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1. Introduction

In the past years considerable progress has been made in the development of numerical 
methods for differential-algebraic equations ( DAEs ) of the form

(l.la) y'(t) =/((,!,(!),*(()) /: lR”+‘+1 ^ E”
(1.16) 0 = g(l,y(t),z(t)) s:E”+*+1^R‘

One area of interest where DAEs arise is the study of singular perturbed ordinary differ­
ential equations

n 9n y'(t) = /(i,y(i),2(<),£)
ez'(t) = g(t,y(t),z(t),e)

where £ > 0 is a small parameter. Then the so-called “reduced” system is obtained by 
setting £ = 0. Under certain conditions the solution of the reduced system is a good 
approximation to the solution of (1.2). However in practice not all DAEs derive from 
singular perturbations. In many applications (1.16) arises as a condition that describes 
geometrical constraints or conservation of energy.
However (1.1) can obviously be formally embedded in a singular perturbed problem like 
(1.2) defining /(.,.,.,0) = 0) = Ignoring the question whether
this makes sense in view of the mathematical background, this gives a widely used trick 
to derive numerical methods for DAEs from numerical methods for ordinary differential 
equations:
apply a method for ordinary differential equations to (1.2), put £ = 0 in the resulting 
recursion formula ( if this is feasible ) and obtain a numerical method for (1.1). E. g. in 
the case of the implicit Euler method that would yield

Vn+l Vn h • f (f Ti-i-i , 2/71+1 7 ^n+1 )
0 = 2/(^n+l ? Vn+l 7 -^n+l )

where 6 > 0 is the stepsize and tn+1 — tn + h: yn & y(tn), zn & z(tn) ( is the
exact solution of (1.1) at time t ). In a similar way a large class of implicit Runge-Kutta 
methods can be applied as well as multistep-methods like the BDF-methods. It is easy to 
see that this approach does not work with explicit methods.
As these methods are all derived from numerical methods for stiff ordinary differential 
equations it is natural to compare the gained results with the corresponding results for 
stiff ODEs. Recently some work in this direction has been done ([Pel], [BuPe], [HaLuRo], 
[Ro]).
However, the convergence theory for these methods for DAEs was based on an analysis 
performed on the DAE-system; the derivation-process via stiff ODEs has not been taken 
into account. On the other hand, it is well known that the order of convergence that these 
method achieve on DAEs is roughly the same as the order for certain classes of stiff ODEs. 
In addition some aspects in the proofs of the results for stiff ODEs indicate that this is
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not a coincidence ( see [BuPe] ). Hbwever the missing link so far has been the connection 
between some singular perturbed system and the “reduced system” (1.1) since it turned 
out that for the purpose of analysis (1.2) is a rather clumsy form.
The outline of this paper is as follows:
In section 2. we give for a large class of DAEs a singular perturbed system that reduces to 
the DAE for £ = 0 and show that the solution of the perturbed system converges to that 
of the DAE in a certain sense.
In section 3. we derive discrete analogues to the theorems presented in the previous section. 
This allows a unified approach to the convergence of implicit Runge-Kutta methods for 
stiff ODEs on the one hand and DAEs on the other. This way we clarify the relation 
between the order of B-convergence ( see [DV] ) and the order of convergence for DAEs.

2. The Regularization-Process

We restrict ourselves to the study of the autonomous case and to the socalled index-l-case

2.1 Definition:
The DAE

(2.1.1a) y'(t) = f(y(t),z(t)) / e C<IRm+\ IRm)
(2.1.16) 0 = g(y(t),z(t)) g e C1 (JR,m+k ,Uk)

is said to have index-l iff the Jacobian gz(y,z) is regular on IRm+/:.

In essence the index-l-property guarantees local solvability of the DAE: if an initial value 
{yo,Zo) with g(yo,Zo) = 0 is given, then there is a mapping G defined in a neighbourhood 
of y0 such that

g(y,z) = 0 2 = G(y)

in a neighbourhood of (y0,z0) and z0 = G(y0).
Using this we can rewrite the initial value problem for the DAE as

y'(t) = f{y(t),G{y(t)))
z(t) = G(y(t))

2/(0) = 2/o
^(0) = z0 = G(y0)



and then we have local solvability. More precise we will use the following property of an 
index-l-DAE:
(Al) there is Si C ]Rm, S2 C ]Rfc, Si, S2 open and Si, S2 compact, G G C1(Si,S2) 

bijective with

g(y, z) -0 <=> z = G(y) for all y <E Si, z <E S2

While looking for a singular perturbed system that reduces for “e = 0” to a given DAE 
we should take care that the solutions of the singular perturbed problem converge in some 
sense towards the solution of the DAE as £ —* 0. The convergence property we can expect 
is described by the following definition.

2.2 Definition:
Let F : IR2n+2 -* R71,

(*) F(t,x(t),x'(t),e) = 0.
(i) Let £ be fixed. x0 £ IRn is a consistent initial value for (*) iff (*) has a solution 

x £ C1 ([a, 6], 1R") for some b > a with x(a) = x0
Now let x(t), t £ [a,b] be a solution of (*) for £ = 0;xa := x(a), U a subspace of
IR”.

(ii) (*) is said to be £ - stable on [a, b] : <==>
There is an £o > 0 such that
(*) has for each 0 < £ < £o and for each consistent initial value xae £ 1R71 with 
ll^ac — a:a|| < £o a solution xe(t) such that x£(a) = xac and

limx£(t) = x(t)

uniformly on [a, b] for
e + ll^as - a:a|| ^ o.

(iii) (*) is said to be £ - stable on [a, b] for U :
(*) is £ - stable and
there is 6 > 0, £0 > 0 such that
(*) has for each 0 < £ < £0 and for each ua £ U, ||n0|| < <5, :r0 -f ua consistent for 
(*), a solution x£(t) with x£(a) = xa ua and

lim xe(t) = x(t), uniformly on [c,d] where a < c < d < b.

In other words small perturbations out of the subspace U added to the initial value do not 
destroy the uniform convergence on compact subintervals of ]a, 6] := {x € 1R | a < x < 6}.
In general we will use the following criterion to guarantee e - stability. We denote for a 
set M B(M, 6) := {x | ||x — y || < ^ for some y £ M).
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2.3 Theorem: [LeLe]
Let the singular perturbed ordinary differential equation

y'(t) = ?/(<)€ !Rm
ez'(i) = g{t,y{t),z(t),e) z{t) G IRn_m

have for e = 0 and the initial value (ya, za) a solution (yo(t), zo(t)) on [a) b] with 
yo(a) = ya,Zo(a) = za ; 
where for a 60 > 0 and

R [a,b] x 5(?/0([a, 6]), <50) x B(2r0([a, 6]), ^0) x [0,6o[ 

fi fyi fzi9i9yi9z are continous on R; for all t G [a, 6] we assume

A eigenvalue of gz(t,yo{t), zo(t),0) => Re(X) < 0

Then (*) is £ - stable on [a,6] for U := {Om} x IR"-"1.

Our goal is to give for any index-l-DAE a singular perturbed problem F(t,x, x',e) = 0 
that is e - stable, i. e. we want to regularize our system. Regularizations for linear DAEs 
have already been studied in [Ca], but the analysis uses some requirement on the spectrum 
of the involved matrices and seems in general not a practical way. Here we will approach 
the regularization problem in a natural way and we are able to do so under very general 
assumptions.
Since we want to use Theorem 2.3 which is formulated for explicit systems we have to 
take care that F(t, x,x',e) = 0 is solvable for the derivative x1. Systems which allow this 
will be called index-0- systems. At first we present the basic regularization which will be 
generalized later.

2.4 Theorem:
Let the DAE (2.1.1) have index-1, f,g £ Cl, and (Al) be satisfied. We assume that 
for a Lq > 0

\\G(y) - G(y)\\ < LG\\y - y\\ for all y,y <E Du

Let y0 e D1, z0 := G(y0), b > 0, y : [0,6] -> Zh, y(0) = y0, z(t) := G(y(t)) for 
i G [0,6] with

y'it) = f(y(t),z{t)) for all t G [0,6]

let F G C1(lR/:, IR*), F bijective and
for all z G IR* A eigenvalue of F'(z) => Re(\) > 0
Then

(2.4.1) y'(t) = f(y(t),F-'(F(z(t)) + ez'm
0 = g(y(t),F-'(F(z(t)) + ez'm
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has for all e > 0 index-0 and there is a C > 0 such that:
for all (yo,Zo) £ D\ x IR^ there is a b €]0,6] and a solution (y£(t), ze(t)) of (2.4.1) 
on [0, b] with

l|y*(0 - c\\yo - yo|| for ail t e [o,6].

Furthermore for each a G]0, b] there is a o;a : ]R x 1R>0 —]R>o with

\\mu)a(t,£,dl,d2) = 0 for e + dl + d2-+0 uniformly on iG[0,fe]
lim u;a(i, e, Jl, 0) = 0 for £—> 0 uniformly on i G [a, 6]

and
lke(<) - z(t)\\ < uia(t,£, ||S0 - G(yo)||, ||yo - yo||) + LaCWiio - yo|| 

for all t £]0, b].
In particular (2.4.1) is £ - stable on [0,6] for {Om} x ]Rn~m .

Proof:
The index-O-property is easily seen: Put g(y,z,z',£) g(y, F~1 (F(z) + £z')). It is suffi­
cient to prove the regularity of gz'. Here we have

gz'{y,z,z',e) = egz(y,F~l (F(z) + £2,))(F_1 )'(F(z) + ez')

and observing (F~^)'(F(z) + £z') — F'(F_1 (F(z) -f £z')) and the regularity of F' ( which 
is guaranteed by assumption ) we are done.
Let (i/0) z0) (z Si x From the classical theory we know that there is a 6 G]0, 6] and y(i) 
with y(0) = y0 and

y'(t) = f(y(i), G(y(t))) for all t € [0, b}.

We now define ye(t) '■= y{t) on [0,6] and ze as the solution of the initial value problem

,2i2) F'1 (-^(^W) + £z'e(t)) = G(y(t)), 2rc(0) = S0, t G [0,6]
F(z£(t)) + £z'e(t) = F(G(y(t))), ^£(0) = S0, t G [0,6]

Obviously y£ and satisfy (2.4.1). It remains to prove the error estimate.
It is well known that the solution of y' = f(y,G(y)) depends Lipschitz-boundedly on the 
initial value. Therefore there is a c > 0 with

l|y(0 - y(t)\\ < C\\y0 - y0||, t e [0,6],

which proves the first part already. This implies immediately

(2.4.3) l|G(i/(i)) - 0{yU))\\ < LoC'lIjo - i/o|| uniformly on [0,6],
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If we invoke Theorem 2.3 on (2.4.2), ( the assumptions of which are satisfied since the 
eigenvalues of —F'(z) have negative real part ), we arrive for a G]0, b] at

(2.4.4) \\zs(t) - G'(?/(t))|| = ua(t,e, \\z0 - G(yo)||,||yo - yo\\)

with a certain ua that has the desired properties. From (2.4.3) and (2.4.4) the claim follows 
immediately. ■

Now we want to have a brief look at multiparameter-perturbations. The simplest situation 
is when all perturbation parameters involved have a constant ratio. But we are interested 
in criteria that do not involve these ratios ( since from a practical point of view knowledge 
about the ratios may not be available ). The essential assumption here is the diagonal 
dominance.

2.5 Definition:
We call a n x n-Matrix (a,j) strictly diagonally dominant iff

n
an > X) |a,j | for z = 1,..., n.

4=1

2.6 Theorem: ( Multiparameterversion I of Theorem 2.4 )
Let the assumptions of Theorem 2.4 be satisfied;
assume that for all z £ III/' the matrix F'(z) is strictly diagonally dominant; 
for i = 1,..., k put £i := di ■ £, where di > 0; D diag(d\,..., <4);
Then

m = mi),F-'(F(z(t)) + eDz'm
' ' o = 9(y(t),F-’(F(z(t)) + eDz’(t)))

has for all £ > 0 index-0 and the same claim as in 2.4 holds.

Proof:
Put

F(z) := D-1 F(z) for z £ IR" 

and verify the assumptions of 2.4.
From the strict diagonal dominance and the Gershgorin-theorem we have 
for all 2 £ IRfc : A eigenvalue of F'(z) => Re(Xj > 0.
The same holds for the matrix D^1 • F\z) = F'(z) since it is strictly diagonally dominant 
too. Now we are done, since we can apply 2.4 with F and we get the desired result. ■



Under more restrictive assumptions we have the following result which guarantees conver­
gence for —> 0 without requiring the ratios of the £t- being constant.
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2.7 Theorem: ( Multiparameterversion II of Theorem 2.4 )
Let the assumptions of Theorem 2.6 be satisfied;
in addition assume F(z) = (iq(^),..., Fk(zk))T for all z £ IRfc and F'(zi) > 0 for 
i = 1,..., k ( the latter follows also from the strict diagonally dominance )
Then

(.) J/'W = f(y{i),F '(FizW + Sz'it)))
[) 0 = g(y(t),F-'(F(z(t)) + £z'(t)))

where £ = diag(ei,... ,£k), £j > 0
has always index-0 and the claim in 2.6 holds, if one replaces e by £ and

ua(t,e,\\z0 - G(y0)||,|iyo -yo||)

by
ua{t, \\£\\, po - G(i/o)||, Po - yo||).

Proof:
The proof is analogous to 2.4; but now Z£ is not defined by (2.4.1), but by

F-'(F(z£(t)) + £z'£(t)) = G(y(t)), ze(0) = 50, te[0,b]
F(z£(t))+£z,e(t) = F(G(y(t))), z£{0) = 50, < e [0,6]

4=^ Fi{zei{t))-\-£z'ei{t) = Fi(G(y(t))), z£i{0) = ~zoi, t G [0, b]
for i = l,... ,k

But these equations are decoupled. Therefore we can proceed as in the proof to 2.6, by 
dealing with the scalar equations rather than the complete system. ■

Remark:
Theorems 2.4-2.7 may be formulated with obvious modifications also for nonautonomous 
DAEs.

The presented introduction of perturbation parameters is by no means some kind of arti­
ficial technique as it may seem at a first glance. Actually, these small parameters can be 
given a physical meaning:
DAEs arise for example in electrical network analysis. If we consider a large class of net­
works, namely that composed solely of capacitors, resistors and current sources, then the

«
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vector of unknowns is given by the voltages in the capacitor-branches ( the ^-component ) 
and the voltages in the resistor-branches ( the ^-component ). Using KirchhofF’s laws we 
arrive at a DAE. But this model is somewhat idealized. It does not take into account so- 
called parasitic effects ( like lead inductance, stray capacitance ... ). To refine the model 
one can introduce parasitic elements ( by replacing each resistor by a resistor in parallel 
with a small capacity “e” ).
This procedure leads exactly to our regularized system: 2.4 describes the case when all 
resistors have nonlinear, strictly monotone increasing characteristics and all parasitic ca­
pacitances have the same order. However to be more exact one should allow parasitic 
elements of different magnitudes ( i.e. introducing i = 1,...) and this is exactly the 
situation considered in 2.6, 2.7 ( and the situation in the networks described leads always 
to a function F that satisfies the requirements in Theorem 2.7 ). A detailed discussion on 
regularization aspects for DAEs arising in electrical network analysis can be found in [Kn] 
and will be continued in a forthcoming paper.

3. Implicit Runge-Kutta Methods on Regularized DAEs

In this section we study the behaviour of implicit Runge-Kutta schemes when applied to 
our perturbed DAEs. Similar work for BDF-methods has been done by Lotstedt [L61], 
[L62]. We derive for a large class of methods applied to (2.4.1) with linear F bounds for 
the global discretization error that are uniform in h and e. The results extend easily to 
the situation considered in Theorems 2.6 and 2.7 ( i.e. the multiparameter-case ).
In the following we denote the Kronecker-product of square matrices by A <g) i? ( see e. 
g. [DV] ). Runge-Kutta methods are given by (s,A,b) where s is the number of stages,

S

A is the s x s - coefficient matrix and b is the vector of weights. We define c,- := E a{j.
j=i

Application of that method to an implicit differential equation F(t,x,x') = 0 then gives: 

Solve

Cih, xn + h ^ ^ '"ij
i=i

= 0 i = l,...,s

and compute
S

Xn-\-\ — %n “f" ^ biX^.
t-1
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This gives approximations xn to the true solution x(tn) where tn = t0 + nh. Equivalently 
if A is regular we can proceed as follows ( D (dij) = A~x ):

Solve

( 1+ \
\ tn Cih, Xi, / v dij(Xj %n) i

{ J=1 J 0, i = 1,..., s

and compute

s s

*^n+l T ^ ^ ^ dij(Xj Xn').
i=l j=l

Furthermore we will use the “simplifying conditions”: For p G IN a Runge-Kutta method 
(s, A, b) satisfies

B(p) : bic* 1 = ^ for fc = 1,... ,p
t=i

1C(p) : Y a.jcj-1 = -c- for f = 1,... ,s; A: = l,...,p
j=i

Later we will need the coefficients

„9 + l
d, :=

E a.jC^
i=i

(g + !)!
d := (d1,...,d,)'1

We denote the property that the local error is of order p by A(p), i. e. let xn+y be the 
approximation that the method computes within one step starting with xn x(tn). Then 
A(p) means

ll^n+i - x(<n+1 )|| < C'/ip+1 for all h G [0, h0] 

for a certain h0 > 0, C > 0.
We know ( see e. g. [DV] ) that for all x G Cp+1 ([fo, to + h]), property C(p) implies

x(t0 + Cih) = x(t0) + hY aijx'(t0 + Cjh) + 0(hp+1) i
j=i

x(t0 + h) = x(t0) + hY bix'(to + Cih) + 0(hp+1).
t=i

and B(p) implies
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While applying our method to the perturbed system we expect the numerical solution 
Vve ~ ye{tv)i zve ~ ze{tv) ( notation as in 2.4 ) to be dependent on two small parameters 
namely the perturbation-parameter e > 0 and the stepsize /i > 0. If e is considered to be 
fixed we can apply the classical theory and get bounds like

II y»e
|| V ZV£

ye{K)
ze(ti/ )

< Chp.

Since we want to have approximations for the true solution of the DAE z(t))T we
can derive from this ( by simply using the triangle-inequality )

y^e
Zuc

y(K)
z(t„) < Chp + yeM) _ (!!

zs(tu)J V2r(t1/)y||
1 S/^* 11 1 ^

—> 0 for £ —► 0

But the constant C always involves higher derivatives of the true solution of the perturbed 
system {ye(Kt),z£{i))T and these are in general unbounded in e ( since essentially z' is of 
the form z's(i) = e~l {z{t) — ze(t)) ).
If under these circumstances we want to keep the discretization error Chp small we have 
to choose h very small compared to e. Obviously this is not desirable in real computation. 
But since we know that (y£ (t), 2£.(<))T is close to (y(t),z(t))T we expect that appropiate 
methods will yield numerical solutions , .z„£ )T quite close to (y(t),z(t))T even if £ is 
small compared to h. We hope to arrive at estimates like

y^
zue

y{tu)
z(K)

ii
|l < Ci£ + C2hp,
II

where C\ does not depend on h and C2 does not depend on £. This way we would get

ii y^
|| V zi/e

J/e (^1/ ) 
ze{ti>')

< Cl £ + 0*2 /iP + ye{.K) \ _ ( y(tv) ) II 
2e(c)/ Vz(ft,)yjj

N/^1 1 y
—> 0 for £ —> 0

That means we have to avoid derivatives of (ye(t), ze(t))T in our error bound. The reward 
would be an error bound uniform in £ € [0,£o] and h E [0, ho] and we would not have to 
worry about restrictions like h < £ ( or similar ). The appropiate idea in this context is 
the B-convergence theory. There one deals with systems of ordinary differential equations 
y' — f{y) where / satisfies a one-sided Lipschitz condition (f(y) — /(^), J/ — z) < //||t/ — 2||2, 
where (.,.) is a scalar product. The crucial point here is that y may be negative. The goal 
of the B-convergence approach is to derive global error bounds Chv where C is not allowed 
to depend on the usual Lipschitz constant but only on the one-sided y. That way one gets 
error bounds that are uniform on classes of right hand sides /. This is important for stiff 
systems where it is characteristic that the usual Lipschitz constant is very large whereas 
the one-sided may be of moderate size. In our perturbed problem we deal basically with

»
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systems ez' = —z+ ••• and that means that the usual Lipschitz constant is essentially 1/e, 
whereas the one-sided Lipschitz constant could be taken as — 1/e or also /* = 0. Setting 
H = 0 represents a uniform one-sided Lipschitz constant suitable for every e > 0 and 
promises to lead us in the direction of uniform error bounds.
Since the requirement not to make use of the classical Lipschitz constant imposes re­
strictions on the kind of error bounds obtained it is not surprising that the order of 
B-convergence of a method may be lower than its classical order ( it may happen that 
a method is not B-convergent at all, but convergent in the classical sense ). In many cases 
the order of B-convergence reflects the practical behaviour of a method applied to a stiff 
system better than the classical order. For a detailed discussion on these aspects see the 
excellent book by Dekker and Verwer ([DV]).
Unfortunately we cannot apply the results of the B-convergence theory immediately to our 
perturbed DAEs. Although that way we get rid of the ( classical ) Lipschitz constant we 
still have higher derivatives of the analytical solution involved in the error bound. Also 
one can show that in general our perturbed system does not satisfy a one-sided Lipschitz 
condition with fi independent of e. But it turns out that we can use very similar techniques 
if we interlace the exact solution of the DAE ( which of course does not depend on e ). 
We will denote in the following

( Vi ■ Ik\
e := (1,...,1)T G HU, u<g)/fc:= ] € lRfcs><\

vT ®Ik:=(v1-Ik,...,vs-Ik)elRk*ks foruenr, E:=e®Ik.

Before we present our main theorem we will describe the some technical assumptions that 
are needed. Assuming (Al) is satisfied we will make use of

(A2) The underlying DAE (2.1.1) has an exact solution (y,z)T on an interval [<o,^] for 
an initial value (ycn^o) such that (y(t),z(t))T G ^ x S2. Note, that this implies 
g{yo,ZQ) = 0 ). y, 2, /, g are sufficiently smooth.

(A3) The numerical approximations computed by the underlying method and all stage 
values arising in this process remain in S\ x S2 for the initial value (yo,20), where 
z0 is sufficiently close to z0.

For (A2) we refer to the remark after Definition 2.1; (A3) is always satisfied when h is 
sufficiently small.
The main result of this paper is
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3.1 Theorem
Let (5, A, b) be an A-stable Runge-Kutta method such that A have eigenvalues with 
positive real part only and C(q), B(p) and A(p), where l > p + 1, are satisfied. Let 
(Al) and (A2) be satisfied.
M G with (Mx,x) > 0 for all x G for a inner product (.,.) on lRfc, £0 > 0,
||.|| the corresponding norm, <5 > 0,
Let (A3) be satisfied for the method applied to

y' = f(y,M~1(Mz + ez'))
0 = g(y,M-1(Mz + ez')),

eo — ^(^0)

Then
eyv := - y(t) - 0(hp)
e, := z* - z(t) = O(||e0||) + 0(e) + O(^) + 0(hp).

Furthermore, ifi/>(z) [bT (Is — Az)~* e]-1 bT(Is — Az)-1 d is uniformly bounded on 
(D- then we have

e, = O(||eo||) + 0(e) + 0(k«+1) + 0(hp).

Note that the crucial point here is that the starting value z0 is not required to be Zq. In 
this aspect our approach differs from that in [HaLuRo], [Ro].

Proof:
Without restriction we assume that the h0 mentioned in the assumption is small enough 
to meet all the requirements that will be made in the following proof.
At first we want to compute one step with our method starting at € 5i X S2

applied to (2.1.1), i. e. the e = 0 case.
The stage values V], Z,-, i = 1,..., s in that case are given as the solution of

Vi =y„ + h£
(3.1.1) j=1 ? = l,...,s

0 = g(Vt,Zt)

We are just interested in solutions Y[ G Si, Z,- G S2 (t = l,...,s), so this is equivalent 
with

Yi — Du A h 

Zi = G(Yt).

£
j'=i

aijf(Yj,G(Yj))
(3.1.2) i = l,...,s
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We want to apply the implicit function theorem to this system in order to derive the 
existence of solutions Yi(h) and therefore also Zi(h) that are continous in h.
The nonlinear system of equations to solve is

F(h,Y) = 0

where
F(h,Y) := (F^KY),... ,F.(h,Y))T

s

Fi(h, Y) :=Y-y^-hYl aijf(Yj,G(Yj)) for i = 1,..., s.
j=i

We have
F(0, yo)T) = 0, F? (0, Y) - Ims for all Y € lRms,

which allows us to solve for Y(h) as desired. In particular if h0 is small enough there exists
y e c([o,ho],nms) with

F(h,Y(h)) = 0 on [0,/i0].

Since
S

y.+i =y, + hY, bif(Yi(h),G(Yi(h)))
1=1

it is clear that for h small enough will be in S\. Also it is obvious that we have done 
nothing else than applying our method to the ODE y' = f(y,G(y)). Using the classical 
techniques one can derive the assertion for the y-component.

It remains to prove the assertion for the ^-component.
Define Me := -M.£ £

One step with our method for the regularized system requires stage values Yie, Zic satisyfing

Yie — 2/n + aijf(Yjc, Zje + Me 1 Zjc)
j=i *

0 = g(Yi',Zi'+M;1Z'ic)

where as usual Z'ie is implicitly defined by

5

(3.1.3) Zie = + hY^ aijZje i = l,...,s
i=i

Therefore it is obvious that
Yie := E,
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and Zj£ satisfies

(3.1.4)

If we denote

Zie + Me_1 Z-e = Zi, * = 1,...,s
ZL = M€(Zt — Zie), i - 1,... ,s.

( Zu \ j(z'\
y ‘ • * elRfcs, Zo := | \ elR**,

\ Z ^
^ se

■ zj

(3.1.3) and (3.1.4) lead us to

(3.1.5) = Ez^ + h(A ® Ik){Is ® M')(Z0 - Ze).

Using Lemma 2.4.6 in [Hu] we see that (3.1.5) has a solution Z£ for every /i > 0, £ > 0, 
since

{Iks + h{A ® M^)) 1 = (/ + hAz)\z*M' = (/ + hzA) 1 \z=m, ■

The approximation is given by

(3.1.6) z^+i = + h{bT <g> Ik){Is ® MC){Z0 - Ze).

If we denote in addition

/ 2(t/1 + Cih)\
Z, :=

\ 2(tM + csh) /

we have ( using Taylor-expansion )

I z'{t^ + Ci/*) ^ 

l ^(/^ + csh))

(3.1.7)
Zfj, — Ez{t^) + /*(/! (g) Ik)Z'fi +

z{tfi +h)= 2(/J + /*(6t 0 7fc)Z; + 0{hp+1),

where
= (d0 7fc)^+1) (/;t)M+1 + 0(M+2)

For the errors eM+1 := 2^+1 — z{t^ -f /*) and := z^ — 2(/^) we derive using (3.1.6) and
(3.1.7) :

(3.1.8) eM+1 = e#i + h(bT 0 7,)((7S 0 Me)(Z0 - Z£) - 2^) + 0(hp+1).

Further (3.1.5) together with (3.1.7) gives

(3.1.9) Ze-Z, = Ee„ + h{A,®Ik){{Is 0 Me)(i0 - Ze) - Z'J -
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To make use of that in (3.1.8) we need a relation between and Z0. In order to get this 
we return temporarily to the events in the y-component.
Remembering the beginning of the proof and defining F := /(., (?(.)) and

i
Di •= h J F’iYi+eiy^+ahyYi^dd (i = l,...,s), D := diag{Du ..., D3) e Uksxk3

o

we get ( as in [BuHuVe] ) ( is defined analogous to Z^)

(3.1.10) n - y = (Iks - (A® h)D)-1 {E{y, - y(t,)) + R.)

where
Rm = (d®/fc)^+1)(^)/i9+1 +0(/l?+2).

Observe that Rs — (A ® h)D is regular for h small enough ( since D = 0(h) ). Also 
(Rs ~ (^® Ik)D)~1 = Ik3 + 0(h) and therefore ( since y^ — y(t^) = 0(hp) with p> q + 1 ) 
we have Y^ —Y = 0(hq+1).
Using the mean value theorem for G and the s components in (3.1.10) we get

( G'iiftt^+dh)) ^
2^ - Z0 = I j (Y; - Y) + 0(h2q+2)

\ G'(y(t^ + csh)) /
= (Is ® G'Mt,))^ -Y) + 0(hq+2)
= (Is ® G'(y(t^))(EO(hp) + (d® 7fc)0(^+1)) + 0(hq+2).
= EG'di^W) + (d® 4)G'(y(*J)0(^+1) + 0(hq+2)

= EO(hp) + (d® lk)0(hq+i) + 0(hq+2) =: R,

Now insert this into (3.1.9) and we have

Zs — Zq — Ee^ + h(A ® Ik)((I3 ® AfI)(Zo — Ze) — Z'^) + R^ — rM.

But this means nothing else than

(hs + h(A ® ME))(Ze - Z0) = Ee^ - h(A ® h)^ + R^ -r^

*=> (Is ® M£)(Z0 - Ze) - zi =
(Is ® M£)(hs + h(A ® Ms))-1 [h(A ® Ik)Zl 

-Ee^ +rM - (hs + h(A® Me))(Is ® Ms)-1 Z^]
= (I, ® Ms)(hs + h(A ® Ms))'1 [-Ee, - (Is ® M,)"1 Z^ - R„ + rj .
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Inserting into (3.1.8) leads us to 

(3.1.11)

If we denote

eM+i = e„, + h(bT ® Ik)(Is ® ME)(hs + h(A® Mc)) 1-

•[-EeM - (/, ® Me)_1 Z' + r#1 - + 0(/rp+1).

iY(/i,£) := h{br ® Ik){Is ® ME)(Iks + h(A® Me))~x €JRk*ka, 

we finally arrive at

(3.1.12) eM+1 =[Ik-N(h,e)E]ell-N(h,e){(Is®ME)-1Zl+r>l-Rli\ +0{hp+1).

Since we have

it is clear that

Z'^Ez'^ + Oih)

(Is ® Me)~ z; = (Is ® M;1) {Ez') + O(/0] = E • M-1 z\t^ + e{Ia ® M~l )0(h) 
= eE ■ M~xz'{t^) + 0(eh).

Now we can write (3.1.12) as

cm+i = [h-N(h,e)E]efl-N(h,£) [eEO(l) + 0{eh) + - R^} +0{hp+1).

Using an induction argument yields 

ei/ = {Ik - N(h,e)Eye0+
E1 (h - N(h, e)Ey [-iV(fc, e)EO(e) - N(h, e)(0(eh) +rll-Rti) + 0{hp+1)] 
i=o

= (Ik - N{hae)EYe0 + {(h ~ N(h,e)Ey - lk)0(e)

+ E (h - N(h,e)Ey [-£){0{sh) + - R,) + 0(hp+1)] .
j=o

Furthermore we have

iV(/i,£) = h(bT ® Ik)(Is ® Ms)(Iks + h(A®Ms))~1 
= [hbTz(I + hzA)*1] 2_m .

If we denote the stability function of our method by

R(z) := 1 + zbT(Is — zA)~l e,
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we then have
Ik - N{h,e)E = R(-hMe).

If we further write the vector of polynomials pi(z) := —zbT(I — zA)~x we finally arrive at

e„ = R(—hMeye0 + (R(-hMe)v - l)O(e)

(3.1.13) 1/-1

+ £ R{-hMey
3=0

Pl(-hMs)(0{eh) + rti-Rll) + 0(hp+1)]

Because of the ^-stability we have \R( — hMe)\ < 1 for all h, £ > 0. This, and the uniform 
boundedness of px ( according to Lemma 4.2 in [BuHuVe], using the assumption on the 
eigenvalues of A ) and i/h — const, gives:

1/-1

e„ = R(—hMcye0 + 0(e) + £ R(-hMe)jPl(-hMe)(r^ - RJ + O(^).
3 = 0

But

i/-i
£ Ri-hM'Yp^-hM'yr^ - R„)
3=0

= (1 - - R(-hM'))-1 Pl(-hMc)EO(hp)

+ £ R(-hMeyPl(-hMe)(d® IkWh,'*1))
3=0

t/-l

= (1 - R(-hM£y)0(hp) + £ R(-hMtyPl(-hM')(d®Ik)0(h,1+1))
J = 0

and from this the first part of the assertion follows immediately. To prove the second part 
one uses that

1/-1

£ R(-hMcyPl(-hMs)(d®Ik) = (1 - R(-hMey)xl3(-hMe).
3=0

Having done that work already we can easily derive a multiparameterversion.
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3.2 Theorem:
Let the assumptions of 3.1 be satisfied, but replace this time in the DAE e by £ 
where
£ diag(ei with £; > 0 for i = 1,..., fc; M is assumed to be a diagonal
matrix and (.,.) denotes the Euclidean inner product
Then

e-yv ■■= yv - y{t) = 0(hp)
ev := z, - z{t) = O(||e0||) + 0(||£:||) + O(^) + 0{hp)

Furthermore, ifip{z) := [bT{Is — Az)~l e]~l bT(Ia — Az)~l d is uniformly bounded on 
(D- then we have

e, = O(||eo||) + 0(11^11) + 0(hq+1) + 0(hp).

Proof:
Denote Me := £_1 ■ M — M ■ £~1 and observe that for all x 6 IR*:

k

(Mex,x) = > 0,

since we have for all y £ 0 < (My,y) — E may}. Hence m,-, > 0 for t
t=i

Using this Me we can simply use the proof for 3.2; note that

= E ■ M-1 ■ Ez'^) + (Is ® M-'Kh ® £)0(h)

= EO(\\£\\) + Om\h).

The remainder is obvious.

3.3 Corollary:
Let the assumptions of 3.1 resp. 3.2 be satisfied.
Then

<V := Vv ~ Veif) = 0(hp)
ei/ ;= zv — ze{t) = O(||eo||) T o(£) + O^h11) + 0(hp).

Furthermore, if ip(z) := [bT(Is — Az)-1 e]~q bT(Is — Az)-1 d is uniformly bounded on 
<n~ then we have

e, = O(||e0||) + o(£) + 0(hq+1) + 0(hp)
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resp. corresponding assertion for £.

Remarks:
1. Discussion of some methods:
The question for which methods ip is uniform bounded on <D_ has already been discussed 
in some detail in [BuHuVe]. For example this is the case for the Radau-IA-, Radau-IIA-, 
and Lobatto-IIIC-methods. Remember that for the s-stage methods we have ( see e. g. 
[DV] ):

for the Gauss-methods : A(2s), B(2s), C(s) 
for the Radau-IA-methods : A(2s — 1), B(2s — 1), C(s — 1)

for the Radau-IIA-methods : A(2s — 1), B(2s — 1), C(s)
for the Lobatto-IIIC-methods : A(2s — 2), B{2s — 2), C(s — 1),

In the y-component the order of convergence is the same as for ODEs, i. e. /, if we have
A{1).
Now we are able to state the final results:
The following orders of convergence for s-stage Runge-Kutta methods applied to (2.4.1) 
with a linear F hold uniform in e near 0:

for the Gauss-methods : s if s > 2 ; 2 if s = 1
for the Radau-IA-methods : s

for the Radau-IIA-methods : s + 1 if s >2; 1 if s
for the Lobatto-IIIC-methods : s

1

The same orders of convergence are stated in [BuHuVe] as orders of B-convergence for the 
class of stiff ODEs

U\t) = QU{t) + g(t,U{t)),

where
(Qu,u) </3||ii||2 Vu G IT,

\\g(t, u) — g(t, h)|| < o:||u — u\\ Vit, u E IRn, t E IR.
This is of course no surprise since to a great extent our proof followed the lines of the proof 
in [BuHuVe] and consequently the assumptions in their theorem are exactly identical with 
our’s. Let us point out again that it is not possible to use their theorem directly since our 
perturbed system does not fit in the above mentioned form of a stiff ODE.
The same order of convergence holds for the unperturbed DAEs since the results remain 
valid for £ = 0. But these orders are not optimal in all cases for DAEs as we know after 
reading [Pe3] and [BuPe]. For the Radau-IA-, Radau-IIa-, and Lobatto-IIIC-methods they 
are indeed optimal, but it is known that the Gauss-methods yield order 6 + 1 if 6 is odd 
( and order s if s is even ). We do not intend to investigate this case here.
2. Comparison of Theorem 3.1 with an earlier result from Griepentrog [Gri]:
He considers

(*) y(t) e iRm 
z{t) E lRfc

y'(t) = f{i,y(t),z{t),e)
z'(t) = g(t,y{t),z(t),e) + jMz
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where the eigenvalues of the constant matrix M have negative real part. His result states 
uniform ( in £ ) order of convergence for this system.
In contrast to our regularization the one in (*) is linear in z'. On the other hand the 
idea behind our approach is an even simpler and also linear regularization ( “replace £ by 
z + £M_1z/” ) so that in principle we solve a very simple linear but discrete differential 
equation. The continous dependency of the right hand side in (*) presents no essential 
difference since our results could be easily modified to include this case also.
Griepentrog proves uniform convergence for all L-stable Runge-Kutta methods ( L-stable 
means A-stable and

lim R(z) = 0z—► — OO

holds, where R is the stability function of the method ).
But there is no discussion on the rate of convergence. For our regularization we were able 
to give an error-representation and order conditions. Furthermore our assumptions are 
less restrictive since there are Runge-Kutta methods that have a coefficient matrix with 
eigenvalue with positive real part but are not L-stable, e. g. the Gauss-methods. Another 
example is ( [Pe3], [HW] ):
Define a semi-explicit method by

/ 3±^
\ -\/3 3+73

3 6

b ( 0.5 A 
0.5 2

Obviously the real parts of the eigenvalues of A are positive. 
But this method is not L-stable since

lim R(z) = lW3
2 + ^3'

So our theorem is applicable whereas Griepentrog’s is not. This method satisfies 5(4), 
(7(1), A(3) and it can be shown that the corresponding ip is uniformly bounded on 
C- .Therefore Theorem 3.1 shows that the uniform order of convergence in the y-component 
is 3 and in the ^-component 2.
2. Influence of the initial error cq:
From the error-representation in Theorem 3.1 we see that eo is propagated after u steps 
with stepsize h as R(—hMey e0. Since we assume A-stability this term is always bounded 
by cq. For /i > 0, £ > 0 we have R(—hMs) < 1 so that the influence of e0 decreases with an 
increasing number of steps. Keeping in mind that we are interested in an approximation 
for the £ = 0 case this means that the numerical solution of the perturbed system tends 
to the true solution of the reduced system within 0(e) even if we use an incorrect initial 
value in the z-component. ( Note that perturbations in the y-component influence the 
numerical solution in the same way as they do for ordinary differential equations since in 
that component we simply solve an ordinary differential equation ). However in case £ = 0 
and we use an L-stable method ( i. e. R(—oo) = 0 ), then after one step the error eo no
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longer influences the numerical solution.
If the method satisfies |i?( —oo)| = 1 ( as is the case for the Gauss-methods ) then the 
influence of e0 on the numerical solution of the reduced system will not decrease; it will 
remain in the amount of ||eo|| and therefore the numerical solution will not come close to 
the true solution but will remain in a tube with diameter ||e0|| + 0(e) around it. But if 
we compute the numerical solution of the perturbed problem the e0-term will die away 
( since R(—hMs) < 1 even if the method is not L-stable ) and therefore the numerical 
solution will tend to the true solution of the reduced problem within 0(e). Consequently 
in this situation it is of significant advantage to solve the perturbed system rather than the 
unperturbed one. The effects described can actually be observed in numerical experiments 
( see [Kn] ).
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