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INTEGR.ABILITY AND CHAOS IN

NONLINEARLY COUPLED OPTICAL BEAMS

D. David

Center for Xordinear Studies & T Division, MS B258

Los Alamos National Laboratory

Los Alarms, 3JM 87545

Abatrmct. Thie p-per ~nta a study, using dynamical systeme metkde, of
the equstions describing the poluizmion behsviour of two nonlinearly coupled optical
beune counterpropmgating in s nonlinemr medium. In the trmveUing-wmve regime M-
sumption, t hi.e system ~ s Li~Pobon structure on the manifold Ca x Ca, In
the CXM where the medium u am.uned to be isotropic, thie ayotem exhibits invariance
under tho Hamiltonisn ection of two copia of the rotation group, S1, and actually
rtiuca to s Iowedimensional eyetem on the tw-sphere, S’. We study the dyrmmia
on the reduced spwm and ●xunine the etructum of the pheee portrtit by d~termining
the fixed pointe and inlhait-period homcclinic -d !mtcmclinie orbit-; wa concentrate
on presenting mme ●xotic behsviour that OCCUHwhen come puunetere are vuid,
and we k show special mlutione aciated with =me of the above-mentioned or-
bits. Lxst, we demonetrste the ●xistence of complex dynunics when the symem ie
subject to certain cl- of Hamiltonian perturbation. To thie end, we meke uee of
the Melnikov method to analytically show the occumnce of either hereahoe clma, or
Arnold diffusion.

10 Introduction, Integrable Hamiltonian systems often exhibit a transition to

chaotic, or complex, behaviour when they are subject to small periodic p~urbat ions.

In low-dimensional casee (e.g., a one-degree-of freedom system), chaotici~y usually shows

its presence in the form of Smale horseshoes in the stmcture of the associated Poincare

map. This st ntcture is inherently characterized by combined at ret thing and folding in the

above map, as well aa an invariant Cantor-like set as the ir&itetime iterate of this map.

J4 method, first developed by Melnikov [1963] and Arnold [1964], and later developed fur-

ther for extended types of systems by Holmes and Marsden [1982a] and Wiggins [1988],

is the tool thmt is used here to establish in an analytical way that, for the perturbed Yys-

tems considered in this paper, iterating the Poincard map indeed implies the existence of

n horseshoe stntcture, by virtue of the Melnikov and Poincar&Birkhoff-Smale theorems.

If the dimensiomdity of the system is high enough, an additional feature may take place,

.4rnold ciiffusim, aa a signature that the KAM torii are insufficient tc confine orbits within

:1 single region of chaoticity, This can occur through resonance overlaps. thus giving rise

to Arnold webs (or transition chains).
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The dynamics that we wi!l discuss here concerns the Hamiltonia.n d-cription of the

travelling-wave dynamics of polarizd, nearly monochromatic, optical laaer puls~ counter-

propagating in a loss less, cubically nonlinear, parity-invariant, an.isotropic, homogeneous

medium; for instance. polarized beams in a straight optical fiber constitutes a realiza-

tion of such a system. Our approach will use the method of dimensional rduccion for

Hamiltonian systems with a continuous Lie point-group of symmetries, together with the

Melnikov-.+rnold method to show the existence of complex behaviou.r under certain small

perturbations, induced by modulating the optical parameters characterizing the medium

of propagation.

Nonlinear polarization dynamics of optical laser pulses is a subject which haa been

mder investigation for a few decadea. Some 25 years ago, Maker et al. ~1964] analyzed

and demonstrate the precession of the polarization ellipse for a single beam propagating

in a nonlinear medium. Spatially stable solution cofiguraticma for the problem of the

interaction of two counterpropagating beama in an isotropic medium were considerd in

Kaplan [1983] and Lytel [1984]. The phenomenon of optical multi~tability ia is also

studied in L ytel [1984], and in Otsukaet al. [1985]. Reports of numerical evidence for

chaotic behaviour and interpretations of experimental data can be found in Tnllo et al.

[1986] and Gaeta et al. [1987]. Previous work on special solutio~ for the onebeam and the

tw-beam problems appear in Tratnik and Sipe [1987]. Additional referents and more

detailed treatment of Hamiltonian chaoa in nonlinear optical polarization dynamics can be

found in David [1989] and in David et al. [1988a, 1988b, 1990],

The plan of this paper is aa follows, In Section 2 we formulate the polarization dy-

namics of travel.ling-wave opti:al pulses in Ham.iltonian form; this is done in terms of two

complex 2-component envelope electric field variabl~. In Section 3, after a convenient

change of nriables, we use the method of reduction for Hamiltonian systems with sym-

metry to effectively rec=t the problem aa a more tractable system on a lower-dimensional

phaae space, namely the sphere, This is actually achieved in two steps, each involving a

rotational invariance. The first step transports the system from the initial phaae space

Cl x C2 to S2 x S2: the second step takm advantage of the isotropy property of the prop-

agation medium and finally brings the problem down to S2, Spcxifically, these reduction

steps are taken by restricting to level sets of that integrals of the sygtems, and then I)y

projecting to the space obtained by quotienting by the residual Hamiltonian inwirianr~

#



group. Section 4 is devotd to the qualitative analysis of the reduced sptem for a few

special cases. Specifically, we classify the ii.xed points of the reduced dyrwriics on the

sphere and describe the various bifurcations involving these points that take place as ma-

terial parameters and intensities of the beams are mried. Same degeneraciea occur during

the second reduetion step and lead to peculiar bifurcations; we d-tribe these in detail.

Special soliton-like and kink-like solutions are also depicted. In Section 5, we use the

Melnikov method to demonstrate how homoclinic (or heteroclinic) orbits tangle and break

up to yield complex behavimr when the dynamics is perturbed by rnodulatd material

inhomogeneities, modelled as spatially periodic *variations of the optical parameters of the

medium. Conclusions of this study are su xnmarized in the final Section 6.

2. Physical formulation of the problem. The travelling-wave evolution of the

polarization dynamics of our system of two counterpropagating beams involves complex

electric field amplitudes ei (r) and Zi (r), appearing in the following eikonal form,

Ei(Z,~) = [ei(z, ~)e’” +i?i(Z, ~)e-ik’] e-iwr + c c,. (2.1)

where r = z - ct is the travelling-wave variable and where i = 1,2 is the polarization

index, We note that each of e and 6 are elements of C2. Also, here and below, the “bars”

are used to distinguish between quantiti= associated with one beam or the other. The

third-order nonlinear polarizability is written aa

where ● indicatea convolution with resptxt to time and we sum over repeatd indices, Using

the rotating wave approximation in Maxwell’s quat ionn and assuming a loeslees medium,

small nonlinear anisotropy ~(a) and null y(1) (corrmponding to considering an anisotropic

and parity-invariant medium), slowly wrying amplitudes, and a far-away -from-rmmance

situation. we obtain the following set of equationa governing the dynamics of the elmtric

field amplitudes:



where the constant susceptibility tensor ,y~~l satisfies the following involutions:

These equations constitute a qwi<anonical Ha.rniltonian system on C2 x C*. The Hand-

tonian function is

~(el~) = *x~~~f[etejeke; +~fej~k~ +%~j~ka] ~
with the associated Hamiltonian vector field

.~H = ;(V,a H . V= -V. H. V.=)+ ~(V~H. Vz-VFH. VP). (2.6)

so that any dynamical quantity Q evolves according to the prescription

Q = XHQ (= {Q,l?}).

This endows the phase space, (C2 x C2, {S,“}), with a Li*Poimon stnacture.

(2.5)

(2.7)

3. Reduction to S2. Generically, Harniltonian systems defined on higklimensimal

manifolds are somewhat difficult to study bmauze, for one thing, it provea virtually impos-

sible to characterize the geometry of the phase space in any way that is easy to grasp. It is

often very convenient to use any continuous symmetry the syntem may poeouIo in order to

redefine it onto a new space with leas dimensions. Such a technique is used, for instauce,

to help one to find solutions of di~cult nonlinear partial differential equations by rducing

them to equations with fewer variablee; theue yield so-called (sub) group-invariant solu-

tions, Along the same lines, a Hamiltonian dynamical system can also be rducal, to a

system on a lower-dimensional phaae space (i.e., to a set of equations with fewer dependent

variablea ) if it is posseasea symmetries. This allows for a study of the dynamics on the

reduced phase space, after which one may revert to the original space to deduce rmults

pertinent to the variabl- in terms of which the problem waa dehed. The machinery lying

behind the method of Hamiltonian symmetry reduction is based upon the following the-

orem (see ,e,g., Chapter 6 of Olver [1986] for details). Let G be a Harniltonian symmetry

group of transformations acting on ,f4 and generated by a set {P, } of flint integrals. We

fl~fine the momentum map P : .W ~ g“ : z ~ ~ pl(~)~i, where {~i} is a basis of 9*,



the dual to the Lie algebra of the group ~. We denote by S~ the common a-level set of

~. The residual s~metry group Cm on & is the isotropy subgroup of a E g“.

Reduction Theorem. Let P 6e of rnaziwaal rank everywhere on Sm and let ~. act regu-

larly on the submanijold S.. Then tien ~ a natund induced immersion 4: &/4L N M/G

such that Sa /Ga ti a Potison submanifold ~o that the diagram

17r

commutes. T and Ta are the

~ubmanifold of ●. Moreover,

natural projection and i i. immersion realizing S- u a

any Hamiltonian sydem on M with G u a syrnmety group

naturally rmtricti to Hamiltonian sy~tema on Sa/Ga and ●/~.

In practice, in order to prevent reconstructibility problems, the above theorem sugg=ts

that one may reduce to the space S~/~~ by &t restricting to S. and then projecting via

T.. For the system (2.3) under consideration here, two S1 invariant- will allow us to

perform reduction. Fimt, it provea convenient to make a change of Variabl- on C2 x C2

by reparametrizing this space with Stokea variablea, as follows:

‘i = e+=e, uo s r = e’ oe,

(3.1)

Ii= a+G, Zos%a+”a.

where 3 = (U3, al, U2) are the usual Pauli matxicea. One okrvea that both U. and ii. are

first integrals of the motion and are aaoociatei with the invariance of the system under

the rotation transformation (e, 5) # e’”(e, 6). Our firststep, in accord with the above

thmrem, is to restrict to an immemed common level set U. = r, Go = F. Let us write e and

GM

e=(el, e~) = (z, +izz,za +iza), 5= (Zl, Za) = (Z1 +152,53 +154) (3.2)

[t is then eaay to see that uo = x~+r~+x~+z~andtio = Z? + Z; + Z: + F:; thus the level

w+ is simply Ss x S J. on this space, the Hamiltonian function, the Hamiltonian vector



field, and the equations of motion become

H(u, fi)=*(u .w. u+ti. w.ti)+2fi. vJ. u,

.~H = :(vml!rx u). vu+;(v=lfxti).vr,

u= :[w. (u+2a)]xu, ti=5[w. (n+2u)]xfi,
r

where

W = ~ij ~~~~t~kt =Diag(Al, A2, A1).

(3.3a)

(3.3b)

(3.3C)

(3.4)

(3.3)

One can alwaya perform a transformation such that the matrix W will be diagonal. The

components of W are interaction terms of the following types: WI 1, W13, W33 are line.ar-

linear polarization interaction terms, WIZ, WZ3 are linearwircular polarization interaction

terms, and W22 is a circular-arcuh.r polarization interaction term. Xote that the isotropy

condition mentioned earlier makes the first and third components equal. Now, using the

representation (3,2 ), we notice that the components of u and ii write M

u3 =Z(ZIZ3 +Z2Z4), ~3 = z(~l~3 +~2z4),

U1 =2(Z1Z4-Z2Z3), iil = 2(Z1Z4 - Z2Z3),

U2 = z; + z: - z: -z:, iiz =
-2
Z1 +Z; - z; - ~:.

The above formuiae (3.s) constitute the transformation S3 * S2 due to Hopf (see, e.g.,

Crampin and Pirani [1987]). We then notice that the components of u and Ii are not all

independent; indeed, we have

u~+uj+u~=r2, -2ul+z; +ii: =7? (3.6)

Thus, we realize that we are dealing with the manifold S2 x S2, since each equation in

(3.6) actually defin= a sphere. Each COPYof S2 in the above product is sometimes referred

to as a Poincur4 sphere (see Figure 1), Points on this sphere represent polarization states:

the pok are circularly polarizcxl states, equatorial points corr-pond to linearly polarized

stat=, and all other points describe elliptical states. We are choosing the north and south

poles to lie along the ~-axis to conform with optics notation,
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Figure 1. The Poincti ●phere.

To actually reduce on S2 x S2, we use spherical coordinate,

..— 1

U1 = r 9iu6 sin *, iil = Fsin8sin J,

u2zrcm9, ii~ =Fccme,

U3 = rsin Ocoad, Z3 =7ain8cos~,

In termn of these coordinates, the Hnmiltonian function, XH, and

take the following form:

(3.7)

the equationa of motion

(Ma)

(3.8b)

(3.8c)

(3.8d)

(3,8e)

(3.8f)
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We now proceed with the second step of the reduction. Notice that the quantity
i

u = K cos 8+ E cos ~ is also a constant of the motion. A level set is thus a t-mensional

manifold specfied by a constant due of u and b coordinatized, for inst ante, by triplets

(d,~,u) where w = KCOSO- Ecos~. At this point, we make the following remark. Recall

that the reduction theorem neceeaitatea that the momentum be of maximal rwk Here,

this meims that we will have degenerate situationa when the function L7(0,~) will not be

cf maximal rd, i.e., when sine = sin? = O. This corresponds to u = +(IsI + 1=1) aud

u = +(IKI - IRI). The fkst two cases are venial; they correspond to the extreme valuea

possible for a and the dynaxnics then reduces to a point (physically, this is achieved when

the polarizations of the beams are aligned alond the polar direction: this cotigurat ion is

forever the same). As for the two other situations, t?-.ey physically arise when the polar-

izations of the beams are anti-aligned along the polar direction and will yield degeneracies

in the phase portraits, m we will observe later in Section 4. Now, we also note that the

residual synrnetry

This suggests that

where @ is defined

the constant u:

1)0>

2) IKI -

3)u~

group SC is again S1 and its Lie algebra is generated by the vector field

“U=%*+$) (3.9)

we pick the following

a= fP-7* P=

new coordinates

d+~, w=wo+Rccmti (3.10)

through three different formulae according to the relative magnitude of

IFI - Ilcl:
1~1(1‘Cd) – IKI(l -COS(?)

Cos+ =
lFl(l-coaq +lKl(l-cose)

(3.lla)

lK1 - 1~1:
I/cl(l +Cose) - lZI (1 +Coaz)

Coe# =
lKI(l +COS@)+ t~l (1 +COS~). ‘3”11C)

The constants W. and R are determined by using (3.10). Writing down the expremions for

the Harniltonian function of the system and the Hamiltonian vector field gives

~ [1’~2 + Au’ + EUW + f(IJ)l(T/J)cos~] }, (3.12a)H(a, w(d)) = *Al{r2 +72 + :

.~ff = _fs; * [Hoa* - H*O.] i- %gQ9, (3.126)
rr



.
where

r= *(L - I)p+ -L, A = *(L - I)P+ +L, E = I(L– l)P-, (3.12c)

L = A2/A1, p* = (rE/FK * Fx/riF), (3.12d)

f(v) = d 4K2 -(~+@, ~(ti) = J-. (3.12e)

As for the equationa of motion, we fid them to be

(3.13a)

a s ~1(2rw + E~) + Al[(u - 4f(4J)/7(ti) -(~+ @Wf(Wc-4 (3.136)

A few remarka em in order. Fbt, we observe that the nriable J3 dm not appear in the

equations for the m.riablee a and+, thus codrrning that we reduced to Y; i.nded we can

solve for the two latter quantities and then get the former through a quadrature of (3. 13c).

A second remark concerns the degemmciea mentioned earlier. When u = +(K - F),

either one of the pol= on the sphere will be singular, or both of them if, in addition,

u = 0. This indicatea that the phase space could actually be viewed ae a pierced sphere

with one or both removed. A last comment is to the ef%ct that the unreduced system

is completely integrable; this is a consequence of the fhct that the reduced phsaed space

is tw-dimemional, i.e., that the reduced system posseasea a single degree of fr~om.

Moreover, the solution manifold of the unreduced system (2.3) is completely determind

from that of the reduced s~tem (3.13a,b) on S2.

4. Phase portrait ansdysis. In this section, we will investigate the nature of the

pbe portrait for the reduced system (3. 13a, b). Specifically, we will limit ourselves to a

few particularly intereating subcasee (more details about the existence and the description

of bifurcation sequences for both the on~beam and the tw~beam problems can be found

in David et al, [1990]) and wish to determine the fixed points and determine their type;

since we are dealing with a Hamiltonian system, the fixed points can only be stable centers

or unstable saddle points, although some exotic points may arise as pseudo cn’tical points

when degenerate bifurcations take place, An additional feature of the phase space is the

possible existence, aside from periodic trajectories, of infinite-period orbits. Th-e, on one



hand, provide us *.th especially interesting solutions, and on the other hand, are a prime ‘

ingredient when looking for chaotic behaviour.

*L F = r, IEI = IKI. We* mation that *tting u = O and 17?I# IKI also yields the

same dynamics. The gtmmetry of the phaae portrait depends on two essential parameters,

I’ and u and is depicted in Figure 2. For Sticiently large magnitudes of 11’I. and for

u # O, the sphere is partitioned into three d~tinct families of periodic orbits, with three

limit stable fixed points, separated by a pair of hommlinic loops corm-ted to a hyperbohc

saddle point; we thus have a figur~ight pattern. Asymptotically, as 11’I -* w, the above

100pa merge to a great circle of fied points on the equator. As 11’I gets smaller, these

homoclinic loops shrink and eventually collapse to the saddle point as 11’I~ r~(a), at

which point a reverse bifurcation takea place, i.e., (Saddle + 2 Centers) + (Center). The

curvee on the (17,u)-plane on which the bifurcation OCcura are parabolas given by

02 + 4K2
r*(u) = ~a _ 482 (4.1)

The limit u ~ O ia special and co-pondq to a degeneracy mentioned earlier, where

the reducd phase space actually consists of @ withuut its two poles. When u = O, we

obe~ that the poles behave aa &d pointe, impective of the wdue of r. Examining

Figure 2, we then see that the homoclinic loops in the phaae portrait cannot ohrink to the

saddle point because the two centers they enclose are constrained to remain at the pol=.

So thcae 100pa actually collapse to form a hnlf great-ircle of tied points from one pole

to the other. As the critical parabolic curve ia traversed, the nature of the bifurcation is

naturally also degenerate the two pseudo j%ed points at the poles me their type change to

saddlea, whereas the saddle point on the equator become a stable point. In addition, the

line of fied points opens up into two geodesics between the poles that act as heteroclinic

trajectories (ir@.nite period).

In Figure 3, we illustrate some special solutions wociated with trajectories of infinite

period appearing in Figure 2. These cu.rvea are drawn on the u-Poincare sphere and

show how the polarization evolves with time. The left picture corresponds to any of the

two geodcaic heteroclinic lines connecting the poles: the polarization ellipse describing the

beam starts as a circle and then sees its eccentricity increase as it rotates about its center,

until it ends up as a line when the traj~tory gets to the equator on the Poincare sphere.

The two other pictures correspond to the homoclinic Imps appearing in Figure 2 for the



Figura 2, Tha ph port?mitforma 1. A dqanorati bifurcdon taku pka when@ -0,

non-degenerate situation. Typically, on the Poincar& sphere, thae orbits corrwpond to

trajedoriea that originate on the quator (thus an initial linearly pch.rization state) and

spiral around one of the poles for any number of times before going back to the quator.

These solutions are reminiscent of kinks; in the particular case when they get back to their

initial location, they are identified ao solitary waves.

GaL2 ~ = *(FI - IKI),Tti s-d CM ab exhibiti intemting felturm The singular

situation (u = O) from the previous cue in alao obtained aa a limit when IZI = IKI. Again?

the equatiom of motion imply a special fixed point, constrained to be located at one

pole, irrespective of the parameters, We illustrate the bifurcation behaviour in Figure 4,

When the magnitude of Irl is sufficiently large the phase portrait consists of a fhmily of



Figure 3. Some special kink-like snd sditon-like solutions

~iatd with infinit-period orbiti sppesring in Figure 2.

periodic orbits with two stable ibnd points, one exactly at the north pole and the other one

nearby the south pole. Nothing happena qualitatively to this description until 11’I reaches

a critical wdue, at wlkh point the north pole becomeo unstable and this is accompanied

by the creation of a single loop homoclinic to the pole As I’ croamm zero and changea

sign, this loop strctch~, goes under the sphere, and eventually shrinks to the north pole,

but from the oppoeite direction to which it emergcx! from. We also note that during the

evolution of this loop, the stable center it initially enclosed was left to stay nearby the

south pole, while it dragged the center initially located near the south pole to collapse

with it at the north pole.

Let us make the following clasing remark for this Section. The Euler index on a surface

is definedas the difference between the number of stable and unstable fixed points pr-ent

in the phase portrait; this number is an invariant. For the two-sphere, S2, this number

is equal to two (it is unity for the real plane). We observe that the index is indeed 2 for

all the phase space configurations except when a singular situation occurs, which is just

another indication that tells us that the reduced phaae space is singular, For the degenerate

subcaqe of case 1, the index is zero ( two extra pseudo saddle points at tile pola) and it is

one for case 2 (one extra hyperbolic point at the north pole).
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Figura 4. Bifurcation behwiour forc- 2.
single homoclinic loop connected with one of the pola,

5. Homociinic chaoo. In thh section, we will investigate the question of generating

complex dynamics for our system when it is subject to wxne clamea of perturbations. These

consist in modifying the material parametem of the optical medium in certain specific

wmys. These perturbations are of physicol relevance in applied fields such M fiber optics

communications and polarization switching. We will me the Melnikov technique (see

Melnikov [1963], Guckenheimer and Holmes [1983], and Wiggins [1988]) to demonstrate

the existence of chaoe for our optical system, in the form of either horsehoe at ructures

or Arnold difiusion when the dimension is high enough. This method essentially Aim on

showing that the ~table and unstable rmmifoldn of certain hyperbolic manifolda do interwrt



transversely. This is actually done by calculating s=alled Meln.ikov integral functions,

which apprcwimate the separation between these manifolds in some appropriate way, and

showing that they possesses a countable ifiit ies of simple keroes, independently of the

magnitude of the perturbation. For systems with a single degrew of fredom, this Melnikov

function haa a relatively simple form. Let Ho denote our previous Hamiltonian function H

for the unperturbed system, and let H1 be the perturbation Hamiltonian function. Then

the Melnikov function is the line integral of the symplectic Poisson bracket of Ho and H 1

along an unperturbed hornoclinic or heteroclinic orbit and, for our system, is

(5.1)

where w is defined as in (3.10) and is a more convenient variable to use than ti. The

horseshoe chaoticity is relatively simple to vizualise on the plane, Typically, consider a

homoclinic loop connected to a hyperbolic fixed point on the phase plane (see Figure 5),

Figure 5. Unperturbed ( left) and Perturbd (right) dynamics

nearby m hyperbolic SUM]* point.

We consider a perturbation that will preserve the fixed point p, up to a slight dis-

placement. The loop is actually both the stable manifold W’(p) and the unstable manifold



Wn(p) of p. Generically, under a perturbation, the homoclinic loop will bree.k up so that

W’(p) can no longer be identified with W“(p), thus giving rise to regions of stochastic-

ity. Two fates are then possible. A first possibility is that these manifolds will miss each

other; this does not generate any chaos. The second possibility is that they will intersect

transversely ( trmgent ial intersection is an intermediate situation). Horseshoe chaoa is the

consequence of the intersection of these manifolds. In particular. transversal intersection

in the Poincar& map induces st ret thing and folding, aa a rectangular region of the phase

space is mapped away from end then back into the vicinity of the hyperbolic fixed point.

These effects are sufficient to cause horseshoe tangles (see Figure 5 and Wiggins [1988]). A

second type of chaotic behaviour is characteristic of dynamics ocuring in higher dimensions

and is called Arnold diffusion (see Holmes and Memden [1982b] ). It is charact enzed by

the fact that the phase space is less likely to be partitioned into disconnected regions of

stochast icit y; indeed this necessitates invariant subspaces of ccAim.ensions separating the

regions. If this condition is not met., then solutions do diffuse from region to region.

The application of the Melnikov technique actually consists in calculating tt,e .Melnikav

integral and to ascertain whether it has simple zeroes. The existence of chaos generating

stmct ure is then a consequence oft heorems by Melnikov and Poinc~ r& Birkhoff-Smale. For

systems whose dynamics take place in more than two dimensions, the Melnikov function

is no longer given by (5.1), Our perturbations are such that the perturbed systems we are

considering here fall within certain claases which are investigated in great detail in Wiggins

[1988] and we will present the form of the Melnikov intergal as we go along,

We will now proceed to illustrate the method for three types of perturbat,icns corre-

sponding to the following d~format ions of the matrix W:

where c is small. We will examine the consequence of these perturbations in the neigh.

Imurhood of the heteroclinic lines connecting the poles depicted in Figure 2.

Prrturhations of type (5,2B) prmerve Sz ILS the reduced phsse spnce m-d for this rnse,



the Melnikov integral is given by (5,1). For the particular case where E = -K, we find

(5.3)

where cos CYo= -(1 +L)/2. Clearly, this expression haa simple zeroes located at To = nn/v,

n E Z. This implies the existence of a Smaie horseshoe structure in the Poincare map,

obtained as a recursive folding ~d stret thing of regions nearby the poles, The physicsl

effect implied by the Horseshoe stmcture is that of an intermittent switching dynamics

between two states of circular polarization,

Perturbations of the type (5.2h) break the symmetry that alllowed

tion step and thus lift the phase space back to S2 x S2. This yields a

the second reduc-

perturbed system

falling within Category III of Wiggins [1988], and for which the Melnikov function is

Again choosing Z = .-K, we find

kf(~o) =
-r2 (2- cosao) sin f3~

Alsinao “

(5.4)

(3.5)

AS in the previous case, this fuuction obviously has simple zeroes and, once again, horseshoe

chaos is implied; the difference is that, here, t!-.e stable and unstable manifolds are toroidal

objects embedded in the space S2 x S 2. For both of the above types of perturbations, the

phase space is partitioned into stochastic dynamical layerrn separated by invariant tori that

form inpenet rable barriers for the polarization.

Finally, perturbations of the type (5.2c) also break sym,met ties. In cent ram with the

first two types, it yields ArxAold difksion; the phase space is the five-dimensional manifold

Sz x Sz x R and it ran no longer he partitioned in disccmnected chaotic regions. Here

again. we obtsin a system belonging to Category 111; however, the .Melnikov function is

now a vector whose two components are giwm by

/( t3HU t3H1 dH” ~H1
.U,(r,),ijf))= —— - —— -

~~ au ilk h a =0’+% 1%’(”
(3.G)



.Again, choosing Z = –K,

.!’l~(r~,p~) =

JV12(TI), A3) =

we obtain

3v2r7r(L – Cos ao Cos ~o )

16A: sin2 a. Csch(%::nao)sin(vro)
(5.7)

-v7r(l – *casaO)sin/30c~ch
.,9 .’) ( .\ ‘= ) cos(~ro)
4Ai sin- ao ~*AlrsmaOJ

Here, this pair of functions possesses two distinct sets of zeroes and this is suf%cient to

ensure the formation of transition chains giving rise to the phenomenon of Arnold diffu-

sion. Physically, this difision expresses itself through a back and forth transfer of the

polarization among the nonlinear modes of the system in a slow and erratic manner.

6. Conclusions. We presented an investigation of the dynamics of a pair of laser

pulses counterpropagat ing aa traveling waves through a nonlinear polarizable medium.

We have seen that the geometry of this system is remarkable and that it reduces, for

isotropic media, to motion on the sphere, due to continuous Harniltonian symmetries of

the system. We have discovered a set of degenerate bifurcations that cm take place in

the phase portrait on the reduced space 5-2 as material para-neters are varied, as shown in

Figures 2 and 4. Chaotic behavior under certain classes of spatially periodic perturbations

of the op:ical medium haa also been demonstrated by using the Melnikov method, The

instance of horseshoe chaos w.h.ich we examined corresponds to sensitive dynamics on the

Poincare sphere in the form of an interrnittent switching from one circular polarization

state to the other. We also have shown that Arnold diffusion is another possible rhoticity

behaviour under some perturbations that are sufficiently symmetry-breaking,

C)lltlooks for the work presented here include the addition of dissipative and dispersive

effects. In this case, the system must be examined na a set of partial differential equa-

tions, thus an infinite-dimensional dynamical system, for which the search for homoclinic

structures and mechanisms for the onset of chaotic, or complex, dynamics remains to be

{lone.
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