
oral 
*d /% H I b I 

£ £ . r s ^ ^ f ' & -J! I I % £ &» k-
\ & ' if I f T M I B S i VSMU* I I Pi M&ANL/RSIC-44 I M T O 

y s r t d 1 L b 

O D t f v - I - -

A Review of the 
Theory and Application of 

Monte Carlo Methods 
Proceedings of a 

Seminar-Workshop, 
Oak Ridge, Tennessee 

April 21—23, 1980 

Edited and Compiled by 
D. K. Trubey and B. L. McGill 

DISTRIBUTION 6'F THIS DOCUMENT IS UNUMITEB 

OAK 
RIDGE 
NATIONAL 
LABORATORY 

/ 

• <L 

. . • „ » " • / . , . / 

' ;.. • . / • -
•' . "' v. ' * - .. '/ ' ,.•'•'' 

k '." /: '' ' » 

• / . . • 
' ' i' ' : ' • ' ' • • ' ; . ' t- / •; 

< O P E R A T I D I T " 
UNION CARBIDE CORPORATION 
FOFT THE UNITED STATES 
DEPARTMENT OF ENER^JJ. 



O R N L / R S I C - 4 4 

Contract No. W-7405-eng-26 

Radiation Shielding Information Ccntci (RSIC) 
Engineering Physics Divtsion 

A Review of the 
Theory and Application of Monte Carlo Methods 

Proceedings of a Seminar-Workshop, Oak Ridge, Tennessee 
April 21-23, 1980 

^ Date Published: August 1980 

Edited and Compiled by 
D K. Trubey and B. L. McGill 

Note: 
This work is partially supported by 
DEFENSE NUCLEAR AGENCY 

under 1ACRO-DNA80-819 
and ; 

U.S. NUCLEAR REGULATORY COMMISSION 
NRC No. 48 20 25 60 8 

OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, Tennessee 37830 

operated by 
UNION CARBIDE CORPORATION 

for the 
DEPARTMENT OF ENERGY 

• D I S C L A I M E R • 

This book was prepared a* on account of work sponsored by an agency of the United Stales Government 
Neither tlw United S d t t i Government nor any «gcrcy thereof nor an/ of their employees makes any 
warranty e«P«ns or implied or assumes any legal liability or responsibility tor the accuracy 
complete™-1" usefulness o l any information appareius product or process disclosed or 
represent* that its use would not infringe privately owned rights Reference herein to any specific 
commercial product process or sorvice by trade name trademark manufacturer or otherwise does 
not necessarily constitute or imcW its endorsement recommendation or favoring by the United 
States Government or any agency thereof The views and opinions of authors expressed herein do r ot 
necessarily state or reflect those of 1he United States Government or any agency thereof 

DISTRIBUTION 8F THIS DOCUMENT IS UNLIM1T 



TABLE O F CONTENTS 
it 

Page 

Abstract v 

Foreword and Acknowledgments vh 

Panel Seminar Summary—"Monte Carlo in the 1980s," E. D Cashwell, E. M 0 

Gelbard, and M. H. Kalos 1 

Session 1 I 

J 
Monte Cailo Applications at Hanford Engmeei ing Development Laboratory, L. L. ,. 
Carter and R. J. Morfoid (Hanford Engineering Development Laboratory) 7 

VIM—A Continuous Energy Monte Carlo Code at ANL, R N. Blomquist, R. M. 
Lell, and E. M Gelbard (Argonne National Laboratory) 31 

Monte Carlo Perturbation Theory m Neutron Transport Calculations, Matthew C. 
G Hall (Imperial College, London) 47 

Study of Perturbations Using Correlated Monte Cailo Method, G. Dejonghe, J 
Gonnoid, and J C Nimal (CEA/CEN/Saclay SERMA Shielding Laboratory, 
France) 63 

TRIMARAN• A Three Dimensional Multigioup PI Monte Cailo Code for 
Criticality Studies, G. Ermumcu, J. Gonnord, and J. C. Nimal (CEA/CEN/Saclay 
SERMA Shielding Laboratory, France) 95 

KENO Calculations of Light Water Fuel Lattices, M. J. Hebert, J. A. Handschuh, 
E. E. Pilat (Yankee Atomic Electric Co.), D. R. Hairis (Rensselaer Polytechnic 
Inst.), and J. A. Mayer (Worcester Polytechnic Inst.) 107 

KENO V—The Newest KENO Monte Carlo Criticality Program, N F. Landers 
and L M. Petne (Union Carbide Corp., Nuclear Division, Computer Sciences 
Division at Oak Ridge National Laboratory) 121 

Session 2 

Geometry Modeling for SAM-CE Monte Carlo Calculations, H. A. Steinberg and 
E. S. Troubetzkoy (Mathematical Applications Group, Inc.) 129 

Nuclear Data Treatment for SAM-CE Monte Carlo Calculations, H. Lichtenstein, 
E. S. Troubetzkoy, and M. Beer (Mathematical Applications Group, Inc.) 137 

Monte Carlo Methodology as Implemented in SAM-F, E. S. Troubetzkoy and H. A. 
StJnberg (Mathematical Applications Group, Inc.) ]43 

i 



Radiation Streaming with SAM-CE, N. De Gangi, M. O. Cohen, E. Waluschka, 
and H. A. Steinberg (Mathematical Applications Group, Inc.) 151 

TRX and U02 Benchmark Criticality Calculations with SAM-CE, M. Beer, E. S 
Troubetzkoy, H. Lichtenstein (Mathematical Applications Group, Inc.), and P. F. f 

, Rose (Brookhaven National Laboratory) 157 

The Recursive Monte Carlo Method for Deep-Penetration Problems, M. Goldstein 
(Nuclear Research Center-Negev and Department of Nuclcar Engineering, 
Ben-Gurion University of the Negev, Beer-Sheva, Israel) and E. Greenspan 
(University of Illinois ) 169 

( 1 

The Monte Carlo Lattice Program KIM, E. Cupini, A. De Matteis, and R. 
Simonim (Comitato Nazionale Energia Nucleare, Bologna, Italy) 189 

An Analysis of Ex-Core Detector Response to Core-Water Level Using Monte 
Carlo Techniques, R. J. Cacciapouti, R. D. Luciei (Yankee Atomic Electric Co.), 
D R. Harris, and D. Napohtano (Rensselaer Polytechnic Inst.) 197 

/ 

Adjoint MC Techniques and Codes for Organ Dose Calculations, L. Koblinger 
(Central Research Institute for Physics, Budapest, Hungary) 203 

Session 3 

Calculational Problem for Deep Penetration of Neutrons Through a One-Bend 
Sodium Duct, E. Sartori (Nuclear Energy Agency Data Bank, Saclay, France) 219 

> 

The Status of Monte Carlo at Los Alamos, W. L. Thompson and E. D. Cashwell 

(Los Alamos Scientific Laboratory) 231 

Geometry m MCNP, Thomas N. K. Godfrey (Los Alamos Scientific Laboratory) 247 

Flux at a Point in MCNP, Edmond D. Cashwell and Robert G. Schrandt (Los Alamos Scientific Laboratory) 253 

^Deep-Penetration Calculations, W. L. Thompson, O. L. Deutsch, and T. E. Booth 
jjLos Alamos Scientific Laboratory) 267 

Experience with TRIPOLI at ORNL, S. N. Cramer and R. W. Roussin (Oak Ridge 
National Laboratory) 2S5 .> t 
MORSE: Current Status of the Two Oak Ridge Versions, M. B. Emmett and J. T. ih 

West, III (Union Carbide Corp., Nuclear Division, Computer Sciences Division at 
Oak Ridge National Laboratory) 305 

Overview on TRIPOLI 2, J. Gonnord, A. Baur, L. Bourdet, G. Dejonghe, A. 
Monniei, J. C. Nimal, and T. Vergnaud (CEA/CEN/Saclay SERMA Shielding 
Laboratory, France) 313 

i i 



n 

Papers not presented orally 

Variance Reduction Techniques Using Adjoint Monte Carlo Method and Monte 
Carlo - Monte Carlo Coupling in Deep Penetration Problem, Kohtaro Ueki 
(Nuclear Ship Division, Ship Research Institute, Japan) 329 

Applicability of Monte Carlo Code KENO-IV, H. Yamakoshi (Ship Research 
Institute, Ministry of Transport of Japan) 345 

i x i 



n ABSTRACT f"i 
^ This report consists of 24 papers which were presented at the seminar on Theory and 
Application of Monte Carlo Methods, held in Oak Ridge on April 21-23, plus a summary of the 
three-man panel discussion which concluded the seminar and two papers which were not given 
orally. These papers constitute a current statement of the state of the art of the theory and 
applicauon of Monte Carlo methods for radiation transport problems in shielding and reactor 
physics, i 
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FOREWORD and ACKNOWLEDGMENTS 

The seminar-workshop on Monte Carlo Theory and Application, held in Oak Ridge on April 
21-23, was the first of its kind in which RSIC collaborated on an international basis. The Monte 
Carlo methods development of the CEA/CEN/Saclay SERMA Shielding Laboratorjpvas featured 
in the workshop and OECD Nuclear Energy Agency (NEA) Data Bank personnel assisted in 
advance preparations. The meeting was attended by 110 people and provided a well-rounded review 
of the state of the art. A total number of 53 institutions were represented from eleven 
nations: Brazil, Canada, France, West Germany, Hungary, Israel, Italy. Japan, Sweden, United t j , 
Kingdom, and the 'USA. , / 

ij 
The presentations included surveys of applications at various laboratories, discussions of new 

techniques, and descriptions of particular code systems. Both shielding and reactor core applications 
were discussed. 

The survey papers summarized applications at Argonne National Laboratory (principally the 
use of VIM), Hanford Engineering Development Laboratory (KENO and MCNP), Los Alamos 
Scicntific Laboratory (MCNP), and Oak Ridge National Laboratory (MORSE, KENO, and 
TRIPOLI II). Extensive presentations were made on SAM-CE (MAGI) and MCNP (LASL) 
Additional overviews were given on KENO V> (ORNL), TRIMARAN and TRIPOLI II 
(CEA'/CEN/Saclay), KIM (CNEN), and new MORSE modules (ORNL). Reports were given on 
perturbation theory to obtain sensitivities, on recursive Monte Carlo to develop importance , 
functions, and applications of TRIPOLI II to sodium duct and integral experiment analysis. Other 
papers were given on analysis of LWR lattices, thermal reactor benchmarks, ex-core water level 
detectors, and biological organ dose estimates. 

Two contributions of the Japanese Ship Research Institute, not presented orally, appear in 
these proceedings. 

(i 
A summary panel of "three wise men" concluded the seminar and gave extemporaneous 

comments and some forecasts for the years ahead. The three panelists were Ely M. Gelbard (ANL), 
Malvin H. Kalos (Courant Institute), and Edward D. Cashwell (LASL). 

The workshop on TRIPOLI II was led by J. C. Nimal, J . R. Gonnord, ancl T. Vergnaud of the 
CEA/CEN/Saclay SERMA Shielding Laboratory. TRIPOLI II is a very complex, but powerful 
general purpose particle transport code which treats neutrons and gamma rays for both core physics 
and shielding problems. The geometry treatment is quite general and cross sections, in a very fine 
multigroup form, can be taken from ENDF, UKNDL, and other sources. The impoitance sampling 
is based on a highly-developed system using equal-weight surfaces which, when properly used, 
minimizes splitting and Russian Roulette. A particularly important recent development with this 
system is the interfacing of the code to E N D F / B formatted data and/or multigroup data in AMPX 
format. 

We are grateful to our French colleagues, Nimal, Gonnord, and Vergnaud, for their very 
significant and successful efforts on behalf of making the TRIPOLI system available for use in other 
countries. We are also grateful to the CEA for its support in making the workshop possible. We also 
wish to express our appreciation to Enrico Sartori, IAEA representative to the OECD NEA Data 
Bank, for his assistance in testing and packaging TRIPOLI II and KIM, and to Noel Cramer of 
O R N L / E P D for special assistance in preparation for the seminar-workshop. 



We are grateful to: authors of the papers for submitting their manuscripts in camera-ready 
form; Eddie Bryant, Nancy Hatmaker, Mildred Landay, and Marie Anthony for their services in 
program preparation, proceedings preparation and publication, and registration of attendees; 
banquet speaker, Johnny Rosen; Betty Maskewitz for general management; and to R. W. Roussin, 
R. M. Westfall, and others who chaired sessions of the meeting. 
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MONTE CARLO IN THE 1980s 

Summary of a Panel Discussion 

Panel Members: 
E. D.' Cashwell 

0 Los Alamos Scientific Laboratory 
E. M. Gelbard 

Argonne National Laboratory 
M. H. Kalos 

New York University 

E. M. Gelbard: The title of the panel suggests that we're supposed 
to tell you what will happen to Monte Carlo in the next decade, and I 
think we would be very rash to try to tell you what will happen to anything 
in the next decade, particularly anything in nuclear energy. I think 
that the most we can do is to say what we would like to happen. ,1 think 
that no one can help being impressed by the power of the Monte Carlo 
codes that have been described here. Codes seem to be available now to 
solve the most complicated problems and they seem to be getting more and 
more user-oriented, and to that extent it seems that really a great deal 
of progress has been made, so it seems a reasonable time to ask: "What 
more could be done?" "Where do we go from here?" "Is there anything 
that hasn't been done that ought to be done?" Everybody surely has a 
personal opinion here, depending on his own prejudices and experience. 
My feeling is that there are a number of things I would like to see, a t, 
number of changes I'd like to see—and improvements of both Monte Carlo 
usage and Monte Carlo methods. They are really two different subjects. 

First of all, I have the feeling that Monte Carlo hasn't been used 
in some respects as well as it could be. There'are some uses of Monte 
Carlo that have fallen by the wayside. Monte Carlo could be used to 
benchmark computational methods much more than It has been. Yet to some 
extent it has done that. I think we've seen that in the talks. But for 
one thing Monte Carlo could be used to benchmark the whole computational 
method. That is, we do slowing do™ calculations. We get group constants. 
We compute fluxes in cells. We group averaged, and in the group averag-
ing we have to compute resonanc^ escape probabilities and Dancoff factors, 
and when we're all finished we end up with a very complicated problem'. 
Let's say we have a lattice that's facing a water channel, and we've 
got to make assumptions about Dancoff factors. Every stage of that 
calculation could be benchmarked by Monte Carlo techniques. 

I think that it would be interesting also to develop specialized 
Monte Carlo techniques that are simplified and specially designed for 
benchmarking—very accurate and, very fast. This could be done, but in 
the drive to get production-oriented codes, this kind of use of Monte 
Carlo has fallen away. I think that part of the reason that this has 
happened is that first of all there are two different kinds of people— 
they don't have enough contact with each othe'T. I should think that 

^
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I 
that's something that ought to change. People who work on Monte Carlo 
and people who work on deterministic methods ought to communicate more. 
Calculations by/deterministic methods ought to be checked more by Monte 
Carlo to find errors and to understand approximations. 

f 

My second''point is that I think that it's unfortunate that when most 
"critical experiments were done, Monte Carlo codes were not available,to 
do detailed analysis. So people fell into the habit of analyzing criticals 
by approximate techniques, and corrections wer;e piled on top of corrections-
until when you finally get to compare the calculation with the experiment, 
0 b u don't really know what you're comparing. We've reached the stage now 
/where we can set up great detailed simulation of a critical and make 
'^essentially no approximations except those in the cross sections. That 
has not been done very much. There are very few cases. The TRX lattices 
we saw here are«an example, and the safety-related criticals which were 
mentioned in the talk on VIM were another example. I don't know whether 
the information is even available anymore. If it's not, I think it's 
unfortunate; if it is, I think that a lot of old criticals should be 
reanalyzed in detail. If anybody wants to measure criticals in the 
future, I think they should be set up so that the description of the 
construction of the critical goes directly on cards so it can be* put 
directly/,on cards so it can be put directly into a Monte1 Carlo code. If 
you/don't do this, you have an enormous amount of difficulty just putting 
together a picture of the drawers and coming up with Monte Carlo input,.^"""" 

/' " / 
^ As fat as the development of methods is concerned, the one thing' 
that bothers me a^lot has Lo„ do with safety calculations; it is that the 
perturbation method cannot handle a very important safety problem in 

//which voids close or collapse. That can either be d sodium voiding 
/> problem, which is the most common type, or another clasfi' of problems in 
T which in a fast reactor you have a molten pool or you^'riave had a melt-

down—you have a molten pool with bubbles in the pool'; and something 
happens; the bubbles close. This is a kind of accident. You'd like to 
calculate the.reactivity insertion. There is na analytic technique that 
anybody can use that is reliable. Monte Carlo seems to be an ideal way 
to benchmark „fhat kind of calculation, but we can't do that kind of 
calculation $Jv Monte Carlo. This is a kind of calculation that, as far 
as I know, you cannot do" by Monte Carlo. People have tried and they 
failed. That is true for the sodium void calculation and the bubble sp ' " sy 
calculation. ,, 

! 

Another subject I come to is probably much more important than the 
others. I would like to see some sort of return to the study of basics. 
There are some holes in the theory, particularly in eigenvalue calculations. 

' It is a known fact that the eigenvalue method used to calculate eigenvalues 
in the reactor is biased. It is known that the bias depends on the 
number of discrete histories per generation.. There's been very little 
study of the amount of that bias. The question becomes more and more 
important if you are more and more interested in accuracy. By the time 
you reach the stage where you finally calculate eigenvalues to a 
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quarter of a percent, you may well ask whether or not the bias is that 
large'.S People, when deciding how many histories to run per generation, 
pretty''much do this on the basis of their own habits. No one really '' 
knows what should be done. I think, again, as requirements get more "and 
more demanding on Monte Carlo, this question gets more and more important. 
More and more in the reactor business safety problems are becoming crucial. > 
In analyzing an accident, you've got to know whether or not the reactivity 
difference is small compared to a dollar. A dollar is only 0.3 of a 
percent. So, if you're going to use Monfe Carlo at all to try to analyze 
safety calculations, you've got the probl'em that you really won't cal-
culate differences to within this very small amount, and small biases 
become important and perturbation methods become important. 

A related question has to do with a confidence statement—statements 
of accuracy. There are various problems in confidence statements. 
First of all, in calculating confidence intervals for eigenvalues, you ^ 
have ag'.in a well-known problem. Different generation eigenvalues are 0 o 
correlated, so when you get means over generations, you have no way of 
knowing what the accuracy of your answer'is. There isn't any very simple 
relation between a printed out standard deviation and real accuracy, 
and it becomes particularly bad if you're dealing with a very large 
reactor in which convergence is slow. J i 

But even leaving aside this question, there are other questions. ^ 
How accurate is the standard deviation? In'a study of criticality 
safety of casks, standard deviations of this type were taken very seriously. 
How accurate is the standard deviation? That depends a great deal on the 
kind of distributions you have. Very little is known about those dis-
tributions. They may get very strange. For example, a track length 
distribution may be very strange inside of a single pin, that is, if 6 ° i 
you're interested in what happens in a pin. Maybe for an eigenvalue, 
,that's not very serious. If you're interested in using Monte Carlo 'to 
compute what happens in individual pins, if you're trying to get a ratio 
between power in one pin and power in'^another, you're almost forced to „ 
use something like a track length estimator. Maybe there are improved 
ones. I guess Mai (Kalos) has suggested that to me, and if there are, 
they may make a difference. If you don't know anything about the distrib- '' 
utions you're dealing with, and if those distributions are distorted by 
,your biasing schemes or by> peculiar features of the estimator itself,- you 
really can't tell what the accuracy of th'e Monte Carlo answer is, and one 
of the main advantages of Monte Carlo goes right down the drain. Monte 
Carlo is unique in the respect it tells you its error., But unless you 
know the distributions, it's really an illusion, 

o ^ 
So, I want to point out, this is a question that Maienso'aein 

raised just at the beginning of this meeting-what do biasing methods do 
to standard deviations—and I would add, how reliable are standard 
deviations when you're using peculiar estimators? I would^ like to see,1' 
then, a shift to some study of these basic problems now that we have so 

- « (1 
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many powerful computing tools, some more study of theory I think would 
be very appropriate. 

M. H. Kalos: First, T would like to start by expressing my thanks 
to Bob Coveyou, from whom I learned a lot over many years and for whose 
good health I wish everything. Second of all, I'd like to express my 
dismay at this imperceptible transformation that has occurred in me from 
"wise guy" to "wise man." And, I would like to echo Ely's call for a 
return to, or at least never losing sight of, basics in Monte Carlo. 

There are a lot of basics that are being forgotten in the rush to 
implement new and belter codes—more•user-oriented codes. Let me point 
to one that X think is very important. I think that injr(almost every 
implementation of the exponential transformation, it's Been done wrong, 
in such a way that it introduces a totally spurious singularity in the 
neighborhood of the transformed attenuation coefficient equal to the total 

•> attenuation coefficient. That can be dispensed with entirely by a 
simple change in the way the code carries out the sampling. 

A related thing is that in spite of the very elaborate ways of 
Lreating importance sampling, I want to remind you all that if you have 
an importance function which is expressed as a function of position, 
energy, and direction, and then you multiply the a priori- flight prob-
ability by the importance function as a function of position, that 
product does not correctly represent the marginal distribution of the 
function you want to sample. If, you really want to implement the ideas 
of importance sampling correctly, you should calculate that marginal 
distribution. The effect will be, I would think, if you can do it, an 
enormous improvement in running time—perhaps as much as a factor of 10 
in deep penetration calculations. 

ihJ/ 
I would like to say a good thing: I think the future of recursive 

Monte Carlo is very bright. This is something that Herb Steinberg, John 
Brooks, and I demonstrated the feasibility of about 10 years go, and^I'm 
very pleased that Goldstein and Greenspan have brought it to an apparently 
practical point. I think this is a very valuable thing because all of 
us find that the use of Monte Carlo is spreading and the necessity of 
teaching the basic ideas becomes more and more onerous, and anything 
that automates this is to be welcomed. 

With respect to criticality calculations, I would hope that some-
body in the 80s will pay attention to the desirability of doing 
importance sampling in criticality studies of large reactors. This is a 
point that is often neglected. It is possible to make an importance 
sampling transformation, which in principle permits^you to calculate the 
eigenvalue with zero variance and zero bias. Most people misunderstand 
this because they say, "But a reactor is set up so that fission is not 
an unlikely event." That's missing the point. The point of this kind 
of importance sampling is to accelerate the outer convergence, to minimize 
the sequential correlation of fission sites from generation to generation, 
and thereby reduce the variance and reduce the bias. I think that's 
really worth thinking about. 
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Finally, I think in the 80s, Monte Carlo is going to bĉ  very strongly 
influenced by progress in computers. All of you know that computers, 
have become a lot faster. Most of that has been through the implementation 
of vector or pipeline processors, and the payoff for the kind of Monte 
Carlo we do is extremely small and very difficult to come about. 
Computer architecture can be made more general in a way which is 
much more profitable for this kind of Monte Carlo. At NYU we have a 
project now for considering the architecture of large arrays—we hope 
eventually for thousands of processors which are strongly coupled together. 
And if I might have my first transparency, I will. . .Well, that's 
my last transparency, but no matter. Everything goes forwards and 
backwards|in the same way. We see here a switching network which is 
designed tfo connect, in this case, 16 processors on the left with 16 
memory modules on the right. This kind of strong coupling of processors 
and memory is what we have in mind, and it would permit 16 processors, 
each with its own instruction stream, to carry out Monte Carlo calculations 
more or less independently, accessing large cross section sets, large 
geometry descriptions, and large arrays of answers in memory without 
serious contention problems. 

i * 

We are now building a software simulator, and starting to design a 
hardware emulator, which will be capable of treating parallel arrays of 
128, or possibly up to 256, processors. I would like to try out some 
more or less stripped down standard Monte Carlo to see how well they 
work. I would encourage you to keep in touch with this and use it when 
it becomes available. 

E. D. Cashwell: When I was asked yesterday if I would sit in for 
Bob Coveyou, disregarding the fact that I didn't know what I would say, 
I was very honored to appear on the platform with these distinguished 
individuals. But then last night I found out why they really asked me. 
It's a conspiracy to keep me from giving the same lousy paper over and 
over again. That's quite a price to pay. I've got to find a new paper! 

What I'd like to say as we talk about what will happen in the 80s— 
let me start out by making a few comments on this meeting. Ten years 
ago I attended a similar meeting, and this time I'm quite impressed by 
certain things. I'm quite impressed by the applications. They're very 
interesting and showed very careful analysis by very knowledgeable 
practitioners with many difficult problems being quite cleverly and 
successfully solved. As Ely pointed out, in terms of the codes, they've 
gotten very much more sophisticated. With many importance sampling 
techniques implemented, geometry very carefully treated, cross sections 
very carefully treated, the user has an easier time of it. So, that's 
very good. So I think in that sense we don' t "have to worry about particle 
transport going away in the 80s. It'll just get more and more important. 

i't 
Furthermore, I think I see—and we all see—more and more applications 

outside the area of particle transport, even though particle transport 
may be used to help solve these problems, and we look at what happened 
when Monte Carlo first started. We look back at the history. The first 
thing people did was rush out and solve many new and different problems, 
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and most of the methods, due to the state of computers and so on, were 
dismissed as being quite interesting but impractical. Now, due to 
better techniques and better machines and more available machines, both 
large and small, some of these methods, some of these problems, are 
becoming very fruitful areas for research, as I'm sure Mai would agree 
from some of his research. 

So, I think that we have.nothing to worry about. I think that many 
applications will come from outside the area—there are plenty of them 
n o w — i n different fields, and we just hope that we can keep up with them 
and use our knowledge and experience from what we've done in particle 
transport and try to apply that to some of these problems. 
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MONTE CARLO APPLICATIONS AT 
HANFORD ENGINEERING DEVELOPMENT LABORATORY 

L. L. Car ter , R. J . Morford, A. D. Wilcox and C. A. Rogers 
Hanford Engineering Development Laboratory 

Richland, Washington, USA 

ABSTRACT 

Twenty appl icat ions are summarized u t i l i z i n g the Monte 
Carlo method to solve neutron and photon t ranspor t problems. 
The majori ty of the appl ica t ions are for e i t he r the Fusion 
Materials I r r ad ia t ion Test (FMIT) Fac i l i ty or the Fast Flux 
Test Fac i l i t y (FFTF). The degree of success in solving each 
problem i s described quan t i t a t ive ly by a s a t i s f a c t i o n f a c t o r 
The s a t i s f a c t i o n f ac to r i s based upon the adequacy of the 
nuclear da ta , the geometry model, and the numerical data f o r 
the expenditure of labor and computer time. 

INTRODUCTION 

The current use of Monte Carlo at Hanford Engineering Development 
Laboratory (HEDL) is dominated by neutron and photon t ranspor t problems 
re levant to the Fast Flux Test Fac i l i t y (FFTF) and the Fusion Materials 
I r r ad i a t i on Test (FMIT) F a c i l i t y . The Monte Carlo e f f o r t i s or iented 
towards engineering appl ica t ions and does not encompass code development. 
This paper will summarize our appl ica t ions during the l a s t three yea rs . 

We u t i l i z e t e KENO1 code f o r c r i t i c a l i t y problems and the general 
purpose code, M C N P , 2 > 3 fo r a l l other app l ica t ions . The KENO code has 
been adapted to run on e i t h e r the CYBER or UNIVAC computer systems a t 
Hanford. The MCNP code with i t s associated cross sec t ion l i b r a ry i s 
maintained on the MFE computer system a t Livermore, Ca l i fo rn ia by Los 
Alamos S c i e n t i f i c Laboratory (LASL) and we u t i l i z e t h i s computer system 
for our ca lcu la t ions f o r the FMIT f a c i l i t y . We have adapted an older 
version of MCNP to the CDC-7600 a t Berkeley for solving FFTF problems. 

The majori ty of the current appl ica t ions of Monte Carlo involve 
design problems f o r the FMIT f a c i l i t y . This acce le ra to r based f a c i l i t y , 
now in the ear ly s tages of construction on the Hanford s i t e , wi l l provide 
a fu s ion - l i ke radia t ion environment fo r t e s t i n g po ten t i a l fus ion reac tor 
ma te r i a l s . The neutron source, produced by a 0.1 Amp beam of 35 MeV 
deuterons incident upon a flowing li thium t a r g e t , i s highly an iso t ropic 
and f e a t u r e s a rapid spectra l va r ia t ion with angle. The spectrum in the 
forward d i rec t ion is character ized by a broad peak a t ^14 MeV with a high 
energy t a i l extending to ^50 MeV. While the broad peak provides the 
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major port ion of the source f o r material damage s t u d i e s , o ther neutron 
energies are important in the overal l design of the f a c i l i t y . Because 
of the importance of the very high energy neutrons between 20 and 50 MeV 
fo r shie ld ensign, neutron cross sec t ions between 20 and 60 MeV were 

most importu :t i so topes . 

Monte Carlo is a p a r t i c u l a r l y useful tool f o r FMIT app l i ca t ions be-
cause of the two- and three-dimensional con f igu ra t ions , the an i so t rop ic 
sources, the an i so t rop ic neutron s c a t t e r i n g a t higher energies (espec ia l ly 
above 20 MeV), many pene t ra t ions through w i e l d s with the r e s u l t i n g need 
to evaluate neutron streaming, and steep neutron f l ux gradients within 
the prime t e s t region near the (d,Li) source . I t s u t i l i z a t i o n as a tool 
to solve FFTF re la t ed problems is t y p i c a l l y more d i f f i c u l t p r imar i ly 
because of the large expected number of c o l l i s i o n s tha t a neutron exper i -
ences from b i r t h to absorption in f a s t r eac to r ma te r i a l s . This disadvan-
tage i s a l l e v i a t e d somewhat in c r i t i c a l i t y s a f e ty ca l cu la t ions s ince the 
primary funct ional to be determined is the mu l t i p l i ca t i on f a c t o r involving 
an in tegra t ion over a l l of phase space. 

Neutron t r anspor t through th ick iron-dominated ma te r i a l s i s important 
in both FMIT and FFTF a p p l i c a t i o n s . A ca lcu la t iona l benchmark6 '7 f o r 
monoenergetic sources cf 2, 14 and 40 MeV has recen t ly been completed 
using cross sec t ions t e s t ed aga ins t in tegra l experiments. This calcu-
la t iona l benchmark is used to va l ida te multigroup cross sec t ion l i b r a r i e s 
and t ranspor t codes. 

In the next three sec t ions we summarize Monte Carlo app l ica t ions 
encompassing the l a s t th ree yea r s . Our manpower a l l oca t i on f o r Monte 
Carlo is small with four engineers con t r ibu t ing an equivalent of ^ one 
f u l l - t i m e man. Approximately t h r e e - f o u r t h s of the e f f o r t i s on FMIT and 
one-fourth on FFTF problems. 

The (d ,Li) neutron source has been charac ter ized by th ick t a r g e t 
measurements f o r ten d i f f e r e n t angles using t i m e - o f - f l i g h t techniques 
and the cyclotron a t the Univers i ty of Ca l i fo rn ia a t Davis. The spectra 
a t the four angles depicted in Figure 1 (measured da ta 8 without smoothing) 
are shown to i l l u s t r a t e neutron energy regimes t h a t are important a t 
various d i r e c t i o n s . Of p a r t i c u l a r importance from a sh ie ld ing poin t of 
view i s the f l a t t e n i n g of the spectrum between 30 to 45 MeV a t the angle 
of 8°. This f l a t t e n i n g i s s i g n i f i c a n t f o r angles from about 6° to 20°. 
These source neutrons are the primary neutrons tha t pene t ra te t h i ck 
sh ie lds in the forward d i r e c t i o n . 

A cu t -ou t view of the t e s t ce l l i s shown in Figure 2 with the 
deuteron beam impinging upon the flowing l i th ium from the l e f t . The 
corresponding plan view of the t e s t ce l l shown in Figure 3 a t the 
e leva t ion of the neutron source does not show pipes and equipment 

appended to ex i s t ing based) MCNP l i b r a r y f o r the 

APPLICATIONS FOR FMIT FACILITY 
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NEUTRON ENERGY (MeV) 
IIEDL 3003-320 23 

Fig. 1. Neutron spec t ra from 
a 0.1 Amp cur ren t of 35 MeV deu-
te rons inc iden t upon l i t h ium. 

within the t e s t c e l l . Basic neutron-
ic problems in and around the t e s t 
ce l l inc lude : (a) a de terminat ion of 
bulk sh ie ld t h i c k n e s s e s ; (b) nuclear 
heat depos i t ion within the t e s t c e l l , 
thermal s h i e l d , and ad j acen t bulk 
s h i e l d ; (c) neutron streaming through 
various p e n e t r a t i o n s ; (d) neutron 
ac t i va t i on wi th in the t e s t ce l l and 
beyond the experimenters s ide w a l l ; 
(e) conf i rmat ion of adequacy of 
co l l imator des ign ; and ( f ) the gen-
e ra t ion of d e t a i l e d neutron f l u x 
maps within the prime t e s t volume. 
In a d d i t i o n , neut ronics c a l c u l a t i o n s 
are required f o r sh i e ld des ign , 
including neutron a c t i v a t i o n , f o r 
the Linear Acce le ra to r (LINAC) and 
various se rv ice a r ea s . 

Fig. 2. Conceptual arrangement of 4 hor izon ta l 
t e s t assemblies and a v e r t i c a l t e s t assembly in the 
FMIT t e s t c e l l . 
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MOVABLE SHIELD I iLuL W J J - J 2 D 6 

Fig. 3. Plan view of FMIT t e s t c e l l . 

The Monte Carlo c a l c u l a t i o n s we have made f o r FMIT are l i s t e d in 
Figure 4 . v Many of these problems required the v a r i a t i o n of one or more 
parameters in a number of separa te c a l c u l a t i o n s . In such c a s e s , the 
"Minutes of CDC-7600 Execution Time" in the r i g h t hand column of Figure 4 
r ep resen t s a typ ica l time f o r an individual run r a t h e r than f o r the s e r i e s . 

The " S a t i s f a c t i o n Factor" given in Figure 4 is an a t tempt to quan-
t i t a t i v e l y ass ign an overa l l r e tu rn from the investment in machine time 
and expendi ture of manpower. The s a t i s f a c t i o n f a c t o r is def ined as 

S = 10~2 / g p in r , 

where g , p, m, and r are assigned values between 0 ( f a i l u r e or f a r below 
expec t a t i ons ) and 100 ( e x c e l l e n t or f a r above expec t a t i ons ) under the 
d e f i n i t i o n s : 

g = adequacy of the geometric model in r e l a t i o n t o the rea l -wor ld 
s i t u a t i o n , 

p = adequacy of the physics models compared to s t a t e - o f - t h e - a r t 
and/or des i red accuracy ( including cross sec t ion data and 
source d a t a ) , 

m = reasonableness of manpower e f f o r t r equ i r ed , and 

r = r e t u r n obtained from c a l c u l a t i o n , r e l a t i v e to need, f o r the 
expendi ture in machine time ( t h i s a l so includes the adequacy 
of s t a t i s t i c a l e r r o r s ) . 



PROBLEM DESCRIPTION 
PERTINENT 
FIGURE 
NUMBER SATISFACTION FACTOR 

MINUTES OF 
CDC-7600 

EXECUTION TIME 
1. DOSE RATES THROUGH SLAB SHIELDS 

FOR MONOENERGETIC SOURCE NEUTRONS 
OF 15, 25 AND 50 MeV (NEUTRON AND 
GAMMA 0OSEI 

a 85 
(100 90 100 80) 
g p m r 

15 

z DOSE RATES THROUGH BACK AND SiDE 
WALLS OF TEST CELL (NEUTRON AND 
GAMMA) 

3 80 
(90 90 100 80) 

15 

3 NEUTRON ACTIVATION THROUGH EX-
PERIMENTERS' SIDE WALL IVERIFI-
CAi ION OF ANISN CROSS SECTI0,* 
LIBRARY) 

89 
1 (100 100 100 80) 

15 

4. NEUTRON STREAMING THROUGH GAP 
OF PIUG IN EXPERIMENTERS' SIDE 
WALL 

3 63 
170 100 80 70) 

60 

5. NEUTRON STREAMING THROUGH LITHIUM 
OUTLET PIPE IN FLOOR OF TEST CELL 

• 57 
(70 ICO 90 60) 

15 

'6. 
) 

NUCLEAR HEAT DEPOSITION WITHIN 
THERMAL SHIELD AND ADJACENT 
BULK SHIELD 

3 ' 63 
i ' (80 70 100 70) 
1 \ 

60 

T. TRANSMISSION OF (d,Lll NEUTRONS 
THROUGH IRON BLOCK (INCLUDING 
SOME GAMMA CALCULATIONS) 

• \\ 95 J l (100 100 100 90) 5 

8 NEUTRON FLUX FOR ACTIVATION 
WITHIN TEST CELL 

3 71 
170 100 90 80) 

30 

9.: NEUTRON FLUX FOR ACTIVATION WITHIN LINAC 5a, 5b r 85 («> 100 90 901 
20 

10 IMAGE ON TRACK LENGTH RECORDER 
FOR COLLIMATOR DESIGN 

6 '' 89 
(100 100 100 80) 

5 

11. ENERGY AND SPACE DEPENDENT 
NEUTRON H.UX MAPS NEAR SOURCE 

° 72 
(90 90 80 80) 30 

12. NEUTRON STREAMING THROUGH RF 
LINES INTO RF EQUIPMENT ROOM 

7 67 
(70 100 80 80) 20 

"GEOMETRY NOT SHOWN 

Fig. 4. Monte Carlo ca l cu l a t i ons f o r the Fusion 
Mater ia ls I r r a d i a t i o n Test F a c i l i t y . 

The s a t i s f a c t i o n f a c t o r has the range 0<S<100 depending upon,the values 
assigned to the four parameters . In t h i s paper the s a t i s f a c t i o n f a c t o r s 
were normalized so t h a t values of ^50 ind ica te marginal s a t i s f a c t i o n with 
the c a l c u l a t i o n , values l e s s than ^50 are i n d i c a t i v e of d i s s a t i s f a c t i o n 
with the ca l cu l a t i on (the output data i s of only l imi ted u s e f u l n e s s ) , 
and a value g rea t e r than ^70 i s i nd i ca t i ve of overa l l s a t i s f a c t i o n with 
and usefu lness of the data in the engineering a p p l i c a t i o n . Of course , 
problems with a s a t i s f a c t i o n f a c t o r l e s s than ^50 w i l l , in many c a s e s , 
be d i f f i c u l t to solve with d e t e r m i n i s t i c methods as w e l l . 

Problems 1 to 7 of Figure 4 are re levan t to the design of the sh i e ld s 
around the t e s t c e l l . Some i n i t i a l s t u d i e s ^ (problem 1) addressed 
dose r a t e s through s l ab sh i e ld s f o r normally inc iden t monoenergetic 
neutron sources with energies between 15 and 50 MeV. Comparisons were 
made between these c a l c u l a t i o n s and p e r t i n e n t d i s c r e t e o rd ina tes 
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ca lcula t ions summarized in the l i t e r a t u r e . 1 0 The monoenergetic ca lcu la-
t ions subsequently provided useful benchmarks fo r comparisons with 
d i sc re te ordinates ca lcu la t ions based upon an upgraded multigroup 
l i b r a r y . ' ' They also provided i n i t i a l assessments of material worths 
for shielding high energy neutron sources. 

Careful biasing of the monoenergetic ca lcu la t ions enabled us to 
obtain s a t i s f a c t o r y s t a t i s t i c a l precision fo r sh ie ld thicknesses corjre- > 
sponding to a reduction in the dose ra te through the shie ld by about ten 
orders of magnitude. This was accomplished by ad jus t ing ce l l importances3 

to obtain a roughly constant sample population throughout the shieljd in 
conjunction with the use of Russian r o u l e t t e 3 as the' 'neutron energy, 
decreased. Russian r o u l e t t e was used to discr iminate against the--lower 
energy neutrons (<vl MeV) near the source side of the s h i e l d . , J i t h o u t 
the use of energy dependent b ias ing , we observed tha t a large f r a c t i o n 
of the computer time was expended on those neutrons near the source face 
of the sh ie ld . These neutrons have a small p robab i l i ty of eventually 
penetrat ing the sh ie ld . 

Using the information obtained and techniques learned from the mono-
energet ic source c a l c u l a t i o n s , i t was f a i r l y s t ra ightforward to make the 
per t inen t bulk shield c a l c u l a t i o n s ^ of problem 2 f o r the back and side 
walls of the t e s t ce l l (see Figure 3). The important source energy 
regime was determined to be ^30 to 50 MeV fo r the back wall and ^20 to 
40 MeV fo r the side wal l s . The important energy regime f o r the side walls 
i s increased upwards by very high energy neutrons (>30 MeV) tha t s u f f e r 
e l a s t i c co l l i s i ons within t e s t assemblies and then s c a t t e r toward a side 
wal l . /Ev^n though the p robab i l i ty of such events is low, the importance 
of these neutrons is la rge enough so tha t they are not negligible." 

>1 l 
Activation is an important consideration fo r the experimenters ' s ide 

wall u(see Figure 3) since access to th i s wall is required fo r maintenance 
and ramoyaa o'f t e s t assemblies. The wall material and thicknesses were 
opcimiz^cl using one-dimensional ANISN ca lcula t ions subsequent to a 
benchmark comparison (problem 3) with MCNP. The one-dimensional bench-
mark comparison, using the pointwise l i b ra ry of MCNP, v e r i f i e d t h a t the 
multigroup l ib ra ry for ANISN would require the u t i l i z a t i o n of appropriate 
s e l f - s h i e l d i n g f a c t o r s . 

Streaming ca lcu la t ions (problems 4 and 5) t yp i ca l l y require an over-
s p e c i f i c a t i o n of the geometry in order to adequately assign spa t ia l 
importances and focus the ca lcula t ional e f f o r t in the v i c i n i t y of the 
streaming paths . This introduces addit ional complexity to already com-
pl ica ted models so the geometry f a c t o r , g, fo r problems 4 and 5 has only 
been rated a t 70%. Version IB of MCNP was used in these ca l cu la t ions . 
Version 2, with i t s improved geometry package, may help a l l e v i a t e these 
types of d i f f i c u l t i e s in fu tu re problems. H 

The heat removal system fo r the t e s t ce l l u t i l i z e s gas cooling. The 
gas cooling is economically sens i t ive to the to t a l amount of heat (and 
i t s spa t i a l d i s t r i b u t i o n ) deposited from nuclear i n t e rac t ions within the 
wal ls of the t e s t c e l l . Monte Carlo i s a t t r a c t i v e to use f o r t h i s 
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c a l c u l a t i o n s ince three-dimensional heat depos i t ion informat ion i s 
needed f o r the wall c o n f i g u r a t i o n shown in Figure 3 with the h igh ly 
a n i s o t r o p i c source d i s t r i b u t i o n . Although c a l c u l a t i o n a l l i m i t a t i o n s 
e x i s t , and hence problem 6 was r a t ed with an r value of 70v i t would 
have been a t l e a s t as d i f f i c u l t to obtain s a t i s f a c t o r y r e s u l t s with 
d e t e r m i n i s t i c codes. v 

\ i 
Shortcomings in the nuc lea r data base impacted the de te rmina t ion 

of heat d e p o s i t i o n . Data s e n s i t i v i t i e s included the gamma product ion 
cross s e c t i o n s , neutron KERMA f a c t o r s , and cross s ec t i ons f o r the neutron 
t r a n s p o r t . Unfo r tuna te ly , energy balances in ENDF/B cont inue t o have 
shortcomings f o r the genera t ion of cross sec t ion l i b r a r i e s and f o r the 
c a l c u l a t i o n of neutron KERMA f a c t o r s . ^ Hand c o r r e c t i o n s of the cross 
sec t ion data were made over var ious energy regimes f o r some of the e l e -
ments. Improvements f o r i ron a re a n t i c i p a t e d in the f u t u r e with a new 
e v a l u a t i o n ^ by LASL using improved gamma product ion data and energy 
ba lances . 

The hea t depos i t ion wi th in the concrete beyond the thermal sh i e ld 
i s s e n s i t i v e t o the proper t r a n s p o r t of the h igher energy (V14 MeV) 
neutrons wi th in the thermal s h i e l d . An in t eg ra l measurement of the 
t ransmiss ion of (d ,Li ) neutrons through an iron block as r e c e n t l y been 
completed. Comparisons between the ca l cu l a t ed (problem 7 of Figure 4) 
and measured t r ansmi t t ed c u r r e n t s wi l l provide an overa l l check on the 
data base . 

Monte Carlo tends to be e f f i c i e n t f o r the c a l c u l a t i o n of neutron 
f l u x e s averaged over s u f f i c i e n t l y la rge volumes. Hence, problems 8 and 
9 of Figure, 4 (see Figures 5a and 5b f o r geometry of problem 9) received 
reasonably good s a t i s f a c t i o n f a c t o r r a t i n g s . 

5.30q/cm IRON CELLS 
6, 15, 24, 33, 42, 

51, 60. 69, 78, 87, 
95 

7.86qfcm3 IRON CELLS 
1, 2, 3, 5, 10, U, 12, 14, 
19, 20, 21, 23, 28, 29, 30, 
32, 37, 38, 39. 41, 46. 47, 
48, 50, 55, 56, 57, 59, 64, 
65, 66, 68, 73 74, 75, 77, 
82, 83, 84, 86, 91, 92, 94, 
97 TO 102, 133, 134 

Hv-BEAM DIRECTION 
VOID CELLS 
4, 7, 8, 9, 13, 16, 

17. 18, 22, 25, 26, 27, 
31, 34, 35, 36, 40, 43, 
44, 45, 49, 52, 53, 54, 
58, 61, 62, 63, 67, 70, 
71, 72, 76, 79, 80, 81 
85, 88, 89, 90, 93, % 
121 TO 132 
ORDINARY CONCRETE CELLS 

103 TO 120 

Fig. 5a . Cyl indr ica l geometry model of LINAC 
f o r f l u x c a l c u l a t i o n s . (Dimensions in cm) 

HEX 8003-320 20 
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Fig. 5b. Cylindrical geometry model of d r i f t 
tubes . (Dimensions in cm) 

The evaluat ion of the col l imator design f o r the t rack length 
r e c o r d e r ' 4 (problem 10 and Figure '6) required a comparison of the source 
image from neutrons passing through the t h roa t of the co l l imator to the 
background provided by neutron"at tenuat ion and s ca t t e r i ng within the 
coll imator. ma te r i a l . This problem received a high s a t i s f a c t i o n f a c t o r 
s ince ray t r ac ing from the source and c o l l i s i o n points near the th roa t 
of the col l imator i s a standard f ea tu re of MCNP using the point de tec tor 
e s t ima to r . o 

An accurate method f o r the ca lcu la t ion of neutron f lux maps within 
the material t e s t assemblies is e s sen t i a l f o r the proper i n t e r p r e t a t i o n 
of experiments. In the current FMIT design the deuteron beam impinges 
upon the l i th ium t a r g e t with a time-averaged d i s t r i b u t i o n perpendicular 
to the beam t h a t i s roughly b i v a r i a t e normal. The ful l -width-half-maxima 
are <3 cm and cm along the horizontal and ve r t i c a l d i r e c t i o n s , 
r e s p e c t i v e l y , with a co r re la t ion c o e f f i c i e n t of ^0 . Superimposed upon 
the spa t i a l d i s t r i b u t i o n of the deuteron densi ty is the highly an i so t rop ic 
d i s t r i b u t i o n of the emerging neutrons which changes as the deuterons 
pene t ra te in to the l i th ium. The r e su l t i ng phase space dens i ty of the 
neutron source makes i t d i f f i c u l t t o apply d i s c r e t e o rd ina tes ca l cu l a t i ons 
in one, or even two, dimensions. Hence, we r e s o r t to Monte Carlo tech-
niques f o r the generat ion of neutron f l ux maps. This is not s t r a i g h t -
forward since a rapid r e t r i e v a l of energy dependent f luxes in a region of 
s teep gradients i s requi red . 

Three-dimensional f lux maps are generated in two s t eps . A Monte 
Carlo c a l c u l a t i o n i s f i r s t made to determine f luxes averaged over small 
su r f ace segments. The grid f o r the sur face f l ux t a l l i e s i s defined as • 
fo l lows : Small pa ra l l e l ep ipeds are described within the t e s t assembly 
by s l i c i n g the assembly with a number of planes normal to the x , y , and 
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z axes, r e spec t ive ly . Each rec tangular s ide of a pa ra l l e l ep iped i s a 
t a l l y surface f o r a sur face f lux es t imator . 

„ SOURCE 6 

^ POINTS 
V; p X V \ V * 

XSr \ X V \ 

TALLY PLANE' 

-J L A ' i mahc PI A Mr 

<D 

IMAGE PLANE 

COMPUTER MODEL FOR PINHOLE SYSTEM 
t 

o SURFACE NUMBERS 

O CELL NUMBERS 
ALL CROSS SECTIONS OF 
COLLIMATOR GIVE CIRCULAR 
HOLES 

DIM CASES 1-3 CASES 4-21 

A 0.29 0.50 

RIRADI 0.025 0.025 

L 10.46 6.096 

9 0.2741 0.4699 

ALL DIMENSIONS ARE IN cm 

if c 

\ HEDL 8003-320.10 

Fig. 6. Collimator geometry. 

The second s tep u t i l i z e s the surface f l uxes from the Monte Carlo 
ca lcu la t ion to rap id ly generate energy dependent neutron f luxes a t pos i -
t ions of i n t e r e s t by using an accurate in t e rpo la t ion method within an 
aux i l i a ry computer-program. In a t e s t p roblem, ' 5 1 ,200,000 neutron 
h i s t o r i e s were sampled on a CDC-7600 computer in 28 minutes. The aux i l -
iary program ca lcu la ted the energy dependent f l u x a t M700 s p a t i a l points 
per minute fo r pos i t ions within the t e s t assembly where the t o t a l f lux 
changes by an order of magnitude within a few cen t imeters . This ca lcu-
la t ion (problem 11 of Figure 4) u t i l i z e d more than 2,000 sur faces f o r the 
tabula t ion of the neutron "flux during the Monte Carlo c a l c u l a t i o n . A ^ i 1 • . ' 

The geometry model shown in Figure 7 formed.the bas i s f o r a ca lcu-
l a t ion of neutron streaming through a chaseway-between the LINAC acce l e r -
a to r and an adjacent RF Equipment Roonil A f i n e r mesh of c e l l s than t h a t 
shown in Figure 7 was ac tua l ly required in order t o obtain appropr ia te 
biasing with ce l l importances. The optimized- ca l cu l a t ion performed 
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reasonably well and received an overall s a t i s f a c t i o n f a c t o r of 67 
(problem 12 of Figure 4) in sp i t e of a r a the r low geometry f a c t o r ra t ing 
of 70. 

i' 3 

-<0RD INARY CONCRETE) , -(BORATED POLYETHYLENE) 

BORATED /POLYETHYLENE 
ORDINARY ' CONCRETE y X I 

a}-

LINAC VAULT 

H 
- 6 50'-

1 »' n 
, <.1-

HEDL 8003-320 16 

If 
0 

0 

Fig. 7 . Vert ical view of RF 
chaseway along LINAC. (1.25* in 
diameter cy l indr ica l pene t ra t ions ; 
mirror boundary condit ions in the 
th i rd dimension) 

'APPLICATIONS FOR FFTF 

Use of Monte Carlo Codes for C r i t i c a l i t y Safety Calculat ions 

Introduction 

Monte Carlo codes in the f i e l d of Nuclear C r i t i c a l i t y Safety are 
pr imari ly used to ca lcu la te the neutron mul t ip l ica t ion f a c t o r k e f f f o r 
arrays of f i s s ionab le ma te r i a l s . Storage of f i s s ionab le mater ia l s in a 
r e l a t i v e l y small volume under conditions of complete s a f e ty i s mandatory 
during the fue l f ab r i ca t ion process. The complexity of the array conf ig-
ura t ions and an economic re luctance to accept overly conservative l imi t s 
neces s i t a t e use of Monte Carlo methods. At HEDL the KENO Monte Carlo 
code i s present ly used f o r a l l array ca lcu la t ions . 

Storage Array Configurations 

Each s torage array has unique f e a t u r e s . One of the simpler conf ig-
ura t ions cons i s t s of a cabinet with shelves which are spaced one foo t 
apart, one above the o ther . Limits are placed upon the quant i ty of fue l 
each shel f can contain. The KENO code i s used to ca l cu la t e k e f f f o r 



various postula ted condit ions of in ternal moderation, in te r spersed ^ 
moderation, fue l overbatching, and in te rac t ion with o ther fu,ej< nearby:' 
Kgff i s r e s t r i c t e d to a value of less than 0.95 a t a 95% confidence 
level fo r a l l norma,! or c redib le abnormal condi t ions . V 

A more complex configurat ion cons is ts of a two-dimensional array of 
cubicles occupying an e n t i r e wall of a room. In t h i s ar ray both the 
area,l dens i ty and the t o t a l quant i ty of fuel will be g r ea t e r than f o r < 
the individual cabine ts . In one such array four d i f f e r e n t fue l l imi t s 
are used. Moderated fuel is s tored a t one end, followed by p a r t i a l l y 
moderated f u e l , unmoderated f u e l , and unmoderated fue l in spec i f i ed 
small conta iners located in f ixed pos i t ions to permit higher fuel concen-
t r a t i o n s . Examination of such an array ufider f looding condi t ions i n t r o -
duces addi t ional geometric complexity because complete f looding is not 
necessa r i ly the,most reac t ive conf igura t ion . This neces s i t a t e s a number 
of c a l c u l a t i o n s ' t o determine the most reac t ive conf igura t ion . 

Another configurat ion cons i s t s of completed fuel pins and fuel 
bundles s tored in a below grade array of s t a i n l e s s s t ee l cyl inders se t 
in concrete . The concrete provides p a r t i a l neutron i s o l a t i o n of the 
various rows and columns within the a r ray . Keff i s found to depend on 
many parameters necess i t a t ing numerous ca l cu l a t i ons . These parameters 
include: (1) wall thickness of the s t a i n l e s s s tee l cy l inde r s ; (2) compo-
s i t i o n of concre te ; (3) water content of concrete; (4) type of fuel 
s to red ; (5) separat ion of rows and columns in the a r ray ; (6) quant i ty of 
fue l . . s to red ; (7) quant i ty of moderators used in s torage; and (8) the 
postulated degree of accidental water f looding poss ib le . An i n t e r e s t i ng 
aspect of these ca lcu la t ions i s the funct ional dependence of r e a c t i v i t y 
upon water content of the concrete and the degree of water f looding . 
Since the water content of the concrete inf luences the e f f e c t of f looding 
on reac t iv i ty> i t is necessary to examine the e f f e c t of f looding on 
r e a c t i v i t y when the concrete is£j -"y an<^ when wet. As time passes the ° 
water content of the concrete wiVl decrease and thereby change the value 
of k e f f under "worst case" condi t ions . * ~J 

Another good example of a conf igura t ion requir ing use of^-Monte jCarlo 
ca lcu la t ions i s an array of shipping con ta ine r s . Here the problem i s 
one of ca l cu la t ing the minimum c r i t i c a l number under 'worst case condi-
t i o n s . This can become highly complex since the arrangement of containers 
i s also a v a r i a b l e . 0 
Placement of C r i t i c a l i t y Alarms •• - - • —— 1 — ~ D 

The GEM code, an e a r l i e r version of MONK, has been used in the past 
to ca lcu la t e the r e l a t i v e neutron f lux l eve l s a t various loca t ions 
around a s torage ar ray . Heavy concrete sh ie ld ing and complex array 
geometries made i t d i f f i c u l t to determine whether or not s u f f i c i e n t 
neutrons would reach the c r i t i c a l i t y de tec tors during a small hypothet-
ical excursion. Each de tec tor locat ion was represented in the computer 
model by a box so tha t neutrons reaching the box were counted and compared 
with the number leaving the f u e l . 
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User P i t f a l l s 

Although Monte Carlo techniques are the most powerful ava i lab le fo r 
c r i t i c a l i t y c a l cu l a t i ons , the user must cont inual ly exerc ise caut ion. 
I t is easy to develop an unwarranted degree of confidence and to overlook 
p i t f a l l s . 

The input required to describe an array conf igura t ion can be very 
complex and e r ro r s can be overlooked." For t h i s reason, use of the p ic ture 
drawing rout ine SCAN in the KENO code is imperative. Some e r ro r s can be 
spotted immediately, but others are more sub t l e . For example, a negative 
sign was once inadver tent ly omitted f o r a r e f l e c t o r boundary des ignat ion. 
This had the e f f e c t of completely removing the r e f l e c t o r from the calcu-
l a t ion and leaving a bare core . Although p ic tures were p r i n t e d , the r e -
f l e c t o r was not included since only the core could be drawn a t t ha t time 
because of l imi t a t ions in the p i c tu re rou t ine . Consequently, ca lcu la t ions 
were made f o r an unre f lec ted a r r ay , although a f u l l water r e f l e c t i o n was 
intended. Since each ca lcu la t ion of the se r i e s l e f t off the r e f l e c t o r , 
a l l computer r e s u l t s were s e l f - c o n s i s t e n t . However, the r e a c t i v i t y was 
unknowingly f a r too low; and since s imi lar ca lcu la t ions or experimental 
r e s u l t s were unavailable f o r comparison, t h i s e r r o r went undetected fo r 
a while . The input e r ro r would have been detected ear ly if KENO-11 had 
pr in ted a d iagnost ic message t e l l i n g the user tha t boundaries overlapped 
or i f the p ic tu re rout ine had included the capab i l i ty to show the r e f l e c t o r . 

In a typica l ca lcu la t iona l study experimentally determined c r i t i c a l 
assemblies of s imi la r design are unavai lable . Therefore , i t i s d i f f i c u l t 
to determine i f cross sect ion se t s and geometry approximations are giving 
s a t i s f a c t o r y r e s u l t s . The user s e l e c t s cross sect ion se t s f o r a KENO 
ca lcu la t ion according to the degree of moderation in the system. This 
requi res a determination of the to t a l s ca t t e r ing cross sec t ion per absor-
ber atom and a se lec t ion of cross sect ions accordingly. If the degree 
of moderation i s changed, a new se t of cross sect ions must be se lec ted . 
I t would be highly des i rab le from the user point of view i f KENO were 
modified to opt ional ly s e l e c t the cross sect ion s e t s to be used. 

Monte Carlo techniques have an inherent s t a t i s t i c a l uncer ta in ty . 
This makes i t d i f f i c u l t t o p lo t curves for a determination of nominal or 
maximum k ? f f values. I t is necessary to t rack s u f f i c i e n t neutrons to 
have confidence tha t the e r ro r values given by KENO are themselves va l i d . 
A f ea tu r e of KENO-IV which p lo t s the accumulated average k e f f a t each 
neutron generation may improve t h i s l i m i t a t i o n . 

Improvement of the Geometry Routines 

KENO, u n t i l r e cen t ly , has contained a more r e s t r i c t e d geometry 
package than MONK. A severe l im i t a t i on has been the lack of a b i l i t y to 
spec i fy an array within an ar ray . In add i t ion , MONK has included the 
use of "hole" rout ines which expands the range of geometries ava i l ab le . 
At HEDL fue l bundles usual ly have a hexagonal l a t t i c e arrangement of 
fue l p ins . MONK is able to t r e a t t h i s geometry, whereas KENO wil l not . 
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Fortunately, a new version of KENO-IV is now ava i lab le which g rea t ly 
expands-the geometry package. Now KENO and MONK geometry c a p a b i l i t i e s 
are more nearly comparable. The usefulness of a Monte Carlo code depends 
very much upon the ease of inputing complex geometries. 

Cr i t ica l i t .y Safety Application With KENO 

Problem number 13 of Figure 8 is a pe r t inen t example^® of a c r i t i -
cal i t y sa fe ty ca lcu la t ion . The geometry model for KENO, shown in 
Figures 9a and 9b, is fo r the Fuel Storage Fac i l i t y of the FFTF. The 
model of the geometry u t i l i z e s a rectangular array to approximate 
annular storage rings of fuel assemblies. Since the r e a c t i v i t i e s of 
individual fuel assemblies vary, a check was made to determine the 
"worst case" configurat ion giving the g rea t e s t k e f f . The most r eac t ive 
arrangement occurs when the outer dr iver assemblies are c lus te red toge ther 
as shown in Figure 9a. To s impl i fy input data requirements, the h a l f -
space model of Figure 9a incorporates a p e r f e c t mirror r e f l e c t i n g 
boundary condition at the lower sur face . 

PROBLEM DESCRIPTION 

13. CRITICALITY SAFETY CALCULATIONS 
FOR FUEL STORAGE FACILITY 

14. CALCULATION OF STREAMING 
WITHIN IN-REACTOR THIMBLE 

15. CALCULATION OF NEUTRON FLUX 
AT LOW LEVEL FLUX MONITORS 

16. RES PONSE OF EX-VESSEL FLUX 
MONITORS 

17. GAMMA STREAMING THROUGH GAP 
AT WINDOW OF I EM CELL 

18. GAMMA STREAMING THROUGH DUCT 
BETWEEN I EM AND TACS CELLS 

PERTINENT 
FIGURE 
NUMBER 

9a ,9b 

10a, 10b 

11a,lib 

12a, 12b 

13 

14 

SATISFACTION 
FACTOR 

72 
(80 90 90 80) 

20 

(70 60 70 30) 

37 
(70 70 70 40) 

85 

(100 90 90 90) 

50 

(70 80 90 50) 

72 (80 90 90 80) 

MINUTES OF 
CDC-7600 

EXECUTION TIME 

10 

30 

60 

'15 

10 

10 

HEDL 8003-320.11 

Fig. 8. Monte Carlo ca lcu la t ions f o r the Fast Flux Test F a c i l i t y . 
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13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 
13 13 13 13 13 13 12 12 12 3 3 3 3 2 2 2 2 12 12 12 13 13 13 13 13 13 
13 13 13 13 12 12 3 3 3 3 3 3 2 2 2 2 2 2 2 2 12 12 13 13 13 13 
13 13 13 12 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 12 13 13 13 
13 13 12 1 3 3 3 3 3 3 3 2 2 2 4 4 4 4 4 4 4 4 4 12 13 13 
13 13 12 1 3 3 3 3 3 3 2 2 2 4 4 4 4 4 4 4 4 4 4 12 13 13 
13 12 1 1 3 3 3 3 3 3 2 2 2 4 4 4 4 4 4 4 4 4 4 4 12 13 
13 12 1 1 3 3 3 3 3 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 12 13 
13 12 1 1 3 3 3 3 3 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 12 13 
12 1 1 1 1 3 3 3 3 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 12 
12 1 1 1 1 1 3 3 3 2 2 2 Z 4 4 4 4 4 4 4 4 4 4 4 4 12 
12 1 1 1 1 1 1 3 3 3 3 7 8 9 10 4 4 4 4 4 4 4 4 4 4 12 
12 1 1 1 1 1 1 1 3 3 3 6 5 5 11 4 4 4 4 4 4 4 4 4 4 12 

Numbering Legend 

1. Core 1/2 Inner Driver Fuel Assembly 8. 

2. Core 1/2 Outer Driver Fuel Assembly 9. 
3 Core 3/4 Inner Driver Fuel Assembly 10. 

4. Core 3/4 Outer Driver Fuel Assembly 11. 

5. Na 12. 
S. B^C/Na 13. 
7 B.C/Na 

B4C/Na 

B4C/Na 

B^C/Na 

B^C/Na 

C-Steel/Na 

Nitrogen 

Fig. 9a. Model of array fo r Fuel Storage F a c i l i t y of FFTF. 
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Fig. 9b. Axial d i s t r i b u t i o n of mater ia l s f o r Fuel Storaqe 
F a c i l i t y of FFTF. 



21 

General Purpose Applications With MCNP 

Measurements within the In-Reactor Thimble Assembly, located near 
the center of the FFTF core, are being made to charac te r i ze the neutron 
and gamma-ray spectrum within the clean core during i n i t i a l s t a r tup of 
the r eac to r . Basically the In-Reactor Thimble Assembly cons is ts of 
several concentric tubes to c i r cu l a t e cooling gas (ni t rogen) and provide 
insu la t ion for the inner zone where the measurements are made. Ins t ru -
ments are placed inside the inner tube with streaming plugs above and 
below the de tec tors . 

Monte Carlo ca lcula t ions (problem number 14 of Figure 8 with geometry 
shown in Figures 10a and 10b) of neutron and photon f luxes within the 
In-Reactor Thimble Assembly are summarized in Reference 17. The concern 
is t h a t neutron streaming within the In-Reactor Thimble Assembly may 

Fig. 10a. Radial view of geometry model fo r Monte Carlo ca lcu la t ions 
of f lux within In-Reactor Thimble Assembly (IRTA) of FFTF. (See 
Figure l i b fo r general conf igura t ion a x i a l l y . ) 

HEDL 8003-320.1 
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Fig. 10b. Radial view of In-
Reactor Thimble Assembly. 

requi re co r r ec t i ons to r eac t i on r a t e s c a l c u l a t e d with d i f f u s i o n theory . 
This Monte Carlo c a l c u l a t i o n i s pushing the s t a t e - o f - t h e - a r t f o r the 
fol lowing reasons : 

* A t y p i c a l neutron s u f f e r s a l a rge number (>50) c o l l i s i o n s 
before absorpt ion so t h a t the computation time requi red to 
analyze a source neutron i s l a rge compared to more ideal 
mate r ia l con f igu ra t i ons with the proper ty of few c o l l i s i o n s 
per source neutron. 

* Even with cons iderable homogenization, the geometry i s 
s t i l l complex. 

* The f l u x wi thin a small volume i s needed. This led us t o 
use a po in t de t ec to r e s t ima to r in s p i t e of the a s s o c i a t e d 
cos t s involved in computing mean f r e e paths from c o l l i s i o n 
po in t s t o d e t e c t o r . 

* The eigen func t ion a t s t e a d y - s t a t e should be determined in 
the Monte Carlo c a l c u l a t i o n . This was deemed imprac t ica l 
so the f i s s i o n source d i s t r i b u t i o n from a d i f f u s i o n theory 
c a l c u l a t i o n was used. 

Because of the above d i f f i c u l t i e s , the s a t i s f a c t i o n f a c t o r shown in 
Figure 8 is only 20. Some usefu l informat ion was obtained by using a 
lower energy c u t o f f of 0 .5 MeV to obta in the responses of the higher 
energy th resho ld r eac t i ons of i n t e r e s t . These r e s u l t s i n d i c a t e t ha t 
streaming i s important f o r l oca t ions wi th in the In-Reactor Thimble above 
and below the c o r e , but t h a t the measurements a t mid-core should be only 
s l i g h t l y per turbed by streaming within the In-Reactor Thimble. 

S imi lar c a l c u l a t i o n a l d i f f i c u l t i e s were experienced in the d e t e r -
mination of the neutron f l u x a t the Low Level Flux Monitors (LLFM)^8 

(see Figures 11a and l i b ) . Some of the d i f f i c u l t i e s in problem number 15 
of Figure 8 were due to an inadequate s p e c i f i c a t i o n of the geometry, f o r 

SS-316 

HEDL 800] 310 IS 



23 

HEDL 8003-320. 

Fig. 11a. Radial view of 
geometry model a t core midplane f o r 
Low Level Flux Monitor c a l c u l a t i o n . 

_ LLfM DtltCIOH 

0 50 100 150 

RADIAL Di STANCE FROM "ENTER OF CORE Icml 

HEDL 8003-320.9 

Fig. l i b . Axial view of 
geometry through Low Level Flux 
Monitor. 

t 
the op t imiza t ion of importance b i a s i n g , because of manpower time con-
s t r a i n t s . The geometry package in the cu r ren t vers ion of MCNP (vers ion 
IB was used f o r the c a l c u l a t i o n s ) would help a l l e v i a t e the d i f f i c u l t i e s . 

In c o n t r a s t t o problems 14 and 15, we give the c a l c u l a t i o n of the 
response of the ex-vesse l f l u x monitors (problem 16 of Figure 8) a high 
s a t i s f a c t i o n f a c t o r . Neutrons were t r anspor ted from a s p e c i f i e d source 
i nc iden t upon a graphi te block t o d e t e c t o r s loca ted wi th in the block as 
shown in Figures 12a and 12b. The c a l c u l a t i o n s increased our under-
s tanding of the de t ec to r responses and wi l l provide input f o r f u t u r e 
improvements in the design of the d e t e c t o r s . The c a p a b i l i t y t o automat i -
c a l l y include the three-dimensional aspec ts of the geometry was a d e f i n i t e 
advantage over a one- or two-dimensional t r ea tmen t . (j 

Gamma streaming problems (problems 17 and 18 of Figure 8) are^shown 
in Figures 13 and 14. These are t yp i ca l streaming problems in the sense 
t h a t one i s i n t e r e s t e d in the r a r e p a r t i c l e s t h a t p e n e t r a t e through the 
s h i e l d while spending some of t h e i r time within the gaps. Such c a l c u l a -
t i o n s usua l ly r equ i r e ex tens ive source b ias ing along with an o v e r s p e c i f i -
ca t i on of the geometry f o r the near-opt imal use of c e l l importances. A 
usefu l c a l c u l a t i o n t y p i c a l l y r equ i r e s f a m i l i a r i t y with b i a s ing schemes 

!l 

l! Ii 
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Fig. 12a. Ver t ica l view through Ex-Vessel 
Flux Monitor Detectors in FFTF. 

NEUTRON SOURCE PLANE 

GRAPHITE 

Q CONCRETE 

Q SEE OTHER V I E W 

| | V O I D 

( D I M E N S I O N S IN INCHES) 

HEDL 8003-320.17 

V 
Fig. 12b. Plan view through Ex-Vessel Flux Monitor Detectors of 

FFTF. 
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O - SOURCE 
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HEDL 8 0 0 3 - 3 2 0 14 
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CONCRETE 

HEDL (1003 - 320 U 

Fig. 13. Calcula t ion of 
gamma streaming through gap be-
tween window and support wall 
ad jacen t to Interim Examination 
and Maintenance (IEM) c e l l of FFTF. 

Fig. 14. Elevation view of Test 
Assembly Conditioning S ta t ion (TACS) 
and Interim Examination and Mainte-
nance (IEM) c e l l s of FFTF. 

and good i n t u i t i o n about the t r a n s p o r t process . The s a t i s f a c t i o n f a c t o r 
f o r such problems tends to be low, but o ther ca l cu l a t iona l approaches 
are even l e s s a t t r a c t i v e to use than Monte Carlo. 

MISCELLANEOUS APPLICATIONS 

Problem 19 of Figure 15 i s r e p r e s e n t a t i v e of those f r equen t problems 
the engineer encounters r equ i r ing quick answers to a r a t h e r d i f f i c u l t 
three-dimensional t r anspo r t problem with minimal budget a l l o c a t i o n . This 
problem arose because of a decis ion to build a new Patrol Headquarters 
bui lding in the 300 Area a t Hanford. The basement-of t h i s bui ld ing was 
to meet s p e c i f i e d dose c r i t e r i a f o r gu ide l ine c r i t i c a l i t y acc idents in 
ad jacen t bu i ld ings . The a i r -over-ground problem was modeled as two-
dimensional with cy l ind r i ca l symmetry about the source as shown in 
Figure 16. Neutron and gamma dose r a t e s in the basement were determined 
in a t imely manner f o r var ious concrete th icknesses of the main f l o o r 
so t h a t the appropr ia te th ickness could be s p e c i f i e d f o r cons t ruc t ion of 
the bu i ld ing . 
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PROBLEM DESCRIPTION 

19. DOSE WITHIN BASEMENT OF 
PATROL HEADQUARTERS DUE TO 
ABOVE-GROUND CRITICALITY 
ACCIDENT (NEUTRON AND GAMMA) 

20. BENCHMARK OF NEUTRON 
TRANSPORT THROUGH IRON 

PERTINENT 
FIGURE 
NUMBER 

16 

17 

SATISFACTION 
FACTOR 

76 
(80 100 90 80) 

85 
(100 100 90 80) 

MINUTES OF 
CDC-7600 

EXECUTION TIME 

10 

120 

Fig. 15. Miscellaneous Monte Carlo c a l c u l a t i o n s . 

AIR 

GROUND 

HEDL 8003-320.2 

Fig. 16. Dose r a t e in basement of Patrol Headquarters building 
due to, above-ground c r i t i c a l i t y acc ident . 

Neutron t r anspo r t through shie ld mate r i a l s containing iron has been 
important s ince the e a r l y days of reac tor physics . Applicat ions in 
recent years have included f a s t r e a c t o r s , fus ion r eac to r concepts, and 
a c c e l e r a t o r s f o r fus ion r eac to r material s tud ies^ and cancer therapy. 
Considerable complexity i s introduced in to t r anspor t ca lcu la t ions by the 
resonance s t r u c t u r e of iron between 20 keV and ^2 MeV. Multigroup 
cons t an t s , generated with an i n f i n i t e media spectra as a weighting 
f u n c t i o n , tend to overpredic t the leakage through sh ie lds in d i s c r e t e 
o rd ina tes c a l c u l a t i o n s . Improvements in accuracy are obtained by 
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c o r r e c t i n g the weighting f u n c t i o n in the v i c i n i t y of c r o s s - s e c t i o n minima 
t o account f o r p r e f e r e n t i a l l e a k a g e . ' ' These complex energy and space-
dependent s e l f - s h i e l d i n g problems inherent in t h i ck iron s h i e l d s d i c t a t e 
the need f o r a sh ie ld ing benchmark problem to serve as a s t andard 
r e f e r e n c e . 

Unfo r tuna te ly , experimental benchmark measurements a re o f t e n d i f f i -
c u l t to model because of complicated neutron source and d e t e c t o r charac-
t e r i s t i c s . We have def ined a c a l c u l a t i o n a l benchmark which i s s imple to 
model with most s tandard t r a n s p o r t codes. This benchmark f e a t u r e s a 
simple geometry, a choice of monoenergetic sou rces , and a s t r a i g h t f o r w a r d 
t a b u l a t i o n of f l u x e s and r a d i a t i o n doses a t var ious i ron t h i c k n e s s e s . 
The Monte Carlo c a l c u l a t i o n a c c u r a t e l y models the f i n e energy s t r u c t u r e 
of the ENDF/B da ta base and has been va l ida t ed by comparisons with two 
experimental benchmark measurements: the ORNL iron benchmark™ and the 
LLL pulsed s p h e r e . 2 1

 ( 

Calcu la t ions were made with both ENDF/B-IV- and ENDF/B-V-based 
cross s e c t i o n s . The p r inc ipa l advantage of MCNP f o r t h i s type of 
problem i s t h a t no gross approximations (such as the mult igroup approxi -
mation) are r equ i red f o r the c r o s s - s e c t i o n t r e a t m e n t . All the r e a c t i o n s 
descr ibed in ENDF/B are accounted f o r in MCNP. In f a c t , t he only s i g n i -
f i c a n t d i f f e r e n c e between the c r o s s - s e c t i o n da ta in the MCNP l i b r a r y and 
the ENDF/B l i b r a r y from which i t i s derived (via the NJOY" code pro-
cessing system) i s t h a t resonance da ta are represen ted in MCNP as 
l i n e a r l y i n t e r p o l a t e d pointwise d a t a , Doppler broadened to a s p e c i f i c 
tempera ture . The energy gr id f o r t h i s pointwise data i s chosen so t h a t 
the r e l a t i v e e r r o r between the MCNP and ENDF/B r e p r e s e n t a t i o n s i s l e s s 
than a u s e r - s p e c i f i e d e r r o r c r i t e r i o n , usua l ly <3%. 

The c a l c u l a t i o n a l benchmark^'? shown in Figure 17 i s simply a pure 
iron 7.86 g/cm3 s l a b 3m th i ck and i n f i n i t e in the o ther two dimensions. 

/V IRON SLAB ~ 

NORMALLY 
INCIDENT 
NEUTRONS 

10 20 30 40 50 70 100 \ / 150 200 250 270 290 

FLUX TALLY PLANES 
300 cm 

HEU 8003-320 3 

Fig. 12b. Plan view through Ex-Vessel Flux Monitor D e t e c t o r s of 



Monoenergetic neutrons are normally inc iden t (1 neutron/cm2) upon the 
s l ab ; and the energy-dependent neutron f l u x , c u r r e n t , and r ad ia t ion dose 
are computed a t various d is tances through the s l ab . These output quan-
t i t i e s 7 are tabula ted in a standard group s t r u c t u r e 1 1 cons is t ing of 
47 energy groups between 0 and 60 MeV. The 35 groups below 17 MeV are 
a subset of a standard 171-group fus ion l i b r a r y . 2 3 Benchmark ca lcu la t ions 
were made with source energies of 2 , 14, and 40 MeV. These energies were 
chosen fo r a p p l i c a b i l i t y to f i s s i o n systems, fus ion systems, and 
acce le ra to rs with a neutron energy regime somewhat above 14 MeV. 

SUMMARY 

Twenty app l ica t ions of neutron and photon t r anspor t with Monte Carlo 
have been described to give an overview of the current e f f o r t a t HEDL. 
A s a t i s f a c t i o n f a c t o r was defined which q u a n t i t a t i v e l y assigns an overal l 
re turn fo r each ca lcu la t ion r e l a t i v e to the investment in machine time 
and expenditure of manpower. We f r equen t ly encounter low s a t i s f a c t i o n 
f ac to r s in day-to-day c a l c u l a t i o n s . Usually t h i s i s due to l im i t a t i ons 
in execution r a t e s of present day computers, but sometimes a low s a t i s -
f ac t ion f a c t o r i s due to computer code l i m i t a t i o n s , calendar time r 
c o n s t r a i n t s , or inadequacy of the nuclear da ta base. 

Present day computer codes have taken some of the burden off of the 
user . Never theless , i t i s highly des i r ab le f o r the engineer using the 
computer code to have an understanding of p a r t i c l e t r anspo r t including 
some i n t u i t i o n f o r the problems being solved, to understand the construc-
t ion of sources f o r the random walk, to understand the i n t e r p r e t a t i o n of 
t a l l i e s made by the code, and to have a bas ic understanding of elementary 
biasing techniques . 
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(> ABSTRACT 

The continuous energy Monte Carlo neutron transport'code, VIM, and 
its auxiliaries, are briefly described. The ENDF/B cross section data 
processing procedure is summarized and its benchmarking agains MC2-2 is 
reviewed. Several representative applications at ANL are described, 1 
including fast critical assembly benchmark calculations and STF and TREAT7 
Upgrade benchmark calculations. 

INTRODUCTION , 

The VIM code is a continuous energy Monte Carlo code designed pri-
marily for fast reactor calculations, but also containing >5 thermal neu-
tron scattering capability. The development of VIM and," Lhe;,associated 
fast reactor cross section processing codes was initiated' aL'Atomics » 
International1 and has been continued at Argonne NationaLf Laboratory. 
VIM, now available through the National Energy Software Center, features 
a flexible geometrical capability, a neutron physics data base closely 
representing the ENDF/B data from which it has been derived, and a calcu-
lational output directed to the needs of the fast reactorf-analyst. 

DESCRIPTION 

The original VIM geometry package was designed to permit a simple 
description of plate-lattice critical experiments. All cells of iden-
tical characteristics, with plates, clad, and void defined by combination 

f of rectangular parallelepipeds, need be specified only once; the full 
assembly is then described as a rectangular lattice constructed from the 
basic cells. The combinatorial geometry package developed for the code 
SAM-CE2 has been implemented in VIM and extended to specific geometrical 
descriptions of particular interest in reactor analysis. The above'two 
techniques have been combined in VIM to provide options for the descrip-
tion of repeating hexagonal and rectangular lattices with the in-cell 
geometrical definition employing the full! combinatorial geometry capa-
bility. In addition, an infinite, homogeneous medium option is available 
to provide an efficient capability for data testing and cross section 
methods evaluation. 

VIM produces three distinct estimates of the reactor eigenvalue. 
The analog, or last-event estimator scores W(v£f)isotope/E|°°al whenever 
absorption by a fissile isotope occurs. Here, W is the neutron weight, 
and E is the macroscopic cross section. The collision estimator scores 
the fission production rate, W(vLf ) t o t aV£|g| al, at each collision 
event. The track (or path) length estimator scores W(v £|ot)/E | o t a l times 

D 
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the track length for all tracks within each zone, including uncolliding 
tracks. The estimates of standard deviation in the eigenvalue estimates 
are obtained using the assumption (never strictly correct in an eigenvalue 
computation) that the contributions from all the history batches are 
statistically independent.3 

VIM produces a statistical edit of various quantities after a user-
specified number of batches. Both collision and track length estimation 
provide groupwise reaction rate estimates by region and by isotope, while 
track length estimation generates region-wise integrated group fluxes. 
Optionally, infinite dilution region-averaged microscopic reaction rate 
ratios may be obtained in a designated central region. Track length 
estimates of reaction rates and fluxes are used to provide estimates of 
broad-group microscopic and macroscopic cross sections over edit regions. 
All quantities are provided with standard deviation estimates which are 
based on the statistical independence of the batch data. 
^ 

VIM may be used with a combination of several variance reduction 
techniques. Neutrons can be tracked by a combination of absorption and 
.ariiiiog weighting which can be assigned by zone or by cell. For example 
one flight use analog weighting in the core region for an eigenvalue cal-
culation and aheorjition weighting in a blanket region to improve the 
statistics of .tow-energy effects. The user can select a cutoff energy 
below which all weighting is analog to reduce the effort spent on unimpor-
tant neutrons. Splitting and Russian roulette can be used to spatially 
modify the sample distribution, improving local statistics. Combined 
estimators4 produce averages of the eigenvalue estimates in linear combi-
nations determined by the statistical characteristics of the data, using 
the assumption of normality of the batch results. This is most effective 

a variance reduction technique when two estimators are strongly nega-
tively correlated. Simple averages of the estimates are also provided, 
with the estimated standard deviations including the effects of correla-
tion between the estimates. 

In addition to a startup source guess and a restart capability a 
number of initialization options are available. The user may provide a 
set of source sites from a similar previous calculation to avoid wasting 
the first several batches converging on a source shape. One can specify 
a fixed source of arbitrary spatial, angular and energy distributions by 
supplying a fixed source subroutine within the framework provided by VIM. 

The physics data base for the VIM code consists of a library of 
binary files, with each file providing the physics data for one material. 
Each such "VIM material file" is the end product of a moderately complex 
computational path beginning with ENDF/B tape files. At each intermediate 
step, a code is used to process one or more intermediate data libraries 
and produce an output library of data available to a succeeding step. A 
flowchart of the generation system is shown in Fig. 1. 

The initial step of cross section processing is the program VIMB, 
1 which reformats and reorders ENDF/B data and generates the energy grid. 
VIMB calculates the potential scattering cross section, threshold energies 



for inelastic levels, and normalized cumulative secondi gy distri-
butions for (n,2n), fission, and inelastic continuum sect . A grid 
of energies for unresolved resonance parameters is gene" < they are 
energy-dependent in ENDF/B, and the elastic scattering { _.ection 
energy grid is tightened to permit linea^linear interpo-L, ̂  L»n meeting a 
user input accuracy criterion. A common energy ~rid is /when constructed 
by merging the energy points for all reactions and inserting a background 
grid of 20 points per decade. VIMB also interpolates File 3 cross sec-
tions to the expanded energy grid and processes the anisotropic angular 
distribution data for elastic, (n,2n), and inelastic levels by (a) calcu-
lating a 200 point angular table at each energy from Legendre coefficients, 
(b) calculating a 200 point angular distribution from a tabulation by a 
cubic spline fit to the logarithm of the differential cross section vs. 
cosine of the angle,' (c) calculating normalized cumulative distributions 
from the 200 point tables and collapsing to 20 equal-cosine intervals. 

The UNIDOP code produces point cross section data in the resolved 
resonance region from S-wave and P-wave resonance parameters from VIMB 
output. For each isotope, an energy mesh is obtained by merging a 99-
point distribution around each resonance energy with a background grid 
at equal lethargy intervals of at least 40 points per decade. Zero 
degree Kelvin resonance calculations are performed using either single-
level or multi-level Breit-Wigner representations over the energy grid, 
and the point data are Doppler broadened to,the first specified tempera-
ture (presumably 300 degrees K). Any File 3 background are added in, 
and the resulting data are then Doppler broadened to as many as four 
other' user-specified temperatures. The cross section arrays are then 
thinned according to user specified accuracy of either interpolation 
accuracy on total cross section alone, absorption cross section alone, 
or total and absorption cross sections simultaneously. Resonance 
integrals are calculated before and after Doppler broadening, after 
any File 3 background are added in, and before and after thinning. 

The AUROX code generates unresolved resonance data for single iso-
topes obtained from a<,VIMB output file into cross section probability 
tables using Monte Carlo methods. For each spin series of resonances, 
the Wigner distribution for resonance spacings is sampled independently 
to obtain a ladder of resonances, and the appropriate chi-square dis-
tributions are sampled for resonance width parameters. Pointwise 
cross sections for scattering, capture, and fission are then constructed 
on an arbitrary energy scale using energy dependent factors evaluated 
at the ENDF/B specified energy point with Doppler broadening to the 
desired temperatures. The average values of the cross sections bet-
ween any two energy points on the grid are then binned by total cross 
section value with weight equal to the energy interval. Additional lad-
ders are generated and the cross sections binned until either a user-
specified number of ladders has been processed or until the standard 
deviation in the observed infinitely dilute average cross sections satis-
fies a user input criterion. The average cross section value in each bin 
is then calculated, the cumulative probability for sampling from a bin is 
obtained from the binned weights, and the resulting tables are normalized 
to the known infinite dilute average cross sections by applying an addi-



34 

tive constant to each bin of a given reaction type, preserving the 
observed higher moments. The process is repeated for all the ENDF/B 
energy points on the VIMB output data set or for as many as have been 
specified by card input. 

The REDUCE code processes cross section probability tables with a 
large number of probability bands into a library of tables with a small 
number of bands. Conventionally, an AUROX output data set with 99 point 
tables is processed to an output data set with 20 point tables. At user 
option, the probability bands are combined either by minimizing the abso-
lute difference between input and output total cross sections for high 
atom densities or the mean square difference for very dilute concentra-
tions. In addition, REDUCE calculates average self-shielded cross sec-
tions for an array of user-supplied values for additional equivalent 
potential scattering in barns/atom (the potential scattering for the 
material being processed is included in the probability table scattering 
cross section). REDUCE may be used solely to calculate effective cross 
sections from the original tables to be compared with reduced tables to 
examine the effect of the reducing algorithms and to compare with analy-
tical calculations. 

Since AUROX cannot process unresolved resonance data for a natural 
material which is a mix of isotopes, the probability tables must be gen-
erated for each isotope separately. MERGER is then used to prepare a sin-
gle set of "material" tables from the isotopic tables and the correspond-
ing isotopic abundances. In Fig. 1, MERGER would replace, precede, and/ 
or follow REDUCE. 

MERGER uses the principle that the unresolved resonances from dif-
f ferent isotopes are uncorrelated. Consequently, the joint probability 
distribution for the cross sections of two isotopes is the product of the 
two individual distributions. In forming the joint distribution from 
tables of length NI and N2, a distribution of length N1*N2 is formed. For 
each such probability interval, the combined cross section values are 
obtained from the weighted sums of the corresponding individual values, 
the weighting factors being the isotopic abundances. The resulting arrays 
are sorted in order of increasing combined total cross section and the 
cumulative probability distribution obtained. The algorithms of the 
REDUCE code are then used to reduce the N1*N2 band tables to the desired 
output table length. MERGER will not process multitemperature correlated 
tables, but tables at different temperatures may be processed indepen-
dently.5 

The code VIMTAP produces a VIM material file for free atoms by com-
bining the output data sets of the VIMB, UNIDOP, and AUROX (or REDUCE or 
MERGER) codes. VIMTAP replaces the VIMB data in the resonance range with 
the UNIDOP and AUROX data, and finds threshold energies and indices for 
total inelastic scatter and fission cross sections. The angular data 
may be thinned, and the elastic scattering cross section is corrected at 
very low energies to account for thermal motion by using a free gas model. 
Angular distributions for (n,2n) and the inelastic continuum are not 
retained, and only one interpolation code is allowed per reaction type. 
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Only two subsections are allowed in the secondary energy distributions; 
if more are present, only the first two are retained. In addition, the 
number of probability tables for any oue material is limited to 140. 

For those materials with thermal scattering law data specified in 
File 7 of an ENDF/B thermal tape, the procedure becomes more complex. 
The File 7 data are processed by the FLANGEX code into a library of 
discrete-energy double-Pl S(a,3) scattering kernels and thermal inelastic 
scattering cross sections. The KERINTX code subsequently processes these 
into a library of thermal scattering probability tables and thermal ine-
lastic cross sections. If the thermal scatterer is a solid, VIMB extracts 
the elastic scattering cross section and angular distributions in the 
thermal energy range from the ENDF/B thermal tape. For each such thermal 
scatterer, the corresponding free atom VIM material file is input to 
THTAPE, along with the KERINTX output library and, if required, the VIMB 
thermal data, to produce a VIM material file incorporating a full thermal 
treatment. 

VIM itself employs several models to treat scattering phenomena rele-
vant to thermal problems. For incident energies above lOeV, a full kine-
matic treatment of non-thermal free atom inelastic or elastic scattering 
is applied which ignores thermal motion of target atoms heavier than 
Below lOeV but above a user-supplied maximum thermal energy cutoff, 
scattering is treated as either scattering by a free gas o^ as isotropic 
center-of-mass non-moderating scattering, depending on the target mass. 
For solid materials, both thermal elastic and inelastic scattering is 
modeled, while for liquids, only thermal inelastic scattering is incor-
porated. 

One present limitation of the VIM library generation system, and 
consequently of VIM itself, is the inability to treat all the possible 
inelastic processes described in the ENDF/B data. At the present time, 
elastic scattering (MT=2), (n, 2n) reaction (MT=16 only, or MT=24 in 
the absence of MT=16), fission (MT=18), discrete level inelastic 
scattering (MT=5l through MT=90), inelastic continuum scattering (MT=9l), 
and "capture" (the sum of MT=102 through MT=ll4) are incorporated. The 
total cross section is then defined to be the sum of the cross sections 
for these reaction types. 

The VIMB, UNIDOP, and VIMTAP codes in use at ANL are modifications 
of similarly-named codes developed by Atomics International.6 The code 
AUROX was derived from the AI code U3R7 after extensive development and 
modification. The bulk of the development and testing of cross section 
preparation methods for VIM which has been done at ANL has been directed 
toward the treatment of resolved and unresolved resonance data. The 
FLANGEX and KERINTX codes were developed from the FLANGE and KERINT codes 
of Honeck and Finch at Savannah River.8 

Figure 2 illustrates the data flow for codes which access the 
library of VIM material files. The codes FILEONE, XSEDIT, and BANDIT 
are not really a part of the library generation system, but rather are 
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utility codes for VIM and are part of the VIM export package. The code 
XSEDIT provides a binary-to-BCD and BCD-to-binary conversion capability 
for the VIM data base to permit export of the VIM code to non-IBM install-
ations without the library processing capability. It may also be used 
to produce an edited listing of library contents. The code FILEONE is 
used to scan the library of material files and prepare a data file con-
taining variable dimens loning information. The code BANDIT partitions 
the data from up to 20 VIM material files into as many as 16 energy bands 
and produces corresponding cross section data subsets requiring about equal 
and minimum amounts of computer storage to be used during VIM calculations. 

Two auxiliary codes provide the user with the capability to modify 
the structure of the output data and to reanalyze it. KEFCODE permits 
the user to obtain a statistical edit of the VIM eigenvalue estimators 
for a subset of neutron,batches completed by VIM. For example, one might 
wish to ignore the first several batches representing the unconverged 
source, or to lump the batches into larger ones. Using RETALLY, the 
user can perform group collapse, region homogenization, skip early batches 
and process only some of the records, and produce a new modified edit of 
the VIM batch data. 

QUALIFICATION OF VIM 

VIM was brought to Argonne primarily as a tool for fast critical 
assembly experimental analysis and for analytical methods benchmarking, 
so the code has been thoroughly benchmarked on fast reactor problems. 
Since the criticals program has included the assessment of nuclear cross 
section data and processing methods, much of the validation of VIM has 
focused on this area. 

Prael and Henryson9*10 tested VIM's cross section data preparation 
and its solution of the slowing-down problem by comparison with the 
MC2-2 code, which was tested at the same time. MC2-2 solves the funda-
mental mode neutron slowing-down equations with high accuracy using 
multigroup, continuous slowing-down, and integral transport theory 
algorithms. Since both MC2-2 and VIM were designed to model the slowing-
down process in great detail, and since the methods of each are distinct, 
such comparison provides confidence in the accuracy of both codes. In 
MC2-2, the resonance calculations used an ultrafine group structure 
(Au = 0.008), except below 4 keV where a hyperfine structure (Au ~ 0.001) 
was applied to the resolved resonance region. 

To test the cross section preparation algorithms, several infinitely 
dilute, zero-dimensional slowing down problems were solved^ using 
ENDF/B-III data. Comparison of the resolved resonance broad-group cross 
sections revealed several large, local discrepancies. The first resulted 
from insufficient energy point densities away from resonance peaks due 
to the application of a linear-linear interpolation scheme to data spaced 
for log-linear interpolation. The second discrepancy arose from incom-
plete summing of resonance contributions. The third difficulty was due 
to distortion of absorption cross sections between well-separated reso-
nances because the thinning criterion was applied only to the total cross 
section. This was solved by thinning out only those points at which 
both the absorption and total cross sections meet the thinning criterion. 
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After correcting these discrepancies, two test problems with 10 MeV 
source were run to produce broad-group edits for 27 groups of lethargy 
width 0.5. The problems solved were an infinite homogeneous medium of 
2 3Na with an infinitely dilute admixture of heavy isotopes, and an 
infinite homogeneous medium of 1 2C with an infinitely dilute admixture 
of structural material. The capture and fission cross sections for 
2 3 8 U and 2 3 9Pu generally agreed to within a few tenths of a percent. 
However, resolved resonance capture in 2 3 8U was still in error by almost 
5% in certain groups due to the linear interpolation method; unresolved 
resonance cross sections required improved numerical normalization of the 
resonance probability tables; and 2 3°U and 2 3 9Pu unresolved resonance 
cross sections were in error by as much as 2% because VIM uses a linear 
energy interpolation of probability tables. In addition, errors in cap-
ture in structural materials necessitated extending the energy grid far-
ther from resonances, and the fluctuation of structural material cross 
sections required a denser energy grid in the keV range to overcome use 
of linear probability tables. These difficulties were also eliminated by 
adjusting the energy grid algorithms where appropriate. 

Once agreement in cross section processing between VIM and MC2-2 
was achieved, both codes were tested on a typical homogeneous zero-
dimensional fast reactor slowing down problem with a composition repre-
sentative of the benchmark critical ZPR 6 Assembly 7. ENDF/B-III data 
were used, and 24 group edits of flux, fission spectrum, isotopic reac-
tion rates, and isotopic microscopic cross sections, were produced for 
comparison. Extremely close eigenvalue agreement was obtained, and group 
fluxes agreed to within 1% down to the resonance range where differences 
of several percent were observed. Isotopic capture and fission rates and 
broad group cross sections were within 1% except for capture in 2 3 8U and 
fission in 2 3 9Pu, which was traced to VIM's use of linear interpolation 
between probability tables for unresolved resonance cross sections. 
Other broad-group cross sections agreed to within a few tenths of 1%, 
and within 1% in the resonance ranges. 

As a result of these comparisons, there is confidence that the VIM 
cross section data are accurately represented jn the material libraries, 
and that the physical slowing-down process is properly treated. VIM has 
subsequently been applied in the analysis of a number, of fast reactor 
critical experiments, providing the most stringent tests of VIM's ability 
to analyze actual reactor cores. Both basic integral parameters e.g., 
multiplication eigenvalue, and detailed information specifically relevant 
to the critical assemblies under study11 have been used to compare VIM 
with physical systems. 

REPRESENTATIVE APPLICATIONS 

At ANL, VIM is applied to diverse sets of problems. Although it is 
not possible to include here detailed discussions of each such set, 
in this section we will briefly describe some of the more common appli-
cations. 
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The level of agreement attained in the comparisons of VIM with fast 
reactor cross section processing codes and the experience gained in using 
VIM for the analysis of criticals has led to a widespread use of VIM as 
the benchmark for fast reactor cross section processing methods and as 
an analysis tool for numerous aspects of critical experiments. The con-
tinuous energy cross section treatment and the essentially exact geome-
trical modelling used in VIM permit the analyst to focus on the source of 
errors in deterministic calculations, e.g., deterministic eigenvalue 
calculations for critical systems which are typically in error by approxi-
mately 1.5% with the ENDF-B/IV data base. Eigenvalue and integral reac-
tion rate, comparisons with experiment and with other calculations have 
improved the quality of experiment analysis. Specifically, most of the 
eigenvalue errors have been traced to the ENDF data, and the effects of 
multigroup cross section processing on experiment analysis have been 
quantified, within limits. 

For the analysis of most criticals, the need for VIM extends consid-
erably beyond testing the effects of cross section treatment. The repre-
sentation of fine structural details is often very important in the 
analysis. For example, if one has a detector or foil located in the 
core, the structure near this detector or foil can affect the number of 
counts obtained. An accurate calculation for such a treatment requires 
a flexible geometry package beyond the scope of most deterministic codes. 
The breeding ratio measurement of ZPPR-4 is an example of the need for 
such detailed analysis. 

Certain classes of criticals have geometries that are so complex or 
irregular that analysis by deterministic codes requires extensive geome-
tric approximations. A recent series of safety-related criticals involved 
the study of damaged cores, including mockups with slumped fuel, large 
cavities, and other severe geometric distortions. Such abnormal config-
urations severely strain the usual xy, xyz, r0, r0z, and triangular geo-
metric representations in most diffusion and S codes. These models must 
therefore verified by accurate reference calculations using the exact 
geometric representation available in VIM. Even when core geometries are 
regular in other respects, certain aspects of the experiment may require 
the VIM capabilities, at least for benchmark calculations. Some criti-
cals, e.g., those related to GCFR studies, are notable for large neutron 
leakage and streaming effects. Diffusion codes require special treat-
ments, e.g., anisotropic diffusion coefficients12 to account for such 
effects, and special treatment of unit cell streaming paths, while S^ 
codes may require high angular resolution for accurate modelling of axial 
leakage. VIM provides a reliable treatment of neutron streaming and 
leakage, whether in small regular channels or in large irregular cavities. 

Because of the relatively recent incorporation of a thermal scatter-
ing law treatment in VIM13, benchmarking of the thermal cross section 
library in VIM is much less extensive than that for the fast energy range. 
Nevertheless, such benchmarking has been done for materials cf particular 
interest to individual programs and users, e.g., graphite for the SAREF 
program and light water reactor materials for various thermal reactor 
programs at Argonne. As in the case of fast reactor cross section 

f-
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studies, the agreement found between VIM, other thermal reactor codes, 
and experiments, is such that VIM has come to be accepted by many users 
as a standard for comparison with other thermal reactor cross section 
preparation codes. 

Several groups in the Applied Physics Division at ANL use VIM to 
benchmark cross section methods used in thermal reactor analysis. For most of 
these applications, corresponding unit cells are calculated with VIM and 
with the thermal reactor code of interest, e.g., EPRI-CELL. The analyst 
then compares integral parameters such as k and regional reaction rates, 
and microscopic quantities such as individual isotopic cross sections 
with corresponding quantities produced by the deterministic code of 
interest. The results of this comparison allow the user to identify 
possible problems in a multigroup cross section set and to attach a level 
of reliability to the multigroup cross section set. More elaborate types 
of comparisons are occasionally carried out. For example, one analyst 
desired to use EPRI-CELL for the analysis of a rather complex light water 
reactor fuel assembly design containing fuel and blanket pins of different 
sizes and water holes in an unusually tight lattice.111 This design was 
so heterogeneous that a true unit cell did not exist within the fuel 
assembly, necessitating rather extensive geometric approximations in the 
application of EPRI-CELL to the system. As a check on the adequacy of 
the final EPRI-CELL model, the entire fuel assembly was modelled exactly 
in a VIM calculation. This application is typical of an entire class of 
problems where a geometrically exact VIM calculation is used to validate 
a model when circumstances force a code user to exceed its intended range 
of application. 

VIM is also used with some frequency for more general types of reac-
tor analysis. One program that relies heavily on VIM is the Safety 
Research Experiment^Facilities (SAREF) program. The SAREF program was 
formerly directed toward the development of a conceptual design for the 
proposed Safety Test Facility (STF) and is presently concerned with the 
design of an upgraded core for the Transient Reactor Test Facility 
(TREAT) reactor. Because this program involves all aspects of core 
design for an actual reactor rather than general parametric or feasibility 
studies of reactor types and concepts, VIM usage in SAREF tends to be 
varied and complex in scope. Examples of this usage will be discussed in 
some detail. 

VIM is used for cross section benchmarking in SAREF, but the pro-
cedure becomes more complicated than in the routine unit cell calcula-
tions cited above. Because SAREF "is concerned with core design for an ^ 
actual reactor rather than the study of a concept, the quality of multi-
group cross sections used in SAREF reactor physics calculations is parti-
cularly important. Errors which might be acceptable for a feasibility 
study cannot be tolerated in a program dealing with modifications to an 
existing reactor. Ideally, multigroup cross section methods and reactor 
physics calculational techniques are validated by comparison with criti-
cal experiments, but for reasons of budget'.'and schedule, this is not poss-
ible for the current TREAT Upgrade work. Consequently, more reliance 
must be placed on comparisons between VIM and multigroup deterministic 
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calculations. One makes the same type of comparisons here as in the 
simpler cell calculations discussed above, but in the SAREF applications 
one is dealing with many distinct regions of a complex coupled-core reac-
tor rather than a simple unit cell. 

Certain unusual features of the STF conceptual design and the TREAT 
Upgrade design and purposes make uncommon demands on analysis methods. 
Both STF and TREAT Upgrade are transient test reactors intended to pro-
vide a pulsed source of neutrons with specified characteristics to irradi-
ate a cluster of target fuel pins in a test loop at the center of the 
reactor core. Consequently, the fission density distribution in these 
target pins and the relationship of this fission density to the fission 
density at specified locations in the reactor core are the crucial 
parameters of full-core physics calculations. The target pins and some 
of the other regions of interest represent very small fractions of the 
entire core volume, so a very careful application of splitting and Russian 
roulette techniques is required to reduce the relevant variances in these 
regions to an acceptable level. Some recent calculations with and with-
out splitting have shown that true reaction rates in the smaller regions 
could never be separated from statistical noise were it not for splitting. 

Calculations for the SAREF reactors are further complicated by the 
presence of large radial and azimuthal irregularities in these cores. 
Both STF and TREAT Upgrade have inner and outer core regions of markedly 
different compositions and properties. This leads to a strong radial 
dependence in the core fission density and flux spectrum. A more serious 
non-uniformity in these cores, however, is the presence of a large cavity 
caused by the removal of a row of fuel assemblies between the test loop 
and the boundary of the reactor. This void is introduced to allow exper-
imenters to "view" fuel displacement in the central target pins during a 
transient irradiation experiment. This slot causes large azimuthal flux 
variations and strong neutron streaming effects which in turn lead to a 
marked azimuthal dependence of the core fission density. The streaming 
effect due to this slot is the most important reason for using VIM in 
SAREF core analysis, since the slot void invalidates diffusion calcula-
tions and S^ calculations would require a very fine angular mesh. 
The presence of control rods inserted to varying positions only compli-
cates matters further. 

,, Because it is not practical in terms of cost or calendar time to 
perform VIM calculations for every core configuration or design parameter 
of interest, reference configuration VIM calculations are used to correct 
important physics paramters from the less accurate diffusion, and S^ cal-
culations. Three examples of these correction factors will illustrate 
this. First, deterministic codes cannot geometrically represent either 
target pins or the test loop, so the crucial determinations of target pin 
energy deposition are seriously in error. Furthermore, the fission den-
sity distribution within the target pins is an important experimental 
parameter which cannot be adequately calculated deterministically. By 
applying VIM with full geometric detail to the test assembly, correction 
factors are generated which apply to a class of similar situations. 
Finally, it is,- very important that the location of the hot spots in the 
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core be known because they set the operational limits for the core. 
Because diffusion and S calculations are not generally able to 
accurately account for the effects of the slot void and control rods in 
a three-dimensional calculation, the VIM results are used to identify and 
study the core hot spots. By carefully selecting representative config-
urations to be studied with VIM, the designer can establish sets of cor-
rection factors to be applied to classes of similar core configurations. 

At times, the required accuracy for fission density estimates has 
made full core Monte Carlo calculations impractical. But by imposing a 
fixed source of magnitude, initial energy, and initial direction impor-
tant with respect to the test assembly, it is possible to generate a 
Green's function for the target pins and the neighboring fuel assemblies. 
A record of initial and terminal neutron sites is written by VIM, which 
is then processed to yield the desired Green's function. This function 
can be used to determine the response of some selected portion of the 
system, particularly the target pins, to a partial current imposed at 
some boundary of interest. This current is determined from diffusion or 
transport calculations which are capable of representing general core 
characteristics but not the fine structural details of the target region. 
One can economically determine the response of the test assembly fission 
density region to changes in core conditions by varying the partial cur-
rents at the target region boundary and applying the Green's function to 
them. 

A related procedure requires the imposition of incoming partial cur-
rents on some boundary surrounding the region of interest. These partial 
currents can be obtained in the same manner as for the Green's function 
calculation outlined above. In this case, however, the exact magnitude 
of the partial current is used to determine the fixed source. The source 
neutrons and all of their daughter neutrons generated within the region 
of interest are followed to the point of termination either by absorption 
within the region or escape from it. The resulting VIM estimates for the 
central region closely approximate those from a full core calculation, 
but are much more economical because the focus of the Monte Carlo calcu-
lation is only on the target region. 

Another Argonne program that relies heavily on VIM is the Reduced 
Enrichment Research and Test Reactor (RERTR) program, in which many of 
the reactors under study have cavities and/or beam ports for the irradia-
tion of test materials. Because many of these reactors are used princi-
pally as irradiation facilities, their designs are oriented towards crea-
tion of a high neutron flux at particular locations in the reactor core. 
In addition, many of these reactors are rather small physically, with 
very important neutron leakage and streaming effects. These reactors 
often exhibit such strong heterogeneity that standard diffusion and S^ 
codes cannot be applied without significant approximations in the geome-
tric representations of the reactor cores. Accurate treatment of hetero-
geneity can be important even in relatively large, low-leakage reactors: 
it is even more important in small reactors where leakage can be a major 
factor in the neutron economy. " 
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An adequate treatment of heterogeneity can be yery difficult with 
deterministic codes for several reasons. First, representation of fine 
structure in finite difference codes can require so many mesh points as 
to easily exceed available core storage. Second, theoretical considera-
tions may limit the attainable accuracy with a deterministic code, e.g., 
the basic approximations inherent in diffusion theory. Third, spatial 
heterogeneity is often accompanied by various cross section effects that 
are difficult to deal with in multigroup treatments, e.g. self shielding. 

Sequences of design calculations with VIM are no more practical in 
RERTR than in SAREF, for the same reasons of time and cost. One has little 
choice but to accept the geometric approximations in deterministic codes 
for normal calculations. However, important heterogeneous features can 
be examined by calculating a more-or-less exact representation of the 
reactor core with VIM. The VIM calculation provides the data for RERTR 
analysts to correct the deficiencies caused by geometrical approximations 
and, incidentally, to correct for errors introduced by multigroup cross 
section treatments.^ j> 

• VIM has also been modified for special use in the design of the 
Intense Pulsed Neutron Source (IPNS) at Argonne, which employs a high 
energy proton beam from the zero Gradient Synchrotron to generate a high 
flux neutron beam for nuclear physics and materials research. The proton 
beam generates high energy neutr'ons in a heavy metal target. The emer-
gent neutrons are then scattered into neutron beam tubes by moderating 
materials selected to produce neutron fluxes of specified characteris-
tics, particularly energy. The highly localized and anisotropic, nature 
of the proton beam and the resulting neutron fluxes necessitates an 
exact treatment of the angular variable, and the irregular arrangement 
of target, moderator, reflector, and beam tube regions in the shapes of 
cylinders and parallelapipeds requires a flexible geometric representa- . 
tion. HETC 16, a high energy nucleon-meson transport code is used to 
track incident protons and the few neutrons emergent from the proton 
target with energies above 15 MeV. The site coordinates and velocities 
of neutrons below 15 MeV are then saved as source sites for VIM. VIM 
tracks the neutrons in the usual way, except that at each collision, the 
probability of emerging as a beam tube particle is computed. After 
scoring this probability times the weight, the normal tracking process 
resumes. The HETC/VIM results are consistent with experiment within 
statistics (5-10% uncertainty). 

o 
SUMMARY 

For a number of years, VIM has provided a reliable computational 
benchmark capability at Argonne because of the extensive benchmarking of 
VIM itself against other analytical tools and against numerous critical 
experiments. The code has been applied to analysis of a wide range of 
fast and thermal reactors as well as to other neutron transport calcula-
tions which require either flexible geometric representations or basic 
ENDF cross section data up to and including version V. 
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Fig. 2. VIM Cross Section Library Handling Utilities 
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MONTE CARLO PERTURBATION THEORY IN NEUTRON TRANSPORT CALCULATIONS 
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Vl 
ABSTRACT 

The need to obtain sensitivities in complicated geometrical 
configurations has resulted in the development of Monte Carlo 
sensitivity estimation. A new method has been developed to 
calculate energy-dependent sensitivities of any number of 
responses in a single Monte Carlo calculation with a very small 
time penalty. This estimation typically increases the tracking 
time per source particle by about 30%. The method of estimation 
is explained. Sensitivities obtained are compared with those 
calculated by discrete ordinates methods. Further theoretical 
developments, such as second order perturbation theory and 
application to ktf calculations are discussed. The application 
of the method to uncertainty analysis and to the analysis of 
benchmark experiments is illustrated. 

INTRODUCTION 

The result of a neutron transport calculation can be "v̂ ry sensitive 
to nuclear data, and experimental error in these data may cause the 
result to be misleading. To determine how important this effect is, it 
is necessary to calculate sensitivities and combine them with covariance 
information to obtain the standard deviation of the result. If the 
uncertainty arising in this way is unacceptably large, then the nuclear 
data must be improved. One way to do this is to adjust on the basis of 
a benchmark experiment, which also involves the calculation of sensitiv-
ities. The motivation for this work is the need to calculate sensitiv-
ities in geometries which, because of their complexity, require a Monte 
Carlo calculation. 

There are additional advantages in using a Monte Carlo method for 
the analysis of benchmark experiments. All the sensitivity information 
can be estimated simultaneously, whereas conventional methods require a 
separate adjoint calculation for each channel of experimental information. 
Also group-averaging errors can be avoided by the use of point nuclear 
data, so the adjustments should reflect shortcomings in the basic data, 
rather than difficulties in a group-averaging process. The number of 

*Work performed during author's attachment to Radiation Physics and 
Shielding Group, Reactor Physics Division, AEE Winfrith. 
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sensitivity coefficients which need to be estimated though, can be as 
many as a thousand, so it is essential that each should be scored with 
very little time penalty. 

The method described here has been implemented with all this in mind, 
although the approach has been kept as general as possible, so that 
different applications can be catered for. 

METHOD 

Any response R can be considered as an average value associated with 
the set P of all neutron paths: 

Z- T p . (J) «_. /• r> « -w c p 
TV- t _ t -WV , , 

Here p is the probability of pathrw, and r is the estimator for 
path^. If is a linear perturbation operator, then d operating on Eq. (1) 
gives 

DR = Z Ur~p~) (2) 

Writing Eq. (2) in the form of Eq. (1) 

-Mtf 
where 

so (j"T is an estimator of D R . Re-arranging Eq. (4) 

ehr™- (5) 
where . 

, (6) 

so C*T is a weighted version of • . 

This estimator has the disadvantage that it is bad at estimating the 
component of a change which is zero because of physical restrictions. 
For example, in a non-multiplying medium a perturbation of a cross-section 
at low energy usually cannot affect the flux at high energy. But even if 
5 only operates on cross-sections at low energy and T1* only scores flux 
at high energy, the estimator rfT1^ given by Eq. (4) will still in general 
be non-zero, although it will have zero expectation. A more discerning 
estimator would itself be zero under these circumstances. To achieve 
this T ^ and p*"" are split into components associated with each trajectory 
of pathiw: 
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$7 (7) 
and 

pw = rr , (8) 

In this context: a trajectory is a section of a path along which no 
collisions or boundary crossings occur; twv is the number of trajectories 
in pathw; ^ ^ "is the contribution to the estimator for path y^ arising 
from the trajectory; c ^ is the probability of the J^ trajectory, 
given that the (j - i)"* trajectory has occurred. It is shown in the 
appendix that another estimator for D* is 

given by 

J*1 J 1 J*1 J 

This estimator will always be zero in the circumstances which have just 
been mentioned. This is because, in Eq. (9), by the time is large enough 
for "P to operate on Sj" and c^* , the value of is zero. Re-arranging 
as before J 

i "m ^T 'Av . w Wi \ ( 1 0 ) 
14 c ' where 

<- ji <•1 j 

These are the key expressions used in the method. The two expressions 
for dr™ in Eqs. (5) and (10) can be compared by writing Eq. (5) as 

r ^ Z v - s r . d2) 
u 

IMPLEMENTATION 

Implementation consists of specifying!?, Sv and of Eq. (11), 
evaluating the weights and scoring the estimator (A-r̂ in the same way 
as the estimator T̂ ". 

Specifying D 
A 

The form oft) is determined by the nature of the perturbations of 
interest. In the analysis of a benchmark experiment it is usual to regard 
the resultRof a calculation as a function of the nuclear data X: 
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(13) 

X is subject to experimental error and may be perturbed by an amount Sx. 
The Taylor expansion of R about is 

& = Z *>tu I R + 21, Z S^S'-x _ J l _ n + >i> . ( 1 4 ) Ij 
Writing this in dimensionless terms 

SR . T ^ 2b 1 Q + i 7 lij ^ J R + n o 
X " f r t R + 2: fp R • 0 5 ) 

Often some of the values of s v / 'ti are constrained to be equal—for example 
they may be subject to a systematic error. Suppose for a set of integers 
|< and associated constant there is a constraint 

—similarly for another set L and constant ou . In this case Eq. (15) 
can be factorised: 

« - re K Z + b ^ ' a Z I ^ ; ^ . . . - (") • J • t _ - L- L. £ CM r 77 , " R v I , 
K K i t K k L J t t - S ^ ^ J 

The terms which it is useful to know are 

2 R (18) 07U 
and 

I Z K . 
I *>lJ ceK j t L R K 

The first of these terms can be written as 

( 1 9 ) 

(l/£)T>R (20) 
where 

( 2 1 ) 
UK 

This is the form of D considered in this section. 
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Specifying S and ^ 

The quantities £ and ̂ j, are determined by the type of trajectory and 
by the method of estimation. Suppose a trajectory starts with a neutron 
undergoing a reaction type (£ at energy t. The neutron is scattered 
through an angle 9 to energy continues for a length A and then 
collides. The cross-section for reaction y? at energy c is • For 
convenience ac* is defined by 

Xi = Z . (22) 
J pc-B 

where ̂  is a set of partial cross-sections. The probability of the 
trajectory alone is given by 

cp ±>)%Iy c\k . (23) 

Here is the set of all reactions making up the total cross-section and 
the probability distribution function in phase-

space of the secondary neutron. If a Monte Carlo code uses point nuclear 
data, then values such as are used in the sampling procedure. In this 
case D might be given by 

B = X X < i . (24) 
fit? h6C, » dx£ 

Here "P is a set of cross-section types, for example non-elastic, and C\ 
is a^set of values of H comprising an energy interval. In this case 

would be 
the sensitivity of R to the non-elastic cross-section 

in the Citu energy interval. „ 
If track length estimation is used, the contribution to the estimator 

for the trajectory will be given by 

Ar^' , , (25) 

where £"<} is a response cross-section at energy E . If collision density 
estimation is used, then „ 

S - ^ ' / ' X y . „ (26) 

•YW Evaluating O i / 
p 

The symbol is defined to be unity if belongs to the set f5 , 
and otherwise to be zero. If T> is given by Eq. (24) and track length 
estimation is used, the weight W ^ i s given by 
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I { S j - S* - S3
fi A ) + ^ ( X y ho].)} . (27) 

j % I 

If collision density estimation is used, then 

cor = I { C - ^ ( * J / x J ) - (xy A )} (28) 

Fortunately the weights can be evaluated using a recursion formula—for 
example with track length estimation 

. (29) 

It can be seen from Eq. (29) why the method is so fast. The values of 
X.j , > i and A are all available in an unperturbed 
calculation, so the weight only has to assemble information which is 
already there. In addition, the weight C o c a n be applied to any estimator 
S.**- , which means that sensitivities to any number of responses can be 
scored simultaneously. 

Scoring d-r"̂  

A code called DUCKPOND has been written to score the estimator ik T ? 
Full use has been made of the Winfrith Shielding Group's suite of Monte 
Carlo modules. This has meant that DUCKPOND has been coded with a minimum 
of effort yet includes the powerful capabilities familiar to users of 
McBEND2". In addition to a sensitivity capability, DUCKPOND can score a 
covariance matrix for all the estimated responses. This is useful in 
analysing benchmark experiments. 

o 

COMPARISON 

Sensitivities can be obtained in limited circumstances using discrete 
ordinates (S-n,) calculations, so an important test is to compare results of 
this type with answers estimated using the Monte Carlo method. The only 
difficulty with the comparison is that the discrete ordinates calculation 
may involve group-averaging errors, whereas this will not be the case"with 
Monte Carlo estimation using point nuclear data. To determine the extent 
of this problem,fluxes are compared in addition to sensitivities. 
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Fig. I. The Geometry of the 
Test Problem. 

The geometry of the test problem 
is illustrated in Fig. 1. The 
response function is for total flux 
per unit volume betweem 14.9 MeV and 
407 KeV; the source has a fission 
spectrum normalised to l-O 
Sensitivities to the elastic and non-
elastic cross-sections of iron are 
calculated in forty groups of approx-
imately equal lethargy width between 
14.9 MeV and 407 KeV, corresponding 
to the first forty groups of the 
100-group EURLIB3 structure. Flux 
per unit volume in the scoring region 
is calculated in the same group scheme. 

ANISN* and SWANLAKEf were used 
for the Sn, calculations and DUCKPOND for the Monte Carlo estimation. 
(Fluxes and sensitivities are compared in Figs. 2 and 3; the erxors plotted 
for the Monte Carlo results are an estimate of one standard deviation. 
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Fig. 2. Comparison of Flux 
in Scoring Region calculated by 
Monte Carlo and S„, Methods. 

The Monte Carlo sensitivity 
estimation is working well. The 
agreement with the S^ method is 
convincing and, equally important, 
acceptable variances have been 
obtained with a workable sample size. 
DUCKPOND was run in this case for 
twenty minutes on an IBM 3033 using 
automatically-generated impor tance 
sampling, and the test problem is 
representative in scale of a 
realistic calculation. Moreover a 
comparison of running times between 
DUCKPOND and its non-perturbative 
equivalent McBEND show that sensit-
ivity estimation typically slows 
down tracking by 30%. To give an 
example—for the same price a 
response might either be estimated 
by McBEND wioh a standard deviation 
of 10%, or estimated by DUCKPOND with 
a standard deviation of 11.4% but 
with a full set of sensitivity 
profiles. If the sensitivities 
reveal uncertainty of 20% arising 
from data errors, then the DUCKPOND 
calculation would be the more useful. 
It would be sensible to perform an 
uncertainty analysis of this kind on 
all Monte Carlo calculations. 
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Fig. 3. Comparison of Sensitivities of Flux above 407 KeV to 
Elastic and Non-Elastic Cross-Sections of Iron, as calculated by 
tDUCKPOND and SWANLAKE. 

A disturbing aspect of the results is the discrepancy between the 
fluxes calculated by the Monte Carlo and Srv methods. The low energy flux, 
which is the main contributor to the total flux, is undercalculated by 
about 50% by the Srv method. The sensitivity profiles suggest that an 
explanation of this is a group-averaging overestimate of about 30% in 
the cross-sections for groups 35 to 39. Such an error could easily arise: 
the elastic cross-section of iron is rapidly changing by factors of about 
five in this energy range, which puts great importance on the weighting 
function used in the averaging process. 
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DEVELOPMENT 

There are three interesting ways in which this method can be developed: 
higher order perturbation coefficients could be scored, sensitivities to 
geometric data obtained, and the method could be applied to eigenvalue 
calculations. 

Higher Order Coefficients 

A second order operator has already arisen in Eq. (19). Such an 
operator is now defined by 

i<-K jeu iM-t i!Aj 
It is also^convenient to redefine corresponding first order operators: 

* b'K 
and leK <>f< 

The first order weights are given by Eq. (11) and turn out to be 

and 
L 1\A uO t - V Y^-'-'u Jl ^ z_ a vw V 'h ^ u i— w 

ja t }j 
and the second order weights are given by 

ku wv ^ > . v /i £ *M/ ' °T> < ^ 

(30) 

(31) 

(32) 

(33) 

(34) 

5: 
+ 

(35) 

These equations are illustrated by referring to the specifications of D , V 
S and a. appearing in the section on implementation. T>K and I>u are given^ 
by 

and 
V l l i 

jSbP 0XK 

fitO netf 

(36) 

(37) 
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with a corresponding definition of The previous definitions of S 
and cp still stand. For track length estimation all the terms involving 
S in Eqs. (33) to (35) i ,:e zero. The other terms are given by 

o / t n M r - c - ^ K K ) 
Q, ^ Y 

- Sy ( X y X ) + % y ( X y / T f - y ) , (38) 

- S3' {Xy A) + by ( l . y / X y ) 1 (39) 

( x / x j ) / ( x 3
r ) t + A 2 ) , (40) 

so second order weights are not much more difficult to evaluate than 
first order, although there may be more of them. The most likely use of 
second order coefficients would be in testing the validity of a first 
order approximation. 

Geometric Sensitivities 

Suppose a geometrical configuration is defined in terms of rectangular 
co-ordinates , and Y", . A plane with unit normal*} which separates 
two different media may be described by the equation 

» t • (41) 

An operator which describes a first order change in the position, of the 
plane is 

V- W • (42) 

Again using the previous specifications for £ and <\. , the only variable 
which can depend on t- is A . If U, , Hi and U^ are the direction cosines 
of a trajectory then 

B A / H - k / * - * . (43) 

Here K1^ for boundary crossing at the beginning of the trajectory, 
K> I for boundary crossing at the end of the trajectory, and K c ° 
otherwise. If collision density estimation is used, the weight given 
by Eq. (11) is 

3 - (44) 
This could be used to score the geometric sensitivity 
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Eigenvalue Calculations 

Monte Carlo eigenvalue calculations differ from shielding calculations 
in that superimposed on the normal processes of tracking and scoring is 
an iterative procedure. An eigenvalue calculation in a code such as MONK 
will usually start with a fission source guess represented by N 0 particles. 
These particles are tracked to leakage, absorption or fission. N 0 of the 
resulting N, secondary particles are sampled at random and the process 
continues for successive generations. The ratio Kj is defined by 

Kj-Nj/^o (45) 

where Nj is the number of secondary particles at the end of the 
generation. 

Each trajectory involved is labelled according to the particle from 
which it originated (w) and the generation in which it occurs (j ). 
The probability of the t^ trajectory of this type is defined in the 
same way as before to be '̂ TJ- • The probability of all the trajectories 
up to and including the generation which originate from the -wv^ 
particle is given by 

, P™ - L £ ^ n < b • <"> 
ivy _ ^ • , 

If i* is the number of secondaries at the end of the K generation 
originating frorn _the vn*' particle, then another expression of the' ratio 

Mi 
I. "T T W Y/v 1/ = / T D M.** * r k + * * • (47) 

Furthermore the eigenvalue ktff- is given by 

ktff I t , K k 1 - < « ) 

so for k, sufficiently large, Tjf is an estimator of . If is some 
perturbation parameter then ^^^^-ss^ 

m - lv~ z ^ 
or 

where 
1 If* 

c * pr v 

(49) 

k " (50) 

(37) 

h 
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This means that is an estimator of I fa and, for k. sufficiently 
large, }nejf-/fa . Re-arranging Eq. (51) 

dr" = 'j (52) 
where 

• • TVV y 
The evaluation of the weight may be troublesome. Substituting for p^ 

-.from Eq. (46) 
„ £ ' \ J / ^ v 

i V P * ^ " V S } <54 ) 
SO -V 

^ % u 11 
The difficulty is in '̂ valuatirvgl the term (bfc . An exact value is 
not available, so an estimate using has to be used. If No is not 
sufficiently large, the estimates of may get progressively worse, 
and the method may not converge. 

APPLICATION 

DUCKPOND has been applied to a variety of practical problems. 
Preliminary results of the uncertainty analysis for the NRC Blind Test7 
have already been produced and sensitivity calculations have been carried 
out for the analysis of the Winfrith Iron Benchmark8 . Some of these 
results are presented here. 

NRC Blind Test 
n 

This test is to see how well a series of experimental reaction rates 
in a simulated pressure vessel can be predicted by various methods. It is 
useful to be able to isolate each source of error in the predictions, and 
DUCKPOND has been used to evaluate uncertainties arising from errors in 
nuclear data. The .significant sensitivities of one of the reaction rates, 
as calculated by DUCKPOND, are illustrated in Fig. 4. These sensitivities 
were combined with covariance information about nuclear data9 to obtain an 
^uncertainty of 14%. The geometrical configuration involved in the 
calculation precluded an method. 

O 
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Fig. A. Sensitivity per Unit Lethargy of i9Nu(vi, ?Y*Co Reaction 
Rate in a Simulated Pressure Vessel, to Various Cross-Sections.,, 

o ( « 
Winfrith Iron Benchmark 0 

. . . n 
The objective of"this benchmark is to adjust the evaluated cross-

section of iron on the basis of count rates measured in an iron block 
with a fission source at one end. Each count rate is calculated along 
with a sensitivity profile: the sensitivities determine which adjustments 
would improve the agreement between calculation and experiment, and cross-
section covariance information indicates which the likely adjustments are. 

H 
DUCKPOND was used for the calculations. "The^experimental configuration 

was modelled very accurately using combinatorial geometry. Sixty count 
rates and sensitivity profiles were scored, which involved tracking neut-
rons in iron to a depth of 7(5 cm and down to 5 KeV. After twenty minutes 
running on an IBM 3033 the statistical error on the estimated count rates 
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had reached the same level as the experimental error (about 15%). 
One of the sensitivity profiles is illustrated in Fig. 5. TH'e, pronounced 
positive sensitivity is probably a three-dimensional effect: an' increase 
in the cross-section will reduce the leakage and hence increase the count 
rate. The results of an adjustment procedure based on this DUCKPOND 
calculation are shortly to be produced. 
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Fig. 5. Sensitivity Per Unit Lethargy of an Hydrogen/Argon 
Proportional Count Rate at 50 cm Penetration, to Iron Cross-Sections. 
(The threshold of the detector is about 4.4 MeV.), 

CONCLUSION 

It is now a simple and inexpensive matter to carry out the uncertainty 
" analysis of a transport calculation, however complicated the geometrical 

configuration. It is also clearly feasible to analyse a shielding bench-
mark experiment on the basis of a Monte Carlo calculation. Application 
of this method to core calculations is as yet untested, and this would 
be a sensible option to try out. Geometric and second order developments 
would be easy to implement, although they might be of limited use. There 
is no reason why the method should not be applied to calculations using 
multigroup data if necessary. 
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A path segment is defined to be a set of contiguous trajectories which 
make up the initial part of the path. R.̂  is the set of paths which start 
with segment fc. L and are defined by 

APPENDIX 

and 
*.q t - Q r 

(56) 

(37) 
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The number of trajectories in segment k- is ^ . The response ^ can now 
be regarded as the average value associated with the set S of all segments: 

TT \ 
k-s , J 

P operating on Eq. (58) gives 

6 R - I (59) 

J 
11 is the set of segments with exactly t trajectories ( i ). The 
sum over segments ( ) is now regarded as a sum over c , and a sum 
over segments with exactly I trajectories ( ̂  ). From the definition 
of a probability 

where 

Z TT a 
•vAtK̂  u'VUtT1*' (61) 

Also I for fefcTu . Using all this in Eq. (59) 

:Rk 
Re-arranging and using Eqs. (56) and (57) 

i k - 1 I TT k a (2_ rr a - ) (62) 

DR- Z Z. TT 
where 

(63) 

rJ J !(• L 
t/\ L- - <• . y • ^ i ' 1 / 

Ql is the set of paths with at least trajectories. The sum over all 
such paths ( T̂jf",*̂  ) can be regarded as the sum over paths which contain 
a segment with exactly i trajectories ( ). This double sum 
is replaced in Eq. (63) to give 1 

Trw T T •yw 

SR- Z. Z. 4sr " ^ 7 . (65) - i < lka- r J 

Re-arranging Eq. (65) 

DR. - IL Z - , i s r TT n -

•MtP j ̂  b h > K } 

so an estimator of & for paths is given by I |$(srrr 0 } / T T (67) 
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ABSTRACT 

1 
The influence of light perturbations of cross sections on a set 

of neutronic responses cannot be estimated with an acceptable precision 
by statistically independent Monte Carlo calculations. 

Differential TRIPOLI, a tridimensional, polykinetic code of 
Monte Carlo, permits to calculate such variations by correcting the 
weights of particles previously simulated by a standard TRIPOLI 
calculation for the nan perturbed problem. 

The same sample of neutrons is treated, so that a correlation 
factor appears, which improves the variance on the differential results. 

CORRELATED SAMPLES METHOD 

The neutronic properties of any medium are caracterized by the 
following nuclear constants : 

- for each element, a set of microscopic cross sections which describes 
all the possible interactions between a neutron and this element, and 
a set of laws of the collision, determinating the energy and the 
direction of the particle after scattering ; 

- for each composition,the atomic density of every isotope:these nuclear 
data, and the description of the geometry, define the linear transport 
operator of Boltzmann's equation. 
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The angular flux is the solution of this equation, for a fixed 
neutron source density and fixed boundary conditions. 

More generally, a set of responses [scalar fluxes, currents, 
reactions rates, biological doses, ....] can then be calculated. 

Perturbation theory is concerned with the variations of these 
responses when the transport operator is modified. 

This theory can be applied to various problems, as concentrations* 
libraries or temperature effects, or sensitivity studies. 

Many methods have been designed to solve the Boltzmann's equation 
and to calculate the influence of perturbations. They can be classified 
in two categories : analytical and statistical methods. We shall talk 
only about the second ones. 

Methods of Monte Carlo 

Methods of Monte Carlo solve the Boltzmann's equation by 
simulating the stories of a great number of neutrons.'. 

The behaviour of one neutron is then caracterizedVby a chain of 
events (x„, . ...x.p) where x. represents the coordinates (r., E . , C 2 j ) . Q N 1 i l l 
of the i Collision of the neutron. 

More generally, because of the use of splitting technics to 
improve the precision of the results, a tree of events is associated with 
each particle. A chain is then a sequence of consecutive events from 
the root x^ Cbirth of the neutron) to a leaf x^ (end of simulation) of 
the tree. 

When x. is fixed, the next event x. . is chosen according to 
l i + 1 b 

a law of probability which only depends on the values of the cross 
sections at the state x... 

A weight is also assigned to the chain, which is brought 
up to date after each collision. 

Statistical estimators for fluxes, currents or any response 
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can be defined as random variables which are function of the sequence 
of weights. 

A response appears as the average value of such an estimator. 
The methods of Monte Carlo give also a statistical estimation of the 
relative uncertainty of the result, which is proportional to the 
square root of the variance of the estimator, and inversely propor-
tional to the size of the population of source neutrons, for a number 
•f simulated neutrons large enough. 

The cost of a Monte Carlo calculation depends mainly on the number 
of simulated neutrons and on the average length of the chains. 

Methods of Monte Carlo for the calculation of perturbations 

A perturbation of the transport operator is considered, in a 
Monte Carlo point of view, as a modification of the laws of probability 

As for analytical methods, two independent calculations can be 
done to find the effect of a perturbation, by difference between the 
two results. If 

Two independent sets of trees are then created. 

If this process is valid for great perturbations, it is very 
important to notice that infinitesimal ones cannot be reached this 
way : 
The statistical uncertainty is inversely proportional to A R , where 
AR 

is the difference between the two responses, SD that the uncertainty 
becomes infinite for small perturbations. / / This impossibility no longer exists if the two^CAculations are 

f- < A-, 
correlated. The most natural way to insert a correlation factor is to 
consider that the same samples of trees have been created by both 
simulations. I' 
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It is obvious that, for small perturbations, the behaviour of a 
neutron is almost the same in both cases. 

The influence of the perturbation is no more considered as a 
modification of the laws of collision with this model, but as a 
modification of the weights of the events. 

Let the set of trees and the non perturbed weights be stored 
during the simulation of the first problem. The method used, called 
correlated samples method.consists in rebuilding each tree, in which 
each weight of each event is multiplied by a correction factor taking 
into account the perturbation. 

This method is exact and does not make any hypothesis on the 
importance of the perturbation. Nevertheless, the dispersion of the 
corrected weights increases with its amplitude, so that the statistical 
uncertainty also increases. ,, 

This process has two advantages : 

- a theoretical interest, because it can be proved that the uncertainty 
on the result is still finite when the perturbation converges uniformly 
to zero ; 

- a practical interest, because no random processes are used, the events 
have been yet chosen. A deterministic correction of weight is only 
done. The time of calculation is improved in comparison with a standard 
Monte Carlo calculation. 

Geometrical data are not needed, and the values of cross sections 
are only needed in the perturbed domain, so that the region used for 
computation is less important. 

Several sets of perturbations can be simultaneously treated. 



67 

Scheme 

The limitations of the amplitude of the perturbation only 
depend on the behaviour of the statistical uncertainty. 

In order to explicit this dependence, we shall expose in next 
section two simple problems, for which the analytical expression of 
the uncertainty is given. 

The choice of the corrections of weight in the general context 
of Boltzmann's equation and the study of variance do not appear in this 

i, 
oaper. 

First .calculations of differential TRIPOLI, a Monte Carlist code 
of perturbations developped in the L.E.P., are described in the last 
section. 

Differential TRIPOLI Keeps the properties of TRIPOLI : a three i 
dimensional treatment of polykinexic neutrons with no hypothesis on the 
isotropy of collisions. 

The original trees of events arise from TRIPOLI. 

CORRELATED SAMPLES METHOD APPLIED TO THE EXPONENTIAL AND RUSSIAN 
ROULETTE LAWS OF PROBABILITY 

These two laws of probability are always used in Monte Carlo 
simulation of diffusion of particles. The random behaviour of any neutron 
is simulated by iterations of these elementary laws. 

In infinite and homogeneous medium, and for monokinetic neutrons, 
their variances can be calculated. Their analytical expressions give 
a priori indications about the importance of permissible perturbations. 
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Sensitivity of the average path of a neutron to the total cross section 

of the medium 

Original simulation 

The free path of a neutron diffusing in a medium whose total 
cross section is C . is 'TJ after n collisions. 

A simple way to simulate the total travel lenght of one neutron 
is to choose a set of n independent values (x^, ... x^), with the 
probability : CT0 exp { - C0 J cA*, for each event. 

We score before each collision the quantity x., which is the 
+ - h

 1 
contribution of the i event to the response. 

The variance on the result is on /c^2, and the statistical 
uncertainty e.(G„) is j independent of Co . 

Let = C 0 + A C be the total cross section of the perturbed 
medium .An independent simulation gives the response in fa with the 
variance m /g^1 • 

The differential response A R - n /GT - n /o^ I s obtained 
with the variance n jgL 4. n /g-1 } so that the statistical 
relative uncertainty on Aft is : g ^A C/C ) — — Vc.1^ Gj ? 

., . ~ A c infinite when ACT—* o 

Correlated samples method 

Let we now suppose that the chains still appear with the same 
probabilities : 

r» 

i-i. 
when the total cross section becomes , and assign a weight C to i I 
each event, determinated as follows : 
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where the value of x i s known,and the elementary correction of weight 
c CxJ is the ratio of the perturbed probability : C 1 •e.Xp {." ^ 
to the initial one : <3T G^Xj. j-

It can be proved that, if we score the value Ĉ .x.̂  for the i 
collision, the average total score is the expected result n jc^ 

.th 

The variance is no longer equal to n/ct« b u t i s : 

r\ 
¥ 

- ^ 

- C - ^ z g i - o 
> o 

It is important to notice that C ^ is undefinite when G ^ is less than 
e\c;.trt 

GT* 

\\\ Fig 1 

\ 
-

~ 

J 1 ' • • 1 1 L_ j f u V. 1 1 fa 1 1 -!<« -Jo -Zo -<lo o At t. Jo Aa 
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The ratio of the relative uncertainty on the response, with 
this estimation to the independent calculation one is showned on (fig.1l. 
The process improves the precision when this ratio is less than 1, and 
is nothing else than exponential biasing technic. 

Let us now consider the differential response AR. 
The variance on AR is : CT^AfT) = " f + C * - Z. Co\f 

where cov covariance of the two estimators, is : COV — ii i "Itr! - ^X—f 
* , , L 6 i Co J 

The limit of e ( A C /(To") ' relative uncertainty on the differential 
effect estimated by the correlated samples method, is finite in this case 
when Ac'—»-0,and equal to : e(G~0). 3 n + 2-3" e ( 0 

2o 
ÔAV. Jain 

v7 

Fig 2 

•fo '-ill-Si 

* I ^ 
-25. 5o. 
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Fig.2 shows the variations?of e*(AC/g^)/ e (g;) "for a set of values of 
n, number of collisions • " (J 

Tne uncertainty increases with the number of collisions and has important 
variations for negative perturbations, especially close to the asymptot . 

Sensitivity of the number of collision to non capture probability 

Original simulation 

We create in this examples chains of variable length 
if is the probability of non capture, the neutron survies after e.ch 
collision with the probability'c^, and we add x. = 1 to the total score. 

The neutron is Killed with the probability 
// ° 

' I1 The probability for a neutror^ tc have exactly n collisions is c M.-c^J 
^ c 

The average score is -r-=—the variance is — B „ and the 
[1 - c j2 

I o 
relative uncertainty is C C C 0 } -

i 11 
II CP ( 

When ths non capture probability becomes , an 
independent simulation gives the uncertainty : ^ 

e>(4p\ = x / o ^ - C J ^ r C o d - c / . d- v 

i \ Co / * Ae-
on ths differential response & R - — which is also infinite 

when A & — » 0 > 

Correlated samples method 

We assign again a weight C^ to each event 

C = 1 o 
C. = C. x c (x.) i i-1 I 

where the elementary correction of weight c (x.) is the ratio 1 0 
C 

1 

0 
I, 
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The average value of the perturbated score 
d f -'''i i „ 

m e a n n A • 
The variance ',/LsJy,'then equal to : i, 

OO 

is the expected 

> - - A-ca 
cc 0 - c i ) for C... 4 Vcl 

The process hi*,proves the precision in comparison of an independent 
simulation*̂ -'',?A c W-'T- o 

(( The covanance of the two estimators is also Co\J= , so that the 
C-t" cO*" 

limit of -e* (AC/CO , relative uncertainty on the differential 
effect estimated by the correlated samples method, is still finite 
when Ac—tO, and equal to : 

c o 1 0 
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'•0 

I 

Fig 3 represents the ratio of the uncertainty of differential effects 
to the uncertainty of the non perturbed response. The uncertainty 
decreases when the value of c increases, for a fixed perturbation. o 

• f i x , 
,, The ̂ precision by the correlated samples method is always better 

than by the. .independent samples estimation (dotted curve] for negative' 
^perturbations, but is quickly downgraded for positive ones because of 
the asymptot value Vo . 

-J y 

o 

Off 
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FIRST MONTE CARLO CALCULATIONS BY DIFFERENTIAL TRIPDLI 

Comparison between TRIPOLI results and analytical formulas in infinit 
medium and for monokinetic neutrons 

Let us consider an infinite, homogeneous and non multiplicator 
medium in which monokinetic neutrons diffuse with isotropic collisions. 

Let G" and C be respectively the total macroscopic cross section 
and the non capture probability of thus medium. 

Let the neutron sourco be also isotropic and localized in the 
plane x = 0, and S its norm. 

The neutron angular flux can be obtained by solving the one 
dimensional Boltzmann1svequation : \equa1 

^ D ^ f t * , ^ ^ - C ^ p f c x-jj-Ocljx. (oc jfc£>) v - ' ^ 1 ) - T d DC, > Z J.^ 

with the boundary condition on current : 

(2) llm j u. L P o , u ) - u Ki>l-x.) uV\ -
J ' ' ' } if TT 

Theoretical results ; analytical method 

Transport theory proofs that flux integrated uponjx can be 
decomposed into an asymptotic term ^f^ and a non asymptotic one, 
The first term is predominant at large distances from the source, and 
its analytical expression is : 

_c*(C) G oc, 
(3) T f t s > ( x , ( r , C ) - e 

BLotCO, c ] 
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The functions oi (.C) and 0 G") are given by the relations 

(4) Lc A + otCC) 
4. - * ( O 

_ l a C O 

(5) 0 ( « , O - ^ ' o< 
A ± O 

Equation (4] can be easily solved by the numerical method of Newton 
with a very good precision. 

Formulas (3), (4) and (5] have been computed to calculate P̂ for any 
values of C j C and x. 

Non perturbed problem, TRIPOLI calculation 

The composition of the medium is made up of two fictitious 
elements, whose caracteristics are : 

Element Mass Capture 
cross section 

(barns) 

Scattering 
cross section 

(barns) 

Atomic density 
(at/cm^] 

1 1 .E OB 0.4 1.6 2.E 23 

2 1 .E C6 0.3 2.7 3.E 23 

The atomic masses have been chosen equal to 1.E OB so that the 
collisions were, isotropic in the laboratory system, and the loss in 
energy neglectible after each collision. 

The parameters of equation (3] are then : 
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Gb 1.3 cm 1 

c o 0 86923 

oUC ) o given by (4) 0 592B3 

K o = o( (C ]• C o ° 0 77068 cm"1 

The geometry is a 17 cm wide slab, divided in 13 meshes. The 
last one is 5 cm wide, with a leakage condition at the boundary, the others 
are 1 cm wide. 

A spatial function of importance : ^ (x} -
has been assigned to the medium, where K. is the theoretical attenuation o 
factor of the asymptotic flux, so that the number of simulated collisions 
is almost constant per unit of volume. 

The average fluxes per mesh have been calculated from a sample 
of 300 neutrons, and are given in the following table: 



// 
7 7 / 

Mesh Asymptotic flux 
(from the analytical 
expression}, 
neutron.cm .s 

Flux calculated by 
TRIPOLI 

[track lenght 
estimator) 
neutron.cm .s 

66 % relative 
uncertainty 

(in %) 

1 1 .397 1.743 3 .4 I 
2 B .466 E-1 6.990 E-1 4 .25 
3 2.992 E-1 3.107 E-1 2.27 
4 1 .364 E-1 1 .409 E-1 1 .56 
5 6 .405 E-2 6.270 E-2 3.33 
6 2.964 E-2 2.930 E-2 3.63 
7 1 .371 E-2 1 .352 E-2 3.35 
8 6.345 E-3 6.465 E-3 4.47 
9 2 .936 E-3 2.952 E-3 6.89 
10 1 .358 E-3 1 .442 E-3 5.97 
11 6 .286 E-4 (| 6 .310 E-4 6.60 
12 2.908 E-4 2.920 E-4 3.92 
13 4.903 E-5 4.926 E-5 5.99 

TABLE 1 - Average scalar flux per region 
for the non-perturbed problem 

We verify that TRIPOLI results are in good agreement with 
the expected values, excepted in the two first regions, because 
TRIPOLI takes into account the non asymptotic term. 

The concordance of the results in the region shows that 
leakage is neglectible. 

The 300 trees have been stored and can be used for further 
perturbation calculation. 
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Perturbations of the total cross section Go 

We have calculated simultaneously the influence of fifteen , 
perturbations of C , for a fixed value of C q (C = Cq= 0.06923) 

For each perturbation, we have noted that the variance on the 
flux increases with x. 

This effect can be explained by the study of the exponential 
law ( 2 ] : in the first meshes close to the source, only the first 
collisions of the simulated neutrons contribute to the score, so that 
iii i 
the dispersion of the corrections of weight is weaken than in the last 
ones. 
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Perturbation '-PAS 
(from the analy-
tical expression) 

-2 -1 neutronxcm xs 

f MC 
(by differential 
TRIPOLI) track 
lenght estimator 

-2 -1 neutronxcm xs ) ' 

66 % 
relative 

uncertainty 
o n L fV ic 
Cin %) 

¥ MC ~ ̂ AS 

'f AS I 
[in %) 

C" : - 75 % 5. 333 E-1 3.025 E-1 59.6B 43.2B 
CT : - 50 % 1.486 E-1 1 .095 E-1 18.11 26.40 
G" : - 40 % 9. 047 E-2 7.941 E-2 15.26 12.22 
G~ : - 3•,% 5. 536 E-2 • , 5.268 E-2 11 .51 4.84 
C : - 20"J% 3. 409 E-2 3.329 E-2 6.92 2.36 
G~: - 10 % 2. 112 E-2 2.085 E-2 4.11 1 .27 
C : - 1 % 1 381 E-2 1 .366 E-2 3.83 1 .05 
non-
perturbed 1 316 E-2 1 .315 E-2 3.53 9.44 E-2 
problem 

C : + 1 % 1 255 E-2 1 .247 E-2 3.85 0.64 
C : + 10 % 240 E-3 8.385 E-3 3.63 1.75 
cr : + 20 %' 5 186 E-3 5.425 E-3 4.17 4.62 
cr : + 30 3 278 E-3 3.541 E-3 5.44 8.01 
CT : + 40 % 2 081 E-3 2.307 E-3 7.68 10.87 
CT : + 50 % 1 326 E-3 1 .485 E-3 11 .02 12.01 
cr 75 % 4 359 E-4 4.460 E-4 21.74 2.31 
cr : + 100 % 1 .459 E-4 1.094 E-4 30.57 25.03 

t) 

TABLE 2 - VARIATIONS OF THE PERTURBED AVERAGE 
FLUX IN THE MIDDLE ZONE : 5 cm - 9 cm 
IN FUNCTION DF C T (C CONSTANT) 
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Table 2 gives average values of perturbed fluxes in the middle 
region 5 cm-9 cm, in which the non-asymptotic component of the fluxes 
and the influence of leakage arp neglectible. 

We notice that for perturbations from - 30 % to + 50 the 
results are correct, the ratio of the statistical uncertainties o,f the 
perturbated games to the original one does net exceed 3. 

A great degradation of precision appeal's for - 0.75 ^ kg/co< - 0.5 
Section 2 gives the limit value of permissible perturhations : !J 

o)/2. if we take into account the function 
nf importance. 

The numerical value of (CT- G"aj / is then : - 79.6 %. 



Perturbations 4 ^ m r m c (from the analytical 
expression]^ ^ 
neutronxcm xs 

(by differential 
TRIPOLI] track 
lenght estimator^ 
neutronsxcm 2xs 

66 % 
relative 
uncertainty 
on 

I_p3 
hoc. 

(from the analytical 
expression]^ ^ 
neutronxcm xs 

(by differential 
TRIPOLI] track 
lenght estimator^ 
neutronsxcm 2xs 

66 % 
relative 
uncertainty 
on 

A 
(by differential 
TRIPOLI] track 
lenght estimator^ 
neutronsxcm 2xs in % in % 

Gr _ 75 % 22 5.201 E-1 2.893 E-1 52.29 44.38 

cr - 50 % 7.33 1 .357 E-1 9.641 E-2 20.36 28.94 
£T - 40 % 5.04 7.731 E-2 6.625 E-2 17.93 14.30 
6- - 30 % 3.01 4.220 E-2 3.953 E-2 14.69 6.32 

c - 20 % 1 .53 2.093 E-2 2.014 E-2 10.03 3.78 
cr - 10 % = 5.86 E-1 7.962 E-3 7.708 E-3 6.25 3.19 . 

cr - 1 % 4.64 E-2 a? 6,341 E-4 6.108 
\\ - 5.821 

E-4 4.86 3.67 

c- + 1 % r 4.43 E-2 - 6.04B E-4 
6.108 

\\ - 5.821 E-4 3.94 3.72 

cr + 10 % - 3.62 E-1 - 4.918 E-3 - 4.759 E-3 3.82 3.23 
c + 20 % - 5.87 E-1 - 7.972 E-3 - 7.720 E-3 3.48 3.1/ -
cr + 30 % - 7.30 E-1 - 9.880 E-3 - 9.604 E-3 3.22 2.79 
<r % - --8.24 E-1 2 - 1.108 E-2 - 1.084 E-2 3.05 2.16 
cr + 50^ s - 8.87 E-1 - ,- 1.183 E-2 - 1.166 E-2 3.01 1.48 

c + 75 % - 9.66 E-1 - 1.272 E-2 - 1.270 E-2 3.18 1.90 E-1 

C"> + 100 % - 9.91 E-1 - 1.301 - 1.303 

Q 

E-2 3.39 1.67 E-1 

TABLE 3 - VARIATIONS OF THE DIFFERENTIAL EFFECT A ^ c - ^ c . f C ) - IN THE MIDDLE ZONE : 
5 cm - 9 cm IN FUNCTION OF G" CC CONSTANT) 
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The same remarks can be done on table 3 for the differential 
results. 

Table 3 and figure 4 prove that the method of correlated samples is 
still valid in a domain of iron-linearity. '>> 

Perturbations of the non-capture probability C^ 

Perturbed fluxes have been calculated for a set of values of C, 
for a fixed value of 

A fixed value of C, can be obtained by several ways, by combinations 
of perturbations of non-capture probability of each isotope. // 

For highly dissymetrical perturbations of these probabilities, the 
uncertainty on the result is very important, even for small global 
perturbations of C. 

Tables 4 and 5 have been calculated under the hypothesis' that the 
microscopic total cross sections and the atomic' densities of both 
elements are constant. 

The limit of the permissible perturbations is - C 0 = 7.26 % 1 
C 



Perturbations o( CC) (from the analytical 
expression) 

neutrons x cm x s 

Lf 1 m c, 
(by differential 
TRIPOLI) track 
lenght estimator^ 
neutronsxcm"2xs 

66 % 
relative 
uncertainty 
on 4 U -

(in %) 

LP _ LP 
'to C 

(in %) 

C : - 20 % 0.83302 9.550 E-4 9.589 E-4 2.17 4.08 E-1 

C : - 10 % 0.73501 ^ 2.884 E-3 2.859 E-3 2.83 8.62 E-1 

C : - t % 0.60985 ^ 1.098 E-2 1.096 E-2 3.36 1.82 E-1 

c : - o;i % 0.59456 1.292 E-2 1.290 E-2 3.52 1.43 E-1 

non — 
perturbed 0.59283 1 .316 E-2 1.315 E-2 3.53 9.44 E-2 

problem = 

C : + 0.1 % 0.59108 1.340 E-2 1.339 E-2 3.55 - 7.46 E-2 

C : + 1 % 0.57498 1.590 E-2 1.590 E-2 3.74 6.29 E-3 

C : + 5 % 0.49364 3.802 E-2 3.799 E-2 5.22 B.55 E-2 

OTABLE 5 - VARIATIONS OF THE PERTURBED AVERAGE FLUX IN THE MIDDLE ZONE : 5 cm - 9 cm IN FUNCTION OF C 
( G CONSTANT) 



Perturbations " 1 m c 
uOo 

hi c 

A 4 s 
'as . 

(from the analytical 
expression) ^ 
neutronsxcm^xs 

A '-P " T m o 
(by_differential 
TRIPOLI) track -
lenght estimator 

neutronsxcm"2xs" 1 

66 % 
relative 
uncertainty 

on A ̂ m.c, 
(in %) 

A 41s 

Cin %) 

C - 20 %- - 9 .27 - 1.220 E-2 - 1.219 E-2 3. 67 8.20 E-2 

C - 10 % - 7 .62 E-1 - 1.027 E-2 - 1.026 E-2 3. B1 9.74 E-2 

C - 1 %„ - 1 .66 E-1 - 2.175 E-3 - 2.183 E-3 4. 43 3.68- E-1 

C - 0.1 % - 1 .84 E-2 - 2.406 E-4 - 2.416 E-4 4. 59 -4.16 E-1 

C toO.1 % 1 .88 E-2 2.462 E-4 2.470 E-4 4. 62 3.25 E-1 

C + 1 % 2 .10 E-1 2.746 E-3 2.757 E-3 4. 79 4.00 E-1 

C + 5 % = 1 .89 2.486 E-2 2.484 E-2 6. 14 8.05 E-2 

TABLE 5 : VARIATION OF THE DIFFERENTIAL EFFECT A t ~ ^ m C ̂  " ^m.d 
IN FUNCTION OF C 
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Similar remarks as for total cross section perturbations can be done. 
, Figure 5 shows the non linear effects observed in the middle region and 
calculated by differential TRIPOLI. 
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Comparison between differential TRIPOLI and ANISN for polykinetic neutrons 

We want to calculate the sensitivity of the biological dose at 
the boundary surface of a simplified shipping cask to the cross sectiorib 
of iron, for a set of intervals of energy. 

o 
The geometry is a 32.2 cm wide cylinder of infinite height. The 

compositions are : 

1. Neutron source : 

The source of neutrons consists in a mixture of PuO^. 

2. Iron : •• >, 

3 Fe 8.466 E22 at/cm 

3. Plaster 

<3 
1 

i 

'I 

The density of neutron source is spatially constant, and localized 
between the radius 0 and 6.4 cm. 

The energetic spectrum is the fission spectrum of Pu corrected 
with (o( , n) productions o-p neutrons on 0„. u 

Then follow a 12 cm wide lump of iron, a 13 cm wide lump of plaster 
and a 0.8 cm slab of iron. 

' - I . 

, 3 H B. 31 E22 at/cm 
0 „ 1 . 79 E22 at/cm^ 

D 3 B10 B. 60 E20 at/cm 
C l> 2. 15 E22 at/cm^ 
Ca t 3. 76 E21 , 3 at/cm 
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DOSE BIOLOGIQUE I.C.R.U I IRRADIATION EXIERNE 

The detector r (E] is given by figure B. 

ANISN direct and adjoint calculations 

Both calculations have been performed with a 100 groups standard 
discretization in energy. 

Anisotropies are treated in approximation with Sg quadrature. 
The origin of cross sections in ENDF/B3 library. 

The adjoint source is a shell source localized at the radius 32.2 cm 

s ^ i ^ - . f ) = 
2 T T F W J* 

where ju. is the cosine of the direction of the adjoint source particle 
and the normal to the external cylinder, of radius Rg><^- j! 

The integrated dose is (by both calculations) :D(Rext^ = 4.49 mrem/h. 
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TRIPOLI calculation 

The calculation have been performed with a sample of 1500 neutrons, 
using exponential transform . The cross sections come from the UKNDL 
library and are integrated In bhe standard 269 multigroup mesh of TRIPOLI. 

Angles of scattering are sampled from equal probabilities cosines. 

The integrated dose is : 

D CR = 6.24 mrem/h with a'^3.14 % uncertainty. ext ••! 

f1'' ' 
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Fig 8 dose TRIPOLI 
dose ANISN 

Fig 7 gives the spatial variations of the direct fluxes calculated 

by ANISN and TRIPOLI, and of the adjoint flux calculated by ANISN. 

Fig 8 gives the spatial distribution of the dose. The difference 
between TRIPOLI and ANISN can be explained by the difference of 
microscopic data used and by the great (3 decades 3 attenuation. 

D 
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Sensitivity calculations " 

SENSIBILITE DE LR DOSE R LR SORTIE DU CHATEAU R Lfl SECTION EFFICflCE DU FEB 

w 
£ 10 0 a; x H U! _J 
CJ a 
tJ 
510-1 z> 
cc a: 
Q. 
u 
H 
3 
5 TO-2 
5 fi CO 

_ I I I I Illl 1 1 1 1 Illl 1 II 1 INI r i iriin "T ITIIIU —rri mil 1 1 1 Mill 1 1 1 lllll 

ft 

—r rnnu 

-

r> 

J l\ -

-

R 

" 1 
" \ 

-

t {-

I 11 Illl l 1 1 1 MM 1 1 1 1 Ml I 1 1 1 llll 1 i i i l III V r 1 1 1 MM 1 1 1 lllll i 
10" 10 1-5 

•ir, 
10-" 10"3 10-2 10"1 10 0 10 1 

ENERGIE (MEV) 
10 

Figure 9 shows the sensitivity profile calculated by SWANLAKE from the 
>i 

angular direct and adjoint ANISN fluxes, under the hypothesis of linearity 

Energies CMeV) Sensitivity 
calculated by 
SWANLAKE Cin %) 

Sensitivity 
calculated by 
Monte Carlo (in %) 

66 % 
Relative 
uncertainty 

Cin %) 

14.8 - 3.35 - 4.142 E-1 - 6.654 E-1 8.33 IV 
3.35 - 2.661 - 3.882 E-1 - 3.693 E-1 13.12 
2.661 - 2'. 239 - 3.190 E-1 - 2.497 E-1 17.77 
2.239 - 1.679 - 3.451 E-1 - 2.550 E-1 12.49 
1.679 -2.258 E-8 - 3.639 E-1 

a 
- 2.416 E-1 21 . 

14.8 - 2 .258 E-8 - 1.830 - 1.783 5.79 

TABLE 6 : SENSITIVITY OF THE BIOLOGICAL DOSE TO + 1% PERTURBATION OF IRON 
CROSS SECTIONS ^ 
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Table 6 is a .comparison of SWANLAKE and differential TRIPOLI results ' M 
for five groups. 

0 ,, , . 
The sensitivities per group are not in agreement, may-be because of 

the different origins of the libraries or the treatment of anisotropy. 

For 1 % perturbation, the variance per group compared with the total 
it 

variance of the non-perturbed problem is multiplied with a 2 to 4 
factor. 

This fact proofs that, for localized perturbations, variance is very 
dependent on the width of"the energetical intervals, because the number 
of neutrons which contribute to the score is weak. Energy dependent 
functions of importance must be used to solve such problems to improve 
the variance. < 

The width of the iron lump is large enough to observe a non-linearity 
effect, when the perturbation is more important : 

SWANLAK.E 
Cin 

MONTE CARLO 
Cin %) 

.UNCERTAINTY 
\\ 

Cin 

Perturbation of 1 % 
C14MeV - 0.6236 MeV] 

- 1.78822 - 1.7121 5.22 

Perturbation of 20 % 
(14MeV - 0.8236 „MeV] 0 

0 - 35 .644 - 28.960 4.65 

CONCLUSION 

The first results of differential TRIPOLI are encouraging. Some 
problems are still to solve : 

0 In a\;general context', it would be interesting to have criterions to 
evaluate a priori the uncertainty for light perturbations, and on the . 
contrary to calculate the amplitude of the maximum permissible ones 
because the distribution of the scores per batch becomes non Gaussian 

// so that the uncertainty is often under-estimated. 
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j, 

For localized perturbations, the information will be improved if 
more neutrons are sampled in the perturbed zone. 

a 

Biaising methods used to solve the unperturbed problem have to take 
into account this fact, without downgrading the precision on the r^on" 
perturbed score. o tu 

/ ' 
/ 

Some tests are going on to calculate variations of temperature 
/ in cells. 

i'/ 

u 

0 



q<l 

^ „ 
} 

/ 

BJIOJ^ 
c 
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TRIMARAN : A THREE DIMENSIONAL MULTIGROUP P1 

MONTE CARLO CODE FOR CRITICALLITY STUDIES " 

G. ERMUMCU - J. GONNORD - J.C. NIMAL • ' ' i, 

COMMISSARIAT A L'ENERGIE ATOMIQUE - Service SERMA 
LABORATOIRE DE PROTECTION 

fb 

SACLAY - B.P. N° 2 - 91190 GIF SUR YVETTE -

FRANCE 

ABSTRACT 
( 

it 
TRIMARAN is developped for safety analysis of nuclear components 

containing fissionnable materials : shipping casks, storage and cooling 
pools, manufacture and reprocessing plants. It solves the transport 
equation by Monte Carlo method in general three dimensional geometry . 
with multigroup P1 approximation. A special representation of cross 
sections and numbers has been developped in order to reduce considerably 
the computing cost and a'llow this three dimensional code to compete with 

II » 

standard numerical program used in parametric studies. 
I •. : 

/ 
As well as-nuclear reactor safety, auxiliary components safety such 

shipping cask, fuel storage pools and reprocessing' plants has become of 
major importance and the restrictions requested by the safety regulations 
may affect the entire nuclear program. v

 ti 

Following actual safety regulations, all units containing fissile 
materials should'nt present any risk of nuclear chain reaction, and pre 
computation should guarantee that - even in all possible types of accident-
such as : fire, handling error, flooding, geometric deformation following 
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falls or seism - t h e effective neutron multiplicatio'n constant (keff) 
is less than 1., all cross section and computation uncertainties 
evaluated. 

The ever growing quantities of fissile materials to be stored, 
shipped and reproccessed demand more accurate calculations because large 
uncertainties da not allow to run such units at their optimal capacity. 
o v" 

0 
Let us have a look on the following example : the effective neutron 

multiplication constant (keff) of a shipping cask built for 16 fuel 
elements is computedf assuming a total immersion in water with two 
methods : 

A gives an uncertainty of 0,05 (3 cr ) 
B gives a iv uncertainty of 0.005 (3 T ) 

Number of,, elements ' 12 14 16 

method A 
V 

0.92 - 0 .05 0.93 - 0 .05 0.95 - 0.05 

method 
V, 

B 0.920 - 0, .005 0.932 - 0 .005 0.945 - 0.005 

A 
knowing that the Frei.^h safety regulation requires keff D.95 all 
uncertainties included, we see from the table that using method A only 
the transportation,, of 12 elements may be allowed. The use of method B 
will allow the shipping of 16 elements, which represents a gain of 33 \ 
of the shipping capacity. 

I 
However accurate methods demanding exact three-dimensional treatment 

of the geometry and fine representation of cross section are quite expensive, 
Furthermore, to allow any type of casks or plants, the most pessimistic 
accidenu^sbould 'be evaluated, involving a lot of parametric studies « r \ \ 

such as\ calculation' of keff function "of water density, poison nature, / j 
geome'triic* deformation and eventual presence of reflectors 



97 

This leads to a large number of computations and a compromise must 
be found between cost and computational accuracy. N" 

si 
i< 

In order to meet this goal we have developped a simplified 
i 

very fast Monte Carlo code : TRIMARAN which solves the critical 
Boltzmann equation in three dimensional geometry using multigroup cross 
sections with linear anisotropy CP1 approximation). 

< 

TRIMARAN GEOMETRY 

<'i C1) " The code uses the geometry"package of the TRIPOLI system 
»> 

The three dimensional geometry is defined as a union of volumes filled 
'Ov 

with homogeneousrcomposition and limited by portion of surfaces of 
first or second order. The geometry may be repeated by translation-
rotation and symmetry and allows any type of boundary condition including 
albedos. 

The user defines equations such as : 

general plan ax + by + cz + d = 0 

special plans x + X Q = 0 q 
ii 

y + y 

- general quadric ax 

- sphere (x 

- .-special cylinders Cy 

fr 

= 0 o 

= 0 
. 2 by + 2 cz + dxy + eyz + fzx + gx + ,hy 

+ j = 0 

; ) 2
 + 0 Cy - Cz - z )2' o 

2 - R = 0 

' 12 ' ) + 0 Cz - z ) 2 -0 R 2 = 0 
-,2 : ) + 0 Cx,- x ) 2 -D R 2 = 0 

: ) 2
 + o Cy - y ) 2 -J0 R2'= 0 = 
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Then each volume will be defined by its boundary surfaces and the 
sign of their associated linear or quadratic forms for any point inside 
the volume. Any portion of boundary surface'with no neighbour volume will 
be declared with a boundary condition such as : 

- leakage 
- optical reflexion - J> 
- isotropic reflexion with albedo*function of energy ' 0 

- symmetry 
- translation 
- rotation (i „ 

" ' K (r 
A special and very fast processing is used for slabs which could be 
inserted inside every rectangular'volumes. 1} _ (< 

CROSS SECTIONS 
it 

TRIMARAN solves the Boltzmann equation without external sources : 
-> u 

u) s i . v f f Z & e ) * Zt(C,e)</>&&,£) = ' 

f a v f V x ^ ^ ^ ) * ^ ^ 
\ f £ : feerr >jr J

0 

Using the linear anisotropy collision approximation3[P1) the transfer iV 
cross section may be written : 

o 

(2) 1 A t 

u 
and in the multigroup approximation (1) becomes : 

[33 Z j C * ) 
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The functions Z^-Cj ; 2 , Z ^ ' ^ ; , 
^ if 

are constant inside a volume as defined in the geometry and are refered 
as the cross section library. 

"TRIMARAN can use any type of multigroup library with less than 
256 groups. The code has its own mixing routine and may be coupled with 
different libraries through a simple interface. 

Actually two interfaces are provided :' » 

- one with ANISN format libraries which allows the code to use cross 
) C 2) section 'processed by the AMPX system 

^ one with a KERA library output by the cell code ;APP0L0^ which 
computes correct self-shielded cross sections-using the collision, 

, ( 
a 

probability method. G f j 

0 ' 
From one of these microcopic cross section libraries, TRIMARAN 

computes npacroscopic cross sections and probability tables : • ^ 

Za o i—, 

absorption in group g ' 
g ... o T f ' ' ' neutron production in group g with spectrum 

4 j. T— sio —9 

with g' > g for the slowing down 
0 , • 

g' = ' g for >in scattering r 

g' <- g for upscattering 
u 

a 
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in the standard 99 groups APOLLO library, 47 are with possible upscatter. 

The probability tables are stored in memory in a special forrr 
presenting two important advantages : 

at 

- it reduces considerably the memory occupied by the cross sections 
- the format is specially adapted to the neutron simulation by the Monte 
Carlo method. 

SIMULATION 
<i 

A batch of neutrons i s simulated using the Monte Carlo method.' 
Scoring is made for absorption,neutron production and leakage and an 
estimation of : 

, „„ neutron production , , keff = - ; is computed. 
absorption*leakage 

In the same time,the next batch of neutrons is generated with the 
fission spectrum of the composition where they are created. 

This process is repeated until the variance on the mean value of 
keff reached the user precision or the iteration limit. 

To initiate the process a guess batch of neutrons is generated in 
fissile materials using a flat flux approximation. 

\ 

Starting from a neutron characterised by : 

its position r its direction 
its group g and its weight n 

a track length is sampled. Then absorption and production rate are compu-
ted and scored along the track using two different but highly correlated 
ways : 
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track length estimator : 

i 
- collision estimator 

W 

At the end of the track the neutron either leavejthe system or has 
a collision. In the latter case the weight is multiplied by the probability 
of no absorption and a new group g' and direction ' are sampled from 

^ (g g'] and ? '(g, g' ] . If the material is fissile, neutrons for 
the next generation are sampled from •. . and , 

• t I*' i < 

The neutron history is simulated until the particle leavrs the system 
or its weight becomes less than 

The program1 offers two options : 

- russian roulette 
- weight transfer which seems to give a better variance. 

At the end of the batch the different values of the keff estimation 
are used to accelerate tne convergence. 

The code outputs : 

- absorption and production rates with their variance for each volume 
- leakage through boundary surfaces 
- mean value and variance of keff computed by three different ways : 

- number of neutrons generated at each batch 

keff = —production from collision estimator 
absorption+leakage 
production 

abscrption+leakage 
keff = production from track length estimator 
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SPECIAL TECHNICAL FEATURES OF TRIMARAN 

The computing cost is a function of 3 parameters : 

- number of input/output operations > 
- size of memory occupied during the execution 
- central processing unit time (CPU) 

The code has been specially programmed to obtain a significant 
reduction af'the contribution to the cost of each parameter. 

The input/output operations are reduced to the minimum necessary 
to run d computation : reading the user input, the microscopic cross 
sections and printing the results. All the data used during the 
execution is stored at the beginning in the central memory. This 
programming usually leads to a large utilization of the computer memory : 
for example, using our standard 99 groups library the cross sections < 
matrices ( ) will occupy for only one composition 

?/99*99*2 words. For a typical shipping cask problem where about 
10 compositions are described BOO K would be necessary only to store 
the cross sections ! 

TRIMARAN uses a special binary coding which reduces the size 
occupied by the cross sections by a factor between 10 to 15. Using that 
method most of our problems can be run within a region less than 300 K. 

Furthermore this coding leads us to give up nearly completely floating 
point operations for fixed binary operations 4 to 5 times faster on IBM 
machines. 
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This type of binary coding is specially adapted to Monte Carlo 
method for two reasons : t 
- the limited variation of numbers used during the simulation : 

probabilities belongs to (0,1).. 

- the inherent uncertainties brung by the Monte Carlo method allows 
to simulate floating point operations by binary operations as long 
as we control the numerical uncertainties in order that their cumulated 
values stay neglectiblein respect to the variance of the result. 

In a Monte Ca'-'io run the variance on the result decreases like the 
square root of the number of histories, and if it is quite easy to 
obtain rapidly a poor variance (10/15 %} it becomes hopeless to reach 

, / 
better variance than .5 to.4% in a reasonable computing time. This limit 
allows to use numerical methods giving uncertainties between ' 

& 

10 5 - 10~4 instead of the 10~7 - 10 6 of standard floating points 
operations, but 5 to 10 times faster. This is well shown on figure 1 
where the variance is plotted as a function of time for 3 different 
Monte Carlo simulations of the same benchmark. 
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FIGURE 1 

R 
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C 2 

Ta 

exact result R1 approximate result 

numerical uncertainty from floating point operations 

numerical uncertainty from binary method 

acceptable computing time for engineering calculations 

exact Monte Carlo 

multigroup P1 with floating point 

TRIMARAN 
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The exact Monte Carlo computation converges veî v slowly to the 
exact result limited only by the accuracy on floating point operations 
r.1. But the computing time limits its use to physical studies or special 
applications. 

Simplified Monte Carlo Keeping the advantages of three dimensional 
geometry but using approximated description of cross sections and 
anisotropy converges to an approximate result R' much faster but still not 
enough to compete with the analytical or numerical codes used in nuclear 
engineering. 

s' ii 
TRIMARAN,using binary coding,falls in the range of these engineering 

codes, the counter part being a larger theoretical uncertainty. But 
anyway this theoretical uncertainty cannot be reached in the range of 
accuracy and computing time where the code is used. This proves the 
advantages of the method. 

CONCLUSION 

By reducing the cost of a three dimensional Monte Carlo run, 
as shown by preliminary results, by a factor 8 to 10 we dispose of a 
code able to satisfy three dimensional demands of some calculations and 
still in the range of price of analytical or numerical codes'used in 
nuclear engineering. 

TRIMARAN is going to be implemented in the shielding code system 
' (4) 
PROMETHEE which will supply it with the input output facilities of a 
modular system. We think then to extend the field of this method to 
deep penetration problems. 

, 1F I' 
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ABSTRACT 
(ii 

At Yankee, KENO^) calculations of light water fuel , 
lattices are being performed for the purpose of spent fuel 
rack design and as benchmarksf'for BWR bundle calculations. 

sl Spent fuel rack design for Maine Yankee, has utilized 
the well known 123 group ORNL library to verify that the 
close packed, poisoned fuel rack met the criterion that k 
be less^than 0.95. oThe uranium 238 resonance cross 
sections were obtained fromvIviIIAWL^), using dancoff 
factors obtained from Sauer's^3) method as implemented in 
LEOPARD^). Analysis methods were validated by 
performing similar KENO calculations of poisoned 
criticals (5,6) which have also been used'to validate the 
SCALE SYSTEM^). Comparisons between experiment and 
calculations will be included in the presentation. 

KENO calculations for BWR bundles^are performed in 
order to verify the assumptions made in the more automated, 
integral transport theory calculation^ which is used 
for production purposes. Although this integral transport 
code performs multi-group, space-dependent calculations of 
the bundle, a number of simplifying assumptions are 
necessary because of the extreme heterogeneity of the 
bundle. Such assumptions relate to the self-shielding of 
the gadolinia burnable poison present in selected fuel 
rods, to the definition of unit cells (the 2D transport 
calculation is performed on a unit cell basis), and to the 
representation of the boron carbide filled steel tubes 
which comprise the control rod, as well as to the 
perturbing effects of non-identical neighboring bundles. 
In order to make the KENO calculations as consistent as 
possible, they are performed with the same (ENDF/B-III) 
library used in the integral transport calculations. This 

i 
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paper describes the reformatting of the integral transport 
code 25 and 69 group libraries for use in KENO, and 
compares k infinity values and selected /reaction rates in a 
E'JR fuel assembly as determined by the integral transport 
and Monte Car'lo1, calculations. / 

r, /•' « I 
Yanker . • e Electric Company (YAEC) in Westboro, 

Mass, is ct t f l y using the Oak Ridge developed Monte 
Carlo code "'KENO-IV: An improved Mont^e Carlo Criticality 
Program". KENO is being used as an analysis tool for spent 
fuel rack calculations of PWR fuel, and as a development 
aid for in-co"re BWR fuel calculation's. In both cases, the 
Monte Carlo method is applied because of the large flux 
gradients. ' > 

KENO CALCULATIONS OF PWR SPENT FUEL RACKS 
\ o 

As applied to PWR reactors, the Monte Carlo method has been used, 
primarily in spent fuel storage rack design calculations. Monte 
Carlo techniques are required for the" Fuel'' storage rack calculations 
because of the presence of BORAL plates j/in the design of Yankee 
racks. Diffusion theory is inappropriate in a problem with such 
large flux gradients. The Monte Carlo methods are available, 
however, forjbenchmarking of non-standa'rd problems (i.e, 
configurations whioh.J'DQ, the standard method, might not predict. 
Examples include water-rod effect on power distribution, gapped fuel 
rod effects.) " 

The implementation of the Monte Carlo method is performed using 
the 123 group AMPX-KENO set of calculational tools. NITAWL, 
using the Nordheim' resonance treatment, creates the 123-group library 
for KENO-IV. KENO is run in restart mode until sufficient statistics 
are achieved. 

Prior to implementation to criticality calculations, the 
ANS-8.11/ANSI N16.9-1975 standard requires validation of all 
calculational tools to assure applicability to the problem of 
interest. For the fuel storage rack calculation, validation consists 
of comparing the results of KENO calculations to criticals. At the 
time of the initial work, the best available criticals that simulated 
'fuel storage rack configuration were those performed by Bierman at 
Battelle Pacific Northwest Laboratories.(5,6) These criticals were 
performed using three subcritical clusters with and without poison 
plates inserted between clusters. Two different enrichments were 
utilized, 2.35 and 4.30 WT$, in addition, BORAL was utilized as one 
of the poison materials. The calculated values of these experiments 
are shown in Table 1. Table 1 a} s9 provides comparison to work 
performed by R. Westfall of ORNL^'J, who generated KENO comparisons 
using the 123 group library for all 210 of The Bierman criticals. As 
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shown, the agreement between the YAEC and the ORNL work allows some 
bootstrapping to the complete 210 cases Westfall analyzed. 

Additional verification of methods is novj' available from the 
recently published B & W criticals for arrays of nine assemblies in a 
fuel storage ,rack configuration.(10) The B & W criticals add an 
important aspect due to the presence of soluble boron in some of 
their experiments in addition to poison plates. 

An interesting point that has arisen from the fuel storage rack 
calculation is the method used by some designers to utilize PDQ to 
derive sensitivities. Work preformed at YAEC on the design of 
SEABR00K fuel racks shows that PDQ does not provide an accurate means 
for deriving sensitivities. In the cases shown in Table 2, a change 
in the center-to-center spacing provides significant differences in 
relative Keff« As expected,^ diffusion theory underpredicts the 
delta-K for this situation. 

Table ' 
Validation of KENO Methods 

Enrichment & 
Experiement 

No. 

2.35-5 

2.35-16 

4.30-4 

4.30-31 

Poison Plate 
Material 

None 

Boral 

None 

Boral 

Yankee 
Keff 

1.006 + 0.004 

1.006 + 0.004 

0.987 + 0.005 

(CPNL 
' Keff 

1.005 ± 0.004 

\ 

1.007 +_ 0.005 

0.997 + 0.004 7/ 0.996 ± 0.005 

Table 2 
PDQ vs. KENO K e f f 

Center-To-Center 

10.84" 

10.94" 

PDQ 

0.9243 

0.9123 

KENO 

0.9418 ± 0.005 

0.9218 + 0.005 
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KENO CALCULATIONS OF BWR FUEL LATTICES 

At Yankee Atomic Electric Company (YAEC), methods are currently 
being developed-which will allow Yankee to undertake the reload 
licensing ofVermont Yankee. Vermont Yankee is a BWR rated at 540 
MWe, which first went into operation in November of 1972. 

ti 
>> 

One of the calculational tools being used is "CASMO: A Fuel 
Assembly Burnup Program",(8) which was developed by AB Atomenergi 
in Studsvik Sweden and is distributed by EPRI. 

o 

CASMO is a multigroup two-dimensional transport theory code for 
burnup calculations, which handles either pin-cell calculations or 
cylindrical fuel-pin lattices. The code has provisions to allow fuel 
of various compositions, fuel containing gadolinia, burnable absorber 
rods, cluster control rods, in-core instrument channels, water gaps, 
boron steel curtains, and cruciform control rods. CASMO is supplied 
with both 25 and 69 group cross section libraries derived from 
ENDF/B-III data. 

One step in developing CASMO as a BWR method was the 
determination of how its single bundle lattices compared with 
multi-bundle lattices. The Monte Carlo code "KENO-IV-An Improved 
Monte Carlo Criticality Program",(1) developed at Oak Ridge 
National Laboratory (ORNL), was employed in this effort. 

BWR fFuel Lattices 

A typical fuel bundle for a BWR is rather complex, particularly 
when compared to PWR fuel. BWR fuel bundles often contain as many as 
five different fuel enrichments, as well as water pins and pins 
containing both fuel and burnable poison. BWRs are operated with 
some control rods inserted creating large neutron flux depressions. 
Since boiling occurs-within the core, water density can vary, from top 
to bottom as well as from bundle to bundle. 

In short, BWR fuel is anything but homogeneous. It is for this 
reason that the Monte Carlo technique was applied. 

0 CASMO Description 
ii 

The CASMO program performs the following sequence of events at 
each burnup step... 

1. Macroscopic cross-sections, including effective cross-sections 
in the resonance region for important resonance absorbers are 
calculated. In the resonance calculation, Dancoff factors are 
used to account for the screening effect between different pins, 
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, and the equivalence theorem relates tabulated effective 
resonance integrals to the particular heterogeneous problem. , 

2. The cross sections are used in the so-called "micro-group 
calculations" which provide detailed neutron energy spectra on a 
pin-by-pin basis for condensation and homogenization of the pin 
cells. ' 

li 
3. " The discrete integral transport method is used for 1-D 

calculations on a cylindricalized assembly to account for such 
non-symmetric parameters as bypass water gap. 

4. Two-dimensional transmission probability calculations^re ^ 
performed in as many as 12 energy groups to yield the eigenvalue 
and assembly flux distribution. 

\ 
5. Effects of leakage are then accounted for by use of a 

fundamental buckling mode. 
\ 

6. Isotopic depletion calculations are performed on fuel pin and 
burnable absorber regions. CASMO traces burnup-chains, through 
absorption and decay, for 22 fission products, 2 pseudo fisfi-ion 
products, and 14 heavy nuclides.' 

Cross Section Library 

In order to justify comparison of KENO and CASMO calculations, 
consistency of cross section sets was maintained. A 
slightly-modified CASMO 25-group cross section was used since it both 
contained sufficient data for both codes, and would be the standard 
CASMO production library. & 

The CASMO library contains absorption (or activation) cross 
sections for thirty-six nuclides as well as nu-fission, transport 
corrected total scattering, and P 0 scattering cross sections for 
thirty-four other nuclides. P-j scattering cross sections are 
provided for three nuclides (Hydrogen, Deuterium and Oxygen). In 
addition, tables containing effective resonance integrals and burnup 
data are also included. 

The P Q and Pi scattering cross sections are provided in 
g-»g' form in a scattering matrix. The size of the matrix varies 
from nuclide to nuclide and group to group ranging from just one 
scatter cross section to full scattering over all energy groups. In 
some cases upscatters as well as downscatters are provided.1' 

For some nuclides, (such as Hydrogen, Oxygen and Zircaloy), 
cross sections are tabulated at more than one temperature,^ and not 
all cross sections are provided at each temperature. CASMO 
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interpolates over available data to determine cross sections at the 
^temperature of interest. I( 

The CASMO cross section library has been processed in order to ' 
provide KENO-compatible format... ,, 

-jTotal scattering cross sections were formed from the absorption 
cross sections and P 0 scattering matrix. 

- Nuclides with cross sections at several temperatures were broken 
into several pseudo-nuclides (one per temperature). w 

- Scattering cross sections" were multiplied 'by a 2L + 1 factor (as 
expected by KENO). (i 
v 

- Cross sections were written into KENO card-image format. Zeroes 
were included as ̂ needed so that all cross sections ''(including 
full scattering) were tabulated for each nuclide. 

In order to assure consistency of cross sections in ̂ the " 
resonance-energy region, resonance group cross sections for important 
absorbers were taken directly from the CASMO execution for each case 
investigated. This necessitated the creation of several pseu'do ^ 
nuclides for each of these absorbers in a particular fuel^lattice. 

"" a ^ o 
0 (f 

° Fuel Lattice Model ' t, ot, i, o o 
' " o 

Two different fuel bundles, both similar to fuel which has been 
loaded at Vermont Yankee (VY) have been represented. Both0are 8 x 8 
square pitch lattices containing fuel at five different"enrichments 
in addition -to water pins and pins containing gadolinia "and, Kiel.0 

0 . t> 
The 219 Bundle (the bundle average enrichment is 2.19?},°^ „ 

contains fuel enrichments varying from 1.18% to 2.5056, as well as 0 

three pins which are enriched to 2.50% and contain 4.0 WT? 
cj i 0 

gadolinia. The 274 Bundle enrichment ranges from 1.87? to 3.01?, and 
contains five pins enriched to 3-01 % which contain 2.0 WT? gadolinia^ 
"(figure 1). " "o l' ® 

,, The fuel bundle models for both CASMO and KENO are exactly 
identical and deviate only slightly from the actual bundles (with 
square as opposed to rounded channel corners, for example). fi t> * o 
«- -j j 

« In a" like manner, the control rod models are reasonably similar 
'to-the'actual VY control rods. Unfortunately there are KENO geometry 
input^requirements which necessitate that 

eSch succesive geometry region within a geometry "BOX TYPE" must 
° enclose the previous one, and 
'i, 

°„ 0 >*•>) 
o 

0 
• 

i. <> 
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- cylindrical geometry regions must be centered*%bout their origin 
, of its enclosing'"BOX TYPE". ' • 

Together; these effectively prevent the simultaneous 
representation of both cylindrical fuel pins and cylindrical control 
rods. As a result, the KENO mode5 contains rectangular control rods, 
while the CASMO model is limited to cylindrical control rods. ^ 

w-w 
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FUEL ENRICHMENT DISTRIBUTION 

2.50%, U-235 
1.90%)', U-235 
1 . 4 9 5 ' U-235 
1 .18% U-235 

G 2 .50% U - 2 3 5 , 4.0% GdnO, 
W ' . W a t e r P i n 
W-W Wade-Wide Gap 

FIGURE 1 

VY 274'" BUNDLE ,, 
FUEL ENRICHMENT DISTRIBUTION 

3.01% U-235 G 3.01% U - 2 3 5 , 2 .0% G d 2 0 3 
2.22% U-235 W Wate r P i n 
1.87% U-235 W-W Wide-Wide-Gap 
1.45% U-235 „ 

Results 

Prior to executing KENO on a multi-bundle array basis, a 
stepwise proving procedure was undertaken. This procedure consisted 
of CASMO/KENO comparisons for, 

v<> 

- Pin cells at different tempertures 

- Fuel bundles with and without burnable poison 

- Fue.l bundles at different void fractions « 0 - o 
- Rodded and unrodded fuel bundles ii 
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- Fuel bundles of different enrichments 

KENO was then used to investigate both rodded and unrodded four 
bundle fuel arrays. These arrays consisted of two each of the 219 
and 274 bundles, maintaining diagonal symmetry. Throughout the 
analysis key parameters of interest were K-effective and local 
fission distribution. 

KENO executes a pre-determined number of generations, the 
starting distribution of one depending on the fission distribution of 
the previous generation. The starting distribution of the first 
generation is determined by the user and typically is not a good 
approximation. Therefore, several initial generations must be 
skipped and the K-effective is chosen as the earliest convergence of 
average K-effective, as illustrated in Figure 2. 
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i-
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1 
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NUMBER OF I N I T I A L GENERATIONS S K I P P E D 

Pin cell 
cases were 
executed at 
296°K and 
500°K. Bundle 
219 was executed 
without GdgO^ 
and without 
control rods at 
0$, H0% and 70? 
void; with 
GdgOg but 
without control 
rods at 0%, 40$ 
and 70% void; and 
with both 
Gd202 control 
rods, also at the 
three voids. 
Bundle 274 was 
executed at 40/6 
void, with 
Gd203 both 
controlled and 
uncontrolled. 
Table 1 presents 
a comparison of 
K-effective for 
each of the cases. 

As can be 
seen from the 
table, KENO and 
CASMO 
K-effectives 

FIGURE 2 
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agree -within for all cases. An interesting trend emerges when 
comparing rodded to unrodded bundles. For the rodded cases, KENO 
predicts a higher K-effective than CASMO by about 0.6$. For the 
unrodded cases (with Gd203)> KENO indicates a lower K-effective by 
about when compared to CASMO. This yields a total rod bias of 
about a percent. 

CASE KENO CASMO % DEV 

296°K PIN CELL 1. 3739 + . 002 1. 37475 -.062 

500°K PIN CELL 1. 3481 + . 002 1. 34956 -.108 

219 at 0% VOID 1. 2504 + .002 1. 24939 .081 

219 at 40% VOID 1. 2400 + . 002 1. 24150 -.121 

219 at 70% VOID 1. 2236 + . 002 1. 21883 .391 

219 w/GAD 0% 1. 1198 + . 0025 1. 12479 -.444 

219 w/GAD 40% 1. 1044 + . 002 1. 10958 -.467 

219 w/GAD 70% 1. 0784 + . 0025 1. 08172 -.307 

219 RODDED 0% 0. 9013 + . 003 0. 89792 .376 

219 RODDED 40% 0. 8343 + . 003 0. 82739 .835 

219 RODDED 70% 0. 7554 + . 0025 0. 75137 .536 

274 w/GAD 40% 1. 0939 + . 002 1. 098851 -.451 

274 RODDED 40% 0. 8408 + . 003 0. 83473 .727 

PIN & BUNDLE KENO V. CASMO K-EFFECTIVE 

TABLE 1 

Local fission distributions for the 274 bundles from both KENO and 
CASMO are presented in figures 3 & Fractional differences of local 
fission distributions for the 219 bundles with Gd20o, control rodded 
and un-rodded, at all void levels are presented in figures 5 & 6. 

From these figures it can be seen that the deviation in the 
unrodded cases is fairly random, typically on the order of 2 to 3%, with 
only a slight bias from the wide-wide corner to the narrow-narrow. For 
the control rodded cases, however, the deviation is somewhat greater and 
the bias is more pronounced. In all cases, KENO shows an overall 
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FIGURE 4 
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flatter fission distribution which corresponds to a slightly lower 
prediction of control rod worth, in comparision to CASMO. This in turn 
indicates that CASMO predicts higher local peaking factors for the 
rodded cases, and is therefore more conservative. 

Four-bundle fuel arrays were executed consisting of two 219 bundles 
at 0$ void and two 274 bundles at 40% void. In one case, the array was 
unrodded, in the other, two cruciform control rods were inserted 
adjacent to the 219 bundles. It should be noted that these cases are-
somewhat more extreme than that experienced in an actual BWR. 

Local fission distribution for each bundle in each case is 
presented as figures 7-10. These figures represent the k bundle array 
KENO execution compared with the respective 1 bundle KENO excution, 
which as stated earlier, compared well with the single bundle CASMO 
executions. An analysis of this data indicates the greatest deviation 
is in the narrow-narrow corner and is on the order of 11-14%. It is 
interesting to note that the deviations do not change substantially 
between the rodded and unrodded cases. 

Table 2 shows a comparison of local bundle peaking factors between 
the single and four bundle KENO executions. For bundle 219, the four 
bundle array indicates a peaking factor about 4 or 5 percent lower than 
the single bundle run. For bundle 274, the deviations of less than 2 
percent show that the single bundle executions are in essential 
agreement. Considering the extreme nature of the cases and the overall 
agreement between KENO and CASMO single bundle executions, CASMO is seen 
to be slightly conservative in predicting local peaking factors for all 
reasonable cases. 

SINGLE 

1.241 

2 7 4-UNCONTROLLED 1.322 1.301 

219-CONTROLLED 1. 647 1.735 
274-CONTROLLED 1. 310 1.301 

BUNDLE PEAKING FACTOR COMPARISON 
4 BUNDLE ARRAY V. SINGLE BUNDLE 

TABLE 2 

"KENO IV - An Improved Mone Carlo Criticality Program", has proven 
a useful tool in developing new BWR fuel analysis methods at Yankee. By 
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establishing relative agreement between KENO and CASMO for single bundle 
analysis, then extending KENO to multi-bundle cases, CASMO has been 
shown to be useful for multi-bundle calculation of eigenvalues and 
peaking factors. 
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KENO V - THE NEWEST KENO MONTE CARLO CRITICALITY PROGRAM 

N. F. Landers and L. M. Petrie 
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Department of Energy 

ABSTRACT 

KENO V is a new multigroup Monte Carlo criticality 
program developed in the tradition of KENOx and KENO IV2 for 
use in the SCALE1 system. The primary purpose of KENO V is 
to determine k-effective. Other calculated quantities include 
lifetime and generation time, energy dependent leakages, 
energy- and region-dependent absorptions, fissions, fluxes, 
and fission densities. 

KENO V combines many of the efficient performance capa-
bilities of KENO IV with improvements such as flexible data 
input, the ability to specify origins f'ô  cylindrical and 
spherical geometry regions, ths capability of super grouping 
energy dependent data, a P n scattering model in the cross sec-
tions, a procedure for matching lethargy boundaries between 
albedos and cross sections to extend the usefulness of the 
albedo feature, and improved restart capabilities. 

This advanced user-oriented program combines simplified 
data input and efficient computer storage allocation to readi-
ly solve large problems whose computer storage requirements' 
precluded solution when using KENO IV. 

DATA INPUT 

The KENO V data input is especially adapted for use with remote 
terminals. The order of input is quite flexible with the exception of 
the title which must be entered first; the parameters must immediately 
follow the title if they are entered. 

A large portion of the data has been assigned default values that 
have been found to be adequate for many problems. Thus, the user can run 
a problem with a minimum of input data. 
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Blocks of input data are entered in the form: 

READ XXXX input data END XXXX 

where XXXX is the keyword for the type of data being entered. The types 
of data that can be entered are parameters, geometry region data, array 
definition data, biasing or weighting data, albedo boundary conditions, 
starting distribution information, cross-section mixing table and extra 
1-D cross section ID's for special applications. 

A block of data does not need to be entered unless it is necessary 
for the problem. Within the blocks of data, most of the input is acti-
vated by using keywords to override the default values. 

IMPROVED GEOMETRY FEATURES 

KENO V geometry input is very similar to the geometry input for 
KENO IV except the weighting has been rearranged to minimize storage 
requirements. 

Vi 
The geometry data for KENO IV is: 

GEOMETRY WORD MIXTURE NUMBER DIMENSIONS WEIGHTS 
II The geometry data for, KENO V is: 

GEOMETRY WORD MIXTURE NUMBER BIAS ID NUMBER DIMENSIONS 

The KENO IV weights are stored for each input geometry region so (number 
of energy groups) x (number of input geometry regions) words of storage 
are used. The KENO V weights are stored only for each BIAS ID NUMBER 
that is used. In addition, KENO V does not store region dependent data 
for geometry regions that are entered but not used in the problem. The 
storage requirements for the KENO V weights are (number of different 
bias ID's used in the problem) x (number of energy groups) words of stor-
age. This can result in a significant reduction of storage space for a 
large problem. 

One of the most important geometry improvements is the ability to 
specify the origin for cylinders, hemicylinders, spheres and hemispheres. 
This allows the use of nonconcentric cylindrical or spherical shapes and 
a great deal of freedom in positioning these shapes. As in KENO IV, the 
restriction that each geometry region must completely enclose the pre-
vious region is mandatory. 

Another geometry convenience is a choice of the method used to 
specify the array definition (mixed box orientation) data. The method 

v 
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used in KENO IV is available in. KENO V. A second method allows the data 
to be entered by stringing in the unit or box types starting at x=l, y=l, 
z=l, and varying x then y and then z. This input is entered by using 
ANISN4-like input options for filling the array. 

SUPER GROUPING 

An important feature of KENO V is the capability of super grouping 
the energy dependent information such as cross sections and fluxes. This 
automatic feature is activated when the computer storage is insufficient 
to hold all the problem data at once. The energy dependent data is then 
broken into super groups that are written on a direct access device and 
moved in and out of core as necessary. A problem cannot be super 
grouped if the energy-dependent data associated with any energy group is 
too large to fit in the available storage. 

The advantage of super grouping is that larger problems can be run 
on smaller computers. This capability is gained at the expense of running 
time and increased I/O's. The more super groups, the more I/O's are 
used and the slower the problem will run because of the banking, sorting, 
and use of direct access devices in the solution of the problem. 

Pn SCATTERING 

KENO V treats anisotropic scattering by using discrete scattering 
angles. The angles and associated probabilities are generated in a man-
ner that preserves the moments of the angular scattering distribution for 
the selected group-to-group transfer. These moments can be derived from 
the coefficients of a P n Legendre Polynomial expansion. All moments 
through the 2n-l moment are preserved for n discrete scattering angles. 
A one-to-one correspondence exists such that n Legendre coefficients 
yield n moments. 

If the cross-section data has fewer coefficients than the requested 
number of discrete scattering angles, higher moments are generated by 
using zeros for the higher order coefficients. The method of generating 
the angles and probabilities is appropriate only if the moments are for a 
valid probability distribution. If extending the coefficients with zeros 
results in an invalid distribution, ̂ ,the code will generate angles and 
probabilities that will preserve the available valid data, f \ Earning 
message is printed whenever incorrect moments are encounter. - A large 
number of these messages may be generated if the code has to "extend the 
cross-section coefficients. 

// 
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KENO V treats the case of zero and one scattering angle in a special 
manner. It can recognize that the distribution is isotropic even if the 
user specified multiple scattering angles, and therefore selects from a 
continuous isotropic distribution. If the user specified one scattering 
angle, the code performs sei/i'i-continuous scattering by picking scattering 
angles uniformly over some range bet-.vsen -1 and +1. The probability is 
zero over the rest of the range. 

EXTENDED USE OF DIFFERENTIAL ALBEDOS 

KENO IV can uso differential albedos to simulate tracking in a 
reflector. These differential albedos are expensive and time consuming 
to generate because an ANISN calculation must be made for all polar angles 
at each energy group. Thus 64 ANISN calculations were involved in gen-
erating each differential albedo currently available for use with KENO. 
These albedos were generated using the Ilansen-Roach 16 energy group 
structure and can only be used in conjunction with cross sections having 
the llansen-Roach 16 energy group structure if KENO IV is used. 

KENO V is not limited by this restriction. It matches lethargy 
boundaries between the albedos and cross sections so the appropriate 
energy transfers can be made. This is done by creating lethargy boundary 
tables for both the albedo group structure and the cross section group 
structure and determining the lethargy interval corresponding to the 
desired transfer (cross section group structure to albedo group structure 
or vice versa) based on a uniform distribution over the lethargy interval. 
Therefore, KENO V can use the existing differential albedos with any 
cross section energy group structure. When the energy group boundaries 
of the cross sections and albedos are different, approximations( are made 
by the code. The results should be scrutinized by the user to evaluate 
the effects of the approximations until an adequate information base is 
established. 

o 

RESTART 

KENO V has an improved restart capability. It is much easier to use 
than the KENO IV restart option. Certain pieces of input data can be 
overridden to be different from the original case. To restart a problem, 
the original case must be flagged to write a restart'data set. The 
restarted problem uses data from the restart data Iaset. ^ 

When restarting a problem, a new random number can be entered to 
change the random sequence and the calculations involving fluxes and 
fission densities can be turned off,. 

SD 
a, 
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CALCULATIONS 

The use of KENO V to solve criticality problems has been limited 
due to incomplete documentation. The report and data guide are currently 
being written and should be available sometime this year. KENO V has 
calculated k-effectives comparable to those obtained by KENO IV for the 
usual criticality problems used to validate our codes. It has also 
been used to calculate critical assemblies that are beyond the scope of 
KENO IV on our computers. The EPRI water-reflected uranium oxide arrays 5 
using 218 group ENDF/B-IV cross sections have been calculated using 
KENO V. These problems,, cannot be run with KENO IV because the vast 
amount of storage exceeds the capacity of our computers. 

Recent calculations of a Los Alamos critical experiment6 involving 
a small water reflected uranium sphere have illuminated a subtle short-
coming involving the Px scattering treatment used in KENO IV. A sketch 
of the experiment is shown in Figure 1. The results of the KENO IV, 

KENO (V, and XSDRN calculations 
are tabulated in Table 1. The 
"KENO IV results were consis-
tently lower than XSDRN due to 
the single discrete angle scat-
tering. The Hansen-Roach 16 
group water cross sections have 
a P 2 correction applied to the 
total cross section. This cor-
rection increases the effective 
mean free path in water so that 
neutrons exiting the sphere 
travel farther from the fuel 
before scattering. The small 
solid angle subtended by the 
fuel sphere coupled with the 
preferentially forward scatter-
ing of hydrogen place a severe 
test on the KENO scattering 
model in calculating the worth 
of the water reflector. The 

v̂. Figure 1. Highly enriched single angle model for Pi scat-
uranium sphere on a plexiglas tering has been found to be not 
collar with a cylindrical water as effective as the distributed 
reflector. angle P x model described in the 

section entitled P n Scattering. 
A bulletin will be forthcoming 
in the Radiation Shielding 

Information Center (RSIC) newsletter to explain the problem and present 
the modification for the KENO IV code. 



Table 1 . Comparison of KENO and XSDRN for Small Reflected Uranium Sphere. 

Number of Number of 
Energy 
Groups 

Discrete 
Angles KENO I V * Histories KENO V * Histories XSDRN 

Quadra-
ture 

Conver-
gence 

16 
16 
16 
16 

1 
1 
1 
1 

0.9830 + 0.0046 
0.9809 + 0.0047 

28,800 
28,800 

0.9292 
0.9867 
0.9868 
0.9902 

+ 0.0045 
+ 0.0032 
+ 0.0029 
+ 0.0053 

50,000 
89,000 
89,000 
30,000 

0.9944 
0.9949 
0.9988 

32 
32 
8 

1.0-8 
1.0-6 
1.0-4 

16 
16 

2 
4 

- — 0.9805 
0.9906 

+ 0.0035 
+ 0.0057 

70,000 
30.000 

16 
16 

<V 

0 
0 

'•V 

K .— 1.1144 
1.1116 

+ 0.0046 
+ 0.0067 

30.000 
12,999 

1.1098 16 1.0-6 

27 
27 
27 

0 
1 
2 

L.S 
' i, 1.1988 

0.9870 
1.0000 

+ 0.0056 
+ 0.0054 
+ 0.0051 

30.000 
30,000 
30,000 

1.2079 
0.9822 
1.0013 

16 
16 
16 

1.0-6 
1.0-6 
1.0-6 

•Single angle treatment was used in the calculations having one discrete angle. 

The 27 group KENO V results for this experiment were in good agreement 
with XSDRN but show that Pi scattering is inadequate for cross sections 
that do not have higher order corrections applied to them. The KENO V 
calculation using two discrete scattering angles and the Pj XSDRN calcu-
lation for the 27 group cross sections agree well with the experiment. 

At the present time extensive timing studies have not been made for 
KENO V. The only recent timing comparison between KENO IV and KENO V are 
for the four aqueous four metal critical experiment shown in Figure 2. 
The following results were obtained: 

KENO IV 30,000 histories k f f = 0.9959 +0.0056 in 65.02 seconds 
KENO V 30,000 histories k® = 0.9994 +0.0051 in 48.94 seconds 

KENO IV used 180 10's and KENO V used 2088 10's in the calculations. The 
problem was run as one super group in KENO V. If it used multiple super 
groups, both the number of 10's and the running time would increase. 
KENO V will not«always compare so favorably with KENO IV, depending on 
the type of problem. In general KENO V can be expected to beJ a little 
slower and use more IO's than KENO IV. ' . 
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Figure 2. Four aqueous four metal 
critical experiment.7-8 
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GEOMETRY MODELING FOR SAM-CE MONTE CARLO CALCULATIONS 

H. A. Steinberg and E. S. Troubetzkoy 
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ABSTRACT 

Three geometry packages have been developed andoincorpor-
ated into SAM-CE, for representing in three dimensions the 
transport medium. These are combinatorial geometry - a gener-
al (non-lattice) system, complex combinatorial geometry - a 
very general system with lattice capability, and special re-
actor geometry - a special purpose system for light water 
reactor geometries. Their different attributes are described. 

1. INTRODUCTION 

The treatment of radiation, transport or reactor, problems is most 
difficult when the geometry of the problem is truly three dimensional. 
For this situation, the Monte Carlo method, as implemented in computer 
codes, has been found to be the only practical approach to solution. 

A major technical question, in the design';and implementation of a 
code, is the means for representing the geometry. This problem which is 
mathematically rather simple, is complicated by the conflicting require-
ments of ease of usage, generality of application, and computer time re-
quirements . 

In SAM-CE1, to answer this question, three packages have been devel-
oped, combinatorial geometry (CG), complex combinatorial geometry2 (CCG), 
and special reactor geometry (SRG). CG is a general purpose system for 
representing arbitrary, non-repetitive'configurations. CCG extends the 
CG capability to include lattices, with variable attributes at different 
lattice sites, in a hierarchical structure, e.g., lattices of lattices. 
SRG is a fast special purpose system for representing reactor assemblies. 

The simulation of particle paths, consisting of straight line seg-
ments, through the medium, is the primary geometry problem in Monte 
Carlo codes (the tracking problem). The solution is made up of a se-
quence of determinations of two items, the distance to a boundary and 
the identity of the next region of space. In the following, each geo-
metry is described in terms of representation capability and how tKe 
tracking problem is handled. 
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2. REPRESENTATION CAPABILITY 

For all three geometries, space is divided into regions, which are 
individually homogeneous. All properties, physical (composition, den-
sity) and mathematical (scoring, sampling weight) are defined to be 
constant throughout any region. Finally, all of space must be defined 
(within some finite limit). 

Combinatorial Geometry 

Regions are defined as Boolean combinations (unions, intersections, 
differences) of realizations of geometry primitives (bodies), spheres, 
boxes, cones, etc. The current library of bodies in SAM-CE has about 
two dozen types. In addition, a region may include other (previously 
defined) regions in its descriptive definition. The realizations of 
the bodies are defined by specific geometric parameters, e.g., for a 
sphere, the location of the center and the radius. Since each region 
is defined individually, the requirement that all of space be defined 
and the avoidance of double definition, are user responsibilities. 

Complex Combinatorial Geometry 

In its representation capability, CCG is a superset of CG. Speci-
fically, regions - defined by the method described above - are arranged 
in an hierarchical structure, with additional geometric attributes, 
such as lattice repetition and translation. Thus, a specified region 
may be used to define more than ore volume of space. 

To establish the hierarchical structure, the concept of complex 
regions is used. A complex region consists of a collection of compon-
ents, which can be ordinary regions or lattices. A lattice component 
is actually a repeated geometric pattern of components, which are not 
necessarily physically identical. Furthermore, any component may, in 
turn, be a complex. 

For example, a reactor core can be defined as a lattice of assem-
blies, with different properties, e.g., age, and further, each assembly 
(as a complex) can be modeled as a lattice of rods, allowing variations 
such as different enrichments, water holes, control rods, etc. 

As in the case of CG, the space filling and overlap avoidance re-
sponsibility are the user's. 

Special Reactor Geometry 

This geometry (independent of the others) is designed to represent 
parts of light water reactor cores. Specifically, an assembly, in-
cluding a cruciform control rod for BWRs may be modeled. The assembly 
is defined as a square array of rods, where each rod consists of three 
concentric cylinders (fuel, gap and clad). The radii may vary from 
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rod to rod. In general the geometry is three dimensional, but when the 
cruciform is omitted, it becomes two dimensional. 

Since the geometric structure is precisely defined, the space fill-
ing and overlap avoidance problems are not present. ! 

3. TRACKING 

For all three geometries, the logic is set up so that a sequence 
of calls to the tracking routines can be made for a given ray (defined 
by a starting position and a direction), where at each call, the dis-
tance to the current region boundary and the identity of the region 
beyond it is returned. If the ray has a predetermined end point (e.g., 
to a point detector when estimating flux at a point) , as a time saving 
feature, the next region identity is not determined. Unless terminated 
by other means (e.g., Russian Roulette), the tracking proceeds until a 
specially designated region, called the "escape" region, is encountered, 
except in case of SRG, where a reflecting surface is used. In CG and 
CCG, rays hitting the "escape" region can be treated as either true 
escapes or reflections, depending on input. 

Combinatorial Geometry 

As an aid to the tracking logic, each (user) region, whenever the 
union operator is used, is defined to be a combination (union) of (in-
ternal) regions, which are described by means of intersections and dif-
ferences only. The two track items (distance and neighbor identity) 
are obtained for the given internal region, and if the neighboring in-
ternal region is part of the same user region, the process simply pro-
ceeds without returning to the calling routine. The internal region 
tracking has two main components, initial and continuing. 

The initial portion, used at the beginning of a ray, consists first 
of the calculation of the distance to the boundary for the known inter-
nal region. For an internal region, this is the minimum of the exiting 
distance for all bodies defined as positive (i.e., intersection) and 
entering distance (infinite for miss) for all bodies defined as nega-
tive (i.e., difference). The identities of the particular body and 
surface determining the distance are obtained also. 

The continuing portion of the code, which uses the cumulative dis- < 
tance traversed, checks all candidate regions for the possibility that 
at the current position, the ray is about to enter, while at the same 
time, the distance to the next boundary is obtained. Specifically, the 
cumulative distance is compared to the entering and exiting distances 
along the ray for each body defining the region. This cumulative dis-
tance should be between the body intersections for a positive and out-
side the body intersection interval for a negative. If the body is not 
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convex more than one interval may have to be checked. If the cumulative 
distance satisfies all the necessary inequalities, the region is con-
sidered to be the neighbor, with the distance to the next boundary being 
obtained in the process, with the defining body and surface. 

The logic of this process is such that the geometry code is one 
step ahead of the calling routine in the determination of distance to 
the boundary, permitting a simple return with no further calculation, 
when the next region identity is not needed. 

To control the computer time required for tracking, the number of 
candidate regions examined during the continuing portion must be kept 
to a minimum. In CG a learning process is used. Initially the complete 
region list is used as the candidate list for neighbor determination; 
with processing terminating at the first success. The identity of this 
neighbor is saved in the region description, associated with the body. 
Subsequently, when a ray leaves a region through a surface determined 
by that body, the saved region is checked first. If the saved region 
is not the neighbor, the full list is then checked and the newly ascer-
tained neighbor is added to the save list for future priority checking. 
Thus, the number of times the full region list must be checked (a very 
time consuming task) is kept to a minimum. 

Complex Combinatorial Geometry 

The arithmetic aspect (distance calculation) of CCG is identical to 
that of CG. However, the logical aspects, i.e., which regions to check, 
memory features, etc., are quite different, because of the complex hier-
archical structure. In addition, arithmetic and logical analyses are 
needed when tracking through lattice structures. There is one addition-
al similarity to CG in that the neighbor identity and distance to the 
(neighbor) region boundary are determined together, while the data furn-
ished to the calling program are the neighbor identity and distance to 
the current region boundary. 

The tracking logic is built around the hierarchical structure, i.e., 
the logical placement of a point in space requires the definition of a 
sequence of regions, each of which is a component of the previous com-
plex region, terminating in a region that is not a complex*. Furthermore, 
when a component is a lattice, the specific cell indices are required. 

The tracking consists of an initialization and a continuation. Dur-
ing the initialization phase, the hierarchical sequence is determined, 
starting with the "real world", and for each region, the distance to 
the boundary is determined. The minimum of all such distances is the 
one returned to the calling program. 

The system allows the possibility that the last two regions in the chain 
are not complexes, when "virtual" and "subordinate" regions are used. 

In practice, this option is seldom used. 
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The continuation along the track requires first the determination 
of the level where the region boundary is further than the minimum. If 
there is none, tracking proceeds in the real world. Otherwise tracking 
proceeds among the components of the complex at the determined level. 
Here, there are two possibilities, depending on whether or not the next 
lower level component was a lattice. If it was, then the logic will go 
to the next cell along the track, unless exiting from the entire lattice. 
In that case, or when the component was not a lattice, the remaining 
components are checked for entry. If-the region entered is a complex, 
then the chain must be extended by examining its components to determine 
which o.ne is benfng entered, with the process continuing until a component 
which is not a complex is encountered. 

In order to control the amount of checking required to ascertain 
neighbor identity, two learning processes, one similar to that in CG, 
are used. The CG process is used for "real world" regions and components 
where the union operator is used. For the latter case, the eligible in-
ternal regions are only those which belong to the same user region. For 
components of complexes, the order of checking is determined by the order 
of initial encounter. 

w 
Special Reactor Geometry 

SRG deals with a special case which can be handled by CCG- As indi-
cated previously, it is restricted to typical BWR and PWR, and specific-
ally to infinite reactors consisting of identical assemblies exhibiting 
four-fold symmetry. 

The tracking logic is similar to that of CCG, but much stronger use 
is made of analytic tracking. The improvement in running time .efficiency 
results from the fact that a substantial part of the information needed 
during tracking is assumed rather than either retrieved from input data, 
or obtained by logical tests. A detailed description is given in i 
Appendix A. > 

4. CONCLUSION 

SAM-CE has available three different geometry packages, where the 
choice of a particular package depends on the application. 
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APPENDIX A 

Special Reactor Geometry 

The tracking logic SRG is similar to that of CCG, but, as SRG deals 
with a special geometrical case, many logical tests and data retrieved 
tasks are bypassed. 

As in the case of CCG, physical regions are defined by a chain of 
simpler geometrical definitions. SRG deals with chains of length up to 
four. 

The first level (Figure 1) deals with the vertical range of the re-
actor. The region between two given horizontal planes is a complex re-
gion containing the entire configuration. The two planes are reflection 
surfaces. This level is bypassed in the case of absence of cruciform 
control rod, as the geometry becomes effectively two dimensional. 

The second level consists of four nested squares (see Figure 2). 
. The entire configuration is within the outermost square. The outermost 

square itself is a reflection surface. Let the interior of the inner 
square be region 1, and let regions 2, 3, 4 be the regions defined by 
the next square annuli, in the outward order. Region 1 is complex. Re-
gions 2 and 3 are physical regions containing/(moderator, and can mater-
ial, respectively. Region 4 is complex if and only if it contains a 
cruciform control rod. u 

The third level in region 4 (see Figure 3) consists of the cruci-
form and of the coolant outside the cruciform. Each of these two re-
gions are physical regions. 

The third level in region 1 consists of an array of square cells 
(see Figure 4) completely filling region 1. Each cell is a complex 
region. 

Finally, the fourth level in each cell is defined by three coaxial 
cylinders. The inner cylinder, the two cylindrical shells, and the re-
gion in the cell outside the largest cylinder are all four physical 
regions.(Figure 5). 

The method of tracking through the array departs somewhat from the 
CCG method and is as follows. The tracking in level 1 is trivial. 

Both level 2 and level 4 involve two dimensional tracking through 
convex, nested, non-intersecting curves (nested squares and nested 
circles). Assume the surfaces are numbered 1, 2, ..., n starting from 
the innermost one, in the outward direction. If the track starts in the 
shell between surfaces i and i+1, first test whether it intersects surface 
i. If it does not, mark the track as outgoing. If the track originates 
inside, surface 1, mark it as outgoing. 

f ' 
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For non-outgoing tracks, calculate the distance of entry and exit 
to surface i. The track enters the region inside surface i and outside 
surface i-1, if any. 

Once labeled outgoing, the track remains outgoing. The case of a 
track originating outside surface n is impossible in level 2 (level n 
is the reflection region) and treated as explained below in the case of 
circles. 

r 

Tracking in level 3 of region 1 (array) is done as follows. The 
tracking from cell to cell is performed internally, and terminates as 
soon as the first of the following conditions is met: the track enters 
the outermost cylinder of a cell, or a distance limit is reached. This 
distance limit is preset as the minimum of the distance to leave the 
array (as calculated in tracking through the previous levels) and a 
limit (which may be infinite) communicated by the calling program (e.g., 
distance to point detector). 

Finally, tracking in level 3 of region 4 (cruciform) is done ex-
actly as in CG. 
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NUCLEAR DATA TREATMENT FOR SAM-CE MONTE CARLO CALCULATIONS 
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ABSTRACT 

The treatment of nuclear data by the SAM-CE Monte Carlo 
code system is presented. The retrieval of neutron, gamma 
production, and photon data from the ENDF/B files is described. 
Integral cross sections as well as differential data are utilr-
ized in the Monte Carlo calculations, and the processing pro-
cedures for the requisite data are^summarized. 

1. INTRODUCTION 

The SAM-CE1 Monte Carlo code system uses ENDF/B2 as its nuclear ' 
data source. The SAM-X component of SAM-CE serves as the principal 
nuclear data processor, which, together with several auxiliary code 
modules, extracts the data required for the Monte Carlo analyses. 
These data include neutron, gamma production, and photon cross sections, 
as well as differential data, such as angular distributions and second-
ary energy distributions. 

The SAM-X code evolved from ENDTS3, which itself was an adaptation 
of ENDT^. This evolutionary process, whose duration has already ex-
ceeded a decade, has paralleled the development of ENDF/B to its cur-
rent version V. Aside from keeping pace with ENDF/B format changes, 
SAM-X has been expanded to include the treatment of thermal neutron 
scattering data, and, most recently, fission neutron spectra. In addi-
tion, as the sheer volume of data included in ENDF/B grew, the SAM-X 
algorithms have been redesigned to provide increasingly accurate pro-
cessed data sets. The goal of these developments has been to provide 
the Monte Carlo component of SAM-CE, SAM-F, nuclear data derived from 
ENDF/B with virtually no degradation of accuracy. Since most of the 
nuclear data is linearly interpolated in the Monte Carlo stage (for 
speed), and ENDF/B can, and often is, tabulated using non-linear in-
terpolation rules, our goal for SAM-X can only be approached within a 
user specified tolerance. Nevertheless, these tolerances can be quite 
small (i.e., 0.1%), and certain data (such as fission neutron spectra) 
are utilized with no degradation of accuracy from the ENDF/B source. 

This paper describes the treatment and utilization of the major 
categories of nuclear data by SAM-CE. Since details of the processing 
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2.3 Resonance Parameters , 

For nuclides with cross section resonances, ENDF/B provides re-
solved and unresolved resonance parameters. These data are to be com-
bined with the corresponding smooth cross sections to yield the com-
plete cross section representation in the resonance energy range. 

These data can be treated by SAM-X in several ways. The origin-
ally developed approach uses the resonance parameters to generate 
point values (distribution-averaged values in the unresolved range); 
these are subsequently combined with the smooth background value. 
These originally implemented algorithms have been superseded by an » 
adaptation of the RESEND code6. These algorithms process ENDF/B re-
sonance parameters (both resolved and unresolved) and combine the re-
sulting point values with the smooth background to produce a complete 
pointwise tabulation in the resonance range (distribution-averaged/^ 
values in the unresolved range). All the formalisms invoked by ENDF/B 
to represent the resolved resonances (i.e., single level and multi-
level Breit-Wigner, Reich-Moore, and Adler-Adler) are treated. 

An alternative treatment for the unresolved range has been pro-
vided by an adaptation of the U3R code7. These algorithms generate 
probability tables (uniform in probability) for the total cross section, 
and average value partials tabulated as a function of total cross 
section. This choice of treatment for the unresolved range is optional; 
the user's decision should be based on a judgment, weighing the in-
vestment of an additional processing step versus the gain in accuracy 
of representation. >> 

2.4 Angular Distributions 

Angular distribution data are retrieved for elastic and discrete 
inelastic scattering. Probability tables (uniform in probability), for 
cosine of scattering angle in the center-of-mass, are tabulated. The 
transformation to the lab system is performed analytically in the colli-
sion treatment algorithms of the Monte Carlo code. 

2.5 Secondary Energy Selection for Inelastic Scattering 

The selection of the secondary neutron energy for inelastic 
scattering is based on the partial cross sections for the discrete 
levels, and probability distributions for the continuum. The SAM-CE 
treatment for the discrete levels is analogous jlo the hierarchical 
procedure for choosing, first between scattering and absorption, then, 
if scattering, between elastic and inelastic. ^|ius, the partial cross 
sections for the levels are accumulated, such tnaty for each level, 
the cumulative values of the partials up to that level number (ordered 
by increasing threshold) are tabulated on the cross section energy 
mesh. 

o 

M 
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and utilization algorithms are amply provided in the SAM-CE user's 
manual5, a narrative style will be assumed herein. 

2. NEUTRON DATA 
t 

2.1 Preliminary Remarks 

An ENDF/B data set for one nuclide is subdivided into principal 
sections, termed "files". The first few files deal primarily with 
neutron data; for convenience, these may be termed the "neutron files". 
These files may include the following types of data: - \\ 

(1) smooth cross sections/, (total and partials); 

(2) resonance parameters (resolved and unresolved); 

(3) angular distributions (elastic and discrete 
inelastic); 

(4) secondary energy distributions;!. 

(5) fission spectra (prompt and delayed); 

(6) thermal neutron scattering data, termed S(a,B) 
data. 

Although other types of neutron data are sometimes available also, the 
foregoing are the principal types utilized by SAM-CE. 

Si 
t 2.2 Smooth Neutron Data 

A SAM-CE neutron data set for a specific nuclide will contain 
tabulations of integral cross sections on an "appropriate" energy mesh-
The appropriateness of the energy mesh is defined in terms of the re-
quirement that linear interpolation between mesh points yield cross 
section values which do not deviate from the implied ENDF/B value by 
more than a user specified tolerance. The tabulations include total, 
total scattering, inelastic, and fission cross sections (where rele-
vant). In addition, neutron multiplicities of inelastic scattering, 
stemming from "(n,2n)-like" reactions, are tabulated on the same energy 
mesh. 

These meshes vary in length for different nuclides, for obvious 
reasons. For example, a hydrogen data set may be tabulated on an 
energy mesh of several hundred entries, whereas a data set for ^ 3 8U may 
require tens of thousands of energy mesh points to preserve the same 
degree of accuracy for linear interpolation. This approach of generating 
unique energy meshes for each nuclide data set offers substantial sav-
ings in memory for the Monte Carlo stage, where many nuclides may be 
present in the problem description. 

1} 
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The choice between levels and continuum is based'on the fraction 
of inelastic cross section which exceeds the cumulative value tabulated 
for the highest explicit level. Thus the continuum event is initially 
treated as an implicit highest level. 

Given that a continuum inelastic event is selected in the Monte 
Carlo, the secondary energy is sampled from cumulative probability 
tables (uniform in probability), which are also tabulated on the same 
energy mesh used for the integral cross sections. These tabulated 
secondary energy values are given by ENDF/B as angle decoupled values 
in the lab system. To introduce an energy-angle coupling, these values 
are interpreted by SAM-CE as average values, from which an excitation 
energy, Q, is computed using the relation 

Q = C^p) (E-E) (1) 

where E is the incident neutron energy, E is the sampled average, and A 
is the mass of the nuclide. Thus, the treatment of the continuum re-
duces to the treatment of a discrete level, with a "sampled" excitation, 
Q-

2.6 Thermal Scattering Data 

For certain evaluations (such as hydrogen bound-in-water), ENDF/B 
provides thermal scattering data to account for molecular binding effects. 
These data, usually referred to as S(a,3), are utilized by^SAM-CE to 
generate two dimensional sampling tables, coupling the momentum (a) and „-
energy (B) transfer of a thermal scattering event. Through numerical 
integration and interpolation, SAM-CE allows the sampling of all physi-
cal points in the (a,3)-domain. 

Since the numerical integration becomes a substantial fraction/jof 
the Monte Carlo computing time for problems characterized by thermal 
molecular scattering, the S(a,B) processing and sampling algorithms in 
SAM-CE will be completely overhauled in the near future. An order of 
magnitude improvement in speed is anticipated by a judicious change of 
variables (from a and 3), which will obviate numerical integration in 
the Monte Carlo sampling stage. 

" 2.7 ,Fission Spectra 
a 

The most recent additions to the collection of ENDF/B neutron data 
utilized by SAM-CE are fission spectra, both prompt and delayed. The 
data is retrieved from ENDF/B with no degradation of accuracy. This is 
accomplished via a departure from the normal requirement for linear in-
terpolation in the Monte Carlo sampling. The sampling algorithms in-
corporate all valid ENDF/B interpolation schemes, and are cognizant of 
all defined formalisms (the tabulations, as well as the analytic prob-
ability functions). The inclusion of a treatment for the delayed neu-
tron spectra is"believed to be unique among the foremost neutronics 
codes in the field. 

(i 
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3. GAMMA PRODUCTION DATA 

The ENDF/B "gamma production" files are, essentially, tabulations 
of photon yields for various non-elastic neutron interactions, and 
corresponding photon angular distributions. These data are processed „ 
by SAM-X in a manner analogous to the treatment for smooth neutron cross 
sections, as described above. The algorithms have not changed signifi-
cantly from those described in Reference 3-

4. PHOTON INTERACTION CROSS SECTIONS 

Point value cross sections are generated from ENDF/B file 23. 
These data govern photon transport and interactions, as well as the 
generation of secondary electrons. Once the energy_ine^h is established, 
using criteria for linear interpolation, as jfor smooth neutron cross 
sections, the Compton cross section is computed analytically, and the 
pair production and photoelectric partials are retrieved from ENDF/B. 

5. MISCELLANEOUS i I " 

Several auxiliary data processing utilities and procedures deserve 
mention. These include: (1) BCDEAN, a utility for transfering pro-
cessed libraries (which are utilized in binary form) betweei^j possibly, 
different computer architectures; (2) an adaptation of the PLOTEF8 code, 
to enable graphic display of SAM-X processed neutron cross sections; 
(3) the a'priori energy mesh enrichment algorithms necessitate some 
a posteriori "weeding", which is provided for neutron, photon, and gamma 
production data; (4) Doppler broadening of neutron cross sections is 
performed by initially producing a "cold" data set from the ENDF/B, and 
then "heating" up the processed data to any requested temperature; (5) 
the approximate treatment of electron transport (straight ahead/con-
tinuous-slowing-down) in SAM-F utilizes the photon interaction cross 
sections as electron production data, and uses built in range-energy 
relations; (6) the secondary photon producing processes of Bremsstrahlung 
and electron-positron annihilation are treated in the photon transport. 

o 0 
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ABb TRACT 

The variance reduction techniques implemented in SAM-F are 
discussed. This includes importance sampling as a function 
of position, direction, energy and time, and judicious use 
of quota sampling. 

I. INTRODUCTION 

The quantities estimated by SAM-F1 include flux and reaction rates 
at specified points, or averaged over specified geometrical regions, 
averaged over specified energy and time ranges. In eigenvalue problems, 
several (biased) estimators of the eigenvalue are also available. 

'-'As indicated by its acronym, SAM-F, (Stochastic-Aleatory Method, 
Forward Mode) the code utilizes the Monte Carlo method. The source is 
sampled. Collision points are sampled from the transport kernel and, 
at these points, the collision kernel is sampled. Estimation is per-
formed when tracks reach point detectors or cross detector regions. 
The sampling is importance-biased, with bias removed by weight adjust-
ment, and features a judicious use of generalized-quota sampling. 

II. ESTIMATION 
tr 

Consider a track originating either at the source or at a colli-
sion point. If the semi-infinite track enters a convex detector re-
gion a distance r from its origin, and leaves that region a distance 
r' from its origin, the analytical expression for the flux contribution 
of that track to the region average is: 

A l- e~ y ( r'~ r ) ' 

8 if 
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where p is the total cross section in the region, V is the volume of 
the region, and 

-fn y (s)ds 
A = W e (2) 

where W is a weight carried by the particle, adjusting for importance 
sampling. 

The familiar "track length" and "collision" estimators, as well 
as their "minimum variance" linear combination, are all valid estima-
tors of (1). All three have a finite variance. In SAM-F, the zero 
variance "exponential" estimator is implemented: expression (1) is 
evaluated numerically. Russian roulette on the track is played, how-
ever, when the value of A falls below a pre-determined, importance-
dependent, cutoff value A^. This introduces a finite variance for 
finite A^. 

For a point detector a distance r away from the track origin, the 
estimator is i 

E = A/r2 (3) 

This is also calculated numerically. As mentioned below, the biasing 
is such that the estimator (3) is bounded: W removes the 1/r2 singu-
larity. 

o 
i—, III. IMPORTANCE SAMPLING 

All sampling distributions are importance biased by a user speci-
fied importance function, which may be a function of space, time, 
energy, and direction, with no restriction on separability. The di-
rection-dependence is restricted to be a function of the angle between 
the direction of flight and a specified "aiming vector" which may be 
itself a function of space, time, and energy. The dependence of the 
importance function on each of its variables is restricted to be piece-
wise constant. 

In the presence of point detectors, an additional importance func-
tion2 is internally defined. It has a 1/r2 singularity, where r is the 
distance to the point detector. 

We are going to describe our method of importance sampling. To 
introduce our notation, we write the Boltzmann equation as 

1(1 (P") = S(P") + yK(P"^-P,)T(P,f-P)^(P)dP (4) 
e 
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where i|> is the density of particles coming out of collisions, S is the 
source, K is the collision kernel, and T is the transport kernel. To 
avoid a cumbersome notation, we consider a time-independent problem 
and define: 

P = {X,n,E} 

P' = (5) 

P" = 

where X is the position, ft the direction, and E is the energy. 

Finally, let 

Importance function = I(P) „ (6) 

III.l Importance Sampling of the Source 

The source term of Equation (4) is normalized. We rewrite it in 
the form: 

S(P") = WS(P") (7) 

where S(P") is the importance-biased source: 

S(P") = I(P") S(P")/S0 (8) 

W = S0/I(P") (9) 

5 0 = / J I(P") S(PM)dP" (10) 

The calculation of the normalization (10) and of the samplings 
tables for S is performed once at input time. 

At the start of each history, one samples S for P", and calculates 
W from Equation (9). According to Equation (7) the sample P" weighed 
by W is a valid sample of S(P"). 
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III.2 Importance Sampling of the Transport Kernel 

The transport kernel 

where 

-f n
S p (S' )dS' 

T(PVP) = e /y , (11) 

S = (X"-X)- (12) 

is normalized. The biased sampling of the^transport kernel, conceptu-
ally, could be treated exactly as the sampling of the source term. A 
difficulty arises, however, in the evaluation of the normalization 

h I(P')T(P'<-P)dP', (13) 

which requires tracking to infinity. That calculation cannot be carried 
out exactly in infinite lattices, for instance. 

Instead of defining a normalized biased kernel, we define an un-
normalized one. 

Let 
T(PVp) = W -T(P'<-P) (14) 

where 
T(PVp) = I(P')T(P'«-P)/I(P) (15) 

W T = I(B ) / I(P') . (16) 

Equation (15) can be more clearly written m terms of the variable 
S (Equation (12)): 

-^ Sy(S')dS' 
T(S) = I(S)•e U / (P-I(O)) (17) 

A method to sample such unnormalized kernels has been devised^. 
The problem of obtaining a single sample of a normalized distribution 
with a weight proportional to the normalization is replaced by obtain-
ing N samples, the expected value of N being the normalization. A com-
pletely stratified sampling reduces the fluctuation of N to a minimum. 
The necessity to track to infinity is eliminated by introducing Russian 
roulette, preserving completely the exact nature of the calculation. 

The N samples Pi, i=l,N, carry transport weight factors given by 
Equation (16): 

W = I(P)/l(Pj) > 1=1,N (18) 
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and total weights 
W. = W W _ . , i = 1,N (19) x Ti -

The N samplea and their total weights are stored into a "latent" i h 
list. The samples represent the density of particles going into colli-
s ion. 

III.3 Importance Sampling of the Collision Kernel 

The samples of particle going into collision are picked up, one at 
a time. Consider particle i. Let P' = Pĵ  and W = VL. 

As in the^case of the source distribution, we define a normalized 
biased kernel K through: 

K(P"-<-P' ) = W„ K(P"-<-P') (20) 
Js. 

where 
K(P"+-P') = I(P")K(P"-*-P' )/Kq (21) 

W K = K 0 / I ( P " ) (22) 

K = /l(P")K(P"+P')dP" (23) 
U J !5 

The calculation of the normalization (23), which is P'-dependent, 
is performed at sampling time. The method does not depend on K being 
normalized: the normalization of K itself is correctly taken into account 
through Equation (23) and (22): the presence of reactions like n2n is 
treated by sampling a single outgoing neutron, but with a high weight. 

'Xi 
A single outgoing particle P" is sampled from K. ( The weight Ŵ , is 

calculated. As shown by Equation (20) the sample P" weighted by Ŵ , re-
presents an unweighted sample of K. 

The total weight W is set equal to The set (W,P") represents 
a contribution to the density of particles coming out of collision. 

Several treatments of absorption are available, with option speci-
fied on input. The normal treatment is to consider absorption as a 
reaction which, when sampled, terminates the history branch. 

Another option (which we recommend only in special situations) is 
to exclude absorption as a reaction: the normalization of K is reduced, 
leading to reduced values of the collision weight factor W^. In this 
option, neutrons never die, but rather, like old soldiers, they just 
fade away* as the total weight eventually becomes vanishingly small. 
*and, with apologies to MacArthur, undergo Russian roulette. 
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Finally, the option exists to treat schizophrenic neutrons, with 
absorption both allowed and suppressed. The use of that option will 
become apparant in Section IV.1 below. 

IV. Generalized Quota Sampling 

Generalized Quota Sampling4 (GQS) is a powerful variance reduction 
technique when applied judiciously. 

When running a Monte Carlo calculation consisting of N histories, 
the histories are combined into n statistical aggregates, or batches, 
of n histories each, so that N=m-n. 

Each history of an aggregate is a random sample of variables in 
phase space. GQS preserves that property but its ultimate goal is that 
each of the n histories of the same aggregate, sample an independent 
but equally probable region of phase space. This reduces the variance 
by making the variance for N histories less than 1/N times the variance 
for one. The degree of success of GQS depends on how that subdivision 
is defined in the sampling scheme. 

IV.1 GQS of the Source 

In the case o£viii-xecl (input-specified) source problems, the posi-
tion, direction, eifergy, and time variables of the source term are al-
ways sampled using GQS. 

The case oC eigenvalue problems is different. The source term is 
the eigenfunction. Our general approach to the problem is to perform 
Monte Carlo calculations generation by generation, with fission neutrons 
produced in one generation playing the role of source neutrons in the 
next generation. A more detailed discussion follows. 

In the course of processing the histories of a generation, in addi-
tion to performing all requested estimates of flux and reaction rate, 
we store, at each collision entered, the parameters P', and the weight 
W multiplied by vy^/y^, together with the identifier of a fissionable 
nuclide appropriately sampled from the ones~locally present. When com-
pleted, the list, together with fission spectral information, completely 
specifies the next generation source. The size, and therefore, the 
statistical quality of the list can be improved by using the option of 
absorption suppression. In fact, as mentioned in Section III.3 above, 
we can suppress absorptions just for the purpose of creating this list, 
and still allow absorptions for the purpose of scoring reaction rates. 

Let us now return to the subject of this subsection, and discuss 
source sampling given such a list produced in the preceding generation. 
To utilize GQS, the user subdivides all of space into simple geometrical 
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regions (e.g., cylindrical annul!). If the size of the statistical ag-
gregate is n, n samples will be drawn from the list, satisfying (up to 
the undivided remainder) the quotas in each region, with weight inverse-
ly proportional to the fixed, input specified importance at the sampled 
position. All weights are equal to 1 in the usual case of unit import-
ance everywhere. Finally, the energy is sampled from the appropriate 
fission spectrum (in most cases by random sampling), and an isotropic 
direction is sampled using GQS. 

IV.2 GQS of Absorptions 

The technique of stratified absorption5 has been made compatible 
with GQS. The technique is simple both to grasp and to implement in 
the absence of any importance biasing. 

i ^ 

Consider a history corresponding to an analog Monte Carlo technique 
A particle is sampled from the source, and is transported to collision, 
and then from collision to collision until an absorption occurs. This 
can be simulated by sampling, at each collision, a reaction type: a 
scattering with probability lJs/v|T o r an absorption with probability 
y /l-'-p' The same game of chance can be played differently. At the « 
b e a m i n g of the history, let W=l, and sample a random number Sup-
press absorption at collision, but decrease the survival weight by 
setting W=W-u /vT. Stop the history at the first collision for which 
W<£ and call the last event absorption. The game of chance is identi-
cal, but the technique offers the possibility of useful stratification. 
If n is the size of the statistical aggregate, n stratified random 
numbers can be presampled at the start of the aggregate, satisfying 
(i-l)/n<£^<i/n. GQS delivers a random permutation of such numbers. 

The usefulness of the technique is most apparent for thermal re-
actor calculations. The technique drastically reduces the fluctuation 
of the number of neutrons degrading into the thermal energy range, and 
therefore of all estimates of interest, including criticality. 

V. Biased Estimators 

The flux and reaction rate estimators presented in Section II are 
completely unbiased in the case of fixed source calculations. 

Eigenvalue problems are treated generation by generation. Each 
generation is treated as a fixed source calculation, with the source 
obtained from the previous iteration. The method leads to a bias of 
all estimates. This bias cannot be removed. The only bias reduction 
technique implemented 

in SAM—F is the option to initiate estimation 
only after a certain number of generations have been completed. 
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V.l Estimation of Eigenvalue 

Several estimators are available for the eigenvalue. The one which 
falls into the category of Section II is the exponential flux estimator 
times v(E)y^(E). In addition, a collision estimator and an absorption 
estimator are available. r 

In addition to all other reaction rates requested on input, the 
following quantities are also estimated: absorption, excess neutron due 
to (n,2n),(n,3n) reaction, and leakage. The quantity: absorption plus 
leakage minus excess neutron has unity for expected value. A fourth, 
definitely biased eigenvalue estimate is obtained by dividing, at the 
end of each generation, this quantity into the exponential vp^ estimate. 
We observe that, for thermal reactors, the fluctuations of that ratio 
are much smaller than those of the numerator. We also observe that 
the bias is small, in the sense that the average of the ratio is well 
within the standard deviation of the numerator. 

Finally, a fifth biased estimate is evaluated. It is that linear 
combination of the first four which minimizes the variance. This es'fcij 
mate becomes meaningful only for well converged runs.'- ° 

We observe that the minimum variance estimate is usually extremely 
close to the absorption eigenvalue estimate if stratified absorption is 
used. The minimum variance itself is usually only slightly smaller than 
the variance of the absorption eigenvalue estimates. 
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RADIATION STREAMING WITH SAM-CE 
U 

N. De Gangi, M. 0. Cohen, E. Waluschka and H. A. Steinberg 
Mathematical Applications Group, Inc. 

Elmsford, New York U.S.A. 

ABSTRACT 

The SAM-CE Monte Carlo code has been employed to calculate 
doses, due to neutron streaming, on the operating floor and 
other locations of the Millstone Unit II Nuclear Power Faci-
lity. Calculated results were compared against measured doses. 

A problem of significant interest to the Nuclear Power industry, 
is the prediction of dose levels due to radiaton which emerges from 
the pressure vessel of an operating reactor. These predictions should 
not require excessive costs either in setting up the calculations or 
in running the problems, but should, at the same time, be accurate 
enough so that costly retro-fitting will not be required. 

Locations of most interest are those where personnel may be found 
during operation (e.g., on the operating floor) and where radiation 
reaches the site primarily by neutron streaming (e.g., through the re-
actor cavity). 

Mathematical Applications Group, Inc. (MAGI) has performed a set 
of calculations to demonstrate that: 

(1) with the SAM-CE Monte Carlo1 radiation transport code, 

(2) with a reasonably detailed geometric model (omitting, 
however, considerable fine detail), 

(3) and with affordable computer running times, 

adequate prediction of the radiation dose levels can be achieved. 

The calculations were performed with the SAM-CE (ENDF/B-based, 
point energy cross sections) Monte Carlo code using the experimental 
results obtained at the Millstone II power plant2, as a means of com-
parison. The Millstone II configuration was simulated, in SAM-CE, 
by the Combinatorial Geometry technique3 with 130 identifiable and 
selected 

geometric regions. For importance sampling purposes (see be-
low) these simulated geometric regions were, in many cases, subdivided 
so that the final computer model had 190 regions. 
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Simulated detectors were placed at several locations which corres-
ponded to measurement points at Millstone. Specifically, we examined 
selected locations on the operating floor, on the missile shield, and 
looking down into the refueling cavity. Both neutron and secondary 
gamma ray doses were obtained, but since the neutron dose levels signi-
ficantly exceed the gamma ray levels, heaviest concentration of effort 
was placed on the neutron results. In addition, we calculated the dose 
levels on the operating floor that would be present with an additional 
shield (water tank) at the top of the cavity. 

A pressure vessel current surface source was used to start Monte 
Carlo calculation. Neutron energy-angular distribution were determined 
with ANISN4. The axial distribution was obtained from the Millstone 
Unit II Final Safety Analysis Report. q 

Those familiar with Monte Carlo techniques know that proper im-
portance sampling is required to speed the convergence of the solutions 
SAM-CE offers the user the opportunities to importance sample in'all 
aspects of phase space, that is, in space, direction, energy and time. 
Of these options, the first three were used in this effort. 

Of particular interest is SAM-CE's capability of biasing transport 
with respect to the direction of the radiation particle. This angular 
biasing can be with respect to either a point in space, a line in space 
or a fixed direction; with free choice of option being available for 
each geometric region. The proper use of angular biasing enabled us to 
"force" radiation back into the cavity without the need for albedo 
data sets. 

The "transmission" region option provided another tool to enhance 
the speed of the Monte Carlo calculation. This option eliminated time 
consuming point detector estimates when sampling was occurring at lo-
cations that do not contribute significantly to the point detectors. 
Further, geometric perturbations were permitted without recalculating 
the complete problem. 

/i 
Figures 1 and 2, from the Millstone report3, identify the measure-

ment locations. Encircled sites represent points considered by our cal 
culational program. 

Measured and calculated data are presented in Table 1. The mea-
'J " c 

surements were reported to be uncertain by up to a factor of twob. 
The uncertainties in the computed results (percent) are provided in 
parentheses. The computed results were those provided directly from 
SAM-CE. The ratios of these results to the measurements are given. We 
have also considered normalizing all computed results so that the flux-
es predicted at the mid-core level in the cavity (slight variation from 
run to run), which are highly dependent upon the source terms agree 
with the measured data at this location. These "normalized" doses lead 
to the "normalized ratios", also given in Table 1, and are the best in-
dicators of the ability of SAM-CE to predict radiation streaming. 
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TABLE 1 
Millstone II - Radiation Levels 

Radiation Dose (rem/1 ir) Ratio 
Locatio Detector Type Calculated Measured CC/M) 

0F-CAV* 5 neucron 
gamma ray 
total 

62.1 
3.8 

65.9 

(21) 
(20) 
(20) ° 

65 
10 
75 

.96 

.38 

.88 

OF 6 neutron 
gamina ray 
cotal 

3.71 
0.64 
4.35 

(17) 
(32) 
(15) 

4 
0 45 
4.45 

.93 
1.42 
.98 

OF 7 neutron 
gamma ray 
total 

1.36 
0.13 
1.49 

(18) 
(32) 
(17) 

1.5 
0.23 
1.73 

.91 

.57 

.36 

OF-CAV 11 neutron 
gamrui ray 
total 

29.5 
1.6 

31.1 

(26) 
(19) 
(25) 

10 
2.5 

12.5 

2.95 
.64 

2.43 

OF-MS* 12 neucron 
gamma ray 
total 

8.44 
1.18 
9.62 

(19) 
(27) 
(17) 

6 
1.5 
7.5 

1.41 
.79 

..1.28 

OF 25 neutron 
gamma ray 
total 

3.32 
0.86 
4.18 

(18) 
(33) 
(It) 

3 
0.45 
3.45 

i . u r 
1.91^' 
1.21 

* * 

see 
see 

9 
10 

neutron 
neutron 

50.18 
6.37 

(27) 
(23) 

30 
1.5 

1.67 
4.24 

**A 
OKW 
OrW 
OFW-MS 
OFW 

6 
7 

12 
25 

neutron 
neutron 
neutron 
neutron ^ 

0.035 
0.020 
0.296 
0.059 

(29) 
(27) 
(79) 
(24) 

0.04 
0.01 
N. A. 
0.04 

.88 
2.00 

NOTES --

* OF » n operating floor, CAV => overlooking cavity, MS = on missile shield 
sec • steam generator cubical 

*«* OFU - operating floor uiLh uater tank in place 

Normalized 
Ratio fC/'!) 

.90 

.34 

.83 
I I; 
:'S3 

1.32 
. 88 

.81 

.53 

.78 
2.79 
.53 

2.3/. 

1 . 2 6 
.66 

1.14 

.99 
au 

1.09 

1.22 
3.10 

.70 
1.60 

1.23 
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It is seen in Table 1 that some of the calculated-to-measured 
ratios are less than unity whereas others a're greater. In all cases 
agreement for the normalized ratios is within a factor of about three 
and in most cases the agreement is much closer than that. 

The entire program required about 10 hours (CP) of CDC 6600 com-
puter time. However, one-third of this time was spent establishing pro-
per importance sampling techniques and need not be required for similar 
reactor configurations. 
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TRX AND U02 CRITTCALITY BENCHMARKS WITH SAM-CE 

M. Beer, E. S. Troubetzkoy, H. Lichtenstein 
Mathematical Applications Group, Inc. 

3 Westchester Plaza 
Elmsford, New York 10523 ' u 

P. F. Rose 
Brookhaven National Laboratory 

Upton, New York 11973 

A set of thermal reactor benchmark calculations with 
SAM-CE which have been conducted at both MAGI and at BNL 
are described. Their purpose was both validation of the 
SAM-CE reactor eigenvalue capability developed by MAGI and 
a substantial contribution to the data testing of both 
ENDF/B-IV and ENDF/B-V libraries. This experience also 
resulted in increased calculational efficiency of the code 
and an example is given. 

The benchmark analysis included the TRX-1 infinite cell 
using both ENDF/B-IV and ENDF/B-V cross section sets and 
calculations using ENDF/B-IV of the TRX-1 full core and 
TRX-2 cell. BAPL-U02-1 calculations were conducted for 
the cell using both ENDF/B-IV and ENDF/B-V and for the full 
core with ENDF/B-V. In these calculations the modeling of 
the full core lattices was accomplished by use of Complex 
Combinatorial Geometry. Eigenvalues, reaction rates and re-
action rate ratios are given for these cases and the results 
discussed. 

This paper describes a set of Monte Carlo calculations with SAM-CE 
involving thermal reactor benchmarks. The calculations were performed 
recently at MAGI and at Brookhaven National Laboratory (BNL). They in-
volved both full core and infinite cell cases, utilizing both the 
ENDF/B-IV and the ENDF/B-V libraries. 

The dual major purpose of the calculations was the validation of 
the SAM-CE reactor capabilities that are described in other papers at 
this session and a contribution to the testing of data pertaining to 
actors in the ENDF/B libraries. 

ABSTRACT 

1. INTRODUCTION 
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Efforts were also made to utilize the experience gained in running 
problems with SAM-CE to improve the overall efficiency of the Monte 
Carlo calculations. 

It is useful to briefly mention one example of improved efficiency 
before turning to the major considerations of this paper - the calcu-
lations and results. We refer to variance reduction by application of 
JJ posteriori statistical methods to several estimators of the same para-
meter. In particular, SAM-CE estimates k ££ in four ways, utilizing 
track length and collision type estimators. In the course' of these 
calculations, the maximum likelihood-minimum variance procedure was 
first applied to the case of several eigenvalue estimators1 and later 
implemented within SAM-CE directly2. The method was also applied to the 
case of two estimators of the same reaction rate in some of the later 
benchmark calculations. 

2. CALCULATIONS AND METHODOLOGY 

We now turn to consideration of the calculations. These involved 
the TRX-1, TRX-2 and BAPL-U02-1 benchmarks. Results were obtained for 
the cases shown in Table 1. Note that calculations of TRX-1 and TRX-2 
cells and the TRX-1 full core were conducted utilizing an available 
SAM-X processed library of ENDF/B-IV elements3. These calculations 
proved very useful in the code validation. 

o 
The BAPL-U02-1 calculations for the cell were performed with both 

the ENDF/B-IV,library and a recently processed ENDF/B-V SAM-CE library4. 
A full core ENDF/B-V calculation has also been performed. These SAM-CE 
benchmarks offered useful comparison of results involving both ENDF/B-IV 
and ENDF/B-V. 

It should be noted that calculations involving the ENDF/B-V library 
utilize the fission spectra specified for the individual isotopes by > 
ENDF/B-V at a particular neutron energy. The ENDF/B-IV calculations 
assumed fission spectra to be represented by that for 2^ 5U thermal neu-
trons. 

Geometry and composition for the problems are as specified in the 
"CSEWG Benchmark Specifications"5. Reflective boundary conditions were 
used for the cell combinatorial geometry. Full core calculations util-
ized complex combinatorial geometry. 

All the benchmarks were run on CDC 7600 computers. The BAPL-
U02-1 ENDF/B-V benchmark was also run on a PDP-10 computer*. The BAPL-
U02-1 full core calculation was conducted at MAGI, the remainder at BNL. 

The results given herein for this benchmark are those obtained on the 
PDP-10. 
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TABLE 1 

Benchmark Criticality Calculations 
Conducted with SAM-CE 

Cell Calculation Full Core 
Benchmark hNDF/B-IV ENDF/B-V ENDF/B-IV ENDF/B-V 

TRX-1 Yes No Yes No 
TRX-2 Yes No No No 
BAPL-U02-1 Yes Yes No Yes 
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3. RESULTS 

The TRX-1 and TRX-2 cell eigenvalue and reaction rate ratios are 
given in Table 2 for SAM-CE calculations as well as comparison results 
obtained from the RECAP and VIM Monte Carlo codes5'5. Generally good 
agreement is found between the codes. ,tTable 3 gives 4 group** reaction 
rates for 2 3 5U and 2 3 8U obtained for both the TRX-1 and TRX-2 cells. 

We now turn to the TRX-1 full core results. Table 4 gives k ^ ^ and 
inner core reaction rate ratios for SAM-CE and comparison BNL results 
for RECAP6 and Hardy's RCPOl results7. The SAM-CE inner core was chosen 
to conform to the largest region shown by Hardy7 to yield reaction rate 
ratios imperceptibly different from core center results. 

The important deviations of calculated and experimental values 
occur for kef£ a nd P23 which all three codes agree fairly well with 
each other. The effect is better seen in Figure 1 in which the SAM-CE 
and RECAP points have been added to the other points plotted previously 
by Hardy5. The deviations of k and p„„ from experiment clearly are 
artifacts of the ENDF/B-IV data? 

The BAPL-U02-1 calculations allow comparisons to be made between 
ENDF/B-IV and ENDF/B-V results. Table 5 contains values for k g f £ and 
reaction rate ratios for the 3 cases considered. (Inner core reaction 
rates are given for the full core results.) Note first the good agree-
ment obtained between the full core ENDF/B-V values and experiment. On 
the other hand, comparison of the cell results indicates a seemingly 
significant increase in the k value from ENDF/B-IV to ENDF/B-V 
Ov.6%) in conformity with theeTRX results (low k f f for ENDF/B-IV 
full core). 

Turning to the reaction rates, Table 6 gives reaction rates for 
ENDF/B-IV and ENDF/B-V cell calculations in the CSEWG group structure. 
The significant changes in this case involve a decrease in 23®U fast 
capture and an increase in fast 2 3 8U fission from ENDF/B-IV to ENDF/B-V. 
Reaction rates for ENDF/B-V results were also obtained in a second four 
group structure specified by EPRI***. These were divided by the group 
fluxes to obtain the EPRI group cross sections given in Table 7 for 
ENDF/B-V cell and full core calculations. Good agreement is obtained 
between full core inner core and cell results for all cases. 

Uncertainties in all the tables are either standard deviations or 
percent standard deviations when indicated. 

**Upper energy boundaries of the four groups are 10 MeV, 67.379 keV, 
3.355 keV, 0.625 eV. These will be referred to as the CSEWG group 
structure. 

***Upper energy boundaries of the four groups are 10 MeV, 821 keV, 
. 5.53 keV and 0.625 eV. 



LATTICE 
PARAMETERS 

TABLE 2 

Eigenvalues and Reaction Rate Ratios 
for TRX-1 and TRX-2 Cell Calculations 

RECAP 
TRX-1 
SAM-CE VIM RECAP 

TRX-2 
SAM-CE VIM 

1.1721 + .0019 1.1751 + .0016 1.1721 + .0030 1.1578 + .0026 1.1605 + .0015 1.1613 + .0032 

28 

25 

1.334 +.46% 1.324 +.8% 1.328 +1.2% .8244 +.75% .8139+1.1% .8344+1.0% 

.0963+.527. .09526+ .7% .09693+ .872: .05843+,.82% .0585 + .97. .05917+.86% 

28 

C* 

.08903+ .562 .09206+ .7% .08866+ .81% .06473+ .80% .06450+ .17. .06487+ .75% 

.7910 + .312 .7882 +.4% .7899 +.78% .6351 +.43% .6314 +.5% .6391 +.58% 
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TABLE 3 
CSEWG 4 Group Reaction Rates for TRX-1 and TRX-2 Cells 

For ENDF/B-IV 

Group U-235 U-23B 
Neutron Neutron 

Capture Fission Production Capture Fibsion Production 

TRX-1 Cell SAK-CE 

1 4. ,059-') 3.3806-3 8.8013-3 1.9124-2 4.0174-2 .11312 
(.1%) (.3%) (.3%) (.3%) (.6%) 

2 5. .8811-4 1.5780-3 3.8208-3 2.3463-2 3.0653-7 7.1361-7 
(.7%) (• 7%) (.7%) (.7%) (1.4%) (1.4%) 

3 1. .5904-2' .032918 7.9818-2 .15338 0 0 
(.9%) (-6%) (.6%) (.8%) 

4 6. .8756-2 .39846 .96381 .14799 0 0 
(.4%) (.4%) (.4%) (.4%) 

TRX-2 Cell SAM-CE 

1 2. .5792-4 
(-57.) 

2.2535-3 
(.4%) 

5.8910-3 
(.4%) 

1.2370-2 
(.5%) 

2.8790-2 
(-6%) 

8.1126-2 
(.62) 

2 3. .5808-4 
(.9%) 

9.5908-4 
(.9%) 

2.3221-3 
(.8%) 

1.4222-2 
(1.0%) 

1.7960-7 
(.23%) 

4.1812-7 
(2.3%) 

3 1. .0504-2 
(1.2%) 

2.1486-2 
(.8%) 

5U973-2 
j'j.. 8%) 

9.9864-2 
(1.1%) 

0 0 

4 7. .2275-2 
(•4%) 

.42167 / 
(.47.) L 

/̂l. 0199 
< (.4X) 

.15537 
(.4%) 

0 0 

ii 



TABLE 4 

TRX-1 Full Core k ,, and Reaction Rate Ratios ef f 
For t h e Inne r Core Region 

PARAMETER 

e f f 

28 

*25 

5 28 

C* 

EXPERIMENT 

1 
1 .320 + .021 

.0987+ .0010 

.0946+ .0041 

.797 + .008 

RCP01 

.9837 + .0008 

1 .396 + .004 

.1009 + .0005 

.0972 + .0003 

.809 + .001 

RECAP 

.9827 + .0013 

1 .415 + .021 

.1015 + .0016 

.09707+ .0016 

.8167 + .0095 

SAM-CE 

.9839 + .0026 

1 .390 + .018 

.09989+ .0013 

.09939+ .0012 

.8070 + .0056 
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TABU, 5 

BAPL-U02-1 Values for k and Reaction Rate Ratios 
for FNDF/B-TV and ENDF/B-V Data 

Full Core 
Parameters Cell ENDF/B-IV Cell ENDF/B-V EhDF/B-V Experiment 

k 1.137 ± .0017 1 1433 + .0019 0.9958+ .0032 1 

P28 ^ 1-385 ~ -011 1-392 ± - 0 U 1-429 ± -062 1-39 ± -01 

« 2 5 0.0801 + .0006 0.0806 + .0005 0 0801 + .0024 0.084 + .002 

« 2 8 0.0710 + .0004 0.0727 + .0006 0.0764 + .0027 0.078 + .004 

C* 0.8022 + .0041 0.8058 + .0038 0 819 + .020 

TABLE 6 

BAPL-U02-1 F.NDF/B-IV and ENDF/B-V CSEUG Four Group Cell Reaction Rates 

„ ENDF/B-IV ENDF/B-V PDP-10 

235u 23BU 235y 2 38u 

Group _ Capture Fission Capture Fission Capture Fission Capture Fission 

1 3.186-4 
(.34%) 

2.628-3 
(.30?.) 

1.467-2 
(.32%) 

3.086-2 
(.48%) 

3.177-4 
(.37%) 

2.643-3 
(.35%) 

1.430-2 
(.37%) 

3.1410-2 
(.71%) 

2 4.946-4 
(.573!) 

1.322-3 
(.57%) 

' 2.024-2 
(.66?) 

<1.-6 5.000-4 
(.552) 

1.312-3 
(.58%) 

1.996-2 
(.75%) 

<1.-6 

3 1.394-2 
(-742) 

2.825-2 
(.61%) 

.1672 
(.73%) 

0 1.421-2 
(.83%) 

2.831-2 
(.71%) 

.16841 
(.42%) 

2.152-6 
(12%) 

_ 4 6.932-2 
(.36%) 

.4027 
(.36%) 

.1463 
(.35%) 

0 6.895-2 
(.25%) 

.4003 
(.25%) 

.1457 
(.25%) 

0 

o o 
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TABLE 7 

LPRI Four Group Cross Sections (barns) 
for RAPL-U02-1 Cell and Full Core 

Using the LNDF/B-V Library 

Cell Full Core (Inner) Full Core - Cell 

U235 Absorption 0 1.2920 
+ . 0 0 1 0 

°2 
2.0750 
+ .0039 

38.478 
+ .233 

o, 453.76 
+ 1.47 

U235 Fission a, 1.2302 
+ .0008 

1.227 
+ .00154 

-.0032 
+.00173 

On 1.6188 
+ .0024 

1.612 
+ .0064 

- . 0 0 6 8 
+ . 0 0 6 8 

a, 25.644 
+ .152 

24.63 
+ .387 

-1.014 
+.419 

+ 1.25 
386.6 
+ 2.98 

-.49 
+3.25 

U238 Absorption a. .43333 
+ .00163 

.4295 
+ .00292 

-.00383 
+.00334 

o 2 .2422 
+ .00097 

.2427 
+ . 0 0 6 0 

.0005 
+.0061 

o, 2.0842 
+ .0174 

2.075 
+ .0504 

-.0092 
+.0533 

U238 Fission 

a. 1.8959 
+ . 0 0 6 0 

o, .37870 
+ .00171 

1.894 
+ .0597 

.3746 
+ .0035 

-.0019 
+ . 0 6 0 0 —u 
-.0041 
+.0039 

o ? 4.56-4 
+ .032-4 
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+ .12-4 

-.01-4 
+ .124-4 

o. 2.6303-5 
+ .339-5 

2.33-5 
+ 1.03-5 

-.3-5 
+1.08-5 
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The agreement is a result of interest. We have given a direct com-
parison of group cross sections obtained from cell and full core calcu-
lations and have found the two sets to be fully consistent. 

In conclusion, it can be stated that the value of SAM-CE for re-
actor calculations has been demonstrated and valuable data has been ob-
tained for testing the accuracy of ENDF/B-IV and ENDF/B-V libraries for 
reactor calculations., 
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THE RECURSIVE MONTE CARLO METHOD FOR DEEP-PENETRATION PROBLEMS 
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i „ 0 "ABSTRACT 

The Recursive Monte Carlo (RMC) method developed for 
estimating importance function distributions in deep-
penetration problems ;s described. Unique features of 
the method, including the ability to fnFeV the importance 
function distribution pertaining to many detectors from, 
essentially, a single M.C. run and the ability" to use the 
history tape created for a representative' region to 
calculate the importance function in identical regions, 
are illustrated. The RMC method is applied to the 
solution of two realistic deep-penetration' problems - a 
concrete shield problem and a Tokamak major penetration ^ 
problem. I t , is found that the RMC method can provide the 
importance function distributions, required for impor-
tance sampling, with accuracy which is suitable for an 
efficient solution of the deep-penetration problems ^ 
considered. The use of the RMC method' improved, by one to 
three orders of magnitude, the solution efficiency of the^ 

0 two deep-penetration problems considered: a concrete 
shield problem and a Tokamak major penetration problem. ^ 

1. INTRODUCTION*4 

The Recursive Monte Carlo (RMC) method is being developed for the 
estimation of adjoint functions distributions in general three-dimensional 
geometries; these adjoint distributions are aimed for importance sampling 
tn the pourse of solution of deep-penetration problems using Monte-Carlo 
(M.C.) ^techniques. The idea for a RMC method to calculate adjoint 
functions was f irst proposed by Steinberg, Kalos and Troubetzkoy^ who 
also looked at its feasibility tor the solution of a simple one-
tfiinensional (slab geometry) problem. Their effort was focused on an 
attempt to develop an automatic algorithm for the generation of equi-

^OrTreave" "from WcTear"~ResearcK'C'enter-Negev and Dept. of Nuclear 
Engineering, Ben-Gurion University, Beer-Sheva, Israel. 
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importance surfaces in general 3-D problems - a task which was found to be 
ineff icient2 . Our approach is to divide the system, intuit ively, into 
regions of convenient geometry, and estimate the value of the importance 
function on the surfaces separatinj these regions. More on the background 
of the RMC method, its theoretical foundation and strategy for implemen-
tation can be found in Ref. 3. That reference considers monoenergetic 
examples only. The primary purpose of this work is to i l lustrate the 
applicability of the RMC method for the solution of realistic multi-group 
deep-penetration problems. 

For the convenience of the reader we start with a brief review of the 
theoretical foundation of the RMC method (Section 2) and the strategy for 
its application (Section 3). The RMC method is then applied for the solu-
tion of two deep-penetration problems having streaming ducts: the right 
circular concrete shield problem studied by Tang et a l . 4 (Section 4) and 
a blanket-shield problem with a major penetration as encountered in 
Tokamak reactor designs5 and proposed as a benchmark problem^ (Section 5) . 

All of the RMC calculations reported on are performed using the 
recently developed REMOP code.7 The detectors' responses are calculated 
with MORSE® (using the RMC results for importance sampling). The 
computer times quoted are of a CYNER-73 computer. 

\ 
2. THEORETICAL FOUNDATION 

Consider radiation transport problems the objective of which is to 
find the value of a performance parameter (or a detector response, or 
system character!sties) that can be expressed as 

R = / x (p ) f (p )dp (1) 

where x(p) "is the neutron bir t -rate density distribution - the density of 
neutrons coming out from collisions per unit phase space volume, dp, at 
p E(_r,E,ft), per unit time; i t is the solution of the Boltzmann equation 

X(p) = S(p) + /x(p ,)K(p ,^p)dp1 (2) 

in which S(p) is the source density distribution, K(p' p) is the Boltzmann 
kernel which can be expressed as 

KCp'->p) = T(r '+r E 1 )C(E'ft ' -^Jr) (3) 

where T(_r'-Hr|E'fi') is the transport kernel and C ( E i s the 
collision kerneT. Finally 

f(p) = T ( r ^ | E B ) n(E,£2) (4) 

where is the response function (or efficiency) of the detector and 
r^ denotes-a position vector in the active volume of the detector. 
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The optimum biasing function 
for the solution of Eq. (2) for 
the purpose of calculating the 
performance parameter of Eq. (1) 
is (see, for example, Ref. 9-11) 
the importance function - the 
solution of the adjoint equation 

X*(p) = ftp) + i' 
J*K(p-+-p' ) x * ( p ' ) d p 1 (5) 

In terms of this importance 
function the performance parameter 
of Eq. (1) can be expressed as 

R = /x*(p)S(p)dp . (6) 

Suppose the importance function 
distribution is known on a surface 
A (in the configuration space) 
which separates the detector from 
the volume V (represented by the 
radius vector r_; see Fig. 1). 
Dividing the spatial integration 
in Eq. (5) into the two regions V 
and V1 we find 

X*(r,E,fi) = S*(r,E,fi;r") + /dr ' /dE 'fdQ' T(r->r'| Efl)C(Eft»E V | r ' ) " 
V* 

X*(r,,E',n' ) (7) 

where the f i rs t term on the right side of Eq. (7) is obtained as follows: 

/dr'T(r+r' |E«) /dE'/dQ'C(Eft+E V | r ' ) x * ( r ' , E ' ) + f (r ,E,n) 
V= U(r*r"|E£) / d r l T ( r % r , | E f i ) / d E / d o , C ( E ^ E , f i ' | r , ) x * ( r , , E , , £ ' ) + f ( r ,E , f l ) 

= U(£+r" |En) [x*(r",E,fi) - f ( r " ,E ,n ) ]+ f (r ,E,£) = U(r*r" |E£)X*(r",E,£) 
= S*(r,E,ft;r") (8) 

and 
UfjrV'lEfl) 5 T( j^r , , |Ef i ) /E t ( r \E) . (9) 

The adjoint source term S*(r,E,n;r") is the importance of neutrons coming 
out at (_r,E,fi) which reach "the reTerence surface A uncoilided. 

Consider now the importance function at phase space point p0eV' 
expressed as a detector response [the equivalent of Eq. (6) ] , 

X*(p ) =/x*(p)<S(p-pn)dp . (10) o 1,1 0 

r 

Fig. 1. A schematic i l lustra-
tion of the division of the config-
uration space to subregions. The 
importance function on surface A 
dividing V and V1 is known. 
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u 

We can express i t using the distribution function formulation [the 
equivalent of Eq. (1)] getting 

X*(p0) = X*(ro ,Eo ,fio) = /dr / d E / d M (r,E,fi;po jS^r.E.f i j r") (11) 

where J is the solution of the equation for the distribution function due 
to the point source at p0, 

J ( p ; p , ) = 6(p-p ) + / V J ( P ' ) K ( P ' + P ) . (12) u 0 y * ~ 

In other words, Eqs. (11), (12), (7) and (10) are the equivalent of, 
respectively, Eqs. (1), (2), (5) and (6). Eqs. (11) and (12) imply that 
the value of the importance function at phase space point pg can be 
calculated by solving the forward (or distribution function) equation in 
subregion V' subjected to a source S(p-p0), and weight the flux of 
neutrons which reach, uncollided, the reference surface A with the value 
of the importance function on that surface (assumed known). 

The value of the importance function averaged over a phase space 
region Ap = (£2%AE,Afi), (with AjreV'), 

xAp /dr/dE/dn , (13) 
FLR tk m AE ah 

can similarly be calculated from the expression 

X£p
 =

v J d r J d E j d g J ^ f r . E ^ S M r . E ^ r " ) (14) 

where J^ is the solution of the forward equation 

V ? ) = S AP ( P ) + v . / d p , J A p ( p , ) K ( p , - V P ) ( 1 5 ) 

subjected to an external source of neutrons uniformly distributed in AP, 

SAp(p) = 1/Ap = [(Ar)(AE)(Afi)]_1 • , (16) 

3. THE RMC METHOD 

The RMC method consists3 of the following ingredients: (1) The 
system is divided into relatively small geometrical regions, typically one 
inean-free-path (mfp) in thickness. (2) The forward transport equation is 
solved for each region subjected to an isotropic source of neutrons 
distributed uniformly on the surface of the region farthest from the 
detector. The histories of the source neutrons are followed throughout 
the volume of the region and a buffer zone adjacent to i t (from the other 
side of the source surface). (3) The average importance of the source 
neutrons is calculated by summing the probabilities of the neutrons coming 
out of collisions in the region (and the buffer zone) to cross, 
uncollided, the preceeding surface (obtained from forward Monte Carlo 
calculations) weighted with the value of the importance function at the 
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crossing point, which is known from the previous step. The result is the 
average importance function of the source neutrons; i t is assigned to the 
source surface which provides the "reference" surface for the next step. 
(4) This procedure is repeated recursively, starting with the closest-to-
detector region and continuing towards the external source. The surface 
averaged values of the importance functions are then used for importance 
sampling in the course of the M.C. calculation (forward) of the detector 
response. 

In the following subsections we shall discuss a number of issues 
related to the practical application of the RMC method. 

3.1 Region Geometry 

Consider the system illustrated schematically in Fig. 2a. The 
problem is to estimate the adjoint function distribution corresponding to 
the detector throughout the system (up to the external source surface). 
Towards this end the system is divided (fictit iously) by surfaces, as 
illustrated in Fig. 2b. Let us suppose that the importance function is 
known on surface A3 and examine the procedure to be used for calculat-iy 
the average importance function on surface A4. 

DETECTOR 

bf m x * x * > 
BUFFER ZONE 

* * * * * * * * * * SOURCE 

DETECTOR A 

* * * * * * * * SOURCE 

( C ) (b) (a) 

Figure 2. A schematic illustration of the division of the system \a 
into regions (b) and of the subsystem considered in each recursion step 
(c). 

Following the forumulation of Sec. 2 we are"to assign a uniform 
isotropic source of neutrons to surface A4. and solve the forward 
Boltzmann equation subjected to that fictitious source throughout 
volume of the system excluding that part between reference surface A3 
and the d' 'r^f-nr, Such an undertaking is both impractical and 
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unnecessary. Remembering that the solution looked for is the value of 
the importance function on A4, and realizing that neutrons reaching a 
few me.in-free-path from A4 (away from the detector) have a very low 
probability to reach reference surface A3 (and hence, to contribute to 
surfacejA4 importance function) i t is apparent that i t is sufficient to 
conside,* a truncated V', as illustrated in Fig. 2c. This truncated V' 
consist/i of the geometrical region (between A4 and A3) and a buffer 
zone (fjroin the other side of A4). 

The larger the thickness of the geometrical region the longer i t will 
take to get the importance function on A4 with a given level of accuracy 
but the smaller number of recursion steps will be necessary for the 
solution of a given problem. Similarly, the thicker the buffer zone the 
longer i t will take to follow the histories of a given number of source 
neutrons; beyond a certain thickness the added accuracy resulting from a 
further increase in the buffer zone thickness becomes negligible. 

Investigating the effect of the region and buffer zone thickness on 
the accuracy and efficiency of the RMC method (considering monoenergetic 
problems) we f o u n d 3 that region and buffer zone thicknesses of the order 
of one mean-free-path appear to be near the optimum. Recently we got an 
indication that for certain problems i t might be possible (and efficient) 

^to do without a buffer zone. Further investigation is needed before the 
optimal thickness of the region and buffer zone for different problems 
could be identified. 

3.2 Sample Size and Statistical Accuracy 

A question of primary concern to the practicality of the RMC method 
is that of the propagation of statistical errors in problems having a 
large number of recursion steps. Figure 3 compares the importance 
function calculated with the RMC mejhod for a simple one-dimensional deep-
penetration problem with the results from deterministic calculations 
obtained with ANISN. The system consists of a homogeneous sphere having a 
central spherical detector surrounded by a 22 mfp thick shield (extending 
from a radius of 28 cm to 200 cm). The problem is monoenergetic with 
isotropic scattering. An Ss (symmetric) angular quadrature was used for 
the ANISN calculations. For the purpose of the RMC calculations the 
system is divided into 50-1/2 mfp thick regions. The solid angle is 
divided into the eight quadratures used for the ANISN calculations thus 
enabling a direct comparison between the RMC and the ANISN results. A 
buffer zone, 1 mfp in thickness, is attached to each region. The detector 
response function was taken to be unity. The importance function on the 
closest-to-detector reference surface was obtained from a simple ANISN 
run. ( I t can also be calculated, straightforwardly, by hand; note that 
only angular components of the importance function pointing towaVds the 
detector need to be known.) The sample size of the neutron source 
assigned to each surface for the RMC calculations was 3000. Figure 3 
showŝ a very good agreement between the RMC and the ANISN results 
througfTout-the^system, with no indication for propagation of errors. I t 
ought to be mentioned, though, that we did observe propagation of errors 

/ 
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when using, for the same problem, a 
Sample size of 1500 neutrons and 
volumetric (rather than surface) 
sources.3 

The efficiency of the impor-
tance sampling technique (judged by 
the computer time required for the 
estimation of the detector response 
at a given degree' of accuracy) 
depends on the accuracy of the 
importance function used for 
biasing. The higher the accuracy 
required, the more time is needed, 
however, for the adjoint calcula-
tion. '-'''The efficiency and useful-
ness of the RMC method should 
therefore be judged by the overall 
computation time needed for the two 
phases of the solution - the RMC 
calculation of the importance 
function distribution, and the 
calculation of the detector 
response^ (using importance 

=sampling)\ We shall refer to the 
overall procedure as the "RMC 
procedure^' The f i rst phase wil l 
be referred to as the "adjoint cal-
culation" whereas the second phase 
as the "detector calculation." 

To examine the sensitivity of 
the efficiency of the RMC procedure 
to the accuracy of the importance 
function distribution we define a 
figure of merit, 

Y a 2 T (17) 

0.4 0.0 -0.4 -0.8 
C O S ( 0 ) 

where a? is the variance of the 
final result for the detector 
response, and T is the overall 
computation time, such that 

Fig. 3. A comparison of the 
importance function calculated by 
the RMC method (broken lines) with 
ANISN results (solid lines). 
Sample size for the RMC calcula-
tions is 3000 neutrons. 

T = T
A

 + T H a , d ( 1 8 ) 

where Ta and T^ are the time • 
required for the calculation of, 
respectively, the importance 
function and the detector response. 
In conventional applications of 
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M.C. techniques, in which T stands for the time i t takes to perform the 
M.C. calculations (the equivalent of Td in the RMC procedure), Y is 
constant. The figure-of-merit was calculated as a function of two 
parameters: the batch size of source neutrons used for the RMC 
calculation (Sa) and for the detector response (S^). 

The parametric study was performed for a shielding problem similar to 
(although smaller than) that considered by Tang, et al5 The shield, 
illustrated in Fig. 4, is a right circular cylinder of a uniform 
homogeneous composition having a central duct along its axis. A plane 
isotropic source is located at the base of the shield, from the other side 
of the detector. The problem was treated as monoenergetic with isotropic 
scattering. The cross sections were taken to be E-j. = 1.0 crn •1 

* 0.9 cm -1 
and 

I cm 3 cm 8 cm 

the 

For the purpose of the 
recursive solution, the shield is 
divided into 28 half-mfp thick 
regions, by planes perpendicular to 
the cylinder axis (see Fig. 4) . 
Each plane is partitioned, somewhat 
intuit ively, into five sections, a 
thru e, as illustrated in Fig. 4. 
In setting this partition we have 
taken into account the anticipation 
that most of the contribution to 
the flux in both detectors is 
likely to come through the axial 
duct and through regions adjacent 
to i t . The distinction between the 
right and le f t sides of the system 
is to enable accounting for the 
asymmetry of the problem in the 

> case of the side detector (consi-
dered in Ref. 3, but not in the 

present example). The f irst step in the solution is to calculate the 
importance "-function distribution on spherical surface A]_ centered in 
the axial detector (see'Fig. 4). This is done with a simple ANISN run. 

Q 
The importance function in the five sections of surface Â  is then 

calculated using A]_ as the referervJe surface. A one mfp thick buf-^r ^ 
zone is attached to the region for the adjoint calculations. The*'computa-
tion time for the average importance of the five sections of s{£rface A2 
was 1 min. 8 sec., when using a source of 1500 neutrons per section. 
Geometrical imaging3 (see also Sec. 3.3.2) was applied to the next 27 
regions which are identical to the first one. The time,per recursion step 
(just for weighting a given histories tape with the appropriate adjoint 
function) was 4.18 sec. for the 1500 n/section source. The last two 
regions are different from the reference region by the thickness of their 
buffer zone. We could s t i l l apply, nevertheless, the histories tape of 
the reference region to the edge region, by ignoring the contribution to 
the importance function, of neutrons colliding in the missing sections of 

Fig. 4. The geometry 
-D shield problem of Ref. 

of 
4. 

-a 

o 
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the buffer zone. The total computation time needed for the calculation of 
the importance function was 2 min. 53 sec. for the 1500 n/section source 
case. Without geometrical imaging the solution would have taken 11 times 
longer. The importance function distribution thus calculated is used for 
biasing of the external neutron source, for the Russian roulette, split-
ting, as well as for the generalized exponential t r ans fp rm . 13 For 1 

this purpose, the average impn î-ance function calculated for a surface is 
assigned to the volume extend"ig I 4 mfp in both sides of the surface. 
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Fig. 5. Effect of batch 
size in the adjoint calculation 
on the figure of merit for the 
RMC procedure. 

The results obtained for the 
central detector are summarized in 
I ig. 5. The figure of merit is found 
(Fig. 5) to have a clear minimum; to 
be strongly correlated with Sa; and 

Sd. The Y-
divided into 

almost independent of 
is 

two distinct domains: 
Sa plane of Fig. 5 

S, domain [S XSalopt] n the ~" 

high in the 
the 

improvement in the accuracy of the 
inportance function distribution does 
not improve the efficiency of the 
importance sampling so that T and 
therefore Y, increase essentially 
linearly with Sa. In the S,- < 
(Sa)o pt domain,"on the other 
hand, the accuracy of the importance 
function distribution degrades 
significantly with the decrease in 
Sa, causing a dramatic loss in the 
accuracy of the calculated detector 
response. At the optimum, correspon-
ding in the problem considered to 
Sa~1500, the time required for the 
adjoint calculation is smaller than 
Vie time required for the calculation 
of the detector response. 

bath size is expected to be 
have solved so far with the 
1500 neutrons was adequate, 
covering a wide variety of 
reliable recipe could be determined. 

1 An important question associated 
with the practical application of the 
RMC method is how to determine, a 
priori, the optimal source batch size 

fl for the adjoint calculation. This 
problem dependent. In all. the problems we 
RMC procedure, we found that a bath size of 
Much more numerical experimentations,, f> 

problems, is necessary, nevertheless,/before a 

11 
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3.3 _Speci_a 1 Features of the RMC Method 

3.3.1 Simultaneous Solution of Multi-Detectors Problems 
IV 

°To each detector in a given system there corresponds a''different 
importance function distribution. Consequently, to find the importance 
function pertaining to N different detectors in a given system, i t is 
necessary to repeat the solution N times. The RfIC method,, on the other 
hand, enables getting the solution for all N detectors from, essentially, 
a single run (provided these detectors can be enclosed by the f i rs t 
reference surface). 

In the RMC method the adjoint calculations consist of two phases: 
(1) the calculation of the probability of the source neutrons to reach the 
reference surface (as a function of location on that surface and of 
direction of arr ival ) , and (2) weighting this "arrival probability" with 
the corresponding value of the importance function. The f i rst phase is 
detector independent; once we know the arrival probabilities" pertaining to 
a given detector, we know these probabilities for all other detectors in 
the same system (provided the system is divided the same way for all 
different detectors). The importance function distribution pertaining to 
each of the detectors can then be calculated just by weighting these 
arrival probabilities with the appropriate importance functions. The 
detector dependency comes only through the assignment of the importance 
function to the f i rs t reference surface.V 

3.3.2. Geometrical Imaging 

When two regions are identical in geometry and composition ( i . e . , 
they are the image of each other), the histories of the source' neutrons 
pertaining to each region ( i . e . , the arrival probability) are the same. 
Consequently, the histories generated for a representative region are 
directly applicable for all the images of that region. The application of 

r this procedure will be referred to as geometrical imaging. 

Geometrical imaging can significantly reduce the computation time for 
the solution of deep-penetration problems using the RMC method. The 
solution of the adjoint equation in certain deep-penetration problems can 
be transformed, with this feature, to the order of diff iculty required for 
the solution of simple one meari-free-path type transport problems.' 

o " 3.3.3. Estimation of the Importance Function in Low Importance Regions 

In solving the adjoint equation for deep-penetration problems using 
the adjoint (conventional) M.C. method i t is d i f f icul t to get a reliable 
estimate of the importance function in regions in which this function has 
relatively.low .values (usually the regions farthest away from the 
detector). Importance sampling applications require proper knowledge of 
the importance function throughout thersystem; too much a distortion in 
the adjoint distribution may lead to a significant error in the calculated 
detector response. H (See also Sec. O ) The accuracy of the estima-
tion of the detector response becomes more sensitive to the value of the 

c 
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importance function in low-importance regions the higher is the relative 
flux of neutrons in these regions. (More details on this issue along with 
an il lustrative example can be found in Ref. 12). 

As the RMC method involves the solution of the forward equation 
corresponding to a source of neutrons assigned to each region (of phase 
space), this method "picks up" the value of the importance function in low 
importance region as reliably as i t does in high importance regions. This 
feature is particularly important for problems characterized by relatively 
high fluxes in regions of relatively low importance. 

4. A CONCRETE SHIFLO PROBLEM 

Axial 
So far we have considered mono-

energetic problems only. As the f i rst 
illustration for the application of the 
RMC method to realistic multigroup 
problems, we apply i t to the solution of 
the concrete shield problem of Tang et 
al r J (Fig. 6). The problem is to find 
the total neutron fluence at the two 
point detectors. The 14 energy group 
structure along with the group constants 
library of Ref. 4 are used for the 
present study. The scattering anisot-
ropy is described using the P3 
approximation. 

The f i rs t phase of the solution is 
the estimation of the importance 
function distribution throughout the 
shield. Towards this end we divide the 
shield into 100 equally thick regions by 
planes perpendicular to the cylinder 
axis (as in Fig. 4). This gives a 
region thickness of 1.52 cm, which is Fig. 6. 
smaller than the mfp pertaining to any the concrete 
of the energy groups (ranging from 2.36 
cm to 8.37 cm). A buffer zone, 8.37 cm 
thick ( i . e . , equal to the largest mfp in this problem), 

delector 

each region for 
Each surface is 
described in Sec. ,,3.2) as follows (see also Fig. 7): 

the purpose of the adjoint calculations 
partitioned into five sections (following the rationale 

\ 
Isotropic source 

The geometry of 
shield problem. 

is attached to 
(see Fig. 7). 

li 
section a: 0 
sections b and c: 7.62 
sections d and e: 16 

< R £ 7.62 cm 
< R _< 16 cm 
< R < 150 cm 

The solution starts with the calculation, using ANISN, of the impor-
tance function distribution on the spherical surface Â  centered at the 

a> 



axial detector (see Fig. 7) 
using an adjoint source term 
of unity at the detector 
points, for each of the 14 
energy groups. Then we 
calculate the importance 
function in the five 
sections of surface A2 
with A^ser^ing as the 
reference surface (Fig. 7). 
In order save time 
following^neutrons in 
relatively low importance 
regions of relatively thick 
buffer zones (which can be, 
in this problem, as large as 
4 mfp) the buffer zone is 
divided into four subregions 

ng . / . ine geometry or nne errectwe onto which splitting and 
geometrical region used for the f i rst RMC Russian roulette is applied, 
calculation step of the concrete shield An isotropic source is 
problem. uniformly distributed on the 

surface of each section in 
0 each of the energy groups. 

The sample size of the source neutrons was 21000 per section, correspon-
ding to 1500 neutrons for each energy group. The time for calculating the 
average importance function on the f i rst five sections (surface A2) was 
6 min 28 sec. Without Russian roulette and splitting, this computation 
time was longer by a factor of 2.6. 

Capitalizing on the similarity of all the regions the system is 
divided to, we used the geometrical imaging procedure (see Sec. 3.3.2) for 
calculating the importance function in the rest of the regions. The last 
six regions (95-100) have a„thinner than nominal buffer zone. Vie applied 
geometrical imaging to these regions as well, accounting for the 
difference in the buffer zone thickness by ignoring the histories in the 
"excessive zones" (see Sec. 3.1). The computation time for a single 
recursion step was approximately 12 sec, making the total time needed for 
estimating the importance function distribution pertaining to the central 
detector 26 min 18 sec. 

The calculation of the importance function distribution pertaining to 
the side detecfor followed the same procedure, with only two small 
modifications: the f i rs t reference surface was Aj1 rather than Ai (Fig. 
7) and there was no need to calculate a new neutron histories tape for the 
f i rs t region - the tape created for that region during the calculation of 
the central detector importance functioij was used. , Also notice that the 
importance functioncdistribution on theVeference surface Ah' is identical 
to that on Â  (remember that we are interested in the forward directions 
only). Using geometrical imaging, the total computation time needed for 
the estimation of the importance function distribution pertaining to the 
side detector was 20 min 3 sec. 

o 
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The importance function distributions obtained for each of the 
detectors were then used during the calculation of the corresponding 
detector's reading for biasing of the external source, Russian roulette, 
splitting and for the generalized exponential t r a n s f o r m . ^ po r this 
purpose, the value of the average importance function at a given surface 
is assigned to a region centered around this surface- To examine the 
sensitivity of the RMC* procedure to the accuracy of the importance 
function distribution used for importance sampling, we al so cal culated the 
side detector response using the importance function distribution pertain-
ing to the axial detector. Fifty batches of 400 source neutrons were used 
for „the M.C. calculations of the response of each detector. Ho attempt 
was made to optimize the batch size used for the RMC procedure. 

Table 1 compares the results obtained with the RMC procedure with 
"exact" results obtained^from deterministic calculations (using the 
two-dimensional Sn code DOT) and with the M.C. results of Ref. 4 
obtained using the importance function' distribution for the central 
detector calcul ated 4 vn" th DOT. The results from the RMC procedure are 
seen to agree well with those from DOT, when the appropriate importance 
function distribution is used for importance sampling. Moreover, the RMC 
calculated standard deviations for the central and the side detectors are, 
respectively, 1.8 and 9.3 times smaller than those obtained in Ref. 4 
using the DOT importance function, while the overall effective computation 
time appears to be smaller.t 

Table 1. Comparison o f the R e s u l t s from the RMC C a l c u l a t i o n s With Those Obtained 
W i t h Other M.C. and D i s c r e t e - O r d i n a t e s Methods o 

Computation Method Response of Response of 0 Computation Time (min i 
A x i a l D e t e c t o r Side D e t e c t o r Importance 

Funct ion 
De tec to r 
Response T o t a l 

S„* (DOT) 2 .453x10"® 1 . 4 0 8 X 1 0 " U 
- 5 0 * * 5 0 * * 

M.C. + A d j o i n t Sn 

(DOT)* 
3 . 0 9 3 X 1 0 ~ 9 ( + 4 . 8 S ) 1 . 0 6 Z x l 0 " U { + 4 3 % ) 5 2 * * 6 0 * * 112* * 

M.C. + RMC ( f o r the 
a x i a l d e t e c t o r ) 

2 . 5 4 0 x 1 0 " 9 ( + 2 . 6 % ) - 2 6 . 3 19 .3 4 5 . 6 

M.C. + RMC ( f o r the 
s ide d e t e c t o r ) 

- 1 . 5 6 0 x l 0 ~ U ( + 4 . 6 % ) . 2 0 . 1 2 3 . 6 4 3 . 6 

M.C. + RMC ( f o r the 
a x i a l d e t e c t o r ) 

- 0 . 9 1 0 x l 0 " u ( + 5 0 % ) 2 6 . 3 3 1 . 8 5 8 . 1 

• D a t a from R e f . m 
* *CPU- t ime o f IBM/i- 3 6 0 / 9 1 

rTo""the"Ties~t~oF^urT"nowTedge7~tHe~ TTPU speed of the IBM 360/91 used in 
Ref. 4 isflabout a factor of"'.4.5 faster than that of the CYBER-73. 

. \ 
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With the axial detector importance 
sampling, the RMC standard deviation of 
factor of 10.8 greater than when the 
employed for importance sampling. A 
side detector was obtained in Ref. 4 
problem under consideration, the use 
tion from 2-D calculations for importance, sampling 
differ from the 2-D problem in the location of the 

function used for importance 
the side detector response was a 

side detector importance function is 
similar standard deviation for the 

I t is thus seen that, in the^ 
of an importance function distribu-

in a 3-D problem (whichu 
detector only) leads to 

a reduction in the overall efficiency of the M.C. calculation of the 
side-detector response, by about two orders of magnitude. This example 
indicates to the sensitivity of the 11.C. method efficiency to distortions 
in the importance function used for importance sampling. > • 

J 
5. A TOKAMAK MAJOR PENETRATION PROBLEM 

As a second test of the efficiency of the RMC method for the solution 
of realistic deep-penetration problems we "applied i t to a three-
dimensional Tokamak blanket-shield major penetration problem recently 
studied by Jung and Abd'ou® and proposed for a benchmark.® A cut 
through the system considered is shown in Fig. 8 and the thickness and 
' o'opoc-i tion of the different zones .î e sj'.inari zed in Table 2. 

Table 2. Dimensions and Compositions of the 
Tokamak Blanket/Shield Major 
Penetration Problem 

Outer Radius Thickness Material 
Zone cm cm Composition 

1 210 210 Plasma 
2 240 30 Vacuum 
3 241 ^ 1 Stainless Steel 
4 256 15 Stainless Steel 
5 261 o 5 Boron Carbide 
6 276 15 Stainless Steel 
7 281 5 Boron Carbide 
8 291 10 Stainless Steel 
9 301 10 Boron Carbide 

10 311 10 Stainless Steel 
11 321 10 Boron Carbide 
12 331 10 Stainless Steel 
13 340 9 Boron Carbide 
14 351 11 > Stainless Steel 
15 361 10 Boron Carbide 
16 371 10 Stainless Steel 
17 430 59 Vacuum 
18 490 60 50% SS + 504 Cu 

pic shell source of 14 MeV neutronscomi 
region. 

Following Ref. 5, the toroi-
dal geometry is approximated by a 
cylindirical one, with the X-axis 
designating the centerline. The 
f i rst wall, blanket, shield and 
Toroidal Field Coils (TFC) are of 
cylindrical cross section in the 
Y-Z plane (see Fig. 8) , and the 
vacuum duct cross section is in 
the X-Y plane. This duct, 20 cm 
in diameter, is lined with a 1 cm 
thick stainless steel tube. A 5 
cm thick stainless steel disc 
provides an end-cap to the duct 
(Zone 25, Fig. 8). The TFC are 
divided into concentric rings, 5 
cm thick each (Zones 18, 19, 20 
etc . ) , bounded (following Ref.5) 
by the y = +100 cm planes (with 
the centerlTne of the duct being 
at y=0). The problem iscto 
calculate the total flux in the 
end-cap (Zone 25) and in the two 
inner zones (Zones 18 and 19) of 
the TFC due to a uniform isotro-

ng from the surface of the plasma 

0 
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TFC 
'49 

20 t 
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Twenty-two energy groups (the,, 
group structure for which is summar-
ized in Table 3), P3 scattering 
anisotropy and Sg angular quadra-
ture are used for the solution of 
the Tokamak problem. « The 22 group 
constants were generated by collap-
sing, with AN ISM, the 100 group 
HLC-2 library using ANISN calculated 
flux (for a representative 1-D 
mockup of the problem) for the 
weighting spectrum. The boundaries 
of the angular quadratures used are 
cos = 0.0, +.41555, +.69105, +.8934 
and +1.0. 

BULK 
"SHIELD" 

^ B L A N K E T — 

S C R A P E - O F F REGION 

PLASMA REGION 

TOROIDAL MAGNETIC AXIS 

2 4 5 cm 

For the 
calculations 
we neglected 
the X-axis. 

purpose of the adjoint 
(in the RMC procedure) 
the curvature around 
This approximation 

enables using geometrical imaging 
(and thus improve the efficiency of 
the RMC procedure) and is not 
expected to significantly distort 
the importance function distribu-
tion* (due to the relatively large 
radius of curvature of the problem). 
The division of the system into 
"small" regions poses a more d i f f i -
cult problem than in the previous 
example (Sfec. 4) not only because of 
the heterogeneous structure of the 
blanket/shield but also due to the 
large spread in the value of the mfp 

pertaining to the different compositions and energy groups used (see Table, 
3); the smallest mfp (0.004 cm) is less'than one thousandths of the 
largest mfp (5.8 cm). Anticipating that most of the contribution to 
detectors reading will come from the MeV and upper KeV energy ranget 
f i rs t 13 energy groups), we divided the blanket/shield (by-planes parallel 
to the f i rst wall) into 2.5 cm thick regions (or 1/2 to 1' mfp in thickness 
for the f i rst 13 energy groups). No buffer zones were used in this 

Fig. 8. The geometry of the 
Tokamak blanket/shield deep-
penetration problem. 

the 
(the 

problem.# 

Each surface (used for the RMC calculations) is divided into three 
sections (similar to the division in Sec. 4, except that now we do not 
have a distinction between le f t and right): v 0 

*There is no difficulty in applying the RMC method to curved, geometry. 
tAn indication which we also got from the 1-D A'NISN cun. 
#The buffer zones appeared to have only very smalls effect on the results 
of this problem. The buffer zone issue deserves additional examination. 

(i 
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section a: 0 < R _< 11 cm 
section b: 11 < R <_ 31 cm 
section c: 31 < R < system boundaries in the X-Y plane. 

Table 3. 

Group 
Number 

Energy Boundaries and Mean-Free-
Paths of the 22 Group Structure 
Used for the Tokamak Problem 

Upper 
Boundary (eV) 

Mean-Free-Path (cm) 
ŝ c $5 rnr~ 

'he adjoint calculations proceed as 
follows: First, the collision 
Upes pertaining to the three 
regions which can represent the 
system - a stainless steel region 
(Zones 4, 6 etc., including the 
portion of the vacuum duct in these 
zones, see Fig. 8) , a B4C region 
(Zones 9, 11, etc.) and vacuum 
space (Zone 17), are generated 
(using the RMC approach). Fifteen 
hundred source neutrons per surface 
section, energy group and angular 
bin are used for these calcula-
tions. Then the importance 
function pertaining to the end-cap 
detector is found on the f i rst 
reference surface, taken to be the 
plane passing through the basis of 
this cap (parallel to the f i rst 
wall). Geometrical imaging is then 
used to find, recursively, the 
average importance function (per 
group and angular bin) on each of 
the reference surfaces down to the 
fusion neutron source plane. The 
total computation (CPU) time until 
this phase was 80 min. Starting 
with the f irst reference surface 

for the TFC detector (regions 18 and 19, see Fig. 8), located at the outer 
surface of Zones 18 and 19, the importance function pertaining to this 
detector was then calculated with the RMC method, using the collision 
tapes already available. The CPU time required for this phase of the work 
was 48 min. 

1 1.4918 + 7 5.38 4.59 4.28 
2 1.3499 + 7 5.36 4.19 3.76 
3 1.0000 + 7 5.54 3.63 3.45 
4 8.1873 + 6 5.23 3.33 3.20 
5 6.0653 + 6 5.80 3.21 3.14 
6 4.9659 + 6 4.46 3.20 3.19 
7 4.0657 + 6 4.05 3.36 3.39 
8 3.0119 + 6 3.36 3.42 3.55 
9 2.4660 + 6 3.92 3.63 3.72 

10 2.2313 + 6 3.62 3.72 3.79 
11 1.8268 + 6 3.35 3.94 3.82 
12 1.1080 + 6 2.22 3.98 3.48 
13 5.5023 + 5 1.60 2.91 2.54 
14 1.1109 + 5 1.35 1.26 1.23 
15 3.3546 + 3 0.49 0.97 1.26 
16 5.8295 + 2 0.23 0.76 0.85 
17 1.0130 + 2 0.11 1.07 1.23 
18 2.9023 + 1 0.063 1.11 1.23 
19 1.0677 + 1 0.037 1.10 1.21 
20 3.0590 0.021 1.09 1.19 
21 1.1254 0.013 1.07 1.16 
22 4.1399 - 1 0.004 0.97 1.03 

The importance functions thus obtained are used, in the detectors 
calculation (using MORSE), for biasing of the external neutron source, 
Russian roulette, splitting and for the generalized exponential transform. 
The detectors response ( i . e . , total neutron flux in the detector region) 
were calculated using a track length estimator. Six thousand source 
neutrons were used for the calculation of each detector's response, 
requiring 53 min and 75 min of CPU time for, respectively, the end-cap 
and TFC detectors. 

Table 4 summarizes the results for the detectors response, as ob-
tained using the RMC procedure described above, and compares them with the 
corresponding results obtained by Jung andAbdou^ (J & A), using 50,000 
source neutrons for each detector (or region). I t is seen that even 
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though J & A followed about one 
order of magnitude more sourcc 
neutrons per detector than used 
Tor the RMC calculations, the 
results From the latter method 
exhibit substantially lower 
standard deviation. Even when 
the time required for the adjoint 
calculations (which is of the 
same order as the time for the 
direct calculations) is taken 
into account, the efficiency of 
the RMC procedure is found to be 
significantly higher than that of 
a "brute-force" M.C. calculation; 
for the J & A method of calcula-
tion to provide a standard 
deviation of 7% for region 25, 
for example, i t had to process 

about 1600 times more source neutrons than in the RMC procedure (the 
detector calculation phase). 

The differences in the average value of the detectors response 
obtained between the RMC and J & A methods, even though within the 
statistical uncertainty, may be due, in part, to some differences in the 
representation of the problem. The isotropic shell source used for the 
RMC calculations, for example, ought to be replaced by a more realistic 
angular distribution. In addition, the presence of the TFC (and neutron 
interactions with them) should also be taken into account for the RMC 
calculations. These and other (such as accounting for the curvature in 
the poloidal direction) refinements are not expected, however, to affect 
substantially the applicability and accuracy of the RMC method. 

6. CONCLUDING REMARKS 

The experience gained so far with the RMC method confirms the need 
for importance sampling for efficient solution, using M.C. techniques, of 
deep penetration problems (see, for example, Ref. 10). I t also confirms 
the need for accurate enough knowledge of the importance function 
distributions used for importance sampling; using an importance function 
from two-dimensional calculations for importance sampling in a three-
dimensional problem (different from the 2-D one only in the location of 
the detector) led to a reduction in the efficiency of the M.C. solution of 
the concrete shield problem (considered in Sec. 4) by about two orders of 
magni tude. 

The RMC method appears practical and efficient for the estimation of 
the importance function distributions in realistic deep-penetration 
problems with an accuracy suitable for importance sampling applications 
(and i t ought to be realized that the solutions, with the RMC procedure, 

Table 4 . The To ta l Neutron F luxes a t t he Fnd-
Cap and TFC O e c t e c t o r s as C a l c u l a t e d 
With the RMC Method, in Comparison 
With t h e M.C. R e s u l t s of R e f . S 

2 
Tota l Neutron F lux* (n/cm sec) 

Region 
RMC Procedure R e f . 5 

25 10.87X1011 (+7%) 5.35X1011 (+100%) 

18 5.60X109 (+13%) l . l O x l O 1 0 (+56%) 

19 3.52x10® (+15$) 8 . 0 4 x l 0 9 (+70%) 

2 
• n o r m a l i z e d to a neu t ron wall l o a d i n g of 1 MW/m 



'186 

of the deep-penetration problems described in Sees. 4 and 5 were not 
optimized). I t thus might enable applying the M.C. technique to the 
solution of realistic complicated deep-penetration problems otherwise 
found very d i f f icul t to solve (see, for example, Refs. 5 and 6). 

Many more numerical experimentations are, nevertheless, required 
before the practicality and efficiency of the RMC procedure could reliably 
be assessed, and in order to devise recipes for the optimal application of 
this procedure to a wide range of problems. 

The recursive approach developed for the RMC calculations could, in 
principle, also be applied with deterministic methods for the solution of 
the transport equation. The deterministic methods are expected to have 
not ony a limited range of applicability (usually to 2-D regions) but may 
also be less efficient than the RMC method; they require a solution of 
GxSxA equations per region ( i . e . , recursive step) where G is the number of 
energy groups, S is the number of sections a reference surface is divided 
into and A is the number of angular bins used. 

The RMC procedure has been incorporated within the MORSE Monte Carlo 
system. The resulting code, named REMOP, is to become available through 
the Radiation Shielding Information Center of the Oak Ridge National 
Laboratory. 
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ABSTRACT 

The Monte Carlo program KIM solves, the steady-fstate 
linear neutron transport equation for a fixed-source prob-
lem or, by successive fixed-source runs, for the eigenvalue; 
problem, in a two-dimensional thermal reactor lattice. Flu-
xes and reaction rates are the main quantities computed by 
the program, from which power distribution and few-group av-
eraged cross sections are derived. The simulation ranges 
from 10 MeV to zero and includes anisotropic and inelastic 
scattering in the fast energy region, the epithermal Dop-
pler broadening of the resonances of some nuclides, and the 
thermalization phenomenon by taking into account the thermal 
velocity distribution of some molecules. Besides the well 
known "combinatorial" geometry, the program allows complex 
configurations to be represented by a discrete set of points, 
an approach greatly improving calculation speed. 

1. INTRODUCTION 

KIM (k-infinite-Morite Carlo) is a program which solves the steady-
state linear neutron transport equation for a fixed source problem or, 
by successive fixed-source runs, for the eigenvalue problem, in a two-
dimensional infinite thermal reactor lattice using the Monte Carlo method . 
A characteristic feature of the program is its approach to the lattice 
geometry. In fact, besides the usual continuous treatment of the geome- . 
try, using the well-known "combinatorial" description of domains, the 
program allows complex configurations to be represented by a discrete V 
set of points wh ;reby the calculation speed is greatly improved. 

This code includes in its body much of the programming work devel-
oped at the CNEN's Computing Centre in the field of Monte Carlo reactor 
calculations. This work has also allowed preparation and checking of lar-
ge parts of the nuclear data library accompanying the program. The pro-
gram has been widely used-for BWR's and PVJR's and also for heavy-water 
moderated, light-water cooled reactors. 

The coding language is essentially Fortran-IV for IBM computers of 
the series 360,-.370, exploiting the half-word addressability. Computer 
memory requirement is problem-dependent,through dynamic core allocation 
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at running time for the most critically-sized arrays (as, for example, 
thermalization kernels and the map of' the discretized domain). However, 
most cases run in about 1000 kbytes. The time needed on the IBM 370/168 
to obtain the infinite multiplication factor with precision of about 
0.3%, for a typical 8x8 rod element of a BWR, is about 40', corresponding 
to 40,000 histories. This time refers co geomet.y treated in the discrete 
mode; the continuous mode requires almost double the time. 

2. SIMULATION OF THE PHYSICAL EVENTS 

2.1 The Physical Model 

The problem of time evolution of. the neutron distribution towards 
an equilibrium, defined as an imjariance of the distribution shape, can 
be reduced to a sequence of stationary problems. The process simulated 
to reach the equilibrium is iterative and can be summarized as follows: 
starting from a first-generation neutron source, that is, from a given 
neutron distribution, one computes the distribution of neutrons born by 
fission, this being then considered as the second-generation source: 
fission is the only reaction which separates generations of neutrons 
and, together with radiative capture, determines the exhaustion of a ge-
neration. Iterations stop when the shape of the fission source distri-
butions of successive generations are statistically invariant within a 

- required accuracy. This invariance wi^l point out that equilibrium has 
been reached. The multiplication factor is then computed as the ratio 
of the number of neutrons born in two successive generations. One itera-
tion has normally breen found sufficient when starting from a uniform 
source in the fuel. 

The tracing of the neutron history takes into account both the slo-
wing down and the thermalization phenomenon. Partly due to its develop-
ment in time, and,partly for reasons of memory saving, the program is 
organized in three sections for fast, epithe.rmal and thermal simulation. 
Each section implements a particular model: indeed, both numerical tech-
niques and cross-;section representation vary with the energy section. 
The total energy interval, from 10 MeV to zero, is divided into the three 
ranges of Tab.l. In the same table the approximations used for cross 

Table 1. Cross section representation^ 

Range Bounds Approximation 
1. Fast 
2. Epithermal 

3. Thermal 

10 MeV-46 KeV 
46 KeV-5 eV 

5 eV-0 eV 
\> 

16 groups 
64 groups and continuous treatment for 
some resonance nuclei 
256 points and scattering kernels (55x55 
energy points, x 9 cosine points) 
with interpolation 

t 
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section representation are given. The upper bound of the epithermal 
range has been chosen so as to confine within the first energy range the 
simulation of anelastic and anisotropic elastic scattering from stationa-
ry nuclei. In the thermal range a cross section interpolation,' linear ,, 
above 1 eV and bilogarithmic below, is performed. 

In the fast energy range 10 MeV-46 keV, cross sections are averaged 
in 16 groups, although energy varies continuously during the simulation. 
Nuclear reactions considered in this range are: i) radiative capture; 
ii) elastic scattering. For^each group of incoming energy the anisotropy 
is described by a table of 17 values of the cosine yg of the scattering 
angle in the center of mass system (CMS) corresponding to 16 equiproba-
ble intervals. A value of y is obtained from this table through a random 
access and a linear interpolation; iii) inelastic scattering, treated ac-
cording to three different models: excitation of known discrete energy 
levels, evaporation model, transition matrices. Isotropy in CMS is assumed 
iv) fission. The energy of a fission neutron is assumed to be independent 
of the incoming energy and of the nucleus bit and is selected according „ 
to the Watt spectrum. The yield for each fissile nucleus is described by 
a linear law with parameters assumed constant within three energy ranges. 

In the epithermal range 46 keV-5 eV it is possible at running time 
to take into account the Doppler broadening of the resonances of some 
nuclides with spacing between resonances much greater than the resonance 
widths (in the present library Pu-240, U-238, Th-232, In-115, Ag-109, 
Ag-107). Cross sections of all other nuclides are described by 64 energy 
groups. The reactions considered are elastic scattering isotropic in CMS, 
fission with a constant yield, and capture. For the resonance nucleus in 
thermal motion we assume a maxwellian distribution of its velocity' as a 
function of the temperature. Only s-wave resonances are taken-into ac-
count, assuming that resonances can be described'by the single-level 
Breit-Wigner formula. Cross sections are computed at the current energy 
by adding the contributions of the nearest left and right resonances. 
Parameters of up to 100 resolved resonances are stored for; each resonan-
ce nucleus in the library. For higher energies, the neutron width is 
randomly generated during the simulation, and it is assumed that the 
unresolved resonances are equispaced and have a constant capture width. 

/J 
- -The"thermal energy range, 5 ev-0, is divided into 256 energy points 

to represent scattering, fission and capture cross sections. At the cur-
rent neutron energy,cross sections are computed through linear interpo—' 
lation above 1 eV and bilogarithmic interpolation below. Between 5 and 
1 eV all nuclei are considered as free. Below 1 eV we consider the 
thermal motion of some molecules which are particularly important for 
the thermalization process such as light or heavy water and oxygen. The 
scattering kernel ,of a vthermalizing nuclide is described pointwise. In 
the present library, thermalization kernels at several temperatures are 
given for water, heavy water and oxigen. The energy"'kernel is described 
through a" 55x55 matrix between 1 eV and zero; for each energy transition 
the angular distribution is described by 8 values.-. 
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2.2 Numerical Techniques 

The generator of the pseudo-random numbers y. is Lehmer's multipli-
cative congruential scheme: 

y^ = yi_1-41475527 (mod228) , " 
2 

whose multiplier has been divised and tested by Ahrens et al. . Although 
the period of the generated sequence, 2 2 6, is rather small, its good sta-
tistical properties have been confirmed both theoretically and experimen-
tally2. 

Simulation of the history of a particle begins at an energy random-
ly chosen from the fission spectrum with an initial unitary statistical 
weight. The index of the starting region r is assigned by a semi-strati-
fied sampling as follows: if F(r) is the mean number) of particles to be 
started from region r, then the program deterministically assigns the re-
gion index r to [F(r)] starting particles, while the remaining particles 
are randomly distributed among the regions with pdf proportional to 
(F(r)}, where [•] and {•} denote the integral and the fractional part, 
respectively. 

Position of the starting point within a chosen region is selected 
uniformly according to standard techniques, except in a special case: 
if the geometric domain is discretized and the source is not on rods, a 
rejection technique using Halton's "quasi-random" numbers^ is used. For 
Halton's generator, unlike Lehmer's, the following important property 
holds: as the number of tosses increases, the probability that no point 
falls in a given small (but machine-representable) area vanishes. This 
property also ensures that the rejection process surely ends, however 
small the source region whose index is imposed by the stratified sampling. 

When a particle exhausts its path the types of both the collided nu-
clide and ythe reaction undergone are to be determined. To better descri-
be how thi-,-5 is performed by the program it is convenient to separate the 
fast and the epithermal interval from the thermal one: 
a) 'Fast and epithermal interval. If a and o are the macroscopic scat-
tering and total cross section of the material at the collision point, 
the fraction a /a of the particle undergoes scattering with the i-th nu-
clide which isSchosen on the basis of the probability a'^/o , with 
E.A(i) = CJ . In the fast range the type of scattering (elastic or ine-
lastic) for the selected nuclide is subsequently decided. If the weight 
falls ,below a certain cut-off threshold in the fast interval, the history 
terminates. In the epithermal interval,instead, a Russian roulette game 
decides on his tory termination. o 
b) Thermal interval. The weight of the particle is never changed in this 
section: a game based on absorption probability of the mixture decides 
at each collision whether a particle is absorbed. The nuclide hit is cho-
sen as above. We have chosen this analog history termination because of 
the usually large number of collision in this energy interval; however, 
fluxes and reaction rates are estimated through expected-value techniques. 
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To improve statistics in regions either important or seldom 
visited by particles, it is possible to split up histories according to 
a number of branches given for each region. Besides,to allow^a different, 
number of histories to be run in each of the three energy ranges of the 
program, thinning of the source-' particles in each of the three parts is 
foreseen. This is performed by a Russian-roulette game just at birth in 
each range on the basis of decimation ratios given in input. 

Flux computation in KIM implements a known expected-value technique: 
the flux estimator T in a given region is the product of the mean free 
path by the expected number of collisions in that region. Scoring of T 
is performed at birth, at emersion from reactions and on entering a new 
region. Some quantities which are linear transformations of the flux 
are directly computable through the flux estimator T . For example, 
reaction rate of the i-type reaction is estimated by scoring the product 
0.T . In this way also reaction rates of nuclides present in very small 
concentrations are evaluated. In a similar way, cross sections averaged 
over regions and energy intervals are obtained.Where anisotropic elastic 
and/or inelastic scattering are present, removal cross sections between 
the three energy parts of the program (and between other input-given 
intervals) are computed by scoring the statistical weight of the parti-
cle removed (by scattering) from tha,t interval. Where scattering is in-
stead only elastic isotropic in CMS,' the removal probability from an 
energy interval is computed analytically. 

At the end of the life cycle simulation, the fission map is given, 
1.e. the ratio between fissions in a region and average fissions over 
fissile regions. Besides the fission map the power map is also given, 
taking account of the different energy released by fission from the dif-
ferent fissile nuclides. 

u 
3. TREATMENT OF THE GEOMETRY 

3.1 Continuous and Discrete Approach 

In the usual (or "continuous" as it will often be called here) ap-
proach to geometry in Monte Carlo, a particle walk is simulated by compu-
ting the intersection of the flight line with the nearest boundary. In 
terms of computer time the cost of the algorithms solving this problem 
increases with the geometric complexity. In KIM, besides the continuous 
approach, a new one has been introduced. Planar regions can in fact be 
represented by a finite (and, therefore, approximating) set of area-points 
obtained by overlaying a square lattice upon the given configuration; a 
"discretization algorithm" decides which region index is to be assigned 
to each grid point. The transport is simulated by moving the particle 
from one grid point to another, keeping as close as possible to the actual 
trajectpry. The algorithm performing this function and detecting the re-
gion boundary crossing is the "scanning algorithm". By this "discrete" 
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approach, the tracing of particle flights becomes independent of the 
geometric complexity of the configuration since it essentially' reduces 
to simple checking operations to verify whether a point belongs to a sub-
set. Although only a few bits are necessary to code information about 
the" nature of the region (i.e. the region index), a large number of co-
re memories is needed to represent the configuration with sufficient ap-
proximation, dependent on the lattice pitch compared to the 'mean free 
path. In our IBM version of the program this information is stored in a 
half word. 

The question of the approximation error ha? not been considered 
theoretically. However, it is partially answered by the internal agree-
ment of computations carried out with and without discretization by our 
program. 1 

"Combinatorial" geometry description is used for the continuous ap-
proach . The subroutines used in the program are gdapted from those de-
veloped for the shielding Monte Carlo code SAM-CE . Modifications include 
reduction from three to two dimensions with the implementation of some 
fundamental elementary figures, implementation of boundary conditions, 
speeding up of the initial learning process concerning neighbouring re-
gions, dynamic allocation, squeezirg of data. 

c- 0> 
The program can handle an infinite^array of planar elements with a 

largely arbitrary internal configuration. These elements can be either 
rectangles with periodicity or reflection boundary conditions, or hexa-
gons with the periodicity condition alone. 

3.2 The Scanning Algorithm 

The particle transport in the discrete domain is simulated by the 
scanning algorithm which determines the grid points visited in succes-
sion. Let the mesh-size h be the unit of^the length, xo, yo the integer 
coordinates of the starting point, Z the free-flight, x^, y^ the integer 
coordinates of the end point, t) the direction of motion between these 
two points. In the, case 0 t h e scanning procedure along the path 
from_(xo,yo) to (x^.y^) may be essentially described as follows. Denoting 
by [qj the integral part of q, the point visited at the n-th step is 

x = x 1 + l = xn + n n-1 u 

yn = yo +[ntge + 0.5] . 

s The scanning goes on until is reached, unless a grid point" 
' with va region index different from that of (xg,yQ) is encountered. In 

this\last case the control passes to the physical treatment subroutines 
to" determine the length of the free path in the new region, unless the el-

.v ement boundary is met. The y coordinate is the grid coordinate nearest 
Ns~tu'-ryo+(x -XQ) tg0 ; the grid points scanned are thus the nearest to the ^ 

segment linking (xo,yo) to (xf,yf)• 

C 1 
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Two types of direct transition from one grid point to another are 
thus possible: along one of the coordinate directions and along the dia-
gonal of a grid cell. Therefore (for 0«6^ir/4) , for x = x

n only one 
point is scanned: thus, paths with' the same projection on the x-axis 
need scanning of the same number of points. This invariance shows that 
the scanning time is proportional to the square root of the number of 
lattice points. 

0 
3.3 Distance Travelled and "Boundary Crossing 

(i 
Along with the discrete (integer)' coordinates, another pair of real 

coordinates in the continuum is associated to the moving particle, from 
birth on. The birth-place itself, (x^,y'), is first selected in the con-
tinuum and then the nearest grid point i-s determined. 'If a parti-
cle flight, starting from (x'^.y'o ) > ends in (x^,yp without region boun-
dary crossings, the distance travelled is the actual distance in the 
continuum and not the rounded one between the two nearest corresponding 
grid points (xg,y0) and (x^,y ). In this way also those displacements so 
small as to leave the integer coordinates unchanged are recorded; in other 
words, particle migration in homogeneous media is not biased from the 
discrete approximation. " 11 

The discretization' biases instead the detection of region boundary 
crossing: indeed, this event is detected by the scanning algorithm, 
which does not>\ generally know the actual continuous region boundaries. 
The crossing point is then conventionally assumed in the program atuthe 
middle of the last two scanned points. When applied«to fuel rods in en-
ergy ranges with very small mean free path, this approximate approach to 
crossing has sometimes shown itself to be inadequate: for instance, 
systematic errors of ̂ the order of some tenths per cent have been observed 
for fuel rods^in the epithermal resonance energy range. To overcome 
these errors,circular (or annular) regions can also be trebled in a spe-
cial way. The program memorises the true physical boundaries of these 
regions, which are still discretized but only for crossing detection. 
When an entry in one of these regions is detected by the scanning algo-
rithm, the true entry point is computed and the path 4is simulated in 
the continuum until the particle leaves this region. 

„ O 4 
This last approach is actually a "mixed" continuous-discrete mode 

of simulation and^' together with the introduction of the continuous co-
ordinates accompanying the discrete ones, is the main improvement toxan 
earlier algorithm^. 

3.4 Geometry-Routine Performance 
i 

To evaluate the efficiency of the discrete approach, the case of 
an 8x8 rod BWR element has been analyzed. To this end, a 40,000-history 
computation^for this element has been carried out in both discrete and 
combinatorial geometry. The domain has been discretized with 100,000 
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points, the mesh size being approximately 0.05 cm , while in the combi-
natorial description each rod has been embedded in a square of a chess-
board covering the element, in order to speed up boundary crossing iden-
tification. 

The time needed for the geometry simulation alone has been separate-
ly evaluated as follows. We assumed that in the discrete tracing the bulk 
of the geometric computation is the map scanning; since the scanning 
time is, as already said, proportional to the square root of the number 
of points, the proportionality constant has been obtained by carrying 
out the discrete computation twice, with different mesh sizes. A third 
computation, with a different mesh size, confirmed the validity of the 
hypothesis ou the tracing time. 

For the map with 100,000 points the geometric tracing has been found 
to require 5' out of the total running time, 42'. The time for the non-geo-
metric simulation thus being known, the time needed by the combinatorial-
geometry tracing has then been estimated as 47' out of 84*. The conclu-
sions for this reference computation are the following: 
i) the discrete geometry tracing is about, one order of magnitude faster 
than the combinatorial one; ' 
ii) the whole running time with a discrete approach is half the other. 

Similar conclusions hold also for cluster configurations of CANDU-
like heavy water reactors. The use of the "mixed" approach does not es-
sentially alter the above conclusions. 
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AN ANALYSIS OF EXCORK DETECTOR RESPONSE TO CORE WATER LEVEL 
USING MONTE CARLO TECHNIQUES 

R. D. Lucier, R. J. Cacciapouti 
Yankee Atomic Electric Company 

D. R. Harris, D. Napolitano 
Rensselaer Polytechnic Institute 

ABSTRACT 

In response to U. S. Nuclear Regulatory Commission 
requirements, each commercial reactor must have a method of 
indicating core water level. This paper presents a 
calculation of exoore neutron detector response using Monte 
Carlo techniques to determine core water level. An 
increase in excore detector response of a factor of about 3 
has been calculated for a half voided core. Using this 
approach the operating staff at a Nuclear Power Station can 
determine core water level in the event of an incident 
causing voids in the primary loop. 

INTRODUCTION 

In the interim since TMI, the U.S. NRC has made several rules to 
mitigate possible problems observed at TMI. One of the "Lessons 
Learned"^^ requirements is that every pressurized water reactor 
must have a method of determining reactor vessel water level. 
Boiling water reactors already have this capability incorporated in 
their design. 

This paper presents the methodology to determine reactor vessel 
water level in the Yankee Nuclear Power Station. The Yankee Nuclear 
Power Station is a 600 MWth Westinghouse pressurized water reactor. 
Yankee Rowe is located in the Northwest corner of Massachusetts. The 
plant was completed in July 1960 and achieved initial criticality in 
August 1960. 

ii 



'198 

MEASUREMENT METHODS 

There are at least three methods that can be used to measure 
water level. They are: 

1) Differential pressure cells (DP) 

2) Incore thermocouples 

3) Radiation measurement (neutron or gamma) 

The differential pressure cell system requires penetrations into 
the top and bottom of the vessel as well as into the outlet pipes. 
The DP cell system measures a differential pressure between two or 
three points within the vessel. This information is correlated to 
known temperature and pressures in the system to determine the void 
content of the water near the detector. This is further correlated 
to a water level in the vessel. The expected accuracy is + 20/6.(2) 

The DP cell system has been ruled out for Yankee Rowe. The main 
reason is that penetrations must be available in the bottom of the 
vessel. Unlike current Wesfcinghouse designs, there are no available 
penetrations in the bottom of the vessel and there is no access to 
this area. 

The second method, incore thermocouples, would measure local 
temperatures axially and radially throughout the core. These 
measurments would be coupled with pressure information to provide an 
indication of voiding. 

A thermocouple system, in the event of an accident similar to 
TMI, would undergo tremendous thermal shock and possible mechanical 
damage. Therefore, the reliability of this system is suspect. Also, 
for an application to Yankee Rowe, installation may require a 
redesign of the fuel elements. Furthermore, more penetrations may 
have to be made in the vessel head. 

The third method, radiation measurements, can be accomplished 
without any penetrations in the reactor vessel. As observed at 
TMI^)^ the excore neutron detectors measured a count rate of 3-10 
times more than the expected count rate. These readings have been 
correlated to the times of most probable core uncovery. 

Predicting the detector response to core water level can be done 
experimentally and through computation. Experimentally dropping the 
reactor vessel water level could be hazardous. Computationally 
determining the response can be very expensive and yield poor 
accuracy. However, for an application at Yankee Rowe, this appears 
to be the better method. There are currently three excore source 
range neutron detectors in place. Therefore, additional equipment is 
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not required. Consequently, greater emphasis can be placed on the 
computational methodology. 

All of these methods assume that there is a defined water level 
to measure. This, most probably, is not the case. If the reactor 
coolant pumps are not operating, there may be a transition region 
from water to steam. If the pumps are operating, there may be a 
circulating void with no defined water level. According to 
NUREG-0578, each pressurized water reactor should have a saturation 
meter on its control board by 1/1/80. This meter indicates pressure 
or temperature above or below the saturation point. This meter i3 
used as the primary indicator of voids in the system. If voids are 
present, the operating staff will consult the information provided to 
him from this project to obtain an approximate water level. 

CALCULATIONAL METHODOLOGY 

As i/his situation closely resembles a shielding problem, the two 
obvious calculational methods were discrete ordinates and Monte 
Carlo. Due to the.physical size of the problem and the desire to 
have three-dimensional effects included, Monte Carlo was chosen. A 
two- or three-dimensional discrete ordinates calculation of this 
magnitude was beyond the computer limit3 (CDC-CYBER175) and beyond 
resonable costs. 

To perform this calculation, ANDYMG3^ was chosen for two 
reasons.- First, ANDYMG3 was available in house. Secondly, it has 
the ability to treat neutrons and photons. 

ANDYMG3 is a three-dimensional multi group neutron-photon 
transport Monte Carlo code. It has a generalized geometry routine 
which handles any topologically sound combination of planes, 
cylinders, ellipsoids, con.ss, and spheres. Cross sections are read 
in Sn format with scattering pattern components up to P-3« A flux at 
a point estimator routine/was added to obtain the detector response. 
Importance splitting and^Russian roullette were als'o added to improve 
efficiency by splitting particles travelling towards the detector and 
killing particles travelling-,,towards the core. 

THE MONTE CARLO MODEL OF YANKEE ROWE 

The first step in modelling a system is to define all surfaces 
necessary to bound all regions. The second step is to define surface 
segments which are cut from the surfaces. The surface segments are 
used in defining regions. A region is a spatial domain in which 
macroscopic cross sections are uniform. 
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The Yankee Rowe geometry contains 32 surfaces: 18 concentric 
cylinders and 14 planes. From these surfaces, 64 surface segments 
are cut in order to describe 27 regions. The concentric cylinders 
are also used as splitting planes. 

A uniform s- rce with a fission spectrum was used within the 
core. 

For cross sections, the CASK^S) data set was used. CASK is a 
40 group (22 neutron, 18 gamma) coupled P-3 cross section library., 
CASK was chosen for two reasons. First, gamma-n reactions with 
deuterium mey be a significant source of neutrons after 
s h u t d o w n . S e c o n d l y , if gamma detectors are desired, the data 
necessary to calculate a response will have been calculated. 

ASSUMPTIONS 

In the calculation, four assumptions were made: 

1) The reactor core was at beginning of life 

2) The reactor was just scrammed 
9 

3) There was an instantaneous change in water level / 
4) A fission source spectrun existed in core. 

RESULTS^AND APPLICATION 

The detector response in the calculation is an average of four 
symnetrically positioned detectors. For ray "tracing purposes, a 
collision within 115 cm of the detector causes a response. This 
choice of 115 cm is arbitrary. 

The calculations to date are preliminary but are useful for 
discussion purposes. From Table 1, even though the deviation is 
high, an increase of factor of almost 3 in the response can be seen 
when the core is half voided. 

TABLE 1 

Case Response Deviation No. of Neutron Starters 

Full System .69370E-9 .27349E-9 5,000 

Top Half 
Voided 1.8008E-9 M J 9 2 E - 9 5,000 
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This type of information will be used in the event of an 
indication of voids in the primary system. For example, a typical 
source range detector count rate reads 70 cj>s at 6 hours after shut 
down. If at this time, voids are indicated in the system and the 
count rate increases to 190 cps, the operating staff will consult 
information provided by this project. The ratio of count rates in 
this example is 2.7, i.e., 190/70. This indicates a core that is 
almost half voided. With further calculations, a more complete and 
accurate set of data will be provided. 

C0NCLUST0NS 

Even though the results provided are not yet complete, the use 
of Monte Carlo techniques appear to be a reasonable approach to solve 
the water level indication problem in the core. 

As t'nis work is still preliminary, further effort must be 
concentrated on: 

1) A better model of the source both spatially and spectrally. 

2) A correlation of void fraction and water level height. 

3) Larger samples to improve statistics. 
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ABSTRACT 
" Adjoint Monte Carlo simulations can "be effec-

tively used for the estimation of doses m small 
targets when the sources are extended in large 
volumes or surfaces. The main features of two com-
puter codes for calculating doses at free points 
or m organs of an antropomorphic phantom are de-
scribed here. In the first program /REBEL-3/ natu-
ral gamma emitting sources are contained in the 
walls of a dwelling room, in the second one 
/POKER-CAMP/ the user can specify arbitrary gamma 
sources with different spacial distributions in 
the environment: in /or on the surface of/ the 
ground and in the air. 

! V 

INTRODUCTION 

The determination of the-»doses absorbed in various parts 
of the human body is one of the main tasks of health physics. 
Whether measurements or calciilations are carried out for such 
purposes, first a model of the human body, i.e. an antropo-
morphic phantom, has to be selected. For photon dose calcu-
lations W. Snyder and his co-workers defined a heterogeneous 
phantom in the 60 's1> 2. that was later slightly modified3 and 
we will refer to this 1974 version hereafter as the ORNL phan-
tom. 

The ORNL phantom has a relatively simple geometrical 
shape. The external surfaces and the boundaries of the more 
than 20 organs are defined by secondary order equations. Each 
organ is considered to be homogeneous although different ele-
mental compositions and densities are used for the skeleton, 
the lungs and the remainder of the phantom. 

There are many gamma and X-ray dose studies carried out 
using this phantom for the determination of organ doses from 
internal or external gamma or X-ray sources /e.g. Refs 2, 3, 
4, 5, 6, 7/ and all the calculations known by us are based 

ii 
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/ on direct Monte Carlo simulations. j 
For several years we have been facing the problem of the 

determination of organ doses and shielding factors /i.e. ra-
tios of organ doses to doses measured by point-lilce detectors/ 
-rin, 1" ̂ fields of different environmental sources. In these co'nf bions the targets are small /or even zero-volume 
poiri ,_L'h comparison with the spacially extended sources, 
therefore the adjoint Monte Carlo method was chosen which, is 
more efficient in such cases. 

Two types of geometries are discussed here. In the first 
case the point detector or the 0KN1 phantom is placed into a 

\ dwelling room /Fig. 1/. The room is a rectangular block with 
doorless and windowless homogeneous walls. The gamma emitters 
- the and the elements of the U/Ra/-series and the Th-
series - are assumed to be distributed in the walls uniformly. 

THE PHYSICAL MODELS 

o 

Pig. 1. The phantom in the room. 
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In the REBEL-3 /Radiation Emitted "by Building ELements 
- 3rd version/ code written for the calctilation of doses in 
dwellings the geometrical data of the room and the material 
of the walls are the main input data. Any number of neigh-
bouring rooms can also be specified. 

From these input data specific dose rates are calculated 
- (jiGy/h)/(Bq./kg) - so the doses can be predicted if the 
specific activities of the building materials are known. The 
ratios of the organ doses to the point detector dose can well 
be used in the interpretation of data measured in existing 
rooms. 

In the second problem the environment is modelled by 
three regions. The air and the ground regions are seliii-infin-
ite and a layer with arbitrary thickness can b'e placed onto 
the ground. This layer can be used for modelling grass, snow 
etc., or simply to take into account aftchange in the composi-
tion of the soil. The p?iantom stands on the soii region/s/ 
or a point detector is placed to any height in the air or 
even into the earth. 

The radioactive sources are assumed to be distributed 
•uniformly or exponentially in any of the three regions or 
plane sources can be placed on the bulk or layer surface or 
into the air /Pig. 2/. The natural radioactive sources have 
generally uniform spacial distribution, isotqpes of the fall-
out are deposited as plane sources on the ground surface and 
e.g. isotopes of the fall-out washed in by rains can have 
specific activities decreasing approximately exponentially 
by depth. 

In the POKER-CAMP /Point or Organ Kermas from Environ-
mental Radiations - Code by Adjoint Monte Carlo Processes/ 
code the following quantities are the most important input 
data: 

- layer thickness, 
- elemental compositions and densities, 
- source geometry /any combinations of the above men-
tioned possibilities/,-

- source energies and line intensities /for the most 
important isotopes and decay series there is a built 
in catalogue/, 

- specific activities. 
' The output of POKER-CAMP is the dose rate, first given 

separately for each source, then the total sum is also 
printed. 

Results obtained by this code can well be used e.g. for 
determination of doses in the vicinity of nuclear power 
stations. 
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Pig. 2. The source distribution possibilities in the POKER-CAMP code. 
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In both programs the doses absorbed in the whole body, 

in the testicles, ovaries, red /active/ or yellow marrow or 
in the lungs of the OKNX phantom; or in the air at the de-
tector site can be calculated. 

The fluxes and energy spectra arejj ail!so determined, if 
needed. These quantities have special importance when the 
calculated values are compared with measured data. 

i 
THE ADJOINT MONTE CARLO METHOD 

Several types of derivation of the adjoint transport 
equations are known from the literature therefore only a 
brief summary is given here. The formalism applied is very 
similar to that used by D.C. Irving9, so those who are inter-
ested m details should see his original review. _To simplify 
the notation the symbol E is,,used instead of (E,co) : the 
energy and the unit vector of the direction of motion. 

_ let us denote the density of photons entering a collision 
at r with incoming velocity E by E), and the source den-
sity by S(r, E) then the integral equation for the collision 
density is 1 , 

y ( F ; E ) = $ c . ( F , E ) + jJdEPclF ' T (F \ F I E ) C(E E I?') y (F'.E*) 

where 

S c ( F J E 7 = j d F ' T ( r \ r |E) S C F ' J ) , 
•is the first collision source. 

In the transport kernel: 

T ( F > > F | E ) = A ( F J E ) e x J ~ J E ) d s ) j ^ j M f 

;i(r, E) is the total linear attenuation coefficient of the 
material at r for photon energies E. " 

The collision kernel is y , < 

ir} / U ( F j E > ) ' „ • 

where'/us(r, E* ' E ) is the differential;linear scattering „ 
coefficient. In our calculations only one type of scattering 
effects: the Compton scattering, as described by the Klein-
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Nishina formula, is taken into account'10 where the angle of 
scattering is determined, "by the energy change, i.e. 

' c(r,E| p)~ C E (E', E |p) CT [W ' UJ - g(E',E)] )/ 
' it 

and 
a & L 

where £ = m c2 = 0.511 MeV. e 
Physical' quantities ofvinterest CA) can "be calculated as 

functionals of the collision density: 
A = | { d F d E P Y ( r ; E ) y ( r 3 E ) J 

where Py is the pay-off function. 
Injour case, when we calculate the flux at a point: 

A f (r ), then by taking into account the 

s/S' 0 ' v. , _ „ t » 

relation, 
ri 1 ' 

// P y (F,E )= A(FiE-J cf(F-ro). 

Por the derivation of the adjoint equations let us define 
a new function -^r, E) to be the value of or a particle just 
entering a collision at<r with energy"1 E. The value is a sum of 
two terms': the immediate pay-off and the., pay-off expected to 
result from all future collisions: 

< n 
^ ( F ) E ) = P r ( F J E ) ^ j J d r d r ) C ( E J E , | F ) T ( F ) F M r j Y n F ^ E , ) . (1) 

Now the physical quantity rcan be determined as: 
^ j j d r d E y ^ E ) 5 c ( F 3 E ) . 

A more comfortable integral-equation can be obtained by 
the following transformations: 

P Y { F ) E ) = / i ( F , E ) P Y ( r J - E ) 

and: 
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U 

t( r . r i F l - c e . r ' l F ) - ^ ^ - ' : 
•s 

By these new quantities: 
^^(F>E)-PY(F,H)^•j^c^rcl^,C(E>EMF)TCF^F|E')if•(F'>E,) (2) 

..(3? 
1 

For the,, calculation of the flux' at, a point: 
P Y = <F(F-FO). O ( 4 ) 

Equations like (l) or (2) are generally /"but not strictly 
correctly/ called as adjoint equations and their solutions by 
Monte Carlo method are called adjoint Monte Carlo procedures. 

In our Monteh Carlo simulations pseudo-photons start from 
the point r1= r Jfwith random direction and with an energy 

[E-t; E„], where ET is the low energy threshold of the cal-culation and Em is the maximum energy of interest /the maximum jf' source energy/. Thus the pseudo-photons start with a weight 
of 4?r (EM - Et) . 

.In the consequent steps the«new collision 
sites /r/ are chosen from the 

T(F^ F \ E1) 

(5) 

JCIFTCF^FIE'J 

probability density function and new energies /E/ from 

C E ( E , E M F ) 
JdLECgC^E'lF) 

The_new direction is always selected with the condition 
Cl><J= g(E, E') . The statistical weight is multiplied by 

j d F T ( r \ F | r ) 

and then by 
J c I E C ^ e ' I F ) , (6) 

after the above mentioned steps, respectively. 
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Biasing of the adjoint collision kernel 
The simulation procedure mentioned above is theoretically 

correct but the denominator of formula (5) becomes infinite 
if the energy of the pseudo-photon before the collision /E V 
exceeds 1/2£ 0.255 MeV/. For such cases we developed a 
biasing technique'1'1 , where the collision kernel 

C E ( E ) E M F ) = ~ C E ( E J E , | F ) 

replaces the original one. Now, the 
JcIECeCE, E'| F) 

normalizing factor is finite for all E'-s. 
For the selection of the new energy from CE a quite simple and fast algorithm is developed^ and if the statistical weight 

is multiplied by E/E' after each collision, the final esti-
mation will be unbiased. 

SCORING 
1 'u 

In the subsequent steps of the Monte Carlo simulation 
of Eq. (2) a Neumann series of y is generated: 

A A 

Y ( F , E ) = Y C > ~ E ) + Z Y L ( M ) = +• V ( F , E ) 

where the first term is 

Y 0 ) = P y ( F ) E ) . 

Accordingly, the physical quantity (3) - the flux at a 
point in our case - is also a sum of two terms: 

1 = A 0 + A' J 

where the source contribution is 
^ [ [ d F o L E P Y ( M J / R V R , E T ) 5 c ( F 1 - E ) , ( 7 ) 

and the contribution of the scattered particles is 

Q 
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Source contribution 
In the case of uniform monoenergetic source distributions: 

F CT(E-EO) Lf F e Vj, 

L 0 L F I- ̂  V5 , 

where vg is the source volume, Eq.(7) leads to: 
; \ 0 = 5 0 [ D O J ^ - { D F ' / T ' 1 ^ , E0) T { r ) ^ | E 0 , U 3 ) ; 

i.e. if an initial direction CJ0 is selected from the uniform distribution, then the score is: 

L ( F , E 0 , O 0 ) « S Q F D F ,
/ R U F J E 0 ) T ( F 0 ,R ' ' | E 0 ; U J 0 ) ; " ( 9 ) 

vs 

S0 times the expected value of the track length in the source region. 
If the source density is exponentially decreasing along, 

say, the z direction: 

then"in the source region /a have to be replaced by /u-oo2/£ and S0 by SQexp (-z0/£), where wzis the z direction component of the oo0 vector and z0 is the z coordinate where the path 
enters the source region, and the path length type score (9) 
holds. 

Similarly, it can be derived that for plane sources the 
expected path length is replaced̂ "by the probability that the 
pseudo-particle crosses the _sourbe surface, divided by the 
cosine of the angle between Hand the surface normal. 

Contribution of scattered particles 
Since in the adjoint simulation Y^r, E) is the collision 

density of the pseudo-photons just leaving a collision at r 
with energy and direction E, we can define its counterpart 
^(r, E) as the collision_density of the pseudo-photons 
entering a collision at r with energy and direction E: 

X f c E H d F ' T ( F ,
1 F | E ) Y t F , , E ) (10) 

From Eqs (2), (8) and (10): 
o 
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A, = jfdFclEi(F)E')l^r c E (EO ,E]F) jdr L(f,e0izs') , (11) 
where L(r, Eo,£o1)is the track length type quantity defined 
"by Eq. (9) for uniform source distribution and has to "be 
modified for the other two source types as described at the 
source contribution. The directions 53'has to be chosen in 
accordance to the 

u J c o ^ g C E ^ E ) 

relation. This condition determines the angle of scattering 
only, therefore L has to be integrated over all azimuths (T). 
This integrate on for r can be carried out by an inner Monte 
Carlo estimation: a single azimuth is chosen randomly from 
the uniform distribution on (0,2*r), 

Briefly summarizing the evaluation of (ll): the score 
is calculated before each pseudo-collision event by a product 
of a quantity /Ce/ proportional to the probability that the pseudo-particle's energy will be scattered to E0 and a track length type quantity /L/ belonging to a such scattered 
pseudo-photon. 

SPECIAL TECHNIQUES USED IN THE CODES 

Calculation of the track length type quantities 
The integrals describing the expected values of the 

track length type quantities of the scores are evaluable 
analytically but, in practice, if a path crosses the inhomo— 
geneous phantom, then because of the necessary determination 
of the boundaries where the attenuation coefficient is 
changing /i.e. the determination of crossing points of the 
path with the second order surfaces separating the phantom 
regions/, the analytical calculation becomes extremely com-
plicated and time consuming. 

In view of this, the expected path scores are used if 
the point detectors are considered. If the phantom is standing 
in the room, then, in the REBE1-3 code, actual lengths of 
selected pathsreplace the expected values. /In other words, 
the expected paths are determined by an internal Monte Carlo 
procedure - consisting of just a single sampling/. 

In the POKER-CAMP code the type of estimation is selected 
in every case /Pig. 3/. If the actual path does not cross the 
phantom, then the expected values are calculated analytically. 
For paths crossing the phantom expected values are calculated 



SCORING: 

by expected path 

expected 
air * P^h 

V / X / / / / / A ^ 2 

bulk 

expected path 
J (if any) 

random selection 
of going through 

expected path 

to M 
CO 

Pig. 3. A sketch of the track length type score calculations. 
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for the path, "before the phantom /if there is such a section/, 
then a random selection decides whether the path continues 
over the phantom,and if so, the calculation goes on again by 
analytical determination of the expected values. 

Transport Inside the Phantom 
The transport within the phantom is always simulated by 

the maximum cross secbion technique'12 , i.e. potential sites 
are selected by using the maximum attenuation coefficient 
(/X-nicix).,in our case the coefficient of the bone. Then the ratio 
p =/Upot /utmx. is calculated //â ox denotes the attenuation 
coefficient at the selected potential site/ and with proba-
bility of p the site is regarded as a real collision point, 
while with the probability 1-p a new path, starting from the 
previous potential site, is selected. 

Calculations for More than One Sources 
In the REBE1-3 code there are three types of sources: 

the W K /with a single gamma line/, the U/Ra/ and the Th 
series /their gammas are represented by 24 and 20 lines, 
respectively/, while in the POKER-CAMP the user can specify 
maximum 10 sources with not more than 250 lines altogether. 

The fluxes are calculated separately for the different 
sources and also for the source and collided parts, but the 
random walk of the pseiido-particles is simulated commonly, 
i.e. the scores are calculated to all the lines before each 
collision. 

Dose Calculations 
A.s in most low energy photon dose calculations only 

interactions of the photons are followed, i.e. the energies 
of the secondary charged particles are assumed to be deposited 
at the sites of their creation. In other words it means that 
we approximate the absorbed dose by the kerma. This approxi-
mation is quite reasonable for energies below about 3 MeV. 

The connection between the fluence rate and dose rate 
is given by ^ 

therefore the initial statistical weight of the pseudo-par-
ticles is multiplied by 
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A K C E ) 

P \ 
for the dose rate calculation. 

We have only one problematic point with the ORNL phantom: 
that relating to the "bone marrow, since there is no geomet-
rically separated marrow region in the phantom. The marrow 
dose in the original Monte Carlo calculations with this phan-
tom was estimated simply "by talcing the weight proportional 
fraction of the "bone doses. Now, in our adjoint model this 
method has "been modified in such a way that while the bone is 
still considered to be a homogeneous medium during the random 
walk simulation of the pseudo-particles, at the fluence to 
kerma conversions the mass energy transfer coefficients 
C/^K/SO are calculated for the real bone marrow material 
- taken after the "reference man" of ICRP13 . 

In the phantom dose calculations the physical target 
organ is assumed to be homogeneous, i.e. in the adjoint simu-
lation the pseudo-photons start from all points with equal 
probability. Ir 

The skeleton of the phantom is divided into 13 segments 
/bones and bone parts/ having different marrow contents, and 
the distribution of the marrow tissues is uniform within each 
segment. Thus, in the case of the marrow dose calculation 
first a bone segment is selected /with 'a probability propor-
tional to its marrow content/, and then the starting point 
is chosen from its volume. 

The whole body of the phantom is inhomogeneous, the den-
sities of the three types of tissues are different from each 
other. In principle, starting points should be selected with 
higher probabilities from the denser part but for sake of 
easy computation uniform random selection is carried out for 
the whole phantom volume but the initial statistical weight 
is multiplied by the density of the region where the selected 
point lies. 

For the actual selection direct samplings /inverting 
the c.d.f./ or rejection techniques are used. 

- x -
Finally we should like to mention here that the REBEL-3 

code is deposited at the Radiation Shielding Information 
Center /ORNIi/ and several representative results calculated 
by it are published'1̂ '15". The development of the POKER-CAMP 
code is just in the final stage, full documentation of it 
together with the publication of the first results may be 
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expected in the near future. 
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CALCULATIONAL PROBLEM FOR DEEP PENETRATION OF NEUTRONS 
THROUGH A ONE-BEND SODIUM DUCT 

Enrico Sartori* 
Nuclear Energy Agency Data Bank, Saclay 

Gif sur Yvette, France 

ABSTRACT 

This problem features a two-dimensional geometry 
representing a sodium duct surrounded by concrete that 
can easily be modeled with both Monte Carlo and two-
dimensional S^ codes. The neutron source is placed on 
an external duct surface, has a uniform spectrum over the 
energy range of 5-2 MeV and is forward peaked with a cosine 
distribution. The average distance covered by a neutron 
leaving the duct surface at the exit is about 360 cm. 

The importance sampling method of the Monte Carlo 
code TRIPOLI-2 is used. Fluxes and detector responses 
are tabulated for several surfaces defined along the neutron 
path in the sodium. A population of approximately 5000 
neutrons undergoes about one million collisions giving 
flux and current at the duct exit i<rith a standard error 
of 7.5 per cent. 

INTRODUCTION 

An important part of the activity of computer code centers is the 
implementation, verification and packaging of computer programs. 
Verification ensures that a program runs for selected problems in the 
same way as in the originating author's computer installation. 

A further validation of a program can be made by comparison with 
other programs for a set of standard problems. Such benchmark tests 
and standard problem exercises are of particular interest to the N.E.A. 
Committees on Safety of Nuclear Installations (CSNI) and Reactor Physics 

/ > 
*Staff member of the IAEA, Vienna, on detachmen^'at the NEA Data Bank. 
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(NEACRP), and can also help the NEA Data Bank to improve the computer 
program service. Computer programs and standard problems suitable for 
such comparative calculations are selected after consultation with 
members of these committees, with preference given to the benchmark 
problem collection of the ANS Standards Committee. 

Results are presented here for the program TRIP0LI-2, applied to 
a two-dimensional geometry shielding problem. Other Monte Carlo codes, 
and eventually an S^ code, will also be run on the same problem. 

DESCRIPTION OF THE PROBLEM 

Geometry and Compositions 

The geometry of the problem is depicted in Fig. 1. It is character-
ized by a two-dimensional one-bend sodium duct, 80 cm wide, surrounded by 
concrete walls, 40 cm thick. The length of the short leg is 160 cm, the 
I length of che long leg 250 cm. The external boundary conditions are of 
no incoming flux. An infinite third dimension is simulated by prescribing 
reflective boundary conditions at two surfaces, normal to the third 
direction, two meters distance from each other. The densities and components 
of the materials are shown in Table I. 

Source-Detectors 

A boundary neutron source is placed at the external sodium surface 
of the short leg. Its surface density is of 1 neutron/cm2 sec. The 
spectrum is uniform over the energy range of 5-2 MeV. Its angular 
distribution is an inwards directed cosine, normal to the boundary surface 
(Fig. 1.). 

Table X . Material Compositions ( 2 9 3 . 6 C K ) 

Material Density 
(g/cm3) Component Mass percentage 

Sodium 0.9700 2 3Na 100. 

Concrete 2.380 'Si 27.518 
' 160 53.949 

" JH 0.722 
<7 c Ca 17.810 

G , 10B 0.00153 

A 
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The detectors' characteristics are given in Table VI. Microscopic 
cross-section data are used. 5 8Ni and 1 0 3Rh are used to detect fast 
neutrons down to 1 MeV and 50 keV, respectively. Thermal and epithermal 
neutrons are detected by means of the " M n and 55Mn/Cd detectors. 

CALCULATIONAL METHODS AND RESULTS 

Cross-Section Data 

Group cross-section data,1 based on the UKNDL evaluation, are used. 
The 269 groups have an equal lethargy'width of 0.0575 from 15 MeV to 1 
keV, with the exception of the intervkl of 32-20 keV, where half width 
is used. From 1 keV to thermal this width is doubled. A constant 
weighting was used when generating the group cross sections. Neutron 
slowing down and the cross-section anisotropy are treated in a continuous 
way. In the simulation, individual target nuclei are chosen with which 
the neutron will collide. 

Biasing 

In deep penetration problems, variance reduction techniques have to 
be used if realistic computing times are to be achieved. 

The importance sampling method1'2 of TRIPOLI-2 is used. 

The biased Monte Carlo gar.ie consist of1 the following: 
A continuous weighting function (inversely proportional to 
the importance) is defined, taking into account the geometry, 
the materials, and the source-detector configuration and 
characteristics of the problem. || 
The neutron population emitted at the source is transported 
together with its changing weight from the source to the 
detector region. Its size is kept under control in order to 
achieve effectiveness. 
The collision process is biased in such a way as to give 
birth to uncorrelated neutron histories. " 0 

The weighting function is of the following form: 

n(?,fi,E)=n1(?)-n2(fi)-n3(E) 

where 

rr tt /•"*" \ -kfi ' (r-r ). n1(r)=no(ro)e 

O 
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Q.o is a unit vector specifying the preferred direction in which one wants 
the neutrons to move; k is the logarithmic slope of the spatial weights 
in direction Q. . o 

n 3(E)=f-E - a <• 

where f is a normalizing factor and a is an energy dependent function. 
H£(f2) is selected by the program in such a way that the weight of the 

neutrons before each collision is independent of the direction and point 
of departure of the neutron. 

-y 

The parameters used for JIj (r) and 11̂  (E) are given in Tables II and 
III. [The isoweight contour lines of Ili(r) are shown together with the 
preferred directions in Fig. 2. These parameters were obtained by 
trial and error on a small sample of the neutron population. 

The following considerations were made during the parameter tuning 
process: 

- The number of collisions in the concrete should be limited 
as these will lead to insignificant contributions to the 
final tallies; the neutron population should migrate from the 
source to the detectors in the sodium around the bend. 

- In order to have good statistics, a sufficient number of 
collisions should occur in the target area. In this specific 
problem the chosen target area is the duct outlet and the 
last 150 cm of the duct. 

- The construction of a continuous weighting function reduces the 
need for splitting and russian roulette to a minimum, thus 
avoiding correlated and useless histories which lead to higher 
variance and lower efficiency. 

By applying the exponential transform a biased total cross section 
is utilized( 

E* = Z -ka-n^ t t 
where ft is the flight direction of the neutron. 

Neutrons traveling in the preferred direction see a smaller cross 
section than those moving in the opposite direction. Successive collisions 
thus make the neutron population migrate toward regions of higher importance. 
The higher k compared to E t the faster the population grows during the 
migration and slowing down process. 113(E), however, is chosen in such a 
way as to cancel this population increase. In fact, higher importance is 
assigned to fast neutrons when compared to intermediate ,and epithermal 
neutrons. " 

" The exponential transform causes more neutrons to be transported 
in the preferred than in the opposite direction. The biasing of the 
collision1 forces neutrons to be transported independently of their 
direction after collision, thus increasing the independency of the 
histories and decreasing the variance. During the simulation the population 
size is controlled inside regrouped energy intervals called weighting 
groups. 
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An appropriate tuning of (r) and n3(E) minimizes this control 
thus avoiding russian roulette and splitting (see Table III). 

Results 

The calculation was carrifed out for ten batches, each of a popula-
tion of about 500 neutrons which undergoes on the average 105 collisions. 
The current at the duct outlet, for neutrons with energies from 5 MeV to 
thermal is 5.8 10 5 ± 7.5% n/cm2 sec and the flux 9.7 10 5 ± 7.6% n/cm2 sec. 

The 269-group spectrum, averaged over the last mesh (16cm) , and the 
standard errors in per cent" for each energy decade are shown in Fig. 3. 

The surface flux, obtained by summing up the weights of the neutrons 
hitting the surface, the average mesh flux calculated by the track length 
estimator, and the absorption at different surfaces^ parallel either to the 
source or to the duct outlet surface are given in Table IV. Table V shows 
the detector responses at the same surfaces. In order to demonstrate 
the effect of tuning of the importance parameters, the responses over 
the whole duct length are presented. The chosen target area, however, 
is delimited by the last 150 cm of the long leg. The variance of the () 
tallies is less than 10 per cent in this area. Whereas the fast neutron 
tallies have a low variance over the whole length of the duct, the 
corresponding epithermal and thermal variance decreases as the duct outlet 
is approached. 

The computing time necessary for this calculation was 28 minutes on 
an IBM 3033. About 20 per cent of this time was spent in the thermal, 
group. 

CONCLUSION 
o 

TRIPOLI-2 is a flexible tool for solving deep penetration problems 
by the Monte Carlo method. With its importance sampling technique, 
complicated shielding problems can be calculated with efficiency. 
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Table II. Space dependent weighting function 

Region k 
(cm-1) 

direction of unit vectors 
(relative to x-axis) 

(degrees) 
geometry 

Sodium 1 0.044 
position dependent 

focus on cylinder axis 
(140, 140) 

cylindrical 

Sodium 2 0.044 0. planar 
Concrete 1 0.0792 20. planar 
Concrete 2 0.0792 0. planar 
Concrete 3 0.0792 304. planar 
Concrete 4 0.088 60. planar 
Concrete 5 0.0812 55. planar 
Concrete 6 0.0924 152. planar 

Table III. Weighting groups and energy dependent 
weighting function 7(3(e) = {• 

Upper Energy limit ^ imposed 
(MeV) ) 3 ' neutron population 

14.8 1.0 1.00 500 
4.217 1.0 3.41 500 
1.0 0.25 14.4 1000 
0.1995 0.25 27.9 750 
4.467E-2 0.25 40.7 500 
l.OE-2 0.1 59.2 500 
1.995E-3 0.05 69.8 500 
4.467E-4 0.05 75.3 500 
1.0E-4 0.05 81.0 500 
1.995E-5 -0.1 87.9 500 
3.990E-7 -0.1 83.7 500 
8.966E-8 0.0 57.3 500 



Table IV, Neutron flux and absorbtion as a function of position 

Location*^ 
(cm) 

9 
(n/sec 10-24) 

standard 
error 

% 
surface flux 
(n/cm2 sec) 

standard 
error 

% 

mesh averaged 
flux 

(n/cm2 sec) 

standard 
error 

% 

+28 3.7E-2 61 2.4 18 2.5 7 

+51 3.7E-2 35 1.6 11 2.0 12 

+74 5.2E-2 31 1.1 10 1.4 10 

+97 3.2E-2 29 0.70 12 0.90 10 

+120 2.3E-2 30 0.40 12 0.56 11 

+140 9.3E-3 30 0.28 17 0.29 12 

-177 5.1E-3 15 6.3E-2 10 8.8E-2 11 

-154 2.7E-3 12 3.1E-2 9 4.7E-2 10 

-131 1.5E-3 9 1.7E-2 8 2.3E-2 9 

-108 8.2E-4 8 8.5E-3 7 1.2E-2 8 

-85 4.4E-4 11 4.2E-3 10 6.IE-3 9 

-62 2.5E-4 7 2.1E-3 7 3.1E-3 9 

-39 1.2E-4 8 9.6E-4 7 1.5E-3 8 

-16 4.6E-5 8 3.7E-4 7 6.3E-4 7 

-0 1.IE-5 9 9.8E-5 7 2.4E-4 8 

4 + distance from the inlet 
- distance from the outlet 



Table V. Detector responses 
cf> /n/sec 10-247 

location*) 
(cm) 

detector 
1 

standard 
error detector 

2 

standard 
error detector 

3 
s tandard 
error 

% 

detector 
4 

standard 
error 

% 

+28 1.1 58 0.944 3.5 0.68 67 0.139 2.3 
+51 1.2 32 0.403 2.8 0.58 37 4.78E-2 2.0 
+74 1.9 31 0.190 8.1 0.86 44 1.76E-2 4.4 
+97 1.6 24 7.84E-2 3.8 0.96 35 6.94E-3 5.4 

+120 0.71 28 3.23E-2 3.7 0.27 19 2.43E-3 4.6 
+140 0.38 28 1 Al E-2 A Q 4'j ? .98E-4 
-177 0.17 13 1.70E-3 4.7 6.8E-2 11 10E-5 4.8 
-154 8.5E-2 9 6.22E-4 3.0 3.0E-2 14 2.70E-5 4.9 
-131 4.8E-2 8 2.17E-4 4.0 1.6E-2 30 8.59E-6 6.1 
-108 2.7E-2 10 8.00E-5 5.5 1.1E-2 15 2.86E-6 4.3 
-85 1.4E-2 10 2.97E-5 5.4 4.8E-3 11 1.03E-6 4.3 
-62 7.6E-3 8 1.10E-5 6.0 2.4E-3 10 3.70E-7 4.8 
-39 3.5E-3 8 4.07E-6 4.7 1.1E-3 9 1.35E-7 6.9 
-16 1.4E-3 8 1.38E-6 6.2 4.5E-4 10 4.92E-8 9.0 
-0 3.5E-4 8 4.13E-7 5.6 1.2E-4 7 1.80E-8 7.7 

*+ distance from the inlet - distance from the outlet 
Table VI . Detector Characteristics 

Detector identification no. Characteristics 
1 
2 
3 
4 

55Mn(n,^) UKNDL 70 /thickness=0/er'th=13.4 barns/ 
iC^RhC^n1) UKNDL 70; equivalent fission flux /s-f=0.720 barns/ 
Mn/Cd(n, y) UKNDL 70 /thickness=0/ resonance integral 1=15.44 

(n,p) Perkin data /ef=0.1119 barns/ 
barns 
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Pig. 3. 269 group spectrum m the sodium duct averaged over the 
interval 0 - 16cm from the outlet. 
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THE STATUS OF MONTE CARLO AT LOS ALAMOS 

William L. Thompson and Edraond D. Cashwell 
Group X-6 

Monte Carlo, Applications, and Transport Data Group 
Theoretical Applications Division 
Los Alamos Scientific Laboratory 
Los Alamos, New Mexico 87545 

ABSTRACT 

At Los Alamos the early work of Fermi, von Neumann, 
and Ulam has been developed and supplemented by many 
followers, notably Cashwell and Everett, and the main 
product today is the continuous-energy, general-purpose, 
generalized-geometry, time-dependent, coupled 
neutron-photon transport code called MCNP. The Los Alamos 
Monte Carlo research and development effort Is concentrated 
in Group X-6. 

MCNP treats an arbitrary three-dimensional 
configuration of arbitrary materials in geometric cells 
bounded by first- and second-degree surfaces and some 
fourth-degree surfaces (elliptical tori). MCNP has its own 
cross-section libraries plus it allows two thermal neutron 
models: the free-gas and S(u,$) treatments. There is a 
wide variety of standard sources plus a very easy-to-use 
and extensive tally structure. MCNP is quite rich in 
variance-reduction schemes, including three different 
techniques for estimating flux at a point. Other featc-es 
include being able to calculate eigenvalues for both sub-
and super-critical systems, an elaborate plotter for 
checking geometry setups, calculation of cell volumes and 
surface areas, and good documentation. \ 

\ 
Monte Carlo has evolved into perhaps the main method 

for radiation transport calculations at Los Alamos. MCNP 
is used in every technical division at the Laboratory by 
over 130 users about 600 times a month accounting for 
nearly 200 hours of CDC-7600 time. However, MCNP is just 
the parent code. In addition to MCNP, major variants 
supported by Group X-6 include a multigroup forward and 
adjoint code, a code allowing geometrical perturbations, 
and a code that allows cell boundaries to change as a 
function of time. In addition, Group X-6 is involved in 
electron and high-energy nucleon/meson transport by Monte 
Carlo. 
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INTRODUCTION 

We are happy to report that Monte Carlo is alive and well at Los 
Alamos. Our main code, MCNP,1 is used by about 130 users in virtually 
every technical division at the Laboratory over 600 times a month, 
accounting for nearly 200 hours of CDC-7600 computer time. Monte Carlo, 
and in particular MCNP, is possibly the main method for radiation transport 
calculations at Los Alamos today. MCNP is also actively supported by Group 
X-6 on the Magnetic Fusion Energy computer network where it is used by a 
number of people throughout the country. Although Monte Carlo has 
widespread use at Los Alamos, the main research, code development and 
maintenance, user support, documentation, and nonroutine applications are 
concentrated in Group X-6 in the Theoretical Applications Division 
(X-Division). The purpose of this paper is to tell you a little about X-6 
and its codes, with emphasis on MCNP. ' 

GROUP X-6 

Group X-6, presently consisting of 22 members, has as its title "Monte 
Carlo, Applications, and Transport Data." From this title, it is clear we 
have three areas of concern: (1) Monte Carlo methods and code 
development, (2) applications requiring particle transport by Morite Carlo, 
and (3) cross-section data. A strength of the group lies in the 
interaction of these three areas and their support of one another. To a 
very large extent, all the people in X-6 are conversant in each of these 
areas and appreciate the requirements and problems of each. The magnitude 
of the Monte Carlo expertise that resides In X-6 is likely unrivaled. 

Activities in each of these areas will be discussed, but to help 
clarify the role of Group X-6 relative to some other activities at Los 
Alamos that you may be familiar with, the role of two groups from the 
Theoretical Division will be briefly mentioned. Group T-l, headed by 
D. J. Dudziak, is where the Laboratory's S n expertise is concentrated. 
They are responsible for codes like ONETRAN2 and TRIDENT.3 Like X-6 they 
also are involved in applications but specialize in S n and occasionally use 
the X-61'Monte Carlo codes as we in X-6 occasionally use their S n codes. 
Basically though, we in X-6 solve transport problems randomly and T-l 
solves transport problems discretely. Group T-2, headed by P. G. Young, is 
the Laboratory's nuclear data group. Among other activities, T-2 evaluates 
cross sections and processes data sets with their codes such as NJOY;^ X-6 
does not evaluate cross sections but extensively tests them and then makes 

- them available in proper form for direct use by many of the major transport 
codes at LASL. 

Monte Carlo Methods and Code Development 

X-6 responds to requests from throughout the Laboratory for new 
methods and techniques to help solve individual problems. The requests are 

' 1 
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frequently very specific and limited in scope (such as how to sample from 
some exotic distribution), but the requests may lead to a new feature that 
becomes a permanent part of our codes. Furthermore, X-6 originates many 
new methods and code improvements based on its knowledge of Monte Carlo and 
applications. 

Some of the recent accomplishments include an S(u,£) thermal 
treatment, a more general analytical volume and surface-area calculator,^ a 
very general tally structure, a once-more-collided point detector routine 
with a bounded variance, the addition of the union and complement operators 
for geometry specification, new standard sources with improved directional 
biasing into a fixed cone or in u continuous manner by means of an 
exponential function, a way t<? deterrainistically transport particles during 
their random walk (DXTRAN), many more user-oriented features and 
safeguards, plus a long list of miscellaneous items. A major 
accomplishment has been in the area of code documentation with the 
publishing of the 411-page MCNP manual^ that contains over a hundred pages 
each of theory, cookbook examples, and details of the coding. 

i' 
In the area of Monte Carlo theory, the theory of errors is a 

significant topic in X-6,6~9 and a major work on relativistic effects has 
just been published 

A new area of code development and physics Eor X-6 is the transport of 
high-energy (GeV range) protons, pions, mesons and the complete cascade of 
secondary particles down to the thermal-energy range. Applications will 
include energy deposition calculations in tissue in conjunction with the 
Los Alamos Meson Physics Facility research in cancer treatment plus 
shielding and materials damage studies. Our work is based^on a 
modification to the HETC11 code with an interface to MCNP. 

In addition to the parent code MCNP, other X-6 codes include MCMG^ 
which is a multigroup version of MCNP that also has an adjoint capability, 
MCNPPER that allows geometrical perturbations for calculating derivative 
information, MCGE which is a coupled electron-photon code that addresses 
the complete electron-photon cascade in the energy range from 20 MeV to 100 
keV, a code that allows geometrical boundaries to change as a function of 
time, and numerous special versions of MCNP with which we evaluate new 
techniques and solve specialized problems. 

About 40% of our effort is spent in this area. 

Applications 

X-6 serves two roles in the area of applications: (1) we work closely 
with MCNP users to help them with their applications, and (2) we do many 
applications ourselves that require our expertise and experience. Both 
these roles are valuable because they give us feedback on the use of MCNP 
and how best to improve It, and they broaden our own experience with a 
variety of applications. 



234 

Many applications are related to data verification and will be 
mentioned in that context. 

An ongoing responsibility that we have for the Laboratory is 
calculating the biological dose from the intrinsic radiation (from the 
various natural decay modes of plutoniura and uranium isotopes) emitted 
from the nuclear material used in nuclear weapons. This is of concern when 
military personnel are required to be in the proximity of the weapons for 
extended periods of time as is the case on a submarine. We also perform 
many calculations related to the vulnerability and effects of nuclear 
weapons. 

X-6 has done extensive neutronics calculations for magnetic fusion 
reactor designs such as the Elmo Bumpy Torus (EBT),13 Linus,^ Reversed 
Field Pinch Reactor (RFPR.)^ an<j Fast-Liner Reactor1^ concepts. 
Furthermore, studies were made on Tokamak designs to evaluate the effect of 
geometrical, simplifications in calculationsFigure 1 is a Tokamak 
reactor geometry set up for MCNP; the surfaces marked by^fsterisks are 
tori. We would like to Increase our role in the magnetic''fusion area. 

0 
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The shielding designs for new facilities to be built at Los Alamos are 
frequently done by X-6. Recent examples include shielding from 
bremsstrahlung for a new electron accelerator to be built by the Physics 
Division and for the Antares Laser Fusion facility being built by the Laser 
Division. The Monte Carlo bulk-shielding calculations were done for 
Antares during the early design of the facility.^^ The basic building has 
been constructed, and we are now doing a radiation mapping inside the 
Target Building to ascertain material and instrumentation damage plus 
activation analysis of the target-chamber components. Figure 2 is the MCNP 
representation of the Antares target-insertion mechanism. 

An activation analysis code, using the LASL GAMMON l i b r a r y , ± s 
coupled with MCNP and calculates gas production (H,D,T, and He), material 
activation, and photon sources. The photon sources can be used in MCNP to 
calculate dose rates at points of interest. 

Many interesting calculations have been done for the Health Division 
that involve instrument design20'21 and radiation safety. One project 
involved the design of the gloveboxes at the new Plutonium Facility at Los 
Alamos, and another project just completed was a criticality study for the 
Slagging Pyrolysis incinerator Facility (SPI) to be built at Idaho Falls.22 

Figure 2. Antares Target-Insertion Mechanism. 

<j 
O 
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A recent series of calculations was completed as part of the review of 
the design of the Fusion Material Irradiation Test Facility (FMIT) to be 
built at Hanford. 

X-6 works closely with the Nuclear Safeguards (assay and 
accountability) groups at Los Alamos in the designing of instrumentation, 
helping to understand the physics and Monte Carlo simulation of their 
experiments, and providing special versions of MCNP to account for delayed 
neutrons and to simulate coincidence counters.Calculations in this area 
are invaluable to optimize an instrument design and to understand or 
extrapolate a calibration curve in the assay of unknowns. 

About 35% of X-6's effort is spent in the area of applications. 

Transport Data 

X-6 is responsible for the X-Division nuclear cross sections and does 
partial processing of cross-section data provided by Group T-2. This 
includes continuous-energy, multigroup, and radiochemistry data used not 
only in the X-6 Monte Carlo codes but also in other transport codes used in 
X-Division and throughout the Laboratory. ^ 

The major effort in this third area of X-6 work is the testing of 
cross-section d a t a . T h e data are verified by two methods: 
(1) differential testing involving spectra, and (2) integral testing 
involving critical mass calculations of Los Alamos assemblies like Godiva 
and Jezebel. As part of this cross-section work, X-6 has been calculating 
and.analyzing the latest experiment designed to measure the neutron 
spectrum and tritium production, and to check specific cross sections at 
various locations in a system consisting of a 93.5% enriched uranium sphere 
surrounded by ^LiD. The Livermore pulsed-sphere experiments are also 
calculated for integral testing of cross-section data. 

Extensive thermal benchmark calculations have recently been completed 
to t§st the integrity of MCNP, its thermal treatments, and its d a t a . 2 5 
MCNP calculations are now making significant contributions to the thermal 
data-testing program. 

We have recently completed the monumental task of thinning, testing, 
and assembling in suitable form the ENDF/B-V and Livermore ENDL79 data. 
These data are now being used at Los Alamos.26-28 

This final area accounts for about 25% of the group's effort. We find 
having this cross-section effort an integral part of X-6 to be a very 
valuable arrangement. It gives those of us doing applications a greater 
appreciation and awareness of the data. Furthermore, great resources can 
be immediately brought to bear on questions of transport data - as 
illustrated in the following paper on deep-penetration calculations by 
Thompson, Deutsch, and Booth. 
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MCNP 

As mentioned earlier, Group X-6 is the author of MCNP, and MCNP is the 
backbone and main product of X-6. 

MCNP is a very mature and reliable Monte Carlo code. It represents 
over two hundred man-years of effort and is the culmination of the original 
Monte Carlo work at Los Alamos by Fermi, von Neumann, and XJlam- Cashwell 
and Everett, over a period of almost thirty years, have contributed most to 
the development of MCNP. The first book on Monte Carlo was written by 
Cashwell and Everett. 

MCNP is a general-purpose, continuous-energy, generalized-geometry, 
time-dependent, coupled neutron-photon Monte Carlo transport code. It may 
be used in any of three modes: (1) neutron transport only, (2) combined 
neutron-photon transport, or (3) photon transport only. The capability to 
calculate eigenvalues for critical systems is also a standard feature of 
MCNP. 

I 
The following few sections will point out the main features of MCNP 

but will not go into detail. The MCNP manual, in addition to explaining 
how to use the code, contains the details of the physics, mathematics, and 
nuclear data aspects of MCNP. Another short publication,3® which is just a 
reprint of the first part of the manual, summarizes the code. Finally, 
Carter and Cashwell's book3^ is not only a good general reference on 
radiation transport by Monte Carlo, but it is based upon MCNP in many 
aspects. 

For most applications of MCNP, the user has to supply no more than an 
input file describing a problem. All of the input to MCNP is in free 
format. There is a variety of standard sources to choose from, and the 
tally structure is very general and elaborate. There is no need for a user 
to compile cross-section libraries for problems; X-6 maintains and provides 
all the data needed by MCNP. 

Nuclear^Data and Reactions 

MCNP is a continuous-energy Monte Carlo code that makes no gross 
approximations regarding data. Linear interpolation is used between energy 
points with a few hundred to several thousand points typically required to 
reproduce the original data within a specified tolerance (In fact, usually 
within 0.1 to 0.5%). The only significant difference between the MCNP data 
libraries and the ENDF/B library (from which it is derived with the NJOY 
processing code) is that resonance data are represented in MCNP as linearly 
interpolated pointwise data that are Doppler broadened to a specific 
temperature. All reactions given in a particular neutron cross-section 
evaluation are accounted for in the energy range from 20 MeV to 10"^ eV. 
Users can choose from data with prompt or .total fission v's as well as 
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having the option to use a set of discrete-reaction cross sections in which 
the reaction cross sections have been collapsed into 240 energy groups to 
save computer memory. Users have the choice of data from the ENDF/B, 
British AWRE, Livermore ENDL, or special LA.SL libraries. 

There are two thermal treatments in MCNP. One is the free-gas model 
in which, for elastic collisions, light atoms (Z = 1 through 8) are assumed 
to be in a Maxwellian distribution with some thermal temperature that may 
be a function of time. Secondly, the S(u,|3) scattering model is available 
which accounts for chemical binding and crystalline effects at very low 
energies. Typically, when going down to room temperature, the free-gas 
model is used from around 10 eV to 4 eV, and then the S(ot,(3) model is used 
below that. 

Photon interactions are accounted for in the range of 100 MeV to 
1 keV- MCNP accounts for both incoherent and coherent scattering, 
fluorescent emission following photoelectric absorption, and pair ^ 
production. 

Geometry 

The geometry of MCNP treats a general three-dimensional configuration 
of arbitrarily-defined materials in geometric cells bounded by first- and 
second-degree surfaces and some special fourth—degree surfaces (elliptical 
tori). The cells are defined by the intersections, unions, and complements 
of regions bounded by the surfaces. 

Surfaces are easily defined by supplying coefficients to the analytic 
surface equations or by indicating known points located on the surfaces. 
For example, the surface y - D = 0 is represented in MCNP by the mnemonic 
PY with the single entry D. Therefore, a plane normal to the y-axis at 
y = 4 is defined by the simple input line of 

PY 4 

MCNP has 26 such mnemonics available. 
\ 

Figure 3 is a geometry set up to test the analytical volume calculator 
in MCNP (the volume was calculated analytically and also stochastically by 
using a track-length estimator). This geometry of a fancy fish with a 
weird sun~>_is actually only three cells in the MCNP problem: (1) the 
disjoint/jregsions of the fish plus the sun (which appears as four regions), 
(2) everything else inside the sphere, and (3) everything outside the 
sphere. The geometry was specified by portions of twenty-three surfaces 
consisting of six tori, two hyperboloids, two ellipsoids, seven cones, one 
cylinder, two spheres, and three planes. 

o 
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Figure 3. Example of MCNP Geometry. 

Figure 4 is another example of MCNP geometry. This geometry consists 
of two cells and fifteen surfaces. The numbers in the figure refer to 
surface numbers: surface 1 is a cylinder; 3 is a cone; 12 and 13 are 
planes; 6, 7, 14 and 15 are ellipsoids; and 2, 5, 9, 10, and 11 are planes 
of two sheets. 

Figure 4. Example ofvMCNP Geometry. 
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More details about the MCNP geometry are given In the following paper 
by Godfrey. The significant additions of the union and complement 
operators to our geometry vocabulary are products of Godfrey's work. Cells 
that are now routinely specified with the union operator that are 
illegitimate when using intersections only are now in fact called "Godfrey 
cells" by us. 

Variance Reduction 

This one area alone makes MCNP a superb Monte Carlo code; MCNP is rich 
in variance-reduction techniques. The following two papers by Cashwell and 
Schrandt and by Thompson, Deutsch, and Booth will illustrate some of these 
techniques. More details are available In Refs. 1 and 31. 

In addition to obvious ways to save computer time like using energy 
and time cutoffs, MCNP offers geometry splitting with Russian roulette, 
analog capture or survival biasing with weight cutoff and Russian roulette, 
correlated sampling, the exponential transformation, energy splitting, 
forced collisions, flux estimates at points by three methods (next-event 
estimator, ring detector, and once-more-collided estimator), track-length 
estimators, source biasing in direction and energy, and a combination 
random walk/deterministic scheme called DXTRAN. Furthermore, a Russian 
roulette game can be played with detector or DXTRAN contributions as a 
function of mean free path that can save substantial computer time. 

X-6 is always evaluating new variance-reduction techniques and 
improving existing ones. Examples are (1) angle biasing which we look at 
from time to time but to date have not found a scheme that has anything 
substantial to offer over other methods already in MCNP, and (2) a weight 
window that looks quite promising (see paper by Thompson, Deutsch, and 
Booth). Furthermore, we are looking at generalized phase-space splitting. 

Tallies 

An important part of the MCNP output that the user has little control 
over (except for all of it or a fixed subset of it) is summary and 
diagnostic information. This information Is valuable for determining the 
characteristics of a problem and the effect of variance-reduction 
techniques. Examples are (1) a complete breakdown of all energy and weight 
creation and loss mechanisms averaged over the entire problem and also 
individually by cell, (2) the number of tracks entering a cell and the 
track population in a cell, (3) the average energy, weight, number of 
collisions, and mean free path in a cell, (4) the volume, mass, and surface 
area of a cell, and (5) the activity (i.e., collisions, collisions times 
weight, and weight lost to capture) of each nuclide in each cell. 

In addition to this summary information, MCNP has an elaborate and 
easy-to-use tally structure that allows the user to tally almost anything 
conceivable. Choices include, as a function of energy and time, 
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(1) current as a function of direction across a surface, (2) flux across a 
surface, (3) flux at a point, (4) average flux in a cell, and (5) energy 
deposition (or heating) in a cell by neutrons, photons, and products of 
neutron reactions. Surfaces or cells may be subdivided into segments for 
tallying purposes. In addition, particles may be flagged when they cross 
specified surfaces or enter designated cells, and the contributions of 
these flagged particles to the tallies are listed separately. The user has 
available a special subroutine by which the standard tallies can be 
modified in almost any desired way. 

Reactions such as fission, absorption, tritium production, or any 
product of the flux times the approximately one hundred standard ENDF/B 
reactions plus several nonstandard ones may be tallied very simply. 

Printed out with each tally is also its estimated relative error 
corresponding to one standard deviation of the mean. 

Other Features 

MCNP has the capability to calculate eigenvalues for critical 
systems. Three estimators (in various combinations) are used to calculate 
ke£g: absorption, collision, and track-length estimators. 

For debugging input and geometries, MCNP makes extensive and elaborate 
checks for consistency. A plotting capability is in MCNP that provides an 
arbitrary cross-sectional view of the input geometry on several output 
devices (all f igures in this paper plus slides used in the oral 
presentation were generated by the plotter). If a track gets lost during 
its transport, diagnostics are automatically printed for that track which 
include an event log. The event log is a print of the complete life of the 
track from event to event (birth, collisions, surface crossing, etc.). 

A feature is available to allow the user to translate and/or rotate 
surfaces from one coordinate system to another. For example, it is a 
nontrivial task to determine the coefficients for the general quadratic 
equation needed to define an ellipse with its origin off somewhere in space 
and its axes at some skewed angle. However, an ellipse can be easily 
defined centered about the coordinate-system origin with axes parallel to 
the coordinate axes. It is then an easy procedure to move the simple 
ellipse to another place with another orientation. 

For tallying purposes, cell volumes and surface areas are analytically 
calculated for polyhedral cells and for any cell bounded by surfaces of 
revolution (regardless of axis of symmetry). Surfaces of revolution 
generally account for the majority of cells, but irregular volumes and 
surface areas can also be easily calculated stochastically. 

A convenient mechanism is provided to specify information to be 
written to a file for post-processing, such as for plotting results or to 
generate a source for a subsequent problem. 
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Full restart capabilities are available that are used for machine 
failure or continuing a run to obtain better statistics. 

Future Work 

We are the first to recognize that MCNP does not do everything for 
everybody- We are cautious about what goes into the code and put something 
in only for a good reason and after it has been carefully evaluated. 
However, X-6 frequently creates special versions of MCNP for the one-time 
requirements of special calculations or for the special requirements of a 
limited number of users. 

The two most obvious shortcomings for use outside of Los Alamos are a 
lattice geometry specification and a better treatment of unresolved 
resonances. The lattice capability has not been of overriding importance 
to us at Los Alamos, but if others are interested in this feature we could 
be persuaded to increase the priority of it. 

As mentioned earlier, we are always 'improving the existing variance-
reduction techniques and devising new ones. We are interested in 
photo-neutron transport, but this is mainly a problem of data. Work is 
presently in progress on a three-dimensional plotter; our geometries have 
become so complicated it is hard to comprehend them with two-dimensional 
slices. Graphical techniques are being explored for post-processing of 
output data and for visual aids to help understand the characteristics of a 
problem (i.e., where are the particles going and how does a variance-
reduction technique influence them). Studies of Monte Carlo vectorization 
are underway to see how we can take advantage of modern computer 
architecture (such as the CRAY-1) or future computers with parallel, 
independent processors. 

MCNP is not a static code. It is under constant scrutiny and 
development by X-6. We release a new version about once a year with the 
current code being Version 2A. If MCNP ever becomes static, it will be so 
because there is no further use for it. We do not anticipate this 
happening; rather, the opposite seems to be the case. 

MCMG 

The multigroup code MCMG has basically the same features as the 
continuous-energy code MCNP, but it' relies on the same user-supplied 
multigroup, multitable cross-section data that are used in discrete 
ordinates codes. Unlike the data for MCNP, the multigroup data treatment 
results in problem-dependent cross sections that can place a burden on the 
user to assemble and understand. MCMG can be applied to standard shielding 
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problems, to problems in reactor physics including the use of thermal 
upscatter matrices, to problems in accelerator or cosmic-ray shielding at 
very high energies, to problems in neutral atom transport in plasmas, and 
to any other problem in linear transport for which multigroup data have 
been developed. 

An added feature of MCMG is that it is also an adjoint code. A cell-
and energy-dependent scalar flux is automatically generated during a 
forward-mode calculation, and this information is used for importance 
sampling of adjoint collisions and for an energy-dependent geometric 
splitting and Russian roulette game In the adjoint tracking. 

The distribution of scattering angles for group-to-group transfer is 
represented by either continuous, equiprobable cosine bins or by MORSE-typ 
discrete-scattering angles, both of which preserve all of the moments of 
the truncated Legendre representation. 

MCMG has an advantage over discrete ordinates codes in that it does 
not suffer from geometrical restrictions. Like discrete ordinates codes, 
however, it can be limited by the approximations that are inherent in the 
multigroup data that can, for example, result in masking the existence of 
self-shielding effects. 

CONCLUSION 

In our opinion (admittedly biased in the Lrue nature of Monte Carlo), 
Group X-6 is a very strong, experienced, and versatile Monte Carlo group. 
Our code MCNP is a leading Monte Carlo code because of its maturity, 
generality, ease of use, reliability, richness of variance-reduction 
techniques, documentation, cross-section libraries, and active support and 
development by the expertise of X-6. 
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GEOMETRY IN MCNP 

ABSTRACT 

MCNP is a general-purpose neutron and photon Monte Carlo 
code developed by group X-6 at LASL. The geometry cells in 
MCNP are defined as regions of space bounded by 
user-specified second-degree surfaces and certain tori. 
Until recently cells had to have only convex edges. Now the 
geometry description is entirely general: cells may have 
concave edges and any sort of connectivity. The new general 
geometry description is a substantial improvement over the 
surface list and combinatorial geometry methods and includes 
the best features of both. It makes a big difference in the 
ease of setting up problems that contain features such as 
nested boxes, rooms with ells, and irregular slabs. 

Another recent addition to the geometry description 
capability of MCNP is that certaLn kinds of surfaces of 
revolution can be defined by a few points on the surface 
rather than by the coefficients of the equation of the 
surface. 

MCNP has long automatically calculated the volumes of 
rotationally symmetric cells. It now also calculates the 
volumes of polyhedral cells. 

I will start with an example of how geometry is described in the setup 
of a problem for MCNP. I will then explain the vocabulary and syntax of 
the setup and show how tracking is done in the code. Finally, I will 
describe some of the other geometry features of MCNP and our plans for 
future improvements. 

In Fig. 1, cell 1 is a room with thick walls. The walls, including 
the columns, are collectively cell 2. There are other cells in the system 
that are;not shown in the figure. The origin of coordinates is inside the 

EXAMPLE OF GEOMETRY DESCRIPTION 
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lower left column. The background grid consists of 1-meter squares. The 
portions of the problem input file for MCNP that describe cells 1 and 2 are 
shown In Table 1. 

y f 

Fig. 1. Example of MCNP Geometry 

Table 1. Input File for Geometry of Fig. 1 

cells 
1 6 - 5 - 8 7 (12 :-9) 16 17 18 14 -15 
2 (2 -1 -4 3 :-16:-l7:-18) #1 #(13 -12 -8) #(-11 10) 14 -15 

surfaces 
1 PY 300 
2 PX 0 
3 PY 0 
4 PX 690 
5 PY 280 
6 PX 30 
7 PY 30 
8 PX 660 
9 P 2 -1 0 540 
10 P 2 -1 0 600 
11 PY 140 
12 PY 170 
13 PX 580 
14 PZ 0 
15 PZ 310 
16 C/Z 15 290 40 
17 C/Z 675 290 40 
18 C/Z 15 15 42.7 

Each surface in the system is assigned a number. The specification of 
each surface is written on the line after the surface number. The 
specification of a surface consists of a symbol for the kind of surface 
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followed by the coefficients for the surface. For example, surface 1 is 
specified to be a plane perpendicular to the Y-axis (PY) at Y=300 cm. 
Surface 9 is a plane satisfying the equation 

E(X,Y,Z) = Ax + By + Cz - D = 0V 
with A = 2, B = -1, C = 0, and D = 540. (1) 

Every point in space has a positive or negative sense with respect to 
each surface, unless it is actually someplace on the surface. The sense 
arises from the way the surfaces are required to be specified. Each kind 
of surface is described by an equation which is built into the code, 

E(X,Y,Z) = 0. . (2) 

All points (X,Y,Z) for which the expression E(X,Y,Z) is greater than zero 
have a positive sense with respect to that surface. For example, the 
equation of surface 4 is 

E(X,Y,Z) = X - D = 0 where D = 690. (3) 

So points to the right (large X) of surface 4 are positive with respect to 
surface 4, and points to the left of the surface are negative. 

SJ 

Cell 1 is specified as consisting of the intersection of the spaces to 
the right of surface 6, below surface 5, to the left of surface 8, above 
surface 7, and either above surface 12 or above and to the left of surface 
9- The spaces where the columns encroach are excluded, and the cell is 
further limited by the floor and ceiling, surfaces 14 and 15. Cell 2 is 
the space enclosed by surfaces 2, 1,4 and 3, plus the three columns, but 
excluding cell 1 and excluding the space enclosed by surfaces 13, 12, and 
8- The space below surface 11 and to the right of surface 10 is excluded, 
and it is limited by the floor and ceiling. 

VOCABULARY AND SYNTAX " o 

The scheme used here is the combinatorial geometry of regions which 
are defined by simple surfaces. The regions are in most cases infinite, 
but in combination they define finite cells. The union operator is 
represented by the colon, the intersection operator is implicit, and the 
complement operator is represented by Where the complement operator is 
followed immediately by a number, the number is interpreted as a cell 
number. Otherwise all of the numbers are surface numbers. The region of 
space whose points have positive sense with respect to a surface is 
represented by the surface number. The region on the negative side is 
represented by the negative of the surface number. Parentheses are used 

0 
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whers necessary to change the order of execution of the operators. Unless 
dictated otherwise by parentheses, complementation is done first, then 
intersection, and union is last, which is the conventional hierarchy for 
operators of this kind. 

The surfaces available in MCNP include all of the surfaces of second 
degree in three dimensions plus certain tori. The general second degree 
surface is available. Its symbol is GQ and its equation is 

E(X,Y,Z) = Ax2 + By2 + Cz2 + Dxy + Eyz + F z x t- Gx Hy + Jz + K = 0 (4) 

A user specifies it by an input line like this: 

surface no. G Q A B C D E F G H J K 

Special simpler expressions with fewer coefficients are available for 
certaLn simple, frequently-used Lacond degree surfaces. These Include 
planes and cylinders, as shown in Fig. 1 and Table I, and also spheres and 
cones. 

The tori available are ones with elliptical cross section and with the 
axiis parallel to one of the coordinate axes. They are rather handy in 
problems with inherently toroidal shapes, such as magnetically-confined-
fuslon machines. 

TRACKING 

When a particle comes out of the source or out of a collision, it is 
necessary to find the point where its track first intersects the boundary 
of the cell it is in. In Fig. 2, the collision- is at K, and the track 
intersects the surfaces of the cell at A, B, C, and 1). Intersection C is 
the required intersection with the cell boundary. MCNP calculates the 
intersections A, B, C and D by solving equations and accepting positive 
real roots. It then examines each intersection in increasing order of 
distance from the collision to find the cell boundary intersection. The 
algorithm used is shovm by example in Fig. 2. A logical expression is set 
up parallel to the cell description but with the surface numbers replaced 
by true or false, depending on whether the collision point Is on the 
designated side of the surface. At the collision poi,n,t K, the value of the 
logical expression is, of course, true. As each intersection is examined, 
the logical values corresponding to the surface at the intersection are 
flipped and the expression is evaluated. As long as the intersections are 
still inside the cell, the value of the expression remains true. When it 
turns false, the cell boundary intersection has been found. 

v < 

o 

O 
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Logical expressions: 
description of the cell: (-1 : : "2 ) -3 A 

at collision point K: ( T : F ) T T = T 
across surface 2 at A: ( T ; : T ) T T = T 
across surface 1 at B: ( F : : T ) T T = T 
across surface 3 at C: ( F : : T ) F T = F 

Fig. 2. Tracking 

COMPARISON WITH OTHER GEOMETRY SCHEMES 

The geometry scheme that MCNP once had was like the one described 
above except that it had no union or complement operators. I call it the 
surface list scheme since if the only operator is intersection, the 
specification of a cell is just a list of its bounding surfaces. The 
complement operator does not add a new capability, but it is a significant 
convenience. The union operator makes it possible to describe cells with 
concave edges and cells that consist of disconnected regions. Without the 
union operator, the two cells in Fig. 1 would have had to be eleven cells. 
A larger number of cells is not only more trouble to set up, which leads to 
setup errors, but in some cases complicates the tallying and the 
interpretation of the tallies. o 

<> 

In comparison with the other combinatorial geometry scheme with which 
I am familiar, the MCNP scheme differs mainly in the nature of the basic 
building blocks. In MCNP they are at once simpler and more general. I 
imagine that the scheme that turns out to be better for setting up a 
problem depends on the specific nature of the problem. The greater 
generality of the MCNP surfaces is a help in some cases. Also it must 
often happen that a body in combinatorial geometry is used for the sake of 
only one or two of its surfaces. The other surfaces then become parasites 
in tracking. J , if 

o 

0 



I 
252 

u OTHER FEATURES 

In some problems the geometry, or a significant part of it, is 
rotationally symmetric about' some axis. In such cases the MCNP user may 
specify surfaces by giving the R and Z coordinates of a few points. Two 
points specify a cylinder or cone. Three points specify spheres, and 
ellipsoids, hyperboloids, and paraboloids of circular cross section. 

MCNP may be used to rotate and translate surfaces from one coordinate 
system to another. Sometimes it is convenient to specify some of the 
surfaces in one coordinate system, such as by the point definition scheme 
described in the preceding paragraph. Then the code can be used to 
generate the coefficients that describe the surfaces in the main coordinate 
system of the problem. 

Volumes of cells and areas of the portions of surfaces that bound •.<> 
cells are needed for normalizing tallies. MCNP has long been able to 
calculate these for cells rotationally symmetric about any axis. For other 
cells the user must enter the volumes and areas by hand. The code can, of 
course, be used in a separate run to calculate volumes by Monte Carlo in 
cases where it is hard to do it by hand. Recently the ability to calculate 
directly the volumes of polyhedral cells has been added to the code. o 

The code may also be used to plot pictures of the geometry on various 
computer graphics devices. The pictures are naturally very valuable to the 
users who are trying to check out their setups. 

FUTURE IMPROVEMENTS 

We intend to build a lattice capability into MCNP for better 
representation of geometries with repeated features. 

We want to improve'the plotting capability to show lines that are 
beyond the view plane, perhaps with perspective, instead of just pure cross 
sections of the geometry which is what we have now. 

II 
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ABSTRACT 

The current state of the art of calculating flux at a 
point with MCNP is discussed. Various techniques ace touched 
upon, but the main emphasis is on the fast Improved version 
of the once-more-colllded flux estimator, which has been 
modified to treat neutrons thermalized by the free gas 
model. The method is tested on several problems of interest 
and the results are presented. a 

INTRODUCTION 

The next-event estimator (NEE) used in a normal Monte Carlo game 
for the flux at a detector embedded In a scattering medium suffers from 
a (l/r2)-singularity. Consequently, the variance of the estimator is 
infinite even though the mean is finite. 

Tn 1977, Kalli and Cashwell1 proposed and evaluated three 
estimation schemes for flux at a point. A new, once-more-collided flux 
estimator (OMCFE) was proposed, which differed from those proposed by 
Kalos in his original paper.2 The scheme has a (l/r)-singularity, 
leading to finite variance and (1//N) -convergence. It is based on a 
very simple p.d.f. of the path lengths in the sampling of the 
intermediate collision points. In addition, this simple p.d.f. for the 
path length was used in two schemes with bounded estimators similar to 
those proposed by, Steinberg and Kalos3 and by Steinberg.^ The three 
schemes were evaluated in a realistic problem using the continuous 
energy Los Alamos Monte Carlo code MCNG, the forerunner of MCNP.^ 

Once-More Collided Flux Estimator (OMCFE) 

In the present discussion we wish to focus on the OMCFE referred to 
above. This scheme has been incorporated into MCNP and, although some 
work still remains to be done, we wish to discuss this method in 
conjunction with other techniques available in MCNP. 



254" 

The details of the OMCFE as it exists in MCNP are, for the most 
part, given in Ref. (1). Without repeating the treatment given there, 
we wish to touch on the main points of the method, as well as mention 
generalizations of the method to a wider class of problems. The OMCFE 
is superimposed on the particle history without affecting It. At each 
collision (or source point), a nonanalog game is played whereby a next 
collision point A is chosen, from which a contribution to the detector 
is made. That is, from every real collision point oE the particle 
history, a once-more-collided contribution is made to the detector. 

The two main features in determining the intermediate point A of 
the once-more-collided scheme are: 

1. A directional reselectlon procedure based on the reselectlon 
technique of Steinberg and Kalos;^ and 

2. A nonanalog p.d.E. p*(s) which was used by Kalll^ in 1972. 

In Fig. 1, consider a collision at S with the resulting scattered 
direction in the cone described. Suppose that a new direction is 
chosen by sampling a new angle uniformly in (0,0,,,) and a uniformly 
in (0,2n). The result Is a concentration of scattered directions closer 
to the line Erom S to the detector D than would normally occur. Of 
course, an adjustment factor must be applied to the weight of the 
particle due to the reselection. u 

Once the direction is chosen, suppose the intermediate point A 
is selected along this direction from the p.d.f. p*(s), where 

P*(s) = - =- (Cf. Fig. 2). (1) 
Or/2 - a x)r z 

This density function corresponds to ci being chosen uniformly in 
(a^,ir/2). Use of p*(s) leads to another weight adjustment p(s)/p*(s), u 
where p(s) is the analog p.d.f. for sampling distance to collision. 

In the normal OMCFE, the point A is not a real collision point of 
the particle history. When these calculations involve reselection of 
direction and the distance to A using p*(S), as well as the normal 
next-event estimator, they tend to be time-consuming. In order to speed 
up calculations using the OMCFE: 

1. Draw an imaginary sphere around the detector; 

2. If the collision point is outside the sphere but the 
direction after the collision is withLn the cone defined by S^ and the 
sphere, calculate the once-more-collided flux contribution by performing 
the directional reselection in the cone and calculate the intermediate 
point A by using p*(s); 
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Fig. 2. Geometry in the selec-
Fig. 1. Geometry in the re- tion of the intermediate col-
selection of a direction. lision point A. 

3. If the collision point S^ is in the sphere and the direction 
after collision is in a 2u-cone (i.e., B0 < TT/2) about the line from S£ 
to D, the once-more-collided point is calculated by reselection of fl^ 
and using p*(s) to determine the intermediate point A; if the direction 
fi0 after collision is such that 3 0 > IT/2, no reselection is performed 
but the intermediate point A is chosen from p*(s); and 

4. Otherwise, calculate the normal next-event contribution from 
the following collision point S "v 

The recipe as outlined above works very well in most problems 
containing ordinary materials. However, in non-thermal problems 
containing H, the forward scattering off H in the laboratory system of 
coordinates lead to some modification of the recipe because of the 
directional reselection procedure. Furthermore, the random motion of 
the target atoms combined with the motion of the neutron in the thermal 
routine using the free gas model in MCNP leads to rather extensive 
modifications for the same reason. The imaginary sphere around the 
detector may have to be reduced in size in the course of the 
calculation, as a result of using the reselection procedure. 

With the necessary modifications, MCNP is able to treat problems of 
the types mentioned above, as illustrated by the sample calculations 
below. Several considerations led to the implementation of the OMCFE 
rather than one of the schemes leading to a bounded estimator in Ref. 
(1). First of all, the OMCFE was judged to be the simplest to insert 
into MCNP. Furthermore, the estimation of flux simultaneously at 
several points causes no problems in the OMCFE scheme. Finally, since 
the OMCFE does not alter the particle histories, its use has no effect 
on other tallies which may be required in a particular problem. 
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DXTRAN 

Let us describe briefly a subroutine, DXTRAN, which has been used 
in Los Alamos for some years and is an option available in M C N P . ^ We 
shall indicate its usefulness in our examples below. DXTRAN is of value 
in sampling regions of a problem which may be insufficiently visited by 
particle histories to yield adequate statistical accuracy in a given 
tally. To explain how the scheme works, let us consider the 
neighborhood of interest to be a spherical region surrounding a 
designated point P Q in space. In fact, we consider two spheres of 
arbitrary radii about the point P 0(x 0,y 0,z 0). We assume that the 
particle having direction (u,v,w) collides at the point (x,y,z), as 
shown in Fig. 3. The quantities L, Sj, 6 0, rij, n 0, % » anc* Ro a r e 

clear from the figure. Let us somehow choose a point P s on the outer 
sphere and assume that a scattered particle (let us call it a 
"pseudo-particle" for the moment) is placed there. We give this pseudo-
particle a weight equal to the weight of the incoming particle at Pj_ 
multiplied by the ratio of the p.d.f. for scattering from P-̂  to P g with 
no collision to the p.d.f. for choosing the point P g in the first place. 

If we sample directions isotropically in the cone defined by P-̂  and 
the outer sphere, the number of directions falling inside the inner cone 
and the number falling in the outer cone will be proportional to l-rij 
and r|j~n0, respectively. Let Q be a factor which measures the weight 
or importance which one assigns to scattering in the inner cone relative 
to scattering in the outer cone. We now proceed by the following steps: 

Fig. 3. The geometry of DXTRAN. 
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1. Sample r| unifocmly in (nx»D with probability Q(l—rij)/[QCl-rij) 
+ nj-Tl0] ; and with probability (ni-n0) / [Q(l-r i i ) + r^-Ho] sample n 
uniformly in (r)0>ni); 

2. Having chosen 6 from n = cos 0, we use the scattering formulas 
in the code to scatter through an angle G (and an azimuthal angle cf> 

chosen uniformly in (0,2u)) from the initial direction (x -x y -y z -z\ o ^o J o I 
" i ~ l » L y 

determining a new direction (u',v',w'). Advance the pseudo-particle In 
the direction (u',v',w*) to the point P g on the surface of the outer 
sphere. The new coordinates are saved; 

3. The weight attached to the pseudo-particle is the weight of the 
particle at collision multiplied by 

P(U){Q(1 - rij) + nx - nQ) exp< I (s) ds> 

i, < 3 

and 

V • P(U){Q(1 - n T ) + Hj - n Q} expJ- j I J s ) ds >, nr n < nT 

where 
y = uu' + vv' + ww" 

P(y) = p.d.f. for scattering through the angle cos-1y in the^i^b 
system for the event sampled at (x,y,z). 

V = number of neutrons emitted from the event. 

Since "a collision supplies a particle (let us now drop the term 
pseudo-particle - these particles are as real as any others) to the 
outer DXTRAN sphere, the particles from the collision at P^ are picked 
up and followed further, but they are killed if they attempt to enter 
the sphere. It is apparent from the discussion above that this routine 
has certain features in common with a point detector routine. 

This routine is used in a couple of the problems discussed below. 
In one problem, it is used to obtain the average flux in a small volume 
as a check against the result obtained from the OMCFE. In another, it 
is used to help get particles in the vicinity of a detector. While 
DXTRAN can be useful in many problems, it must be pointed out that the 
method is time-consuming, being similar in nature to a point detector 
routine. Further, attention must be paid to the problem of obtaining a 
sufficient number of histories in the vicinity of the DXTRAN sphere, not 
just inside the sphere. 
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CALCULATIONS 

The problems discussed below were chosen to demonstrate the 
behavior of the OMCFE in a variety of settings, with some emphasis on 
the treatment of H and, in particular, its behavior in the presence of 
neutrons thermalized according to the free gas model. Illustrations of 
how DXTRAN can be useful, either as an aid to the OMCFE or as an aid in 
computing the average flux in a region with a track-length estimator, 
occur in two of the problems. 

The geometries displayed in our problems are deliberately kept 
simple, partly so that we can display the so-called "exact flux", which 
is calculated very accurately (to a fraction of a percent) using a 
surface crossing estimator in the spherical geometry. In the schematics 
showing the geometry used, not every surface appears. Frequently, 
additional surfaces were added for the purposes of splitting and Russian 
roulette, or for the purpose of obtaining average flux in a region, but 
few surfaces were added in any one calculation. 

In each problem, the source at the center of tll° sphere was chosen 
to be monoenergetic and isotropic in direction. As easily anticipated, 
it was found useful to use an exponential biasing to direct more 
particles toward the detectors. The latter were always placed on a 
radius of the sphere - say the positive x-axis. The initial flight of a 
neutron was chosen by samplingy , the cosine of the angle the starting 
direction makes with the x-axis, from a p.d.f. ̂  e ^ , with k a fixed 
parameter. The value of k used in each problem is listed on the 
schematic for that problem. 

A feature of MCNP which was used in these calculations has to do 
with contributions to the detector D from collisions several free paths 
from the detector. E.g., when collisions occur more than x free paths 
from D, by playing Russian roulette one can permit, say, only one in ten 
collisions on the average to contribute to D, with weight enhanced by a 
factor of ten. The number x is set by the user and in these 
calculations was usually set to four. This feature of the code can save 
appreciable amounts of machine time in large systems. 

Other information on the schematic which is of interest include the 
number density of atoms in the material used; the thermal temperature of 
the problem (if any); the average m.f.p.A , computed by MCNP over the 
course of the problem ; the source energy and energy cut-off (if any); 
the time on the CDC-7600 for a given sample of starting neutrons; and 
the imaginary sphere radii used in the OMCFE and in DXTRAN. 

Figs. 4-12 display the geometries and graphs of the results for 
four problems. Table 1 gives a comparison of the final flux values at 
the end of each run with the "exact values". The errors in the final 
fluxes also appear. 
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H 
No. a t o m s / c m 3 = 0.025 x 10s* 

Thermal temp. = 2.5 x 10"8 MeV 
A ~ 16 cm 

o Z.0 4.0 a3£ 

Isotropic source at (0,0,0) 
Energy = 4.0 x M T MeV 0 M C s p h e r e rB H 
^Exponentially biased toward = 30 cm 

detectors, with k = 0.5 

cm 

15 min. for 100000 particl. 

Fig 4 Geometry for Thermal Hydrogen Problem. 
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Thermal H with the OMCFE. 
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CH e 

No. a t o m s / c n i 3 = 0.118 x ID2* 
Thermal temp. = 2.5 x 10"* MeV 

X ~ 0.43 cm 

• " • X ... - y 
0 10 20 30 cm 

Isotropic source at (0.0.0) Detectors 
Energy = 4.0 x 10"7 MeV 0MC sphere 
^Exponentially biased toward radius = Oif cm 

detectors, with k = 09 

Fig. 6 Geometry for Thermal CH2 Problem. 
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TABLE I 
Comparison of Calculated Flux with Exact Flux 

Flux 
(n/cm^/source particle) 

Exact 
(Surface Crossing 

Estimator) 

0MCFE Ave. Flux 
(Track Length 

Estimator) 

Error 
(1 Standard 
Deviation) 

Thermal H: Detector 1 
Detector 2 

Thermal CH2". Detector 1 
Detector 2 

BeO - 1: Detector 1 
Detector 1 

BeO - 2: Detector 1 

3.462 x 10~2 

1.230 x 10-2 

2.086 x 10"1 

6.259 x 10~2 

1.703 x 10"2 
1.703 x 10_2 

7.207 x 10"4 

3.486 x 10"2 
1.231 x 10"2 

2.122 x 10-1 

6.378 x 10"2 

1.697 x 10"2 

7.412 x 10"4 

1.687 x 10-2 

.056 x 10~2 

.032 x lO-2 

.053 x 10"1 

.357 x 10~2 

.015 x lO - 2 

.022 x 10"2 

.185 x 10 - 4 
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Iri Problem 1 the flukes at two detector points in thermal H are 
calculated using, the OMCFE. Problem 2( is a similar calculation in ..1 
thermal CH2- In Problem 3, the £lux is * calculated at a single detector 
in a sphere of BeO (non-thermal) for a sot-rco, of 1 MeV neutrons at the 
center. The flux is first obtained using OMCFE, and this is 
compared with an estimate of the average in a sphere about the 
detector of 1 cm radius. The latter^'esllip?is obtained with the help 
of DXTRAN. Problem 4 ftnds the flux"aty> • ,-in a 3e0 'Sphere situated 
approximately 6 free paths -from the source,;1; ̂ ing the OMCFE, but with the 
aid of a large DXTRAN sphere which fenclo.'i't-s 'the detector. The 
error-bars (one standard deviation) onfjib'̂ V'-̂ ints plotted indicate the 
statistical accuracy of the calculati'Jori^-?ivprogress, "as1'1 printed out by 
the code. The final results, 

are, in 'eve'r̂ /1—i-̂ e, within a fev percent 'Of 
the value of the "exact flux" - in fact, the agreement appears somewhat 
better than expected in at least one case. For example, in the BeO-1 
calculation the agreement between the exact flux and that obtained from 
the average flux in a sphere of 1-cm radius using DXTRAN is*/surpr'isingly 
good. Perhaps that is fortuitous - experience does not, lead one to 
expect it in the av3rage problem. The amount of computing time used-" 
could have been reduced in some cases without altering the results 
appreciably, but in dealing with estimates of flux at a point, it pays 
tb be reasonably cautious. Quite frequently, the calculation is 
sensitive to the various parameters set in a problem - the siz^of the 
imaginary sphere in the OMCFE, the source bias, etc. Some care is 
essential in setting up a problem and a few short runs can be invaluable 
in making the necessary decisions, particularly in the case of a 
difficult problem. 

Concluding Remarks 

A very important method of estimating flux „at a point in a problem 
with axial symmetry is through the use of a ring detector. MCNP 
contains a ring detector option and, although we did not use it in the 
present calculations, it should be mentioned as one of the tools 
available. 

u 
While the OMCFE in MCNP can deal with neutrons thermalized 

according to the free gas model, there, remains the(task of modifying the 
flux estimator to be compatible with neutrons thermalized ,with the 
S(a,B) treatment. It is hoped that this 'defect rcan be rectified in the 
not too distant future. ^ 

/ 
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ABSTRACT 

Several Monte Carlo techniques are compared in the 
transport of neutrons of different source energies through 
two different deep-penetration problems each with two parts. 
The First probleji; ,Involves transmission through a 200-cm 
concrete slab. Thej second problem Is a 90° bent pipe 
jacketed by concrfe'):e. In one case the pipe is void, and In 
the other It is filled with liquid sodium. 

Calculations are made with two different Los Alamos 
Monte Carlo codes: the contlnuous-encrgy code MCNP and the 
multigroup code MCMG. With MCNP, several techniques and 
combinations are evaluated: analog Monte Carlo, geometry 
splitting with Russian roulette, the exponential 
transformation, a weight window (constraining the upper and 
lower particle weights to be within certain limits), and 
using a combination of random wallc/deterministlc schemes. 
With MCMG, a comparison Is made between continuous-cnergy and 
multigroup Monte Carlo and also between different multigroup 
scattering models (Including the one used by the MOUSE code). 

Several unexpected results were found in the comparisons 
of the various calculations. For example, compared to 
continuous-energy calculations, multigroup calculations with 
standard cross-section weighting (for both Monte Carlo and 
S n) underpredlct the neutron leakage transmitted through the 
200-cm concrete slab by a factor of four. 

u 
When considering different techniques foe reducing the 

product of variance and computing time with regard to ease of 
use, reliability, and effectiveness, we find geometric 
splitting with Russian roulette to be a superior technique. 
The weight window, however, appears to be more effective than 
originally anticipated. 
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INTRODUCTION 

Several Monte Carlo techniques are compared in the transport of 
neutrons of different source energies in two different deep-penetration 
problems. The first problem involves transmission through a 200-cm-thlck 
concrete slab. The second problem is a 90° bent pipe jacketed by 
concrete. In one case the pipe is filled with liquid sodium, and in 
another case it is void. 

In actual shielding applications, one might need to account for photon 
production and transport, streaming paths, the exact compositions oT the 
shielding material including reb-ir, and other factors depending on the 
problem. For example, for lA-MeV neutrons incident on 200 cm of concrete, 
Oak Ridge concrete reduces the transmitted dose by a factor of ten better 
than does Los Alamos concrete. All the above considerations, however, are 
beyond the scope of this paper. 

Rather than addressing particular and detailed shielding problems, the 
purpose of this paper is to apply different Monte Carlo techniques to 
problems of general Interest to the shielding community and to compare the 
merits of the techniques. The problems considered here have notitrivial 
attenuations, and an attempt has been made to select representative k 
features of real shielding problems without incorporating arbitrary or \ 
extraneous detail. In addition to a comparison of methods, results such as 
leakage, flux, and dose rate are presented, and we believe these results to 
be reliable. Doses throughout this paper refer to biological dose and were 
obtained with the ANSI^- flux-to-dose conversion factors. By providing 
these benchmark-type results, others may wish to compare results from the 
same problems using different calculational tools. Interesting comparisons 
could be then made in terms of accuracy and efficiency between MCNP and 
other Monte Carlo codes (such as MOUSE, TRIPOLI, or SAM-CE) and other 
calculational techniques such as S n or hand calculations using buildup 
factors. 

Basically, several techniques such as the exponential transformation 
and geometrical splitting with Russian roulette will be compared using the 
continuous-energy code MCNP^ with virtually no approximations, MCNP with a 
pseudo-multigroup set of cross sections, and a true multigroup version of 
MCNP called MCMG.3 All calculations done with MCMG are with 30 neutron 
energy groups. MCMG has the option to represent the distribution of 
scattering angles for group-to-group transfers by equiprobable cosine bins 
or by MORSE-type discrete scattering angles.^ The pseudo-multigroup 
cross-section set in which the reaction cross sections have been collapsed 
into 240 energy groups for use with MCNP is referred to as the 
discrete-reaction data (DRXS). More details can be obtained about MCNP and 
MCMG in another paper by Thompson and Cashwell given at this seminar. 

The amount of computer memory required for cross-section data for the 
ten constituents of ordinary Portland concrete (is given in Table 1 as a 
function of calculational method, data set, and energy range. 
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About six hours of CDC-7600 computer time were used for the 
calculations reported in this paper. The multigroup calculations were done 
by Deutsch, Booth did the calculations with the exponential transformation 
and the weight window, and the rest of the calculations were done by 
Thompson. 

Table 1. Neutron Cross-Section Storage 
for Portland Concrete 

Mode Words 10 

MCNP, ENDF/B-V 
20 MeV < E < 0.00912 MeV 

297462 

MCNP, ENDF/B-IV 
20 MeV < E < 0.00912 MeV 

133091 

MCNP, DRXS (ENDF/B-IV) 
20 MeV < E < 0.00912 MeV 

42952 

MCMG, 30 group 
20 MeV < E < 10""4 e V 

23000 

MCNP, ENDF/B-V 
20 MeV < E < 10~5 eV 

310621 

MCNP, ENDF/B-IV 
20 MeV < E < 10-5 eV 

139316 

MCNP, DRXS (ENDF/B-IV) 
20 MeV < E < 10-5 eV 

,45852 

MCNP, ENDF/B-V 
184 keV < E < 8.32 eV 

56161 

All calculations for this paper were done with ordinary Portland 
concrete as found in Schaeffer's book.^ One calculation (the pencil-beam 
fission spectrum incident on a 100-cm-radius, 200-cm-thick concrete disk) 
was also done with the 04 concrete from the ANSI standard.6 The 
compositions of these two concretes are listed in Table 2. The transmitted 
dose through the 04 concrete is 4.7 times higher than through the ordinary 
Portland concrete, while the transmitted leakage and flux are each about 
5.2 times higher (these results are within 5%). All following reported 
results will be with ordinary Portland concrete. 
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Table 2. Concrete Compositions 

Element 
04 

Wt.% 
Portland 

Wt.% 

H 
0 
Si 
Ca 
C 
Na 
Mg 
Al 
S 
K 
Fe 

0.56 
49.81 
31.51 
8.29 

1.00 
52.9 
33.7 
4.4 
0.1 
1 . 6 
0.2 
3.4 

1.71 
0.26 
4.57 
0.13 
1.92 
1.24 

1.3 
1.4 V 

p=2.339 g/cc p=2.30 g/cc 

All continuous-energy calculations were done with ENDF/B-V cross 
sections. However, the first problem that will be discussed, the 
pencil-beam fission spectrum incident on 100-cm-radius by 200-cm-thick 
concrete, wasalso done with ENDF/B-IV cross sections. There were no 
perceivable differences in any of the results. The Monte Carlo multigroup 
calculations were done with ENDF-IV cross sections. If calculations had 
been made involving heating or photon production, this conclusion of 
equality between IV and V may not have been true. Again, nit is not the 
purpose of this paper to compare cross sections; this has been extensively 
done at Los Alamos''® and elsewhere by others. 

o 
With regard to the use of different Monte Carlo techniques on a 

variety of applications, there(/are no universally valid prescriptions. The 
only truly effective rule of thumb is to always make two or three short, 
experimental runs (say of half a minute each) to help discover the 
characteristics of the particular problem and the effect of varying a 
parameter or two in a particular variance-reduction technique. There is no 
substitute for practical experience to guide the approach to a particular 
problem. What works in one situation in no way guarantees success in 
another situation and may even be harmful. A good Monte Carlo code should 
provide a variety of standard summary and diagnostic information to help 
understand what is happening in a given problem. In doing the calculations 
for this paper, we encountered some surprises to our intuition. However, 
short, preliminary runs provided the necessary insight for the final runs. 

Finally, before getting down to business,^comparisons between the 
various techniques will be done on the basis of a relative figure of merit, 
FOM = l/(c?2t) where a is the standard error associated with a result of the 
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calculation and t is the computer time required. For example, if it took 
30 minutes to get a 4% error, 20-8. is the figure of merit. Note that to 
compare your FOM to the ones reported in this paper, you will also need to 
factor in the speed of your computer system relative to ours. All 
calculations reported by us were done on a CDC-7600 computer. All reported 
errors represent one standard deviation. Note that there is also an error 
associated with the figure of merit, a variance of the variance. In the 
following calculations, we attach no significance to small differences in 
the FOM such as between 62 and 55. 

The factor a2t is directly related to the dollar cost of running a 
job. It is important to note that the cost depends both on o 2 and t; for 
example, you may reduce a 2 but only at a greater expense in t or vice 
versa; the product of the two(must be reduced to be beneficial. Not 
explicit in this relation for the total cost of a job is the cost in human 
time to set a job up and the cost of vr.he preliminary experimental runs to 
set the parameters. If you spend three days with an elaborate setup and 
five hours of computer time refining and optimizing the parameters in the 
best possible way so that your job runs in 10 minutes rather than 20, you 
have lost. In all the following calculations, we usually made two or three 
preliminary runs for about a half minute each. We make no claim that our 
setups and figures of merit are the best, but they are acceptable as being 
cost-effective. Undoubtedly, someone can make improvements but probably 
not without diminishing returns. 

VARIANCE-REDUCTION TECHNIQUES 

The successful application of the Monte Carlo method to any deep-
penetration problem generally requires the use of one or more 
variance-reduction techniques. In general, one can expect that some 
techniques or combinations of techniques will be more effective than others 
in terms of range of applicability, ease of use, reliability, and 
performance. We measure performance in terms of the figure of merit 
l/(cf2t). By reliability, we refer to the possibility of injudicious 
selection of the parameters of a technique resulting in erroneous answers 
because an important part of phase space may not have been sampled 
adequately, if at all. Finally', ease of use refers to the degree of ' 
difficulty in determining the parameters of a technique /and to the 
sensitivity of performance to precise selection of the optimal parameters. 

0 
Based on many years of experience and observations of users at Los 

Alamos, the most frequently-used techniques at Los Alamos are geometry 
splitting with Russian roulette, directional source biasing, survival 
biasing, and a weight-cutoff game incorporating Russian roulette. These 
techniques are frequently used in combination. Tt is assumed that if 
nenrgy and/or time cutoffs are appropriate for a problem, then they have 
been used also. The exponential transformation is infrequently used, and" 
in fact, we have discouraged its use. We note all too frequently that the 
less experience a user has, the- more any of the variance reduction 



techniques are abused by using the techniques inappropriately, or with 
several techniques in conjunctionleading to conflicts, or most commonly by 
biasing too heavily. Any of these problems can result in a wrong answer. 
It cannot be overemphasized that any variance-reduction technique must be 
used with caution and understanding. ,;> 

In the following calculations, several different techniques are tried 
and compared. For all problems, we compare geometry splitting with Russian 
roulette, the exponential transformation, a weight window, and DXTRAN. The 
effect of running the problems in a purely analog fashion will also be 
illustrated. Other techniques will also be tried but not for all cases. A 
short description will be given for the main techniques used in these 
calculat ions. 

A more detailed description can be found In Ref. 2. 

Ouometry Splitting with Russian Roulette 

MCNP does not split particle tracks upon collision but as a function 
of spatial location. The geometry Is subdivided into several cells, and 
each cell is assigned an importance. When a track of weight W passes from 
a cell of importance I to a cell of higher importance I', the track is 
split into I'/I tracks, each of weight WI/I'. (Non-integer splitting is 
allowed, but we will consider only integral importance ratios for 
simplicity.) If a track passes from a cell of importance I* to a cell of 
lower importance I, Russian roulette is played; a track survives with 
frequency l/l' and is assigned a new weight of WI'/I if it survives. 
Generally, the source cell has importance of unity, and the importances 
increase in the direction of the tally. The importances are chosen to keep 
the track population roughly constant between the source and the tally. 

Weight Cutoff with Russian Roulette 

The weight cutoff is made relative to the ratio of the importance of 
the source cell to the importance of the cell where weight-cutoff is about 
to take place. This keeps the geometry-splitting and weight-cutoff games 
from interfering. If a track's weight falls below quantity WC2 (usually.,, 
from survival biasing), Russian rouj.ette Is played. A track survives with 
frequency WC2/WC1 and Is assigned J-he weight WC1 if it survives. WC1 and 
WC2 are generally chosen to be 0.15 and 0.25, respectively, for a starting 
weight of unity butvure problem-dependent. ^ 

Exponential Transformation a 

This" technique allows a track to move in a preferred direction, by 
artificially reducing the macroscopic total cross section in the preferred 
direction and increasing the cross section in the opposite direction 
according to 

s e x = ^ tC 1 - py) > (1) 
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where 
transformed total cross section, 
true total cross section, 
parameter used to vary degree, 
of biasing, 0 < p < 1, and 
cosine of angle between preferred 
direction and track's velocity. 

Upon collision, the track weight is multiplied by 

e " p E t y s 
\v = , 
C 1 - p p 

where s is the distance to collision. Note this can lead to a dispersion 
of weight, and.that It is possible for some weights to become very large if 
the tracks are traveling opposite to the preferred direction. 

We have found the exponential transformation by itself to be of 
limited use. The dispersion of weights that it creates can result In an 
unreliable sample mean while the sample variance may erroneously indicate, 
an acceptable precision. Vurthermore, it is not clear how to choose the 
biasing parameter p, but we note that it is generally chosen too high -
especially by novice users. For the calculations of this paper, the 
parameter was selected by observing the sample variance as a function of 
the parameter on a few short runs. 

, When combined with a weight window to place a bound on the upper and 
lower weights of tracks, we have found that the exponential transformation 
can be useful. However, choosing parameters for the weight window can 
further complicate the problem setup, especially for the inexperienced 
user. 

Weight Window ^ 

A weight window consists of an upper and a lower bound for av, 
particle's weight. If the track weight is less than the lower weight 
bound, Russian roulette Is played and the weight Is increased to lie inside 
the window or the track is killed. If the track weight is above the upper 
bound then the track is split so that the resulting tracks have their 
weights within the window. The bounds of the window can be set as a 
function of energy and spatial position. 

This weight-window capability is presently not a permanent feature of 
MCNP. It is available as a modification and is under evaluation by Group 
X-6. Among other things, we are trying to learn how to use it. It 
appears that this technique has merit not only when used with the 
exponential transformation but In conjunction with other techniques. The 
bane of any variance-reduction technique is creating a dispersion of 
weights and especially creating a few tracks with very large weights. The 
weight window appears to reduce thes,a problems effectively. > 

P 

U 
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DXTRAN 

In a geometry region which is difficult to sample adequately, the 
DXTRAN scheme of MCNP can be of value. At each collision, contributions of 
scattered particles are deterministically transported to a spherical 
neighborhood of interest. These contributions, or pseudo-particles, are 
placed on a sphere surrounding the neighborhood of interest and then 
transported in the ordinary random-walk manner. The parent particle giving 
rise to the pseudo-particle at a collision continues its randorj walk, but 
it is killed if it tries to enter the neighborhood during its random walk. 

o 
There are actually two DXTRAN spheres. The pseudo-particles are 

placed on an outer sphere. An inner sphere concentric to the outer one is 
used to bias the placement of pseudo-particles within the cone defined by ,, 
the inner sphere and the point of collision. 

DXTRAN has certain features in common with a point detector. It also 
has the disadvantages of a detector: it can significantly increase 
computation time, and it is susceptible to large-weighted contributions. 
For ihese and other reasons, success is not guaranteed when using DXTRAN, 
and it (like a detector) should be used selectively and carefully. 

A useful feature of MCNP is the DD input card. This provides 
diagnostics1 pertaining to ^XTRAN or point detectors such as the 
accumulative fraction of t]^ number of contributions, the fractional 
contribution, and the accumulative fraction of the total contribution - all 
as a function of mean free path away from the DXTRA^ sphere or detector. 
Having this information from a short run, Russian roulette,can be played on 
contributions a selected number of mean free paths away. This can save 
substantial computer time. 

Angle Biasing 

Angle biasing for the problems of this paper was not applied for'two 
reasons: (1) our experience with angle-biasing techniques is both limited 
and discouraging, and (2) angle biasing is not a standard MCNP option. We 
have experience with sampling two different (fictitious) exit densities, 
namely 

Pi(£2) = = probability of sampling a unit solid (3) 
angle about u,v,w |b| ^ 1 

and b ebv 1 
P2(fl) = —^ = probability of sampling a unit solid (4) 

e - e angle about u,v,w b' > 0. /A 0 ' 
Both of these schemes seem to introduce a large variation in particle 
weights which is reflectedQin a poor variance of the sample mean. Use of 
weight window Improves the variance, but only to the point where the 
variance matches that of the weight window alone. 

'•5) 
o 
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It ts entirely possible that other^angle-biaslng schemes may perform 
much better. In particular, angler^biSs'ing schemes in discrete-angle Monte 
Carlo codes (such as TRIPOLI) car.̂ be easily fabricated to avoid large 
variations in particle weights. This does not appear to be the case in 
continuous-angle Monte Carlo codes (such as MCNP). 

CONCRETE-SLAB PROBLEMS 

A major advantage of Monte Carlo is the ability to calculate with no 
compromise in geometrical reality. Since the purpose of this paper is to 
illustrate some variance-reduction techniques, this advantage plays no role 
in this particular problem. S n is more appropriate for this problem - but 
at the possible expense of getting the wrong answer because of the 
multigroup approximation (as will be seen later in this paper). 

This problem consists of two parts. Both parts consist of a 200-cm-
long homogeneous cylinder of ordinary Portland concrete with a pencil-beam 
source of fission-spectrum neutrons incident along the axis. In one case 
the radius of the cylinder is 100 cm, and in the other the radius of the 
cylinder is 20 cm. The object is to tally the net neutron leakage (or 
current) across the face opposite the source for comparison of all the 
methods. However, the transmitted flux and biological dose were also 
calculated by MCNP. The geometry of both cases is illustrated in Fig. 1. 

200cm 

100cm . -200cm-
!Ocn| 

r-
Figure 1. Concrete Slab Problems. 

o 
The source energy spectrum is defined according to the Maxwellian 

representation of the fission spectrum: 

f ( E , - - 2 - f a " E / T , ( 5 ) 
/nT 

where we have chosen the parameter T = 1.30 MeV that produces an average 
source energy of 1.95 MeV. 'A prescription that was used to sample from 

G> 
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this spectrum for MCNP is in the Appendix- For the raultigroup calculations 
with MCMG, the spectrum was analytically integrated to determine the group 
sources: 

E 
dE = — 

/s 
e " E 4i / T - J 5 <;VT 

( 6 ) 
T f(E) 

¥+1 r
e4l$)-4l¥) • u 

The group sources are listed in the Appendix. 

A short adjoint run with MCMG plus an S n calculation indicated that 
source particles below 3.68 MeV (this corresponds to one of the multigroup 
boundaries) made few tally contributions. More precisely, about 10% of the 
transmitted leakage results from source neutrons below 3.68 MeV. 
Therefore, the source spectrum was sampled for energies only above 3.68 
MeV. These high-energy-source particles account for 12.929% of the total 
source particles in the unaltered spectrum- Therefore, all results were 
multiplied by 0-12929 to normalize to one total source neutron- By biasing 
the source in this manner, the figure of merit for MCNP calculations 
increased by a factor of two. 

For the 3.68--MeV truncated fission spectrum, 200 cm of concrete is 
about 25 mean free paths thick; for the full, unaltered spectrum, the 200-
cm-slab is about 28 mean free paths. In the first 10 cm, the average mean 
free path is about 6 cm. After only a few more centimeters into the 
concrete though, the average mean free path becomes about 4.5 cm and 
remains t_very close to this throughout the 200-cm thickness. The energy 
cutoff for the calculations was set at 0.00912 MeV (again this corresponds 
to one of the group boundaries) because only a couple of percent of the 
transmitted neutron dose comes from transmitted neutrons with an energy 
less than this. Using this cutoff increases the figure of merit by a 
factor of about three. There are 18 groups in the multigroup data above ° 
0.00912 MeV. Furthermore, this energy cutoff requires a smaller 
computer-memory requirement. 

To illustrate the effect of the above ene'rgy cutoffs and photon 
production and that the simplification for this academic paper may not be 
valid for actual shielding problems, MCNP was used for a 10-minute 
calculation with none of the above cutoffs and also accounted for photon 
production for a 100-cra radius by only a 100-cm-thick concrete slab. The 
figure of merit for the total neutron dose is 8.6 using splitting, and the 
total neutron dose is 8.1 x 10-13 ±8.5% mrem/source neutron. The dose 
from transmitted neutrons above 0.01 MeV is 7.5 x lO""-I-3,and the total 
photon dose is 1.7 x 10~13 i 8.55! mrem per source neutron .About 49% of the 
photons were started In the energy range 2-5 MeV, 2.7 MeV of photon energy 
were started on the average per neutron, and the average weight of photons 
started was 0.87 per neutron. Another run was made but with the neutron 
energy cutoff at 0.01 MeV. The figure of merit increased to about 56, the 
total neutron dose became 7.2 x 10~13 ± 6%, and the photon dose dropped to 
2.6 x 10~15 ± 18%. Now about 14% of the photons start between 2 and 5 MeV, 

o 
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0.24 MeV of photon energy were started per neutron, and the average weight 
of photons started was 0-14 per neutron. For 14-MeV neutrons incident on 
100 cm of concrete and using no cutoffs or approximations, about 8% of the 
total dose comes from photons. 

100-cm-Radius Problem 
i 

With the pencil-beam source, the axially penetrating leakage is 
8.2 x 10~9 ± 4.4%, the transverse leakage is 1.9 x 10~5, and the 
backscatter leakage Is about 35%. Because of the negligible transverse 
leakage, the problem geometry is equivalent to a homogeneous, semi-infinite 
slab. About 9.5% of the neutron weight is lost to capture. 

In a purely analog case (no splitting, survival biasing, or anything 
else), except for source energies greater than 3.68 MeV, 21484 source 
neutrons were started in two minutes of computer time. At 50 cm there were 
5409 (25%) neutrons, 83 were at 100 cm, and none were at 150 cm. This is a 
very clear example of why variance-reduction techniques are necessary. 

Adding survival biasing and weight cutoff with WC1 = 0 . 5 and 
WC2 = 0.25 to the above e x a m p l e a slight improvement is noticed In the 
same two minutes of time: 19336 source particles were reduced to 5477 
(28%) at 50 cm, to 102 at 100 cm, and to none at 150 cm. Only three tracks ' 
were lost to the Russian roulette'part of the weight cutofE game- WC1 
and WC2 increased to 1.0 and 0.5 respectively, 19432 source particles were 
reduced to 5461 (28%) at 50 cm, to 106 at 100 cm, and to none at 180 cm. 
Only 121 tracks were lost to Russian roulette. In this problem survival 
biasing and weight cutoff help a little but not a significant amount. It 
is a generally accepted practice, however, to use these two techniques 
routinely (naturally there are exceptions). 

To add geometry splitting with Russian roulette, the concrete cylinder 
was subdivided axially into cells 10-cm-thick by adding plane splitting 
surfaces; 10 era was chosen because it is a convenient number and because it 
allows a couple of mean free paths between splitting surfaces (based on an 
average of 4.5 cm for a mean free path averaged over collisions). Cell 
thicknesses of 15 cm worked equally well, fj The problem was run for half a 
minute with the importances of all cells set to unity. Part of the 
standard summary output of MCNP is the track population in each cell, and 
wherever the population dropped by a factor of two, the importance of that 
cell was doubled relative to the adjacent cell in the direction of the 
source. In some places the two-for-one splitting was not enough, so 
four-for-one splitting was occasionally used. If an incremental cell 
thickness less than 10 cm had been chosen, two-for-one splitting could have 
been used throughout. Conversely, greater than 10-cm Increments would have 
led to a more consistent use of four-for-one splitting. A goal is to try 
to keep the population roughly constant, say within 50%. 

t i? 
fvor this particular problem, there appears to be little difference in 

computer efficiency between two-for-one and four-for-one splitting. Other 
ratios can also be used as necessary. Two—for—ons splitting rnak.es it 
/ \ 
n- . 
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easier to level the population, but it requires the user to add more cells 
and surfaces to the problem setup. Four-for-one splitting requires less 
input from the user and less arithmetic for the computer, but it is harder 
Co level out the population. Going beyond four-for-one splitting 
introduces greater risk because that implies a fairly large reduction in 
the population before it is built back up. The danger is that once a 
sample population deteriorates to a small size, source information 
associated with the sample can be lost. Once information is lost, it can 
never be regained. For example, in the analog problem mentioned earlier, 
at 170 cm we could have introduced the first splitting surface and split 
21484-for-one. The track population would be back to its original slze,t 
but then the true energy spectrum would be represented by one discrete 
energy. The old saying about squeezing blood out of a turnip is very 
appropriate here. 

Three iterations of half a minute each were used to set the 
'' importances. The ratio of importances between cells, the actual importance 

assigned to a cell, and the track population In each cell are shown in 
Table 3 for 91440 source neutrons. In this final run, weight cutoff was 
plcayed with WC1 = 0.5 and WC2 = 0-25 (both times the starting weight of the 
neutrons), resulting In 4233 tracks lost to Russian roulette. In the 
splitting game, 1118990 tracks were created, but 460729 were lost to 
Russian roulette. Note that in cell 18 the population is too high. 

Table 3. Splitting in the 100-cm-Radius by 
200-cm-Thick Concrete Problem 

Cell 
Importance 
Ratio 

Track 
Importance Population 

(Source) 1 1 
1 
2 
2 
2 

1 
1 
2 
4 
8 

16 
64 

94215 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

^ 2 
4 
2 
2 
2 
2 
4 
2 
2 
4 
2 
2 
4 
2 
2 

128 
256 
512 
1024 
4096 
8192 
16384 
65536 
131072 
262144 
1048576 
2097152 
4194304 

69498 
86168 
86972 
82441 
78332 
140593 
118175 
101254 

86628 
75750 
127292 
102290 

89#il5 
151848 
123118 
107322 
180848 
142741 
109876 (Tally) 20 ^ 
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For,, this problem the transmitted leakage is 8.21 x 10"^ t 4.4% for 
neutron leakage, the transmitted dose is 1.22 x 10~17 ± 4-5% mrem per 
source neutron, the transmitted flux is 4.10 x 10-1-3 ±.4.3% neutrons/cm2, 
the leakage escaping through the curved cylindrical surface is 1.91 x 10~^ 
± 16% neutrons, the backscattered leakage is 4-51 x 10-2 t 0.4%, and 6.7 is 
the figure of merit. 

Other splitting games can also be played. The most obvious is a 
combination of axial and radial splitting. With radial splitting, one 
could set up a cone as a splitting surface with Its vertex at the source 
point and then intersecting the edge of the exit face. Secondly, rather 
than a cone, a concentric cylinder could be used with Its radius half that 
of the outer cylinder. It turns out that neither of these approaches 
results in much (if any) gain In this problem. What small amount Is gained^ 
In reducing Cf2 is lost by an Increase In t because of the added arithmetic 
for the computer. " ' o 

There Is a frequently-heard rule of thumb for geometry splitting that 
says split two-for-one every mean free path, but you do not hear if this 
means a mean free path based on source energy or average energy of the o 
particles in the geometry. In this problem, a mean free path based on a 
source energy Is about 8 cm and about 4-5 cm averaged over,, collisions. 
Splitting two-for-one every 4.5 cm in only a 100-cm-thick slab of concrete, 
1 source neutron had been split into a population of 440 at 50 cm and 12740 
at 100 cm and required 0.96 minutes of computer time. Splitting two-for-
one every 3 cm in a similar 100-cm-thlck slab of concretc was better; 335 
source neutrons required 0.52 minutes of computer time and were split into 
a population of 1597 at 50 cm and 1904 at 75 cm. Obviously, this rule of 
thumb applied by either method leads to overspllttlng. 

Using the weight window with only survival biasing and nothing else, -> 
the transmitted leakage is 8.26 x 10~* ± 9.3% with 6.3 for a figure of 
merit. The lower weight bound in the source cell was chosen to be 50% 
lower than the particles' source weight. The lower weight bound for the 
rest of the cells was chosen to be a factor a less than the°previous cell's 
lower weight bound where ot for cell i was chosen as 

(starting weight)^1 = transmission obtained (7) 
by previous short run. ! 

i1! I " The upper weight-,, bound was chosen to be five times the lower weight bound. 

Using the exponential transform with survival biasing, no weight-
cutoff game, and a transform-biasing parameter of 0.7, only a very short 
run was required to see a poor performance. The figure of merit 'was 1.5, 
and the transmitted leakage was 4.86 xdO -® ± 39% which is too high by a 
factor of six - in other words, completely unreliable. 

Adding to the exponential transformation a weight-cutoff game (but not 
the weight window) that is dependent on cell importances had the result 
that after 4.6 minutes of computer time the transmitted leakage was 
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5.22 x 10~9 ± 19.2% with a figure of merit of 4.2; after 10 minutes, 
8.22 x 10-9 ± 26.7%; and after 17.6 minutes the leakage was 8.06 x 10-9 

± 18.4 with 1.7 as the figure of merit. This example demonstrates the 
value in watching the behavior of a sample mean and its variance during the 
progress of a calculation. If either is unstable, the sample mean is 
unreliable. By not watching this behavior, a result (such as the leakage 
of 5.22 x 10~9) may be incorrectly accepted as satisfactory based on an 
apparently low variance. 

Applying the weight window and exponential transformation together 
produced the best of all results with a figure of merit of 22.6 and a 
transmitted leakage of 8.49 x 10~9 ± 3.0%. 

The multigroup code MCMG using 30 groups and geometry"splitting 
determined in the same manner as for MCNP was used on this problem. The 
figure of merit was 11.9, but the transmitted leakage was 2.17 x 10-9 ± 
5.6% which is low by a factor of four. Both the continuous-scattering 
angle and MORSE discrete-scattering angle treatments were used. No 
difference between the two was observed. For optically thin transmissions, 
however, the continuous treatment is superior. 

MCNP itself can be used in a pseudo-multigroup fashion by using(£3r 
discrete reaction cross-section set DRXS. These cross sections are 
equivalent to the regular continuous-energy cross sections used by MCNP 
except that the reaction cross sections have been collapsed into 240 
energy groups. Using MCNP and these discrete cross sections along with 
geometry splitting on this problem, the transmitted leakage is 5.08 x 10-9 

± 6.8% with 8.0 for the figure of merit. 

All of these results are summarized in Table 4. 

To our surprise, the performance of the weight window may be 
relatively insensitive to the size of the window. This problem was tried 
with the ratio of the upper to lower bound set at 400 to compare with the 
ratio of 5 used throughout this paper. The factor of 400 is consistent 
with a similar scheme used in MORSE. The results were virtually unchanged; 
the figure of merit was 19.5 and the leakage was 7.89 x 10-9 ± 10.6%. This 
implies that it is a very few tracks with very large weights that cause 
tallying problems. The problems caused by a weight dispersion have long 
been recognized, but the true nature of the dispersion may not have been 
fully appreciated. 

The dramatic improvement in the performance of the exponential 
transform when it is used in conjunction with splitting at an upper weight 
limit seems to indicate that a substantial fraction of the tally variance 
is associated with very high-weight particles. Particles can accumulate a 
high weight by traveling against the transform vector for part of their 
trajectory. With splitting at the upper weight limit, the distribution of 
tally scores per source particle for each high-weight particle is shifted 
from a binary distribution of scoring or not scoring in one lump to a 
superposition of binary distributions, with smaller components. The net 
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result is to reduce the variance while leaving the tally mean unchanged. 
The computational time involved is relatively small because the high-weight 
particles are relatively infrequent, and so a net gain is achieved in the 
figure of merit. 

The biggest surprise we had in doing the calculations for this paper 
was the disagreement between the continuous-energy and multigroup results. 
We see from Table 4 that the MCMG multigroup results underpredict the 
continuous-energy results by a factor of almost 4. The group cross 
sections consist of 30 neutron groups from the ENDF/B-IV evaluation with a 
weighting spectrum which is a fission spectrum matching a 1/E spectrum for 
the energy range of interest.9 in Table 5 we compare the partial leakage 
J + in the direction of penetration at 15-cm intervals through the concrete 
for continuous-energy and multigroup-collision treatments. It can be seen 
that the discrepancy appears to grow systematically. The column labeled 
"DRXS" is a calculation with the 240-group discrete-reaction cross sections 
using MCNP. The results of the DRXS calculations fall in between the 
continuous-energy and the 30-group MCMG results. One may conclude that an 
energy self-shielding effect introduces a discrepancy into the multigroup 
results and that the magnitude of the discrepancy may be quite significant 
for deep-penetration applications using standard cross-section sets. 
Although this effect has been reported in transport through pure materials 
(most notably in thick iron shields), it might not be expected in mixtures 
such as concrete with significant masking of cross-section windows and the 
presence of hydrogen to lessen the importance of windows. 

Table 4. Summary of Results for 100-cm-Radius 
by 200-cm-Thick Concrete Cylinder 

Transmitted " Computer 
Method Leakage % Error FOM Minutes 

MCNP, splitting 8.21 x 10"9 4.4 6.7 77 

MCNP, weight 8.26 x 10~9 9.3 6.3 18.4 
window 

a 
MCNP, exponential 4.86 x 10~8 39 1.5 4.4 
transformation 
MCNP, exponential 8.06 x 10~9 18 1.7 17.6 
transformation and 
weight cutoff 

MCNP, exponential 8.49 x 10~9 3.0 22.6 49.2 
transformation and 
weight window 

MCMG, splitting 2.17 x 10~9 5.6 11.9 26.8 

MCNP, discrete 5.08 x 10~9 6.8 8.0 27.0 
reactions, splitting 
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Given the discrepancy between continuous-energy and multigroup Monte 
Carlo, an obvious question becomes what is the result of an S n 
calculation. Therefore, we made an S n calculation with the one-dimensional 
S n code ONETRAN.10 The geometry was assumed to be a 200-cm Portland 
concrete slab of infinite lateral extent. An infinite extent is a very 
good approximation since the Monte Carlo calculations indicated the 
transverse leakage to be about 2 x Using the truncated fission 
spectrum (i.e., source energies greater than 3.68 MeV) and the same 30 
group ENDF/B-IV cross-section set as used with MCMG, good convergence was 
achieved with ONETRAN using Ar of 1.66 cm and an S-8 Lobatto quadrature; 
the leakage was 2.45 x 10-". Using the full fission spectrum source, the 
leakage was 2.71 x 10"^. Good convergence with a Gauss quadrature was not 
achieved until an S-16 or greater quadrature was used.' There are a couple 
of conclusions: (1) S n agrees with the MCMG result of 2.17 x 10-9 ± 5.6% 
within two standard deviations, and (2) S n requires a Lobatto or high-order 
Gauss quadrature for good convergence in deep-penetration problems. 

To verify that the transverse leakage was truly negligible and that 
the one-dimensional S n and MCMG results were comparable, an MCMG 
calculation was performed with infinite radial extent for the 200-cm-long 
concrete cylinder. The results were essentially identical to those with 
the 100-cm radius. Kf 

To further complete the picture (but not belabor the point), ONETRAN 
was also used with a 30-group ENDF/B-V multigroup cross-section set. The 
transmitted leakage was virtually identical with the ENDF/B-IV results from 
ONETRAN and MCMG. Finally, MCNP calculations were made with modified 
240-group discrete-reaction cross'sections based on ENDF/B-V. The cross 
sections for both silicon and oxygen were modified to accurately represent 
the large window in the total cross section for each nuclide, at 0.145 MeV 
for silicon and 2.35 MeV for oxygen. The result was thej;same as wi,th the 
regular discrete cross sections in which the windows arc averaged out. 
This indicates the difference between continuous energy and multigroup 
treatments is due to a self-shielding effect. 

Another potential method to improve the results at the exit surface is 
to surround the surface with a DXTRAN sphere. DXTRAN, however, is 
generally only useful in situations where it, is difficult to get tracks by 
a random walk to a particular place in the geometry in order to make a 
tally. This is not the case here since by geometric splitting an abundance 
of tracks gets to the surface tallies. In this case DXTRAN makes the 
problem more inefficient by adding additional arithmetic complexity for the 
computer to handle. However, if one is interested in calculating the flux 
at a point in the center of the exit surface, relatively few tracks are in 
the vicinity of any given point on the surface. A surface tally therefore^ 
is useless, and a point detector is required. Placing a DXTRAN sphere 
around a detector can improve the efficiency of a detector calculation 
significantly. 

o 
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Table 5. Comparison of Partial Leakage 
as a Function of Method and Thickness 

Surface J+MCNP J+DRXS - J+MCMG 
MCNP 
DRXS 

MCNP 
MCMG 

15 cm 7.44E-2 7.38E-2 7.35E-2 1.01 1.01 
(.68%) (.62%) }(.46%) 

30 2.66E-2 2.58E-2 2.48E-2 1.03 1.07 
(6.'6%) (1.0%) (.74%) 

'45 8.07E-3 7.65E-3 7.00E-3 1.05 1.15 
(1.5%) (1.4%) (1.0*) 

60 2.26E-3 2.14E-3 1.79E-3 1.06 1.26 
(1.9%) (1.8%) (1.3%) 

75 6.14E-4 5.69E-4 4.40E-4 " 1.08 1.40 
(2.4%) (2.2%) (1.7%) •0 

90 1.61E-4 1.48E-4 1.06E-4 1.09 1.52 
(2.9%) (2.7%) (2.1%) 

CR r » 
105 4.25E-5 3.81E-5 , 2.55E-5 1.12 1.67 

(3.5%) 3.2%) (2.5%) 

120 1.14E-5 9.62E-6 5.89E-6 1.19 1.94 
(4.1%) (3.7%) (3.0%) o 

135 3.09E-6 2.41E-6 1.-40E-6 1.28 2.21 
(4.7%) (4.4%) (3.4%) ' 

150 7.99E-7 6.18E-7 ' 3.31E-7 1.29 2.41 
(5.3%) ' (5.0% (3.9%) 

165 2.13E-7 1.59E-7 7.77E-8 1.34 2.74 
(6.0%) (5.7%) ' (4.4%) 

180 5.63E-8 3.91E-8 1.81E-8 1.44 3.11 
(6.8%) - (6.1%) (4.9%) \ 

, 200 8.20E-9 5.08E-9„ 2.17E-9 1.61 3 J 78 
(7.9%) (6.8%) (5.6%) 

20-cm-Radius Problem 

This problem is identical to the 100-cm-radius problem In every aspect 
except for the radius. The smaller radius now makes the transverse and 
backscattered leakages almost identical, 3.84 x 10"^ ± 0.4%. This problem 
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runs only slightly less efficiently than the 100-cm-radius problem. The 
reason is that although it is harder to get particles through the cylinder, 
less time is spent on particles wandering around radially. They are killed 
by escaping.-' 

This problem was done in only two modes: splitting with MCNP and MCNP 
with a combination of the weight window and exponential transformation. 
The exponential transformation by itself on this problem performs very 
poorly. The importances for splitting were set using the same technique as 
before, and another (but different) combination of two-for-one and 
four-for-one splitting resulted. The importance in the last cell was 
21233664 as compared to 4194304 for the 100-cm-radius problem. For the 
case of splitting, the transmitted leakage is 7.50 x lO""1^ ± 5% with 6.0 as 
a figure of merit. The weight window and transformation Obiasing parameter 
is again 0.7) result is 8.17 x lO-1*-* ±4.9% with 21.5 as a figure of merit. 

r 

From the calculation with splitting, the transmitted neutron dose is 
2.74 x 10-17 ± 7.0% mrem/per neutron, and the transmitted flux is 
8.06 x 10~13 ± 6.9% neutron/cm2. 

DXTRAN is also inappropriate for this case as it was for the 100-cm-
radius case; the figure of merit is reduced by its use. 

BENT-PIPE PROBLEM 

This problem is also divided into two parts, both of which are much 
less demanding than the previous 200-cm-concrete problem. In both cases a 
20-cm-radius pipe that is 240-cm long along the axis has a//90° bend In the 
center and is jacketed concentrically by a 20-cm-thick region of ordinary 
Portland concrete. In the first case, the pipe is filled with liquid 
sodium, and in the second case the pipe is void. The geometry is shown in 
Figure 2. With the sodium, the attenuation from one end to the other is 
about 106 and with the void about 103. 
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Figure 2. Bent Pipe Jacketed by Concrete. 
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The source for both cases is the same . It is a i area source incident 
on one end of the pipe (but not including the jacket) with the energy and 
angular distribution given by 

i- < S ) 
"S(E ,y) = C°"S ' (1/E spectrum) Ji ' 

= 0 otherwise T 

where p = the cosine of the coaxial direction at the entrance plane. 
The procedure used to sample this distribution^ is given "in the Appendix at 
the end of this paper. Constraints on the source are 8(.32 eV < E < 184 keV 
and 0.8 < p < 1. 

h 
The tally used to compare the various methods^is the leakage 

transmitted out the opposite end of the pipe (pipe only and not Including 
the jacket) within the direction 0.8 < V < 1.0 where y = +1 is the cosine 
of the coaxial direction at the exit plane. Results of other tallies will 
be reported, however. The energy cutoff in all cases is 8.32 eV. 

H c 
<• Sodium-Pipe Problem 

The sodium density used is 0.705 g/cm^ which is appropriate for sodium 
temperatures of approximately 1000°C. This problem is representative of 
design features in fast breeder coolant loops and possibly in fusion 
reactor coolant loops. 

With only survival-biasing and a weight-cutoff game, in two minutes of 
computer time, no tallies were made. In fact, out of 33878 source 
neutrons, only nine had made it around the 90° bend. No particle got 
within 40 cm of the pipe exit. 0 

In this problem, the mean free path averaged over collisions for 
sodium is about 16 cm and about 2 cm in the concrete. Therefore, plane 
splitting surfaces were placed across the axis of the pipe at 20-cm 
intervals. A 45° plane was also added where the two legs of the pipe 
intersect. Radial splitting was used in this problem by adding two 
concentric cylinders within the concrete jacket to be used as splitting 
surfaces. The first cylindrical splitting surface was placed 2 cm inside 
the concrete jacket, and the second was placed outward in the radial 
direction another 2 cm. 

i To sec the importances, two runs of half a minute each were made to 
level the track population in the pipe between the source plane and the 
tally plane. Relative to the corresponding axial importance in the 
pipe, the radial importances were decreased by a factor of two for each of 
the first two sleeves and then a factor of four for the outer sleeve. To 
show that this elaborate radial setup is really not necessary, another run 
was made with only one radial-splitting surface in the middle of the 
concrete jacket. The importances of the inner radial cells were reduced by 
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a factor of two and by another factor of four for the outer radial cells. 
The figure of merit was 62 v̂ ith the two* concentric splitting surfaces and 
58 with only one in the center of the jacket. The two surfaces are more 
effective in killing outward-bound tracks and maximizing backscattered 
tracks, but the extra cells and surfaces required more computation time. 

<i / 
In applying the weight window to the sodium pipe, the lower weight 

bound was derived from the set of importances used in the run with 
splitting. The lower bound was taken to be 3/Ij, where I^ is the 
importance for cell i. The factor three was chosen so that the source 
particles would start within the weight window. The upper weight bound was 
taken to be five times the lower weight bound based on previous with the 
weight window, it was used with the biasing parameter p set to 0.4 in one 
case and to 0.7 in another. 0 

iv c A multigroup run was made with MCMG using geometry splitting with 
different axial-splitting planes and with one concentric splitting surface 
midway between the inner and outer surface of the concrete jacket. 

t 
Results of the above cases are summarized in Table 6. 

Table 6. Results of Bent Sodium Pipe 

Transmitted 
Leakage Computer 

Method (.8 <y < 1) % Error FOM Minutes 

MCNP, splitting 

MCNP,^weight 
window 

MCNP, weight window, 
expo, trans.(.4) 

MCNP weight window, 
expo, trans.(.7) 

MCKG, splitting 

MCNP, splitting, 
DXTRAN 

DXTRAN in conjunction with geometry splitting was tried for a couple 
of runs with MCNP. The DXTRAN sphere was placed around the sodium at the 
exit tally plane. A game was played with DXTRAN such that all 
contributions to the DXTRAN sphere were accepted within four mean free 
paths, and a Russian roulette game was played with contribution^ beyond 
four (a short run indicated about 90% of the contributions were being made 
withir. four mean free paths). In one case DXTRAN was tried with the setup 
with axial-splitting surfaces every 20 cm and with two concentric-splitting 

5.83 x 10~7 

6.38 x 10"7 
4.1 

6.4 

5.70 x 10"7 5.7 

62 

54 

67 

9.6 

4.6 

- JCy 
4.'6 

5.93 x 10~7 6.3 

5.19 x 10"7 

5.92 x 10~7 

* J 
5.0 

y, 

55 

46 

9.9 V 22 

4.6 

8.7 
D 

4.6 
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Q 
surfaces in the concrete jacket; the figure of merit dropped from 62 to 
22. Secondly, DXTRAN was tried with a very simple setup using one 
axial-splitting surface (four-for-one) at the 45° intersection of the 
cylinders and a second splitting surface (one-for-two) at the 
sodium-concrete interface; 0.7 was the figure of merit. ' 

Results other than the transmitted leakage may be of interest. Using 
MCNP with geometry splitting, 56.5% of the starting weight was lost to 
energy cutoff,0.8% to escape through the curved jacket, 0.9% to capture, 
and 41.2% to backscatter from the source plane. The transmitted leakage 
out of the sodium was 3.11 x 10~7 -fc 4.3% between 37° and 90° relative to 
the axis of the pipe at the exit and 5.83 x 10-7 ± 4.1%' between 0° and 
37°. The leakage transmitted through the exit plane bounding the concrete 
jacket (an annular disk excluding the sodium in,, the center) was 6.27 x 10-® 
± 7.5% between 37° and 90^ and 5.05 x 10-3 * 8.3% between 0° and 37°. The 
neutron dose transmitted^through the sodium exit plane was 1.28 x lO-!^ ± 
4*4% mrem per neutron, 7and the dose' transmitted through only the concrete 
at the exit plane was 6.39 x l O " ^ ± 8.6% mrem per neutron. The flux 
transmitted through the sodium exit plane was 1.01 x 10-9 ±411% 
neutrons/cm^ and 5.02'x 10~H ± 7.3% neutrons/cm2 through the concrete exit 
plane. / 

/ Void-Pipe; Problem 
/ r -

This problem is identical to the sodium-pipe problem exctpt that the 
sodium is replaced by a void. Two surprises came from this problem: 
'(1) intuition led to preliminary problems with geometry splitting, and 
(2) DXTRAN performed very impressively,. 

- / ' !' " 0 

Trying this problem without any variance-reduction techniques, in two 
minutes of computer time 31448 neutrons started but only 358 got past the 
90° bend, "and 20 actually got to the exit tally plane. 

' ' n ' I 
II The splitting surfaces were very similar to the sodium-pipe setup: 

axial planes every 20 cm and two interior concentric cylinders (one 4 cm 
into the'concrete jacket from the void and the other another 4 cm into the I! ' 
jacket). The final axial importance before the exit was 4096 where it was 
2519424 with the sodium. The attenuation from, the source to the exit is on 
the order of 10^. 

Initially the radial importances were set as with the sodium: 
relative to a given axial cell in the void, the first radial cell had an 
importance a factor-_of two less, the middles radial cell importance another 
factor of two less, and the outer radial cell a factor of four less than 
the middle cell.' This setup led to a figure of merit of 16 which was, 
surprising since the attentuation is three orders of magnitude less than 
with sodium where the figure of merit was 62. 

" Q 
Looking at the MCNP summary information, it was noted that each 

neutron created about 7 tracks, and each neutron had about 6.6 collisions. 
This says that on the average every time a track had a collision, ,it was 
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split- This was the clue to the problem: the importance of the inner 
sleeve of the concrete jacket was a factor of two less than the adjacent 
void region which meant that a track entering the concrete from the void 
underwent Russian roulette with 50% survival. If the track backscattered 
into the void, it was split two-for—one but then immediately went to the 
other side of the void where Russian roulette was played again, etc. 
Obviously this is very inefficient. 

The next step was to set the importance of the inner sleeve equal to 
the importance of the adjacent void. The middle-sleeve importance was then 
reduced by a factor of two relative to the inner sleeve, and the 
outer-sleeve importance was reduced by a factor of four relative to the 
middle sleeve. 

Playing other splitting games such as changing the thickness of the 
concrete sleeves and reducing the number of radial sleeves from three to 
two had relatively little effect. 

The weight window by itself was used successfully in the problem; the 
exponential transformation is not applicable. The bounds of the windows 
were set based on experience and 'by experimenting with a couple of short 
runs and watching the behavior of the sample variance. 

MCMG was used with geometry splitting incorporating one concentric 
splitting surface in the center of the concrete jacket. Furthermore, two 
scattering kernels were tried: (1) with a continuous-scattering angle and 
(2) with the MORSE discrete-scattering angle. 

Results of these runs are summarized in Table 7-

Table 7. Results of Bent-Void Pipe 

Method 

Transmitted 
Leakage 

( . 8 < V < 1) % Error FOM 
Computer 
Minutes 

MCNP, splitting 1.08 x 10" -3 5.6 33 9.6 

MCNP, weight 
window 

1.10 x 10" -3 4.2 53 10.7 

MCMG, splitting, 
cont. angle 

1.11, x 10" 
\ 

-3 3.7 60 12.2 

MCMG, splitting, 
discrete angle 

1.07 x 10' -3 3.8 57 12.1 

The MCNP-with-splitting figure of merit is less than the others by 
about a factor of two and less than the sodium-pipe figure of merit also by 
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a factor of two. The reason for both of these observations is unclear at 
this point. It can be argued that the void pipe should take longer than 
the sodium pipe because with the void all scores at the tally come from 
time-consuming backscattering. With the sodium, a large number of tracks 
can get to the tally plane without having to backscatter. 

v' 
DXTRAN with MCNP was tried on this problem in four cases: (1) with 

the above splitting setup that gave the 33 figure of merit, (2) with the 
same geometrical setup (all the cells and surfaces set up for splitting) 
but with importances set to unity, (3) no splitting and all internal cells 
and surfaces removed that were required for the earlier splitting, and 
(A) all the extra cells and surfaces still removed but split two-for-one 
axially where the two legs of the geometry intersect at 45° and reduce the 
importance of the adjacent concrete jacket by a factor of two relative to 
the void. The impressive results are shown in Table 8. The weight window 
was not used for any of these calculations, and there is a potential for 
further DXTRAN improvements by using it. All runs were for 4.6 minutes of 
computer time. Russian roulette was played for all contributions to the 
DXTRAN sphere beyond four mean free paths. In all cases the radius of the 
outer sphere was 30 cm, and the radius of the inner sphere was 20 cm. 

Table 8. DXTRAN Results 

Case « 

Transmitted 
Leakage 

(.8 < p < 1) % Error FOM 

1 splitting, 
complex geometry 

1.07 x 10~3 
u 

3.8 148 

2 no splitting, 
complex geometry 

1.06 x 10~3 4.0 134 

3 no splitting, 
simple geometry 

o 

1.08 x 10-3 3.3 195 

4 mild splitting, 
simple geometry 

1.04 x 10-3 3.0 243 

Some conclusions may be drawn from these DXTRAN calculations. The 
improvement from case 2 to case 3 points out the obvious: more cells and 
surfaces require more arithmetic by the computer; they don't come free, 
^omparing case 1 and case 2 suggests that when you are already doing a 
pretty good job by one other technique, an additional technique adds little 
more and may even hurt (this was observed in the other problems). 
Comparing cases 3 and 4 suggests that there is usually profit in adding a 
little obvious help to the random walk. Cases 1 and 4 suggest that a very 
complex, elaborate setup may be overkill; not only does it^take a person 
longer to set up and debug a complicated geometry, it takes the computer a 

ij long time to get ^through it too. 
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Other results associated with this bent-void pipe include about 1% of 
the starting weight lost to escape through the curved jacket, 8% lost to 
backscatter, about 92% lost to energy cutoff, and 0.4% lost to capture. 
The leakage transmitted from the void at the exit plane between 37° and 90° 
is 1 . 6 5 x 10~4 -fc 5.7%, the leakage transmitted from the concrete at the 
exit plane between 0 ° and 37° is 7 .67 x 10~ 5 ± 12% and 5 . 4 6 x 10"5 ± 7.7% 
between 37° and 9 0 ° . The neutron dose through the void at the exit is 
1.65 x 1 0 ~ 1 2 ± 5.8% mrem per neutron and 6 . 6 4 x i o - 1 ^ ± 9.0% through the 
concrete. The flux through the void at the exit is 1 . 1 6 x 10~ 6 ± 4.7% 
neutrons/cm2 and 5 . 2 5 x 10""® * 8.4% neutrons/cm2 through the concrete. " 

CONCLUSIONS 

It is virtually impossible to be able to say when to use one, variance-
reduction technique or another. One needs to have many techniques at his 
disposal. Furthermore, it is also virtually,, impossible to be able to 
prescribe how to use a particular technique. Experience in these matters 
has no substitute. 

Despite the above disclaimer, we will attempt some general 
conclusions. 

It appears the weight-window concept has merit when used in 
conjunction with other techniques that produce a large weight dispersion. 

t) It keeps from wasting time on low-weighted particles and keeps a tally and 
its variance from being overpowered by a few large-weighted scores. 
However, we at Los Alamos have not had enough experience with this tool tp 
put^it into MCNP permanently. We know relatively little about how to set 
the bounds of the window - especially if energy dependence is required.. 

" a , 
The exponential transformation has very limited use"by itself. It 

should not be used alone but ,,in conjunction with something like the weight 
window. The performance and ̂ especially the reliability of the 
transformation are sensitive to the biasing parameter which, In our 
opinion, makes this technique dangerous to use except for the experienced 
Monte Carlo practitioner. We sometimes1 refer to the exponential 
transformation as the "dial-an-answer" technique, because the result of a 
calculation frequently appears to be a function of the biasing parameter. 

Geometry splitting with Russian roulette is our most frequently-used 
technique. Although other schemes may buy more in particular situations, 
geometry splitting will ̂ virtually always give good returns. Furthermore, 
it is easy to understand and reliable. An important aspect that is 
apparent from the.calculations in this paper is that performance is fairly 
insensitive within a"' broad range to how the splitting is implemented 
(two-for-one, four-for-one, where the surfaces are located, etc.) 

Furthermore, it Is not just enough to look at a figure of\ merit and a 
final sample error. You must also look at the sample mean and its error at h 

\)> 
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frequent intervals to make sure they have settled down and converged on a 
reliable result. In other words, look at the variance of the variance. 
For example, after a relatively few histories,/a point-detector flux may 
have an indicated error of 10% but be in actual error by several factors. 
After a few more histories, both the flux and'its error could be perturbed i n , , 
significantly. This procedure was not emphasized,earlier in the paper, but 
it was used. It is simply wise practice - because it may give the only 
clue of an unreliable result. / /< 

/ I' 1 !<' 
Group X-6 is experimenting with analytically calculating the variance 

of the variance (or error of the error) and most of the MCNP calculations 
for this paper were done with, a modification to MCNP for this purpose.H 
We recognize that there is very little quantitative information in the 
fourth moraejit, but qualitatively it appears that whenever the error of the 
error is of the same order as the error (bothjabout 5 or 10%, for example) 
then the sample mean is reliable. But if the; error isvabout 10% and the 
error of the error io' 60%, the mean is unreliable. , / II 

One valid rule of thumb is to always make a few'short, experimental 
runs to get a feel for the problem and to see the effect for different 
techniques and parameters. The code you are using should automatically 
provide you with enough basic information to allow you to evaluate and 
understand the run and its attributes.' It|has been our observation that 
the more experience a person has, the /more/ reliance is put on, preliminary 
runs. The less experience a person has, theimore likely a job will be set 
up as quickly as possible, a long run1 attempted, and whatever comes out° 
believed. , ''/ II 

CJ If-

j II • 
Finally, this paper has probably generated more questions than it has 

answered - especially in the area of multigroup calculations. Also, as 
applications become increasingly more complicated, there are other 
important and interesting topics such as the effect<of representing a 
complex three-dimensional geometry/by a lower-dimensional model. We look 
forward to addressing these and other questions iO the future. r/ 

- / / 
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Appendix 

1. Fission-Spectrum Groups for MCMG 

The source fraction per group,' Se, Is determined '"from 

S = f f—)ylI e~E/T dE, T = 1.30 MeV . 
4 

Group Lower Bound, MeV S 

1 i 15.0 3.0380E-5 
2 13.5 7.8639E-5 
3 12.0 2.3568E-4 
4 10.0 1.1626E-3 
5 7.79 5.9203E-3 
6 6.07 1.7678E-2 
7 3.68 1.0418E-1 
8'' • 2.865 9.1383E-2 
9 2.232 1.0877E-1 

10 1.738 1.1525E-1 
11 1.353 1.1097E-1 
12 0.823 1.8153E-1 
13 0.50 1.1963E-1 
14 0.303 6.9450E-2 
15 0.184 3.6918E-2 
16 o 0.0676 2.8169E-2 
17 0.0248 6.6880E-3 
18 0.00912 1.5188E-3 

0.99955 

2. Sample Energy E from Fission bpectrum 

f ( E ) = yM e-E/T 
//TT 

T = 1.30 MeV 
E = 3T/2 =1.95 MeV 

Let ^ be a random number (0,1), 

a = (-£n £ o) c o s 2^-~ and 

r, E = T(-£n C3 + a) . 
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3. Sample 1/E Energy Distribution, Angular Distribution, and Spatial 
Distribution 

Let f be a random number (0,1), 

(a) Energy: f(E) = (.10)/E 8.32 eV < E < 184 keV 

E = 0.184e-10£ 

(b) Angular: f(y) = const. 0.8 < y < 1 

= 0 otherwise 

y = 0.8 + 0.2 £ 

y = +1 is along y-axis 

The direction cosines (u,v,w) = (0,1,0) must be rotated through the 
polar angle cos~^y and through an azimuthal angle sampledr uniformly from 
( 0 , 2 7 1 " ) . 

(c) Spatial: y = 0 

x 2 + z 2 < 202 . 
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EXPERIENCE WITH TRIPOLI AT ORNL 

S. N. Cramer and R. W. Roussin 
Oak Ridge National Laboratory 

Oak Ridge,Tennessee 37830 

ABSTRACT 
/ , 

Initial use of the TRIPOLI code at Oak Ridge National 
Laboratory (ORNL) involves calculation of sample problems for 
both neutron and gamma-rays. Comparison with existing MORSE 
results indicates that the computing efficiency of TRIPOLI is 
somewhat better for the problems studied. Calculation of a 
thick (90cm) concrete and steel integral experiment with 
TRIPOLI gives good agreement with the experimental results. 
This calculation involved the neutron count rate and unfolded 
energy spectra as measured in an NE213 detector behind the 

('' sample. It was necessary to expand the standard TRIPOLI cross 
section energy structure near the 2.3 MeV minimum in the total 
crcss section of oxygen (a major constitutent of concrete) to 
correctly calculate the count rate near this energy. A draw-
back of the TRIPOLI code is the lack of ,ar. automated method of 
performing coupled neutron and gamma-ray production calculations. 

INTRODUCTION 

As a part of the preparation for the Monte Carlo seminar-workshop the 
Radiation Shielding Information Center (RSIC) has sponsored a limited 
calculational program involving the TRIPOLI code. This code has been in 
use at ORNL for the past year following the visit to RSIC of personnel 
from the CEA/CEN SERMA Shielding Laboratory, Saclay, France for the 
purpose of connecting ENDF/B to TRIPOLI. The TRIPOLI code is a very large 
and versatile Monte Carlo code system undergoing continuous development on 
an IBM computer system similar to that used at ORNL. 

During the past year various problems of interest were analyzed using 
TRIPOLI, and results of three types of calculations are reported in this 
paper. 

PROBLEMS CALCULATED WITH TRIPOLI 

Three different problems were run to test some of the capabilities of 
TRIPOLI. These include a point fission neutron source in air, a point 
monoenergetic gamma-ray source in air, and an integral experiment measur-
ing the time and energy spectra of neutrons penetrating through a re-
inforced concrete shield. 
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Neutron Fission Source in Air " 

Calculation of a neutron sample problem as described in the MORSE 
report are given in Tablrc 1. These are flux calculations at various radii 

from a point fission source in infinite 
air. Two types of TRIPOLI results are I iM\. 1 Kesulls of ttu Vutruii Soiirtt ln mr sample Problem . i_i c — i • • JI ^ i 
given: those for no biasing and those 
with adjustments to the spatial, energy, 

°(;> °/T' and angular biasing input parameters in 
order to obtain comparable statistics 
at all radii. The values in the table 
are the standard deviation, given in 
per cent, and the figure of merit, the 
square of fractional standard deviation 
times the IBM 360/91, computation time 
(T) in seconds. No attempt was made to 
improve the efficiency for the reported 
MORSE results. Ten TRIPOLI calculations 

were made for this problem with different combinations of biasing input 
parameters. An average value of the flux was obtained for each radii, and 
it was observed that for the seventy fluxes 68.6% were within 1 a, 94.3% 
were within - 2o,and 100% were within * 3a of their respective average 
values. 

H 1111,1 i In km) M0KS1 '>(«) II ' T (nu 4>K3« 
TRIPOLI 111 ihlilB), uct) n-r 4nR2$ 

TRIPOLI (biasing) 
O5T 

0 1 1 720 16 0 0 77 1 870 8 7 0 26 1 811 5 . 0 0 12 

a 2 1 979 9 5 0 27 1 941 7 2 0 19 2 023 5 4 0 15 

0 3 1 .,81 7 9 0 19 1 723 9 1 0 30 1 833 3 7 0 07 

a ii 0 604 7 4 0 20 0 660 12 8 0 57 0 651 5.3 0 14 
0 7 0 451 8 6 0 27 N 452 14 9 0 78 0 419 4.7 0 11 
0 9 0 147 9 1 0 25 (0 196 19 0 1 26 0 154 4 4 0 09 

1 1 i 0 042 2) 8 1 43 0 041 29 9 3 13 0 036 5 9 0 17 

Monoenergetic Gamma-Ray Source in Air 

The results of a sample gamma-ray problem are given in Fig. 1. The 
flux spectrum at 1000 meters is shown resulting from a point 10 MeV gamma-
ray source in air. The TRIPOLI boundary crossing estimator and the newly 
implemented MORSE1 Klein-Nishina next event estimator were used. The 
differences in the calculation can be attributed to differences in the 
basic data (TRIPOLI library vs. ENDF/B) and also differences in the cross 
section processing (continuous energy vs. multigroup). The a2T for the 
MORSE total flux was a factor of 4 greater than that for TRIPOLI; however, 
MORSE boundary crossing estimator results gave a figure of merit compar-
able to that for TRIPOLI. T) ^ ^ 

Concrete Integral Experiment 

A final calculation with TRIPOLI involves a large scale integral 
experiment performed at IRT.2 Figure 2 shows a schematic of the entire 
experimental set-up, and Fig. 3 shows the details of the sample problem 
geometry used to simulate a reinforced concrete shield. The incident 
neutron energy range is from 20 MeV to 10 eV. 

At the time these calculations were performed, several TRIPOLI 
modules had not yet been fully implemented at ORNL. These features in-
clude the generation of secondary gamma rays from neutron interactions, 
the next event estimator,; and the ENDF/B library. As a result, the 
calculations presented here are for neutrons only using a detector bound-
ary crossing estimator and the standard TRIPOLI library based on UK data 
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- Fig. 1. Flux Versus Distance for the 
Infinite Air Gamma-Ray Sample Problem. 
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Time Dependent Count Rate Results 

The calculated and experimental count rates are shown in Fig. 4. The 
incident source energy ranges corresponding to the time taken for the 
neutrons to traverse the 50 meter flight path are indicated on the figure. 
These count rate comparisons are absolute, each being normalized to the 
number of neutrons incident on the leading edge, of the sample for the 
individual time (energy) intervals. In order to calculate the 2.5 ysec 
peak, due to the 2.3 MeV minimum in the oxygen cross•section in the con-
crete, about 20 narrow energy intervals were used in the cross section 
structure in the vicinity of this minimum. With only two intervals to 
describe this minimum, the calculated count rate was about half that shown 
in Fig. 4. For penetration studies, the TRIPOLI cross section structure 
is continuous in energy but with constant values over specified energy 
intervals. 
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^Fig. 4. Count Rate Comparisons 
for the Concrete Integral Experiment. 

Neutron Energy Spectral Results 

The secondary energy flux spectra, averaged over the incident energy 
intervals from Fig. 4 are given in Figs. 5 through 14. The spread between 
the experimental curves represents two standard deviations in the unfolded 
data. The same quantity is represented by the error bars on the cal-
culated histograms. The flux spectra comparisons are generally in good 
agreement, the only consistent discrepancy being in the lowest (1-2 MeV) 
interval for which experimental data were reported. The histograms repre-
sent values which have been smeared with a Gaussian resolution function 
provided in the experimental results following the TRIPOLI calculation. 
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For a variety of reasons, this smearing is the probable cause of the low 
,,energy discrepancy, and it is still under investigation. The detector 
resolution.below 1 MeV was not provided and was extrapolated in order to 
smear the very large fluxes below 1 MeV into the higher energy intervals. 
The coarseness of the smearing grid or any error or inconsistency in the 
low energy extrapolation or smearing procedure could easily cause the 
differences in the 1-2 MeV interval. 

Comments on thejSpectral Results 

It was found necessary to modify the calculated spectra by an un-
explained normalization factor, due to an inconsistency in the experi-
mentally reported data, in order to obtain the comparisons shown. This 
factor of 15.7 was determined by comparing the total experimental counts 
integrated between 2 and 15 MeV from Fig. 4 (Fig. 22 in Ref. 2) with that 
obtained by folding the detector efficiency (Fig. 13, Ref. 2) into and 
integrating the experimental spectra between 2 and 15 MeV (Fig. 25, Ref. 
2). This anomaly is also still under investigation in consultation with 
the experimentors. 

CONCLUSIONS 

The neutron fission source in air problem allowed a limited, but 
successful, application of some of the biasing techniques available in 
TRIPOLI. The spectral results calculated for the monoenergetic gamma-ray 
source problem were encouraging in that good precision was obtained for ^ 
the entire energy range in a small amount of computer time. 

The calculation of the integral experiment did not test many of the 
features of the TRIPOLI code, especially the intricate biasing procedures, ' 
next event estimator, gamma-ray productions, etc.; however, it did demonstrate 
the capability to accurately analyze an experimental benchmark problem of 
significant importance for shielding applications. ^ 

G 1 O 
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Fig. 7. Flux Spectra Comparisons for the 
Concrete Integral Experiment for the 10-9 MeV 
Incident Energy Interval. 

Fig. 6. Flux Spectra Comparisons for the 
Concrete Integral Experiment for the 12-10 MeV 
Incident Energy Interval. 
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/, MORSE;0 CURRENT STATUS OF THE TOO. OAK RIDGE VERSIONS 

3 
M. B. Emmett and T. West, III i 
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Oak Ridge, Tennessee, USA 

ABSTRACT 
0 
There, are two versions of the MORSE Monte Carlo radiation 

transport computer code system at Oak Ridge National Laboratory. 
MORSE-CG is the' most well-known and has undergone extensive' use 
for many years. Development, of MORSE-SGC was originally begun 
in order to restructure the cross section handling and thereby 
save storage,- but the more recent goal has besn to incorporate 
some of the KEN09ability to handle multiple arrays in the geo-
metry and to improve on 3-D plotting capabilities. New 
capabilities recently added to MORSE-CG include a generalized 
form for a Klein Nishina estimator, a new version of BREESE, 
the albedo package, which now allows multiple albedo materials 
and a revised DOMINO which handles DOT-IV tapes. 0 ^ 

MORSE-CG 
A 

MORSE-CG1 is almost continuously undergoing development. Among 
the recent changes or additions are a more generalized Klein Nishina 
estimator, a new version of the BREESE2'3 albedo package, a version of 
DOMINO4 that handles DOT-IV type tapes and free-form input for the 
SAMBO analysis data. 

The Klein Nishina estimator that is now being used takes pair pro-
duction and Compton scattering cross sections directly from ENDF cross 
section libraries. The cross section routines have been altered to 
allow processing of these cross sections. The estimator itself is 
built into a version of RELCOL which uses the Klein Nishina estimator 
for gamma ray groups and the 'standard' point detector next-flight 
estimator for neutron groups. Several tests of this have been made. 
One such test was a comparison with DOT runs both with and without the 
standard source fixup which deletes negative fluxes and removes enough 
small positive values to restore particle conservation. MORSE was run 
both with and without the Klein Nishina estimator. A comparison of 
these results is shown in Figure 1 and a more detailed description of 
the test was given at the 1979 Winter ANS meeting5. 

o 
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RADIUS ( C M ) 
Figure 1. Comparison of MORSE and DOT Results 

o 
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BREESE-II allows multiple albedo materials in a single MORSE run. 
It also allows the number of outgoing polar angles to be dependent on 
the value of the incoming polar angle and the number of outgoing azi-
muthal angles to be a function of the value of both the incoming and 
outgoing polar angles. The CARP code which prepares albedo tapes for 
BREESE usually collapses the group structure of the albedo data so that 
a reasonable amount of core is used. One method used to test this 
BREESE was to run the same problem in three ways: with materials only, 
with albedo only and with some material adjacent to albedo. Satisfac-
tory results were obtained in this way. At present, albedo data is 
available for four materials: 12-inch water, 12-inch ordinary concrete, 
9-inch carbon steel and 1/2-inch steel over concrete. Both the data 
and the two computer codes are available from RSIC. 

DOMINO, the interface code between discrete ordinates (DOT) and 
Monte Carlo calculations has been modified to allow use of DOT-IV8 

boundary source tapes since most DOT users now run DOT-IV. 

Another change to MORSE-CG allows use of both specular reflection 
media and actual albedo media in a run. This is done by using a media 
number greater than 1000 for the specular reflection media. 

The use of free-form input data in the SAMBO analysis package has 
been implemented in subroutine SCORIN through a call to a new routine, 
RFRE. Old input decks are compatible only if there are no spaces with-
in a number and no blanks used for zeroes and if a card containing 
either a $$ or an ** in Columns 2 and 3 Is placed in front of the array 
to indicate integer or floating point. 

The above is a brief summary of the current status of MORSE-CG at 
Oak Ridge. Now the status of MORSE-SGC will be presented. 

MORSE-SGC 

MORSE-SGC6 is a supergroup version of the MORSE family of Monte 
Carlo codes. It has the ability to supergroup the cross section storage 
and particle tracking to allow fine group problems to be run on medium 
to small computer systems. This technique is especially beneficial on 
CDC computers. The combinatorial geometry system in MORSE-SGC has 
undergone extensive revision. The new geometry system, based on com-
binatorial geometry, is called MARS, an acronym for a Multiple ArRay 
System. This is a powerful tool for modeling either lattice geometry 
or complex geometry having repetitive features. 

The MARS geometry system allows the user to describe many rectan-
gular cells of arbitrary content, called "universes". These universes 
can be arbitrarily combined to describe arrays. Arrays may contain 
sub-arrays, universes, and vacancies. There exist three methods of 
nesting arrays inside of arrays in the MARS geometry system. There is 
no limit to the depth of geometric nesting. Geometry may be optionally 
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modeled around an array or arrays and repeated in its entirety. Further-
more, the position of an array is arbitrary, thereby allowing rotation 
as well as translation, when aii ̂ array is repeated. Vacancies in an 
array may occur either on an array periphery or internal to an array. 
MARS allows the user to exit or enter an array from any cell in the 
array, providing the geometry surrounding the array is well defined. 
This feature was demonstrated recently in modeling the Three Mile Island 
Core for the Kemeny Commission. The core was modeled first as it was 
designed and then later modeled in a hypothetical disrupted configuration. 
This work was reported in ORNL-TM-IO67. In both models no material 
homogenization was needed. The proper material composition and geometry 
description was achieved for the entire core taking into account three 
different fuel enrichments, two types of control rods, three types of 
burnable poison rods, orifice rods, and instrument channels. The design 
core required 6000 words of memory and the disrupted core required 9000 
words of memory. The design core modeled about 40,000 pins and the 
disrupted core modeled about 241,000 pins. In both models the core 
periphery shape was described and in the disrupted core model a three 
step conical hole was modeled in the top center of the core. Inside 
this hole other material regions were modeled. Criticality studies 
were performed on both models. The work was performed in three weeks. 

The development of the MARS system in MORSE-SGC was sponsored by 
the NRC Transportation Division. It is operational in the SCALE system 
(Standard Computer Analysis for Licensing Evaluation) in the SAS3 and 
SAS3X sequences. This system uses simple input and automatic cross 
section processing for quick efficient problem setup and execution. 
M0RSE-SGC has been used in this system for both shielding and criticality 
analysis of several different shipping casks. A typical PWR Shipping 
Cask is shown with 7 PWR assemblies in Figure 2. This drawing was gen-
erated with the JUNEBUG Graphics code which was developed to allow three-
dimensional display of the MORSE/MARS geometry. The geometry for this 
model required 1805 words of memory, and 74 cards of input. Figure 3 
shows the array nesting for this model. Notice most of the arrays are 
very small arrays, such as 3 by 1 by 1, 2 by 6 by 1, 5 by 1 by 1, etc. 
By modeling small arrays, nesting other arrays inside these arrays, and 
repeating arrays, very efficient memory utilization is achieved. Figure 
4 shows the different "Levels" of geometry nesting used in this model. 

The MORSE-SGC code will be available from RSIC during the summer 
of 1980, along with the JUNEBUG graphics code, and the CDC version of 
SCALE.10It is hoped that the features of MORSE-SGC will complement the 
existing MORSE-CG capability and aid the criticality and shielding 
analyst in providing quick and efficient computer analysis. 
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Figure 2. Typical PWR Shipping Cask 
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ABSTRACT 

We present in this paper the tridimensional Mcnte Carlo code TRIPOLI 2 
wich solve transport problems for neutrons or gamma rays. This code 
is used either for shielding calculations with deep penetration or for 
core calculations with fixed sources or for critical or subcritical 
problems. The principal block diagram of the system is given. 
We discribe successively the geometry characteristics, the cross 
sections utilization, the weighting, the source distribution and the 
results obtained by the code. " . 

INTRODUCTION 

TRIPOLI solves the transport equation'1 for neutrons or gamma rays 
in tridimensional geometrical configurations. TRIPOLI uses the Monte 
Carlo method. This method allows to treat, exactly the geometrical 
configurations, the energy losses and the scattering laws. 

TRIPOLI 2 allows to treat the following problems : 
! ' 

- gamma transport problems 
- neutron transport problems with fixed source, the problems can be 

time dependent or not 
- critical problems without fixed source and research of multiplication o 

factor due to fissions 
- subcritical problems with fixed source and with multiplication by 

fission. 
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These problems can be separate in two types : 

- first type, shielding problems essentially with deep penetration 
and streaming through voids. Biasing technics are used to reduce 
the computing time 

- second type, core problems for cell calculations or for small core 
calculations. In this case, it is necessary to have a fine repre-
sentation of the cross sections. The thermalizatian is also treated 
exactly. 

In Saclay both types of application are used. n 

(1) 
The starting of the conception of TRIPOLI was in nineteen sixty 

five and the first version of the code was operational in sixty eight. 
The code was written for IBM 360.50 and used 270 Kilo bytes only. It 
was essentialy devoted to shielding applications. The first applications 
we made, concerned fast breeder reactor and irradiation loops. We studied 
in particul ar the fast neutron facility HARMQIMIE and the fast breeder 
reactor PHENIX : flux on ionisation chambers and activation of the 
secondary sodium. We calculated also spectra and dammage rates for 
irradiation reactors such as PEGASE, RAPSODIE, OSIRIS, 0100. Some 
shield design were made using TRIPOLI calculations. 

In seventy four we added to TRIPOLI the thermalization and the 
fine treatment of the resonances between 6 KeV and 5 eV. This addilion 
allowed to treat cell calculations and small core calculations. The 
self shielding of the cross sections is now treate'd exactly. The cross 
sections were coming from UKNDL. 

In seventy^five we added the time to the particle parameters. We 
treat now time dependent problems essentialy for physical applications. 
The biasing was developped and we make still improvements in the biasing 
field. 
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In seventy six we added ths fission and we treated the first 
critical problems. We made essentially benchmark for 'cell calculations 

j 
and for instance we calculated the control rods efficiency for the 
reactor ORPHEE. In seventy six also, we modified ^RIPOLlJj'and its cross 
section file to treat gamma problems. 

Finally in seventy nine, the code used ENDF/B cross sections and 
it was allowed to treat subcritical problems i.e. problems with external 
sources and multiplication per fission. 

Actually we are still developping biasing technics and differential 
effect calculations by correlated sampling method. 

It is planned to put in TRIPOLI a combinatory geometry with 
several level of heterogeneity. This will simplify the input data 
essentialy for core calculations. 

TRIPOLI 2 system contains now sixty four thousand cards and 
forty five thousand cards for the cross section processing from ENDF/B. 

THE TRIPDLI SYSTEM 

Let us examine now the TRIPOLI system. The TRIPOLI system contains 
the code TRIPOLI itself, which solves the transport problem completely 
and some auxiliary codes. These auxiliary codes are facilities given to 
the user, but are not essential to solve a transport problem. 

It has been made possible to divide the total job into separate 
o 

stages. Thus the user has the option of either executing all or only 
a portion of the total calculation. The transfer of information from one 
stage to the following one is done byf . "e such as magnetic tape or disk. 
This capability gives greater flexibility and security to the programm. 
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Jil 
! 

There are two types of stages in the TRIPOLI system : the task 
and the phase. 

(! 

The task consists to execute TRIPOLI itself or one auxiliary code. 
Some very important tasks, as LINDA and TRIPOLI are divided in phases. 
For example, TRIPOLI is divided in six phases : < 

SECTA or MACROS, SECTP, GEOM, TEST GEOM, SOURCE, MONTEC. These phases 
are written in the lower part of the picture 1. 

Let us examine now the tasks. There are in the upper part of the picture 
1 . 

C0LLF7 uses one or several collision tapes produced by TRIPOLI. These 
tapes contain the characteristics of all events occured in the history 
of each particle. From this information COLLFI computes fluxes, spectra, 
reaction rates in several energy groups or time intervals and for several 
volumes in space. 

MIXER carries out the management of the results from several TRIPOLI 
calculations [linear combination or addition of several results, conca-
tenation of results]. 

r 

ANALYSE prints and plots on a BENSON or on listing the total" cross o 
sections of the materials and the response functions used in calculating 
the activities. In option, ANALYSE print out the details of the table of 
nuclear interactions. 

o V 
SPECTRE makes the plotting on a BENSON of the spectra calculated by 
TRIPOLI with optionally any reduction in the number of energy groups. 

V1SPAR visualizes histories or collisions undergone by certain particles 
selected from the population in accordance with certain criteria. The 
collision points of the particles of interest are projected on to any 

o ° 
plane0given by the user. 
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Among the selection criteria let us cite : 

1) identification of particles which contribute to a given result in*one 
portion of the geometry. Thus it (is possible to retrace the history 
q,f these particles which makes possible to visualize the preferred 
passage ways of the particles contributing to the result. 

2) detection of the assembly of points in phase space which correspond 
to a bad choice of the importance function. 

l/ZSPAR 

LINVA 

BIBLIO 

TRIPOLI 

FLUXPT 

helps to choose the weighting. VISPAR uses a collision tape. 

makes the management and the production of cross sections from 
ENDF/B. Jean GONNORD will talk to you about this program. 

this program combines or reduces several LINDA libraries and 
products, if necessary, partial LINDA libraries for a given 
category of problems. BIBLID prepares also the gamma rays 
production cross sections. 

makes the preparation of all data (cross section, weighting, 
geometry, source) used for the calculation. TRIPOLI realizes 
the simulation of the particle histories and prints the 
results : fluxes, spectra, reaction rates with their standard 
deviation. 

computes the uncollided flux after each collision using the 
collision tape as COLLFI. From this flux, FLUXPT calculates 
spectra and reaction rates in several energy groups or several 
time intervals. FLUXPT can be use only for shielding problems. 

RETRAITEMEWT RETRAITEMENT is a program whose constants are analytic 
instructions involving results, spectra, reaction rates, from 
one or several TRIPOLI calculations. It makes it possible to 
avoid all manual calculations when the results are used. The 
language used in RETRAITEMENT is called FORTRI for FORMULATION 
TRIPOLI. 

IJ 
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We return now to the task TRIPOLI. As we have said, this task 
is divided in six phases. 

1} SECTA, MACROS the purpose of the phases SECTA and MACROS is to create 
a file of the nuclear constants required for the problem to be trea+J>!ii. 

•f A.),' rr 

2) SECTP the phase SECTP has as its purpose the storage on a file of all 
the constants which provide for the description of the weighting. 

3) GEOU the purpose of the phase GEOM consists in creating a file which 
contains the geometric input with a maximum of precalculation in the 
same format as the fast memory. 

4) TEST GEOM this phase testes the geometry. 

5) SOURCE the purpose of the phase SOURCE is to generate the charac-
teristics of, a collection of particles. 

6) M0MTEC this phase carries out the simulation of the particle histories 
and calculates the corresponding scores. MOIMTEC edits the output : 

c > -
fluxes, currents, reaction rates and spectra. 

In option, the phase MONTEC gives : (see picture 2) 

- some informations concerning the choice of the weighting 
- a file containing all results used by RETRAITEMENT and SPECTRE 
- a file containing all collision characteristics necessary for the 

programs COLLFI, FLUXPT, VISPAR. It is the collision tape. I recall •Vv 

you that COLLFI computes reaction rates and spectra, in volumes or on 
surfaces, FLUXPT calculates reaction rates and spectra at any point and 
VISPAR visualizes histories of particles. 

Let us examine now the most important characteristics of the 
TRIPOLI task itself. 
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GEOMETRY 

First the geometry. The geometry is tridimensional, it is composed 
by an assembly of volumes. These volumes are bounded by first and second 
degree surfaces. The arrangement in space is quite arbitrary. 

We have nine types of boundary surfaces for a volume : , 

- the general planes 
- the three planes perpendicular 'to the axis x, y, z 
- 'the general quadratic for instance cone or ellipsoiti 
- the sphere , f 
- the three cylinders with axis parallel to the axis x, y, z. 

" i 

The volume consists of a^single, chemically homogeneous sub^tan.ce.^ 
and has the same weighting characteristics at every point. n ^ ' ~ 

ll 
We make a special treatment of geometry containing 

parallelipipeds whose faces are perpendicular to the principal directions 
7 

Ox, Oy, Oz. ° 

Some boundary conditions are available. These conditions are given 
on the external surfaces of the geometry. A particle which reaches such a 
surface may undergo : 

- optical reflexion 
- albedo 
- rotation about the z axis 
- translation of given components < 
- escape with or without recording of the characteristics of the particle. 

These special conditions make it possible to treat repetitive 
geometries by symmetry, rotation and translation. 

o 
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The picture n° 3 shows an example of geometry discribed in 
TRIPOLI. It is the PEGASE reactor. A special phase, called TEST GEOM, 
allows to test the geometry. The purpose of this phase is : 

- first, to test the logic of the geometry 
- second, to give the distances traversed in each region along a straight 

line. This possibility allows to verify the equation 

- third to give a graphic print out for one cut through the geometry^^ 

NUCLEAR DATA 

Let us examine now how TRIPOLI use the nuclear data. 
j 

Two tyfjys of urcss sc-cUon representation are available : 

- the fine rnul ligroup representation 
- the pointwliie î eprr •splitation * 

We have suid in intrndut,Hon that there are two types of problems: 
the shielding calculations and the core calculations. 

Far the GO re calculations we use pointwise cross section below 
G keV and above 5 eV with forty five thousand points in this range. Above 
6 keV or below 3 eV, we use a fins multigroup representation. This allows 
to treat exactly the. self shielding of the cross section. 

For shielding calculations, we use only a fine multigroup 
representation of the cross sections with, for neutrons, two hundred 
seventy groups from fifteen MeV to the thermal region. For gamma rays 

a 
we use sixty groups from 10 MsV to 10 keV. 

For neutron, the data are coming from UKNDL or ENDF/B ; for 
from 

gamma rays they are coming from UKNDL of" Los Alamos Laboratory CStorm 
et Israel LA 3753]. 
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For neutrons the following interactions are treated : w,.( ,, , ') ; - elastic scattering with exact anisotropy discribed by equal probability 
- inelastic reaction with discrete levels \ 

1: 
- inelastic reaction and Cn, 2 n) isotropic in the center of mass system 
- absorption ^ 
- fission 
- thermalization with free gas model or using the frequency spectra of 

the molecule. 

For shielding problems we can also use one group of thermal 
neutrons with isotropic scattering in the laboratory system. A transport 
correction is available. 

The following interactions are treated for gamma rays : 

- photoelectric eFfect 
- pair production 
- compton scattering. 

The picture n° 4 shows the total neutron cross section for iron 
used in TRIPOLI. 

The picture n° 5 shows the multigroup gamma ray production also 
for iron and for neutron. 

WEIGHTING 

I present you now the weighting in TRIPOLI. For deep penetration 
it is necessary to bias the game. If we consider a reactor core surrounded 
by a shield, the attenuation of the flux between the core and the outside 

13 boundary of the shield can be 10 . If we want only thousand particles 
16 

at this boundary we should have to simulate 10 histories of particles. 
This is not possible : the computation time would be too expensive. 
These considerations introduce the biased game for the deep penetration 
For core problems, there is no difficulty : we don't need any biasing. 
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In TRIPOLI 2 a weight is assigned at each point X of the phase 
space. This weight is given by the relation (1) for one volume of 
the geometry : 

(1) IlL*) = 

for a given volume -L 

f l ^ i s the spatial component of the weight 

/7a(S)depends on the directionJl 

/^(.E^depends on the energy E 

We define in TRIPOLI equiweight surfaces : there are surfaces 
where the spatial weight is constant. It is the relation (2) : 

(2) equiweight surfaces S^ : /l^-?) =• & ^ N 

The equiweight surfaces are composed by an assembly of portions of 
planes, spheres, cylinders and cones. These equiweight surfaces are con-

tinuous or almost continuous. 

According to this assigned weight, biasing are made to reduce the 
variance. The following biasing are used in TRIPOLI 2 : 

- path biasing using the exponential transformation 
- collision biasing for homogeneous or heterogeneous media. 

The reduction of the variance is obtained by the following way : 
each particle has about the same contribution to the result. 
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SOURCE DISTRIBUTION 

Let us examine now the source distribution. The source density 
in space energy and direction is given by the relation (3) where : 'i 

•nT position 
B energy 
SLdirection 

Hj is a spectrum, G^ an angular distribution and the product C^ S 
is a spatial density. This expression [3] allows to treat any distri-
bution of sources. 

The particles are emitted according to the assigned weight. 

THE RESULTS 

To conclude this short presentation, I give you some explanations 
concerning the results. The user defines some regions. Each region 
contains one or several volumes defined in the geometry phase. The 
results are averaged values or integrated values on regions or on 
boundary surfaces of region. The results are spectra, fluxes and 
reaction rates with their standard deviation. 

// 
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VARIANCE REDUCTION TECHNIOES USING ADJOINT MONTE CARLO METHOD 
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ABSTRACT 

The event value Wg(r, il ) has been derived in a form 
which can be obtained directry from existing adjoint Monte 
Carlo computer codes. It is demonstrated that the event value 
and the point value functions obtained from the adjoint Monte 
Carlo can be used as the path-length biasing and the angular 
biasing in the forward Monte Carlo calculation, respectively. 
The iterative forward-adjoint Monte Carlo method using the 
source biasing is employed to reduce the standard deviation. 
In addition, the Monte Carlo-Monte Carlo coupling technique 
is investigated to calculate effectively neutron streaming 
through the two-legged duct. Significant improvements are 
obtained on the collision density and on the efficiency in the 
duct problem. 

INTRODUCTION 
f i 

0 
The Monte Carlo method is a very useful tool for solving a large 

class of radiation transport problem. In contrast with determistic 
method, geometric complexity is a much less significant problem for Monte 
Carlo calculations. The accuracy of Monte Carlo calculations is of 
course, limited by the statistical deviation of the quantity to be 
estimated. Especially, for the deep penetration problem where probability 
of contribution from a particle to the quantity of interest is small, 
importance sampling is indispensable to reduce the standard deviation. 

It has been pointed out that the adjoint solution is central to 
the problem of variance reduction, and the value function is always a 
good choice as the importance function for density biasing in the Monte 
Carlo caluculation. The event value and the point value functions 
obtained from the discrete ordinates code DOT were used as importance 
functions for biasing the path length and the scattering angle, respec-
tively, of forward Monte Carlo calculations in the deep penetration 
problem2' »r The iterative forward-adjoint Monte Carlo was applied as 
a way of variance reduction for a geometrically simple problem of the 
air cylinder^. The iterative calculations produced an improvement in 
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the variance reduction. 

In this study, an adjoint function -event value- is derived in a 
fc-rm which can be obtained from existing adjoint Monte Carlo codes by a 
minor modification. It is demonstrated that the adjoint functions -
the event value and the point value functions- can(be used as the 
path-length biasing and the angular biasing, respectively in the forward 
Monte Carlo, calculation. The iterative forward-adjoint Monte Carlo 
method is employed to reduce the standard deviation in the duct problem. 
In addition, the Monte Carlo-Monte Carlo coupling technique is investigated 
to calculate neutron streaming through the two-legged annular duct 
installed in the JRR-4 swimming pool reactor. These calculations are 
performed with the Monte Carlo code MORSE, therefor the coupling technique 
can be entitiled as the MORSE-MORSE coupling tequnique. 

}} 

ii 
MULTIGROUP BOLTZMAN TRANSPORT EQUATION 

Multigroup Transport Equation for Forward Monte Carlo Method 

The time-independent integral emergent particle density equation 
is written as : 

xjftfij - V r . a j + j & g <o 

where Sg(r, XIJ = distribution of source particles for g-th group, 
^ g ( r o p t i c a l thickness, 
, (r) = energy averaged total cross section for g-th group 

T.% group g to group g scattering cross section (cm- stf-*-). 
Xq (r, H. ) = density of particles leaving a source or emerging 
* from a real collision with phase space coordinates 

(group g, r, H ) . 
The integral equation can be expressed in a kernel form. To do this, 
introduce the transport operator 

Jo 
m 

and the collision operator 
z r cn s - s o 

C ^ (r, - L [A£t 5 ' ^ 

f V n ' g t o &F.SL-21) (4) 
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where lj(r)= , 

f^^Cr) = £-th Legendre coefficient for group g to g transfer; 
n = maximum order of truncation, 

cosine of scattering angle. 

Using the transport operator and the collision operator, the integral 
event density equation can be written as: 

where = f , f' 5. ) " 
i/^(r, ) = number of collision events per unit volume at space 

point r experienced by particles having energies 
with g-th group and direction xi • 

Using the relationship ^iX, fi) "^-V^^C^XV), Eq. (5) can be transformed 
into the integral flux density equation: 

where Q ) = time-independent group angular flux (n/cm^st). 
Also, the integral emergent particle density equation is obtained with 
the transport and the collision operator: 

Xj( r, £ 0 = S^C f, & ) + C ^ C f , n ^ ^ - J T ^ C ^ r . r O X j ' C r ; ^ ) / ! ) 

Equation (7) is actually employed for the forward mode random walk in the 
MORSE code. 

r 
Multigroup Transport Equation for Adjoint Monte Carlo Method 

It has been pointed out^ that"the derivation of the emergent adjuncton 
density equation described in Ref. (5) has several obscurities in termi-
nology. Although the derivation in Ref. (4) is different from Ref. (5), 
it has still complexity. An easily understable procedure for the emergent 
adjuncton density equation is proposed in this chapter.* 

— 9 7 8 
The point value A»(r, Si ) is defind »'»°to be the contribution to the 

effect of interest of a particle that emerges from a collision or from a 
source at point r with energy group g and direction ££ , and the event 
value Wg(r, £1 ) is defined » ' to be the present and future contribution 
to the effect of interest of a particle that enters into a collision at 
point r with energy group g and direction . 

The integral point-value equation^ modified by defining the dire-
tion £1 = - .£1 and considering the change in phase space coordinates to 

S\ 
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occur in the reverse sense can be written as: 
j* ,T ^ N o* — <5-x*3a, <30- fLcr, , _ 

where P^"(r,.Qj = response function of effect of interest due to a 
particle which emerges from a collision having 
phase space coordinates (group g, r, .£1) . 

Equation (8) is designated to describe the trajectory of adjoint perticles 
which are called adjunctons^ from r'to r along the direction. The 
transport integral operator describing the f ->f transport is modified to 
produce the following simple relationship: 

H ) = . ci) 

The new transport operator To (r'-* r, XI ) is identical to the integral 
transport operator Tj (r^r, 52. ) used in the forward integral equations. 
Further, the numerical value associated with the collision integral operator 
in Eq- (s) - w x W . f i - f i ) 

J, 

cab be interpreted as describing the (g'-» g, S i - * ) phase space change 
experienced by the adjuncton. This term identified as a new collision 
operator (r ) is identical to the collision integral operator 
used in the forward integral equation^ 

The point—value defining equation modified for the Monte Carlo analysis of 
adjunctons can be written as: ^ " 

5 1 

Equation (10) could provide a reasonable basis for a Monte Carlo analysis 
of the adjoint problem. However the adjoint random walk would require the 
additional weight correction ( F ) / ( r ) which would be applied * after 
selection of the next collision site. To avoid the additional weigth 
correctionpthe following quantities are defined: 

- Z H ^ x J c r , ^ ) , I C O 

H * C F . H ) 3 T i c r - r . s ^ c r , ! ! ) . C12J 

Equation (12) may be written in "Correspondence with the relation of the 
event value and the point value^: 
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X j C n - c i ) = T j C F - r . ^ W j c ^ i i ) . 

Since is a flux-like variable, the new variable Hg(r, fi ) can be 
regarded as an"event density and ) likes an emergent particle 
density. The defining equation for the adjoint event density , .Q ) 
is obtained by considering the following equation: 

I 
0 r 

ty _ <5 " " ^ where P^ (r, il ) = response function of effect of interest due to 
a particle which experiences an event at group g, 
r and XI, 

Z?Cr) , 
an 

, ^ = tfcnfn/zjcf). 
Pg ('r,Ii ) = responce function of effect of interest due to 

unit angular group flux. 

Multiply Eq. (13) by lj(r) and arrange as follows: 1
 0 

z t c ? ) x * < F , f i ) - j J R X ^ c r ^ ^ ^ Z f c n p J c K H ) 

+ c,'„tc r; £ 0 ^ g - l ^ x j c f , ." (*) 
f r 

Since H s £ t X a n d Z^P^" > Eq. (14) can be rewitten as : 

CIS) 
where , _ , - _ 0 y3- (y.\ 

c * . J C-K a a ; . e n fi) , . 

.. a w - * ) ; 

A comparisioti of Eq. (15) with Eq. (12) reveals that ° 

= + , CfQ 

and subsequent substitution of Eq. (12) into Eq. (17) yields the following 
density equation for the emergent adjuncton density: 

" h * ^ r ' 

A comparision of Eq. (18) with Eq. (7) 
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x 3 (r, 12.) = S3 C r, + C ^ O , SI-+SL) Tj'C r r , -QOX^ C r, ), ci) 

reveals that the two equations are identical in all respects and that the 
Monte Carlo realization of Eq. (18) could be accomplished by the same 
procedures used to simulate the integral emergent particle density equation, 
Eq. (7). Equation (18) is actually employed for the adjoint random walk 
in the MORSE code. 

Derivation of Event Value Function 

Divide Eq. (17) by Z\(?) 

£\cf) - z U f i r ' c w s ' ^ ^ 
a 

A According to Eqs. (11) and (16), and using the relationship P = 
^ ( r ) P ^ ( F ,Ecl' c a n r e w i t t e n a s : ^ 

A comparision of Eq. (20) with the govering equation of the event valued 

W j ( 7, n ) = ?l (r, ii) + C j ^ v C r S O , 

it reveals that 

or 

because the probabilities associated with (g'-»g, change in the phase 
space coordinates during the adjoint random walk correspond to the prob-
abilities associated with the (g-> g', .SI change in phase space coordinate 
that would have been experienced by the particle transportation in the 
forward mode. Equation (20) has a form which can be obtained directly 
from existing adjoint Monte Carlo computer codes by a minor modification. 
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DESCRIPTION OF STANDARD PROBLEM AND BIASING TECHNIQUES 

Standard Problem 

g 
The standard problem is almost the same as the Tang's except the 

height of the cylinder, which is shown in Fig. 1. The shield configulation 
consists of a right circular concrete cylinder with an axial duct (void) of 
15.24 cm in diameter. An isotropic monoenergtuic (the first energy group) 
neutron source is uniformly distributed over the bottom surface. One 
detector is located at a point just on the z-axis which is 50.0 cm beyond 
the top surface. The first 14 energy groups of the 22 group structure® 
are analized on the neutron transport. The cross section set for the 
concrete is taken from Ref. (8), in which the maximum order of the Legendre 
coefficient is truncated by P3. 

Forward detector, Z 

on the bottom surface 

Fig. 1 Geometry of concrete cylinder with axial 
duct, source, detector, sand ad]omt source. 
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Source Location Biasing, Source Direction Biasing 
and Source Energy Biasing 

It was observed by Coveyou et alf ,that the source biasing using a 
reasonable a good estimate of the importance function would, in general, 
yield substaintial saving in variance with relatively low cost. 

A particle random walk starts off with the selection of energy group, 
spatial position and direction from a source distribution function. The 
source energy is of the first group in the forward mode and the energies 
are from first to fourteenth group in the adjoint mode because the analysis 
on the neutron transport is performed only through the first 14 energy 
groups of the 22 group structure. Although the source is isotropic, only 
the upward source particles can contribute to the answer in the forward 
mode and only the source particles entered into the glaring angle spreded 
to the top of the cylinder can contribute to the answer in the adjoint mode. 
As for the source spatial location in the forward mode, particles which 
originate inside and around the duct may be more important and as fpr the 
source direction in the adjoint mode, particles which enter into inside 
and around the duct may be more important because they may penetrate deeper 
into the shield by streaming through the duct. Thus, the source location 
biasing and the source direction biasing were employed in this study. 
Since the energy flux at a detector depends on geometry and materials of 
the shield, the selection of energy group using the altered distribution 
function obtained from the forward mode calculation is more proper than 
the flat distribution in the adjoint mode. Russian roulette and splitting 
were employed routinely in all the calculations performed. 

Angular Probability Biasing 

The subroutine COLISN in the MORSE code is called at each collision 
site to determine the outgoing energy group and the outgoing direction. 
To carry out the angular probability biasing, the subroutine COLISN was 
modified to use the region averaged point value from the cards prepared by 
the adjoint mode calculation of the MORSE code. In the modified COLISN 
subroutine, the outgoing energy is still selected from the down scattering 
matrix, but the outgoing direction is selected from the biased angular 
distribution function given by the followings^' 

r , = p,-x^cn s , ) / £ P ; % / c n a ) < = n , 

where , J1-* £1 ) = biased angular distribution function, 

P^ = probability that polar angle cosĵ ,- will selected. 
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Then the statistical weight of the emergent particles are corrected by the 
following : 

W T o = I x j c F, S o / x j c ? , J i p , w 

where the direction j has been selected from the biased distribution 
function given by Eq. (23). 

Path Length Biasing 

The path length biasing technique utilizes the event value as an 
importance function to select particle flight paths. To implement the 
path length biasing in the MORSE code, the subroutine NXTCOL was rewritten. 
When a particle emerges from a collision site with a given energy group 
and direction, its flight trajectory is determined by the subroutine REGION 
which calculates the regions that this particle may go through and corre-
sponding track lengths within the regions, then returns to NXTCOL. Then 
the event value corresponding to the direction closest to the particle's 
direction can be determined for each region. Now that the event values 
and these regions are known, the selection of the path length (or the next 
collision site) can be achieved from the biased path length distribution 
function by the followings * : 

o 

T j C 7 + « ( e n W . / N F ) ^ O ^ I , , 

» e " 1 d^ y\„-C . (zs) 

The statistical weights of the biased particles are corrected by the 
followings: 

W T c - — - N P 

N F J n , e ^ rn ^ 
'H e dy[ 

Jn- . 
Ii 

where NF = normalization factor: —j ^ "" S ^ W n ^ J 

, W^ = event value of region i. 
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IMPLEMENTATION, RESULTS AND DISCUSSIONS 

Application of Event-Value Path-Length Biasing 
and Point-Value Angular Biasing 

The event value and the point value were calculated by summing all 
the particle's weight going into a collision and emerging from a collision, 
respectively, in the calculation of the standard shielding problem by the 
adjoint Monte Carlo method. These procedures were used in the modified 
subroutine named MORSE in the MORSE code. Actual forms of the event value 
and the point value which can be obtained from an adjoint Monte Carlo 
calculation are described in Ref. (10). 

A comparision of three MORSE calculations is shown in Table 1. The 
first is with the exponential transform, the secound with the angular 
biasing and the exponential transform, and the last with the path-length 
biasing. It is noted that when employing the event-value path-length 
biasing or the point-value angular biasing, the fractional 'standard devia-
tion (f.s.d.) of the total fast-neutron flux at the detector is reduced 
approximately 15% as compared with the f.s.d. using only the exponential 
transport, however the f.s.d. of the uncollided fast-neutron flux is reduced 
by a factor of 6.5 in comparision with the f.s.d. obtained from the calcu-
lation using only the exponential transform. The total fast-neutron flux 
obtained from the calculation using only the exponential transform is 
regarded as underestimate as compared with the results in Table 2. On the 
other hand, the total flux obtained from the calculation using the event-
value path-length biasing or point-value angular biasing is recognized as 
reasonable in comparision with the results given in Table 2. 

T a b l e 1 I a s t - n e u t r o n f l u \ ' of f o n t a i d M o n t e Carlo u i k u l a t i o u s 
W i l l i e v e n t v a l u e and point v a l u e of d u c t problem 

B i a s i n g s c h e m e s 
D e t e c t o r 

Unco l l ided litis. T o t a l l l u s „'TW 

i : \ p o n e n t i a l t r a n s f o r m w i t h R A I I 1 0 5 1 0365 8 (0 5 9 3 1 7 ) ' " ! C18OO 7 (0 .10669) 0 .2058 

P o i n t - v a l u e angu la r b i a s i n g , s o u r c e 

l o c a t i o n b i a s i n g and PA 1 I I - - 0 . 5 2 3299 8 (0 09016) 2 3793 7 (0 M I 2 I ) 0 1G72 

D v e n t - v a l u e p a t h - l e n g t h b i a s i n g and s o u r c e l oca t ion b ias ing 2 3880 8 (0 09091) 2 '1082-7 ( 0 13810) 0 2033 

t Unit ii/liii- ini sotiui inutlmi 
Cn) Kiiiil (is 1 (HIT] 'ID-8, Willi fr.iinun.il si,mil.ltd ikw.itinn of II 71117 (Ii) Miuiciuv (n I Minim il SI.IIK1.IIC] ck\ I.IIK/II in utiu ills. 7 I'IIMI ionium.nmn nun m ntmutist 
l"or c.ich KIILUKIIIOII, 1.0D.I s'Uitii. pillules WUI ' Kinii.ili.cl 

Iterative Forward-Adjoint Monte Carlo Calculation 

The iterative forward-adjoint Monte Carlo calculations were started 
off with the IF forward mode calculation. The forward obtained from the 
IF calculation was used as the source energy distribution function of the 
1A adjoint mode calculation, and then the adjoint flux obtained from the 
1A adjoint mode calculation was likewise used as the source -location 
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distribution function of the following 2F forward mode calculation. The 
source direction biasing was employed independently in the adjoint mode 
of the iterative adjoint-forward Monte Carlo calculations. These proce-
dures were applied till the 5A adjoint mode calculations. The exponential 
transport. PATH=0.5 in the MORSE code was employed in all calculations. 
Table 2 shows the fluxes obtained from the iterative forward-adjoint Monte 
Carlo calculations at the detector. 

Table 2 F a s t - n e u t r o n flu\' of i t e r a t i v e j o r w a r d - a a i o i r u M o n t e Car lo c a l c u l a t i o n s u i t i . 
a d j o i n t flux a n d e n e r g \ s p e c t r u m f o r s o u r c e b i a s ' n g of d u c t p r o b l e m 

l t e r a t i \ e 
m o d e 

B i a s i n g s c h e m e s 
D e t e c t o r 

U n c o i l . d e d f lux T o t a l flux „2 r<i>. 

IF S o u r c e l o c a t i o n b i a s i n g w i t h t h e 
T a n g ' s c s t e p f u n c t i o n a n d 
e x p o n e n t i a l t r a n s f o r m w i t h P A T H = 0 . 5 

1A S o u r c e d i r e c t i o n b i a s i n g , s o u r c e 
e n e r g y b i a s i n g w ith e n e r g v 
s p e c t r u m of t h e I F and P A T H = 0 5 

2 F S o u r c e l o c a t i o n b i a s i n g w i t h a d j o i n t 
I lu \ of t h e 1A 2 n d P A T H = 0 . 5 

2 A S o u r c e d i r e c t i o n b i a s i n g , s o u r c e 
e n e r g v b i a s i n g w i t h e n e r g y 
s p e c t r u m of t h e 2 F a n d P A T H = 0 5 

3F S o u r c e l o c a t i o n b i a s i n g w i t h a d j o i n t 
flux of t h e 2 A a n d P A T H = 0 . 5 ° 

3 A S o u r c e d i r e c t i o n b i a s i n g , s o u r c e 
e n e r g v b i a s i n g w i t h e n e r g x 
s p e c t r u m of t h e 3 T a n d P A T H = 0 5 

4F S o u r c e l o c a t i o n b i a s i n g w i t h a d j o i n t 
flux of t h e 3 A a n d P A T H = 0 . 5 

4A S o u r c e d i r e c t i o n b i a s i n g , s o u r c e 
e n e r g y b i a s i n g \%ith e n e r g y 
s p e c t r u m of t h e 4 F a n d P A T H = 0 5 

5 F S o u r c e l o c a t i o n b i a s i n g w i t h a d j o i n t 
f l u \ of t h e 4 A a n d P A T H = 0 . 5 

5 ^ S o u r c e d i r e c t i o n b i a s i n g , s o u r c e 
e n e r g \ b i a s i n g w i t h e n e r g y < 
s p e c t r u m of t h e 5 F a n d P A T H = 0 5 

2 59S5-S (0 033S1!'" 2 . 2 5 4 6 - 7 ( .0 .2727U u 5602 

2 . ,1975-S (0. 17160) 2 . 3 4 8 4 - 7 (.0 1S345; 0 2 3 7 9 

2 703S-S (0 08945) 

2 . 8 2 5 S - S (0 .16S78) 

2 6 6 8 4 - 8 ( .0 .06731) 

2 5 7 6 0 - 8 { 0 . 1 2 6 1 9 i 

2. 7 7 3 7 - 8 (0 08407j 

2 7 5 3 3 - 8 ( 0 . 1 2 6 0 1 ) 

2 . 5 5 9 1 - 8 (0 08577) 

2 . 2 9 1 1 - 8 {0 18650) 

2 5 0 1 4 - 7 ( 0 . 1 4 9 6 0 ) 0 1829 

1 . 9 3 3 8 - 7 (0 12900) 0 . 1 1 1 6 

2 149S-7 <0 !2716> 0 1274 

2 4839-7 (0.11139.) 0 .0SS4 

1 . 9 9 4 7 - 7 ( 0 . 1 3 7 8 5 ) 0 . 1 5 5 0 1 

2 4153-7 (,0 11490'! 0. 0391 

2 1499-7 (0 0 9 6 4 0 ' 0 . 0 7 8 S 

2 3 0 4 7 - 7 ( 0 . 1 2 7 9 2 ) 0 1214 

F Forward mode A Adjoint mode t Ln.t=>; cm2 pe- t>uujce neutron 
Read as 2 aSSS y II)"8. with fractional standard de\iation of 0 033S1 

<01 o-T Efficiency U Fractional standarc oe\ution in percent, T Tots) compulation time in minutes) 
'c , UJtVL TMH14; 
1 000 source particles v."tie generated for forward mode and 2,000 source particles wire generated for adioint mode. 

The f.s.d.'s of the 5F and 5A calculations are a factor of 2.8 better 
than the IF calculation and a factor of 1.7 better than the 1A calculation 
in Table 2, respectively. In addition, the efficiencies', a2T's of the 
5F and 5A calculations are approximately a factor of 7 better than the IF 
calculation and that of 3 better than the 1A calculation in Table 2, 
respectively. It is estimated thai: the iterative number of 3 (i.e. 3F or 
3A) is proper to obtain the,sufficiently improved distribution function and 
the f.s.d. because there is no remarkable improvement after the successive 
iteration in Table 2. 
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MONTE CARLO-MONTE CARLO COUPLING TECHNIQUE 

Two-Legged Annular Duct Problem 

The experiment on radiation streaming was performed with the two-
legged annular duct installed in the JRR-4 swimming pool reactor^ Fig.2 
shows the calculated configuration for the experiment. The dimensions of 
the two-legged annular duct are 180 cm height in the first-leg and 140 cm 
height in the second-leg, and 20 cm in outer-radius and 10 cm in inner-
radius. The inside of the annular duct is filled with air in the Case-I 
experiment and with water in the Case-II experiment. The outside of the 
annular duct is filled with air in both the Case-I and the Case-II experi-
ment. The distance from the center of the JRR-4 core to the entrance of 
the annular duct is 69 cm. The cross section set for the calculation is 
taken from the ENDF-B/IV libraly and corrupted to 15 groups with the ANISN 
code, in which the maximun order of the Legendre coefficient is truncated 
by P5. The first 14 energy groups of the 15 group structure are analyzed 
on the neutron transport. 

Monte Carlo-Monte Carlo Coupling Technique; 
MORSE-MORSE Coupling Technique 

It is expected that the probability of contribution of neutrons 
originated in the JRR-4 core is small for the streaming through the annular 
duct shown in Fig. 2. Therefor, the Monte Carlo-Monte Carlo coupling 
technique is investigated to improve the standard deviation and the effi-
ciency due to the increasing of collision density in and around the 
annular duct. In the first Monte Carlo calculation, a pseudodisk is placed 
as a disk detector at 5 cm distance in front of the entrance of the annular 
duct, as shown in Fig. 2. The disk serves as the source plane in the 
secound Monte Carlo calculation. The angular flux ) a t pseudo 
disk is reserved in the first calculation, then the reserved flux is 
employed as the source distribution Sj_(r,S. ) of the source plane in the 
secound calculation. Therefor, this coupling technique may be called as 
Monte Carlo-Monte Carlo coupling technique. All the calculations were 
performed with the Monte Carlo code MORSE in this study, thus the technique 
can be entitlled as MORSE-MORSE coupling technique. The subroutine NESXE( 
N) is developed as a estimator of the disk detector in the first calcula-
tion and the subroutines SOURCE and SDATA are modified as the pseudo disk 
can be used as the source plane in the secound calculation. 

Fig. 3 shows the comparision of measured^and calculated Ni(n,p) 
reaction rates to the experiment shown in Fig. 2. Fairly good agreements 
are obtained over all the detector locations. Especially the standard 
deviations of the detectors located outside of the first-leg of the annular 
duct ( filled with air ) are less than approximately0.1. Computation time 
to each detector is less than b minutes for 8000 histories by FAC0M M-200 
computer. 
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CONCLUSIONS 

The event value Wg(r, .0. ) is derived in a form which can be obtained 
directly by a minor modification from existing adjoint Monte Carlo codes. 
It is demonstrated that the event value and the point value functions can 
be employed as importance functions for the path-length biasing and the 
angular biasing in the forward Monte Carlo calculation, respectively. 
These value functions obtained from the adjoint Monte ,Carlo calculation 
can be applied directly as importance functions in the.,,forward Monte Carlo 
calculation. 

The iterative forward-adjoint Monte Carlo method using the source 
biasing is effective to reduce the f.s.d. and to obtain the improved 
distribution functions by a relatively low cost. The source location 
biasing and the source direction biasing are substantially effective to 
reduce the f.s.d. in the standard problem. 

It is revealed that the Monte Carlo-Monte Carlo coupling technique 
is effective to reduce the f.s.d. especially in a radiation streaming 
problem in which the entrance of the duct is apart^firom the source of 
particles. 
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APPLICABILITY OF MONTE CARLO CODE KENO-IV 

H. Yamakoshi 
Ship Research Institute, Ministry of Transport of JAPAN 

6-38-1. Shinkawa, Mitaka-Shi, Tokyo, JAPAN 

ABSTRACT 

Experimental data on criticality of a subcritical asse-
mbly was analyzed by Monte Carlo code KENO-IV for the purpose 
of verifying applicability of the code in the calculation of 
multiplication factor Keff for hetorogeneous systems consist 
ing of fuel rods about two hundreds. 

Analysis was focused on studying influence of difference 
in adopted lattice constants upon calculated Keff. Two sets 
of lattice constants were generated from group constants 
calculated by a transport code WIMS-D; One was generated with 
transport approximation. The other was , on the other hand, 
without the transport approximation, i.e. diffusion approxi-
mation 

Following conclusions are obtained. (1) The transport 
approximation is inevitable for generating lattice constants 
for KENO-IV calculation. (2) Applicability of KENO-IV is 
dependent much on lattice constants used. 

INTRODUCTION 

In general speaking, Monte Carlo code KENO—IV is thought to be 
powerful for criticality analysis of neutron multiplication systems 
with strong heterogeneity. In the case of system consisting of few 
numbers of fuel rods, detailed geometry of each fuel rod is described by 
input data fed to the code KENO-IV. However, as the number of fuel rods 

/ increases, one can not give detailed description of geometry for each 
fuel rod to the input data because of limited machine memory. In such 
case, one is obliged to homoge nize the system by assigning lattice cons-
tants for fuel rods on each position of fuel rod as is usual procedure. 

Aim of this report is to show influence of adopted lattice constants 
upon Keff calculated by the code KENO-IV. As a result, applicability of 
this code will be discuused. ^ 

In what follows, experimental data will be shown at first. Next 
will be explanation of procedure for genarating lattice constants. The 
procedure for performing transport approximation will also be shown. 
Calculated will be shorn in the 3rd section with discussion on 
applicability of the code KENO-IV. Concluding remarks come at the last 
section. 

n 
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EXPERIMENTAL DATA 

Low enriched 225 fuel rods are soaked in light water making squared 
array of 15x15. Table 1 shows lattice structure of effective unit cell. 

Table 1. Lattice Structure 
-Jl a 

Lat tice 
Pitch 
(cm) 

Fuel 
Radius 
(cm) 

Inner Radius 
of Cladding 

( cm) 

Outer Radius 
of Cladding 

(cm) 

Effective 
Radius 

( cm) 

v w a ter Lat tice 
Pitch 
(cm) 

Fuel 
Radius 
(cm) 

Inner Radius 
of Cladding 

( cm) 

Outer Radius 
of Cladding 

(cm) 

Effective 
Radius 

( cm) 
Vfuel 

2.293 0 . 625 0.6325 0.7085 1.2937 3.0 

I 
a ' O Water to fuel volume ratio 

Criticality is attained for water level of 90.65 cm at 15.6°C and of 90. 
56 cm at 16°C. Their avaraged value is 90.6 cm. 

Reflector savings for axial direction z and horizontal direction r 
are 11.1 + 0.5 (cm) and 14.0 + 0.8 (cm), respectively, 
axial direction is given by: 

B2 = [IT/ (90.6 + 11.1)]2 

Buckling Br for horizontal direction is given by: 

B2 = [2.405/(R + 14.2/2)]2 

where R = (2.293x15) 2/TT 

LATTICE CONSTANTS 

A transport code WIMS-D was used to calculate neutron flux for,^69-
group structures with attached cross section data library. Obtained 
neutron flux was used to calculate group constants 'for neutrons in 10-
group structures. Finally, region averaged 3-group constants were obtained,( 
for each region. Table 2 shows meshing scheme for each region in an unit 
cell. Tables 3 and 4 show group structures fot the 10- and 3- groups, 
respectively. Table 5 shows lattice constants as outpuL from the code 
WIMS-D. Table 6 shows lattice constants in transport approximation. 

In the transport approximation, transport cross section E t r was defined 
as follows in terms of diffusion coefficient D 

E t r = D/3 " (3) 
^ O 

Buckling Bz for 

(1) 

( 2 ) I 

0 
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As a result of definition of the transport cross section by equation 3, 
values of cross sections were slightly changed. These changes were compen-
sated by a sort of scattering cross section Z s defined by following rela-
tions : 

Z = Z + E' tr a s 
E = E + E tot a s 

(4) 

) 
i->-i As a result, cross section £ 

adopted as scattering cross°section from group i to group i itself. 
, i->-i Z 1 ^ - z 1 ) s v tot tr 

obtained by following substitution was 
i 

>E 'vii *, f- r ti- ̂  
'1 

Where the leftest scattering cross section is just output from WIMS-D code. 

Table 2. Meshing Scheme of Unit Cell 

Region Ma terial Radius(cm) Meshes Mesh Wid th(cm) Temp . 
1 Pellet 0.6250 5 0.125 20° C 
2 Air Gap 0.6325 1 0.0075 20° C 
3 Aluminum 0.7085 3 0.02533 20 ° C 
4 L. Water 1.2937 6 0.09753 2 0 °,C 

CALCULATED K i erf o 
;; 

Table 7 shows results of criticality analysis. In the present 
analysis, the quantity K- f f w^s also calculated by CITATION code, as well 
as KENO-IV code. Latticc constants without transport approximation was 
used for CITACION calculation. Hansen-Roach 16-group constants were used 
for calculation of K ^ ^ by the KENO-IV code ,too. 

, It should be noticed that application of lattice constants in trans-
port approximation gives verycgood explanation of experiment, while lattice 
constants in diffusion approximation,r i.e. without transport approximation, 
fails in explanation of experiment by KENO-IV calculation. >, 

CITAION code and KENO-IV code with Hansen-Roach 16-group library give 
fairly good result. 

Conclusion 

Transport approximation is inevitable for generation of'''lattice 
constants for KENO-IV. code. Applicability of KENO-IV code depends much 
on lattice constants adopted. 

o 
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Table 3 u 

10-Eriergy Group Structure 
GN Lower Energy Limit 
1 821.0 KeV 
2 5.5 3 KeV 
3 3.3 eV 
4 0.625 eV" 
5 0.350 eV 
6 ' /, 0 . 220 eV 
7 0.100 eV 
8 0.050 eV 
9 0.010 eV 

10 0.0 eV 

Table 4 

3-Energy Group Structure 
GN" Lower Energy Limit 
1. 5.53 KeV 
2 0.625 eV 
3 0 . 0 eV' 

Table 5 

Lattice Constants Obtained by WIMS-D 

GN D vEfl E,-
1 
2 
3 

1.3233+0 
6.8094-1 
2.3323-1 

2.6007-3 
1.5921-2 
7.6489-2 

3 . 8732-3 
8. 3484-3 
1.1314-1 

4 . 8815-1 
1. 15 85+0 
2 . 3565+0 

GN L s L s L s 
1 4 . 32 80-1 5 .2746-2 b .0982-6 
2 0 . 0 1 .0460+0 9 .6610-2 
3 0 . 0 3 . 3365-4 2 .2 79 7+0 

GN stands for Group Number 
( For Water Reflector Region ) 

GN D ^ a 
1 1. 5904+0 2 . 5594- 4 0.0 5 . 6588-1 
2 6 . 0454-1 9 . 0793- 4 0.0 1. 4794+0 
3 1. 6042-1 1. 8894- 2 0 . 0 3 . 0756+0 

GN E E^J 
1 
2 
3 

4. y 31 - 1 
0 . 0 
0.0 

/.24b -2 
1.327 +0 
7.821 -5 

8.845 -6 
1.516 -1 
3.0566+0 

iv 
GN Ls £s 3 Es 
1 
2 
3 

6 . 690 - 1 
0.0 
0 . 0 

4.411 -2 
2.535 +0 
6.024 -4 

6.086 -8 
1.881 - 1 
3.057 +0 

Pi 
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Table 6. 
Lattice Constants Used in KENO-VI 
( For Fuel Region ) 

GN D ^ a Vl f ^ tr 
1 
2 
3 

1.3-2 3 3+0 
6 . 8094-1 
2 .3323-1 

2 .6007-3 
1.5921-2 
7 .6489-2 

3.8732-3 
8.3484-3 
1.1314-1 

2 .5190-1 
4 . 8952-1 
1.4292+0 

GN Esl Es 2 
1 1 .9655-1 5 .2746- 2 5 .0982-6 
2 0 . 0 3 . 7697-1 9 .6610-2 
3 0 . 0 3 .3365- 4 1 .3524+0 

( For Water Reflector Region ) 
GN D ^ a Vh f ^ t r 
1 
2 
3 

1 .5y'04"+0 
6.0454-1 
1.6042-1 

l . 5i>y 4-4 
9 .0793-4 
1.8894-2 

0 . (J 
0 . 0 
0 . 0 

2 .0959-1 
5 .5139-1 
2 .0779+0 

GN E s z V L S 
1 
2 
3 

1. 3681-1 
0 . 0 
0 . 0 

7.246 -2 
3.990 - 1 
7.821 -5 

8.845 -6 
1.516 -1 
2 .0590+0 

Table 7. Calculated K _ 
Code Name Group Constants K-ff Comments 

KENO-IV Hansen-Roach 
(16-Energy Groups) 1.03230 + 0.006 

-

KENO-IV Output from 
WIMS-D Code 1.13507 ± 0.007 Wi thout 

Transport 
Approximation 

KENO-IV Uutput trom 
WIMS-D Code 1.01686 + 0.006 With Transport 

Approximation 

CITATION Output from 
WIMS-D Code 

ii 

1.00448 
• 
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