quantity factor []

uCostMat (n) = 13.4481 : ! unit cost [$/kg]
e

emmet (n) - i0 : ! [10..6 Ib/in**2]

c STRUCTURE INSULATION/DIELECTRIC materials

numInMat = 6 : ! number of materials in this set .le. 20

c I NEMA g-10 Composite - machined

denInMat (n) = 1.9222 : ! density [gm/cm**3]

cFacInMat (n) = 1 : ! complexity factor []

qFacInMat (n) = 1 : ! quantity factor []

uCostInMat (n) = 27.1827 : ! unit cost [$/kg]

VoltInMat (n) = 197.00 : ! voltage breakdown [kV/cm]

c 2 Polyethylene LP-390-C Dielectric, injection molded

denInMat (n) = 0.9850 : ! density [gm/cm**3]

cFacInMat (n) = 1 : ! complexity factor []

qFacInMat (n) = 1 : ! quantity factor []

uCostInMat (n) = 20.6417 : ! unit cost [$/kg]

VoltlnMat (n) = 197.00 : ! voltage breakdown {kV/cm]

c 3 Water deionized

denInMat (n) = 1.0000 : ! density [gm/cm**3]

cFacInMat (n) = 1 : ! complexity factor []

qFacInMat (n) = 1 : ! quantity factor []

uCostInMat (n) = 0.0 : ! unit cost [$/kg]

VoltInMat (n) = 1.0 : ! voltage breakdown [kV/cm]

c 4 Freon

denInMat (n) = 1.8 : ! density [gm/cm**3]

cFacInMat (n) = 1 : ? complexity factor []

qFaclnMat (n) = 1 : ! quantity factor []

uCostInMat (n) = 1.66 : ! unit cost [$/kg]

VoltInMat (n) = 39.00 : ! voltage breakdown [kV/cm]

c 5 SF6

denInMat (n) = 1.0 : ! density [gm/cm**3]

cFacInMat (n) = 1 : ! complexity factor []

qFacInMat (n) = I : ! quantity factor []

uCostlnMat (n) = 0.0 : ! unit cost [$/kg]
VoltInMat (n) = 8.00 : ! voltage breakdown [kV/cm]

C 6 Vacuum

denInMat (n) = 0.0000 : ! density [gm/cm**3]
cFaclnMat (n) = 1 : ! complexity factor []

qFacInMat (n) = 1 : ! quantity factor []

uCostlnMat (n) = 0.0 : ! unit cost [$/kg]
VoltlnMat (n) = 50.000 : ! voltage breakdown [kV/cm]

c GAP INSULATOR materials

numGI = i : ! number of materials in this set .le. I0

c 1 Alumina - pressure cast & brazed large dis. to 58" by I" thick

denGapl (I) = 3.7!70 : ! density [gm/cm**3)
cFacGapl (i) = 1 : ! complexity factor []

qFacGapl (I) = 1 : ! quantity factor []

uCostGapI(1) = 428.2876 : ! unit cost [$/kg]

VoltGapi (I) = 12.0 : ! voltage breakdown [kV/cm]

c END: StrucCore.DAT

44

Analyzing the Output and Generating Reports
The basic output generated during a HILDA run is the file CostV1.NNN. In this example this is

, CostVl.OlO, since the calculation of the minimum-cost design was at station lO. In the discussion below
we refer to this particular file with the understanding that it represents any of the CostV1.NNN files that
HILDA generates.

There is an associated logfile, CostV1.LOG, which in this 3MV example does not contain any information
that we want to save. Therefore, the file was not saved. If we had scanned over a parameter space with many
points, this file could have been used to save information about the rejected designs and information about
the designs that were completed but were not the minimum in cost.

The present version of HILDA does not process the CostVI.010 file. We have analyzed the results for the
cases that we have run by downloading that file into a PC and then using a spreadsheet to analyze the
results and create reports. The fact that these tools are available and well developed should be strongly
considered before time is spent in creatingHILDA modules that can do these analysis tasks. Future versions
of HILDA will contain modules that enable the user to easily process the CostV1.010 and create a file that
is directly readable by a spreadsheet, or graphing program. We have presently used a separate program that
converts the file to a tab delimited file; this being a form that most spreadsheet, or graphing, programs will
read. lt is strongly recommended that the basic logfile NOT contain tab characters, lt has been our
experience that tabs can cause many problems when files are read by different programs in different
environments. The HILDA convention has been NO tabs, unless there is a specific reason for needing them.

In the present example there really is not much to analyze. What we have is a specific design for a
particular station. We could use this output to generate drawings for the design. We could also compare this
solution with nearby solutions, by rerunning HILDA. In the 4MJ driverexample, from which this example
is taken, we have seven stations of design output. In that case we can use these files to estimate a total
cost of the complete machine. The complete 4MJ driver example is on the HPD disks.

45

Example 2: The 3000MV Station of a 4MJ Driver
We point out f'wstthat the example describedhere is in the folderdr4MJ @ 3000MV, which is in the folder
MSWIHildalDAT of the HPD disks. The ReadMe files in those folderscontain additionalinformation about
this example. The information that we present here has been extracted from files in those folders. This
3000MV example andali its outputcan be reconstructedfrom the data Ides in dr4MJ @ 3000MV. We also
note that the 3000MV example set up when HILDA is installed following the instructions in the HPD
section Maintaining HILDA: Installation is precisely the example that we are describing here

Running HILDA at the 3000MV station is little different from running HILDA at the 3MV station. The
difference is that the data must be correct for the 3000MV station. Many of the data files are the same at
both stations. As we have previously noted the beam definition file CalCostl.DAT can contain more than
one station. If the CalCostl.DAT data file for the 3MV example had also contained a data packet for the
3000MV station, then that file could have been used for both of these examples, lt tunas out that the basic
data difference for these two examples is the range over which the HILDA parameters are varied. The other
module data Ides are the same.

The output is, however, different. The program designs a superconducting quadrupole that has parameters
that are appropriate for focusing a high energy beam and the acceleration cell must provide not only space
for this quadrupole, but also must provide a 2.8MV energy gain.

We shall assume in this example that the 3MV example has been read and understood. Thus, we will not
need the detailed explanations that were given in that example.

Running HILDA on the VAX

In the discussion that follows we assume that:

* HIIDA has been installed by following the instructions in section Maintaining Hilda: Installation

• you are logged onto your VAX account and that the directory is [USER.HR,DA].

• you have executed the LC)GIN.COM file that was loaded into this directory

• the installed executable image HILDA.EXE exists in the directory [USER.HILDA.EXE]

• the 3000MV data Ides were installed in the directory [USER.HILDA.DAT. DAT3000MV]

Ali the above assumptions will be true if you have installed I-I/LDAas recommended.

If these assumptions are true, then follow the steps below.

• Transfer to the execution directory by typing
EXE

• Check that you are in the [USER.HILDA.EXE] directory by typing
SHOW DEFAULT

If you are not in this directory something is wrong.

• Set up the HILDA module data files by typing
SET3000MV

At this point the HILDA module data flies:
CalCostl .DAT
AISighBar.DAT
CostV 1.DAT

TranMod.DAT
ScQ30.DAT
StrucCore.DAT

contain the 3000MV data of this example.

46

• Run HILDA by typing
RUNHILDA

The main program HILDA will execute and you will be prompted for input.
Follow the prompts.

• Continue with the example by entering in lower case the command
t cost

You will be asked at what station to calculate the cost. The station number that
we have used in this example for the 3000MV data is station 70.

• Type in the integer
70

As HILDA proceeds to calculate the minimum-cost design for the selected
station it writes messages to the terminal to indicate what is happening. When it
is finished with this design task it will save the results of the design on the file
CostV 1.070.

In this particular example the data for the parameter search grid has been set for
the 3000MV station. You can if you wish, ask HILDA to calculate the cost of a
design for one of the other stations that are in the data set CalCostl.DAT.
However, we will instead:

• Exit from HILDA by typing the lower case command

stop

• Confum this desire to stop by typing the upper case command
YES

This completes the actual running of HILDA.

If you did calculate the cost at another station, say station 60, remember that the present version of HILDA
would have used the current data in the module data files. There is no way to update this data from within
HILDA, for this version. The beam data would be as defined in the data file CalCostl.DAT and thus it

would be correct for station 60, since data for that station is included in the file. However, the search grid
might not be what you wanted to use.

A copy of the terminal output from HILDA for this example is on the HPD disks that are associated with
this report, lt is in the HILDA/Terminal/3OOOMV document that is in the HILDAILog folder of this
example. You can find the HILDA/Log folder in the dr4MJ @ 3000MV folder; see the Appendix section
Guide to the HPD Disks of this report.

The Output File CostV1.070

The basic output file generated during this HILDA run has the name CostV1.070, since we have produced a
design at station 70. Had we requested designs at other stations, we would also have those flies as HILDA
output files from this run.

The CostV1.070 file generated by this example contains much information. In what follows below we
present short selections from the file CostV 1.070. The complete output file for this example can be found
in the folder HILDA.LOG, which is in the dr4MJ @ 3000MV folder. The interested reader can find these
folders in the HPD disks. We also note that this file is essentially the same file as was generated for the
3MV case; i.e., CostV1.010. A fuller description of the output file CostV1.NNN is given there.

|

47

HILDA Output File CostV1.070
The primaryresults of the HILDAcalculationare at the beginning of the CostV1.070 file and arcshown in
Figure 2-15, HILDA Output A. #

This output shows the values of the HILDA parameters that give this minimum-cost design. Following
this is the total cost for the station components and the how much it costs to furnish a volt in energy gain.
This output is the primary output from the HILDA calculation at the station 70.

Next come the input variables that define the beam at this 3000MV station. These are the system charge
Qsys, the choice of mercury ions with a charge state of 3, the undepressed tune (single beam, no space
charge) of 72 degrees, and the normalized emittance of .000001 n meter-radian.

In Figure 2-16, HILDA Output B we show secondary output from the HILDA run at station 70. This
consists of: the number of Coulombs in each of the 16 beams, the beam pulse-length times the beam
current, the dimensionless dynamic quantities for the mercury ions, followed by the be,_n magnetic rigidity.

The parameter grid that HILDA scanned over is then shown. For this example we have only one point.
This point has been set to the parameter values that give the minimum-cost design at the 3000MV station.
This has been taken from the 4MJ example that is in the HPD disks.

The average times for the calculation include reading the data file associated with each of the modules; also
any other setup tasks required for the calculation. If there were many points in the grid we should find that
the average times reported were less pergrid point.

The Figure 2-17, HILDA Output C contains intermediate results. The quantity alpha is a parameter relating
to the beam dynamics. The parameter sigmaH is the depressed tune at the head of the beam, in each of the
16 beams; abar is an average beam size. We record the perveance of the beam, the current, the pulse width
(longitudinal length), the average voltage gain per meter (electric field strength), and the volt-seconds
furnished by the acceleration cell. These items are explained in the section The HILDA Model: Beam
Transport Equations of this report.

In Figure 2-18, HILDA Output D is shown that section of the output file CostV1.OUT that has been
copied from the output file created by the module ScQ30. This contains ali the design parameter
information for the superconducting quadrupole associated with the minimum-cost design. We should note
that this is not necessarily the minimum-cost quadrupole array. The minimum-cost design is arrived at by
calculating the total cost at the station, in this case the 3000MV station of the 4MJ driver. Thus, HILDA
will have also included the acceleration cell cost when selecting the minimum-cost design.

The variable dolTArray is the total dollar cost of the quadrupole array; in this case a 16 beam array. The
variable roTArray is the outer radius of the array. The acceleration cell designed by the module StrucCore
uses this quantity to determine the core inner diameter needed to accommodate this quadrupole array.

The rest of the information in this ScQ30 output pertains to the design of the superconducting quadrupole.
Previously, in the section The Module Data Files: ScQ30.DAT SC Quadrupole Design Data of the 3MV
example, we have given a description of the module data file and we have shown pictures of the
superconducting quadrupole. The design parameters for station 70 that HILDA calculates are shown below.
They will be more meaningful when reference is made to the pictures in Figure 2-13.

The parameter output is divided into two parts. The first part refers to one individual SC quadrupole. For
this quadrupole we have radial dimensions, cross-sectional areas, volumes, weights, and costs of the
components. The individual quadrupoles are then bundled together to form an array of quadrupoles. In this
case the number of beams is 16; so there are 16 quadrupoles, or channels, in the array. The second part

!

pertains to the quadrupole array; we again show radial dimensions, areas, volumes, weights, and costs.

Following this specification of design parameters is a section that shows the materials used for this design.

48

The Figure 2-19, HILDA Output E is a copy of the output file created by the module StrucCore. lt is
similar to the previous SC quadrupolefile in that it has parametersanddam that define the minimum-cost
design;in this case the minimum-costaccelerationcell.

The primaryoutput from this module is the variabledolAStruct, which is the cost of the acceleration cell.
This cell does NOT include the focusingJdefocusingquadrupole.This amount is simply the cost of the cell

, as determinedby its component materialcosts. The design informationin this file should be referred to the
pictures in the datafile StrucCore.DAT.These pictureshave been included in this report in the section The
Module Data Files: StrucCore.DAT Acceleration Cell Design Data of the previously described 3MV
example. See Figure 2-14.

The file StrucCore.Outshown in Figure 2-19 contains sections of information. The first section is the
dollar cost of the components of the cell; based on the cost of the material used, as obtained from the
aforementioneddata f'fle.Next are the selection parametersused in this design. These, when associated with
the contents of the data file StrucCore.DAT, define the component materials_We next give component
weights, followed by cell and coreparameters.The cell and core parametersshouldgive enough information
to drawa pictureof the cell that HILDAhas designed.

In Figure 2-20, HILDA Output F we show an outline of the remainderof the CostV 1.070 file. The data
files used by the HILDA modules are copied and recorded in this output file. This is not necessarily
redundantinformation.HILDAis verymodular and future versions of HILDA may be designed to modify
the data file duringexecution, to help HILDA find a minimum-cost design. The actual data files that were
used are those that arerecordedin this output file. A descriptionof these data files appears in the section
The Module Data Files. Since these files areessentially the same as for the 3MV example, the readershould
refer to that example for the picturesthatillustrate the components.

The final entry into this logfile is a list of module versions. This is usually of no interest to the user.
However, it serves a purpose of verifying the integrity of the HILDAmodules. A message that a version
file does not agree with the module version should serve as a warningto the userthat ali may not be well in
HILDA.

We conclude this discussion of the HLLDAoutput file CostV1.070 by noting that there are many cross-
checks that can be performed using this output. These checks should occasionally be done; to insure that
data inputmistakes have not been made. Performing these checks also builds confidence that HILDA is
indeedcalculating correctresultsanddesigning reasonableelements. This file is a logfile, andas such it is a
recordof what went into the calculation and what was produced by the calculation. Unless something is
wrong, or the design criteria or programmodule logic has changed, it should be possible to recreate this
outputby using the inputparametervalues recordedin CostV1.070.

49

Figure 2-15. HILDA Output A
i iii i

rILE: CostVl.070
DATE: 91110/24 *

TIME: 15:51:22

I/O variable types:

implicit real (a-h,o-z)

implicit integer (i-m)

The optimum value was found at:

RL : 4.0000000E+00 : ! half period (mi

a - 2.9999999E-02 : ! beam radius [mi

delV - 2.8000000E+06 : ! voltage gain [V]

eta - 1.0000000E-01 : ! packing factor []

The cost is:

costDol - 6.4759331E+05 : ! cost [$]

perVoltDol= 2.3128332E-01 :) voltage gain cost [$/delV]

The input variables for this solution are:
IDStation = 70 : ! station name

Qsys = 1.3333330E-03 : ! system charge (C
numBeam = 16 : ! number of beams [

Amu = 2.0000000E+02 : ! atomic mass [amu

q = 3.0000000E+00 : ! charge state [e

V = 3.0000000E+03 : ! cumulative voltage (MV

sig0 = 7.2000000E+01 : ! undepressed tune [deg
epsn = 1.0000000E-06 : ! nor. emit., no PI [m-r

,i i , , i

Figure 2-16. HILDA Output B
i i i m I

Associated quantities are given below:

Process KenVar :

taul = 8.3333311E-05 : ! charge per beam (C]

betaGamma = 3.1456658E-01 : ! beta * gamma []

gamma -- 1.0483092E+00 : ! Energy/rest Energy []

beta = 3.0007041E-01 : ! v/c ()

Brho = 6.5157227E+01 : ! magnetic rigidity IT-mi

Process CostGrPt scanned over the grid:

RLmin = 4 0000000E+00 : ! min. half period {m

RLmax = 4 0000000E+00 :) max. half period [m

delRL = 4 0000000E+00 : ! grid interval [m

aMin = 2 9999999E-02 : ! min. beam size (m

aMax = 2 9999999E-02 : ! max beam size [m

dela = 2 9999999E-02 : ! grid interval [m

delVmin = 2 8000000E+06 : ! mln. voltage change IV

delVmax = 2 8000000E+06 : ! max. voltage change IV

deldelV = 2 8000000E+06 : ! grid interval {V

etaMin = I 0000000E-01 : ! mln. packing factor [

etaMax = 1 0000000E-01 : ! max. packing factor [

delete = 1 0000000E-01 : ! grid interval (

The time required for the grid scan:

numGrPts = 1.0000000E+00 :) @ of grid points []

delTime = 7.0312500E-02 : ! grid scan time [si

aveTime = 7.0312500E-02 : ! ave. case time (s],,

|

5O

Figure 2.17. HILDA Output C
|Iii ii llll

Aaaoolated intermodiato Renulta:

FILE: ComtGrPt.OUT VERSION: 910910
DATE: 91/10/24 // 15:51:21

, I/O variable types
implicit real (a-h,o-z)

implicit integer (i-m)

IN

IDStation = 70 ! station for this calculation

numBeam = 16 ! number of beams

tauI = 8.3333311E-05 ! charge lC]

sig0 - 7.2000000E+01 ! undepressed tune [deg]
betaGamma = 3.1456658E-01 ! beta * gamma

beta = 3.0007041E-01 ! v/c []

Brho = 6.5157227E+01 ! magnetic rigidity IT-mi

RL = 4.0000000E+00 ! half period [mi

a = 2.9999999E-02 ! beam radius [mi

delV = 2.8000000E+06 ! voltage gain [V]

eta = 1.0000000E-01 ! packing factor []

OUT

perVoltDol = 2.3128332E-01:! voltage gain cost [$/delV]

AlSighAbar

alpha = 5.8725291E-01 :! []

sigmaH = 3.0344951£+00 :! depressed tune [deg]

abar = 2.2546498E-02 :! an ave. beam size [mi

QIT

perv = 1.0956922E-05 :! perv

current = 3.5322086E.02 :! beam current [AI

taup = 2.5951650E-07 :! pulse width [si

E = 7.0000000E+05 :! ave. volt gain/HLP IV/mi

voltSec = 7.2664618E-01 :! volt seconds [V-si

ENDFILE: CoatGrPt.OUT

Figure 2-18. HILDA Output D

FILE: SaQ30.OUT VERSION: 910910
DATE: 91/10/24 // 15:51:20

I/O variable types

implicit real (a-h,o-z)

implicit integer (i-m)

IN

a = 3.000000E-02 :!beam edge radius {m]

RL = 4.000000E+O0 :!half period [m]

eta = 1.000000E-01 :!packing factor []

Brho = 6.515723E+01 :!magnetic rigidity [T-m]

sig0 = 7.200000E+01 :!undepressed tune [deg]

numBeam = 16 :!number of beams []

OUT

dolTArray = 8.769912E+04 :!cost of quad array [$]

roTArray = 4.972594E-01 :!outer radius of quad array lm]

51

Figure 2-18. HILDA Output D (continued)\ ,
ii ui

Data and aalcu!ated Quadrupole parameters:

sig0 = 7 200000E+0I :!undepressed tune [deg]
rWire = 6 340000E-02 :!inner wire radius [mi

rwe = 7 340000E-02 :!outer wire radius [mi

drWire = 1 000000E-02 :!wire thickness [mJ ,

BWire = 3 141682E+00 :!field, inner wire radius IT]

BWo = 3 637215E+00 :!field, outer wire radius IT]

Bprime = 4.955334E+01 :!quad., field gradient [T/mi

avJ = I 317847E+09 :!average current density [A/m**2)

R = 4 750000E-02 :!aperture radius [mi

drWrap = 3 236777E-03 :!quad wrap, thickness [mi
pitch = 1 562736E-01 :!beam center to center [mi

endMag = 7 340000E-02 :!length of magnet ends [mi

zlMag = 5 468000E-01 :!length of magnet iron [mi

wtScQuad = 5 329318E+01 :!weight of I SC quadrupole [kg]

costQuad = 4 757089E.03 :!cost of 1 SL, quadrupole [$]

wtTArray = 1 316119E+03 :!weight of SC quad Array [_g]
dolTArray = 8 769912E+04 :!cost of SC quad Array [$]

SINGLE SC QUADRUPOLE ASSEMBLY

Radial dimensions

drPIC = 2.590000E-02 :!Pipes, Insulation and Cooling [mi

Individual radii

rPipe (I) = 4.750000E.-02 :!Pipes mi

rPipe 2) = 6 140000E-02 :!Pipes mi

rInsul I) = 4 950000E-02 :!Insulation mi

rInsul 2) = 5 380000E-02 :!Insulation mi

rInsul 3) = 5 810000E-02 :!Insulation mi

rCool I) = 5 280000E-02 :!Cooling mi

rCool 2) = 5 710000E-02 :!Cooling mi

Areas, xy crossection

xyScQ = 2.442143E-C_2 :!One SC quadrupole [m**2]

xyWrap = 7.495908E-03 :!Wrap (stress), incl. shell [m**2]

xyCable = 4.297699E-03 :!Cable, SC + non-SC! [m"*2]

xyPIC = 5.539599E-03 :!Tot. Pipes, Insul. & Cool. lm**2]

xyVac = 7.088219E-03 :!Vacuum, Beam pipe . [m**2]

Volumes for One SC Quadrupole

volScQ = 1 335364E-02 :!Complete Quad. m**3

volWrap = 4 098763E-03 :!Wrdp (stress), incl. shell m**3

volCable = 2 349982E-03 :!Cable, SC + non-SC m**3

volPipe = 7 620263E-04 :!Pipes, total m**3

volInsul = 1 886015E-03 :!Insulation, total m**3

volCool = 3 810132E-04 :!Cooling, total) m**3

volPIC = 3 029053E-03 :!Tot. Pipes, Insul. & Cool. m**3

volVac = 3 875838E-03 :!Vacuum, Beam Pipe . m**3

Weights of Components in One SC Quadrupole

wtScCab = 6.377758E+00 :!SC Cable material [kg]_''

wtCabS = 1.344615E+01 :!non-SC Cable material [kg)
wtCable = 1.982391E+01 :!Total Cable Weight [kg]

wtWrap = 3.346927E+01 :!Outer Wrap, includes shell [kg]

wtPipe = O.000000E+00 :!Pipe layers [kg]

wt lnsul = 0.O00000E+00 :!Insulation layers [kg] J

wtCool = 0.0000COE+00 :!Cooling layers [kg]

w_ScQuad = 5.329318E+01 :!Total of one SC Quadrupole [kg]

52

Figure 2-18. HILDA Output D tcontinued)
i -v

Costs of Components in one SC Quadrupole
• dScCab = 1.913327E+03 :!SC Cable material [$]

dCabS = 6.723076E+02 :!non-SO Cable material [$}

dCable = 2.585635E+03 :!Total Cable, SC + non-SC [$]

, dWrap = 8.367318E+02 :!Wrap (stress), includes shell [$]

The rest of the SC Quadrupole (channel)

dPipe = 0.000000E+00 :!Pipes [$]

dInsul = O.O00000E+O0 :!Insulation [$]

dCool = O.O00000E+00 :!Cooling . [$]

dBalance = 1.334723E+03 :!Pipes, Insulation and Cooling [$]
costQuad = 4.757089E+03 :!Total, one SC Quad. (channel) [$]

COMPLETE ARRAY of numBeam SC Quadrupole channels + Wrap

Radial dimensions

xAScQ = 6.250942E-01 :!Width of the SC Quads lm]

yAScQ = 6.250942E-01 :!Height of the SC Quads {m]

dxAOtC = 3.906839E-02 :!Array outer collar,dr [mi

dyAOtC = 3.906839E-02 :!Array outer collar,dr [m]

Areas, xy Cross Section

xyAScQ = 3.907428E-01 :!SC Quadrupole bundle [m*"2}

xyAVac = 1.134115E-01 :!Vacuum, Beam Pipes lm**2]

xyAOtC = 1.037911E-01 :!Array outer Collar [m'*2}

xyAQuad = 4.945339E-01 :!Array, Total xy Area lm**2]

Volumes

volAScQ = 2.136582E-01 :!SC Quadrupole bundle [m**3]

volAVac = 6.201341E-02 :!Vacuum, Beam Pipes [m_*3]

volAOtC = 5.675295E-02 :!Array outer Collar [m**3]

volAQuad = 2.704111E-01 :!Array Total xyz space [m**3]

Weights of Array Components (Total for numBeam SC Quads.)

wtAScCab = 1.020441E+02 :!SC Cable material {kg]

wtACabS = 2.151384E+02 :!non-SC Cable material [kg]

wtACable = 3.171825E+02 :!Total Cable Weight [kg]

wtAWrap = 5.355083E+02 :!Outer Quad. Wraps (stress) [kg]

wtAPipe = 0.000000E+00 :!Pipes [kg]

wtAInsul = 0.000000E+00 :!Insulation layers [kg]

wtACool = O.000000E+00 :!Cooling layers {kg]

wtAScQ = 8.526909E+02 :!SC Quadrupoles [kg}

wtAOtC = 4.634276E+02 :!Outer Array collar [kg]

wtTArray = 1.316119E+03 :!Total of the Complete Array [kg]

Costs of Array Components (Total for numBeam SC Quads.)

dAScCab = 3.061324E+04 :!SC Cable material [$]

dACabS = 1.075692E+04 :!non-SC Cable material [$]

dACable = 4.137016E+04 :!Total for cable, SC + non-SC [$]

dAWrap = 1.338771E+04 :!Quad Wraps (stress) {$]

dAPipe = 0.000000E+00 :!Pipes [$]

dAInsul = 0.000000E+00 :!Insulation layers [$]

dACool = 0.000000E+00 :!Cooling layers [$]

• dABalance = 2.135557E+04 :!Total for Pipes, Insul.,Cool. [$]

dAQuad = 7.611343E+04 :!Total for the SC Quads [$]

dAOtC = 1.158569E+04 :!Outer Array collar [$]

dolTArray = 8.769912E+04 :!Total for Array Assembly [$]

53

Figure 2-18. HILDA Output D (continued)
i i

DATA LOADED FROM FILE ScQ30.DAT

CHOOSE MATERIALS for the SC Quadrupole •

iScCab = 1 :! SC wires []

iCabS = 1 :! non-SC wire space []

iWrap = 1 :! Wrap (stress) [] ,

iPipe = 1 :! vac.& outer Quad pipes []

nPipe n 2 :! # of pipes []

drPipe = 2.000000E-03 :! thickness of pipes [mi

iInsul = 1 :! insulation layers

nInsul = 3 :! # of layers []

drInsul = 3.300000E-03 :! thickness of layers lm]
iCool = 1 :! cooling layers

nCool = 2 :! # of layers []

drCool = 1.000000E-03 :! thickness of layers [mi

CHOOSE MATERIAL for the Array of numBeam Quadrupoles

iAWrap = 1 :! outer wrap (collar) []

SET LIMITS and PARAMETER VALUES

Quadrupoles

drWmin = 1.000000E-02 :! minimum wire thickness lm]

drWmax = 1.000000E-01 :! maximum wire thickness [m]

dShell = 1.500000E-03 :! outer shell thickness lm]

Non-Quadrupole free space

zQend = 0.000000E+00 :! end packaging for the quads, lm]

fZSpace = 1.000000E-01 :! non-magnet space limit, frac.of L []

Coefficients for the Superconducting Quadrupole Calculation:

cRI = 1.250000E+00 :! aperture radius = R = cRl*a+cR2 []

cR2 = 1.000000E-02 :! lm]

Quadrupole Wrap (stress) scaling parameters

sWrap = 1.000000E-02 :! wrap thickness for BWrap, rWrap [mi

BWrap = 5.000000E+00 :! field for scaling the Quad. Wrap IT]

rWrap = 1.200000E-01 :! radius used with BWrap [mi

Quadrupole SC wire inner radius limit

rWtRL = 5.000000E-01 :! rWire .it. eta*RL [mi

Array of numBeam Quadrupoles

fCollar = 2.500000E-01 :I wrap (collar) width, frac. of pitch []

Quadrupole (channel) Assembly-Complexity Cost factor

BFactor = 3.900000E-01 :! times the Quad (Wrap + Cable) cost []

Array Assembly-Complexity Cost factor

cAFact = 1.000000E+00 :! times the Array cost []

MATERIAL USED in the SC Quadrupole Array

Superconducting Cable

iScCab = 1 :! ID # of data set

IDScMat = 'NbTi Niobium Titanium , :!

denScMat = 7.600000E+03 :! material density [kg/m**3]

uCScMat = 3.000000E+02 :! unit cost [$/kg]
qFScMat = 1.000000E+00 :! quantity factor []

cFScMat = 1.000000E+00 :! complexity factor []

Current density parameters and Field limits

cJCoeff = 2.900000E+09 :! slope of cJ curve lA/m**2]

cJBn = 1.000000E+01 :! numerator B parameter IT]

cJBd = 5.000000E+00 :! denominator B parameter [T]

rLamda = 3.571000E-01 :! S C wire pack. fraction IT]

BWomax = 1.000000E+01 :! B at outer wire, maximum IT]

54

Figure 2-18. HILDA Output D (continued)
i

Non SC Cable
SCabS = 1 :! ID # of data set

IDCMat = 'Cu Copper :!

denCMat = 8.900000E+03 :t material density [kg/m**3]

uCCMat = 5.000000E+01 :! unit cost $/kg]

qFCMat = 1.000000E+00 :! quantity factor []

cFCMat = 1.000000E+00 :! complexity factor []

Quadrupole Wrap (Stress)

iWrap = 1 :! ID # of data set
IDWMat = 'Steel :!

denWMat = 8.165700E+03 :! material density [kg/m**3]

uCWMat = 2.500000E+01 :! unit cost $/kg]

qFWMat = 1.000000E+00 :! quantity factor []

cFWMat = 1.000000E+00 :! complexity factor []

Array Outer Wrap (Collar)

iAWrap = 1 :! ID # of data set
IDAOtMat = 'Steel :!

denAOtMat = 8.165700E+03 :! material density [kg/m**3]

uCAOtMat = 2.500000E+01 :! unit cost $/kg]
qFAOtMat = 1.000000E+00 :! quantity factor []

cFAOtMat = 1.000000E+00 :! complexity factor []

Pipes , Vacuum and around Quad outer insulation layer
iPipe = 1 :! ID # of data set

IDPMat = 'No Data on this Material :!

denPMat = 0.000000E+00 :! material density [kg/m**3]

uCPMat = 1.000000E+00 :! unit cost $/kg]

qFPMat = 1.000000E+00 :! quantity factor []

cFPMat = 1.000000E+00 :! complexity factor []

Insulation (thermal)

iInsul = 1 :! ID # of data set

IDIMat = 'No Data on this Material :!

denIMat = 0.000000E+00 :! material density [kg/m**3]

uCIMat = 1.000000E+00 :! unit cost $/kg]

qFIMat = 1.000000E+00 :! quantity factor []

cFIMat = 1.000000E+00 :! complexity factor []

Cooling Layers, data sets
iCool = 1 :! ID # of data set

IDClay = 'No Data on this Material :!

denCLay = 0.000000E+00 :! material density [kg/m*-3]

uCCLay = 1.000000E+00 :! unit cost $/kg]

qFCLay = 1.000000E+00 :! quantity factor []

cFCLay = 1.000000E+00 :! complexity factor []

ENDFILE: ScQ30.OUT
i

55

Figure 2-19. HIUDA Output E

FILE: StrucCore.OUT VERSION: 910910

DATE: 91/10/24 // 15:51:21

I/O variable types

implicit real (a-h,o-z)

implicit integer (i-m)

IN

voltSec = 7.2664618E-01 :!volt-sec per half period [V-si

numBeams = 16 :!number of beams []

roTArray = 4.9725944E-01 :!outer radius, quad array lm]

voltGain = 2.8000000E+00 :!peak acc. per half period [MV]

halfPeriod = 4.0000000E+00 :!lattice half-period length lm]

OUT

dolAStruct = 5.598942D+05 :!HLP cost of acc. structure [$]

The intermediate values calculated and returned are:

COST OF COMPONENTS

numdolHlp = 6 :!number of costs returned

dolAm = 4.668889D+04 :!core amorphous material [$)

dolCorH = 6.373007D+04 :!core housing [$]

dolCelH = 4.489275D+04 :!cell housing [$]

dolCCI = 8.903680D+03 :!core/cell housing insulation [$)

dolGI = 3.934876D+05 :!gap insulator [$]

dolDiC = 2.191167D+03 :!dielectric coolant [$]

MATERIALS USED: flags select material from StrucCore.dat

numidMat = 8 :!# of used material flags returned

idAm = 1 :!core winding amorphous tape

idWTape = 4 :!core tape width

idCSM = 2 :}core submodule housing
idCH = 2 :!cell housing
idIN = 2 :!core/cell insulation

idDiC = 4 :!dielectric coolant

idGP = 6 :!gap vacuum pressure range

idGI = 1 :!gap insulator

COMPONENT WEIGHTS:

numwtHlp = 20 :!number of weights that are returned

Half Lattice Period weights for the acceleration structure

wtAStruct = 2.298129D+04 :!HLP weight of acc. structure [kg]

wtAm = 9.337778D+03 :!core amorphous material [kg]

wtCorH = 6.438227D+03 :!core housing [kg]

wtCelH = 4.535217D+03 :!cell housing [kg]

wtCCI = 4.313443D+02 :!core/cell housing insulation [kg]

wtGI = 9.187461D+02 :!gap insulator [kg]

wtDiC = 1.319980D+03 :!dielectric coolant [kg]

56

Figure 2-19. HILDA Output E (continued)
i

Sub component weights
wtCore = 6.669841D+02 :!amor. material, per core [kg]

wtCEP = 5.073117D+01 :!housing end plate, per core [kg]

wtCOH = 1.989284D+02 :!outer housing, per core [kg]

wtCOB = 1.594825D+02 :!inner bobbin, per core [kg]

wtCHPC = 4.598733D+02 :!housing total, per core [kg]

wtCEI = 5.714488D+00 :!end plate ins. (2 per core) [kg]

wtCOI = 1.096856D+01 :!outer housing (ins./core) [kg]

wtCI = 2.239754D+01 :!insulation total, per core [kg]

wtCHIE = 8.412764D+00 :!cell hous. (end ins. I/core) [kg]

wtCHI = 8.412764D+00 :!cell hous. insulation, total [kg]

wtHSGEP = 3.985775D+02 :!cell hous. end plate, pair [kg]

wtOHR = 3.440581D+03 :!cell hous. supp. ring [kg]

wtHSGGI = 6.960581D+02 :!gap insulator support ring [kg]

CELL/CORE PARAMETERS:

numCP = 29 :!# of parameters returned

numCore = 1.400000D+01 :!# of cores & PFNs per cell []

cellL = 3.591196D+00 :!z axis, cell length [m]

gIL = 2.333333D+00 :!gap insulator length [mi

pV = 2.000000D-01 :!required PFN peak per core [MV]
tI = 3.000000D-02 :!gap insulator width m]

QAI = 4.088040D-01 :!support igth., quadrupole, etc. m]

zlH = 2.000000D-02 :!cell housing widths, z axis m]

zlPH = 1.000000D-02 :!core housing widths, z axis m]

zlCi = 1.015228D-02 :!z length, core insulator mi

delTC = 2.000000D-02 :!core housing top mi

delBC = 2.000000D-02 :!core housing bottom m]

delCH = 2.309401D-02 :!cell housing top m]

riH = 5.469854D-01 :!inside radius to acc. gap insul, m]

delRg = 5.128205D-02 :!radial cell-acc, gap mi
rim = 6.282674D-01 :!core housing inner radius mi

riC = 6.482674D-01 :!core inside radius m]

roC = 7.759823D-01 :!outside radius of core mi

roCore = 8.061345D-01 :!core housing outer radius mi

roHSG = 8.292286D-01 :!cell housing outer radius m]

acAM = 2.906585D-01 :!acc. cell amor. mat. area lm**2]

pFAm = 8.000000D-01 :!packing fraction []

aC = 2.595165D-02 :!core cross sectional area [m**2]

wTape = 2.032000D-01 :!core amor. mat.tape width mi

hC = 1.277148D-01 :!height of amorphous material m]

aRC = 6.285177D-01 :!core amor. mat. h/w ratio]

fQ = 1.100000D+00 :!quad array per. supp. factor]
gILmax = 2.872957D+00 :!max. gap ins. length m]

aRCmax = 4.000000D+00 :!max. hth/wdth ratio, core]

QAlmin = 4.000000D-01 :!min. quad. support length m]

MATERIAL DATA Values actually used:

Core amorphous material

denAm = 7.180000E+00 :!density [gm/cm**3]

cFacAm = 1.000000E+00 :!complexity factor []

qFacAm = 1.000000E+00 :!quantity factor []

• uCostAm = 5.000000E+00 :!unit cost [$/kg]

pFAm = 8.000000E-01 :!radial packing fact []

delBAm = 2.500000E+00 :!flux swing IT]

• Core tape widths

wTape = 2.032000E+01 :!core tape width [cm]

aRCmax = 4.000000E+00 :!max. height/width []

57

Figure 2-19. HILDA Output E (continued)

Core Sub Module hous£ng material

denCSM = 8.165700E+00 :!density [gm/cm**3)

cFacCSM = 1.000000E+00 :!complexity factor []

qFacCSM = 1.000000E+00 :!quantity factor []

uCostCSM = 9.898700E+00 :!unit cost [$/kg] .

Cell Uousing material
denCH = 8.165700E+00 :!density [gm/cm**3]

cFacCH = 1.000000E+00 :!complexity factor []

qFacCH = 1.000000E+00 :!quantity factor []

uCostCH = 9.898700E+00 :!unit cost [$/kg]

emCH = 3.000000E+01 :!elasticity modulus [I0"'6 Ib/in**2]

Core & cell Bousing Insulation

denIN = 9.850000E-01 :!density [gm/cm**3]

cFacIN = 1.000000E+00 :!complexity factor []

qFacIN = 1.000000E+00 :!quantity factor []

uCostIN = 2.064170E+01 :!unit cost [$/kg]

bVoltIN = 1.970000E+02 :!break down voltage [kV/cm]

Gap Insulator

denGI = 3.717000E+00 :!density [gm/cm**3]
cFacGI = 1.000000E+00 :!complexity factor []

qFacGI = 1.000000E+00 :!quantity factor []

uCostGI = 4.282876E+02 :!unit cost [$/kg]

bVoltGI = 1.200000E+01 :!break down voltage [kV/cm]

Dielectric coolant

denDiC = 1.800000E+00 :!density [gm/cm**3]

cFacDiC = 1.000000E+00 :!complexity factor []

qFacDiC = 1.000000E+00 :!quantity factor []

uCostDiC = 1.660000E+00 :!unit cost [$/kg]

bVoltDiC = 3.900000E+01 :!break down voltage [kV/cm]

Acc. Gap Voltage break down strength

bVRGap = 0.500000E+02 :! [kV/cm]

ENDFILE: StrucCore.OUT

Figure 2-20. HILDA Output F
i

DATA FILES USED:

See the 3000MV example in the HPD disks

PROCESS VERSIONS:

See the 3000MV example in the HPD disks

ENDFILE: CostVl.010

58

The Module Data Files

Each HILDAdatafile discussed below is associated with a HILDA module of the same name. The module
• readsthe file module name.DAT to get thedata it requires.Forexample module ScQ30 readsparameterdata

from the file ScQ30.DAT.

CalCostl.DAT Beam Parameter File

It is necessary to define the beam parametersfor each station thatthe user intends to use HILDA to find a
minimum-cost design. Those parametervalues are set in this data file which is subsequently read by the
HILDAmodule CalCost. In Figure 2-21, CalCostl.DAT below we show the contents of thatfile as used
in this example.

Thisparticulardata file can contain data formore than one station, for the 4MJ driver example it contained
data forseven stations.The example we arepresentinghereproducesa design for the seventh station,which
we have identified as station 70. This data set could have been used for the 3MV example, since it contains
beam data for the 3MV station. Also this data set could also be shortened to contain only the beam datafor
station 70, the 3000MV station.

We should note that HILDA is very modular in design. Future versions of HILDA can in principal have
modules that modify this data file to find what beam parametervalues give the minimum-cost design of a
driver.For example, the number of beams could be adjusted. We could easily do that rightnow with this
version by noting that the station number is simply a way of identifying a data packet. If we wished we
could addmore data packetsfor a given pointalong the machine and then compare the cost of the various
designs that HILDAproduced.

The total amount of charge in the beam at this station is 0.00133333 Coulombs. This is transportedin 16
beamlets. The particles that make up the beam have 200 atomic mass units and are ions with a positive
chargestate of 3. At this station the cumulative acceleration voltage that the machine has supplied is 3000
million volts. The undepressed tune (single particle, no space charge) of the beam is 72 degrees. The
normalizedemittance of each beam in the 16beams is 0.000001 n [meter-radians].

In the file CalCostl.DAT we also have a file name, which in this example is shown as CostVl.070. The
name furnished before the run is immaterial. In some data files you may see the file name set to null.
HILDA enters the name of the file that contains the output for the minimum-cost design at the station. In
this case the name became CostVl.07O. If no minimum-cost design is found, this file name is not
necessarily updated;the programasks the user what to do.

CostV1.DAT Parameter Search Space
This datafile is associated with the module CostV1 that does the parameter space scan. It is different from
the 3MV example data set only in the values of the parameters. The space that is scanned over is limited,
here, to one point; the minimum-costdesign parametervalues. The structurehalf-period RL, the maximum
beam radiusa, the voltage gain delV that the station supplies, and the quadrupolepacking fraction eta are
set by the data in this f'de.At each point (RL,a,delV,eta) in this space HILDA determines if the beam can
be transported.If it cannot be transported,thenHILDAwill NOT try to find a minimum-costdesign; it will
skip to the next point in the parameter space. The data file CostVl.DAT,shown in Figure 2-22,
CostVI.DAT, defines the parameter space by setting the limits and the number of points for each
parameter.In this particularexample we limit the search to one point.

As we mentioned before, the contentsof the logfile CostVI.LOG can vary.This is controlled by setting the
parameteriLog in this data file.

59

AISighBar.DAT Beam Dynamics Parameters
HILDA solves equations that pertain to the dynamical beam transportproblem. Information about the
model is in the section The HILDA Model: Beam Transport Equations of this report.We note here that the
parameters in this data are the same for ali the stations in the 4MJ driver example from which this example
was extracted. See Figure 2-23, AISighAbar.DAT.

TranMod.DAT Transport Module Selection Data
HILDA f'wstasks whether the beam can be transported. For those points in the parameter space for which
the beam CAN be transported HILDA designs appropriateelements. The module TranMod reads data that
selects which design modules to use. Both stations 10 and 70 use SC quadrupoles, so this data set is the
same for both stations; ali the 4MJ driver stations use SC quadrupoles. In principal, this data could have
been set to choose an Fe quadrupole. See Figure 2-24, TranMod.DAT.

FeQ20.DAT Fe Quadrupole Design Data

The HILDA module FeQ20 designs an iron quadrupole. This data set furnishes ali the necessary design
information. The module FeQ20 is never used for this example, so this data set is not required to be
present. See Figure 2-25, FeQ20.DAT.

ScQ30.DAT SC Quadrupole Design Data
The module ScQ30 designs a superconductingquadrupole.This module is similar to the module FeQ20.
The ScQ30.DAT data set furnishes informationneededfor the superconductingquadrupole.This data set is
identical to the one used in the 3MV station. We thus refer the reader to the description in that example. See
Figure 2-26, ScQ30.DAT.

We note, however, that the CostV 1.070 f'de is the final arbitrator as to what parameter values are used for
the SC quadrupole file. lt happens that for the examples given here we do not change the selection of
materials; however, it is possible to do that. The information written in the CostV1.070 logfile will
containthevalues used for the design that is recorded in that trde.

StrucCore.DAT Acceleration Cell Design Data
The module StrucCore designs an acceleration-transport module. The basic data for this module is in the f'de
StrucCore.DAT. This data set is identical to the one used in the 3MV station. See Figure 2-27,
StrucCore.DAT. We thus refer the reader to description in that example. We should note, however, that
both the 3MV and the 3000MV examples have been extracted from the 4MJ driver example. Finding the
minimum-cost design requires much more effort than is implied here. For example, both the 3MV and the
3000MV examples use the same amorphous tape width. However, to determine which of the tape widths
yields a minimum-cost design requires that we run HILDA with the available tape widths. The present
version of HILDA requires that the StrucCore.DAT file be correctly set for each tape width that HILDA
investigates; the user must do this. Futare versions of HILDA will contain modules that easily set such
parameters, lt is rather straight forward to build modules that automatically search over the tape widths and
choose for us the correct tape width. The modular construction of HILDA can accommodate many useful
extensions.

60

Figure 2-21. CalCostl.DAT
i

c FILE: CalCoBtI.DAT

c DATE: 910922

c EXAMPLE: dr4MJ 6 3000MV

At each station this data defines the basic parameters of the beam that

is being transported. Upon completion of the cost minimization calculation

at the station, the file CostVl.nnn, where nnn is the value of IDStation,

will contain all the design information.

Basic Beam Data for 4MJ driver at 3.0 MV

varName varValue data type comment
__

IDStation = i0 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge [C]

N = 16 :integer ! number of beams []

Amu = 200 :real ! atomic no. [amu]

q = 3 :real ! charge state []

V = 3 :real ! cumulative voltage [MV]

sig0 = 72.0 :real ! undepressed tune [deg]

epsn = le-6 :real ! nor. emittance [m-r]
filename = 'null' :character ! name of file

Basic Beam Data for 4MJ driver at I0.0 MV

varName varValue data type comment

IDStation = 20 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge ICI

N = 16 :integer ! number of beams []

Amu = 200 :real ! atomic no. [amu]

q = 3 :real ! charge state [}

V = i0 :real ! cumulative voltage [MV]

sig0 = 72.0 :real ! undepressed tune [deg]
epsn = le-6 :real ! nor. emittance [m-r]
filename = 'null' :character ! name of file

Basic Beam Data for 4MJ driver at 30.0 MV

varName varValue data type comment

IDStation = 30 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge lC]

N = 16 :integer ! number of beams []

Amu = 200 :real ! atomic no. [amu]

q = 3 :real ! charge state []

V = 30 :real ! cumulative voltage [MV]

sig0 = 72.0 :real ! undepressed tune [deg]

epsn = le-6 :real ! nor. emittance [m-r]
filename = 'null' :character ! name of file

61

Figure 2-21. CalCostl.DAT (continued)
ii i i] ii

Basic Beam Data for 4MJ driver at I00.0 MV

varName varValue data type comment

IDStation = 40 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge lC] ,

N = 16 :integer ! number of beams []

Amu = 200 :real ! atomic no. [amu]

g = 3 :real ! charge state []

V = I00 :real ! cumulative voltage [MV]

sig0 = 72.0 :real ! undepressed tune [deg]

epsn = le-6 :real ! nor. emittance fm-r]
filename = 'null' :character ! name of file

.... --

Basic Beam Data for 4MJ driver at 300.0 MV

varName varValue data type comment

IDStation = 50 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge [C]

N = 16 :integer ! number of beams []

Amu = 200 :real ! atomic no. [amu]

q = 3 :real ! charge state []

V = 300 :real ! cumulative voltage [MV]

sig0 = 72.0 :real ! undepressed tune [deg]

epsn = le-6 :real ! nor. emittance [m-r]
filename = 'null' :character ! name of file

Basic Beam Data for 4MJ driver at I000.0 MV

varName varValue data type comment

IDStation = 60 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge [C]

N = 16 :integer ! number of beams []

Amu = 200 :real ! atomic no. [amu]

q = 3 :real ! charge state []

V = i000 :real ! cumulative voltage [MV]

sigO = 72.0 :real ! undepressed tune [deg]

epsn = le-6 :real ! nor. emittance fm-r]
filename = 'null' :character ! name of file

Basic Beam Data for 4MJ driver at 3000.0 MV

varName varValue data type comment

IDStation = 70 :integer ! station identification #

Qsys = 1.333333e-3 :real ! system charge [C

N = 16 :integer ! number of beams [

Amu = 200 :real ! atomic no. [amu

q = 3 :real ! charge state [

V = 3000 :real ! cumulative voltage [MV

sig0 = 72.0 :real ! undepressed tune [deg

epsn = le-6 :real ! nor. emittance [m-r
filename = 'CostVi.070' :character ! name of file

,, t

62

Figure 2-21. CalCostl.DAT (continued)
i

There is one (I) group of the above data for _ of the stations

• in the system. The actual order of the data is immaterial;

however, the values that follow the parameter IDStation are

for that IDStation. Thus each data group contains 8 values
as shown above. The data consists of a variable name terminated

by at least one trailing blank, then an - sign followed by the

value of the variable, followed by the data type represented
as :<type>. The variable names are as shown above• The value

of each data item is represented by a valid Fortran constant.

In particular a 'text string' is used for the string text that

names the file identifier of the file containing the associated

parameter values found when calculating the minimum cost.

c ENDFILE: CalCostI.DAT

Figure 2-22. CostV1.DAT
,, ,i ,

c FILE: CostV1.DAT
c DATE: 910923

c EXAMPLE: dr4MJ @ 3000MV

c Parameters that are assigned values from a data file:

c At the current station, HILDA cycles through the points
c in the parameter space defined below.

Beam Parameter Range Data for 4MJ driver at 3000.0 MV

* varName varValue data type comment

c IDStation 70 :integer ! station identification #

RLmin = 4.00 :real ! min. structure half-period [m]

RLmax = 4.00 :real ! max. structure half-period [mi

numRL = 1 :real ! # of grid points []

aMin = 0.03 :real ! min. beam size (max) lm]

amex = 0.03 :real ! max. beam size (max) [mi

numa = 1 :real ! # of grid points []

delVmin = 2800.0E3 :real ! min. voltage gain IV]

delVmax = 2800.0E3 :real ! max. voltage gain [VI

numDelV = 1 :real ! # of grid points []

etaMin = 0.i0 :real ! min. quad. packing fraction []

etaMax = 0.I0 :real ! min. quad. packing fraction []

numEta = 1 :real ! # of grid points []
..............................

c Log File printing is set using the value of iLog.

iLog = 3 ! 0 OK designs logged to the terminal, skipped points not logged
' ! 1 OK and skipped designs logged to the terminal

' 2 OK and skipped designs logged to CostVI.LOG

' 3 OK designs logged to CostVI.LOG

• ' 4 ONLY Minimum designs logged to CostVI.LOG

' 5 NO designs logged to CostVI.LOG or to the terminal

c ENDFILE: CostVI.DAT

63

Figure 2-23. AISighAbar.DAT
i i iilll

c FILE: AlSighAbar.DAT
c DATE: 900420

c EXAMPLE: dr4MJ@3OOOMV

This is the same as for the 3MV example. See Figure 2-10.

c ENDFILE: AlSighAbar. DAT
i i i iii

Figure 2-24. TranMod.DAT
i i ii i

c FILE: TranMod. DAT
c DATE: 910923

c EXAMPLE: dr4MJ@300OMV

This is the same as for the 3MV example. See Figure 2-11.
c ENDFILE: TranMod. DAT

ii,

Figure 2-25. FeQ20.DAT
i li ii

c FILE: FeQ20.DAT
c DATE: 910923

c EXAMPLE: dr4MJ@300OMV

This is the same as for the 3MV example. However this 3000MV example does
not use an Fe quadrupole, so the module FeQ20 is never called. This means

that this data set is never read. See Figure 2-12.
c ENDFILE: FeQ20.DAT

Figure 2-26. ScQ30.DAT
iiii

c FILE: ScQ30.DAT
c DATE: 910923

c EXAMPLE: dr4MJ@300OMV

This is the same as for the 3MV example. See Figure 2-13.

c ENDFILE: ScQ30.DAT
iii ell I

Figure 2-27. StrucCore.DAT

c FILE: StrucCore.DAT

c DATE: 910923

c EXAMPLE: dr4MJ@30OOMV

This is the same as for the 3MV example. See Figure 2-14.
c END: StrucCore. DAT

64

C, HILDA MODULE DATA FILES
, The HILDA modules can,when needed, read one or mornassociated data f'de,s. These flies are fully formaue,d

and as such arc meant to be self-explanatory. In this section we give a short explanation of these data flies.

HILDA reads the data usingHILDA utility modules. It then creamsa temporaryf'de that contains only the
' data that the module needs;ali comments have been removed. The module reads the temporary data file and

that file is then deleted. Examples of the HILDA module data files arc given above in this report. The reader
should refer to one of these data files, Also the complete data files for the examples are in the example
folders dr4MJ @ 3MV, dr4MJ @ 3000MV, and dr4MJ Data that are on the HPD disks. A guide to these
disks is in the Appendix.

The actual data line is of the following form:

Variable name = va/ue : data type [comment [units]

A potential data line cannot contain a c, C, or * in column 1. Them is an exception: a double asterisk **
in column 1 and 2 can be a potential data line. Any line in a data file that is NOT a potential data line is
simply skipped by lhc HILDA input routines. If a line is a potential data line, the HILDA input routines
look for an equal sign, =. If the line does not contain an = sign, it is skipped. If the line contains an equal
sign the data value is written to the temporary file for the module to read. The data value is the information
that is to the fight of the = sign and to the left of the : symbol.

The data value is assumed to be a valid FORTRAN constant that agre.cs in type with the type specified in
the data line. If no data type is specified, the FORTRAN implicit convention is used for numbers. Those
variables that begin with i, j, k, l, m, n are integers; the rest are real numbers. The data values in the data
lines arc written into the temporary file in the same order as they appear in the data file. This order is the
order that the module reads them and should NOT be changed.

The variable name that appears in the data file is the name of the variable in the module to which the value

is assigned. HILDA has input routines that can find data by the name of the variable. When a module uses
such a routine, the data value is assigned to the named variable; the data type is dete=mined by the
information after the colon sign, :.

From the above discussion it is obvious that for some HILDA modules the only necessary information in
the data line is the value of the variable. For others the variable name,value,and data type are required.The
data files in the examples have the correct information, as required by the associated modules. We thus
strongly recommend that the user modify ONLY the data values in the data lines.

The lines that are not data lines are simply comments that explain the data; they can be deleted, or more
comment lines can be added to the data in the file. The temptation is to eliminate ali such comment lines.
However, HILDA does not spend much time reading data and it is often the case that the ONLY record of

what the data means is in the comments in the data file. We also point out that the data ('de will appear in
the HILDA CostV1.NNN logfile and as such serves as a record of the parameter values used in the
minimum-cost design. The information in the comments can be quite informative in that context.

One more comment should be made. Future versions of HILDA will produce files that can be read by
programs that help in analyzing the output. A well-formatted data file, with comments that explain the
contents, is very useful when generating a report about the HILDA run.

t

65

D. ANALYZING HILDA RESULTS
HILDA findsa minimum-costdesignandgeneratesoutput thatdefinesthe design.This canbedoneat
different stations along the machine, and it can be done at the same stationwith differentparametervalues.
The primary purposeof HILDA is to find the costof the design.Thereareav,ailableprogramssuchas
spreadsheetsthatcananalyzetheresults,compareresultsat differentstations,makeestimatesandproduce
graphs.They can also producewell formattedreports.Future versionsof HILDA shouldexpandits
capabilitytoprepareinputfilesforsuchprograms,ratherthantryingtoduplicatetheirfunctions.

There is included in the HPD disks, in the folder HILDA on ILSE., the ILSE example. This example
illustrateshow a spreadsheetcan be used with toanalyze theresults producedby HILDA.The reportin that
folder used theapplicationEXCELby MicrosoftCorporation.

66

3. THE HILDA MODEL

A. INTRODUCTION
. In this section of theHilda Program Documentwe describe the model that furnishes the basis of the HILDA

costcalculation.

As modeledby HILDA, a HeavyIonLinearInductionDriverconsistsofan injector,an acceleration-
transportsection, a final focus drift-compressionsection, andan interfaceto the targetchamber. The initial
particlebeam for the driver is furnished by the injector. After leaving the injector, inductionmodules with
specified gap voltages AV accelerate the beam to the design energy. As the beam gains energy and moves
through the system, quadrupole focusing elements are used to keep the beam focused. This is done in the
acceleration-wansportsection The final focus section compresses and focuses the beam;as requiredby the
target in the reactorchamber.

At stations selected along the acceleration-transport section HILDA designs acceleration modules and
focusing elements. For each design HILDA estimates the cost of the complete module. The principal
quantitythat HILDA furnishes is the dollar cost per voltage gain ($/AV) at a selected station. See Figure 3-
1, Acceleration-Transport Module Cost. The total cost of the acceleration-wansportsection canbe estimated
by selecting a suitable numberof stations along the machine, calculating the cost of the module at each of
these stations and then calculating the total integrated cost. The cost of the driver without the reactor
chambercan be obtainedby adding the cost of the injector, the final focus section, and the interface to the
reactorchamber.

The present version of HILDA does not have modules that estimate costs in sections other than the
acceleration-u'ansponsection. Because of its modularconstructiona futureversion of HILDAcould easily
accommodatesuch modules.

Figure 3-1. Acceleration.Transport Module Cost

Q
i

AccelerationTransport

Module

I

67

B. BEAM TRANSPORT EQUATIONS 0
A station in the acceleration-transport section of the driveris sclccwxl by the user. At this station HILDA
designsanacceleration-I_ansportmodule,whichconsistsof an accelerationcellandquadrupolefocusing
elements, and then returns the cost of that module. HILDA determines whether the panicle beam can be
transportedbefore designing the module. If the beam cannot be transportedthere is no reason to proceed
withthe moduledesign.

The model that HILDA uses to determine whetherthe beamcan betransportedis described in thissection.

Foreach station the userfurnishes the primarybeam parametersas shown below.

Name value Description L/nits

Qsys 1.33E-3 totalsystem charge [C]

N 16 the numberof beams

Ainu 200 numberof atomicmass units [amu]

q 3 beam ion charge state

V 3 total voltage gain at the current station [MV]

sig0 72 undepressedtune, nospace charge [dell]

epsn 1.0E-6 normalized emittance, no n [m-r]

The parameter values that we describeas user input, i.e., furnished by the user,can be found in the data sets
of the examples furnished in this report; the parameter values have been taken from the 3MV example. See
Example 1of this report.

After this data has been supplied it is necessary to specify the limits for the parameters that HILDA will
vary as it proceeds to search for a minimum-cost design. The table below identifies the parameters and
shows values taken from the 3MV example in this report.

Name value Description

RLmin 0.35 min. structurehail-period [m]

RLmax 0.35 max. structure half-period [m]

numRL 1 number of points

aMin 0.035 min. beam size (maximum) [mi

aMax 0.035 max. beam size (maximum) [mi

numa 1 umumber of points

delVmin 7000 min. voltage gain [VI

deiVmax 7000 max. voltage gain [VI
,li

numDelV 1 number of points

i

68

etaMin 0.40 min. quadrupolepacking fraction []

etaMax 0.40 max. quadrupolepacking fraction []

' numEta 1 number of points

The sem_:hgridparametervalues shown here restrict HILDA to exactly one point in the parameterspace;
• this would not be the case when finding a minimum-costdesign.

We have used the HILDAnames for the parametersin the above tables. In the rest of this section we will
use the following:

_ns Description

Qsys Q total systemcharge [C]

N N thenumberof beams

Ainu A numberof atomicmassunits [ainu]

q q beam ion charge state

V V cummulative voltage at the current station [MV]

sig0 ao undepressed tune, no space charge lr]

epsn en normalized emittance, no n [m-r]

RL L structure half-period lm]

a a maximum beam size lm]

delV AV voltage gain [V]

eta 1'1 quadrupole packing fraction

With this information available I-IILDAuses the procedure KenVar to calculate the following quantities.

mo - 931.50 atomic mass unit [MEV]

xl -- Q/N charge per beamlet [C]

13¥ = sqrt(((qV)/(moA))2+ 2.(qV)/(moA)) []

Y = sqn((137)2 + I) []

= (I_T)/'t []

BO = 3.107 • (137)•)A/q) magnetic rigidity IT-m]

HILDA then uses this information to solve equations pertaining to the beam dynamics. The basic equations
used are summarized below. We def'methe quantifies:

GB = B' Magnetic quad. gradient [T/mi

GE = E'/v Electric q'trod.gradient [V/m/si

G = GB or GE Quad. gradient

, cos(oo) = 1 - [T12(3 - 21"1)(G/Bp) 2 L4] / 6 undepressedtune

We note that the quantities Oo, TI,L, are input parameters and Bp has been calculated. This the above
' formula for cos(oo) determines the quadrupole strength needed to focus the beam.

69

HILDAnow solves for two quantifiesthatwe call a andam.These arerelatedto the perveanceK as will be
shown below. The quantityam is an averagebeamradius. The transcendentalequationthat determinesa is
shown below.

m

cos(a) = 1 - sinh 2 (ct) [(1 - cos(ao))/ct2. 2]

sin(a) = (2L_n / [_?)(sinh(ct)/ct)• [cosh(ct)+ (sinh(ct)/ct)• sqrt((1 - cos(a o)) / 2)] °
(I/a2)•[I-0.12TI(l- cos(ao)]2

f(ct) = cos(a)2 + sin(a)2. l

HILDA findsctbysolvingf(ct)= 0.Oncethisquantityisknownthequantitiesam anda arefoundfrom
theformulasbelow.

am2 = (2L_n/137)•[(cosh(ct)•sinh(ct))/ct-(I- cos(cso))•sinh(ct)sinh2(0./2)/ct3]
/sin(c0

cs = sin"1 (sin(cs))

Now that am and ct are are known it is possible to obtain the perveance K and the current I from

K = (ct.am/L) 2

I = ([37)2 .Bp.K/2 lA]

The pulse length x, average voltage gradient E, and the volt seconds Vs that the inducUon modules must
furnish follow from the equations that are show below.

x = (xl)/I [s]

E = AWL [V/m]

Vs = E.L.t [V-si

At this point HILDA has, in principal, solved the beam transport problem. However, it may be that the
parameters selected for this station do not yield a solution. For example, there may be no solution for the
transcendentalequation defining ct,orthe depressed tune csbecomes less than the allowed lower limiL

After a solution to the beam transport problem is found, HILDA designs a quadrupole. If a solution is not
found HILDA terminates the calculation and gives the user an opportunity to try a new parameter seL If a
parameter space is being scanned, HILDA goes to the next point in that space.

70

C. ACCELERATION-TRANSPORT ELEMENTS

The presentversionof HILDA has modulesthatdesigneither a superconducting quadrupoleor an iron aided
pulsedquadrupole.The modelsfor these elements aredescribedin this section.

• Iron Aided Pulsed Quadrupole
This element is designed by the HILDA module FeQ20. lt is assumed that the beam transportproblem has
been solved. This means that HILDA has values for the quantities listed below:

Name Description

a maximumbeamedgeradius [m]

L _rt structure half.period [m]

xI quadrupolepacking fraction

Oo undepressed tune, no space charge [r]

N the number of beams

Bf) magnetic rigidity [T-mi

HILDA uses these, along with design data from the data file associated with FeQ20, to design a quadrupole
array package that will transport the N beamlets. The module writes the design parameters to a file for later
processing and returns as its primary output the two quantifies shown in the table below.

Name Description Units

dolTArray cost of the array [$]

roTArray outer radius of the quadrupole array lm]

The radial size of the array is needed in the design of the acceleration cell, since the cell must be able to
accommodate the quadrupolearmy.

A picture of this quadrupole is shown above in Figure 2-12, FeQ202)AT. This figure is in the section The
Module Data Files of the 3MV example. The discussion below will refer to quantifies that are in that
picture. The correspondence is as show below.

Figure 2-12 Eauations Description Units

a a maximum beam radius [mi

Rapcrture R apertureradius [m]

deIRP/pc Arp pipethickness [m]

delRGap Arg gapthickness [m]

dclrWire Arw wirelayerthickness [m]

rWirc rw radiustowirecenter [m]

delrFc ArFe yokethickness [m]

, rFe rFc magnetradius [m]

lo overhanglength [m]
i

71

zlMag lm magnet length [m]

Bmax maximumwire field [TJ

B' fieldgradient [T/m]

RL L transportsection half-period [m]

eta TI quadrupolepacking fraction

The module FeQ20 first calculates the beam radius a, the pipe thickness, and the gap thickness as shown
below.

R = 1.25 • a + .01

arp = 0.03 • R

Arg = 0.10 • R

We should note that the constants that appear above are parameter data that FeQ20 reads from its data file.
Thus, they can be easily changed to other values, should that be desirable. We should also note that there is
a data parameter that specifies the minimum pipe thickness and the minimum gap thickness. If the
calculated values are less than these minimum, the minimum allowed values are used.

Next the field gradient needed to transport the beam, the wire radius, and the wire field are calculated as
shown below.

B' = sqrt(6. (1- cos(ao))/(3- 2 rI)). Bp/(L2 "rl)

arw = 0.005 • (B'rw/1.0)

rw = R + arp + arg + arw / 2

Bwire = B'o rw

Again we point out that the scaling parameters used in the wire thickness formulaare data input parameters.
The quantity Bwire is checked to be sure that it does not exceed the limit Bmax; if it does HILDA
terminates the design at this point in the parameterspace.

Next are calculated the magnet overhang and the magnet length as shown below.
lo = 0.75 • rw

lm = til + 2 1o

Following this FeQ20 determines the iron thickness, the outer iron radius, and the pitch.

ArFe = B' • rw 2 / (2 • Bmax)

rFe = rw + Arw / 2 + ArFe

p = 2 • rFe + 0.00

This latter quantity, pitch, is the beam-center to beam-center spacing when there is more than one beamlet.
This is measured horizontally, and is not the diagonal spacing of the beams. This quatttity is used to
determine the outer radius of quadrupole array assembly. The present version of HILDA assumes that the
array is square. This is true if the number of beams is a perfect square. A special fommla is furnished for the
case of 21 beams.

72

We note that the yoke thickness ArFe is scaled from Bmax, which is taken to be 1.5T. In principal the
yoke is thick enough to contain the return flux. The cost of the quadrupole is based on the volume of Fe
that is used. The quadrupole designed here has a cylindirical yoke with thickness ArFe and an inner radius
rFe. lt does not contain Fe material in the corners and for this reason the cost of these quadrupole arrays will
be less than if the yoke were rectangular in cross-section.

' The volume, weight, and cost of one quadrupole are calculated as

volFelQuad --- n • (2 • rFe - tLrFe) • ArFe • lm [m3]

wtFelQuad = volFelQuad • denFe [kg]

costlQuad = wtFelQuad • cCost • qCost ° uCost [$]

The weight and cost of the quadrupole assembly for N beams are then calculated.

wtFeQuad - wtFelQuad °N [kg]

dolTArray = costlQuad. N [$]

In the cost calculation there are three cost factors. The factor uCost is the basic cost of the material. The
factor qCost is used to adjust that cost for quantity orders. The parameter cCost refers to a complexity
factor. In the examples in this report the factors qCost and cCost have been set to 1.0. These three items
appear in the FeQ20 data set and can be easily set to appropriate values. The density denFe is also there.

Upon completion of the quadrupole array design, FeQ20 writes out the complete design data set and the
complete set of design parameters. This f'de is later recovered and included in the logfile for the minimum-
cost design.

Superconducting Quadrupole
This element is designed by the HILDA module ScQ30. It is assumed that the beam transport problem has
been solved. Thus HILDA has values for the quantities

Name Description Units

a maximum beam edge radius [m]

L transport structurehalf-period [mi

11 quadrupolepacing fraction

t_o undepressed tune, no space charge [r]

N the number of beams

13p magnetic rigidity [T-m]

HILDA uses these, along with design data from the data file associated with ScQ30 to design a quadrupole
array package that will transport the N beamlets. The module writes the design parameters to a file for later
processing and returns as its primary output the two quantifies shown in the table below.

Name Descriptign

. dolTArray cost of the array [$]

roTArray outer radius of the quadrupole array [mi

' The radial size of the array is needed in the design of the acceleration cell, since the cell must be able to
accommodate the quadrupole array.

73

A pictureof this quadrupoleis shown above in Figure 2-13, ScQ30.DAT. This figure is in the section The
Module Data Files of the 3MV example. There are three pictures in that figure: the first is a transverse
view on one SC quadrupole; the second is an end view of the single SC quadrupole; the third is an end
view of an array that contains four SC quadrupoles. In the discussion that follows we assume that the reader
will refer to those pictures.

We give below a correspondence between: the labels in those figures, the I-IILDAvariables, and the notation
used in this section.

HILDA Eauations DescriDdon Units

eta 11 quadrupolepacking fraction

RL L transport structure half-period [mi

rWire Rwi inner wire radius [mi

rWo Rwo outer wire radius [mi

&Wire Aw wire thickness [mi

drPipe Ap pipe thickness [m]

drlnsul Ain insulation layer thickness [mi

&Cool Aco cooling layer thickness [m]

BWo Bwo fieldat outer wire radius [T]

Bwire Bwi fieldat inner wire radius [T]

avJ <J> average current density at outer wire radius [A/m3]

cJ Jc critical current density [A/m3]

&Wrap Awrap quadrupole stress wrap thickness [mi

wQElem Qw Transverse width of the SC Quadrupole package [mi

pitch p beam-center to beam-center spacing lm]

zlMag Z-quld physical lengthof the quadrupole package [mi

The module ScQ30 fast calculates: the inner radius R of the beam vacuum pipe, the quadrupole field
gradient B', the inner radius Rwi of the quadrupole windings, and the magnetic field strength Bwi at the
inner wire radius. The table below gives the formulas used.

R = 1.25 oa + .01

B' = sqrt(6. (1- cos(oo))/(3 - 2.1"1)). Bp / (L 2. rl)

Rwi = R + 2°Ap + 3"Ain+ 2"Aco

Bwi = B'° Rwi

We note that for R and Rwi the numerical values of the parameters are data that is input from the ScQ30
data file. Thus, the values can be changed by editing the data in that file. We also note that the values of the
quantifies Ap, Ain, and Aco are also read as parameter data from this file.

The bore size is checked to insure that the magnet bore radius to magnetic length is not too large.

Rwi < 0.5 • TIL

74

If this limit is not observed, HILDA terminates the quadrupole design and goes to the next point in the
parameterspace.

The module ScQ30 next solves for the outer wire radius Rwo, the average current density <3>at the outer
wire radius, and the field Bwo at the outer wire radius. The following equations are solved to obtain these

, quantities.

Bwo - B'. Rwo [T]

Jc = 2.9 • 109 • (10.0 - Bwo) / 5.0 [AJm3]

<3> --- X • Jc [A/m3]

go = 4.n.10 "7 FI'm2/A]

ffRwo) - lnfRwo/Rwi) + (1- (Rwi / Rwo)4) / 4 - (2.B') / 0.to'<J>) []

f(Rwo) -- 0 []

Bwo < Bmax FT]

The coefficients that appear in the above equations are read as data from the ScQ30 data file, see Figure
2-13. For reference to that data file we give in the table below the correspondence between the numerical
value, or variable name, and the data name in that file.

_LQ3..Q,D__! Equation value Descriotion

cR1 = 1.25 aperture beam radius coefficient []

cR2 = .01 apertureradial clearance [m]

nPipe = 2 # of pipes

nlnsul = 3 # of insulation layers

nCool = 2 # of cooling layers

rWtRL - 0.50 bore size limit factor []

cJCoeff = 2.9 • 109 slope of critical current density cd curve [A/m3]

cJBni = 10.0 numerator field parameter [T]

cdBdi --- 5.0 denominatorfield parameter IT]

rl.amdz = _. SC wire packing fraction

BWomax -- Bmax B at outer wire, maximum [TJ

A check is done to insure that the wire thickness is not too thin, or too thick, and that the field Bwo at the
outer radius is greater than 0 and less than the maximum Bmax. These limits arefurnished as data in the
ScQ30 data file. If for some reason ScQ30 cannot find a solution that satisfies these equations and meets the
limit criteria, the design of the SC quadrupole is terminated and HILDA goes to the next point in the
parameter space.

75

When a solution is obtained the outerwrap Awrapthat encloses the quadrupole windings, the horizontal
width Qw of the SC quadrupolepackage, and the beam-center to beam-center spacing (pitch) p are calculated
as shown below.

Awrap -- 0.01 • (Bwo/5.0) 2. (rWo/0.12)

Qw = 2 • (Rwo + Awrap+ 0.0015)
#

P = Qw

Thesquarequadrupolemodulesarestackedtogethertoformapackage,thatwe refertoasthequadrupole
array,ThisarraycontainsN quadrupoles,whereN isthenumberofbeamlets.We assumeherethatN isa
perfectsquare,e.g.,l,2,4,16,•••.ThisarraystructureisshowninthethirdpictureofFigure2-13that
we previouslyreferredto.Theouterradiusofthequadrupolearrayisobtainedfromtheformulabelow.

roTArmy = p •sqrt(2)•(2°0.25+ sqrt0_l))/2 [m]

Thelengthofthequadrupoles,andthusofthearray,isdeterminedandacheckisdonetoinsurethatitwill
fit in the allotted space.

Z-quad - tiL + 2 ° (RWo+ 0.00)

Z-quad < L. (I-0.I0)

The coefficients that appear in the above equations are read as data from the ScQ30 data file. For reference to
that data file we give in the table below the correspondence between the numerical value and the data name
in that file.

ScO30.DAT Equationv_ue l)es_:ription

sWrap = 0.01 wrap thickness used for BWrap, rWrap [m]

BWrap = 5.0 field used for scaling the Quad. Wrap [T]

rWrap = 0.12 radius used with BWrap lm]

dShell - 0.0015 thickness of the outer shell [mi

fCollar = 0.25 array wrap (collar) width, fraction of pitch []

zQeml = 0.00 space used by quadrupoleend packaging [m]

tZSp,-r_ = 0.10 no-magnet space limit, fraction of half-period L lm]

At this point in the design the quadrupole array has been completely determined. The rest of the module is
devoted to finding the cost of the array. This cost is determined by finding the amount of material and then
multiplying that by the cost per unit of material. A look at the pictures in Figure 2-13 will show that it is
now necessary for ScQ30 to determine the volumes of the various components. This is a simple, though
rather tedious, calculation. In the discussion that follows we shall sketch out what is calculated.

The module ScQ30 first does the calculations for one quadrupole. Ali the quadrupoles in the array are
assumed to be the same. lt calculates the cross-sectional areas of the:

• quadrupole package

• stress wrap around the windings, includes the shell

• cable, includes the SC and the non-SC cable material

• beam pipe, inside of the vacuum pipe

• pipes, insulation and cooling layers

These components can be easily identified by looking at the second picture inFigure 2-13.

76

Next, these cross-sectional areas are multiplied by the quadrupole package length Zquad to obtain the
corresponding volumes. Once the volumes are known ScQ30 proceeds to obtain the weights of the
components:

• • SC cable, using the packing factor _.

• non-SCcable material

. • conductormaterial,SC plus non-SC

• outerSC quadrupolewrap, includes theouter shell as same as the stress wrap

• pipe layers

• insulation layers

• cooling layers

• totalquadrupolepackage,includes ali theabove components

The costs are calculated using by multiplying the weights by three quantities: the unit cost [$/kg] of the
material, a quantity factor, and a complexity factor. The values for these parameters are furnished in the
ScQ30 data file.

Note that the present version of ScQ30 does not use the costs of the pipe, insulation, and insulation
materials.Insteadit usesa quantitycalled BFactoriri the data set to calculatea cost of everything except the
cable and the wrap.This is done as shown below.

Sbalance = BFactor• ($cable+ $wrap)

Squad = $cable + $wrap+ $balance

At this point in the calculation ScQ30 has obtained the cost of one of the N quadrupole channels that make
up the quadrupole array.These channels are stacked together to form the quadrupole array; this is shown in
the third picturein Figure2-13.

Cross-sectionalareas are determined for the:

• SC quadrupole channels

• beam pipes, vacuum cross-sectional area

• outer away collar

• total arrayof N quadrupoles, includes the outer wrap

These areas are them multiplied by the length Zquad to obtain the corresponding volumes. For the
quadrupolearrayof N channels the following weights are calculated.

• SC cable

• non-SC cable

• outer quadrupolestress wraps

• pipes

• insulation layers

• cooling layers

• quadrupolechannels, no outerarraycollar

• outer arraycollar

' • total arrayassembly

77

The array component dollar costs are obtainedby multiplying the arraychannel component costs by the
numberof channels N. The outer collar cost is calculated by multiplying the amount of material in the
collar by the unit cost [$/kg], the quantityfactor,and the complexity factor.The total cost of the array is
obtainedby adding thearrayouter wrapcost to the cost of N quadrupolechannels and them multiplyingthat
cost by an arraycomplexity factor.The values of the neededparametersareobtainedwhen ScQ30 reads the
data file ScQ30.DAT. Examples of those files are found in the 3MV and 3000MV examples furnished in
this report.

Once the cost calculation is finished the t,omplete set of design parameters and ali component areas,
volumes, weights, andcosts are writtento a f'de.This informationcan then be recoveredandincluded in the
logfile thatHILDAwrites for the minimum-cost design.

The module ScQ30 is now finished with it task of designing andcosting an SC quadrupolearray Upon exit
it returnsthecost of thearray,dolTArray,andthe outerradius of the array,roTArray.

Acceleration Modules
In the acceleration-transport.sectionof the heavy ion fusion driver HILDAdesigns focusing elements and
accelerationcells. This section describes the model for the module StrucCore that designs the acceleration
cells. There are two pictures of this structure in the Figure 2-14, StrucCore.DAT, which is in the section
StrucCore.DAT Acceleration Cell Design Data of the 3MV example previously discussed in this report.
Refer to those picturesto understandthe discussionthat follows.

StrucCoredesigns an acceleration cell thatcontainsinductioncores that are concentricwith the beamcenter
line. The cell that the modules are packaged in consists of an outer cell housing, end plates, and an inner
bobbin.A gap insulator,concentric with the beam, is pan of the cell innerbobbin.Power leads are brought
in through the outercell housing to furnishpower to the cores. The components are separatedby insulation
material thatis pan of the core modules and the cell housing. The core modules arewoundfrom amorphous
material;the material'sflux swing and the requiredvolt-seconds determinethe core cross-section areas. The
first picturein Figure 2-14 shows an example of a cell with two inductioncores. The module StrucCore can
stack as many cores as are necessary. The presentversionof StrucCorestacks the cores side-by-side; it can
not stack the cores vertically.

The secondpicture in that figure shows a cell thatis madeupof exactly one core module. The labels in that
pictureare the names of the correspondingvariablesin StrucCore.In the discussion that follows we outline
the algorithm that StrucCoreuses. The design of the accelerationcell is principallya task of furnishing the
neededamountof amorphous core material,while at the same time meeting specified designconstraints.

The accelerationdesign module StrucCoreis invoked only when HILDAhas completed a successful design
of the quadrupoles.This meansthat thereareavailablethe quantitiesshown below. We use the notation and
units thatare used in the StrucCoremodule.

Name Description BeamdynamicsNarqe

Vs volt-sec accelerationperhalf period Vs [V-s]

nB numberof beamlets N

rea outerradiusof the quadrupolearray [crni

VG voltage gain per half-period at this station AV [kVI

HLP lattice half-period length L [cm]

78

Upon completionof the designof the accelerationcell the following quantitiesarereturned.

Name _

, dolAStruct totalcost of theaccelerationcell, includingquadrupoles [$]

StrucCorehas beendeveloped from notes and informationfurnishedby C. Fong of LBL. The design of the
, cell proceeds in a numberof steps, which we outline in the discussion thatfollows. Aftera minimum-cost

design has been obtained a logfile StrucCore.OUT is written. This file contains the quantities which
completely define the acceleration structure;ali the design dataand ali the calculated quantifies are in that
t'de.lt is later included in the logfile that HILDAreturnsafter finding a minimum-cost design.

The StrucCoredesign steps arepresentedbelow in shortsections thatareappropriatelylabeled.

Material Data

Material properties are obtained from the StrucCore.DAT file. This file contains flags that define the
selection of materialsand the data for those materials.The f'fleis described abovein the sections thatpresent
the 3MV example. StrucCorereadsdata that defines the tape thatis used to wind the inductioncoils, lt also
needs to know the material thatis used to constructthe module that houses the core, and the materialthat is
used for the cell housing into which the induction core modules are placed. We note that there is an
eL,_ticitymodulus scaling factorassociated with the cell housing material.StrucCoreuses this to determine
how thick to make some of the components in the cell.

The components of the core and the cell areseparated electrically by insulationmaterial. It is necessary to
know the voltage breakdownlimit of the insulationmaterial. This information is also needed for the cell
gap insulatorand the dielectric coolant. We treat the acceleration gap vacuumas a dielectric medium and
furnisha voltage breakdownlimit for it.

Ali the materials have a density that is used to find the materialweight. The unitcost furnishes the cost of
the material,once the weight is known. The quantityfactor is used to include any price discount that arises
fromquantityordersof the material.The complexity factor can be used to adjustthe price of the material.
This could represent a special material cost, or it could be used to take into account the assembly of the
components thatcontain the material,or the intricacyof the pan itself.

The unit costs shown herewere derived by estimatingthe cost of acceleratorpiece pans at driverquantities.
This was done for typical cell pans with assistancefrom industrialsuppliers. Also considered in addition to
the mill runcost of materials were the costs of labor, overhead,profit,and amortized tooling. Here, for a
full scale driver,the quantity andcomplexity factorsare set at 1.0.

These parameters,along with representativevalues taken from the 3MV example discussed previously in
this report, are shown below.

Core Amorphous Tape Material
Metglas 2605 $2 - wound andannealed

denAm 7.1800 density [gm/cm3]

cFacAm 1 complexity factor []

qFacAm 1 quantity factor []
,t

uCostAm 5.0 unit cost [$/kg]

pFAm 0.80 radialpacking fraction []

' deIBAm 2.5 maximum flux swing of material [T]

79

CoreTape Width

wT_pe 20.32 widthofamorphoustape [cm]

aRCmax 4.0 maximum _apewincAngheight to width aspect ratio []

Core Submodule Housing Material
Low Carbon steel - welded & machined - 1020

dents M 8.1657 density [gm/cm3]

cFacCSM 1.0 complexity fr,ctor []

qFacCSM 1.0 quantity factor []

uCostCSM 9.8987 unit cost [$/kg]

Cell Housing Material
Low Carbon steel - welded & machined - 1020

clenCH 8.1657 density [gm/cm3]

cFacCH 1.0 complexity factor []

qFacCH 1.0 quantity factor []

uCostCH 9.8987 unit cost [$/kg]

cinCH 30 elasticity modulus scaling factor [1061b_n2]

Core & Cell Housing Insulation

Polyethylene LP-390-C Dielectric, injection molded

dcnlN 0.9850 density [gm/cm3]

cFaclN 1.0 complexity factor []

qFaclN 1.0 quantity factor []

uCostIN 20.6417 unit cost [$/kg]

bVoltlN 197.00 voltage breakdown limit, dielectric strength [kV/cm]

Gap Insulator Material
Alumina - pressure cast & brazed large dia. - to 58" by 1" thick

dcnGI 3.7170 density [gm/cm3]

cFacGI 1.0 complexity factor []

qFacGI 1.0 quantity factor []

uCostGl 428.29 unit cost [$/kg]

bVoltGl 12.0 voltage breakdown limit, dielectric strength [kV/cm]

80

Dielectric Coolant
Freon

" denDiC 1.8 density [gm/cm3]

cFacDiC 1.0 complexity factor []

• qFacDiC 1.0 quantity factor []

uCostDiC 1.66 unitcost [$/kg]

bVoltDiC 39.00 voltage breakdownlimit, dielectric strength [kV/cm]

VoltageBreakdownStrengths[kV/cm]

Vdss = bVoltIN core & cell housing insulation [kV/cm]

Vdsl = bVoltDiC radial insulator gap [kV/cm]

bVRGap = 50.000 acceleration gap vacuum, voltage breakdown limit [KV/cm]

Limits and Scaling Factors

The induction cores depend on pulse forming networks that supply the requiredvoltage to the cores. There
is a limit to the amountof voltage that can be supplied by the individualPFNs. Space must be left for the
supportof the quadrupolesand forother ancillary items. The acceleration cell cannot occupy the complete
half period length. The gap insulator cannot be too long; it must be somewhat shorter than the cell. The
cell housing and the core housing (power lead) cannot be too thin. The thickness of the core housing top,
the core housing bottom, and the cell housing top supportring are ali obtained by _aling the housing
thicknesses.

The modulus of elasticity of material used for tile housings is referenced to aluminum and the formula in
StrucCore uses 10 [1061b/in2] as the reference for which the scaling factor is 1.0.

The insulation that separates the cell and core components must not be too thin. If the required voltage
causes the calculated values to be less than these limits, the thicknesses are reset to these limits.

The gap insulator thickness must be specified. And the perimeter support factor must be set. Both of these
take into account the number of beamlets in the wansponed beam.

Ali this parameter data is determined by StrucCore before starting to design the acceleration cell.

These parameters and typical values taken from the 3MV example previously discussed in this report are
shown in the tables below.

Maximum PFN Peak Kilovolts per Core

pV 200.0 availablePFN peak kilovolts per core _,_V]

Minimum Length forQuad_apoleSupport

QAI 0.10 z-axis fraction of half-period length []

. Maximum Length for Gap Insulator.

glLmax 0.80 z-axis fraction of cell length cellL []

81

HousingThicknesses Factors

Average of data for weights of 50001b& 110001b

zlH 2.0 cell housing thickness [cre] '

zlPH 1.0 core housing/power lead thickness Icru]

proC 2 scaling factorforcore housing top [] .

priM 2 scaling factor forcore housing bottom []

proH 2 scaling factor forcell housing top support ring []

Elasticity Scaling Factor for Cell Housing Radius

pcM 10 referenced to aluminumfor scaling othermaterials [1061b/in2]

Minhnum InsulationThicknesses

zlCimin 0.200 minimum insulation thickness [cm]

dRgmin 0.500 minimum radial insulator gap space Icru]

InsulatorThickness & Perimeter Support Factor
16 beamdata

tI 3.0 acc. gap insulator thickness [cm]

fQ 1.1 quadarmyperimetersupport factor []

Acceleration Cell Design

We now proceed to the design of the acceleration-transportcell. This structure is placed around the transport
array; usually an array of focussing or defocussing quadrupoles. We note here that in principal it is possible
to have only a transport array with no acceleration. StrucCore has been designed so that this can be done by
furnishing a voltage gain of zero. When the voltage gain is zero, the cost of the cell is set to zero.

In the tables that follow we show the defining equations and we identify the quantifies as they are obtained.
Most of what follows should be self-explanatory. The dimensions that are obtained are shown in the second
picture of Figure 2-14. The parameters used in the calculations have been previously identified above. We
will not comment individually on each of these tables. The headings identify the quantifies being c:_iculated.

Core & Cell Thicknesses

del'lC = proC • zlPH core housing top [eta]

delBC = priM • zlPH core housing bottom [cm]

delCH = proH • zlH cell housing top support ring Icru]

delCH = delCH° sqrt(peM/emCH) resize ff material that isn't [cm]
aluminum

Limits on Support and Gap Insulator Lengths

QAlmin = QAI ° I-ILP quad array perimeter support factor [cm]
0

Number of Cores Needed

The number of cores, numCore, needed to furnish the required voltage gain depends on
the available peak PFN voltage. This number must satisfy the relation below.

numCore • pV _> VG.

82

InsulationWidth,RadialInsulatorClearance

zlCi = max (pV/Vdss, zlCimin) [cm]
e

delRg = max (pV/Vdsl, dRgmin) [cm]

Cell Length and QuadrupoleSupportLength
b

ccllL = 2 • zlH + numCorc• (3 • zlCi + 2 • zlPH + wTape) [cm]

QAI = HLP - ccllL [cm]

Check on Cell Length

QAI < HLP - ccllL [cm]

Set Maximum Gap InsulatorLength

gILmax = gILmax• ccllL [cm]

Determine GapInsulator Length

glL = max (numCore • pV / bVRGap, numCore • pV / bVoltGI) [cm]

Check on Gap Insulator Length

glL < glLmax [cm]

Size the Core

The cross-sectional area of the indo_tion core is determined by the required volt-seconds.
The volt-seconds was calculated in the beam transport section of HILDA. We recall that
this was obtained as Vs =E.L.z; (electric field • half-period • beam pulse length). The
data file StrucCore.DAT furnishes the flux swing for the core material. In principal this
is the maximum flux swing. However, we note that if we wish to have constant size
cores we will have to set the flux swing to a value that is probably other than the
maximum. Future versions of this module should incorporate a way of specifying the
desired coresize. The core area and the tape width determine the radial size (height) of the
core. There is a limit to the height/width ratio; too high and the core is not stable. This
ratio is determined here and subsequently checked against that limit. The calculations are
shown below.

acAM = Vs/delBAm • 1000 core amor. mat. total cross-see, area [cm2]

aC = acAM / numCore / pFAm core module cross-see, area [cm2]

hC = aC / wTape core height [cm]

aRC = hC / wTape core, height to width ratio []

Check that the Core Winding Radius

aRC _< aRCMax [cm]

83

DetermineHousingandCoreRadii

rill = fQ • mA cell housing innerradius [cre]

riM = dH + tI + delRg core housing innerradius [cm]

ric = riM + delBC corematerialinnerradius [cm]
¢

roC = ric + hC corematerialouterradius [cm]

roCore = roC + deiTC + zlCi core housing outerradius [crni

roHSG = roCore + delCH cell housingouterradius [crni

Weights of Core and Cell Materials

The geometric dimensions of the core and cell are known; it is now possible to calculate the material
weights. This is done by multiplying the volume of the component times the density of the material. Note
that the amorphousmaterial does not occupyali the core module space; theparameterpFAm determines the
fractionof volume that is amorphousmaterial.We use PI= n = 3.14592654 in the following equations

Core MaterialWeights

wtCore = PI • (roC + riC) • (roC- riC) • amorphousmaterialper core [gm]
wTape • denAm • pFAm module

wtAm = numCore • wtCore HLP (cell) core Amorphous [gm]
material

Core Submodule Weights

wtCEP = PI • (roC + zlCi + riC) • (roC + Core Submodule Housing/power [gm]
zlCi - riC) ° zlPH • denCSM lead weight (endplate) There are 2

end plates per core housing

wtCOH = PI • (2 ° (roC + zlCi) + delTC) ° Core Submodule outer housing [grn]
delTC • (2 ° zlPH + 2 ° zlCi + weight
wTape) ° denCSM

wtCOB = PI ° (2 • dM + delBC) ° delBC ° Core Submodule inner bobbin [gin]
• (2 ° zlPH + 2 • zlCi + wTape) • weight
denCSM

wtCHPC = 2 • wtCEP + wtCOH + wtCOB Core housing weight per core [gm]

wtCorH = numCore ° wtCHt_ HLP weight of the core [gm]
submodule housings

84

Insulation Weights for Core & Cell Housing

• wtCEI = PI • (2 • ric + hC) • hC • zlCi • Core end plate insulation There [gm]
detaiN are2 end plates percore housing

wtCO1 = PI • (2. roe + zlCi) • zlCi • (2 • Core outer housing insulation [gm]
• zlCi + wTape) • denIN

wtCI = 2 • wtCEI+ wtCOI Core insulationweight [gm]

wtCHIE = PI • (roCore+ (dM - zlCi)) • Cell housing end insulation per [gm]
(roCore - (riM- zlCi)) • zlCi • core module
detain

wtCHI = wtCHIE Cell housing insulation weight [gin]

wtCCI = numCore• (wtCI+ wtCHI) HLP core/cell housing insulation [gin]
Note: theend plateweight must
be addedto theend of theperiodic
cell structureto close the
structure

Cell Housing Weights

wtHSGEP = 2 • (PI • (roHSG + rill) • (roHSG Cell housing end plates/pair [gm]
rill) • zlH • denCI-I)

wtOHR = wtOHR=PI • (roHSG + (roCore)) Cell housing support ring [gm]
• (roHSG - (roCore)) • (cellL - 2.
zlH) •denCH

wtHSGGI = PI • (2 • rill + zlH), zlH, (cellL Gap insulator support ring [gm]
2 • zlH - glL) •denCH

wtCelH = wtHSGEP + wtOHR + HLP cell housing Lgm]
wffISGGI

wtGI = PI • (2 • rill + tI), fl • glL • HLP gap insulator [gm]
denGI

wtDiC = (Pl • (riM + (riFI))• (tlM - (rill)) HLP electriccoolant Egta]
• (ceUL 2 • zlH)-
wtHSGGI/denCH - wtGI/denGI) •
denDiC

HLP Component Weights in Kilograms

wtAm = 1000 • wtAm amorphous core [kg]

wtCorH = 1000 • wtCorH submodule housing/power leads [kg]

wtCelH = I000 • wtCelH cell housing [kg]

wtCCI = 1000 * wtCCI core housing insulators [kg]

wtGI = 1000 • wtGI gap insulator [kg]

wtDiC = 1000 • wtDiC dielectric coolant [kg]

85

HLP ComponentCosts
The dollar cost of the components is obtainedby multiplying the weight of the material
by the unit cost. This result is multiplied by the quantity factor and the complexity
factor to obtainthe final cots of the component. In the examples presented in this report
these factorsareset to 1.

dolAm = wtAm • cFacAm• qFacAm• amorphouscore material [$]
uCostAm

dolCorH = wtCorH• cFacCSM• qFacCSM • corehousing/powerleadmaterial [$]
uCostCSM

dolCelH = wtCelH• cFacCH• qFacCH• cell housingmaterial [$]
uCostCH

dolCCI = wtCCI• cFacIN• qFacIN• core & cell housing insulation [$]
uCostIN

dolGI = wtGI• cFacGl• qFacGI• gap insulatormaterial [$]
uCostGI

dolDiC = wtDiC • cFacDiC • qFacDiC• dielectriccoolant [$]
uCostDiC

Total Cell Weight and Cost per HLP
The final task in the calculation is to get the total cost and the total weight of the acceleration cell. This is
done by adding up the componentcosts.

wtAStruct = wtAm + wtCorIi+ wtCelH + moduleweight [kg]
wtCCI + wtGI + wtDiC

dolAStruct = dolAm + dolCorH+ dolCelH + modulecost [$]
dolCCI+ dolGI+ dolDiC

The design and costing of the acceleration-transport cell is complete. StrucCorewrites a file that contains
ali the design parameters,ali the calculated dimensions,ali the component weights, and ali the component
costs. This file can laterbe retrievedandincluded in the logfile that HILDAproduces fora minimum-cost
design.

We note here that this version of StrucCoredoes not include the cost of the pulse forming networks, nor
does it include any cost associated with power loses in the induction cores. We also note that the volt-
seconds furnished to SmJcCoredoes not include any extendedmodeling of the rise andfall of the realpulse.
These facts shouldbe included in futureversionsof this module.

We also recall that the modules are stacked longitudinally. There is no prevision for radial stacking. We
again comment that there is no direct way to keep the core sizes constan,.,while staying within material
flux swing limits. Futureversionsof StrucCoreshould include the_ capabdities.

86

4. MAINTAINING HILDA
¢

• A. INSTALLATION

How to install HILDA in a computingenvironmentis _scusscdin this sect.ion.The Hilda Program
Documentconsistsof this report and additionallythe contentsof the associatedfloppy disks.The
instaUation of HILDA consists of transferring the appropriate flies from these disks into the current
computerenvironment. After this transfer the resident FORTRAN compiler can be invoked to create an
executable image. Once lhc HILDAexecutableimage has beencreatedand lhc necessarydata sets havebeen
supplied, theprogram canbe mn.

How the initial file transfer and data setup arc done depends on lhc user's computing environment.The
Microsoft Word ReadMe document in the folder MSW/ttlLDA/VAX on the Hilda Program Document
floppy disks describes in detail lhc installation of HILDA. This document gives instructionson how to
installHILDA forusers who have access to lhc LBL VAX cluster, lt contains the VAX command files for
those that do not have such access, but do run on a VAX and wish to install HILDA in that computing
environment, lt describes how to transfer (download or copy) the HILDA files from the Hilda Program
Document disks into any computing environment in which FORTRAN is available. This informationis
notexplicitly repeated here, since it is available in the aforementioned folder. As we have pointed out, the
Hilda Program Document is notjust this reportbut also includes the complete contents of the associated
floppy disks. More informationcanbe found in the APPENDIX of this report.

B. UPDATING CONVENTIONS AND PHILOSOPHY

Updating HILDA is not a difficult task. However, it is a task thatshould be taken seriously. We mention
this because it is very easy to casually place updates into HILDA and in lhc process of doing this nullify
lhc effort that has been put into the documentation of HILDA. The present version of HILDA has been
built in a very specific way. We have consistently written the HILDA modules using lhc template that is
furnished with this HPD in the folder MSW/Hilda/ALL of lhc HPD floppy disks. The modules are fully
formattedand are meantto serve as their own documentation.The modules arc then written as fiat ASCII
flies, which arc downloaded into the computing environmcnLUsing simple drivers the modules arc pre-
tested before being included into the HILDA program. Some examples of these drivers and associated source
code are included in the folder MSW/Hilda/Dnn. By adhering to this convention we end up with the
documentation for the modules at the time they are written. We also insure that the modules that are in the
HILDA document are modules that will execute. The pre-testing allows us to have some experience with
the modules and thus determine that they carry out their tasks appropriately; before installing them in
HILDA. When they are placed into the program they become black boxes that simply take inputand furnish
output.

We do not explain here how to update HILDA. This updating should be done by someone who is
experienced in FORTRAN and who will consistently follow the above mentioned convention. The program
is very modular and can easily accommodate other modules. However, it is absolutely necessary to
understand the structure of the modules and how they interact in order to add modules successfully, or to
change the ones that are there. Instructions on the updating of HILDA can be found in the ReadMe files in

' the HPD disks; see the APPENDIX; The Hilda Program Document Disk.

87

C. FUTURE UPDATES
The most immediate updates for thepresentversion of HILDA deal with thedatainput that is needed and
the run output is generated. The next level of updates will expand the capabilities of HILDA to cost a
complete machine. HILDA prescndy finds a minimum-cost design at user chosen stations along the
machine. The costing of a complete machine requires that the station costs be appropriatelycombined.

Input
HILDA needs a better user interface that decreases the amount of data that a user must process when doing a
minimum-cost design for a complete machine. The present version of HILDA has been built to do
minimum-cost designs at a particular machine station. The user should be able to set up the data for ali the
stations in the machine before running HILDA. Presently the module data fries must be reset if they are not
the same at ali machine stations, lt is also evident that modules are needed that allow the user to modify the
station data during the HILDA run. These modules are rather easy to build and incorporate into HILDA.

Output
After HILDA has generated minimum-cost designs at the selected stations, it becomes necessary to analyze
the results, lt seems appropriate to use standard programs do do this; e.g., a spreadsheet program. The
standard HILDA logfiles presently contain ali the design information. What is needed are modules that allow
the user to create files that are appropriate for input to analysis programs, lt also seems appropriate to keep
in mind that in the future it will be possible to interface HILDA directly with such programs. By this we
mean that the output from the HILDA can be made available to the analysis program, as HILDA runs. This
could prove quite useful in guiding a user to the proper total machine design in which the parameter
transition between stations was taken into account. The modular construction of HILDA will accommodate
this without disturbing the basic cost algorithms.

Additional Costing Capabilities
A minimum-cost design of a complete machine requires that HILDA be updated to include more
components of the design. We list here some of the items that will be added into the costing algorithms.

• pulse forming network costs

• acceleration core power loses

• linear costs such as vacuum, alignment, and refrigeration

" special elements such as: combiners, steering elements, pulse shape correctors

We also should consider including into the costing algorithm an ability to take the individual station costs
a_,cluse them to obtain a complete machine cost. Presently this total cost can only be obtained from the
analysis of the HILDA output produced at each station.

88

APPENDIX: HILDA PROGRAM DOCUMENT
• DISKS

• A. GUIDE TO THE HPD DISKS
The complete Hilda ProgramDocument consists of this reportand the contents of the associated floppy
disks. These disks contain more information than is in this report. There are three lAMb Macintosh
formattedfloppy disks. These are labeled HPD D_sk 1-3, HPD Disk 2-3, and HPD Disk 3-3. The contents
of the threedisks are shown below in Figure 5-1, HPD Floppy Disks. The .sit files on these disks are
compressed files. The contain self-unstuffersand canbe unstuffed by double clicking on the file icons. The
two files Hilda on ILSE.sit and Hilda/TXT.sit become the folders Hilda on ILSE and Hilda/TXT shown
below in Figure 5-2. The fries Hilda/MSW.sit 1 and Hilda/MSW.sit 2 contain the contents of the folder
Hilda/MSW shown in Figure 5-2. Readersinterestedin obtaining the HPD disks can do so by submittinga
request to the authors at theLawrenceBerkeleyLaboratory,1 CyclotronRoad, Berkeley,CA, 94720.

Figure 5-1. HPD Floppy Disks

HPD Disk I-3 HPD Disk 2-3
5 items 1,215K in disk 201K availal 1 item 891K in disk 525K ava'

Hll I I =

ReadP1E HPD5 Hilda/lsw.sit 1

,,

l]
HS Word/ HPD Disk3-3

._. _ 1 item 862K in disk 553K ava_

i , i

Hild¢l_ On 'LSEoSit Hildc_/TXT.si_ ,_!_*

Hilda/HS_/.sit 2

,,

i

The basic structureof the folders is aReadMe documentand the associated folders at that level. Each folder
has the same structure. The ReadMe document is a Microsoft Worddocument. The folders that have MSW
in their nameare fully f_,mattedMicrosoft Worddocuments.Those that have TXT in their nameare ASCII
flat text files that can be _ca_lby any word processor,or text editor, that canread ASCII text fries. The basic
document is the MS Word file. The text files are the same information, but they are written as text files.
These text files can be downloaded into most computingenvironments.

• The HILDA module source friesare in the folderMSW/Hilda/ALL and the HILDAutility source flies are in
the folder MSWJHilda/U. In the folder MSW/HiIda/DATA there are data files for the examples and the
output from these examples. In principal the version of HILDA that is in the source files can read the data

" fries andproduce output fries that are the same as those include,u here. The folder MSW/Hilda/EQU contains

89

version files for the HILDA modules• There is a folder for creating HILDA on a VAX, which is
MSWIHilda/VAX.

Most users will not be interested in ali of this information. Information about the folder contents con be
obtained by consulting the ReadMe documents in each of the folders. Below in Figure 5-2, HPD/folders:
ReadME the top level ReadME file for the HPD folders is shown.

Figure 5-2. HPD/folders: ReadME

Daie: Date: January 27" 1992
File: HPD/folders: ReadME
Subject: HILDA Program Document disks

This folder contains the basic HILDAfolders as shown in the figure below.

HPD/folders

6 items 128,388K in disk 10,305K
,,,

N
ReadP1E HPD

Hilda/HSW HS Word/

HILDAonILSE Hilda/TXT

The contents of these folders make up the Hilda Program Document disk, referred to as the HPD
disk. This is really a collection of floppy disks. In each folder is a ReadME file that pertains to the
folders at that level. At the current level we have four folders. The HildalMSW and the Hilda/TXT
folders contain essentially the same information. The/MSW folder has fully formatted Microsoft
Word flies that make up HILDA and the associate HPD examples. The/TXT folder contains the
same information with the files being flat ASCII files. This means that the/MSW folder files
must be read with Microsoft word, or a word processor capable of reading MS Word files.
However, the/TXT files should be readable by any word or text processor that can read ASCII
files. This is not necessarily a simply a duplication of information. The MS Word files also
contain graphics, pictures that relate to HILDA. No such pictures exist in the/rXT files. Also,
some of the files are not repeated in the/TXT files. This is because the/MSW files are considered
to be the primary documentation files. The/TXT files are images that can be down loaded into
other computing environments.

The folder MS Word contains documents that pertain to the use of the word processor
Microsoft Word with the HPD documents.

The folder HILDA on ILSE contains files that make up an example that was created by
running HILDA on the parameters in the ILSE document, LBL PUB 5219-ILSE, that is
sometimes referred to as the brown book ILSE. This example included here as supplementary
information, lt gives a flavor of what HILDA could easily do if it were suitably interfaced with a
spreadsheetprogram.

i

90

B. INSTALLING HILDA

We reproduce here in Figure 5-3 the file HPDIfolder:HildalMSW:MSWIHildalVAX :Mead Me from the
HPD disks. This file tells how to install HILDA in a VAX computer.

• Figure 5-3. Hilda Installation
i

Date: October 7, 1991
File: HPD/foiders:Hilda/MSW:MSW/Hilda/VAX:ReadME
Subject: Installation of HILDA

This folder contains VAX command flies for the installation and running of HILDA.

Installing a VAX Version of HILDA Using the Files in
WEEK: [BEN DIN G.HILDA]

A VAX version of HILDA is available. It is stored on the LBL VAX CSA cluster disks. The

following are step by step instructions on how to install HILDA in a VAX directory. Following
these steps will install HILDA in the user's directory. We shall assume for this example that the
current default directory is [USER]. In actual fact it will be whatever directory your current default
directory is.

• Create a directory that will be the root directory for HILDA. In this example we type the
command

CREATE/DIRECTORY [USER.HILDA]

• Make this directory your defaultdirectory. In this example we would type the command
SET DEFAULT [USER.HILDA]

lt is now necessary to know which LBL VAX CSA cluster disk currently contains the HILDA
files. This can be accomplished by using the DISKSPACE tool; which runs on the LBL VAX
CSA cluster. In this example we assure you have access to this tool.

• Type the command

DISKSPACE BENDING

The output from this command will show an LBL disk logical name on the line that gives the
weekly disk usage for the account BENDING. In this example we assume that this is LBLI20. If
it is some number other than 120, use thecurrently displayed value.

• Dci'methe logical name for the disk thatHILDA is on by typing
DEFINE LBLnnn LBL120

NOTE: use the value displayed by the DISKSPACEtool.

• Put ali the H1LDA.com flies into the [USER.HILDA]directory by typing
COPYLBLnnn:[BENDING.HILDA]*.COM.0*.*.0

• Edit the just created LOGIN.COM file to:
• replace rootName in the statement

$ HILDAroot := 'rootName

• with the correct HILDA root directory name. In this "xample the statement becomes
$ HILDAroot := USER.HILDA

• • Save this edited file, it is the correct login.com file for HILDA.

91

Figure 5-3. Hilda Installation (continued)
lul

Insteadof editingthe LOGIN.COM file you could type
rootName:==USER.HILDA

However,thissymboldel'tuition,whichisneeded,willvanishwhenyoulogoffand you would
havetoreestabfshfllissymboldefinitioneachtimeyoulogintorunHILDA. ¢

• ExecutethisVAX commandfilebytyping

@LC)GIN.COM

ltyouhaveanyerrormessagesissuedduringtheexecutionofthecommandfile,youshouldcheck
thattheabovequantitieshavebeencorrectlyentcreA.

•VerifythatallisrightbeforeinstallingI-ffLDAbytyping
SHOW SYMBOL HILDAroot

SHOW LOGICAL LBLnnn

The resultsretume.dshouldagreewithwhatyou havebeeninstructedtotypeintheabove
instructions.Up tothispointabouttheonlymistakethatyoucanmake ittohaveincorrectly
enteredtherequestedinformation.

You arenow readytoactuallyinstallHILDA bycreatingthedirectories,transferringthesource
filesandexampledatafiles,andcreatingtheexecutableimage.AlitheHILDA logicalsand
synonymsweresetwhen theabovementionedlogin.comfilewas executed.Inprincipalthis
login.comfileshouldbeexecutedeachtimeyoulogon,beforeyourunHILDA.

•InstallHILDA bytyping

getH]LDA

Inprincipalyouneedtodo thisonlyonce.However,itwillcorrectlyreinstallHILDA ifdone
more thanonce.

At this point ali HILDA logical names and ali synonyms have been defined. The HILDA
directorieshave been defined and the H1LDAflies put into them. For this example the directories
are"

Directory Contents

[USER.HILDA.ALL] sourcemodules, if notdeleted duringinstallation
[USER.HILDA.UTILITY] utilitymodules, ff not deletedduringinstallation
[USER.H_DA.EQU'] version f'des
[USER.HILDA.EXE] execution file, HILDA.exeandali I/O files
[USER.HILDA.DAT] dataf'llesandexampledirectories
[USER.HILDA.DAT.DAT3MV] data files for the example 3MV
[USER.HILDA.DAT.DAT3000MV] data files for the example 3000MV
[USER.HILDA.DAT.DAT4MJ] data flies for the example 4MJ driver
[USER.HJLDA.DAT.UTILITY] data flies for the HILDA utilities

You can use the HILDA synonyms to make any of these directories the defaultdirectory.This is
done as shown below.

•To set the currentdefaultdirectoryto [USER.HILDA.ALL]type
ALL

•To set thecurrentdefault directorym [USER.HILDA.UTILITY] type
UTILITY

92

Figure 5-3. Hilda Installation (continued)
i |til

• To set the currentdefault directoryto be [-USER.HILD,A.DAT.UTILITY]type
DATUTILITY

• To set the currentdefaultdirectoryto be [USER.HILDA.EQU] type
, EQU

• To set the currentdefaultdirectoryto [USER.HR.DA.EXE] type
EXE

The executable image of HILDAalong with the version f'desfor the HR.DA modules and the data
flies for the HILDA utilities are now in the directory [USER.HILDA.EXE]. Again, note that
USERJtlLDA will be whateveryou havechosen above for the HILDArootdirectory.

To run HR.DA it is necessary to have data sets for the modules. These data sets depend on the
problem being run. We have furnished here three data sets. These example data sets are in
[USER.HILDA.DAT].

• To set the currentdefaultdirectoryto [USER.HILDA.DAT.DR4MJ3]type
DAT3MV

• To set the currentdefault directory to [USER.HILDA.DAT.DR4MJ3000]type
DAT3000MV

• To set the currentdefaultdirectoryto [USER.HILDA.DAT.DR4MI]type
DAT4MJ

At this point HILDA is completely setup to run,except for the module data sets. These must be
placed into the execution directory [USER.HILDA.EXE].How to do this is explained in Running
HILDA .

In principalit is the HILDAprogrammerwho modifies any of the HILDAsource code. If the user
running HILDAhas no need for this source code, it can be deleted, lt is recommendedthat this be
done. Updating HILDA should be done carefully, it is not to be done casually or problems will
arise. If these source files were left duringthe installation,they caneasily be deleted.

• To delete the HILDAmodule source files and the HILDAutility source files type
noHILDAsource

This does not delete the directory names; thus the HILDAdirectories still exist. The source code
can be recoveredby reinstalling HILDA.

For the Experienced/Expert VAX User
One way to initially setup HILDA is to logon to a computersystem that has access to the LBL
VAX CSA cluster and copy from the LBL CSA VAX the complete contents of the directory that
contains HILDA. The present version is in

WEEK:[BENDING.HILDA]

To find the location of this directory type the command
DISKSPACE BENDING

The disk name that is on the weekly usage line is the correct name to use in piace of WEEK. If
necessary, a logical name can be defined using the full pathname to the LBL CSA VAX cluster,
with the aforementioned disk as the device name.

93

Figure 5-3. Hilda Installation (continued)
i i i i iiii ii iiii

This disk tool is available if you are runningin the LBL VAX cluster. If you do not have access
you will have to in some way determine the logical name of the disk that currentlycontains the
HILDAfiles.

t

The completecontents of the HILDAdirectorycanbe seen by typing

DIRECTORYWEEK:[BENDING.HILDA...]

where WEEK is replaced by what is shown by DISKSPACE. Note that the device on which the
files in this directory reside can change. So the above DISKSPACE inquiry is necessary to
determine where HILDAis currentlylocated.

If only the executable image of HILDA is desired, it can be copied from the directory
WEEK:[BENDING.HILDA.EXE].This directoryalso contains the version files for the modules
and also ali utility data files, lt does notcontain the necessarymodule data files. The example data
ides for these modules arein the directoryWEEK:[BENDING.HILDA.DAT].

If no executable code is desired,then use thedirectoryguide shown above to locate the sourcecode
and example date files. Replace USER by BENDING and COPY the desired files to you local
directory;be sureto include in WEEK the pathname to the LBL disk that containsHILDA.

How to Initially Create HILDA Using the Folder TXT/Hilda/VAX
The folder Hilda/FXT contains the ASCII flat files for HILDA. Basically it is a text file image of
the folder Hilda/MSW. The foider._that are contained in Hilda/TXT folder have a direct
correspondenceto the directories on the VAX. In whatwhat follows we assume that the HILDA
rootdirectory is [USER.HILDA].

This folder-directorycorrespondence is show below.
Folder Directory Contents

TXT/I-Iilda/ALL [USER.HILDA.ALL] HILDA sourcemodules
TXT/Hilda/U [USER.HILDA.UTILITY] HILDA utilitymodules
TXT/I-Iilda/EQU [USER.HILDA.EQU] HILDA version Ides
TXT/Hilda/DAT [USER.HILDA.DAT] HILDA datafiles

Utility Data [USER.HILDA.DAT.UTILITY] Utility module data flies
dr4MJ@3MV [USER.HILDA.DAT.DAT3MV] 3MV example data files
dr4MJ@3000MV [USER.HILDA.DAT.DAT3000MV] 3000MV example data f'tles
dr4MJData [USER.HILDA.DAT.DAT4MJ] 4MJ driverdata files

TXT/Hilda/VAX [USER.HILDA] HILDA VAX command Ides

HILDA is initially installed by downloading the ASCII text files in the folder Hilda/TXT to the
computer environment in which HILDA runs. The following describes how to initially setup
HILDA on the VAX.. HILDA can be installed into any FORTRAN computer environment. This
VAX example can be used as a guide as to how to set up the necessary files. Also, this is an
example on one way to set up the files. Obviously there are other ways to do this, the experienced
computer user can install HILDA and the associated files in whatever way is convenient.

i

94

Figure 5-3. Hilda Installation (continued)

We give below step-by-step instructions for initiallycreating HILDA from the folder Hilda/TXT. In
" the following it is assumed that a file transfer program is used to transfer the complete contents of

each folder to the current directory. When we say DOWNLOAD FOLDER this means to download
the contents of the named folder into the current directory. We also assume that the contents of the

• folder HILDA/Log that is in the data folders will 13.Q.tbe downloaded. This is also true of any
ReadME files tha: may be in the folders. The ReadME files are 13_ text files, they are in fact
specially formatted word processor files. If they are downloaded, as may happen when using Telnet
VI'P, they should be deleted; their VAX image is of not useable. Remember, in each command
that contains a directory reference the example will use

_rUSER.HILDA]
In actual practice this sill be what you have chosen for the HILDA root directory. The login.com
file will correctly set the VAX logicals and synonyms that are used below.

• Create a directory that will be the root directory for HILDA. In this example would issue the
command

CREATE/DIRECTORY [USER.HILDA]

• Make this directory your default directory. In this example we would issue the command

SET DEFAULT [USER.HILDA]

• Put in this directory ali the .com files that are in the folder TXT/Hilda/VAX.
DOWNLOAD TXT/Hilda/VAX

• Edit the just created LOGIN.COM file to:
• replace rootNa,ne in the statement

$ HILDAroot _ 'rootName

with the correct HILDA r 3otdirectory name. In this example the statement becomes
$ HILDAroot _ USE?_.HILDA

• Save this edited file, it is the correct login.com file for HILDA.

Instead of editing the LOGIN.COM file you could type
rootName :==USER.HILDA

However, this symbol definition, which is needed, will vanish when you logoff and you would
have to reestablish this symbol definition each time you login to run HtLDA.

• Execute this VAX command file by typing
@LOGIN.COM

lt you have any error messages issued during ',he execution of the command file, you should check
that the above quantities have been correctly entered.

• To verify that ali is right before installing HII.DA type
SHOW SYMBOL HILDAroot

The results returned should agree with what you have been instructed to type in the above
instructions. Up to this point about the only mistake that you can make it to have incorrectly

• enteredthe requested information.

95

Fi]ure 5-3. Hiida Installation (continued)

You are now ready to actually install HILDAby creating the directories,transferringthe source
files and example data files, and creating the executable image. Ali the HILDA logicals and
synonyms were set when the above mentioned login.com file was executed. In principal this
login.com file should be executedeach time you logon, before you runHILDA.

At this point ali needed logical names and ali synonyms have been defined. The HILDA VAX
directories are assumed to be defined. If they are not already created, they can be created by
executingthe command

makeHILDAdir

The next step is to download into the appropriatedirectoriesthe files in the folders
TXT/I-Iilda/AI_
TXT/Hilda/U
TXT/Hilda/EQU'
TXT/Hilda/DAT

These foldersare in the folder HILDAfIXT.

• Set the default directory to [USER.HILDA.ALL] by typing the command
ALL

• Download the Hilda source modules into this directory.

DOWNLOAD folderTXT/Hilda/ALL

• Set the default directory to be [USER.HILDA.UTILITY] by typing the command
UTILITY

• Download the Hilda utility source modules into this directory.
DOWNLOAD folder TXT/Hilda/U

• Set the default directory to be [USER.HILDA.DAT.UTILITY] by typing the command
DATUTILITY

• Download the data files for the Hilda utilities into this directory.

DOWNLOAD folder Utility Data

• Set the default directory to be [USER.HILDA.EQU} by typing thecommand

EQU

• Download the Hilda modules version files into this directory.

DOWNLOAD folderTXT/Hilda/EQU

All necessary HILDA files are now in place. The next step is to create the files for executing
HILDA.

• Create the execution file for HILDA by typing the command
makeHILDA

O

The executable image of HILDA along with the Hilda module version files and the utility data f'des
are now in the directory [USER.HILDA.EXE]. Again, note that user.hilda will be whatever you
have chosen above for the HILDA root directory.

H iii

96

Figure 5-3. Hilda Installation (continued)
nm •

To run HILDA it is necessary to have data sets for the modules. These data sets depend on the
" problem being run. We have furnished here three data sets. These example data sets are in the folder

TXT/Hilda/DAT. To get these examples we download them as follows:

' • Set the default directory to [USER.HILDA.DAT.DAT3MV] by typing the command

DAT3MV

• Put the 3MV example data flies into this directory.

DOWNLOAD folder dr4MJ @ 3MV

* Set the default directory to [-USER.HILDA.DAT.DAT3000MV] by typing the command

DAT3000MV

• Put the 3000MV example data files into this directory.

DOWNLOAD folder dr4MJ @ 3000MV

• Set the default directory [USER.HILDA.DAT.DAT4MJ] by typing the command

DAT4MJ

• Put the 3000MV example data. files into this directory.

DOWNLOAD folder dr4MJ Data

At this point HILDA is completely setup to run, except for the module data sets. These must be
placed into the execution directory [USER.HILDA.EXE]. How to do this is explained in Running
HILDA.

In principal it is the HILDA programmer who modifies any of the HILDA source code. If the user
running HILDA has no need for this source code, the modules can be deleted. It is recommended

that this be done. Updating HILDA should be done carefully, it is not to be done casually or
problems will arise.

• Delete the HILDA module source files and the HILDA utility source files by typing the
command

noHILDAsource

This completes the task of initially creating HILDA from the folders in Hilda]TXT.

97

k_

I"

