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INTEGRABILITY AND CHAOS IN
NONLINEARLY COUPLED OPTICAL BEAMS

D. David
Cenier for Nonlinear Studies & T Division, MS B258
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract. This paper presents a study, using dynamical systems met.iods, of
the equations descrihing the polarization behaviour of two nonlinearly coupled optical
beams counterpropagating in & nonlinear medium. In the travelling-wave regime as-
sumption, this system possesses a Lie-Poisson structure on the manifold C? x C?, In
the case where the medium is assumed to be isotropic, this system exhibits invariance
under the Hamiltonian action of two copies of the rotation group, S!, and actually
reduces to a lower-dimensional system on the two-sphere, S?. We study the dynamics
on the reduced space and examine the structure of the phase portrait by d.termining
the fixed points and infinite-period homeclinic and heteroclinic orbits; we concentrate
on presenting some exotic behaviour that occurs when some parameters are varied,
and we also show special solutions associated with some of the above-mentioned or-
bits. Last, we demonstrate the existence of complex dynamics when the system is
subject to certain classes of Hamiltonian perturbations. To this end, we make use of
the Melnikov method to analytically show the occurence of either horseshoe chaocs, or
Arnold diffusion.

1. Introduction. Integrable Hamiltonian systems often exhibit a transition to
chaotic, or complex, behaviour when they are subject to small periodic perturbations.
In low-dimensional cases (e.g., a one-degree-of freedom system), chaoticiiy usually shows
its presence in the form of Smale horseshoes in the structure of the associated Poincaré
map. This structure is inherently characterized by combined stretching and folding in the
above map, as well as an invariant Cantor-like set as the indnite-time iterate of this map.
A method, first developed by Melnikov [1963] and Armold [1964], and later developed fur-
ther for extended types of systems by Holmes and Marsden [1982a] and Wiggins [1988],
is the tool that is used here to establish in an analytical way that, for the perturbed sys-
tems considered in this paper, iterating the Poincaré map indeed implies the existence of
a horseshoe structure, by virtue of the Melnikov and Poincaré-Birkhoff-Smale theorems.
[f the dimensionality of the system is high enough, an additicnal feature may take place,
Arnold diffusicn, as a signature that the KAM torii are insufficient tc confine orbits within
a single region of chaoticity. This can occur through resonance overlaps, thus giving rise

to Arnold webs (or transition chains).



The dynamics that we will discuss here concerns the Hamiltonian description of the
travelling-wave dynamics of polarized, nearly monochromatic, optical laser pulses counter-
propagating in a lossless, cubically nonlinear, parity-invariant, anisotropic, homogeneous
medium; for instance. polarized beams in a straight optical fiber constitutes a realiza-
tion of such a system. Our approach will use the method of dimensional reduction for
Hamiltonian systems with a continuous Lie point-group of symmetries, together with the
Melnikov-Arnold method to show the existence of complex behaviour under cestain small
perturbations, induced by modulating the optical parameters characterizing the medium
of propagation.

Nonlinear polarization dynamics of oprical laser pulses is a subject which has been
under investigation for a few decades. Some 25 yeers ago, Maker et al.{1964] analyzed
and demonstrated the precession of the polarization ellipse for a single beam propagating
in a nonlinear medium. Spatially stable solution configurations for the problem of the
interaction of two counterpropagating beams in an isotropic medium were considered in
Kaplan [1983] and Lytel [1984). The phenomenon of optical multi-stability is is also
studied in Lytel [1984), and ir Otsukaet al.(1985). Reports of numerical evidence for
chaotic behaviour and interpretations of experimental data can be found in Trillo et al.
(1986] and Gaeta et al.[1987). Previous work on special solutious for the one-beam and the
two—beam problems appear in Tratnik and Sipe [1987). Additional references and more
detailed treatment of Hamiltonian chaos in nonlinear optical polarization dynamics can be
found in David [1989] and in David et al.[1988a, 1988b, 1990].

The plan of this paper is as follows. In Section 2 we formulate the polarization dy-
namics of travelling—wave optizal pulses in Hamiltonian lorm; this is done in terms of two
complex 2-component envelope electric field variables. In Section 3, after a convenient
change of variables, we use the method of reduction for Hamiltonian systems with sym-
metry to effectively recast the problem as a more tractaple system on a lower-dimensional
phase space, namely the sphere. This is actually achieved in two steps, each involving a
rotational invariance. The first step transports the system from the initial phase space
C? x C? to S? x §?; the second step takes advantage of the isotropy property of the prop-
agation medium and finally brings the problem down to S*. Specifically, these reduction
steps are taken by restricting to level sets of first integrals of the systerns, and then by

projecting to the space obtained by quotienting by the residual Hamiltonian invariance



group. Section 4 is devoted to the qualitative analysis of the reduced system for a few
special cases. Specifically, we classify the fixed points of the reduced dynamics on the
sphere and describe the various bifurcations involving these points that take place as ma-
terial parameters and intensities of the beams are varied. Some degeneracies occur during
the second reduction step and lead to peculiar bifurcations; we describe these in detail.
Special soliton-like and kink-like solutions are also depicted. In Section 5, we use the
Melnikov method to demonstrate how homoclinic (or heteroclinic) orbits tangle and break
up to vield complex behaviour when the dynamics is perturbed by modulated material
inhomogeneities, modelled as spatially periodic variations of the optical parameters of the
medium. Conclusions of this study are summarized in the final Section 6.

2. Physical formulation af the problem. The travelling—wave evolution of the
polarization dynamics of our system of two counterpropagating beams involves complex

electric field amplitudes e; () and €; (7), appearing in the following eikonal form,
Ei(z,1)= [e.'(z,r)e"" + €i(z, r)e"“"] e 4 e (2.1)

where 7 = z — ct is the travelling-wave variable and where i = 1,2 is the polarization
index. We note that each of e and & are elements of C?. Also, here and below, the “bars”
are used to distinguish between quantities associated with one beam or the other. The
third-order nonlinear polarizability is written as

P(z,t) = XE;) «E; + XS;I)M « E;E.E, (2.2)
where » indicates convolution with respect to time and we sum over repeated indices. Using
the rotating wave approximation in Maxwell's equations and assuming a lossless medium,
small nonlinear anisotropy Y3’ and null (!’ (corresponding to considering an anisotropic
and parity-invariant medium), slowly varying amplitudes, and a far-away-from-resonance
situation, we obtain the following set of equations governing the dynamics of the electric
field amplitudes:

Ik (3)

L —_ - l)— -
e, = X hem Ok (eee,, + 2€re€,),

- IK () - - — .
e, = ’—_\)“me.(elcm + 2?*(,).



where the constant susceptibility tensor x‘*) satisfies the following involutions:

3) _ (3= M _ ) _ Q)
Xijkt = iekr  Xijke = Xejki = Vikjer (2.4)
These equations constitute a quasi—canonical Hamiltonian system on C? x C2. The Hamil-
tonian function is

H(e,®) = yx{iL [elejene; + 4e}e;eses + 5E;04E) (2.5)
with the associated Hamiltonian vector field
3 ik
Xu=Z(VeH Ve-VH Vo)t = (Vo H -Vs-VeH V). (26)
so that any dynamical quantity Q evolves according to the prescription
Q=XnQ (={Q.H}. (2.7)

This endows the phase space, (C? x C?, {,-}), with a Lie-Poisson structure.

3. Reduction to §?. Generically, Hamiltonian systems defined on high—dimens;onal
inanifolds are somewhat difficult to study because, for one thing, it proves virtually impos-
sible to characterize the geometry of the phase space in any way that is easy to grasp. It is
often very convenient to use any continuous symmetry the system may possess in order to
redefine it onto a new space with less dimensions. Such a technique is used, for instauce,
to help one to find solutions of difficult nonlinear partial differential equations by reducing
them to equations with fewer variables; these yield so—called (sub) group-invariant solu-
tions. Along the same lines, a Hamiltonian dynamical system can also be reduced, to a
system ou a lower—dimensional phase space (i.e., to a set of equations with fewer dependent
variables) if it is possesses symmetries. This allows for a study of the dynamics on the
reduced phase space, after which one may revert to the original space to deduce results
pertinent to the variables in terms of which the problem was defined. The machinery lying
behind the method of Hamiltonian symmetry reduction is based upon the following the-
orem (see ,e.g.. Chapter 6 of Olver [1986] for details). Let ¢ be a Hamiltonian symmetry
group of transformations acting on .M and generated by a set {P,} of first integrals. We

define the momentum map P : M — ¢* : £ — Y_ P,(£)wi, where {w;} is a basis of g°,



the dual to the Lie algebra of the group ¢. We denote by S, the common a-level set of
P. The residual symmetry group Cq on S, is the isotropy subgroup of a € g°.

Reduction Theorem. Let P be of mazimal rank ecverywhere on S, and let G, act regu-
larly on the submanifold Sq. Then there i3 a natural induced immersion ¢ : So/Ga — M/G
such that S, /G4 13 o Poisson submanifold so that the diagram

S a — JM

Sa/Ge — M/
¢

commutes. m and 7o are the natural projections and 1 &. immersion realizing S, as a
submanifold of M. Moreover, any Hamiltonian system on M with G as a symmetry group

naturally rcstricts to Hamiltonian systems on S,/Gq and M/G.

In practice, in order to prevent reconstructibility problems, the above theorem suggests
that one may reduce to the space S,/@a by first restricting to S, and then projecting via
To. For the system (2.3) under consideration here, two S! invariances will allow us to
perform reduction. First, it proves convenient to make a change of variables on C? x C?
by reparametrizing this space with Stokes variables, as follows:

u=elde, uy=r=el e,
(3.1)
u=a'de, T =F=q"a

where & = (o3, 01,02) are the usual Pauli matrices. One observes that both uy and uj are
first integrals of the motion and are associated with the invariance of the system under
the rotation transformation (e,&) — e'’(e,&). Our first step, in accord with the above
theorem, is to restrict to an immersed common level set ug = r, 4 = 7. J.et us write e and
@ as

e=(e1,67)=(z) +iz2,23 +1iz,4), €= (2),83) = (T) +173,Ty +134) (3.2)
[t is then easy to see that ug = r? + r3 + 3 + r} and %o = T3 + T3 + I} + T3; thus the level

set is simply S? x §3. On this space, the Hamiltonian function, the Hamiltonian vector



field, and the equations of motion become

Hu@)=4(u-W-u+a-W-u)+20-W-u, (3.3a)
Xy = g(v.H x u)- V, + g(v;ﬂ x @) - Vg, (3.3b)
ﬁ=§[w.(u+2ﬁ)]xu, t‘i=-r'5[w-(ﬁ+2u)]xﬁ. (3.3¢)

where
W = &,; X\ 1 Fre = Diag (A1, 22, A1). (3.4)

One can always perform a transformation such that the matrix W will be diagonal. The
components of W are interaction terms of the following types: Wy, W;3, Wi are linear-
linear polarization interaction terms, W);, W23 are linear—circular polarization interaction
terms, and W3; is a circular—circular polarization interaction term. Note that the isotropy
condition mentioned earlier makes the first and third components equal. Now, using the

representation (3.2), we notice that the components of u and U write as

uy = 2(z1z3 + 2224), Uy = 2(5153 + Z2%,),
uy =2(z124 — 2223), Uy = 2(T174 — T27s), (3.9)
uz=:f+:§—:g—:i, ‘3=Ef+'g—:3—:2

The above formuiae (3.5) constitute the transformation $° — S? due to Hopf (see, e.g.,
Crampin and Pirani [1987]). We then notice that the components of u and T are not all
independent; indeed, we have

ul +ud +ud =12, U+ T3 +us =72, (3.6)

Thus, we realize that we are dealing with the manifold $? x $?, since each equation in
(3.6) actually defines a sphere. Each copy of S? in the above product is sometimes referred
to as & Poincaré sphere (see Figure 1). Points on this sphere represent polarization states:
the poles are circularly polarized states, equatorial points correspond to linearly polarized
states, and all other points describe elliptical states. We are choosing the north and south

poles to lie along the 2-axis to conform with optics notation.



Figure 1. The Poincaré sphere.

To actually reduce on S? x S?, we use spherical coordinates,

u; = rsiufsing, %, =rsinfsing,

uz=rcoso, 2 =FC“9, (37)

u3 = rsinf cos ¢,

In terms of these coordinates, the Hamiltonian function, Xy, and the equations of motion
take the following form:

H(8,6,0,9) =4r? [A, 5in’ 0 + )3 cos? 8] + 472 [A18in? § + Ag cos? §]

(3.8a)
+ 2rF [Al sinOinacos(qb -0+ A\ coaOcosa] ,

3 K

Xu = e (HoOp — Ho0y] + Fend [H;@; - H;&;] . (3.8b)

§ = —2),KsinBsin(¢ — &), (3.8¢)

8 = 2)\,xsinfsin(é — 9), (3.8d)

h = 5’-’()\, ~A1)cosf — 2% (A, coeoﬂ‘lf cos(d — @) — Az cosi) . (3.8¢)
r siné

o= fu, ~A1)cosf - 2x (A. coséif-'lg cos(@ — @) — A co.o) . (3.8f)
r sinéd



We now proceed with the second step of the reduction. Notice that the quantity
o = K cos 0+ % cos 8 is also a constant of the motion. A level set is thus a three-dimensional
manifold specified by a constant value of o and is coordinatized, for instance, by triplets
(6.0,w) where w = x cos @ — Kcos 8. At this point, we make the following remark. Recall
that the reduction theorem necessitates that the momentum be of maximal rank. Here,
this means that we will have degenerate situations when the function o(8,8) will not be
cf maximal rank, i.e., when sin§ = sind = 0. This corresponds to ¢ = +(|«| + |%|) and
o = %(|x| = |[K]). The first two cases are venial, they correspond to the extreme values
possible for o and the dynamics then reduces to a point (physically, this is achieved when
the polarizations of the beams are aligned alond the polar direction: this configuration is
forever the same). As for the two other situations, they physically arise when the polar-
izations of the beams are anti-aligned along the polar direction and will yield degeneracies
in the phase portraits, as we will observe later in Section 4. Now, we also note that the
residual symmetry group S, is again S! and its Lie algebra is generated by the vector field

KK
X, =% (a‘~ - a;) . (3.9)
This suggests that we pick the following new coordinates:
a=¢-6, B=0+% w=uwo+Recosy (3.10)

where ¥ is defined through three different formulae according to the relative magnitude of

the constant o:

[R1 (1 — cos8) — |x|(1 - cos§)

1 > |x| - : 3.11
Yoz [’ = |« cos¥ = |n|(1—cos.)+|n|(1—c030) (3.11a)
2) |x| =|&K| <o < [&]~|x|: cosyp = cosé, (3.11%)
0
) o< |k -|”]: cosy = I (1 + cos 6) — [%] (1 + cos —~— ) (3.11¢)

|| (1 + cos8) + |%| (1 + cos b

The constants wy and R are determined by using (3.10). Writing down the expressions for
the Hamiltonian function of the system and the Hamiltonian vector field gives

H(a,w(d)) = 4\ {r? +7 + :—-: [I‘c..)2 +Ac® + Eow + f(lb)f(v,b)cosa]}, (3.12a)

25K 25K

Xy = m (HaOyp — Hy0a] + —H 208, (3.12b)



where

C=4L~-1pe—L A=HL-1)p++L, E=4(L-1)p-, (3.12¢)
L = )/, p+ = (rK/Trx £ Tx/rK), (3.12d)
f@) = VAT = (@ +w)f, T(¥) = /4R ~ (0 — w2, (3.12)

As for the equations of motion, we find them to be

A sina

"~ Rsiny
& = M (2Tw + Eo) + M[(0 - w)f(¥)/F(¥) = (0 + w)[(¥)/ f(¥)) cos a, (3.13b)
B = A\(2A0 + Ew) = M [(0 - w)f($)/F(¥) + (¢ + w)F(¥)/ f(¥)] cos a, (3.13¢)

A few remarks are in order. First, we observe that the variable 8 does not appear in the
equations for the variables a and v, thus confirming that we reduced to $?; indeed we can
solve for the two latter quantities and then get the former through a quadrature of (3.13c).
A second remark concerns the degeneracies mentioned earlier. When o = *(sx - &),
either one of the poles on the sphere will be singular, or both of them if, in addition,
o = 0. This indicates that the phase space could actually be viewed as a pierced sphere
with one or both remcved. A last comment is to the effect that the unreduced system
is completely integratle; this is a consequence of the fact that the reduced phased space
is two-dimensional, i.e., that the reduced system possesses a single degree of freedom.

¥ F)F (), (3.13a)

Moreover, the solution manifold of the unreduced system (2.3) is completely determined
from that of the reduced system (3.13a,b) on S2.

4. Phase portrait analysis. In this section, we will investigate the nature of the
phase portrait for the reduced system (3.13a,b). Specifically, we will limit ourselves to a
few particularly interesting subcases (more details about the existence and the description
of bifurcation sequences for both the one-beam and the two-beam problems can be found
in David et 4l.[1990]) and wish to determine the fixed points and determine their type;
since we are dealing with a Hamiltonian system, the fixed points can only be stable centers
or unstable saddle points, although some exotic points may arise as pseudo critical points
when degenerate bifurcations take place. An additional feature of the phase space is the

possible existence, aside from periodic trajectories, of infinite-period orbits. These, on one



hand, provide us with especially interesting solutions, and on the other hand, are a prime
ingredient when looking for chaotic behaviour.

Casel 7 =r |k| = |x|. We also mention that setting ¢ = 0 and |%| # || also yields the
same dynamics. The geometry of the phase portrait depends on two essential parameters,
I' and o and is depicted in Figure 2. For sufficiently large magnitudes of |I|. and for
o # 0, the sphere is partitioned into three distinct families of periodic orbits, with three
limit stable fixed points, separated by a pair of homoclinic loops connected to a hyperbolic
saddle point; we thus have a figure—eight pattern. Asymptotically, as |['| -+ oo, the above
loops merge to a great circle of fixed points on the equator. As |I'| gets smaller, these
homoclinic loops shrink and eventually collapse to the saddle point as |[['| — I'+(0), at
which point a reverse bifurcation takes place, i.e., (Saddle + 2 Centers) — (Center). The
curves on the (I', 0)-plane on which the bifurcation occurs are parabolae given by
a? + 4«3

rt(a) = o3 — 4x2

(4.1)

The limit ¢ — 0 is special and corresponds to a degeneracy mentioned earlier, where
the reduced phase space actually consists of §? withuut its two poles. When o = 0, we
observe that the poles behave as fixed points, irrespective of the value of I'. Examining
Figure 2, we then see that the homoclinic loope in the phase portrait cannot shrink to the
saddle point because the two centers they enclose are constrained to remain at the poles.
So these loops actually collapse to form a half great—circle of fixed points from one pole
to the other. As the critical parabolic curve is traversed, the nature of the bifurcation is
naturally also degenerate: the two pseudo fized points at the poles see their type change to
saddles, whereas the saddle point on the equator becomes a stable point. In additiun, the
line of fixed points opens up into two geodesics between the poles that act as heteroclinic
trajectories (infinite period).

In Figure 3, we illustrate some special solutions associated with trajectories of infinite
period appearing in Figure 2. These curves are drawn on the u-Poincaré sphere and
show how the polarization evolves with time. The left picture corresponds to any of the
two geodesic heteroclinic lines connecting the poles: the polarization ellipse describing the
beam starts as a circle and then sees its eccentricity increase as it rotates about its center,
until it ends up as a line when the trajectory gets to the equator on the Poincaré sphere.

The two other pictures correspond to the homoclinic loops appearing in Figure 2 for the



Figure 2. The phase portrait for case 1. A degsnersts bifurcation takes place vaen o = 0,

non-degenerate situation. Typical'y, on the Poincaré sphere, these orbits correspond to
trajectories that originate on the equator (thus an initial linearly polerization state) and
spiral around one of the poles for any number of times before going back to the equator.
These solutions are reminiscent of kinks; in the particular case when they get back to their
initial location, they are identified as solitary waves.

Cage 2 7 = 3(|%| — |x|). This second case also exhibits interesting fertures, The singular
situation (o = 0) from the previous case is also obtained as a limit ‘vhen |%| = |«|. Again,
the equations of motion imply a special fixed point, constrained to be located at one
pole, irrespective of the parameters. We illustrate the bifurcation behaviour in Figure 4.
When the magnitude of |I'] is sufficiently large the phase portrait consists of a family of



Figure 3. Some special kink-like and scliton-like solutions
associated with infinite-period orbite appearing in Figure 2.

periodic orbits with two stable fixed points, one exactly at the north pole and the other one
nearby the south pole. Nothing happens qualitatively to this description until |T'| reaches
a critical value, at wlich point the north pole becomes unstable and this is accompeanied
by the creation of a single loop homoclinic to the pole As I' crossec zero and changes
sign, this loop strctches, goes under the sphere, and eventually shrinks to the north pole,
but from the opposite direction to which it emerged from. We also note that during the
evolution of this loop, the stable center it initially enclosed was left to stay nearby the
south pole, while it dragged the center initially located near the south pole to collapse
with it at the north pole.

Let us make the following closing remark for this Section. The Euler index on a surface
is definedas the difference between the number of stable and unstable fixed points present
in the phase portrait; this number is an invariant. For the two-sphere, S2, this number
is equal to two (it is unity Tor the real plane). We observe that the index is indeed 2 for
all the phase space configurations except when a singular situation occurs, which is just
another indication that tells us that the reduced phase space is singular. For the degenerate
subcase of case 1, the index is zero (two extra pseudo saddle points at tiie poles) and it is

one for case 2 (one extra hyperbolic point at the north pole).



Figure 4. Bifurcation behaviour for case 2. Note the presence of a
single homoclinic loop connected with one of the poles.

8. Homoclinic chaos. In this section, we will investigate the question of generating
complex dynamics for our system when it is subject to some classes of perturbations. These
consist in modifying the material parameters of the optical medium in certain specific
ways. These perturbations are of physicel relevance in applied flelds such as fiber optics
communications and polarization switching. We will use the Melnikov technique (see
Melnikov (1963, Guckenheimer and Holmes [1983], and Wiggins [1988]) to demonstrate
the existence of chaos for our optical system, in the form of either horseshoe structures
or Amold diffusion when the dimension is high enough. This method essentially relies on
showing that the stable and unstable manifolds of certain hyperbolic manifolds do intersect



transversely. This is actually done by calculating so—called Melnikov integral functions,
which approximate the separation between these manifolds in some appropriate way, and
showing that they possesses a countable infinities of simple zeroes, independently of the
magnitude of the perturbation. For systems with a single degree of freedom, this Melnikov
function has a relatively simple form. Let H? denote our previous Hamiltonian function H
for the unperturbed system, and let H! be the perturbation Hamiltonian function. Then
the Melnikov function is the line integral of the symplectic Poisson bracket of H® and H!

along an unperturbed homoclinic or heteroclinic orbit and, for our system, is
M) = [{HH} (4 m) alr + )l dr (5.1)
R

where w is defined as in (3.10) and is a more convenient variable to use than . The
horseshoe chaoticity is relatively simple to vizualise on the plane. Typically, consider a

homoclinic loop connected to a hyperbolic fixed point on the phase plane (see Figure 3).

Figure 5. Unperturbed (left) and perturbed (right) dynamics
nearby a hyperbolic saddle point.

We consider a perturbation that will preserve the fixed point p, up to a slight dis-
placement. The loop is actually both the stable manifold W*(p) and the unstable manifold



W*(p) of p. Generically, under a perturbation, the homoclinic loop will break up so that
W?*(p) can no longer be identified with W*(p), thus giving rise to regions of stochastic-
ity. Two fates are then possible. A first possibility is that these manifolds will miss each
other; this does not generate any chaos. The second possibility is that they will intersect
transversely (tangential intersection is an intermediate situation). Horseshoe chaos is the
consequence of the intersection of these manifolds. In particular. transversal intersection
in the Poincaré map induces stretching and folding, as a rectangular region of the phase
space is mapped away from and then back into the vicinity of the hyperbolic fixed point.
These effects are sufficient to cause horseshoe tangles (see Figure 5 and Wiggins [1988]). A
second type of chaotic behaviour is characteristic of dynamics ocuring in higher dimensions
and is called Arnold diffusion (see Holmes and Marsden [1982b]). It is characterized by
the fact that the phase space is less likely to be partitioned into disconnected regions of
stochasticity; indeed this rnecessitates invariant subspaces of co—dimensions separating the

regions. If this condition is not met, then solutions do diffuse from region to region.

The application of the Melnikov technique actually consists in calculating tiie Melnikov
integral and to ascertain whether it has simple zeroes. The existence of chaos generating
structure is then a consequence of theorems by Melnikov and Poinceré-Birkhoff-Smale. For
systems whose dynamics take place in more than two dimensions, the Melnikov function
is no longer given by (5.1). Our perturbations are such that the perturbed systems we are
considering here fall within certain classes which are investigated in great detail in Wiggins

(1988] and we will present the form of the Melnikov intergal as we go along.

We will now proceed to illustrate the method for three types of perturbaticns corre-

sponding to the following d~formations of the matrix W:

W = Diag{),, Az + ecosjv, 7 — 1p)], A1}, (3.2a)
W = Diag{A; + ¢, A2, M}, (5.2b)
W = Diag{ A + ecos{v(T — 79)], A2, A1}, (5.2¢)

where ¢ is small. We will examine the consequence of these perturbations in the neigh.

bourhood of the heteroclinic lines connecting the poles depicted in Figure 2.

Perturbations of type (5.2a) preserve S* ns the reduced phase space and for this case.



the Melnikov integral is given by (5.1). For the particular case where & = —«, we find

3rvin v , _
M(r) = mcsc}l (m) sin(vTy), (3.3)
where cosap = —(1+L)/2. Clearly, this expression has simple zeroes located at 7y = nr/v,

n € Z. This implies the existence of a Smaie horseshoe structure in the Poincaré map,
obtained as a recursive folding and stretching of regions nearby the poles. The physical
effect implied by the Horseshoe structure is that of an intermittent switching dynamics

between two states of circular polarization.

Perturbations of the type (5.2b) break the symmetry that alllowed the second reduc-
tion step and thus lift the phase space back to S? x S?. This yields a perturbed system
falling within Category III of Wiggins {1988], and for which the Melnikov function is

1
M(30) = [ S (w3 + o) dr (5.4)
R
Again choosing § = --«, we find
—r?(9_ :
M(fo) = (2 cosao)smBz. (5.5)

/\1 sin ag

As in the previous case, this function obviously has simple zeroes and, once again, horseshoe
chaos is implied; the difference is that, here, th.e stable and unstable manifolds are toroidal
objects embedded in the space $? x §%. For both of the above types of perturbations. the
phase space is partitioned into stochastic dynamical layers separated by invariant tori that

form inpenetrable barriers for the polarization.

Finally, perturbations of the type (5.2c) also break symmetries. In contrast with the
first two types, it yields Arnold diffusion: the phase space is the five-dimensional manifold
5% x §* x R and it can no longer he pariitioned in disconnected chaotic regions. Here
again. we obtain a system belonging to Category III; however, the Melnikov function is

now a vector whose two components are givea by

" ”_/(amam_aH°aHl_aH°aH')dr+gu_° OH'
T = | \ 9w 9a ~ Oa 0w 07 98 do Jp 03 ° ‘(_4)
2.V

OH!
R a3

Mty 3) = - {r.




Again, choosing K = —«, we obtain

2 -
3uZrm(L — cosaq cos ﬂO)csch (___wr ) sin(vTy),

A Jg) = i
11(7o, Bo) 16A%sin? ag 4\ rsinag

(5.7)

Mo = FVTR—
M3 (70, 80) 4\ 7 sin ag

—vr(l — tcosag)sin By < vr
T csch
4A7sin‘ ag

) cos(vTy).

Here, this pair of functions possesses two distinct sets of zeroes and this is sufficient to
ensure the formation of transition chains giving rise to the phenomenon of Arnold diffu-
sion. Physically, this diffusion expresses itself through a back and forth transfer of the

polarization among the nonlinear modes of the system in a slow and erratic manner.

6. Conclusions. We presented an investigation of the dynamics of a pair of laser
pulses counterpropagating as travelling waves through a nonlinear polarizable medium.
We have seen that the geometry of this system is remarkable and that it reduces, for
isotropic media, to motion on the sphere, due to cortinuous Hamiltonian symmetries of
the system. We have discovered a set of degenerate bifurcations that can take place in
the phase portrait on the reduced space S? as material parameters are varied, as shown in
Figures 2 and 4. Chaotic behavior under certain classes of spatially periodic perturbations
of the vpiical medium has also been dem~nstrated by using the Melnikov method. The
instance of horseshoe chaos which we examined corresponds to sensitive dynamics on the
Poincaré sphere in the form of an intermittent switching from one circular polarization
state to the other. We also have shown that Arnold diffusion is another possible chaoticity

behaviour under some perturbations that are sufficiently symmetry-breaking.

Ontlooks for the work presented here include the addition of dissipative and dispersive
eflects. In this case, the system must be examined as a set of partial differential equa-
tions, thus an infinite—dimensional dynamical system, for which the search for homoclinic
structures and mechanisms for the onset of chaotic, or complex, dynamics remains to be

donc.
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