

BNL 38821
CONF-861111-13

Critical Magnetic Scattering from the Heisenberg Ferromagnet EuS

P. Böni and G. Shirane
Brookhaven National Laboratory
Upton, N. Y. 11973

BNL--38821
DE87 002141

and

H.G. Bohn and W. Zinn
IFF/KFA Jülich
D-5170 Jülich
Federal Republic of Germany

Abstract

The paramagnetic scattering from the insulating, isotropic ferromagnet EuS is investigated at T_c along the [111] direction by means of inelastic neutron scattering. The energy width of the quasielastic scattering is proportional to q^z with $z = 2.54 \pm 0.10$, in good agreement with the predictions of dynamical scaling theory ($z = 2.5$). z is, however, significantly larger than the value deduced from measurements along the [100] direction ($z \sim 2.2$). Near the zone boundary the magnetic scattering exhibits shoulders the shapes of which deviate from theoretical predictions based on the Heisenberg model.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EHO

I. Introduction

The insulating compounds EuS and EuO have been studied extensively in the past¹ because these systems are almost ideal realizations of the isotropic cubic Heisenberg ferromagnet. The theory of these systems is in a relatively advanced state and many theoretical predictions have been confirmed by experiment², for example in EuO, dynamical scaling has been established over four decades in energy³ and the lineshapes of the magnetic scattering are well reproduced in terms of an effective Heisenberg model by Shastry, Edwards and Young^{4,5} near the zone boundary and by renormalization group theory⁶ near the zone center⁷.

The spin dynamics are expected to be more complicated in EuS than in EuO, because of the competing exchange interactions and the strong dipolar anisotropy⁸. In fact, the spin wave dispersion below T_c is very anisotropic⁹. Recently, Bohn et al measured the q -dependence of the linewidth along the [100] direction at T_c and deduced a dynamical scaling exponent¹⁰ $z = 2.09 \pm 0.06$, in contradiction to the dynamical scaling¹¹ value $z = 2.5$ (2.46, if Fisher exponent is included). This deviation was attributed to dipolar interactions¹⁰.

In this paper we report on an inelastic neutron scattering study of the spin dynamics of EuS at $T = T_c$, performed in the [111] direction, in order to investigate the anisotropy of the paramagnetic scattering at T_c . The new results are compared with recent measurements conducted in the [100] direction¹⁰ and the scattering profiles are compared with some recent theoretical predictions^{4,12}.

I. Experimental

The measurements were performed on the same single crystal sample of

isotopically enriched ^{153}EuS used in previous studies^{9,10}. EuS crystallizes in the NaCl structure. The lattice constant at T_c is $a = 5.95 \text{ \AA}$ and the nearest neighbour distance $d^*_{[111]} = 1.83 \text{ \AA}^{-1}$. The experiments were performed at the cold source of the Brookhaven High Flux Beam Reactor. We have determined the Curie temperature $T_c = 16.6 \text{ K}$ by measuring the temperature dependence of the critical magnetic scattering.

The data was collected in the forward direction with fixed final neutron energies $E_f = 2.5, 3$ or 4 meV . Pyrolytic graphite crystals set for the (002) reflection were used for the (double) monochromator and the analyzer. A cooled Be filter removed higher order neutrons. The energy resolution was between 0.040 meV and 0.14 meV full-width at half-maximum. For more details see Ref. 3.

III. Magnetic Scattering at T_c

All measurements of the paramagnetic scattering at T_c were conducted in the constant- Q mode of operation. Some typical scans are shown in Figs. 1 and 2. The nonmagnetic background has been determined by measurements below T_c . In Fig. 1 we have subtracted the elastic peak which is mostly due to incoherent scattering (q independent) and amounts to 22% of the magnetic scattering in (a) and to 55% in (b). In Fig. 2 we have subtracted a room background of about 1.5 counts/min from the data. Near the zone boundary q_{ZB} the intensity of the incoherent scattering is about one order of magnitude larger than the magnetic scattering and cannot be subtracted reliably. The magnetic scattering is centered around $E = 0 \text{ meV}$, its intensity decreases roughly like q^{-2} and broadens rapidly with increasing q .

We have parametrized the magnetic scattering by fitting the data with the scattering function

$$S(q, E) = 2kT\chi(0) \frac{\kappa_1^2}{q^2 + \kappa_1^2} F(q, E) \frac{E/kT}{1 - \exp(-E/kT)} \quad (1)$$

where κ_1 is the inverse correlation length, $\chi(0)$ the static susceptibility and $F(q, E)$ a spectral weight function. We have analyzed the small q data by assuming for $F(q, E)$ a Lorentzian

$$F_L(q, E) = \frac{1}{\pi} \frac{\Gamma}{E^2 + \Gamma^2} \quad (2)$$

where the line width $\Gamma = A q^{2.5}$. The solid lines in Fig. 1. represent fits to Eq. (1) with $F(q, E) = F_L(q, E)$, convoluted with the resolution function. The free parameters were a normalization constant, the spin diffusion constant A and the room background.

The data at larger q has been fitted to the three pole approximation¹³

$$F_S(q, E) = \frac{1}{\pi} \frac{\tau \delta_1 \delta_2}{E^2 \tau^2 (E^2 - \delta_1^2 - \delta_2^2)^2 + (E^2 - \delta_1^2)^2} \quad (3)$$

with $\tau = \left(\frac{2}{\pi \delta_2}\right)^{1/2}$ and the frequency moments $\delta_1 = \langle E^2 \rangle_q$ and $\delta_1 \delta_2 = \langle (E^2 - \langle E^2 \rangle_q)^2 \rangle_q^2$.

These parameters are known⁵. We compare the profiles predicted by theory¹⁴ with the measurements in Fig. 2. The only free parameter during the fitting procedure was a normalization constant for the magnetic scattering. Both, calculation and data show that shoulders develop at finite energy near the zone boundary. The agreement with theory, however, is much less satisfactory

than it was for EuO (Ref.3) and for EuS (q along [100])¹⁰, where theory agrees well with experiment. According to correlation theory¹² (at $T = 1.1T_c$), one would expect a peak at finite energy near $\zeta = 0.3$, which should vanish again at the zone boundary ($\zeta = 0.5$). Our data do not support this either. Both types of theories, based on the Heisenberg model, fail to predict the correct scattering cross sections. The lineshapes will be discussed in another publication¹⁵ in more detail.

In Fig. 3 we have plotted the linewidths versus q in a log-log representation. The linewidths for $\zeta \geq 0.25$ ($q = 0.46 \text{ \AA}^{-1}$) have been obtained by fitting the data to Eq.(1) with $F(q,E) = F_S(q,E)$ and determined the half-width at half-maximum (HWHM) from the fitted parameters δ_1 and δ_2 as described in Ref. 3. Above $\zeta = 0.30$ ($q = 0.55 \text{ \AA}^{-1}$) the HWHM starts to saturate. Therefore we have determined the critical exponent z by fitting the line widths to the power law $\Gamma = A q^z$ taking into account the data for $0.09 \text{ \AA}^{-1} \leq q \leq 0.46 \text{ \AA}^{-1}$ only. We obtained $A = 2.1 \pm 0.3 \text{ meV A}^z$, $z = 2.54 \pm 0.10$, in good agreement with dynamical scaling theory¹¹ which predicts $z = 2.5$.

IV. Discussion

Neutron measurement along the [100] direction in EuS at T_c have recently been extended to smaller q by means of neutron spin echo techniques. The line widths are proportional to $q^{2.2}$ over nearly four decades in energy¹⁶. We have indicated these results in Fig. 3 by means of a dotted line. The line widths for $q \leq 0.2 \text{ \AA}^{-1}$ are isotropic, where as for $q \geq 0.25 \text{ \AA}^{-1}$ they are larger along [111] than along [100]. This apparent discrepancy can be traced back to the use of a double Lorentzian spectral weight function¹⁷ in Ref. 10. In fact, the magnetic scattering for q along [100] extends to higher energies

than for q along [111] as expected, since the spin wave energies below T_c are also larger⁹ along [100].

The most important result from the preceding section is the good agreement of the exponent z with dynamical scaling theory for q along [111]. The exponent is, however, significantly larger than $z = 2.2$ (Ref. 16) or $z = 2.09 \pm 0.06$ (Ref. 10), the measured values deduced from line width measurements with q along [100]. The latter value has been explained by dipolar interactions. Dipolar dynamics are expected to dominate the isotropic critical behavior ($z = 2.5$) for $q < q_D = 0.27 \text{ \AA}^{-1}$ and z is expected to cross over to 2 (Ref. 18). The dipolar wave vector q_D has recently been verified directly in EuS and EuO by polarized neutron scattering¹⁹.

One may speculate that there should be no dipolar crossover at all at T_c along [111] by the following reason: The spin wave spectra at low temperatures exhibit no energy gap along [111], because [111] is the easy axis of magnetization. Therefore there is no dipolar contribution to the exchange energy. On the other hand, our new data may also be interpreted in the following way. Above $q \approx q_D$ the system is in the isotropic region where dynamical scaling is valid ($z = 2.5$). For $q < q_D$ we observe the dipolar cross over to $z = 2$. In order to test the above conjectures it is necessary to extend the measurements to smaller q along [111].

We do not understand, why no dipolar crossover has been observed in neutron scattering studies in EuO, since $q_D = 0.15 \text{ \AA}^{-1}$ lies well within the q range investigated. Is it the competing exchange interactions in EuS, which are absent in EuO? We hope that the present line width measurements will be extended to smaller q along different symmetry directions in EuS and EuO in order to obtain a better understanding of the influence of dipolar interactions on the critical dynamics.

Acknowledgments

We are grateful to R. Chaudhury and B. Sriram Shastry for illuminating discussions. Work at Brookhaven was supported by the Division of Materials Sciences, U.S. Department of Energy under contract No. DE-AC02-76CH00016.

References

1. For a review, see P. Wachter, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneidner and L. Eyring (North-Holland, Amsterdam, 1979), Vol. 2, Chap. 19.
2. L. Passell, O. W. Dietrich, and J. Als-Nielsen, *Phys. Rev. B* 14, 4897 (1976); 14, 4908 (1976); 14, 4923 (1976), and references therein.
3. P. Böni and G. Shirane, *Phys. Rev. B* 33, 3012 (1986).
4. B. Sriram Shastry, D. M. Edwards, and A. P. Young, *J. Phys. C* 14, L665 (1981).
5. A. P. Young and B. S. Shastry, *J. Phys. C* 15, 4547 (1982).
6. R. Folk and H. Iro, *Phys. Rev. B* 32, 1880 (1985); and preprint.
7. P. Böni, M. Y. Chen, and G. Shirane, unpublished.
8. S. H. Charap and E. L. Boyd, *Phys. Rev.* 133, A811 (1964).
9. H. G. Bohn, W. Zinn, B. Dorner, and A. Kollmar, *Phys. Rev. B* 22, 5447 (1980).
10. H. G. Bohn, A. Kollmar, and W. Zinn, *Phys. Rev. B* 30, 6504 (1984). 11. B. I. Halperin and P. C. Hohenberg, *Phys. Rev.* 177, 952 (1969).
12. Per-Anker Lindgård, *J. Appl. Phys.* 53, 1861 (1982); *Phys. Rev. B* 27, 2980 (1983).
13. S. W. Lovesey and R. A. Meserve, *J. Phys. C* 6, 79 (1973).
14. We thank B. S. Shastry and R. Chaudhury for providing us with the values δ_1 and δ_2 for $T = 1.051 T_c$, which should be a good approximation for $T = T_c$. Please note that the 3-pole approximation does not work for $T < 1.05 T_c$.
15. H. G. Bohn et al, unpublished.

16. H. G. Behn, private communication.
17. The spectra in Ref. 10 have been fitted to a double Lorentzian spectral weight function with peaks at $\pm E_q$. The line width of these peaks is always smaller or equal than the width of a single Lorentzian centered at $E = 0$.
18. W. Finger, Phys. Lett. 60A, 165 (1977).
19. J. Kötzler, F. Mezei, D. Görlitz, and B. Farago, Europhys. Lett. 1, 675 (1986); 2, 159 (1986).

Figure Captions

1. Typical constant- q scans performed at T_c . The elastic background has already been subtracted. The solid lines are fits to the cross section (Eq.(1)), assuming a Lorentzian spectral weight function.
2. Constant- q scans performed near the zone boundary. The room background has already been subtracted. The shoulders at finite energy are more pronounced than the theory predicts (solid lines).
3. The data points represent line width measurements along the [111] direction. The broken line indicates measurements along the [100] direction^{10,16} with $z = 2.2$. The arrow at $q_D = 0.27 \text{ \AA}^{-1}$ indicates the dipolar wave vector. The horizontal bars indicate the energy resolution of the various experimental setups.

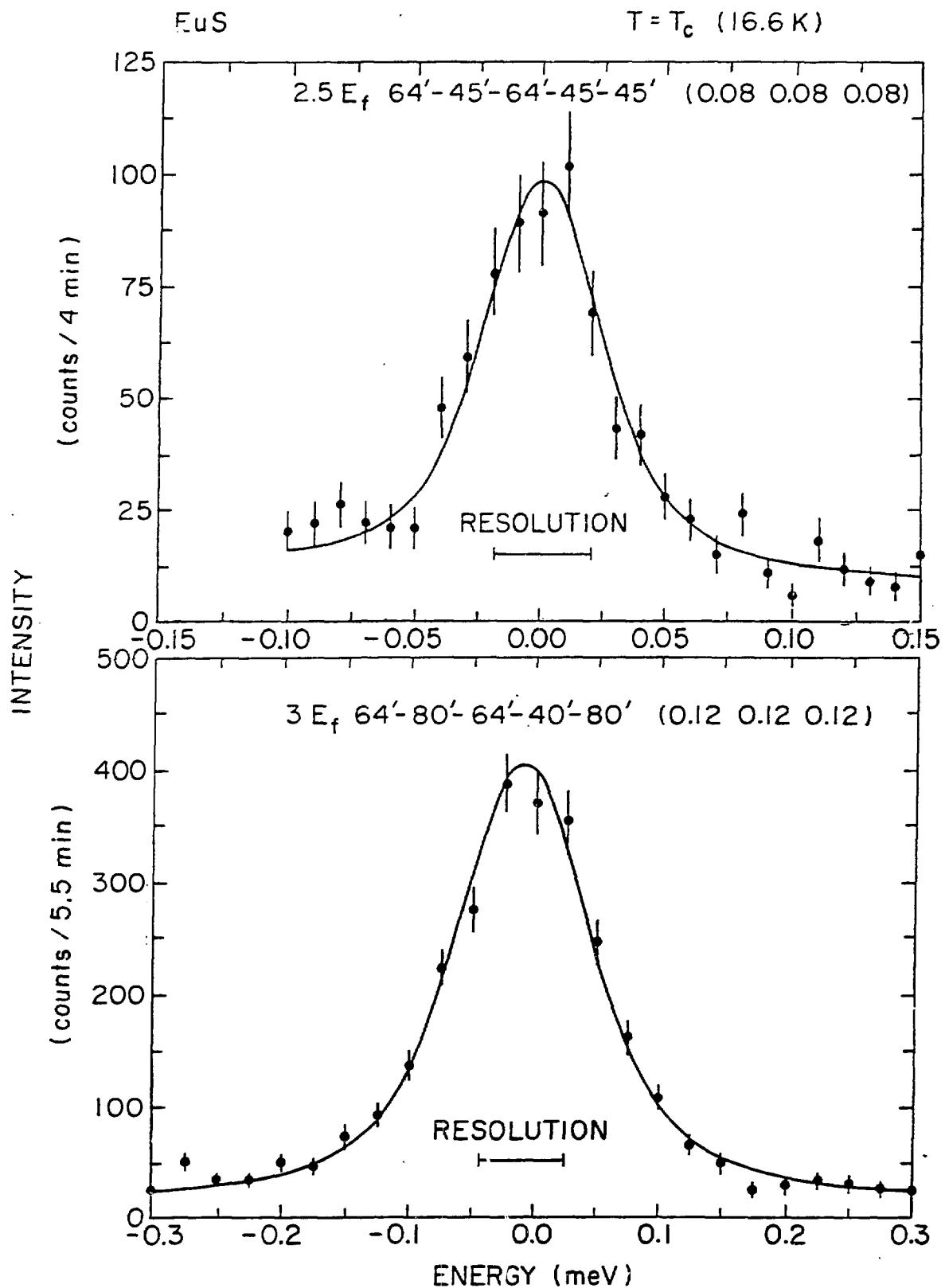


Figure 1



Figure 2

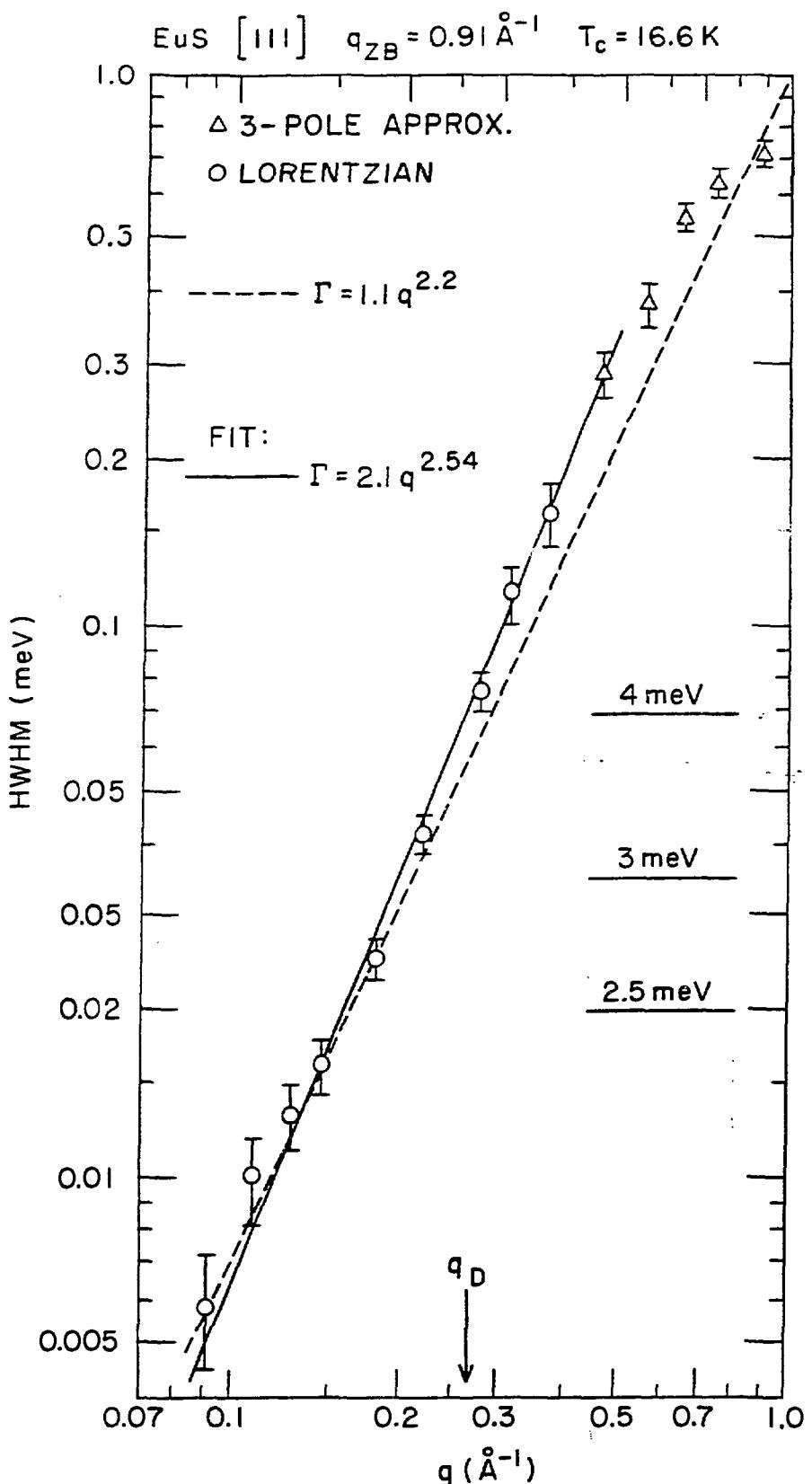


Figure 3