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u ABSTRACT

/m)

N

; lhxs report consists ‘of 24 papers which were presented at the seminar on Theory and

lApphumon of Monte Carlo Methods, held in Oak Ridge on Apnl 21-23, plus a summary of the

tliree-man panel discussion which concluded the seminar and two papers which were not given
orally These papers constitute a current statement of the state of the art of the theory and
apphcduon of Monte Carlo methods for radiation transport problems in shielding and reactor
physics. %
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FOREWORD and ACKNOWLEDGMENTS

The seminar-workshop on Monte Carlo Theofy and Application, held 1n Oak Ridge on April
21-23, was the first of its kind in 'which RSIC colluborated on an international basis. The Monte
Carlo methods development of the CEA/CEN/Saclay SERMA Shielding Laboratory, was featured
in the workshop and OECD Nuclear Energy Agency (NEA) Data Bank personnel ajsisted in
advance preparations. The meeting was attended by 110 people and provided a well-rounded review
of the state of the art. A total number of 53 institutions were represented from eleven

nations: Brazil, Canada, France, West Germany, Hungary, Israel, 1taly. Japan, Sweden, Umted“

Kingdom, and the"U SA.

Ed

The presemauons included surveys of applications at various laboratories, discussions of new
techniques, and descriptions of particular code systems. Both shielding and reactor core applications
were discussed. ‘

The survey papers summarized applications at Argonne National Laboratory (principally the
use of VIM), Hanford Engineering Development Laboratory (KENO and MCNP), Los Alamos
Scientific Laboratory (MCNP), and Oak Ridge National Laboratory (MORSE, KENO, and
TRIPOLI 1lI). Extensive presentations were made on SAM-CE (MAGI) and MCNP (LASL)
Additional overviews were given on KENO V. (ORNL), TRIMARAN and TRIPOLI Il
(CEA\:/-CEN/Sac]ay), KIM (CNEN), and new MORSE modules (ORNL). Reports werc given on
perturbation theory to obtain sensitivities, on recursive Monte Carlo to develop importance
functions, and applications of TRIPOLI 1l to sodium duct and integral experiment analysis. Other
papers were given on analysis of LWR lattices, thermal reactor benchmarks, ex-core water level
detectors, and biological organ dose estimates.

Two contributions of the Japanese Ship Research Institute, not presented orally, appear in

these proceedings.
[

A summary panel of “three wise men” concluded the seminar and gave extemporaneous
comments and some forecasts for the years ahead. The three panelists were Ely M. Ge]bard (ANL),
Malvin H. Kalos (Courant Institute), and Edward D. Cashwell (LASL). >

The workshop on TRIPOLI II was led by J. C. Nimal, J. R. Gonnord, anE’fh'T:.‘Vergnaud of the
CEA/CEN/Saclay SERMA Shielding Laboratory. TRIPOLI II 1s a very complex, but powerful
general purpose particle transport code which treats neutrons and gamma rays for both core physics
and shielding problems. The geometry treatment is quite general and cross sections, 1n a very fine

multigroup form, can be taken from ENDF, UKNDL, and other sources. The importance samphng -

is based on a highly-developed system using equal-weight surfaces which, when properly used,
minimizes splitting and Russian Roulette. A particularly important recent development with this
system is the interfacing of the code to ENDF/B formatted data and/or multigroup data in AMPX
format.

[

We are grateful to our French colleagues, Nimal, Gonnord, and Vergnaud, for their very'

significant and successful efforts on behalf of making the TRIPOLI system available for use in other
countries. We are also grateful to the CEA for its support in making the workshop possible. We also
wish to express our appreciation to Enrico Sartori, IAEA representative to the OECD NEA Data
Bank, for his assistance in testing and packaging TRIPOLI II and KIM, and to Noel Cramer of
ORNL/EPD for special assistance in preparation for the seminar-workshop.
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We are grateful to: authors of the papers for submitting their manuscripts 1n camera-ready
form; Eddie Bryant, Nancy Hatmaker, Mildred Landay, and Marie Anthony for their services n
program preparaticn, proceedings preparation and publication, and registration cf attendees;
banquet speaker, Johnny Rosen; Betty Maskewitz for general management; and to R. W. Roussin,
R. M. Westfall, and others who chaired sessions of the meeting.
o D. K. Trubey and Be’tt y McGull
, Radiation Shielding Information Center (RSIC)

viii

1



i
MONTE CARLC IN THE 1980s

'Summary of a Panel Discussion

Panel Members:
E. D. Cashwell
) Los Alamos Scientific Laboratory
E. M. Gelbard
Argonne National Laboratory
M. H. Kalos
New York University

[V

/ - §
{

E. M. Gelbard: The title of the panel suggests that we're supposed
to tell you what will happen to Monte Carlo in the next decade, and I
think we would be very rash to try to tell you what will happen to anything
"in the next decade, particularly anything in nuclear energy. I think
that the most we can do is to say what we would like to happen. .1 think
that no one can help being impressed by the power of the Monte Carlo
codes that have been described here. Codes seem to be available now to
solve the most complicated problems and they seem to be getting more and
more user-oriented, and to that extent it seems that really a great deal
of progress has been ‘made, so it seems a reasonable time to ask: 'What
more could be done?" "Where do we go from here?" "Is there anything
that hasn't been done that ought to be done?" Everybody surely has a
personal oplnlou here, depending on his own prejudices and experience.
My feeling is that there are a number of things I would like to see, a y
number of changes I'd like to see--and improvements of both Monte Carlo
usage and Monte Carlo methods. They are really two different subjects.

First of all, I have the feeling that Monte Carlo hasn't been used
in some respects as well as it could be. There-are some uses of Monte
Carlo that have fallen by the wayside. Monte Carlo could be used to
benchmark computational methods much more than it has been. Yet to some
extent it has done that. I think we've seen that in the talks. But for
one thing Monte Carlo could be used to benchmark the whole computational
method. That is, we do slowing down calculations. We get group constants
We compute fluxes in cells. We group averaged, and in the group averag- .
ing we have to compute resonance escape probabilities and Dancoff factors,
and when we're all finished we end up with a very complicated problem.
Let's say we have a lattice that's facing a water channel, and we've
got to make assumptions about Dancoff factors. Every stage of that
calculation could be benchmarked by Monte Carlo techniques.

I think that it would be interesting also to develop specialized
Monte Carlo techniques that are simplified and specially designed for
benchmarklng—Tvery accurate and very fast. This could be done, but in
the drive to get productlon—orlented codes, this kind of use of Monte
Carlo has fallen away. I think that part of the reason that this has
happened is that first of all there are two different kinds of people--
they don't have enough contact with each othe®. I should think that

7
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that's something 'that ought to change. People who work on Monte Carlo
and people who Wérk on deterministic methods ought to communicate more.
Calculations by deterministic methods ought to be checked more by Monte
Carlo to find errors and to understand approximations.

My second“point is that I think that it's unfortunate that when most
critical experiments were done, Moute Carlo codes were not avallable to
do detailed analysis. So people fell into the habit of analyzing crltlcals
by approx1mate techniques, and corrections wepe piled on top of corrections.
until when you finally get to compare the calculation with the experiment,

K?ou don't really know what you're comparing. We've reached the stage now '
v

i

shere we can set up great detailed simulation of a critical and make
essentially no approximations except those in the cross sections. That
has not been done very much. There are very few cases. The TRX lattices
we saw here are.an example, and the safety-related criticals which were
mentlon%d in the talk on VIM were another example. I don't know whether
the information is even available anymore. If it’ s not, I think it's
unfortunate; if it is, I think that a lot of old criticals should be
reanalyzed in detail. If anybody wants to measure criticals in the
future, I think they should be set up so that the dcscrlptlon of the
construction of the critical goes directly on cards so 1t can be put
dlrectly“on cards so it can be put directly into a Monte' Carlo code. 1If
you/don £ do this, you have an enormous amount “of difficulty just puttlng
together a picture of the drawers and coming up with Monte Carlo 1npu?,x/
/1
) As far as the development of methods 'is concerned, the one thing/
. that bothers me a.lot has Lo, do with safety calculations; it is that the
pertulbatlon method cannot handle a very important safety problem in
fwhlch voids close or collapse. That can either be a sodium voiding
/A problem, which is the most common type, or another clagﬁ of problems in

4 which in a fast reactor you have a molten pool or you have had a melt-

7 down--you have a molten pool with bubbles in the pool] and something
happens; the bubbles close. This is a kind of accident. You'd like to
calculate the.reactivity insertion. There is no analytic technique that
anybody can use that is reliable. Monte Carlo seems to be an ideal way
to benchmark that kind of calculation, but we can't do that kind of
calculation b} Monte Carlo. This is a kind of calculation that, as far
as 1 know, you cannot dé”by Monte Carlo. People have tried and the§
failed. That is true for the sodium void calculation and the bubble ya
calculation. ' P “

1

Another subject I come to is probably much more important than the
others. I would like to see some sort of return to the study of basics.
There are some holqg in the theory, particularly in eigenvalue calculations.
"It is a known fact that the eigenvalue method used to calculate eigenvalues
in the reactor is biased. It is known that the bias depends on the
numbér of discrete histories per generation.. There's been very little
study of the amount of that bias. The question becomes more and more
important if you are more and more interested in accuracy. By the time
you reach the stage where you finally calculate eigenvalues to a

o8

/N

I



quarter of a percent, you may well ask whether or not the bias is that
1a1ge.‘ People, when deciding how many histories to run per generation,
pretty ‘much do thls on the basis of thelr own habits. No one really
knows what shouid be done. I think, again, as requirements get more ‘and -
more demanding on Monte Carlo, this question gets more and more important.
More and more in the reactor business safety problems are becoming crucial.
In analyzing an accident, you've got to know whether or not the reactivity
difference is small compared to a dollar. A dollar is only 0.3 of a
percent. So, if you're going to use Monfe Carlo at all“to try to analyze
safety calculations, you've got the problem that you really won't cal- .
culate differences to within this very small amount, and small biases
become important and perturbation methods become important.

1

i’

A related question has to do with a confidence statement--statements
of accuracy. There are various problems in confidence statements. !
First of all, in calculating confidence iitervals for eigenvalues, you "
have ag.in a well-known problem. Different generation eigenvalues are
correlated, so when you get means over generations, you have no way of
knowing what the accuracy of your answer’is. There isn't any very 51mple
relation between a printed out standard deviation and th” real accuracy,.
and it becomes particularly bad if you're dealing with a very large
reactor in which convergence is slow.

3]
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But even leaving aside this question, there 'are other questions. w
How accurate is the standard deviation? In'a study of criticality
safety of casks, standard deviations of this type were taken very seriously.
How accurate is the standard deviation? That depends a great deal on the
kind of distributions you have. Very little is known about those dis—
tributions. They may get very strange. For example, a track length
distribution may be very strange inside of a single pin, that is, if . o
you're interested in what happens in a pain. Maybe for an eigenvalue,
,that's not very serious. If you're interested in using Monte Carlo To
compute what happens in individual plns, if you're trying to get a ratio
between power in one pin and power inl,another, you're almost forced to “
use something like a track length estimator. Maybe there are improved
ones. I guess Mal (Kalos) has suggésted that to me, and if there are,
they may make a difference. If you don't know anything about the distrib-
utions you're dealing with, and if those distributions are distorted by
,your b13$1ng schemes or by. peculiar features of the estimator itself,. you
really can't tell what the accuracy of tHe Monte Carlo answer is, and one
of the main advantages of Monte Carlo goes right down the drain. Monte
Carlo is unique in the respect it tells you its error. But unless you
know the’ distributions, it's really an illusion, )

(]

So, I want to point out, this is a question that Maienscifein
raised just at the beginning of this meeting-what do biasing methods do
to standard deviations—--and I would add, how reliable are standard
deviations when you're using peculiar estimators? I would like to see,’
then, a shift to some study of these basic problems now that we have so

e -t < é"
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many powerful’computing tools, some more study of theory I think would
be very appropriate.

M. H. Kalos: First, T would like to start by expressing my thanks
to Bob Coveyou, from whom I learned a lot over many years and for whose
good health I wish everything. Second of all, I'd like to express my
dismay at this imperceptible transformation that has occurred in me from
"wise guy' to "wise man." And, I would like to echo Ely's call for a
return to, or at least never losing sight of, basics in Monte Carlo.

! )
4

There are a lot of basics that are being Lorgotten in the rush to
implement new and beiter codes—-more'user-oriented code’s Let me point
to one that T think is very important. I think that in} almost every
1mplementat10n of the exponential transformation, it's been done wrong,
in such a way that it introduces a totally spurious singularity in the
uneighborhood of the transformed attenuation coefficient equal to the total
attenuation coefficient. That can be dispensed with entirely by a
simple change in the way the code carries out the sampling.

"y it
A related thing is that in spite of the very elaborate ways of
Lreating importance sampling, I want to remind you all that if you have

an importance function which is expressed as a function of position,
energy, and direction, and then you multiply the a priori flight prob-
ability by the importance function as a function of position, that
product does not correctly represent the marginal distribution of the
function you want to sample. If you really want to implement the ideas
of importance sampling correctly, you should calculate that marginal
distribution. The effect will be, I would think, if you can do it, an
enormous improvement in running time--perhaps as much as a factor of 10
in deep penetration calculations. ,'jb

I would like to say a good thing: I think the future of recursive
Monte Carlo is very bright. This is something that Herb Steinberg, John
Brooks, and I demonstrated the feasibility of about 10 years go, and+l'm
very pleased that Goldstein and Greenspan have brought it to an apparently
practical point. I think this is a very valuable thing because all of

‘us find that the use of Monte Carlo is spreading and the necessity of

teaching the basic ideas becomes more and more onerous, and anything
that automates this is to be welcomed. -

With respect to criticality calculations, I would hope that some-
body in the 80s will pay attention to the desirability of doing
importance sampling in criticality studies of large reactors. This is a
point that is often neglected. It is possible to make an importance
sampling transformation, which in principle permits you to calculate the
eigenvalue with zero variance and zero bias. Most feople misunderstand
this because they say, '""But a reactor is set up so that fission is not
an unlikely event." That's missing the point. The point of this kind
of importance sampling is to accelerate the outer convergence, to minimize
the sequential correlation of fission sites from generation to generation,
and thereby reduce the variance and reduce the bias. I think that's
really worth thinking about.



Finally, I think in the 80s, Monte Carlo is going to Qényggy\strongly
influenced by progress in computers. All of you know that computers
have become a lot faster. Most of that has been through the implementation
of vector or pipeline processors, and the payoff for the kind of Monte
Carlo we do is extremely small and very difficult to come about.
Computer architecture can be made more general in a way which is
much more profitable for this kind of Monte Carlo. At NYU we have a
project now for considering the architecture of large arrays—-we hope
eventually for thousands of processors which are strongly coupled together.
And if I might have my tirst transparency, I will. . .Well, that's
my last transparency, but no matter. Everything goes forwards and
backwardshin the same way. We see here a switching network which is
designed Fo connect, in this case, 16 processors on the left with 16
Memoxry modules on the right. This kind of strong coupling of processors
and memory is what we have in mind, and it would permit 16 processors,
each with its own instruction siream, to carry out Monte Carlo calculations
more or less independently, accessing large cross section sets, large
geometry descriptions, and large arrays of answers in memory without
serious contention problems.

We are now building a software simulator, 'and starting to design a
hardware emulator, which will be capable of treating parallel arrays of
128, or possibly up to 256, processors. T would like to try out some
more or less stripped down standard Monte Carlo to see how well they
work. I would encourage you to keep in touch with this and use it when
it becomes available.

E. D. Cashwell: When I was asked yesterday if I would sit in for
Bob Coveyou, disregarding the fact that I didn't know what I would say,
I was very honored to appear on the platform with these distinguished
individuals. But then last night I found out why they really asked me.
It's a conspiracy to keep me from giving the same lousy paper over and ’
over'again. That's quite a price to pay. I've 'got to find a new paper!

What L'd like to say as we talk about what will happen in the 80s--
let me start out by making a few comments on this meeting. Ten years
ago I attended a similar meeting, and this time I'm quite impressed by
certain things. I'm quite impressed by the applications. They're very
interesting and showed very careful analysis by very knowledgeable
practitioners with many difficult problems being quite cleverly and
successfully solved. As Ely pointed out, in terms of the codes, they've
gotten very much more sophisticated. With many importance sampling .
techniques implemented, geometry very carefully treated, cross sections
very carefully treated, the user has an qgg;er time of it. So, that's
very good. So I think in that sense we don't-have to worry about particle
transport going away in the 80s. It'll just get more and more important.

1

Furthermore, I think T see--and we all see--more and more applications
outside the area of particle transport, even though particle transport
may be used to help solve these problems, and we look at what happened
when Monte Carlo first started. We look back at the history. The first
thing people did was rush out and solve many new and different problems,



and most of the methods, due to the state of computers and so on, were
dismissed as being quite interesting but impractical. Now, due to
better techniques and better machines and more available machines, both
large and small, some of these methods, some of these prohlems, are
becoming very fruitful areas for research, as I'm sure Mal would agree
from some of his research.

14

So, I think that we have nothing to worry about. I think that many
applications will come from outside the area-—-there are plenty of them
now--in different fields, and we just hope that we can keep up with them
and use our knowledge and experience from what we've done in particle
transport and try to apply that to some of these problems.



MONTE CARLO APPLICATIONS AT
HANFORD ENGINEERING DEVELOPMENT LABORATORY

L. L. Carter, R. J. Morford, A. D. Wilcox and C. A. Rogers
Hanford Engineering Development Laboratory
Richland, Washington, USA

ABSTRACT

Twenty applicatijons are summarized utilizing the Monte
Carlo method to solve neutron and photon transport problems.
The majority of the applications are for either the Fusion
Materials Irradiation Test (FMIT) Facility or the Fast Flux
Test Facility (FFTF). The degree of success in solving each
problem is described quantitatively by a satisfaction factor.
The satisfaction factor is based upon the adequacy of the
nuclear data, the geometry model, and the numerical data for
the expenditure of labor and computer time.

INTRODUCTION

The current use of Monte Carlo at Hanford Engineering Development
Laboratory (HEDL) is dominated by neutron and photon transport probjiems
relevant to the Fast Flux Test Facility (FFTF) and the Fusion Materials
Irradiation Test (FMIT) Facility. The Monte Carlo effort is oriented
towards engineering applications and does not encompass code development.
This paper will summarize our applications during the last three years.

We utilize t e KENO! code for criticality problems and the general
purpose code, MCNP, 253 for all other applications. The KENO code has
been adapted to run on either the CYBER or UNIVAC computer systems at
Hanford. The MCNP code with its associated cross section 1ibrary is
maintained on the MFE computer system at Livermore, California by Los
Alamos Scientific Laboratory (LASL) and we utilize this computer system
for our calculations for the FMIT facility. We have adapted an older
version of MCNP to the CDC-7600 at Berkeley for solving FFTF problems.

The majority of the current applications of Monte Carlo involve
design problems for the FMIT facility. This accelerator based facih‘ty,4
now in the early stages of construction on the Hanford site, will provide
a fusion-like radiation environment for testing potential fusion reactor
materials. The neutron source, produced by a 0.1 Amp beam of 35 MeV
deuterons incident upon a flowing Tithium target, is highly anisotropic
and features a rapid spectral variation with angle. The spectrum in the
forward direction is characterized by a broad peak at ~14 MeV with a high
energy tail extending to ~50 MeV. While the broad peak provides the



major portion of the source for material damage studies, other neutron
energies are important in the overall design of the facility. Because
of the importance of the very high energy neutrons between 20 and 50 MeV
for shield c¢2sign, neutron cross sections between 20 and 60 MeV were
appended to existing éENDF/B and ENDL based) MCNP library for the
most importi.:t isotopes.

Monte Carlo is a particularly useful tool for FMIT applications be-
cause of the two- and three-dimensional configurations, the anisotropic
sources, the anisotropic neutron scattering at higher energies (especially
above 20 MeV), many penetrations through tnields with the resulting need
to evaluate neutron streaming, and steep neutron flux gradients within
the prime test region near the (d,Li) source. Its utilization as a tool
to solve FFTF related problems is typically more difficult primarily
because of the large expected number of collisions that a neutron experi-
ences from birth to absorption in fast reactor materials. This disadvan-
tage is alleviated somewhat in criticality safety calculations since the
primary functional to be determined is the multiplication factor involving
an integration over all of phase space.

Neutron transport through thick iron-dominated materials gs jmportant
in both FMIT and FFTF applications. A calculational benchmark 7 for
monoenergetic sources ¢f 2, 14 and 40 MeV has recently been completed
using cross sections tested against integral experiments. This calcu-
lational benchmark 1s used to validate multigroup cross section libraries
and transport codes.

In the next three sections we summarize Monte Carlo applications
encompassing the last three years. Our manpower allocation for Monte
Carlo is small with four engineers contributing an ‘equivalent of ~ one
full-time man. Approximately three-fourths of the effort is on FMIT and
one-fourth on FFTF problems.

APPLICATIONS FOR FMIT FACILITY

The (d,Li) neutron source has been characterized by thick target
measurements for ten different angles using time-of-flight techniques
and the cyclotron at the University of California at Davis. The spectra
at the four angles depicted in Figure 1 (measured data® without smoothing)
are shown to illustrate neutron energy regimes that are important at
various directions. Of particular importance from a shielding point of
view is the flattening of the spectrum between 30 to 45 MeV at the angle
of 8°., This flattening is significant for angies from about 6° to 20°.
These source neutrons are the primary neutrons that penetrate thick
shields in the forward direction.

A cut-out view of the test cell is shown in Figure 2 with the
deuteron beam impinging upon the flowing 1ithium from the left. The
corresponding plan view of the test cell shown in Figure 3 at the
elevation of the neutron source does not show pipes and equipment



within the test cell. Basic neutron-

ic problems in and around the test

cell include: (a) a determination of
buik shield thicknesses; (b) nuclear
heat deposition within the test cell,
thermal shield, and adjacent bulk Iy
shield; (c) neutron streaming through! .
various penetrations; (d) neutron =~ .*
activation within the test cell and
beyond the experimenters side wall;

(e) confirmation of adequacy of
collimator design; and (f) the gen-
eration of detailed neutron flux

maps within the prime test volume.

In addition, neutronics calculations

i 4,

YIELD INEUTRONS/MeV-SR-SEC)

4 lo———c o oeceees 3 are required for shield design,
10 [o——ro 8 DEGREES § W including neutron activation, for
L aaindaded 4 70, DEGREES I3 3 5
eoooolt, DEGRES 5 the Linear Accelerator (LINAC) and
21010 o | ; ) various service areas.
00 100 200 300 40.0 50 0

NEUTRON ENERGY (MeV)
HEOL 3003-320 23

Fig. 1. Neutron spectra from
a 0.1 Amp current of 35 MeV deu-
terons incident upon lithium.
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Fig. 2. Conceptual arrangement of 4 horizontal

test assemblies and a vertical test .assembly in the
FMIT test cell.
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Fig. 3. Plan view of FMIT test cell.

The Monte Carlo calculations we have made for FMIT are listed in
Figure 4.., Many of these problems required the variation of one or more
parameters in a number of separate calculations. In such cases, the
“"Minutes of CDC-7600 Execution Time" in the right hand coiumn of Figure 4
represents a typical time for an individual run rather than for the series.

The "Satisfaction Factor" given in Figure 4 is an attempt to quan-
titatively assign an overall return from the investment in machine time
and expenditure of manpower. The satisfaction factor is defined as

S=10"%2 Jgpmr |,

where g, p, m, and r are assigned values between 0 (failure or far below
expectations) and 100 (excellent or far above expectations) under the
definitions:

adequacy of the geometric model in relation to the real-world
situation,

g

p = adequacy of the physics models compared to state-of-the-art
and/or desired accuracy (including cross section data and
source data),

m = reasonableness of manpower effort required, and
r = return obtained from calculation, relative to need, for the

expenditure in machine time (this also includes the adequacy
of statistical errors). K



PERTINENT MINUTES OF

FIGURE SATISFACTION CDC-7600 .
PROBLEM DESCRIPTION NUMBER FACTOR EXECUTION TIME
1, DOSE RATES THROUGH SLAB SHIELDS . , 85 15
FOR MONOENERGETIC SQURCE NEUTRONS {100 %0 100 80)
OF 15, 25 AND 50 MeV (NEUTRON AND gp mr
GAMMA DOSE)
2. DOSE RATES THROUGH BACK AND S1DE 3 ‘ 80 15
WALLS OF TEST CELL (NEUTRON AND , % 9 100 80}
GAMMA) ,
3 NEUTRON ACTIVATION THROUGH £X- . 89 15 “ff
PERIMENTERS' S|DE WALL IVERIFL- ; {100 100 100 80}
‘ CAiION OF ANISN CROSS SECTiOw '
K LIBRARY}
: 4, NEUTRON STREAMING THROUGH GAP 3 63 60
! OF PIUG IN EXPERIMENTERS' SIDE {70 100 80 70}
WALL ;
5. NEUTRON STREAMING THROUGH LITHIUM . 57 15
, QUTLET PIPE IN FLOOR OF TEST CELL {10 10 90 ¢0)
"6, NUCLEAR HEAT DEPOSITION WITHIN 3 . 63 0
. ! THERMAL SH(ELD AND ADJACENT | ® 70 100 70}
© '+ BULK SHIELD l\
7. TRANSMISS{ON OF (d, L1y NESTRONS . )\ 95 5
THROUGH IRON BLOCK (INCLUDING A) oo 100 100 90
SOME GAMMA CALCULATIONS} e
& 8  NEUTRON FLUX FOR ACTIVATION 3 3 0
WITHIN TEST CELL {70 100 90 80)
9.', NEUTRON FLUX FOR ACTIVATION 53, 5b .8 2 :
WITHIN LINAC (%0 100 90 %0)
10 IMAGE ON TRACK LENGTH RECORDER 6 Y 5
FOR COLLIMATOR DESIGN {100 100 100 80) }
1l ENERGY AND SPACE DEPENDENT o 1) 0
NEUTRON FLUX MAPS NEAR SOURCE % 9 80 8
12 NEUTRON STREAMING THROUGH RF 7 67 2
LINES INTO RF EQU|PMENT ROOM (7C 100 80 80)
°GEOMETRY NOT SHOWN

PEDL 8003320 12

Fig. 4. Monte Carlo calculations for the Fusion
Materials Irradiation Test Facility.

The satisfaction factor has the range 0555100 depending upor. the values
assigned to the four parameters. 1In this paper the satisfaction factors
were normalized so that values of 50 indicate marginal satisfaction with
the calculation, values less than ~50 are indicative of dissatisfaction
with the calculation (the output data is of only Timited usefulness),

and a value greater than V70 is indicative of overall satisfaction with
and usefulness of the data in the engineering application. Of course,
problems with a satisfaction factor less than ~50 will, in many cases,

be difficult to solve with deterministic methods as well.

Problems 1 to 7 of Figure 4 are relevant to the design of the shields
around the test cell. Some initial studies®»? (problem 1) addressed
dose rates through slab shields for normally incident monoenergetic
neutron sources with energies between 15 and 50 MeV. Comparisons were
made between these calculations and pertinent discrete ordinates



calculations summarized in the 11teruture 10 The monoenergetic calcg1a—
tions subsequently provided useful benchmarks for comparisons with
discrete ?rd1nates calculations based upon an upgraded multigroup
]1brary They a]so provided initial assessments of material worths
for shielding high energy neutron sources.

Careful biasing of the monoenergatic calculations enabled us to
obtain satisfactory statistical precision for shield thicknesses coyre— :
sponding to a reduction in the dose rate tarough the shield by about ten
orders of magnitude. This was accompl1shed by adjusting cell 1mp0rtances3
to obtain a roughly constant sample popu]at1gn throughout the sh1e1p in
conjunction with the use of Russian roulette”® as the- neutron energy,
decreased. Russian roulette was used to discriminate aga*nst the:Tower
energy neutrons (<v1 MeV) near the source side of the shield. . Without
the use of energy dependent biasing, we observed that a 1arge fraction
of the computer time was expended on those neutrons near the source face
of the shield. These neutrons have a amal] probability of eventually
penetrating the shield. QJF

Using the information obtained and techniques learned from the mono- p
energetic source calculations, it gas fairly straightforward to make the ”
pertinent bulk shield calculations of problem 2 for the back and side
walls of the test cell (see Figure 3). The important source energy
regime was determined to be 30 to 50 MeV for the back wall and ~20 to
40 MeV for the side walls. The important energy regime for the side walls
is increased upwards by very high energy neutrons (>30 MeV) that suffer
e]ast1c collisions within test assemblies and then scatter toward a side
wall. ven though the probability of such events is low, the 1mportance
of these neutrons is large enough so that they are not neg1|g1b]e

Act1va¢10n is an important consideration for the exper1menters side
wall (see Fjgqure 3) since access to this wall is required for maintenance
and remova of test assemblies. The wall material and thicknesses were
optimized using one-dimensional ANISN calculatijons subsequent to a
benchmark comparison (problem 3) with MCNP. The one-dimensional bench-
mark comparison, using the pointwise library of MCNP, verified that the
multigroup Tibrary for ANISN would require the utilization of appropriate
self-shielding factors.

Streaming calculations (problems 4 and 5) typically require an over-
specification of the geometry in order to adequately assign spatial
importances and focus the calculational effort in the vicinity of the
streaming paths. This introduces additional complexity to already com-
plicated models so the geometry factor, g, for problems 4 and 5 has only
been rated at 70%. Version 1B of MCNP was used in these calculations.
Version 2, with its improved geometry package, may help alleviate these
types of difficulties in future problems. i

The heat removal system for the test cell utilizes gas cooling. The
gas cooling is economically sensitive to the total amount of heat (and
its spatial distribution) deposited from nuclear interactions within the
walls of the test cell. Monte Carlo is attractive to use for this
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ca1cu1at‘on since_three-dimensional heat deposition information is -
needed for the wall configuration shown in Figure 3 with the highly
an1sotrop Cc source distribution. Although calculational lTimitations
exist, and hence problem 6 was rated with an r value of 70, it would
have been at least as difficult to obtain satisfactory results with
deterministic codes. .

Shortcomings in the nuclear data base impacted the determination
of heat deposition. Data sensitivities included the gamma production
cross sections, neutron KERMA factors, and cross sections for the neutron
transport. Unfortunately, energy '‘bDalances in ENDF/B continue tc have y
shortcomings for the generation of cr?gs section libraries and for the
calculation of neutron KERMA factors. Hand corrections of the cross
section data were made over various energy regimes for some of the ele-
ments. ?rovements for iron are anticipated in the future with a new
gvaluat1on by LASL using improver< gamma production data and energy

alances

The heat deposition within the concrete beyond the thermal shield
is sensitive to the proper transport of the higher energy (14 MeV)
neutrons within the thermal shield. An integral measurement of the
transmission of (d,Li) neutrons through an iron block as recently been
completed. Comparisons between the calculated (problem 7 of Figure 4)
and measured transmitted currents will provide an overall check on the
data base. .

Monte Carlo tends to be efficient for the calculation of neutron !
fluxes averaged over sufficiently large volumes. Hence, problems 8 and
9 of Figure 4 (see Figures 5a and 5b for geometry of problem 9) received
reasonably good satisfaction factor ratings.
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Fig. ba. Cylindrical geometry model of LINAC ,u sw0s-520 20
for flux calculations. (Dimensions in cm)
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Fig. 5b. Cylindrical geometry model of drift
tubes. (Dimensions in cm) o

The iva]uation of the collimator design for the track length \
recorder1 (problem 10 and Figure’6) required a comparison of the source

image from neutrons pasging through the throat of the collimator to the
background provided by neutron’attenuation and scattering within the
collimator material. This problem received a high satisfaction factor
since ray tracing from the source and collision points near the throat
of the collimator is a standard feature of MCNP using the point detector
estimator. -

§

&

An accurate method for the calculation of neutron flux maps within
the material test assemblies is essential for the proper interpretation
of experiments. In the current FMIT design the deuteron beam impinges
upon the Tithium target with a time-averaged distribution perpendicular
to the beam that is roughly bivariate normal. The full-width-half-maxima
are ~3 cm and ~1 cm along the horizontal and vertical directions,
respectively, with a correlation coefficient of 0. Superimposed upon
the spatial distribution of the deuteron density is the highly anisotropic
distribution of the emerging neutrons which changes as the deuterons
penetrate into the 1ithium. The resulting phase space density of the
neutron source makes it difficult to apply discrete ordinates calculations
in one, or even two, dimensions. Hence, we resort to Monte Carlo tech-
niques for the generation of neutron flux maps. This is not straight-
forward since a rapid retrieval of energy dependent fluxes in a region of
steep gradients 1is required.

Three-dimensional flux maps are generated in two steps. A Monte
Carlo calculation is first made to determine fluxes averaged over small
surface segments. The grid for the surface flux tallies is defined as -
follows: Small parallelepipeds are described within the test assembly
by slicing the assembly with a number of planes normal to the x, y, and
£

i

!
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z axes, respectively. Each rectangular side of a parallelepiped is a
tally surface for a surface flux estimator.

jit———————-370 - 366 7
ht——-365.76 < 365.76 ———>»} .
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HOLES .
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Fig. 6. Collimator geometry. ~ .
The second step utilizes the surface fluxes from the Monte Carlo
calculation to rapidly generate energy dependent neutron fluxes at posi-
tions of interest by using an accurate interpo]?gion method within an
auxiliary computer-program. In a test problem,'? 1,200,000 neutron
histories were sampled on a CDC-7600 computer in 28 minutes. The auxil-
jary program calculated the energy dependent flux at ~1700 spatial points =«
per minute for positions within the test assembly where the total flux o
changes by an order of magnitude within a few centimeters. This calcu- “ﬂ
lation (problem 11 -of F1gure 4) utilized more than 2,000 surfaces for the « .
tabulation of the neutron “flux during the:Monte’ Car]o calculation.

t

The gecmetry model shown in Figure 7 formed .the basis for a ca]cu- ‘
lation of neutron streaming through a chaseway between the LINAC acceler-
ator and an adjacent RF Equipment Room. A finer mesh of cells than that .
shown in Figure 7 was.actually required in order to obtain appropriate
biasing with cell importances. The optimized calculation performed '

I

I 3
R4 3



o

reasonably well and received an overall-satisfaction factor of 67
(problem 12 of Figure 4) in spite of a rather Tow geometry factor rating

of 70.
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Fig. 7. Vertical view of RF
chaseway along LINAC. (1.25' in
diameter cylindrical penetrat1ons,
mirror boundary conditions in the
third dimension)

!

()

. "APPLICATIONS FOR FFTF

Use of Monte Carlo Codes for Criticality Safety Calculations

9] 3 . oy
Introduction ’ AR

ol 8}

Monte Carlo codes in the field of Nuclear Criticality: Safety are
primarily used to calculate the neutron multiplication factor k,¢¢ for
arrays of fissionable materials. Storage of fissionable mater1afs in a
relatively small volume under conditions of complete safety is mandatory
during the fuel fabrication process. , The complexity of the array config-
urations and an economic reluctance to accept overly conservative limits
necessitate use of Monte Carlo methods. At HEDL the KENO Monte Car1o
code is presently used for all array calculations. '

Storage Array Configurations

Each storage array has unique features. One of the simpler config-
urations consists of a cabinet with shelves which are spaced one foot
apart, one above the other. Limits are placed upon the quantity of fuel
each shelf can contain. The KENO code is used to calculate keff for
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f

/ various postulated conditions of internal moderat1on, interspersed
moderation, fuel overbatching, and interaction with other fup] nearby

F is restricted to a value of less than 0.95 at a 95% conﬁg»ence/
Tevel for a1l normal or credible abnormal conditions. f¢‘ %”i;f '

A more comp lex conf1gurat1on consists of a two- dimensional array of

cubicles occupying an entire wall of a room. In this array both the
areal density and the total quantity of fuel will be greater than for -
the individual cabinets. In gne such array four different fuel limits
are used. Moderated fuel is stored at ohe end, followed by partially
moderated fuel, unmoderated fuel, and unmoderated fuel in specified
small containers located in fixed positions to permit higher fuel concer
trations. Examination of such an array uider flooding conditions intro-
drices additional geometric complexity because complete flooding is not
necessarily the most reactive configuration. This necessitates a number
of calculations to determine the most reactive confiauration.

),

Another configuration consists of completed fuel pins and fuel
bundies stored in a below grade array of stainless steel cylinders set
in concrete. The concrete provides partial neutron isolation of the "
various rows and columns within the array. Keff is found to depend on
many parameters necessitating numerous calculations. These parameters
include: (1) wall thickness of the stainless steel cylinders; (2) compo-
sition of concrete; (3) water content of concrete; (4) type of fuel
stored; (5) separation of rows and columns in the array; (6) quantity of
fuel.stored; (7) quantity of moderators used in storage; and (8) the
postulated degree of accidental water flooding possible. An interesting
aspect of these calculations is the functional dependence of reactivity
upon water content of the concrete and the degree of water flooding. c
Since the water content of the concrete influences the effect of flooding
on reactivity, it is necessary to examine the effect of flooding on .
reactivity when the concrete isfjisy and when wet. As time passes the Iy
water content of the concrete w111 decrease and thereby change tne value
of Kgfg under "worst case" conditions.

Another good exampie of a configuration requ1r1ng use of Monte Carlo
calculations is an array of shipping containers. Here the prob]em is
one of calculating the minimum critical number under worst case condi-

tions. This can become highly complex since the arrangement of ‘containers

is also a variable. ) :

Placement of Criticality Alarms

o

The GEM code, an earlier version of MONK, has been used in the past
to calculate the relative neutron flux levels at various locations
around a storage array. Heavy concrete shielding and complex array
geometries made it difficult to determine whether or not sufficient
neutrons would reach the criticality detectors during a small hypothet- o
ical excursion. Each detector location was represented in the computer
model by a box so that neutrons reaching the box were counted and compared
with the number leaving the fuel.

4
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User Pitfalls

Although Monte Carlo techniques are the most powerful available for
criticality calculations, the user must continually exercise caution.
It is easy to develop an unwarranted degree of confidence and to overlook
pitfalls.

The 1input required to describe an array configuration can be very
complex and errors can be overlooked.: For this reason, use of the picture
drawing routine SCAN in the KENO code is imperative. Some errors can be
spotted immediately, but others are more subtle. For example, a negative
sign was once inadvertently omitted for a reflector boundary designation.
This had the effect of completely remaving the reflector from the calcu-
lation and leaving a bare core. Although pictures were printed, the re-
flector was not included since only the core could be drawn at that time
because of Timitations in the picture routine. Consequently, calculations
were made for an unreflected array, although a full water reflection was
intended. Since each calculation of the series left off the reflector,
all computer results were self-consistent. However, the reactivity was
unknowingly far too Tow; and since similar calculations or experimental
results were unavailable for comparison, this error went undetected for
a while. The input error would have been detected early if KENO-II had
printed a diagnostic message telling the user that boundaries overlapped
or if the picture routine had included the capability to show the reflector.

In a typical calculational study experimentally determined critical
assemblies of similar design are unavailable. Therefore, it is difficult
to determine if cross section sets and geometry approximations are giving
satisfactory results. The user selects cross section sets for a KENO
calculation according to the degree of moderation in the system. This
requires a determination of the total scattering cross section per absor-
ber atom and a selection of cross sections accordingly. If the degree
of moderation is changed, a new set of cross sections must be selected.
It would be highly desirable from the user point of view if KENO were
modified to optionally select the cross section sets to be used.

Monte Carlo techniques have an inherent statistical uncertainty.
This makes it difficult to plot curves for a determination of nominal or
maximum koff values. It is necessary to track sufficient neutrons to
have confidence that the error values given by KENO are themselves valid.
A feature of KENO-IV which plots the accumulated average k. p¢ at each
neutron generation may improve this Timitation.

Improvement of the Geometry Routines

KENO, until recently, has contained a more restricted geometry
package than MONK. A severe limitation has been the lack of ability to
specify an array within an array. In addition, MONK has included the
use of "hole" routines which expands the range of geometries availabie.
At HEDL fuél bundles usually have a hexagonal lattice arrangement of
fuel pins. MONK is able to treat this geometry, whereas KENO will not.

+
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Fortunately, a new version of KENO-IV is now available which greatly
expands-the geometry package. Now KENO and MONK geometry capabilities
are more nearly comparable. The usefulness of a Monte Carlo code depends
very much upon the ease of inputing complex geometries.

Criticality Safety Application With KENO

Problem number 13 of Figure 8 is a pertinent examp]e]6 of a criti-
cality safety calculation. The geometry model for KENO, shown in
Figqures 9a and 9b, is for the Fuel Storage Facility of the FFTF. The
model of the geometry utilizes a rectangular array to approximate
annular storage rings of fuel assemblies. Since the reactivities of
individual fuel assemblies vary, a check was made to determine the
"worst case" configuration giving the greatest kpff. The most reactive
arrangement occurs when the outer driver assemblies are clustered together
as shown in Figure 9a. To simplify input data requirements, the half-
space model of Figure 9a incorporates a perfect mirror reflecting
boundary,condition at the lower surface.

PERTINENT MINUTES OF
FIGURE SATISFACTION CDC-7600
PROBLEM DESCRIPTION NUMBER FACTOR EXECUTION TIME
13.  CRITICALITY SAFETY CALCULATIONS 9a,9 72 10
FOR FUEL STORAGE FACILITY (80 90 90 80)
14, CALCULATION OF STREAMING 10, 10b 20 30
WITHIN IN-REACTOR THIMBLE (70 60 70 30)
15, CALCULATION OF NEUTRON FLUX 11a,11b 3 60
AT LOW LEVEL FLUX MONITORS (70 70 70 40
16.  RESPONSE OF EX-VESSEL FLUX 12a,12b 8 15
MONITORS (100 % 90 90)
17.  GAMMA STREAMING THROUGH GAP 13 50 10
AT WINDOW OF 1EM CELL {70 80 90 50)
18.  GAMMA STREAMING THROUGH DUCT 14 12 10
BETWEEN IEM AND TACS CELLS &0 90 90 80)

HEOL 8003-320.11

Fig. 8. Monte Carlo calculations for the Fast Flux Test Facility.
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13 13 13 13 13 13 13 13 13 12 12 12 12 12 72 32 12 13 13 3 13 13 13 13 13 13
13 13 13 13 13 13 12 12 12 3 3 3 3 2 2 2 2 12 12 12 13 13 13 13 13 13
13 13 13 13 1212 3 3 3 3 3 3 2 2 2 2 2 2 2 212 12 13 13 13 13
13 131312 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2121313 13
13 1312 1 3 3 3 3 3 3 3 2 2 2 4 4 4 &4 4 4 4 4 81213 13
13 1312 %+ 3 3 3 3 3 3 2 2 2 4 4 4 4 4 4 4 4 4 4 1213 13
13 12 1 13 3 3 3 3 3 2 2 2 4 4 4 4 4 4 84 4 4 4 412 13
1312 1 1 3 3 3 3 3 2 2 2 2 4 4 4 A& 4 4 & 4 4 84 A 312 13
1312 1 1 3 3 3 3 3 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4132 13
2 1 1 1 1 3 3 3 3 2 2 2 2 4 4 4 4 4 4 4 4 4 4 & 4 2
1z V1 Y 1 1 3 3 3 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 412
12 1 1 1 1 Tt 1 3 3 3 3 7 8 910 4 4 4 4 4 4 4 4 4 4 32
2111 1 1Y 11 3 3 3 6 5 S§ 11 4 4 4 4 4 4 4 4 4 4 12
Numbering Legend

1. Core 1/2 Inner Driver Fuel Assembly 8. B4C/Na

2. Core 1/2 Outer Driver Fuel Assembly 9, B4C/Na

3 Core 3/4 Inner Driver Fuel Assembly 10, B,C/Na

4. Core 3/4 Outer Driver Fuel Assembly 1. B4C/Na

5. Na 12. C-Steel/Na

6. 84C/Na 13. Nitrogen

7 B4C/Na

Fig. 9a. Model of array for Fuel Storage Facility of FFTF.
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General Purpose Appliications With MCNP

Measurements within the In-Reactor Thimble Assembly, located near
the center of the FFTF core, are being made to characterize the neutron
and gamma-ray spectrum within the clean core during initial startup of
the reactor. Basically the In-Reactor Thimble Assembly consists of
several concentric tubes to circulate cooling gas (nitrogen) and provide
insulation for the inner zone where the measurements are made. Instru-
ments are placed inside the inner tube with streaming plugs above and
below the detectors. :

Monte Carla calculations (problem number 14 of Figure 8 with geometry
shown in Figures 10a and 10b) of neutron and photon fluxes within the
In-Reactor Thimble Assembly are summarized in Reference 17. The concern
is that neutron streaming within the In-Reactor Thimble Assembly may

ROW 7 REFLECTOR

ROW 8 & 9 REFLECTOR

HEDL 8003-320.1

Fig. 10a. Radial view of geometry model for Monte Carlo calculations
of flux within In-Reactor Thimble Assembly (IRTA) of FFTF. (See
Figure 11b for general configuration axially.)
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Fig. 10b. Radial view of In-
Reactor Thimble Assembly.

HEDL 8003 320 15

require corrections to reaction rates calculated with diffusion theory.
This Monte Carlo calculation is pushing the state-of-the-art for the
folliowing reasons:

* A typical neutron suffers a large number (>50) collisions
before absorption so that the computation time required to
analyze a source neutron is large compared to more ideal
material configurations with the property of few collisions
per source neutron.

Even with considerable homogenization, the geometry is
still complex.

The flux within a small volume is needed. This led us to
use a point detector estimator in spite of the associated
costs involved in computing mean free paths from collision
points to detector.

The eigen function at steady-state should be determined in
the Monte Carlo calculatijon. This was deemed impractical
so the fission source distribution from a diffusion theory
calculation was used.

Because of the above difficulties, the satisfaction factor shown in
Figure 8 is only 20. Some useful information was obtained by using a
lower energy cutoff of 0.5 MeV to obtain the responses of the higher
energy threshold reactions of interest. These resuits indicate that
streaming is important for locations within the In-Reactor Thimble above
and below the core, but that the measurements at mid-core should be only
slightly perturbed by streaming within the In-Reactor Thimble.

Similar calculational difficulties were experienced in the deter—
mination of the neutron flux at the Low Level Flux Monitors (LLFM)
(see Figures 11a and 11b). Some of the difficulties in problem number 15
of Figure 8 were due to an inadequate specification of the geometry, for
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Fig. 11b. Axial view of
geometry through Low Level Flux
Monitor.

the optiﬁization of importance biasing, because of manpower time con-
straints. The geometry package in the current version of MCNP (version
1B was used for the calculations) would help alleviate the difficulties.

In contrast to problems 14 and 15, we give the calculation of the
response of the ex-vessel flux monitors (problem 16 of Figure 8) a high
satisfaction factor. Neutrons were transported from a specified source
incident upon a graphite block to detectors Tocated within the block as
shown in Figures 12a and 12b. The calculations increased our under-
standing of the detector responses and will provide input for future
improvements in the design of the detectors. The capability to automati-
cally include the three-dimensional aspects of the geometry was a definite
advantage over a one- or two-dimensional treatment.

Gamma streaming preblems (problems 17 and 18 of Figure 8) are''shown
in Figures 13 and 14. These are typical streaming problems in the sense
that one is interested in the rare particles that penetrate through the
shield while spending some of their time within the gaps. Such calcula-
tions usually require extensive source biasing along with an overspecifi-
cation of the geometry for the near-optimal use of cell importances. A
useful calculation typically reqwires familiarity with biasing schemes

i
I
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and Maintenance (IEM) cell of FFTF.

and good intuition about the transport process. The satisfaction factor
for such problems tends to be low, but other calculational approaches
are even less attractive to use than Monte Carilo.

MISCELLANEOUS APPLICATIONS

Problem 19 of Figure 15 is representative of those frequent problems
the engineer encounters requiring quick answers to a rather difficult
three-dimensional transport problem with minimal budget allocation. This
problem arose because of a decision to build a new Patrol Headquarters
building in the 300 Area at Hanford. The basement-of this building was
to meet specified dose criteria for guideline criticality accidents in
adjacent buildings. The ajr-over-ground problem was modeled as two-
dimensional with cylindrical symmetry about the source as shown in
Figure 16. Neutron and gamma dose rates in the basement were determined
in a timely manner for various concrete thicknesses of the main floor
so that the appropriate thickness could be specified for construction of
the building.
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PERTINENT MINUTES OF
FIGURE SATISFACTION CDC-7600
PROBLEM DESCRIPTION NUMBER FACTOR EXECUTION TIME
19. DOSE WITHIN BASEMENT OF 16 76 10
PATROL HEADQUARTERS DUE TO (80 100 90 80)

ABOVE-GROUND CRITICALITY
ACCIDENT (NEUTRON AND GAMMA)

20. BENCHMARK OF NEUTRON 17 85 120
TRANSPORT THROUGH IRON (100 100 90 80)

Fig. 15. Miscellaneous Monte Carlo calculations.
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Fig. 16. Dose rate in basement of Patrol Headquarters building
due to. above-ground criticality accident.

Neutron transport through shield materials containing iron has been
important since the early days of reactor physics. Applications in
recent years have included fast reactors, fusion reactor concepts, and
accelerators for fusion reactor material studies? and cancer therapy.
Considerable complexity is introduced into transport calculations by the
resonance structure of iron between 20 keV and ~2 MeV. Multigroup
constants, generated with an infinite media spectra as a weighting
function, tend to overpredict the leakage through shields in discrete
ordinates calculations. Improvements in accuracy are obtained by
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correcting the weighting function in she vicinity of cross-section minima
to account for preferential 1eakage.] These complex energy and space-
dependent self-shielding problems inherent in thick iron shields dictate
the need for a shielding benchmark problem to serve as a standard
reference.

Unfortunately, experimental benchmark measurements are often diffi-
cult to model because of complicated neutron source and detector charac-
teristics. We have defined a calculational benchmark which is simple to
model with most standard transport codes. This benchmark features a
simple geometry, a choice of monoenergetic sources, and a straightforward
tabulation of fluxes and radiation doses at various iron thicknesses.

The Monte Carlo calculation accurately models the fine energy structure
of the ENDF/B data base and has been validated by comparisons Bith two
experimental benchmark measurements: the ORNL iron benchmark?0 and the
LLL pulsed sphere. 2} .

Calculations were made with both ENDF/B-IV- and ENDF/B-V-based
cross sections. The principal advantage of MCNP for this type of
problem is that no gross approximations (such as the multigroup approxi-
mation) are required for the cross-section treatment. Al1 the reactions
described in ENDF/B are accounted for in MCNP. In fact, the only signi-
ficant difference between the cross-section data in the M%NP 1ibrary and
the ENDF/B Tlibrary from which it is derived (via the NJOY 2 code pro-
cessing system) is that resonance data are represented in MCNP as
linearly interpolated pointwise data, Doppler broadened tc a specific
temperature. The energy grid for this pointwise data is chosen so that
the relative error between the MCNP and ENDF/B representations is less
than a user-specified error criterion, usually <3%.

The calculational benchmark®:7 shown in Figure 17 is gimp]y a pure
iron 7.86 g/cm® slab 3m thick and infinite in the other two dimensions.

,r IRON SLAB "~
‘trrTrT T ~ ¥ P Y oo
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Fig. 17. Geometry for benchmark calculation.



8]

28

Monoenergetic neutrons are normally incident (1 neutron/cm?®) upon the
slab; and the energy-dependent neutron flux, current, and radiation dose
are computed at various distances through the slab. . These output quan-
titjes/ are tabulated in a standard group structure!! consisting of

47 energy groups between 0 and 60 MeV. The 35 groups below 17 MeV are

a subset of a standard 171-group fusion library.23 Benchmark calculations
were made with source energies of 2, 14, and 40 MeV. These energies were
chosen for applicability to fission systems, fusion systems, and
accelerators with a neutron energy regime somewhat above 14 MeV.

(&)

SUMMARY

Twenty applications of neutron and photon transport with Monte Carlo
have been described to give an overview of the current effort at HEDL.

A satisfaction factor was defined which quantitatively assigns an overall
return for each calculation relative to the investment in machine time
and expenditure of manpower. We frequently encounter low satisfaction
factors in day-to-day calculations. Usually this is due to limitations
in execution rates of present day computers, but sometimes a Tow satis-
faction factor is due to computer code limitations, calendar time .
constraints, or inadequacy of the nuclear data base.

Present day computer codes have taken some of the burden off of the
user. Nevertheless, it is highly desirable for the engineer using the
computer code to have an understanding of particle transport including
some intuition for the problems being solved, to understand the construc-
tion of sources for the random walk, to understand the interpretation of
tallies made by the code, and to have a basic understanding of elementary
biasing techniques.
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4 ABSTRACT

'
¥

The continuous energy Monte Carlo neutron tranSport”code, VIM, and
its auxiliaries, are briefly described. The ENDF/B cross section data
processing procedure is summarized and its benchmarking agains MC2-2 is
reviewed. Several representative applications at ANL are described, '
including fast critical assembly benchmark calculations and STF and TREAT
Upgrade benchmark calculations.

INTRODUCTION , w

The VIM code is a continuous energy Monte Carlo code designed pri-
marily for fast reactor calculations, but also containing 2 thermal neu-
tron scattering capability. The development of VIM and’ihe.associated
fast reactor cross section processing codes was igitiatgﬂlaLVAtomics W
International’ and has been continued at Argonne Natian%}yLaboratory.
VIM, now available through the National Energy Software Zenter, features
a flexible geometrical capaﬁility, a neutron physics data base closely
representing the ENDF/B data from which it has been derived, and a calcu-
lational output directed to the needs of the fast reactorianalyst.

DESCRIPTION

The original VIM geometry package was designed to permit a simple
description of plate-lattice critical experiments. All cells of iden-
tical characteristics, with plates, clad, and void defined by combination

~ of rectangular parallelepipeds, need be specified only once; the full
assembly is then described as a rectangular lattice constructed from the
basic cells. The combinatorial geometry package developed for the code
SAM-CE? has been implemented in VIM and extended to specific geometrical
descriptions of particular interest in reactor analysis. The above two
techniques have been combined in VIM to provide options for the descrip-—
‘tion of repeating hexagonal and rectangular lattices with the in-cell
geometrical definition employing the full! combinatorial geometry capa-
bility. In addition, an infinite, homogeneous medium option is available
to provide an efficient capability for data testing and cross section
methods evaluation.

VIM produces three distinct estimates of the reactor E%§§Evalue.
a

The analog, or last—event estimator scores W(vIg)isotope/Z whenever
absorption by a fissile isotope occurs. Here, is the neutron weight,

and I is the macroscopic cross section. The collision estimator scores

the fission production rate, W(vIg)total/sfotal at each collision

event. The track (or path) length estimator scores W(vifot)/rtotal times
o .

e
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the track length for all tracks within each zone,.including uncolliding
tracks. The estimates of standard deviation in the eigenvalue estimates
are obtained using the assumption (never strictly correct in an eigenvalue
computation) that the contributions from all the history batches are
statistically independent.3

VIM produces a statistical edit of various quantities after a user-
specified number of batches. Both collision and track length estimation
provide groupwise reaction rate estimates by region and by isotope, while
track length estimation generates region—wise integrated group fluxes.
Optionally, infinite dilution region—averaged microscopic reaction rate
ratios may be obtained in a designated central region. Track length
estimates of reaction rates and fluxes are used to provide estimates of
broad-group microscopic and macroscopic cross sections over edit regioms.
All quantities are provided with standard deviation estimates which are
based on the statistical independence of the batch data.
~f

VIM may be used with a combination of several variance reduction
techniques. WNeutrons can be tracked by a combination of absorption and
analog weighting which can be assigned by zune or by cell. For example
one mipht use analog welghting in the core region for an eigenvalue cal-
culation and absorption weighting in a blanket region to improve the
statlstics of low-energy effects. The user can select a cutoff energy
below which all welghting is analog to reduce the effort spent on unimpor-
tant neutrons. Splitting and Russian roulette can be used to spatially
modify the sample distribution, improving local statistics. Combined
estimatorst produce averages of the eigenvalue estimates in linear combi-
nations determined by the statistical characteristics of the data, using
the assumption of normality of the batch results. This is most effective
as a variance reduction technique when two estimators are strongly nega-
tively correlated. Simple averages of the estimates are also provided,
with the estimated standard deviations including the effects of correla-
tion between the estimates.

In addition to a startup source guess and a restart capability a
number of initialization options are available. The user may provide a
set of source sites from a similar previous calculation to avoid wasting
the first several batches converging on a source shape. One can specify
a fixed source of arbitrary spatial, angular and energy distributions by
supplying a fixed source subroutine within the framework provided by VIM.

The physics data base for the VIM code consists of a library of
binary files, with each file providing the physics data for one material.
Each such "VIM material file” is the end product of & moderately complex
computational path beginning with ENDF/B tape files. At each intermediate
step, a code is used to process one or more intermediate data libraries
and produce an output library of data available to a succeeding step. A
flowchart of the generation system is shown in Fig. 1.

The initial step of cross section processing is the program VIMB,
which reformats and reorders ENDF/B data and generates the emergy grid.
VIMB calculates the potential scattering cross section, threshold energies
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for inelastic levels, and normalized cumulative second: gy distri-
butions for (n,2n), fission, and inelastic continuum Sca . 2. A grid
of energies for unresolved resonance parameters is gene- » they are
energy—dependent in ENDF/B, and the elastic scattering , .ection

energy grid is tightened to permit linear—linear interpci« ..on meeting a
user input accuracy criterion. A common energy arid is ‘hen constructed
by merging the energy points for all reactions and insceting a background
grid of 20 points per decade. VIMB also interpolates File 3 cross sec-—
tions to the expanded energy grid and processes the anicotropic angular
distribution data for elastic, (n,2n), and inelastic levels by (a) calcu-
lating a 200 point angular table at each energy from Legeudre coefficients,
(b) calculating a 200 point angular distribution from a tabulation by a
cubic spline fit to the logarithm of the differential cross section vs.
cosine of the angle, (c) calculating normalized cumulative distributions

from the 200 point tables and collapsing to 20 equal-cosine intervals.

The UNIDOP code produces point cross section data in the resolved
resonance region from S-wave and P-wave resonance parameters from VIMB
output. For each isotope, an energy mesh is obtained by merging a 99-
point distribution around each resonance energy with a background grid
at equal lethargy intervals of at least 40 points per decade. Zero
degree Kelvin resomnance calculations are performed using either single-
level or multi-level Breit-Wigner representations over the energy grid,
and the point data are Doppler broadened to,}he first specified tempera-
ture (presumably 300 degrees K). Any File 3 background are added in,
and the resulting data are then Doppler broadened to as many as four
othdy’ usexr—specified temperatures. The cross section arrays are then
thinned according to user specified accuracy of either interpolation
accuracy on total cross section alone, absorption cross section alone,
or total and absorption cross sections simultaneously. Resonance
integrals are calculated before and after Doppler broadening, after
any File 3 background are added in, and before and after thinning.

The AUROX code generates unresolved resonance data for single iso—
topes obtained from a(VIMB output file into cross section probability
tables using Monte Carlo methods. For each spin series of resonances,
the Wigner distribution for resonance spacings is sampled independently
to obtain a ladder of resonances, and the appropriate chi-square dis-
tributions are sampled for resonance width parameters. Pointwise
cross sections for scattering, capture, and fission are then constructed
,on an arbitrary energy scale using energy dependent factors evaluated
at the ENDF/B specified energy point with Doppler broadening to the
desired temperatures. The average values of the cross sections bet-
ween any two energy points on the grid are then binned by total cross
section value with weight equal to the energy interval. Additional lad-
ders are generated and the cross sections binned until either a user-
specified number of ladders has been processed or until the standard
déviatipn in the observed infinitely dilute average cross sections satis-—
fies a user input criterion. The average cross section value in each bin
is then calculated, the cumulative probability for sampling from a bin is
obtained from the binned weights, and the resulting tables are normalized
to the known infinite dilute average cross sections by applying an addi-
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tive constant to each bin of a given reaction type, preserving the
observed higher moments. The process is repeated for all the ENDF/B
energy points on the VIMB output data set or for as many as have been
specified by card input.

The REDUCE code processes cross section probability tables with a
large number of probability bands into a library of tables with a small
number of bands. Conventionally, an AUROX output data set with 99 point
tables is processed to an output data set with 20 point tables. At user
option, the probability bands are combined either by minimizing the abso-
lute difference between input and output total cross sections for high
atom densities or the mean square difference for very dilute concentra-
tions. In addition, REDUCE calculates average self-shielded cross sec-
tions for an array of user—-supplied values for additional equivalent
potential scattering in barns/atom (the potential scattering for the
material being processed is included in the probability table scattering
cross section). REDUCE may be used solely to calculate effective cross
sections from the original tables to be compared with reduced tables to
examine the effect of the reducing algorithms and to compare with analy-
tical calculations.

Since AUROX cannot process unresolved resonance data for a natural
material which is a mix of isotopes, the probability tables must be gen-
erated for each isotope separately. MERGER is then used to prepare a sin-—
gle set of "material” tables from the isotopilc tables and the correspond-
ing isotopic abundances. In Fig. 1, MERGER would replace, precede, and/
or follow REDUCE.

MERGER uses the principle that the unresolved resonances from dif-
ferent isotopes are uncortvelated. Consequently, the joint probability
distribution for the cross sections of two isotopes is the product of the
two individual distributions. In forming the joint distribution from
tables of length N1 and N2, a distribution of length N1*N2 is formed. TFor
each such probability interval, the combined cross section values are
obtained from the weighted sums of the corresponding individual values,
the weighting factors being the isotopic abundances. The resulting arrays
are sorted in order of increasing combined total cross section and the
cumulative probability distribution obtained. The algorithms of the
REDUCE code are then used to reduce the N1*N2 band tables to the desired
output table length. MERGER will not process multitemperature correlated
tables, but tables at different temperatures may be processed indepen-

dently.5

The code VIMTAP produces a VIM material file for free atoms by com-
bining the output data sets of the VIMB, UNIDOP, and AUROX (or REDUCE or
MERGER) codes. VIMTAP replaces the VIMB data in the resonance range with
the UNIDOP and AUROX data, and finds threshold energies and indices for
total inelastic scatter and fission cross sections. The angular data
may be thinned, and the elastic scattering cross section is corrected at
very low energies to account for thermal motion by using a free gas model.
Angular distributions for (n,2n) and the inelastic continuum are not
retained, and only one interpolation code is allowed per reaction type.

1
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Only two s&bsections are allowed in the secondary energy distributions;
if more are present, only the first two are retained. In addition, the
number of probability tables for any oue material is limited to 140.

For those materials with Lhermal scattering law data specified in
File 7 of an ENDF/B thermal tape, the procedure becomes more complex.
The File 7 data are processed by the FLANGEX code into a library of
discrete—energy double-P1 S(«,B) scattering kernels and thermal inelastic
scattering cross sections. The KERINTX code subsequently processes these
into a library of thermal scattering probability tables and thermal ine-
lastic cross sections. If the thermal scatterer is a solid, VIMB extracts
the elastic scattering cross section and angular distributions in the
thermal energy range from the ENDF/B thermal tape. For each such thermal
scatterer, the corresponding free atom VIM material file is input to
THTAPE, along with the KERINTX output library and, if required, the VIMB
thermal data, to produce a VIM material file incorporating a full thermal
treatment.

VIM itself employs several models to treat scattering phenomena rele-
vant to thermal problems. For incident energies above 10eV, a full kine-
matic treatment of non~thermal free atom inelastic or elastic scatterlng
is applied which ignores thermal motion of target atoms heavier than 1H.
Below 10eV but above a user—supplied maximum thermal energy cutoff,
scattering is treated as either scattering by a free gas or as isotropic
center-of-mass non—moderating scattering, depending on the target mass.
For solid materials, both thermal elastic and inelastic scattering is
modeled, while for liquids, only thermal inelastic scattering is incor-—
porated.

One present limitation of the VIM library generation system, and
consequently of VIM itself, is the inability to treat all the possible
inelastic processes described in the ENDF/B data. At the present time,
elastic scattering (MT=2), (n, 2n) reaction (MT=16 only, or MT=24 in
the absence of MT=16), fission (MT=18), discrete level inelastic
scattering (MT=51 through MT=90), inelastic continuum scattering (MT=91),
and "capture” (the sum of MT=102 through MT=114) are incorporated. The
total cross section is then defined to be the sum of the cross sections
for these reaction types.

The VIMB, UNIDOP, and VIMTAP codes in use at ANL are modifications
of similarly-named codes developed by Atomics International.® The code
AUROX was derived from the AI code U3R7 after extensive development and
modification. The bulk of the development and testing of cross section
preparation methods for VIM which has been done at ANL has been directed
toward the treatment of resolved and unresolved resonance data. The
FLANGEX and KERINTX codes were developed from the FLANGE and KERINT codes
of Honeck and Finch at Savannah River.®

Figure 2 illustrates the data flow for codes which access the
library of VIM material files. The codes FILEONE, XSEDIT, and BANDLT
are not really a part of the library generation system, but rather are
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utility codes for VIM and are part of the VIM export package. The code
XSEDIT provides a binary—to—BCD and BCD-to-binary conversion capability

for the VIM data base to permit export of the VIM code to non—IEM install-
ations without the library processing capability. It may also be used

to produce an edited listing of library contents. The code FILEONE is

used to scan the library of material files and prepare a data file con-
taining variable dimensioning information. The code BANDIT partitions

the data from up to 20 VIM material files into as many as 16 energy bands
and produces corresponding cross section data subsets requiring about equal
and minimum amounts of computer storage to be used during VIM calculations.

Two auxiliary codes provide the user with the capability to modify
the structure of the output data and to reanalyze it. KEFCODE permits
the user to obtain a statistical edit of the VIM eigenvalue estimators
for a subset of neutron, batches completed by VIM. For example, one might
wish to ignore the first several batches representing the unconverged
source, or to lump the batches into larger ones. Using RETALLY, the
user can perform group collapse, region homogenization, skip early batches
and process only some of the records, and produce a new modified edit of
the VIM batch data.

QUALIFICATION OF VIM

VIM was brought to Argonne primarily as a tool for fast critical
assembly experimental analysis and for analytical methods benchmarking,
so the code has been thoroughly benchmarked on fast reactor problems.
Since the criticals program has included the assessment of nuclear cross
section data and processing methods, much of the validation of VIM has
focused on this area.

Prael and Henryson?,1!0 tested VIM's cross section data preparation
and its solution of the slowing—down problem by comparlson with the
MC2-2 code, which was tested at the same time. MC%2~2 solves the funda-
mental mode neutron slowing—down equations with high accuracy using
multigroup, continuous slow1ng down, and integral transport theory
algorithms. Since both MC 2-2 and VIM were designed to model the slowing-—
down process in great detail, and since the methods of each are distinct,
such comparison provides confldence in the accuracy of both codes. In
MC *2 the resonance calculations used an ultrafine group structure
(Au = 0.008), except below 4 keV where a hyperfine structure (Au ~ 0.001)
was applied to the resolved resonance region.

To test the cross section preparation algorithms, several infinitely
dilute, zero—dimensional slowing down problems were solved® using
ENDF/B-I1I data. Comparison of the resolved resonance broad—-group cross
sections revealed several large, local discrepancies. The first resulted
from insufficient energy point densities away from resonance peaks due
to the application of a linear-—linear interpolation scheme to data spaced
for log-linear interpolation. The second discrepancy arose from incom-—
plete summing of resonance contributions. The third difficulty was due
to distortion of absorption cross sections between well-separated reso-
nances because the thinning criterion was applied only to the total cross
section. This was solved by thinning out only those points at which
both the absorption and total cross sections meet the thinning criterion.
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After correcting these discrepancies, two test problems with 10 MeV
source were run to produce broad—-group edits for 27 groups of lethargy
width 0.5. The problems solvaed were an infinite homogeneous medium of
23Na with an infinitely dilute admixture of heavy isotopes, and an
infinite homogeneous medium of 12¢ with an infinitely dilute admixture
of structural material. The capture and fission cross sections for
238y and 239py generally agreed to within a few tenths of a percent.
However, resolved resonance capture in 238y was still in error by almost
5% in certain groups due to the linear interpolation method; unresolved
resonance cross sections required improved numerical normalization of the
resonance probability tables; and 238y and 239Py unresolved resonance
cross sections were in error by as much as 27 because VIM uses a linear
energy interpolation of probability tables. In addition, errors in cap-
ture in structural materials necessitated extending the energy grid far-
ther from resonances, and the fluctuation of structural material cross
sections required a denser energy grid in the keV range to overcome use
of linear probability tables. These difficulties were also eliminated by
ad justing the energy grid algorithms where appropriate.

Once agreement in cross section processing between VIM and MC2Z-2
was achieved, both codes were tested on a typical homogeneous zero-—
dimensional fast reactor slowing down problem with a composition repre-—
sentative of the benchmark critical ZPR 6 Assembly 7. ENDF/B-III data
were used, and 24 group edits of flux, fission spectrum, isotopic reac—
tion rates, and isotopic microscopic cross sections, were produced for
comparison. Extremely close eigenvalue agreement was obtained, and group
fluxes agreed to within 1% down to the resonance range where differences
of several percent were observed. Isotopic capture and fission rates and
broad group cross sections were within 1% except for capture in 238y and
fission in 239Pu, which was traced to VIM's use of linear interpolation
between probability tables for unresolved resonance cross sections.
Other broad-group cross sections agreed to within a few tenths of 1%,
and within 1% in the resonance ranges.

As a result of these comparisons, there is confidence that the VIM
cross section data are accurately represented jn the material libraries,
and that the physical slowing-down process is properly treated. VIM has
subsequently been applied in the analysis of a number of fast reactor
critical experiments, providing the most stringent tests of VIM's ability
to analyze actual reactor cores. Both basic integral parameters e.g.,
multiplication eigenvalue, and detailed information specifically relevant
to the critical assemblies under study11 have been used to compare VIM
with physical systems.

REPRESENTATIVE APPLICATIONS

At ANL, VIM is applied to diverse sets of problems. Although it is
not possible to include here detailed discussions of each such set,
in this section we will briefly describe some of the more common appli-
cations.
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The level of agreement attained in the comparisons of VIM with fast
reactor cross section processing codes and the experience gained in using
VIM for the analysis of criticals has led to a widespread use of VIM as
the benchmark for fast reactor cross section processing methods and as
an analysis tool for numerous aspects of crivical experiments. The con-—
tinuous energy cross section treatment and the essentially exact geome-
trical modelling used in VIM permit the analyst to focus on the source of
errors in deterministic calculations, e.g., deterministic eigenvalue
calculations for critical systems which are typically in error by approxi-
mately 1.5% with the ENDF-B/IV data base. Eigenvalue and integral reac-
tion rate. comparisons with experiment and with other calculations have
improved the quality of experiment analysis. Specifically, most of the
eigenvalue errors have been traced to the ENDF data, and the effects of
multigroup cross section processing on experiment analysis have been
quantified, within limits.

For the analysis of most criticals, the need for VIM extends consid-
erably beyond testing the effects of cross section treatment. The repre-~
sentation of fine structural details is often very important in the
analysis. For example, if one has a detector or foil located in the
core, the structure near this detector or foil can affect the number of
counts obtained. An accurate calculation for such a treatment requires
a flexible geometry package beyond the scope of most deterministic codes.
The breeding ratio measurement of ZPPR-4 is an example of the need for
such depailed analysis.

Certain classes of criticals have geometries that are so complex or
irregular that analysis by deterministic codes requires extensive geome-
tric approximations. A recent series of safety-related criticals involved
the study of damaged cores, including mockups with slumped fuel, large
cavities, and other severe geometric distortions. Such abnormal config-—
urations severely strain the usual xy, xyz, r6, rbz, and triangular geo-
metric representations in most diffusion and S_ codes. These models must
therefore verified by accurate reference calcuyations using the exact
geometric representation available in VIM. Even when core geometries are
regular in other respects, certain aspects of the experiment may require
the VIM capabilities, at least for benchmark calculations. Some criti-
cals, e.g., those related to GCFR studies, are notable for large neutron
leakage and streaming effects. Diffusion codes require special treat-
ments, e.g., anisotropic diffusion coefficients!? to account for such
effects, and cpecial treatment of unit cell streaming paths, while §
codes may require high angular resolution for accurate modelling of axial
leakage. VIM provides a reliable treatment of neutron streaming and
leakage, whether in small regular channels or in large irregular cavities.

Because of the relatively recent incorporation of a thermal scatter-—
ing law treatment in VIM13, benchmarking of the thermal cross section
library in VIM is much less extensive than that for the fast energy range.
Nevertheless, such benchmarking has been done for materials cf particular
interest to individual programs and users, e.g., graphite for the SAREF
program and light water reactor materials for various thermal reactor
programs at Argonne. As in the case of fast reactor cross section

g
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studies, the agreement found between VIM, other thermal reactor codes,
and experiments, is such that VIM has come to be accepted by many users
as a standard for comparison with other thermal reactor cross section
preparation codes.

Several groups in the Applied Physics Division at ANL use VIM to
benchmark cross section methods used in thermal reactor analysis. For most of
these applications, corresponding unit cells are calculated with VIM and
with the thermal reactor code of interest, e.g., EPRI-CELL. The analyst
then compares integral parameters such as k and regional reaction rates,
and microscopic quantities such as individual isotopic cross sections
with corresponding quantities produced by the deterministic code of
interest. The results of this comparison allow the user to identify
possible problems in a multigroup cross section set and to attach a level
of reliability to the multigroup cross section set. More elaborate types
of comparisons are occasionally carried out. For example, oune analyst
desired to use EPRI-CELL for the analysis of a rather complex light water
reactor fuel assembly design containing fuel and blanket pins of different
sizes and water holes in an unusually tight lattice.!® This design was
so heterogeneous that a true unit cell did not exist within the fuel
assembly, necessitating rather extensive geometric approximations in the
application of EPRI-CELL to the system. As a check on the adequacy of
the final EPRI~CELL model, the entire fuel assembly was modelled exactly
in a VIM calculation. This application is typical of an entire class of
problems where a geometrically exact VIM calculation is used to validate
a model when circumstances force a code user to exceed its intended range
of application. :

VIM is also used with some frequency for more general types of reac-
tor analysis. One program that relies heavily on VIM is the Safety
Research Experiment "Facilities (SAREF) program. The SAREF program was
formerly directed toward the development of a conceptual design for the
proposed Safety Test Facility (STF) and is presently concerned with the
design of an upgraded core for the Transient Reactor Test Facility
(TREAT) reactor. Because this program involves all aspects of core
design for an actual reactor rathar than general parametric or feasibility
studies of reactor types and concepts, VIM usage in SAREF tends to be
varied and complex in scope. Examples of this usage will be discussed in
some detail.

VIM is used for cross secticn benchmarking in SAREF, but the pro-—
cedure becomes more complicated than in the routine unit cell calcula-
tions cited above. Because SAREF is concerned with core design for an o,
actual reactor rather than the study of a concept, the quality of multi- A\§§
group cross sections used in SAREF reactor physics calculations is parti-
cularly important. Errors which might be acceptable for a feasibility
study cannot be tolerated in a program dealing with modifications to an
existing reactor. Ideally, multigroup cross section methods and reactor
physics calculational techniques are validated by comparison with criti-
cal experiments, but for reasons of budget)and schedule, this is not poss-—
ible for the current TREAT Upgrade work. Consequently, more reliance
must be placed on comparisons between VIM and multigroup deterministic
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calculations. One makes the same type of comparisons here as in the
simpler cell calculations discussed above, but in the SAREF applications
one is dealing with many distinct regions of a complex coupled-core reac-
tor rather than a simple unit cell.

Certain unusual features of the STF conceptual design and the TREAT
Upgrade design and purposes make uncommon demands on analysis methods.
Both STF and TREAT Upgrade are transient test reactors intended to pro-
vide a pulsed source of neutrons with specified characteristics to irradi-
ate a cluster of target fuel pins in a test loop at the center of the
reactor core. Consequently, the fission density distribution in these
target pins and the relationship of this fission density to the fission
density at specified locations in the reactor core are the crucial
parameters of full-core physics calculations. The target pins and some
of the other regions of interest represent very small fractions of the
entire core volume, so a very careful application of/splitting and Russian
roulette techniques is required to reduce the relevant variances in these
regions to an acceptable level. Some recent calculations with and with-
out splitting have shown that true reaction rates in the smaller regions
could never be separated from statistical noise were it not for splitting.

Calculations for the SAREF reactors are further complicated by the
presence of large radial and azimuthal irregularities in these cores.
Both STF and TREAT Upgrade have inner and outer core regions of markedly
different compositions and properties. TlLis leads to a strong radial
dependence in the core fission density and flux spectrum. A more serious
non—uniformity in these cores, however, is the presence of a large cavity
caused by the removal of a row of fuel assemblies between the test loop
and the boundary of the reactor. This void is introduced to allow exper=—
imenters to "view" fuel displacement in the central target pins during a
transienit irradiation experiment. This slot causes large azimuthal flux
variations and strong neutron streaming effects which in turn lead to a
marked azimuthal dependence of the core fission density. The streaming
effect due to this slot is the most important reason for using VIM in
SAREF core analysis, since the slot void invalidates diffusion calcula-
tions and S calculations would require a very fine angular mesh.

The presence of control rods inserted to varying positions only compli-
cates matters further.

. Because it is not practical in terms of cost or calendar time to
perform VIM calculations for every core configuration or design parameter
of interest, reference configuration VIM calculations are used to correct
important physics paramters from the less accurate diffusion and S, cal-
culations. Three examples of these correction factors will illustrate
this. First, deterministic codes cannot geometrically represent either
target pins or the test loop, so the crucial determinations of target pin
energy deposition are seriously in error. Furthermore, the fission den-—
sity distribution within the target pins is an important experimental
parameter which cannot be adequately calculated deterministically. By
applying VIM with full geometric detail to the test assembly, correction
factors are generated which apply to a class of similar situations.
Finally, it iﬁ;very important that the location of the hot spots in the
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core be known because they set the operational limits for the core.
Because diffusion and S calculations are not generally able to o
accurately account for §he effects of the slot void and control rods in

a three—dimensional calculation, the VIM results are used to identify and
study the core hot spots. By carefully selecting representative config-—
urations to be studied with VIM, the designer can establish sets of cor—
rection factors to be applied to classes of similar core configurations.

At times, the required accuracy for fission density estimates has
made full core Monte Carlo calculations impractical. But by imposing a
fixed source of magnitude, initial emergy, and initial direction impor-
tant with respect to the test assembly, it is possible to generate a
Green's function for the target pins and the neighboring fuel assemblies.
A record of initial and terminal neutron sites is written by VIM, which
is then processed to yield the desired Green's function. This function
can be used to determine the response of some selected portion of the
system, particularly the target pins, to a partial current imposed at
some boundary of interest. This current is determined from diffusion or
transport calculations which are capable of representing general core
characteristics but not the fine structural details of the target region.
One can economically determine the response of the test assembly fission
density region to changes in core conditions by varying the partial cur-
rents at the target region boundary and applying the Green's function to
them.

A related procedure requires the imposition of incoming partial cur-
rents on some boundary surrounding the region of interest. These partial
currents can be obtained in the same manner as for the Green's function
calculation outlined above. 1In this case, however, the exact magnitude
of the partial current is used to determine the fixed source. The source
neutrons and all of their daughter neutrons generated within the region
of interest are followed to the point of termination either by absorption
within the region or escape from it. The resulting VIM estimates for the
ceintral region closely approximate those from a full core calculation,
but are much more economical because the focus of the Monte Carlo calcu-
lation is only on the target region.

Another Argonne program that relies heavily on VIM is the Reduced
Enrichment Research and Test Reactor (RERTR) program, in which many of
the reactors under study have cavities and/or beam ports for the irradia-
tion of test materials. Because many of these reactors are used princi-
pally as irradiation facilities, theilr designs are oriented towards crea-~
tion of a high neutron flux at particular locations in the reactor core.
In addition, many of these reactors are rather small physically, with
very important neutron leakage and streaming effects. These reactors
often exhibit such strong heterogeneity that standard diffusion and S
codes cannot be applied withcut significant approximations in the geome-
tric representations of the reactor cores. Accurate treatment of hetero-—
geneity can be important even in relatively large, low-leakage reactors:
it is even more important in small reactors where leakage can be a major
factor in the neutron economy. "
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An adequate treatment of heterogeneity can be yery difficult with
deterministic codes for several reasons. First, rédpresentation of fine
structure in finite difference codes can require so many mesh points as
to easily exceed available core storage. Second, theoretical considera-
tions may limit the attainable accuracy with a deterministic code, e.g.,
the basic approximations inherent in diffusion theory. Third, spatial
heterogeneity is often accompanied by various cross section effects that
are difficult to deal with in multigroup treatments, e.g. self shielding.

Sequences of design calculations with VIM are no more practical in
RERTR than in SAREF, for the same reasons of time and cost. One has little
choice but to accept the geometric approximations in deterministic codes
for normal calculations. However, important heterogeneous features can
be examined by calculating a more—or—less exact representation of the
reactor core with VIM. The VIM calculation provides the data for RERTR -
analysts to correct the deficiencies caused by geometfical approximations
and, incidentally, to correct for errors introduced by multigroup cross
section treatments.l® /3

=

VIM has also been modified for special use in the design of the
Intense Pulsed Neutron Source (IPNS) at Argonne, which employs a high
energy proton beam from the zero Gradient Synchrotron to generate a high
flux neutron beam for nuclear physics and materials research. The proton
beam generates high energy neutrons in a heavy metal target. The emer—
gent neutrons are then scattered into neutron beam tubes by moderating
materials selected to produce neutron fluxes of specified characteris—
tics, particularly energy. The highly localized and anisotropic nature
of the proton beam and the resulting neutron fluxes necessitates an
exact treatment of the angular variable, and the irregular arrangement
of target, moderator, reflector, and beam tube regions in the shapes of
cylinders and parallelapipeds requires a flexible geometric representa- .
tion. HETCIG, a high energy nucleon—meson transport code is used to
track incident protons and the few neutrons emergent from the proton
target with energies above 15 MeV. The site coordinates and velocities
of neutrons below 15 MeV are then saved as source sites for VIM. VIM
tracks the neutrons in the usual way, except that at each collision, the
probability of emerging as a beam tube particle is computed. After
scoring this probability times the weight, the normal tracking process
resumes. The HETC/VIM results are consistent with experiment within
statistics (5-10% uncertainty).

Y

SUMMARY

For a number of years, VIM has provided a reliable computational
benchmark capability at Argonne because of the extensive benchmarking of
VIM itself against other analytical tools and against numerous critical
experiments. The code has been applied to analysis of a wide range of
fast and thermal reactors as well as to other neutron transport calcula-
tions which require either flexible geometric representations or basic
ENDF cross section data up to and including version V.
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MONTE CARLO PERTURBATION THEORY IN NEUTRON TRANSPORT CALCULATIONS

M. C. G. Hall
Imperial College of Science and Technology *
London, England

¥
ABSTRACT

The need to obtain sensitivities in complicated geometrical
configurations has resulted in the development of Monte Carlo
sensitivity estimation. A new method has been developed to
calculate energy-dependent sensitivities of any number of
responses in a single Monte Carlo calculation with a very small
time penalty. This estimation typically increases the tracking
time per source particle by about 30%7. The method of estimation
is explained. Sensitivities obtained are compared with those
calculated by discrete ordinates methods. TFurther theoretical
developments, such as second order perturbation theory and
application to R¢t calculations are discussed. The application
of the method to uncertainty analysis and to the analysis of
benchmark experiments is illustrated.

INTRODUCTION

The result of a neutron transport calculation can be v:ry sensitive
to nuclear data, and experimental error in these data may cause the
result to be misleading. To determine how important this effect is, it
is necessary to calculate sensitivities and combine them with covariance
information to obtain the standard deviation of the result. If the
uncertainty arising in this way is unacceptably large, then the nuclear
data must be improved. One way to do this is to adjust on the basis of
a benchmark experiment, which also involves the calculation of sensitiv-
ities. The motivation for this work is the need to calculate sensitiv=—
ities in geometries which, because of their complexity, require a Monte
Carlo calculation. &

There are additional advantages in using a Monte Carlo method for
the analysis of benchmark experiments. All the sensitivity information
can be estimated simultaneously, whereas conventional methods require a
separate adjoint calculation for each channel of experimental information.
Also group-averaging errors can be avoided by the use of point nuclear
data, so the adjustments should reflect shortcomings in the basic data,
rather than difficulties in a group—averaging process. The number of

*Work performed during author's attachment to Radiation Physics and
Shielding Group, Reactor Physics Divis;on, AEE Winfrith.
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sensi;ivity coefficients which need to be estimated though, can be as
many #s a thousand, so it 1is essential that each should be scored with
very little time penalty.

The method described here has been implemented with all this in wind,
although the approach has been kept as general as possible, so that
different applications can be catered for.

METHOD

i
[

Any response R can be considered as an average value associated with
the set P of all neutron paths:

R=ZT“PM, (1)

mEP

Here ﬁm is the probability of pathm, and v 1is the estimator for
path™. If B is a linear perturbation operator, then D operating on Eq. (1)
gives

I’SR = Z_ D(TMPW) . & (2)
wmeP
Writing Eq. (2) in the form of Eq. (1)
A ) ,l,rw\. - 0
DR=Z_ dr™p (3)
where R
dr™= {'D(T”P“‘)} /P’“ , %)

so dr™" is an estimator of DR. Re-arranging Eq. (4)
dr™z vy )
‘ v {S(T"“p“‘?"s /(Y”P‘“) s (6)

. . . o
so (™ is a weighted version of T .

where

This estimator has the disadvantage that it is bad at estimating the
component of a change which is zero because of physical restrictions.
For example, in a non-multiplying medium a perturbation of a cross-—section
at low energy usually cannot affect the flux at high energy. But even 1if
D cnly operates on cross-sections at low energy and *™ only scores flux
at high energy, the estimator (™ given by Eq. (4) will still in general
be non—zero, although it will have zero expectation. A more discerning
estimator would itself be zero under these circumstances. To achieve
this *™ and P“’are split into components associated with each trajectory
of pathw:
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In this context: a trajectory is a section of a path along which no
collisions or boundary crossings occur; t™ is the number of trajectories
in pathm™m; ¢™ 'is the contribution to the estimator for path m arising
from the (" trajectory; ;" is the probability of the j* trajectory,
given that the (; - 1)™ trajectory has occurred. It is shown in the
appendix that another estimator for PR is given by

-5 §D(sy T‘L /T 9)

L£Em™ Jét

This estimator will always be zero in the circumstances which have just
been mentioned. This is because, in Eq. (9), by the time L is large enough
for D to operate on S and %T‘, the value of $™ is zero. Re-arranging

as before !

™ ,

de™= 2 wi S, (10)

st™
™ 2 T o™ (e M
SLIChURY MYAS? 4 an

These are the key expressions used in the method. The two expressions
for dy™ in Eqs. (5) and (10) can be compared by writing Eq. (5) as

-

where

dr™e 7 vms ™ (12)
™

IMPLEMENTATION

. . . " “ Lot e
Implementation consists of specifyingD, S. and 4, of Eq. (11),
evaluating the weights W, and scoring the estimator dr™in the same way
as the estimator T™

A

Specifying D

A
The form of Dis determined by the nature of the perturbations of
interest. In the analysis of a benchmark experiment it is usual to regard
the result Rof a calculation as a function of the nuclear dataX:
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¢= R(%) (13)

x is subject to experlmental error and may be perturbed by an amount ér.
The Taylor expansion of R about X is

’L

' —
SR = Z_am-R+§‘Z_ S" bR+, . (14)
Y \n4?E
Writing this in dimensionless terms
<z
SR . S o 8 L S & JLJ»J 3 . R+

Often some of the values of 5nt/7btare constrained to be equal—for example
they may be subject to a systematic error. Suppose for a set of integers
K and associated constant (x there is a constraint

SILL/?L"- CV‘ LCK (]6)

—similarly for another set . and constant ¢,_. In this case Eq. (15)
can be factorised:

) o— ?1:\. _)_ -+ _‘_ ; e S S5 7!.’\71] bl
R L Ck Z R o K 20 ZL"'(’” z R STl R, a7
R i te K L Lew gL v

The terms which it is useful to know are

A
Tt R (18)

_ kR
55k Iy _,b__ (19

ek ger ROy

and

The first of these terms can be written as

(/R)DR (20)
where 3
N -
D= Z MYy, . (21)
LEK

AN
This is the form of D) considered in this section.
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Specifying $ and 9 g
13

The quantities € and‘1 are determined by the type of trajectory and
by the method of estimation. Suppose a trajectory starts with a neutron
undergoing a reaction type & at energy E. The neutron is scattered
through an angle © to energy E', continues for a length A and then
collides. The cross-section for reactlon/ﬁ at energy F 1is 'x? . TFor
convenience 13? is defined by

xj=Z (22)
o BeB
where B is a set of partial cross-sections. The probability of the
trajectory alone is given by
g = (/] et p(EEAE k(- A)xg dh . (23)

Here | is the set of all reactions making up the total cross-section and
ple>de plE,E'YAE" is the probability distribution function in phase-
space of the secondary neutron. TIf a Monte Carlo code uses point nuclear
data, then values such as vag are used in the sampling procedure. 1In this
case D might be given by

s 7 L (24)

fep wet W 0 -

Here P is a set of cross-section types, for example non-elastic, and &
is a Jset of values of h comprlslng an energy interval. In this case
CUR)DEQ would be the sensitivity of R to the non-elastic cross-section

in the G™ energy interval. o

.

1f track length estimation is used, the contribution to the estimator
for the trajectory will be given by

i

$= A‘Tf)' , ‘ (25)

» . I . L [
where €9 1is a response cross—section at energy E . If collision density
estimation is used, then

i

T
g= G}j'/mjf . «  (26)

N A
Evaluating (2. y

-P
The symbol &y is deflned to be unity if X belongs to the set‘P
and otherwise to be zero. If D is given by Eq. (24) and track length
estimation is used, the weight (W™ is given by
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« s

If collision density estimation is used, then

wre T {8 - Sy (F[xg) — Sjcf () AN} (28)

j&e

Fortunately the weights can be evaluated using a recursion formula—for
example with track length estimation
G, p T
" add ’ C P T — C P { o [ ’ '}
PNETOME R PSS CATADES CHIDRRSIC R D) SRED

It can be seen from Eq. (29) why the method is so fast. The values of
x;, ﬂ% ,'xg,, 7(} and 4 are all available in an unperturbed
calculation, so the weight W ™ only has to assemble information which is
already there. 1In addition, the weight @&."™ can be applied to any estimator

¢ ™ , which means that sensitivities to any number of responses can be
scored simultaneously.

i

Scoring dr™

A code called DUCKPOND' has been written to score the estimator A
Full use has been made of the Winfrith Shielding Group's suite of Monte
Carlo modules. This has meant that DUCKPOND has been coded with a minimum
of effort yet includes the powerful capabilities familiar to users of
McBEND®*. 1In addition to a sensitivity capability, DUCKPOND can score a
covariance matrix for all the estimated responses. This is useful in
analysing benchmark experiments.

COMPARISON

Sensitivities can be obtained in limited circumstances using discrete
ordinates (%, ) calculations, so an important test is to compare results of
this type with answers estimated using the Monte Carlo method. The only
difficulty with the comparison is that the discrete ordinates calculg;iggnzdﬁf
may involve group-averaging errors, whereas this will not be the case with
Monte Carlo estimation using point nuclear data. To determine the extent
of this problem, fluxes are compared in addition to semsitivities.
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The geometry of the test problem
is illustrated in Fig. 1. The
response function is for total flux
per unit volume betweem 14.9 MeV and
407 KeV; the source has a fission
spectrum normalised to [-O en-3 g
Sensitivities to the elastic and non-
elastic cross~sections of iron are
calculated in forty groups of approx-
imately equal lethargy width between
14.9 MeV and 407 KeV, corresponding
to the first forty groups of the
100-group EURLIB® structure. Flux
per unit volume in the scoring region

is calculated in the same group scheme.

ANISN® and SWANLAKE® were used

for the S, calculations and DUCKPOND for the Monte Carlo estimation.

Fluxes and sensitivities are compared in Figs.

2 and 3; the errors plotted

for the Monte Carlo results are an estimate of one standard deviatiom.

. . . -3 -
Flux in Scoring Region (¢cm™ §7)

Monte Carle and S,

-2

10

S
)

1
N

S

I Monte Carlo

L ] 1 !

40
04

¥ 5 20
or 12 19 9
Group Number
Energy (MeV)

Fig. 2. Comparison of Flux
in Scoring Region calculated by

Methods.

The Monte Carlo sensitivity
estimation is working well. The
agreement with the $, method 1is
convincing and, equally important,
acceptable variances have been
obtained with a workable sample size.
DUCKPOND was run in this case for
twenty minutes on an IBM 3033 using
automatically-generated importance
sampling, and the test problem is
representative in scale of a
realistic calculation. Moreover a
comparison of running times between
DUCKPOND and its non-perturbative
equivalent McBEND show that sensit-
ivity estimation typically slows
down tracking by 30%. To give an
example—for the same price a
response might either be estimated
by McBEND wich a standard deviation
of 10%Z, or estimated by DUCKPOND with
a standard deviation of 11.47 but
with a full set of sensitivity
profiles. If the sensitivities
reveal uncertainty of 20% arising
from data errors, then the DUCKPOND
calculation would be the more useful.
It would be sensible to perform an
uncertainty analysis of this kind on
all Monte Carlo calculations.
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oqb DUCKPOND
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Fig. 3. Comparison of Sensitivities of Flux above 407 KeV to
Elastic and Non-Elastic Cross-Sections of Iron,as calculated by
. DUCKPOND and SWANLAKE.

‘A disturbing aspect of the results is the discrepancy between the
fluxes calculated by the Monte Carlo and S~ methods. The low energy flux,
which is the main contributor to the total flux, is undercalculated by
about 507 by the $n» method. The sensitivity profiles suggest that an
explanation of this is a group-averaging overestimate of about 307 in
the cross-sections for groups 35 to 39. Such an error could easily arise:
the elastic cross—section of iron is rapidly changing by factors of about
five in this energy range, which puts great importance on the weighting
function used in the averaging process.
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DEVELOPMENT N

There are three interesting ways in which this method can be developcd:
higher order perturbation coefficients could be scored, sensitivities to

geometric data obtained, and the method could be applied to eigenvalue
calculations.

s

Higher Order Coefficients

A second order operator has/already arisen in Eq. (19). Such an
operator is now defined by ‘

-

o

n 5 5 1
D = 2 L mkx
KL WK jeL JDKt}M

(30)

It is also convenient to redefine corqgsponding first order operators: <
,r/’f

~ - )
Do 2 Ti— (31
“lew LL
and 3
D= T s (32)
4) J('L !

The first order weights are given by Eq. (11) and turn out to be

~ i A . _'_~ =N 1
“wre R DA L g Daly (33)
v - TER ]
and oA a
IR 4A N | YA
Mot TRDL ST LTyt (34)
. Ji’L X 4

and the second order weights are given by

KL ™o LR WL D S LD gm
LJ,_M = "W, w‘w‘«,+ %-M D‘wL S, - (;’» D« S, )( - DL S ) ’

L4

+ 3 %q D, g - %ﬁw;‘“)(%;ﬁ ﬁ.f)‘} . 35)

A

These equations are illustrated by referring to the spec1f1cat10ns of'D %y

8§ and %'appearlng in the section on implementation. §K and DL are given
by

D=7 Z {f- (36)

lsbP kc 0)"

and )
D=2 7 "‘i)’?ﬁf , (37)

AeC heH
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with a corresponding definition of I%L. The previous definitions of $
and q,still stand. For track le:.gth estimation all the terms involving
8 1in Egs. (33) to (35) ::e zero. The other terms are given by

(147)Daq) = 87— 8Z (2] /%))
~ 8% (a5 )+ sj‘f (%;3/71_;), (38)
QK

j J
my e ™ & H T

o — ; ( SA) o+ 5ﬁ (X;/ij)a (39)
(114D 97 = = (57 55

G L H > - P G
—~25>58., (x:,‘xg)/(xj‘) + 5j/831 (x;'xj. A1) o

7Lj 1 )/(%j nj

so second order weights are not much more difficult to evaluate than
first order, although there may be more of them. The most likely use of
second order coefficients would be in testing the validity of a first
order approximation.

Geometric Sensitivities

Suppose a geometrical configuration is defined in terms of rectangular
co-ordinates ¥;, ¥, and Y3 . A plane with unit normal » which separates
two different media may be described by the equation

n.T-1. (41)

An operator which describes a first order change in the position. of the
plane is

= oL (42)

Again using the previous specifications for S and 9, , the only variable
which can depend on L is A. If u,, U, and u, are the direction cosines
of a trajectory then

wfol = kfmw . 43)
Here k= -l for boundary crossing at the beginning of the trajectory,
K=1 for boundary crossing at the end of the trajectory, and K=0©

otherwise. If collision density estimation is used, the weight given
by Eq. (11) is

_ ac m.ou o, )
w. wxy [ ' (44)

This could be used to score the geometric sensitivity oR/dl .
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Eigenvalue Calculations

Monte Carlo eigenvalue calculations differ from shielding calculations
in that superimposed on the normal processes of tracklng and scoring is
an iterative procedure. An eigenvalue calculation in a code such as MONK®
will usually start with a fission source guess represented by N, particles.
These particles are tracked to leakage, absorption or fission. N, of the
resulting N, secondary particles are sampled at random and the process
continues for successive generations. The ratio K; is defined by

Ky = Ny I No (45)
where N, is the number of secondary particles at the end of the ;™
generation. N

Each trajectory involved is labelled according to the particle from
which it originated (m) and the generation in which 1t occurs (j ).
The probability of the ™ trajectory of this type is defined in the

same way as before to be ‘4™ . The probability of all the trajectories
g : . L . Iy
up to and 1nc1ud1ng the R* generation which originate from the wm

particle is given by

’ ™m

i i
- — — |1 ¢
- PR Nﬂ I-_I KJ_‘ [‘- L

I-J (46) 4]

s

If 11. is the number of secondaries at the end of the k™ generatlon
orlglnatlng from the wm? particle, then another expression of th& ratio
Ky 1is \’b

€
_ vav\ \{'
T Mo 7— : (47)
&

Furthermore the eigenvalue Re¢f is given by

e K . 4
k‘ff T ke o (48)
so for k sufficiently large, T;~ is an estimator of k%—. 1£f &% is some
perturbation parameter then .. ‘
Wy o b 2 ?_P“
‘!1 ’ﬁ - NGQN P h )K 7 (49)
or ) Ne
W~ b 2 dr Pr . (50)
'bu No™ 8 gz
where
C e e LT (51)

F Fk I L

&2
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A\
This means that df} is an estimator of ’)k /aﬁ and, for R sufficiently
large, b&qf/~m . Re-arranging Eq. (51)
A = Yoy (52)
where . o
no oL g : (53)
b %R PF ’Dm '

The evaluation of the weight q:~ may be troublesome. Substituting for PZ“

_--from Eq. (46)

k i ) i \K
(I w
™ —_— -
e = Z ( Z ™K ‘1"] Kt %g ) (54)
= [R v }
> L m )
™ m S I K
We = Y, + ~ o Gk — R (55)
\Jk Jk“l \Z——q‘lk }x 1" g L(h o ’)% .
( 3 \
The difficulty is im | valuatbhq the term 2Ky, /on . An exact value 1is
not avallable, so an estimate using dfﬁ has to be used. If No is not:

sufficiently large, the estimates of 0k [0x may get progressively worse,
and the method may not converge.

APPLICATION

DUCKPOND has been applied to a variety of practical problems.
Preliminary results of the uncertainty analysis for the NRC Blind Test’
have already been produced and sensitivity calculations have been carried
out for the analysis of the Winfrith Iron Benchmark® . Some of these b
results are presented here.

[

NRC Blind Test
F

This test is to see how well a series of experimental reaction rates
in a simulated pressure vessel can be predicted by various methods. It is
useful to be able to isolate each source of error in the predlctlons, and
DUCKPOND has been used to evaluate uncertainties arising from errors in
nuclear data. The significant sensitivities of one of the reaction rates,
as calculated by DUCKPOND, are illustrated in Fig. 4. These sensitivities
were combined with covariance information about nuclear data® to obtain an

suncertainty of 147. The geometrical configuration involved in the

calculation precluded an S, method. .

-

& g ¢
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€

t Winfrith Iron Benchmark &

1

P Y

The objective of “this benchmark is@to adjust the evaluated cross-
section of iron on the basis of count rates measured in an iron block
with a fission source at one end. Each count rate is calculated along
with a sensitivity profile: the sensitivities determine which adjustments
would improve the agreement between calculation and experiment, and cross—

- section covariance information indicates which the likely adjustments are.

DUCKPOND was used for the calculations. “TﬁeLgxperimental configuration
was modelled very accurately using combinatorial geometry. Sixty count
rates and sensitivity profiles were scored, which involved tracking neut-
rons in iron to a depth of 75 cm and down to 5 KeV. After twenty minutes
running on an IBM 3033 the statistical error on the estimated count rates

i

o
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had reached the same level as the experimental error (about 15%). o
One of the semsitivity profiles is illustrated in Fig. 5. The, pronounced
positive sensitivity is probably a three-dimensional effect: ar increase
in the cross-scction will reduce the leakage and hence increase the count
rate. The results of an adjustment procedure based on this DUCKPOND

calculation are shortly to be produced.

20F ’ v

i

30 ISR NI J‘ SIS N RN 11 g Aty 1 § I S l it
4 fgrir“) 2 3 qt.vs'rlo +4 r(.7i‘i_0 2 T 46 674 le
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Crosg—Section Type

Sensitivity Per Unit Lethargy
<
T

Fig. 5. Sensitivity Per Unit Lethargy of an Hydrogen/Argon
Proportional Count Rate at 50 cm Penetration, to Iron Cross—Sections.
(The threshold of the detector is about 4.4 MeV.),

A
o

CONCLUSION

It is now a simple and inexpensive matter to carry out the uncertainty
analysis of a transport calculation, however complicated the geometrical
configuration. It 1s also clearly feasible to analyse a shielding bench-
mark experiment on the basis of a Monte Carlo calculation. Application
of this method to core calculations is as yet untested, and this would
be a sensible option to try out. Geometric and second order developments
would be easy to implement, although they mlght be of limited use. There
is no reason why the method should not be applled to calculations using
multigroup data if necessary.
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APPENDIX

A path segment is defined to be a set of contiguous trajectories which
make up the initial part of the path. R 1is the set of paths which start
with segment R . A<, and ‘q,Lare defined by

kg = 3™ meRe (56)

o o tél/“ =QILVW 'M&Rk . 857)

and
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. . . b
The number of trajectories in segment kis W . The response R can now
be regarded as the average value associated with the set S of all segments:

R,
R = 2; Sy
ks J<u" %J ) (58)

1) operating on Eq. (58) gives

DR = Zd S k%j (59)

P = (B TS O/ T 5 (60)

%M

where

I\ is the set of segments with exactly 3 trajectories ( ﬁk= Lt ). The
sum over segments ( = ges ) is now regarded as a sum over { , and a sum
over segments with exactly L trajectories (‘f ;f% ). TFrom the definition

of a probability
<" ™
2 I V. = 1. 61)
mER, WL t™

Also W=1 for ReT, . Using all this in Eq. (59)

ﬁK=ZZ «A’“S Cl/l<"‘ ) Clt) (62)

RET, meRE (<lgt™

Re—-arranging and using Eqs. (56) and (57)

§R= 7 7 7 dsy ‘/LJ (63)

v keT, méRE J t“”
S(s™ T o™V /TTa™ (64)
{50 1L amt/Ty7 .

Q. 1is the setzgf paths with at least . trajectories. The sum over all
such paths ( .. ea. ) can be regarded as the sum over paths which contain
a segment with exactly t traJectorles ( giy JERA )« This double sum
Y

is replaced in Egq. (63) to give

where

7 a8l «t“% . (65)

L med,

Re-arranging Eq. (65)

A - wm e
DR = 2 Z ; oS, J’T\:rt—“* QJ. , (66)

mep (&E™

80 an estimator of‘ﬁz for paths is given by

-2 BT /T g @)

te p™ JS&
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ABSTRACT
4
The influence of light perturbations of cross sections on a set
of neutronic responses cannot be estimated with an acceptable precision

by statistically independent Monte Carlo calculations.

Differential TRIPOLI, a tridimensional, polykinetic code of
Monte Carlo, permits to calculate such variations by correcting the
weights of particles previocusly simulated by a standard TRIPOLI
calculation for the nan perturbed problem.

The same sample of neutrons is treated, so that a correlation

factor appears, which improves the variance on the differential results.

CORRELATED SAMPLES METHOD

The neutronic properties of any medium are caracterized by the

following nuclear constants

-~ for each element, a set of microscopic cross sections which describes
all the possible interactions between a neutron and this element, and
a set of laws of the collision, determinating the energy and the

dfrection of the particle after scattering ;

- for each composition,the atomic density of every isotope:these nuclear

data, and the description of the geometry, define the linear transport

operator of Boltzmann's equation.
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The angular flux is the solution of this equation, for a fixed

neutron source density and fixed boundary conditions.

More generally, a set of responses (scalar fluxes, currents,

reactions rates, biological doses, ....) can then be calculated.

Perturbation theory is concerned with the variations of these

responses when the transport operator is modified.

This theory can be applied to various problems, as concentrations,

libraries or temperature effects, or sensitivity studies.

Many methods have been designed to solve the Boltzmann's equation
and to calculate the influence of perturbations. They can be classified
in two categories : analytical and statistical methods. We shall talk

only about the second ones.

Methods of Monte Carlo

Methods of Monte Carlo solve the Boltzmann'’s equation by

g
simulating the stories of a great number of neutrons..
The behaviour of one neutron is then caracterizediby a chain of

N

events (x_., ....x,) where X represents the coordinates [F;, Ei,fii )
of the 1t Collision of the neutron.

More generally, because of the use of splitting technics to
improve the precision of the results, a tree of events 1s associlated with
gach particle. A chain is then a sequence of consecutive events from
the root x., (birth of the neutron) to a leaf x, {end of simulation) of

0 N
the tree.

When X5 is fixed, the next event X34 is chasen according to

t]
a law of probability which only depends on the values of the cross

sections at the state xi.

A weight OOi is also assigned to the chain, which is brought

up to date after each collision.

Statistical estimators for fluxes, currents or any response

fe
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can be defined as random variables which are function of the sequence

of weights.

A response appears as the average value of such an estimator.
The methods of Monte Carlo give alsc a statistical estimation of the
relative uncertainty of the result, which is proportional to the
sguare root of the variance of the estimator, and inverseﬁy propar-
tional to the size of the population of source neutrons, for a number

of simulated neutrons large enough.

The cost of a Monte Carlo calculation depends mainly on the number

of simulated neutrons and on the average length of the chains.

Methods af Monte Carlo for the calculation of perturbations

A perturbation of the transport operator is considered, in a
Monte Carlo point of view, as a modification of the laws of probability

(xi_’xiﬂ)’

As for analytical methods, two independent calculations can be

done to find the effect of a perturbation, by difference between the

two results. i

Two independent sets of trees are then created.

If this process is valid for great perturbations, it is very
important to notice that infinitesimal ones cannct be reached this
way
The statistical uncertainty is inversely proportional to 4R , where
AR is the difference between the two responses, so that the uncertainty

becomes infinite for small perturbations.

.

This 1mp0351b111ty no longer exists if the twg/r'{culatlons are
correlated. The ‘most natural way to insert a correlatlon/$actor is to

consider that the same samples of trees have been created by both

simulations. '



66

It is obvious that, for small perturbations, the behaviour of a

neutron is almost the same in both cases.

The influence of the perturbation is no more considered as a
modification of the laws of collision with this model, but as a

modification of the weights of the events.

Let the set of trees and the non perturbed weights be stored
during the simulation of the first problem. The method used, called
correlated samples method,consists in rebuilding each tree, in which
each weight of each event is multiplied by a correction factor taking

into account the perturbation.

This method is exact and does not make any hypothesis on the
importance of the perturbsation. Nevertheless, the dispersion of the
corrected weights increases with i1ts amplitude, so that the statistical

uncertainty also increases. i
N

This process has two advantages

- a theoretical interest, because it can be proved that the uncertainty
on the result is still finite when the perturbation cuéberges uniformly

to zero ;

- @ practical interest, because no random processes are used, the events
have been yet chosen. A deterministic correction of weight is only
done. The time of calculation is improved in comparison with a standerd

Monte Carlo calculation.

Geometrical datas are not needed, and the values of cross sections
are only needed in the perturbed domain, so that the region used for

computation is less important.

Several sets of perturbations can be simultaneously treated.
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Scheme

1

The limitations of the amplitude of the perturbation only

depend on the behaviour of the statistical uncertainty.

In order to explicit this dependence, we shall expose in next
section two Simple problems, for which the analytical expression of

the uncertainty is given.

The choice of the correctiens of weight in the general context
of Boltzmann's equation and the study of variance do nat appear in this

in
paper.

First ,calculations of differential TRIPOLI, a Monte Carlist code
of perturbations developped in the L.E.P., are described in the last

section.

)

!
Differential TRIPOLI keeps the properties of fRIPDLI : a three
dimensional treatment of polykineiic neutrons with no hypothesis on the

isotropy of collisions.

Y]

The original trees of events arise from TRIPOLI.

CORRELATED SAMPLES METHOD APPLIED TO THE EXPONENTIAL AND RUSSIAN
ROULETTE LAWS OF PROBABILITY

These two laws of probability are always used in Monte Carlo
simulation of diffusion of particles. The random behaviour of any neutron

is simulated by iterations of these elementary laws.

In infinite and homogeneous medium, and for monokinetic neutrons,
their variances can be calculated. Their analytical expressions give

a priori indications about the importance of permissible perturbations.

i

N o
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Sensitivity of the average path of a neutron to the total cross section

of the medium

Original simulation

'
v

The free path of a neutron diffusing in a medium whose total

cross section is G, is T after n collisions.
Go

A simple way to simulate the total travel lenght of one neutron
ITERRE xN}, with the
probability : G, exp { - G, X; } AX, for each event.

is to choose a set of n independent values (x

We score before esach collision the quantity X which is the

th .=
contribution of the i —event to the response.

The variance on the result is ﬂn/ci} and the statistical

uncertainty e (gG,) is 4—/\/n s independent of G .
Let G, = G,+AG be the total cross section of the perturbed
medium .An independent simulation gives the response ﬁvﬁgi with the

variance 41/Gn? .

The differential respanse AR = “/G;. -m/g, is obtained

with the variance 71A5f + 41/6—1 y SO that the statistical
relative uncertainty on AR is : e (AG/G )= A, Vc’."... et :
V)= = . 53,
(4
infinite when Ag —+ O. Vn a

Correlated sampies method

et we now suppose that the chains still appear with the same
probabilities ; - .
n
I—I_ { G, exp (-6; x;)} dx - dxy,
i=1 .
when the total cross section becomes GZ , and assign a weight 9[ to
each event, determinated as follows
c. =1
c. = L. .+ c (X;)
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where the value of Xy is known,and the elementary correction of weight
c [xi] is the ratio of the perturbed probability : G’i_ QXF{--G"‘ Xi‘g
to the initial one : G exp {‘ G,',Xi} »
. .th
It can be proved that, if we score the value Ci.xi for the 1

collision, the average total score is the expected result n /g,

The variance is no longer equal to n/ql, but is
N

¥ 2'%5‘;’; [(4-3)(4-?')% +§“_ng+n-¢1 - %
7

)

4

whers j :—-G-—Z——-——— >0
6 (267-6,)
It is importanrt to notice that G” is undefinite when G:L is less than —=*
e Lo ed
BT
Fig 1
5
3 -
2 [
ol
k]
4
[ od
a3 L
N
i<}
(X9 — e i 2 1 A i L A [} \A_:G'..lz 1
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The ratio of the relative uncertainty on the response, with
this estimation to the independent calculation one is showned on (fig.1).
The prpcess improves the precision when this ratio is less than 1, and

is nothing else than exponential biasing technic.

Let us now consider the differential response AR.

The variance on AR is : G‘*(AR} =n/GlH+ G* 2. cov

. . Nn+4d
where cov covariance of the two estimators, is : cov = Qié - =
‘ 2G. L Gy G,

The limit of e*(AAc;/GB) , relative uncertainty on the differential
effect estimated by the correlated samples method, is finite in this case

when Ag’—s 0,and equal to

e (63). \/h"+ 5§+?_3 > 3.44 e (63)

v

e Forbidden

10k perluabzetions

-
z—/

-50 -15, o 15 0. 2.

]
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. Fig.2 shows the variations:of e*(Ac-/G;)]e(G;) for a set of values of
n, number of collisions .

i
(
Thne uncertainty increases with the number of collisions and has important

variations for negative perturbations, especially close to the asymptot.

4]
0

Sensitivity of the number of collision to non capture probability

rs
Original simulation

We create in this examples chains of variable length (xq...x

).
N
if Co is the probability of non capture, the neutron survies after e.ch
collision with the probability'Cc_, and we add x,

i = 1 to the total score.
The neutron is killed with the probability 1.-C ‘
-

!
The probability for a neutron tc have exactly n collisions is c
[ ~

The average score is

1

(1.-c ]
o 0
c Qe
the variance is —2———  and the
1-€c e .2
1 [ 8] [1 - 0]
relative uncertainty is e(e.)y=V e,
l 14

3
I8

o]

When the non capture probability becomes €
independent simulation gives the uncertainty

¢
=c

1 o +AC ) an
Y )
€ A_C) = \/C (1-c) ¢ co(4-¢,Y . A '
%( o 4 Co( 4 Ac
on the differential response AR = Ac

Y

}

(1-c)(4-¢o)

1
1

=

when Ac — O

which is also infinite

Correlated samples method

v 0

We assign agnin a weight Ci to each event

(o]
I
[
&
f

{

C
11 % (xi)

o

where the elementary correction of weight c [xi) is the ratio
0

I o)
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’

Fig 3 represents the ratio of the uncertainty of differential effects

to the uncertainty of the non perturbed response. The'upqertainty

decreases when the value of cD

]

~t

[4
o

Tne;"l
¥

<

1

(=4

4,

-

;\5‘ i

increases, for a fixed perturbation. o

fa

’
’

Lt

p3901510n by the correlated samples method is alwayes better

than by thétlndependent samples estimation (dotted curve) for negatlve

pertprbatlons, but is quicKly downgraded for p051t1ve ones because of .

the asymptot value VE;.
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FIRST MONTE CARLO CALCULATIONS BY DIFFERENTIAL TRIPOLI

Comparison between TRIPOLI resulis and analytical formulas in anfinit

medium and for monokinetic neutrons

{

Let us consider an infinite, homogeneaus and non multiplicator

medium in which monokinetic neutrons diffuse with isotropic collasions.

Llet ¢ and C be respectively the total macroscopic cross section

and the non capture probability of this medium.

Lel the neutron source be also isotropic and localized in the

plane x = 0, and S its norm.

The neutron angular flux can be cobtained by solving the one

’

daimensional Boltzmann’sggquation
+4
(1) )u.DLf(x,r\ y G Pl = QZEJi LF(%',M c'y- ( x #0)

with the boundary condition on current
LP(x. Yy - "F(_ ) S
(2} 2
%ﬂDiﬁ. P ’fk L Tr

Thearetical results ; analytical method

Transport theory proofs that flux integrated upon}L can be
decomposed into an asymptotic termlﬁ; and a non asymptotic one,qi
The farst term is predominant at large distances from the source, and

\: 0
its analytical expression 1is

~o(t) G
(3) Lf2\5.(3“) G,C) - 25 e

Blatey, ¢



The functions o (¢) and B (« 50)

{4)

(5)

75

L°3 A+t (C _ 2 &)

A -XE | c
_2ct 4 oA

6 (x,c) = &S [M(,_ L

are given by the relations

Equation {4) can be easily solved by the numerical method of Newton

with a very good precision.

Formulas (3),

X values of & )

Non perturbed problem, TRIPOLI

{4) and (5) have

C and x.

calculation

The composition of the

elements, whose caracteristics are

been computed to calculate st.

for any

medium is made up of two fictitious

Element Mass Capture Scattering Atomic density
cross section| cross section (at/cm3)
(barns) {(barns])
1 1.E 06 0.4 1.8 2.E 23
2 1.E 06 0.3 2.7 3.E 23

The atomic masses have been chosen egual to 1.E 06 so that the

collisions werg,isotropic in the laboratory system, and the loss in

energy neglectible after each collision.

The parameters of equation (3) are then
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Go 1.3 om |
C 0.86923
o
d[CO] given by @) 0.59283
K = ol(C ) G 0.77088 cm |
o o

The geometry is a 17 cm wide slab, divided in 13 meshes. The
last one is 5 cm wide, with a leakage condition at the boundary, the others

are 1 cm wide.

A spatial function of importance : Ij(:x:) = exp ﬂ'}‘ HOX}
has been assigned to the medium, where KO is the theoretical attenuation
factor of the asymptotic flux, so that the number of simulated collisions

1s almost constant per unit of volume.

The average fluxes per mesh have been calculated from a sample

of 300 neutrons, and are given in the following table:
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Mesh Asymptotic flux Flux calculated by 66 % relative
{from the analytical TRIPOLI uncertainty
expressiog% -1 (track lenght (in %)
neutron.cm “.s estimator) _ -1

neutron.cm .8
1 1.397 1.743 3.41
2 6.466 E-1 5.990 E-1 4.25
3 2.892 E-1 3.107 E-1 2.27
4 1.384 E-1 1.408 E-1 1.56
5 6.405 E-2 6.270 E-2 3.33
B 2.964 E-2 2.930 E-2 3.63
7 1.371 E-2 1.352 E-2 3.35
8 6.345 E-3 6.465 E-3 4.47
8 2.936 E-3 2.952 E-3 6.89
10 1.358 E-3 1.442 E-3 5.97
11 6.286 E-4 ,8:310 E-4 6.680
12 2.808 E-4 2.820 E-4 3.82
13 4.903 E-5 4.826 E-5 5.383

the expected values,

TABLE 1 - Average scalar flux per region

for the non-perturbed problem

TRIPOLI takes into account the non asymptotic term.

leakage is neglectible.

perturbation calculation.

The concordance of the results in the 13th

L)

We verify that TRIPOLI results are in good agreement with

excepted in the two first regions, because

region shows that

The 300 trees have been stored and can be used for further

G



Perturbations of the total cross section G,

We have calculated simultaneously the influence of fifteen

perturbations of @G , for a fixed value of C, (C = C.= 0.86923)

For each perturbation, we have noted that the variance on the

flux increases with x.

This effect can be explained by the study of the exponential
law [_§2 ] : in the first meshes close to the source, only the first
collisions of the simulated neutrons contribute to the scaore, so that
{he dispersion of the corrections of weight is weaken than in the last

ones.
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Perturbation “ as Y mc 66 % Pre ~ Pag|
{from the analy- (by differential reletive _—_
tical expression)| TRIPOLI) track |uncertainty LP l
- _ : AS
2 1 lenght estimator DnL?
neutronxcm Xs 1 MC .o
-2 - .. (in %)
neutronxcm ~xs (in %)
LA
G . ~-75% 5.333 E-1 3.025 E- 59.68 43.28
G: - 50 % 1.488 E-1 1.0905 E-1 18.11 26.40
G: - 40 % 3.047 E-2 7.941 E-2 15.26 12.22
G-: - 30,% 5.536 E-2 5.268 E-2 11.51 4.84
G - 20%% 3.409 E-2 3.328 E-2 6.92 2.36
G: - 10 % 2.112 E-2 2.085 E-2 4.11 1.27
G: - 1% 1.381 E-2 1.366 E-2 3.83 1.05
non-
perturbed 1.316 E-2 1.315 E-2 3.53 9.44 E-2
problem
G+ 1% 1.255 E-2 1.247 E-2 3.85 0.64
G+ 10 % ’8.240 E-3 6.385 E-3 3.83 1.75
G : + 20 % 5.186 E-3 5.425 E-3 4.17 4.62
G : + 30 % 3.278 E-3 3.541 E-3 5.44 8.01
G : + 40 % 2.081 E-3 2.307 E-3 7.68 10.87
G: + 50 % 1.326 E- 1.485 E-3 11.02 12.01
G ot 75 % 4.359 E-4 4.460 E-4 21.74 2.31
G: + 100 % 1,459 E- 1.094 E-4 30.57 25.03

i

TABLE 2 ~ VARIATIONS OF THE PERTURBED AVERAGE

FLUX IN THE MIDDLE ZONE

5cm - 9 cm

IN FUNCTION OF G~ (C CONSTANT)

o

k]
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Table 2 gives average values of perfLrbed fluxes in the middle
region 5 cm-9 cm, in which the non-asymptotic component of the fluxes
and the influence of leakage are neglectible.

i

We notice that for perturbations from - 30 % to + 50 %, the

results are correct, the ratio of the statistical uncertainties of the

perturbated games to the original one does not exceed 3.

A great degradation of precision appears for - 0.75 ¢ A(?kgs-D.S

Section 2 gives the limit value of permissible perturbations K

- * —_
Gas = G7/2 = (Go-He)[2 if we take into account the function

of importance.

The numerical value of (GZG;S)/C% is then : - 78.6 %.

W



Perturbations] A Y g P AV, . 66 % ‘ AP -A(ﬁg
—__mc (from the analytical |(by differential relative —me -
Fonc. expression), _, TRIPOLI) track uncertainty Ao

e neutronxcm “xs lenght estimator,! on A, .

g neutronsxcm “xs in % in %

G : -75% 22 5.201 £-1 2.893 E-1 62.29 44.38
G: - 50 % 7.33 1.357 £-1 9.641 E-2 280.36 28.94

G- 40 % 5.04 7.731 E-2 6.625 E-2 17 .83 14.30

G- 30 % 3.01 4,220 E-2 3.953 E-2 14.69 5.32
c': - 20 % 1.53 2.093 E-2 2.014 E-2 10.03 3.78
c: - 10 %= 5.86 E-1 7.962 E-3 7.708 E-3 6.25 3.19 .
G: - 1% 4.64 E-2 5%341 E-4 8.%98 E-4 4.86 3.67
G:*+ 1% - 4.43 E-2 _ - 6.046 E-4 - 5.821 E-4 3.94 3.72
G + 10 % - 3.62 E-1 ) 4.918 E-3 - 4.758 E-3 3.82 3.23
G:+20% | - 5.87 E-1 7.972 E-3 - 7.720 E-3 3.48 3.17 -
G: + 30 % - 7.30 E~1 9.880 E-3 - 5.604 E-3 3.22 2.78
G140 % - :8.24 E-1 ® - 1,108 E-2 - 1.084 E-2 3.05 2.16
G+ 55%% - 8.87 E-1. 1.183 E-2 - 1.168 E-2 3.01 1.48
G: +t75% - 9.85 E-1 1.272 E-2 - 1.270 E-2 3.18 1.80 E-1
Go: + 100 % - 9.91 E~1 1.301 E-2@~ - 1.303 E-2 3.39 1.67 E-1

3

TABLE 3 - VARIATIONS OF THE DIFFERENTIAL EFFECT AY,.. =

5 cm - 9 cm IN FUNCTION OF &

{3

{C CONSTANT)

m e (G) = fin c (G,) IN THE MIDDLE ZONE :

18
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The same remarks can be done on table 3 for the differential
results. N

Table 3 and figure 4 prove that the method of correlated samples is

2

still valid in a domain of iron~linearity. b

¢

Perturbations of the non-capture probability CD

Perturbed fluxes have been calculated for a set of values of C,
for a fixed value of G

A fixed value of C, can be obtained by several ways, by combinations

of pertufbations of non-capture probability of each i1sotope. 4

For highly dissymetrical perturbations of these probabilities, the
uncertainty on the result is very important, even for small glgbal
perturbations of C.

SN

Tables 4 and 5 have been caloﬂlated under the hypothesis that the

microscopic total cross sections and the atomic'aensities of both

elements are constant.

o

The 1limit of the permissible perturbaticns is % VEO - C = 7.26 %

t



Perturbations ol (C) LP“S L.Fm" . L'Dm c Lﬁs
{(from the analytical |(by differential R BB % —T—
expression) 1 TRIPOLI} track relative as.
neutrons x cm X S lenght estimator uncertainty .

- =1 (in %)
a neutronsxcm-2xs on %,..
(in %)

C:-20 % 0.83302 9.550 E-4 9.589 E-4 2.17 4.08 E-1
C:-10 % 0.73501 R\ 2.884 E-3 2.859 E-3 2.83 8.62 E-1
C: -~ 1% 0.60985 i 1.098 E-2 1.086 E-2 3.36 1.82 E-1
C:-0.1% 0.58456 1.292 E-~2 1.280 E-2 3.52 1.43 E-1
non —
perturbed 0.59283 1.316 E-2 1.315 E-2 3.53 9.44 E-2
problem . s
C: +0.1% 0.59108 1.340 E-2 1.339 E-2 3.55 = 7.46 E-2
C + % 0.57498 1.580 E-2 1.580 E-2 3.74 6.29 E-3
C:+5% D.49364 3.802 E-2 3.799 E-2 5.22 8.55 E-2

oTABLE 5 - VARIATIONS OF THE PERTURBED AVERAGE FLUX IN THE MIDDLE ZONE : 5 cm - 9 cm IN FUNCTION OF C
( & CONSTANT) -

8



A A
Perturbations A‘-ch a LPO-S. me ¢ 66 % & LP'” ¢ Lﬁ"
(from the analytical| (by differential relative AMys
LP;C expression) TRIPOLI) track- uncertainty
= 5 neutronsxcmZxs lenght estimator on A, (in %)
neutronsxcm™Z2xs” 1 (in %)
cC:-20 % - 9.27 - 1.220 E-2 - 1.219 E-2 3.67 8.20 E-2
cC: - 10 % - 7.82 E-1 - 1.027 E-2 - 1.028 E-Z2 ‘ 3.81 9.74 E-2
cC: -1% - 1.66 E-1 - 2.175 E-3 - 2.183 E-3 4,43 é.SS* -1
C: -0.1% - 1.84 E-2 - 2:405 E-4 - 2.416 E-4 4 .59 j.ﬂB E-1
C: ~=0.1 % 1.88 E-2 2.462 E-4 2.470 Eﬁ-4 4,62 2.25 E-1
C: +1% 2.10 E-1 2.748 E-3 2.757 E-3 4,79 4.00 E-1
C:+5% . 1.89 2.486 E-2 2.484 E-2 6.14 8.05 E-2

TABLE 5

~

.
tz=

{

\

12

s TF:
: VARIATION OF THE DIFFERENTIAL EFFECT A ', . = Trme ()" e Cc)
IN FUNCTION OF C :

7

g8



Average flax $5n5'b'v.l‘.~j
to non - captuse ?ﬂ)'m‘t'b.\.tl
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( & constant)

Fig 5

&

il

Similar remarks as for total cross section perturbaticns can be done.
. Figure 5 shows the non linear effects observed in the middle region and

calculated by differential TRIPOLI.

o
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Comparison between differential TRIPOLI and ANISN for polyhinetic neutrons

We want to calculate the sensitivity of the biological dose at

the boundary surface of a simplified shipping cask to the cross sections

of iron, for a set of intervals of energy. ’

s

4]
The geometry is a 32.2 cm wide cylinder of infinite height. The

It

compositions are

¥
1. Neutron source :
i

The source of neutrons consists in a mixture of PUUZ.

0

2. Iran : "
te 3 <) «
Fe B.466 E22 at/cm
3. Plaster : ’ - ‘
u ®
3
H 6.31 E22 at/cm
0 1.79 E22 at/cm3
D 3 17}
B10 5.60 E20 at/cm
] B 2.15 E22 at/cm3 .
3 ¢ |
Ca 3.76 E21 at/cm” .

r}
" i

The density of neutron source is spatially constant, and localized

between the radius 0 and 6.4 cm.

The energetic spectrum is the fission spectrum of Pu corrected

with (o, n) productions of neutrons on 02. v
@&

Then follow & 12 cm wide lump of iron, a 13 cm wide lump of plaster

and a 0.8 cm slab of iron.

@ \
[
’ 5 §

s

4 7
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The detector r (E} is given by figure 8.

ANISN direct and adjoint calculations

Both calculations have been performed with a 100 groups standard

discretization in energy.

Anisotropies are treated in P%Japproximation with S, quadrature.

8
The origin of cross sections in ENDF/B3 library.

The adjoint source is a shell source localized at the radius 32.2 cm

s+(Rexg i E')f“) = rey
Z]TR&K‘: . }J

where ﬁb is the cosine of the direction of the adjoint source particle
and the normal to the external cylinder, Of radius Rgg i+ %

The integrated dose is (by both calculaticns} :D(Rgyt) = 4.49 mrem/h.
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TRIPOLI calculation

The calculation have been performed with a sample of 1500 neutrons,
using exponential transform . The cross sactions come from the UKNDL

library and are integrated In the standard 283 multigroup mesh of TRIPOLI.

Angles of scattering are sampled from equal probabilities cosines.

The integrated dose is

¢

) D (R } = 8.24 mrem/h with a*3.14 % uncertainty.
. ext 2

ey fu 0, IAon Plasten”
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Fig 7 gaves the spatial variations of the direct fluxes calculated

by ANISN and TRIPOLI, and of the adjoint flux calculated by ANISN.

Fig 8 gives the spatial distribution of the dose. The difference
between TRIPOLI and ANISN can be explained by the difference af

microscopic data used and by the great (3 decades ) attenuation.
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Sensitivity calculations
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Figure 9 shows the sensitivity profile calculated by SWANLAKE from the

4

ri

a0

£

Energies (MeV) Sensitivity Sensitivity 86 %
calculated by calculated by Relative
SWANLAKE (in %) Monte Carlo (in %){uncertainty
. (in %)
14.8 - 3.35 - 4,142 E-1 - 6.654 E-1 8.33.
3.35 - 2.661 - 3.882 E-1 - 3.893 E-1 13.12
2.681 - 2.239 - 3.180 E-1 - 2.497 E-t 17 .77
2.239 - 1.673 - 3.451 E-1 - 2.550 E-1 12.49
1.679 -2.258 E-8 - 3.639 E-1 - 2.4186 E-1 21.
e
14.8 - 2.258 E-8 - 1.830 - 1.783 5.79

TABLE &

CROSS SECTIONS

: SENSITIVITY OF THE BIOLOGICAL DOSE TO +1% FPERTURBATION OF {%DN

4

angular direct and adjoint ANISN fluxes, under the hypothesis of linearity.

&
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Tahle 6 is a.comparison of SWANLAKE and differential TRIPOLI results
!

for five groups.

1

3

» .
The sensitivities per group are et in agreécment, may-be because of

vt
)

- 1

the difFerent(origins of the libraries or the treatment of anisotropy.

For 1 % perturbation, the variance per group compared with the total

oo .
variance of the non-perturbed proﬁlem is multiplied with a 2 to 4

factor.

i

it

t

This fact proofs that, for localized perturhations, variance is very

dependent on the width of’the energetical intervals, because the number

of neutrons which contribute to the score is weak. Energy dependent

functions of imﬁortance must be used to solve such problems to improve

the variance.

The width of
effect, when the

the ircn lump is large enough to obr-erve a non-linearity

perturbation is more important

2

[

SWANLAKE MONTE CARLD | UNGERTAINTY

: N .

(in %) (in %) (in %)
Perturbation of 1 % - 1.78822 - 1.7121 5.22
(14MeV - 0.8236 MeV)
Perturbation of 20 % U _ 35,544 - 28.960 4.65
(14MeV - 0.8236.MeV) .
&
CONCLUSION

. The first results of differential TRIPOLTI are encouraging. Some

problems are still to solve :

(4

oo

’o

In aygeneral contexy, it would be interesting to have criterions to

evaluate a priori the uncertainty for light perturbations, and on the .

contrary to calculate the amplitude of the maximum permissible onés

because t@e distritution of the scores per batch becomes non Gaussian

so that the uncertainty is often under-estimated.

2
S

g
e

o

]
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)
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i

For localized perturbations, the informatiaon will be improved if
more neutrons are sampled in the perturbed zone.
4 »
Bi&ising methads used to solve the unperturbed problem have td take

into account this fact, without downgrading the precisiﬁn on the qon-

perturbed score. R !
/ 4
4 e )
Some tests are going on to caltulate variations of temperature
in cells.
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TRIMARAN : A THREE DIMENSIONAL MULTIGROUP P :

MONTE CARLO CODE FOR CRITICALLITY STUQ;EQ‘“

QE ERMUMCU - J. GONNORD -lJ.q; NIMAL

1 is

COMMISSARIAT A L'ENERGIE ATOMIQUE - Service SERMA
LABORATOIRE DE PROTECTION

® .
s SACLAY - B.P. N° 2 - 891180 GIF SUR YVETTE -
FRANCE
(:
ABSTRACT

¢

TRIMARAN is developped for safety analysis of nuclear componentsd
containing fissionnable materials : shipping casks, storage and cooling
pools, manufacture and reprocessing planfs. It solves the transport
equation by Monte Carlo method in general three dimzansional geometry
with multigroup P1 approximation. A special representation of cross
sections and numbers has been developped in order to reduce considerably
the computing cost and %ﬁlow this three dimensicnal cade ta compete with

4
standard numerical prog%am used in parsmetric studies.

A

”O

2 Ra .
As well as=nuéleal reactor safety, auxiliary components safety such as

shipping cask, fuel storage pools and reprocessiné’plants has become of

major importance and the restrictions requestedby the safety regulations

may affect the entire nuclear program. -

4

[$]

o A

i R
Following actual safety regulations, all units containing fissile
w

materials should'nt present any risk of nuclear chain reaction, and pre

computation should guarantee that - even in all possible typesof accident- -

such as : fire, handling error, flooding, geometric deformation following

S

=

0

B
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falls or seism -the erfective npeytron multiplication constant (keff)
is less than 1., all cross section and computation uncertainties

evaluated. , y

The ever growing guantities of fissile materials to be stored,
shipped and reproccessed demand more accurate calculations because large
uncestainties do not allow to run such units at their optimal capacity.

o

Let us have a look an the follﬁwing example : the effective neutron
multiplicatiaon constant (keff) of a shipping cask built for 16 fuel
elements is computed, assuming a total immersion in water with two

methods :

7a

A gives an uncertainty of 0.05 (3 g )
B gives arvuncertainty of 0.005 (3 7))

Number of. elements 12 14 16
* + +
method A 0.92 % 0.05 0.93 Y 0.05 0.95 % 0.05
i
method B '0.920 % 0.005 0.932 % 0.005 0.945 - 0.005 ¢

5

knowing that the FreKSH safety regulation requires keff « 0.95 all
uncertainties included, we see from the table that using method A only
the transportation.of 12 elements may be allowed. The use of method B
will allow the shipping of 16 elements, which represents a gain of 33 %
of the shipping capéEity.

{

However accurate methods demanding exact thré&hdimensional treatment

)

of the geometry and fine representation of cross section are quite expensive.

2

Furthermore, to allow any type of casks or plants, the most pessimistic
I
accidén?&ghould’be evaluated, involving a lot of parametric studies
TN
such aﬁlcaléﬁlation’of keff function-of water density, poison nature,

SRPTE HER .
geomqgﬁ%p qgformatlon and eventual presence of reflectors.........

'
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W
This leads to a large number of computations and a compromise must

AN
be found between cost and computational accuracy. ~

\f
In order to meet this goal we have developped a simplified
very fast Monte Carlo code : TRIMARAN which solves the critical
‘ Boltzmann equation in three dimensional geometry using multigroup cross
segtions with linear anisotropy (P1 approximation). ’

4

TRIMARAN GEOMETRY

The code uses the geometryﬁpackage of the TRIPOLI system [1].
>

The three dimensional geometry is defined as a union of volumes filled !
with héﬂogeneous(composition and limited by portion of surfaces of

first or second order. The geometry may be repeated by translation-

rotation and symmetryand allows any type of boundary condition including

albedos. v -

i

The user defines equations such as :

- general plaﬁx ax + by + cz +d =20
- special plans X %X = a -
# :
1 =
. ‘ y+y, =0
g z+2z =0
0 o
. 2 2 2 " N
- general quadric ax + by + cz + dxy + eyz + fzx + gx *+_hy + iz
2 “ Lo
A *+3=0
@
_ _ 2 _ 2 _ 20 L2 _
sphere (x xD] + (y yD] + (z zo] R 0
. . - 2 . 2 2
- +gpecial cylinders (y - yD] + (z - zO] -R" =0
(z - z ]2 + (% - X ]2 - R2 =0
1 D D v
2 2 2 5
7o (x - x 17+ (y -y)) R™ =0

K" iy @
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Then each volume will be deflned by its boundary surfaces and the

4

sign of their associlated linear or quadratic forms for any point inside
the volume. Any portion of boundary surface with no neighbour volume will
be declared with a boundary condition such as :

s N
| - !

- leakage .

- optical reflexion / “ o

- isotropié reflexion with albedo¥function of energy . {
- symmetry
~ translation

- rotation

'
[

.« A special and very fast processing is uééd for slabs which could”ﬂ%

inserted inside every rectangular: volumes. ik i

- 4 i

-

CROSS SECTIONS
4

TRIMARAN solves the Boltzmann equation without external sources

fr

-
(1] K.9(Z,T,€)+ Ty (%, e)4>c»??,s”i’£ =
- P
[t [Ge'z R 0 R0+ BOD [at ey p B B
Eeff ur 5

by Iy

J(
Using the lirear anisotropy colllsion apprOleatanJ[P1] the transfer

4

cross section may be written :

&
“

e
(2) zd(ﬂ,ﬂeuzeef): I (2e»e")+ L. 2,

Tt

3 & -
o N

and in the multigroup approximation (1) becomes :
A '
fore]

ol \%\ &

(3) E'V(Pﬁ (’? "{:}\1, de(-’z)¢8 (’?;3{)3

’QZ {( giag Rt —3@")92‘(&’))%'1’?’3‘ A%Q‘;‘igm "¢5"’7'”"d§‘}

o &
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4 i
The functions z;(-’:) ) Zg,:z,(&’),zgjar(f)) %Z;(’Z’) a:\d Xé(»z)

0
are constant inside a volume as defined in the gegmet{y anq are refered
as the cross section library.
¥ b s
~+TRIMARAN can use any type of’ multiaroup library with less than g&
© 256 groups. The code has its own mixing routlne and may be coupled with ,
different libraries through a simple interface. ) ©

ty N

Actually two interfaces are provided :° y "
- one with ANISN format libraries which allows the code to use CrosSsS

sectionlprocessed by the AMPX system (2) "

5 one with a KERA library output by the cell code APPDLD( ) which

compurtes correct self-shielded cross sections:using the collision. ¢
probability method. L T g ’
1 "
S ) “~
. From one of these microcopic cross section libraries, TRIMARAN I

computes macroscopic cross sections and probability tables : ‘
' 7 [

w
4] ﬁ

a @ . )
[/ ;z; absarption in group g ¢ @
f g P ° '
, iz Z 'F 4 ' R ' i
'Qg neutron production in group g with spectrum
g <
. . &
. 4 ‘40 - - A4
e -9[ £, I
Z roa (SL5 ) = + JL.%2 Z !
= 5"’3 . Za’_;z e, 9”?
N i
with g'f)- g for the slowing down G o
i : ' o) B
g' =g for :in scattering o .
3 g' & g for upscattering « ¢

o
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in the standard 89 groups APOLLO library, 47 are with possible upscatter.

i ~

\
The probability tables are stored in memory in a special for

St
presenting two important advantages : ql
- 1t reduces considerably the memory occupied by the cross sections
- the format is specially adapted to the neutron simulation by the Monte

Carlo methed.

SIMULATION

{
4

A batch of neutrons is simulated using the Monte Carlo method.
Scoring 1s made for absorption,neutron production and
estimation of :

leakage and an

4

keff = neutron produc?1on

15 computed.
absorption+leakage

3

In the same time,the next batch of neutrons is generated with the
fission spectrum of the compeosition where they are created.
This process is repeated until the variance on the mean value of

keff reached the user precision or the iteration limit.

e

To initiate the process a guess batch of neutrons is generated in

‘kissile materials using a flat flux approximation.

5

Starting from a neutron characterised by :

- [

its position r  its direction ° <\
its group g  and its weight ™
v
a track length is sampléd. Then absorption and prdduction rate are compu-

ted and scored along the track using two different but highly correlated
ways @
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- track length estimator :

= lxw | | ‘

- collision estimator

> W

=t

At the end of the track the neutron either leavesthe system or has

a coilision. In the latter case the weight is multiplied by the probability

v .

of no absorption and a new group g' and direction ' are sampled from
- 4
Y .lg g') and N (g, g'). If the material is fissile neutrons for
the next generation are sampled from L and

'
’ ’
1y

The neutron history is simulated until the particle leavrs the system

or its weight becomes less than .

The program offers two options :

- russian roulette

- weight transfer which seems to give a better variance.

At the end of the batch the different values of the keff estimation

1
are used to accelerate tne convergence.

The code outputs “
- absorption and production rates with their variance for esach volume

- leakage through boundary surfaces

- mean value and variance of keff computed by three different ways

- number of neutrons generated at each batch

- keff = production from collision estimator
absorption+leakage
- keff = production from track length estimator

absorption+leakage
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SPECIAL TECHNICAL FEATURES 0OF TRIMARAN

The computing cost is a function of 3 parameters

-~ number of input/output operations s
~ size of memory occupied during the execution

- gentral processing unit time (CPU)

The code has been specially programmed to obtain a significant

reduction of the contribution to the cost of each parameter.

The input/output operations are reduced to the minimum necessary
to run « computation : reading the user input, the microscopic cross
sections and printing the results. All the data used during the
execution is slored at the beginning in the central memory. This
programming usually leads to a large utilization of the computer memoury
for example, using our standard 93 groups library the cross sections

matrices ( | : } will occupy for only one composition
1/ 99x88%2 words. For a typical shipping cask problem where about
10 compositions are described 800 K would be necessary only to store

the cross sections |

TRIMARAN uses a special binary coding which reduces the size
occupied by the cross sections by a factor between 10 to 15. Using that

method most of our problems can be run within & region less than 300 K.

Furthermore this coding leads us to give up nearly completely floating
point operations for fixed binary operations 4 to 5 times faster on IBM

machines.
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This type of binary coding is specially adapted to Maonte Carlo

method for two reasons

- the limited variation of numbers used during the simulation :

probabilities belongs to (0,1)..

- the inherent uncertainties brung by the Monte Carle method allows
to simulate floating point operations by binary cperations as long
as we control the numerical uncertainties in order that their cumulated

values stay neglectitlein respect to the variance of Lhe result.

In a Monte Ca*io run the‘variance on the result decreases like the
square root of the number of histories, and if it is quite easy to
obtain rapidly a poor variance (10/15 %) it becomes hopeless to reaqh
better variance than .5 to.4% inareasonable computing time. This limit
allows to use nuggrical methods giviné uncertainties between ik
107° - 10™% instead of the 1077 - 107% of standard floating points
operations, but 5 to 10 times faster. This is well shown on figure 1
where the variance is plotted as a function of time for 3 difrlerent

Monte Carlo simulations of the same benchmrark.
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FIGURE 1
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The exact Monte Carlo computation converges verpy slowly to the
exact result limited only by the accuracy on floatirig point operations

~1. But the computing time limits its use to physical studies or specilal

applications.

Simplified Monte Carlo keeping the advantages of three dimensional
geometry but using approximated description of cross sections and
anisotropy converges to an approximate result R' much faster but still not
enough to compete with the analytical or numerical codes used in nuclear
gngineering.

i

TRIMARAN,using binary coding,falls in the range of these engineering
codes, the counter part being a larger theoretical uncertainty. But
anyway this theoretical uncertainty cannot be reached ;n the range of
accuracy and computing time where the code is used. ThEs proves the
advantages of the method.

CONCLUSION .

fw

By reducing the cost of a threeLHimensional Monte Carlo run,
as shown by preliminary results, by a factor B to 10 we dispose of a
code able to satisfy three dimensional demands of some calculations and

still in the range of price of analytical or numerical codes’ used in

nuclear engineering.

TRIMARAN 1s going to be implemented in the shielding code system

PROMETHEE (4] which will supply it with the input ocutput facilities of a

modular system. We think then to extend the field of this method to
deep penetration problems.

7t
i
N
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KENO ' CALCULATIONS OF LIGHT WATER FUEL LATTICS

. "

M. J. Hebert, J. A. Handschuh, E. E. Pilat, M. Edenius
Yankee Atomic, Electric Company
Westboro, Mass.
D. R Harrls
Rensselaer Polytechnlc Institute
Troy, NY

J. A. Mayer
Worcester Polytechnic Institute
Worcester, Mass.

ABSTRACT

At Yankee, KENO(1) calculations of light water fuel
lattices are being performed for the purpose of spent fuel
rack design and as benchmarks/for BWR bundle calculations.

4 Spent fuel rack design for Maine Yankee has utilized
the well known 123 group ORNL library to verify that the
close packed, poisoned fuel rack met the criterion that k
be lesg,than 0.95. ¢ The uranium 238 resonance cross
sections were obtained from“NiiiwWL(? , using dancoff
factors obtained from Sauer! 5\3 method as implemented in
LEOPARD (1), Analysis methods were validated by
performing similar KENO calculations of poisoned
eriticals (5,6) which have also been used”to validate the
SCALE SYSTEM(7). Comparisons between experiment and
calculations will be included in the presentation.

KENO calculations for BWR bundlesiare performed in
order to verify the assumptions made in the more automated,
integral transport theory calculation which is used
for production purposes. Although this integral transport
code performs multi-group, space-dependent calculations of
the bundle, a number of simplifying assumptions are
necessary because of the extreme heterogeneity of the
bundle. Such assumptions relate to the self-shielding of
the gadollnla burnable poison present in selected fuel
rods, to the definition of unit cells (the 2D transport
calculation is performed on a unit cell basis), and to the
representation of the boron carbide filled steel tubes
which comprise the contrcl rod, as well as to the
perturbing effects of non-identical neighboring bundles.
In order to make the KENO calculations as consistent as
possible, they are performed with the same (ENDF/B-III)
library used in the integral transport calculations. This
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paper describes the reformatting of the lntegral transport

code 25 and 69 group libraries for use in KENO, and
compares kK 1nf1n1ty values and selected/@eactlon rates

in a

EJR fuel aqsembly as determined by the 1ntegra1 trani{port

and Monte Carlo calculations.

i

I /‘ =

/
Yanket . % Electric Company (YAEC) in Westboro,

Mass, is CL’ riy using the Oak Rldge developed Monte

Carlo code “KENO-IV: An improved Monte Carlo Criticality
Program". KENO is being used as an analy51s tool for spent
fuel rack calculatlons of PWR fuel, And as a development

aid for 1n—core BWR fuel calculatlons. In both cases,

the

Monte Carlo method is applied becaufe of the large flux

gradients. ' ; |

[ /i
4
5 t

[ i
-~ 'KENO CALCULATIONS OF PWR SPENT FUEL RACKS

. -
s

N
As applied to PWR reactors, the Monte Carlo method has been used,
primarily in spent fuel storage rack de31gn calculations. Monte
Carlo techniques are required for the’ fupl” storage rack calculations
because of the presence of BORAL plates/ln the design of Yankee

racks. lefuslon theory is inappropriate in a problem with

such

large flux gradlents. The Monte Carlo methods are available,

however, for}benchmarklng of non-standard problems (i.e,

conflguratloﬁs which. PDQ, the standard method, might not predict.

né

Examples include water-rod effect on power distribution, gapped fuel

rod effects.)

The implementation of the Monte Carlo method is performed using

the 123 group AMPX-KENO (1:2) set of calculational tools.

NITAWL,

using the Nordheim' resonance treatment, creates the 123-group library
for KENO-IV. KENO is run in restart mode until sufficient statisties

are achieved.

Prior to”implementation to criticality calculations, the
ANS-8.11/ANSI N16.9-1975 (5:9) standard requires validation of all

calculational tools to assure applicability to the problem

of

interest. For the fuel storage rack calculation, validation consists

of comparing the results of KENO calculations to criticals.

At the

time of the initial work, the best available criticals that simulated
‘fuel storage rack configuration were those gerformed by Bierman at

Battelle Pacific Northwest Laboratories.!(

These criticals were

performed using three suberitical clusters with and without poison
p;qtes inserted between clusters. Two different enrichments were

utilized, 2.35 and 4.30 WT%, in addition, BORAL was utilized as one

of the poison materials. The calculated values of these experiments

are shown in Table 1. Table 1 also provides comparison to

performed by R. Westfall of ORNL 7), who generated KENO comparisons

work

using the 123 group library for all 210 of The Bierman criticals.

As
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shown, the agreement between the YAEC and the ORNL work allows some
bootstrapping to the complete 210 cases Westfall analyzed.

Additional verification of methods is now available from the
recently published B & W criticals for arrays of nine assemblies in a
fuel storage rack configuration.(10) The B & W criticals add an
important aspect due to the presence of soluble boron in some of
their experiments in addition to poison plates.

An interesting point that has arisen from the fuel storage rack
calculation is the method used by some designers to utilize PDQ to !
derive sensitivities. Work preformed at YAEC on the design of
SEABROOK .fuel racks shows that PDQ does not provide an accurate means
for deriving sensitivities. In the cases shown in Table 2, a change .
in the center-to-center spacing provides significant differences in e
relative Keff' As expected,/diffusion theory underpredicts the
delta-K for this situation.”

fi
i
Table 1
Validation of KENO Methods

Enrichment &

Experiement Poison Plate Yankee (SPNL
No. Material Keff © Keff
2.35-5 None & 1.006 + 0.00%  1.005 £ 0.004
/‘ \’s
2.35-16 Boral 1.006 + 0.004 “:27,007 + 0.005
4.,30-4 None 0.987 + 0.005 —
\‘\
4.30~31 Boral 0.997 + 0.004))  0.996 % 0.005 :
/ ! £
Table 2 d

PDQ vs. KENO K,¢rr

Center-To-Center PDQ ’ KENO
19
10,84 0.9243 0.9418 + 0,005

10.,94n 0.9123 0.9218 + 0.005 -

“f
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KENO CALCULATIONS OF BWR FUEL LATTICES

1/

At Yankee Atomic Electric Company (YAEC), methods are currently
being developed: which will allow Yankee to undertake the reload
licensing of"Vermont Yankee. Vermont Iankee is a BWR rated at 5“0
MWe, which first went into operation in November of 1972.

One of the calculational tools being used is "CASMO: A Fuel

Assembly Burnup Program",(8 which was déﬁeloped by AB Atomenergi
in Studsvik Sweden and is distributed by EPRI.

CASMO is a mulfigroup two-dimensional transport theory code for
burnup calculations, which handles either pin~cell calculations or
cylindrical fuel-pin lattices. The code has provisions to allow fuel
of various compositions, fuel containing gadolinia, burnable absorber
rods, cluster control rods, in~core instrument channels, water gaps,
boron steel curtains, and cruciform control rods. CASMO is supplied
with both 25 and 69 group cross section libraries derived from
ENDF/B-III data. e

N
h.

One step in developing CASMO as a BWR method was the
determination of how its single bundle lattices compared with
multi-bundle lattices. The Monte Carlo code "KENO-IV-An Improved
Monte Carlo Criticality Program",(1) develcped at Oak Ridge
National Laboratory (ORNL), was employed in this effort.

BWR [Fuel Lattices

A typical fuel bundle for a BWR is rather complex, particularly
when compared to PWR fuel. BWR fuel bundles often contain as many as
five different fuel enrichments, as well as water pins and pins
containing both fuel and burnable poison. BWRs are operated with
some control rods inserted creating large neutron flux depressions.
Since boiling occurs.within the core, water density can vary, from top
to bottom as well as from bundle to bundle.

v D]

In short, BWR fuel is anything but homogeneocus. Tt is for this

reason that the Monte Carlo technique was applied.

o CASMO Description
1
The CASMO program performs the following sequence of events at
each burnup step...

1. Macroscopic cross-sections, including effective cross-sections
in the resonance region for important resonance absorbers are
calculated. In the resonance calculation, Dancoff factors are
used to account for the screening effect between different pins,

-
(Es L

Y
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L ¢
, and the equivalence theorem relates tabulated éffective
resonance integrals to the particular heterogeneous problem.

2. The cross sections are used in the so~called "micro-group
calculations" which provide detailed neutron energy spectra on a
pin-by-pin basis for condensation and homogenization of the pin
cells. ‘

4

3. " The discrete integral transport method is used for 1-D
calculations on a cylindricalized assembly to account for such
non-~symmetric parameters as bypass water gap.

83

y, Two;dimensional transmission probability calcu]ationgﬁape i
performed in as many as 12 energy groups to yield the eig=2nvalue
and assembly flux distribution. \ 4/
\N

5. Effects of leakage are then accounted for by use of a
fundamental buckling mode.

6. Isotopic‘hepletion calculations are performed on fuel pin and
burnable absorber regions. CASMO traces burnup-chains, through
absorption and decay, for 22 fission products, 2 pseudo fission
products, and 14 heavy nuclides.:

s W

Cross Section Library

In order to Jjustify compéﬁison of KENO and CASMC calculations,
consistency of cross section sets was maintdined. A
slightly-modified CASMO 25-group cross section was used since it both
contained sufficient data for both codes, and would be the standard
CASMO production library.

The CASMO library contains absorption (or activation) cross
sections for thirty-six nuclides as well as nu-fission, transport
corrected total scattering, and P, scattering cross sections for
thirty-four other nuclides. Pq scattering cross sections are
provided for three nuclides (Hydrogen, Deuterium and Oxygen). 1In
addition, tables containing effective resonance integrals and burnup
data are also included.

The P, and P4 scattering cross sections are provided in
g->g' form in a scattering matrix. The size of the matrix varies
from nuclide to nuclide and group to group ranging from just one
scatter cross section to full scattering over all energy groups. In
some cases upscatters as well as downscatters are provided.

¢ &

For some nuclides, (such as Hydrogen, Oxygen and Zircaloy),
cross sections are tabulated at more than one temperature,.and not
all cross sections are prqvided at each temperature. CASMO

©
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interpolates over available data to determine cross sections at the
,temperature of interest. ” "
s |7
The CASMO cross section library has been processed in order to
provide KENO-compatible format... K

e I\

/

| -

-,Total scattering cross sections were formed from the absorption
cross sections and Po scattering matrix.

, = Nuclides with cross sections at several temperatures were broken
into several pseudo-~nuclides (one per témperature). o

1%

vt

’ - Scattering cross sections” were multiplied oy a 2L + 1 factor (as
expected by KENO).
L¥]
- Cross sectlons were written into KENO card-image format. Zeroes
were included as\needed so that all cross sections (1nclud1ng
rul’ scattering) were tabulated for each nucllde.
/ 7N < q.,.,:‘u ‘4 Ly
In order to assure oonﬁgéfency of cross sections in the i
resonance-energy region, resonance group Cross sections for important
absorbers were taken directly from the CASMO execution lfor each case //
investigated. This necessitated the creation of several pseudo g»//
nuclides for each of these absorbers in a particular fuelclattice.

, . - y
v Fuel Lattice Model oy o

v © [¢]

b}

i

33
Two dlfferent fuel bundles, both similar to fuel which °has been
loaded at Vermont Yankee (VY) have been represented. Both,are 8'x 8
square pitch lattices containing fuel at five different’ enrlchments
in addition.to water pins and pins eontalnlng gadollnla and fuel. o
Al
The 219 Bundle (the bundle average enrlchment is 2. 19%;,nu o
contains fuel enrichments varying from 1.18% to 2.50%, as well as °
three pins which are enriched to 2.50% and contain 4.0 WT% & - a
gadolinia, The 274 Bundle enrichment ranges from 1.87% to 3.01%, and
contalns five pins enriched to 3.01% which contain 2. 0 WT% gadollnla
(flgure 1).
[e3
*The fuel bundle models for both CASMO and KENO are exactly
1dentlcal and deviate only slightly from the actual bundles {(with
square as opposed to rounded channel corners, for example).
- In a’like manner, the control rod models are reasonably similar
“to- the actual VY control rods. Unfortunately there are KENO geometry
1nputqrequ1rements which necessitate that
LU, B!
°~ ‘edch succesive geometry region within a geometry "BOX TYPE" must
°® enclose the previous one, and

9 g )]
o

4,

“
x,
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while the CASMO model is limited to cylindrical control rods.
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- cylindrical geometry regions must be centered‘about their origin

¢

Together,

of its enclosing "BOX TYPEY,

m

these effectively(ﬁrevent«the simultaneous
representation of both cylindrical fuel pins and cylindrieal control
rods.

]
J 4

f 0

As a result, the KENO modef, contains rectangular control rods,
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VY 219 BUNDLE
FUEL ENRICHMENT DISTRIBUTICN

2.50%, U-235 G  2.50% U-235, 4.0% GdgOj
1. 90"31 U-235 W °  Water Pan
1.49%  U-235 W-W Wide-Wide Gap
1.18% U-235
#e5)
FIGURE 1
A "
Results

o

FUEL EN

3.01% U-235

2.22% U-235
1.87% U-235
1.45% U-235

VY 274" BUNDLE N
RICHMENT DISTRIBUTION

G 3.01% U-235, 2.0% GdpOj
w Water Pin

W-W Wide-Wide-Gap

Prior to executing KENO on a multi~bundle array basis, a
stepwise proving procedure was undertaken.
of CASMO/KENQ comparisons for,

Pin cells at different tempertures

This proégdure consisted

Fuel bundles with and without burnable poison

183

Fuel bundles at different void fractions,

Rodded and unrodded fuel bundles

i

)
fnd

N\
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~ Fuel bundles of different gnrichments

bundle fuel arrays.

the previous generation.

KENO was then used to investigate both rodded and unrodded four
These arrays consisted of two each of the 219

and 274 bundles, maintaining diagonal symmetry.
analysis key parameters of interest were K-effective and local
fission distribution.

Throughout the

KENO executes a pre-determined number of generations, the
starting distribution of one depending on the fission distribution of

The starting distribution of the first

generation is determined by the user and typically is not a good

approximation.

average K~effective, as illustrated in Figure 2.

Therefore, several initial generations must be
skipped and the K-effective is chosen as the earliest convergence of

1.15 : .
i ! ¢t [ T
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FIGURE 2

Pin cell
cases were
executed at
296°K and
500°K. Bundle
219 was executed
without Gd203
and without
control rods at
0%, 40% and 70%
void; with
Gdpo04 but
without control
rods at 0%, 40%
and 70% void; and
with both
Gd203 control
rods, also at the
three voids.
Bundle 274 was
executed at 40%
void, with
Gd203 both
controlled and
uncontrolled.
Table 1 presents
a comparison of
K-effective for
each of the cases.

As can be

" seen from the

table, KENO and
CASMO
K-effectives
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agree within 1% for all cases. An interesting trend emerges when
comparing rodded to unrodded bundles. For the rodded cases, KENO
predicts a higher K-effective than CASMO by about 0.6%. For the
unrodded cases (with Gd203), KENO indicates a lower K-effective by
about 0.4%, when compared to CASMO. This yields a total rod bias of
about a percent.

CASE KENO casMo 3 DEV
296°K PIN CELL 1.3739 + .002 1.37475 -.062
500°k PIN CELL 1.3481 £ .002 1.34956 -.108
219 at 0% VOID 1.2504 ¢ .002 1.24939 .081
219 at 40% VOID 1.2400  .002 1.24150 -.121
219 at 70% VOID 1.2236 + .002 1.21883 .391
219 w/GAD 0% 1.1198 + .0025 1.12479 ~.444
219 w/GAD 40% 1.1044 £ .002 1.10958 ~.467
219 w/GAD 70% 1.0784 % .0025 1.08172 -.307
219 RODDED 0% 0.9013 ¢ .003 0.89792 .376
219 RODDED 40% 0.8343 + .003 0.82739 .835
219 RODDED 70% 0.7554 + .0025 0.75137 .536
274 w/GAD 40% 1.0939 . 002 1.098851 -.451
274 RODDED 40% 0.8408 * .003 0.83473 .727

PIN & BUNDLE KENO v. CASMO K-~EFFECTIVE

TABLE 1

Local fission distributions for the 274 bundles from both KENO and
CASMO are presented in figures 3 & U4, Fractional differences of local
fission distributions for the 219 bundles with Gd,03, control rodded
and un-rodded, at all void levels are presented in %igures 5 & 6.

From these figures it can be seen that the deviation in the
unrodded cases is fairly random, typically on the order of 2 to 3%, with
only a slight bias from the wide-wide corner to the narrow-narrow. For
the control rodded cases, however, the deviation is somewhat greater and
the bias is more pronounced. In all cases, KENO shows an overall
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These 8 x 8 bundles
are symmetric about
the diagonal axis.

Therefore it is
sufficient to
explicitly model
only the lower
left region (as
shown), as
representative of
the entire bundle.

Using this
convention, the
wide bypass water
gap lies along the
left and upper
sides. The narrow
water gap lies
along the right v
and lower sides.

The wide bypass
water gap is the
location of the
cruciform control
rod when present,
(represented at
left by a heavy
solid line).

For the 4 bundle
executions, the
bundles are
oriented so that
the narrow-narrow
corner is at the
geometric center
of the array for
each bundle.
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flatter fission distribution which corresponds to a slightly lower
prediction of control rod worth, in comparision to CASMO. This in turn
indicates that CASMO predicts higher local peaking factors for the
rodded cases, and is therefore more conservative.

Four-bundle fuel arrays were executed consisting of two 219 bundles
at 0%-void and two 274 bundles at U0% void. In one case, the array was
unrodded, in the other, two cruciform control rods were inserted
adjacent to the 219 bundles. It should be noted that these cases are.
somewhat more extreme than that experienced in an actual BWR.

Local fission distribution for each bundle in each case is
presented as figures 7-10. These figures represent the 4 bundle array
KENO execution compared with the respective 1 bundle KENO excution,
which as stated earlier, compared well with the single bundle CA3SMO
executions. An analysis of this data indicates the greatest deviation
is in the narrow-narrow corner and is on the order of 11-14%. It is
interesting to note that the deviations do not change substantially
between the rodded and unrodded cases.

Table 2 shows a comparison of local bundle peaking factors between
the single and four bundle KENQ executions. For bundle 219, the four
bundle array indicates a peaking factor about Y4 or 5 percent lower than
the single bundle run. For bundle 274, the deviations of less than 2
percent show that the single bundle executions are in essential
agreement. Considering the extreme nature of the cases and the overall
agreement between KENO and CASMO single bundle executions, CASMO is seen
to be slightly conservative in predicting local peaking factors for all
reasonable cases.

BUNDLE-CASE Q;%%?% ARRAY ) siNGLE
o /

219-UNCONTROLLED Qg?x\\ 1.191 1.241
27 4=-UNCONTROLLED 1.322 1.301
219-CONTROLLED 1.647 1.735
274~CONTROLLED 1.310 1.301

BUNDLE PEAKING FACTOR COMPARISON
4 BUNDLE ARRAY v. SINGLE BUNDLE

TABLE 2

WKENO IV - An Improved Mone Carlo Criticality Program", has proven
a useful tool in developing new BWR fuel analysis methods at Yankee. By



'“'T"""T""":""“.'""“"-“"" """ ""T""'T""‘"’: '''' .’"““‘l""‘l“'""'
' ' [ ' ' '
1 096 1 1 1 1136 ' '
1 039 ! ' ! ' ! ( R EL 7 H ' ! : : ' )
Y053 q ' ! 1 . | ! 980 ' ' ! ' '
' ! i ! ' [ _: ! !
il S el O il « 7" " [ el LEND Rl
: : 1o ' LR HEFH : ) : LOCAL 4 BUNDLL DIST ll
1158 1 145 i ) 1243 1105 B
LR Y ) ) LOCAL 4 BUNDLE OIST ! s 1108 h . . b
1666 5 1 t LOCAL 1 BUMDLE DiST ' ) t LOCAL 1 BUNDLE DIST '
[ N R J LS, oo e
1 021 9 ! t | 1
2 73 1 047 f ' )
1.018 955 985 ' RATIO " 1 169 1 077 888 ' RATIO I
% 328 i ! ' 12 1114 a2 ' ( “ya [
I {NORMALIZED TO " 1™} vy 050 a7 DL 1 NOKMALIZID TQ “1") X
. '
S, S — ; -_--.1 - --q
) 1 069 349 792 | RO2 - ] i
1 187 1111 869 271 N ] ' 1 102 168 812 7% ' '
1161 1 086 824 205 ' ¢ ! 918 a5 91 .
022 0Z3 1222 To78 ¢ ' ! ' I
1 ' ! t t
_____ e e
] 1 I 1 ' t
; 169 1 066 82 822 _ H . ) : :gll g-.'v B16 HE9 - ' 1 f
069 1_000 161 783 0 60 1 112 a5 i) 871 0 00 3 |
TG [ 080 Tos0 | - . \ ; 33 557 -7t 955 - ' \ i
t L ! 1 b !
et T 1 l - ] - - -I
1 1 1 ]
1 185 1 o3g 839 o 1141 1 035 817 848 886 891
1118 1 038 2o e 1o ! 1} 11s6 1 098 R7% 866 949 887 ! !
103z 17000 T055 TG0 566 | ! ‘ s 913 o o7 993 1 008 ! X
! '
""" 1 Dtk |
1 2 '
1 023 1 191 a67 067 a03 1 03% 11 1 265 1 163 358 205 216 915 358
R 1195 913 949 1 078 § 1aa ! ! 1 26) 1155 o8 a7 942 887 358
Ton 557 T036 1019 bW H 960 ~gaT o 1o —oa7 71 1005 97 T3z 1006 ‘
[}
! 108 1116 a33 1114 1 13g 1 1c8 1 025 935 l 1 322 1175 1 248 1197 1.215 1 221 1 283 1 260
1151 1 139 1012 1182 e 12n 1141 1aig . Lo PR Ll 1o Llos 1103 1170 1101
560 TTOR8 805 512 831 CDY 897 891 | Toe 17033 a 53 o E T ™
11219 Bundle RENO From 4 Bundle Array VY 271 Dundle AFNO from 4 Bundle Arrav
Bundles 274 at 40% void - Dundles 219 at 0% Void - ‘o Rods Bu(vfﬂcs 274 at 10% Void - Bundles 219 at 05 Void - Mo Rods
.
FIGURE 7 FIGURE 8
——‘—"""'1_"'"7_"'_': _____ R T T“""‘I ""1""'7“’“‘.“"'."”""7 """ r--==== .
' [ r t .
387 ' : | ' ! ' 1 230 . ' | ! | ! \
389 I \ ' ' ! ) 1,159 H [ X ' ) \ \
T 008 ' ' H | | . 1061 b ' ! ' ! h !
[ J 1 ' ¥
T IR S - P L ——-an
1 : KENO 1 2 t 1 KFHNO . 1
479 647 ‘ 1232 1077
484 829 H . | LOCPL 4 RUNDLE DIST : 1_23% 1 105 : : IOCAL 4 BUNOLE DIST ,'
055 T 029 99 7
! J‘ “I LOCAL 1 RUNDLE DIST. : ! _; LOCAL 1| BUNDLF DIST !
SR ———— PR e
t ) ——— ' [ ]
486 656 820 ¢ I ~ 1193 113 509 ' N
495 634 785 ! | RATIO : 1231 1 312 ! RAT1O 1
982 1035 T 045 60 T ] 1
0 ' i (NORMALIZED TO "17) ¢ ° ' (NORMALIZED TO *1°} )
- - . - - - ) - - - - -
;i L ' | K
618 830 792 249 ) 7 ! 1 088 358 , 839 826 ; ¢
606 790 761 249 | \ ' t 1102 B8 832 _A78 N 1 ' t
020 T 051 ToiT Toon h \ 1 ' 969 573 T 008 l 0y ! , | ]
1 1 i 5 f b 1
_._---l__-_...lr__--.‘ B
l
670 870 813 933 - ! h l ) ! !
625 823 818 911 0. 00 ' ' 1 0% 995 876 874 - f J
1672 1057 ~g83 891 e ' t ' 1121 995 893 872 0 00 ) ) '
1 IL ' 8 001 a1 T 003 = i ! '
_______________ [ ER,
1 1 { 1
776 951 269 1 058 1 202 1 287 ! ' 1 129 1 043 435 861 880 903 ' '
733 891 271 1006 1 233 1,902 1 1 t 156 1 098 875 866 949 887 ' '
17059 17067 993 T 052 048 988 : 1l 0 959 894 927 T o018 ] '
)
- ! ] ¥
""" 1, TEETTTY
369 1 249 1168 1 204 1 324 1387 1 551 v t
817 1,192 1_085 1 214 1360 1,436 1 637 1 213 1 160 343 877 952 a2s 350 .
T 051 1048 17075 992 T 966 Ty 1.261 1155 368 8a7 942 887 358
' 962 1 004 832 578 Ton 1043 578 1
i - : ]
1 159 1 206 1172 1471 1 530 1 647 1 410 1 207 1197 1 097 1 188 1152 1177 1 203 1 310 1 254
1 222 1217 1 232 1_537 1 _6n3 1735 1_609 1508 | 1 1301 1137 1155 1101 1.105 1,107 1,170 1104
948 T 065 944 TTo57 o959 949 876 860 I | 530 065 1038 17044 1065 1T 091 120 113
VY 219 Bundle KENO from 4 Bundle Array VY 274 Bundle KENO from 4 Bundle Array
Bundles 274 at 40% Void - Bundles 219 at 0% Void - Rodded Bundles 271 at 40% Void - Dundles 210 at 0% Vold - Rodded

FIGURE 9 FIGURE 10



L2

120

4

establishing relative agreement between KENO and CASMO for single bundle
analysis, then extending KENO to multi-bundle cases, CASMO has been
shown to be useful for multi-bundle calculation of eigenvalues and
peaking factors.

10.
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KENO V — THE NEWEST KEMO MONTE CARLO CRITICALITY PROGRAM

N. F. Landers and L. M. Petrie
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Union Carbide Corporation, Nuclear Division
prime contractor for the
Department of Energy

ABSTRACT

KENO V is a new multigroup Monte Carlo criticality
program developed in the traditiom of KENO®* and KENO IV? for
use in the SCALE® system. The primary purpose of KENO V is
to determine k—-effective, Other calculated guantities include o
lifetime and generation time, energy dependent leakages, pra
energy— and region-dependent absorptions, fissiomns, fluxes,
and fission densities,

)&\

KENO V combines many of the efficient performance capa— o
bilities of KENO IV with improvements such as flexible data
input, the ability to specify origins fa* cylindrical and
spherical geometry regions, ths capab111ty of super grouping
energy dependent data, a P, scattering model in the cross sec—
tions, a procedure for matching lethargy boundaries between
albedos and cross sections to extend the usefulmess of the
albedo feature, and improved restart capabilities,

This advanced user—oriented program combines simplified
data input and efficient computer storage allocation to readi-—
ly solve large problems whose computer storage requirements“
precluded solution when using KENO IV.

DATA INPUT

'

The KENO V data imput is especially adapted for use with remote
terminals, The order of input is quite flexible with the exception of
the title which must be entered first; the parameters must immediately
follow the title if they are entered. o

A large portion of the data has been assigned default values that
have been found to be adequate for many problems. Thus, the user can run
a problem with a minimum of input data.
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Blocks of input déta are entered in the form:

READ XXXX input data END XXXX
RN
where XXXX is the keyword for the type of data being entered. The types
of data that can be entered are parameiers, geometry region data, array
definition data, biasing or weighting data, albedo boundary conditionms,
starting distribution information, cross—section mixirg table and extra
1-D cross section ID's for special applications.

A block of data does not need to be entered unless it is necessary
for the problem., Within the blocks of data, most of the input is acti-
vated by using keywords to override the default values.

i

IMPROVED GEOMETRY FEATURES

KENO V geometry input is very similar to the geometry input for
KENO IV except the weighting has been rearranged to minimize storage
requirements,

AN

The geometry data for KENO IV is:

JEEOMETRI WORD MIXTURE NUMBER DIMENSIONS WEIGHTS
The geometry data for KENO V is:

GEOMETRY WORD MIXTURE NUMBER BIAS ID NUMBER DIMENSIONS

The KENO IV weights are stored for each input geometry region so (number
of energy groups) x:(number of input geometry regions) words of storage
are used, The KENO V weights are stored only for each BIAS ID NUMBER
that is used, In addition, KENO V does not store region dependent data
for geometry regions that are entered but not used in the problem., The
storage requirements for the KENO V weights are (number of different

bias ID’s used in the problem) x (number of energy groups) words of stor-
age, This can result in a significant reduction of storage space for a
large problem.

One of the most important geometry improvements is the ability to
specify the origin for cylinders, hemicylinders, spheres and hemispheres,
This allows the use of nonconcentric cylindrical or spherical shapes and
a great deal of freedom in positioning these shapes. As in KENO IV, the
restriction that each geometry region must completely enclose the pre-
vious region is mandatory.

Another geometry convenience is a choice of the method used to
specify the array definition (mixed box orientation) data, The method

1
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used in KENO IV is available in KENO V. A second method allows the data
to be entered by stringing in the unit or box types starting at x=1, y=1,
z=1, and varying x then y and then z. This input is entered by using
ANISN4-1ike input options for filling the array.

SUPER GROUPING

4

An important featuvre of KENO V is the capability of super grouping
the energy dependent information such as cross sections and fluxes. This
automatic feature is activated when the computer storage is insufficient
to hold all the problem data at once. The energy dependent data is then
broken into super groups that are written on a direct access device and
moved in and out of core as necessary. A problem cannot be super
grouped if the energy-dependent data associated with any energy group is
too large to fit in the available storage.

" The advantage of super grouping is that larger problems can be run
on smaller computers. This capability is gained at the expense of running
time and increased I/0's. The more super groups, the more I/0's are
used and the slower the problem will run because of the banking, sorting,
and use of direct access devices in the solution of the problem.

Pn SCATTERING

KENO V treats anisotropic scattering by using discrete scattering
angles. The angles and associated probabilities are generated in a man—
ner that preserves the moments of the angular scattering distribution for
the selected group—to—group transfer. These moments can be derived from
the coefficients of a P, Legendre Polynomial expansion. All moments
through the 2n—1 moment are preserved for n discrete scattering angles,

A one—to—one correspondence exists such that n Legendre coefficients
yvield n moments,

If the cross—section data has fewer coefficients than the requested
number of discrete scattering angles, higher moments are generated by
using zeros for the higher order coefficients. The method of generating
the angles and probabilities is appropriate only if the moments are for a
valid probability distribution., If extending the coefficients with zeros
results in an invalid distribution, ,the code will pgenerate angles and
probabilities that will preserve the available valid data. 7' “arning
message is printed whenever incorrect moments are encounté?\,_¢§A large
number of these messapges may be generated if the code has to extend the
cross—section coefficients,

14
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KENO V treats the case of zero and one scattering angle in a special
manner. It can recognize that the distribution is isotropic even if the
user specified multiple scattering angles, and therefore selects from a
continuous isotropic distribution., If the user specified one scattering
angle, the code performs sewi—continuous scattering by picking scattering
angles uniformly over some range between -1 and +1. The probability is
zero over the rest of the range.

S

EXTENDED USE OF DIFFERENTIAL ALBEDOS

KENO IV can us» differential albedos to simulate tracking in a
reflector. These differential albedos are expensive and time consuming
to generate because an ANISN calculation must be made for all polar angles
at each energy group. Thus 64 ANISN calculations were involved in gen—
erating each differential albedo currently available for use with KENO.
These albedos were generated using the Hansen—Roach 16 energy group
structure and can only be used in conjunction with cross sections having
the Hansen-Rgach 16 energy group structure if KENO IV is used.

KENO V is not limited by this restriction. It matches lethargy
boundaries between the albedos and cross sections so the appropriate
energy transfers can be made, This is done by creating lethargy boundary
tables for both the albedo group structure and the cross section group
structure and determining the lethargy interval corresponding to the
desired transfer (cross section group structure to albedo group structure
or vice versa) based on a uniform distribution over the lethargy interval.
Therefore, KENO V can use the existing differential albedos with any
cross section energy group structure, When the emnergy group boundaries
of the cross sections and albedos are different, approximations are made
by the code. The results should be scrutinized by the user to evaluate
the effects of the approximations until an adequate 1nformat1on base is
established.

RESTART

KENO V has an improved restart capability. It is much easier to use
than the KENO IV restart option, Certain pieces of input data can be
overridden to be different from the original case, To restart a problem,
the original case must be flagged to write a restart:data set, The
restarted problem uses data from the restart data set. =

When restarting a problem, a new random number can be entered to
change the random sequence and the calculations 1nvolv1ng fluxes and
fission 'densities can be %urned ofﬁJ -

[n]
T
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s CALCULATIONS .

The use of KENO V to solve criticality problems has been limited

due to incomplete documentation. The report and data gnide are currently

being written and should be available sometime this year. KENO V has

calculated k—effectives comparable to those obtained by KENO IV for the
susual criticality problems used to validate our codes. It has also

been used to calculate critical assemblies that are beyond the scope of

KENO IV on our computersi The EPRI water—reflected nranium oxide arrayss

using 218 group ENDF/B-IV cross sectioms have been calculated using

KENO V., These problems,cannot be run with KENO IV because the vast

amount of storage exceeds the capacity of our computers,

Recent calculations of a Los Alamos critical experiment® involving
a small water reflected uranium sphere have illuminated a subtle short—
coming involving the P, scattering treatment used in KENO IV. A sketch
of the experiment is shown in Figure 1. The results of the KENO IV,
K . KENO V, and XSDRN calculationms
are tabulated in Table 1. The
“KENO IV results were consis-
tently lower than XSDRN due to
the single discrete angle scat-
» tering., The Hansen—Roach 16
group water cross sections have
a P, correction applied to the
total cross sectionm, This cor-
rection increases the effective
mean free path in water so that
neutrons exiting the sphere
travel farther from the fuel
before scattering. The small
solid angle subtended by the
fuel sphere covnpled with the
preferentially forward scatter—
- ing of hydrogen place a severe
test on the KENO scattering

s model in calculating the worth
of the water reflector. The
~, Figure 1. Highly enriched single angle model for P, scat-—
Branium sphere on a plexiglas tering has been found to be not "o
collar with a cylindrical water as effective as the distributed
reflector, angle P, model described in the

section entitled Py, Scattering.

A bulletin will be forthcoming

in the Radiation Shielding
Information Center (RSIC) mnewsletter to explain the problem and present
the modification for the KENO IV code.
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Table 1. Comparison of KENO and XSDRN for Small Reflected Uranium Sphers.

Number of Number of

Energy Discrete Quadra—~ Conver-
Groups Angles KENO IV* Histories KENQ V* Histories  XSDRN ture gence
16 1 0.5292 + 0,0045 50,000 0.9944 32 1,0-8
16 1 0.9830 + 0.0046 28,800 0.9867 + 0.0032 89,000 0.9949 32 1.0-6
16 1 0.9809 + 0,0047 28,800 0.9868 + 0.0029 89,000 00,9988 8 1.0-4
16 1 0,9902 + 0.0053 30,000
16 2 - - 0.9805 + 0,0035 70,000
16 4 _ - 0.9906 * 0.0057 30,000
16 0 e -— 1.1144 + 0.0046 30,000 11,1098 16 1.0-6
16 0 S — — 1,1116 + 0,0067 12,999 ‘
17
oy (
27 0 - e 1.1988 + 0,0056 30,000 1,2079 16 1.0-6
27 1 - - 0.9870 + 0.0054 30,000 0.9822 16 1.0-6
27 2 - -— 1.0000 + 0,0051 30,000 1.0013 16 1.0-6

*Single angle P, treatment was nsed in the calculations having ome discrete angle.

2

The 27 group KENO V results for this experiment were in good agreement
with XSDRN but show that Py 'scattering is inadequate for cross sections
that do not have higher order corrections applied to them. The KENO V
calculation using two discrete scattering angles and the P: XSDRN calcu-
lation for the 27 group cross Sections agree well with the experiment.

At the present time extensive timing studies have not been made for
KENO V. The only recent timing comparison between KENO IV and KENO V are
for the four aqueous four metal critical experiment shown in Figure 2,
The following results were obtained:

KENOQ IV 30,000 histories keff = 0,9959 + 0.0056 in 65.02 seconds
KENO V 30,000 histories keff = 0.9994 + 0.0051 in 48.94 seconds
KENO IV used 180 I0’'s and KENO V used 2088 IO’'s in the calculations. The
problem was run as one super group in KENO V. Tf it used multiple super
groups, both the number of I0’'s and the running time would increase,.

KENO V will not<always compare so favorably with KENO IV, depending on
the type of problem. In general KENO V can be expected to be a little
slower and use more I0’s than KENO IV. . ' .
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GEOMETRY MODELING FOR SAM-CE MONTE CARLO CALCULATIONS

H. A. Steinberg and E. 8. Troubetzkoy
Mathematical Applications Group, Inc.
3 Westchester Plaza
Elmsford, New York 10523

ABSTRACT

Three geometry packages have been developed and.incorpor-
ated into SAM-CE, for representing in three dimensions the
transport medium. These are combinatorial geometry - a gener-
al (non-lattice) system, complex combinatorial geometry - a
very general system with lattice capability, and special re-
actor geometry - a special purpose system for light water
reactor geometries. Their different attributes are described.

1. TINTRODUCTION

1

The treatment of radiation, transport or reactor, problems is most
‘difficult when the geometry of the problem is truly three dimensional.
For this situation, the Monte Carlc method, as implemented in computer
codes, has been found to be the only practical approach to solution.

A major technical question, in the design--and implementation of a
code, is the means for representing the geometry. This problem which is
mathematically rather simple, is complicated by the conflicting require-

ments of ease of usage, generality of application, and computer time re-
quirements.

In SAM—CEl, to answer this question, three packages have been devel-
oped, combinatorial geometry (CG), complex combinatorial geometry? (CCG),
and special reactor geometry (SRG). CG is a general purpose system for
representing arbitrary, non-repetitive -configurations. CCG extends the
CG capability to include lattices, with variable attributes at different
lattice sites, in a hierarchical structure, e.g., lattices of lattices.
SRG is a fast special purpose system for representing reactor assemblies.

The simulation of particle paths, consisting of straight line seg-
ments, through the medium, is the primary geometry problem in Monte
Carlo codes (the tracking problem). The solution is made up of a se-
quence of determinations of two items, the distance to a boundary and
the identity of the next region of space. In the following, each geo-
metry is described in terms of representation capability and how the
tracking problem is handled.
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2. REPRESENTATION CAPABILITY

For all three geometries, space is divided into regions, which are
individually homogeneous. All properties, physical (composition, den-
sity) and mathematical (scoring, sampling weight) are defined to be
. constant throughout any region. Finally, all of space must be defined
(within some finite limit).

Combinatorial Geometry

Reglons are defined as Boolean combinations (unions, intersections,
dlfferences) of realizations of geometry primitives (bodies), spheres,
boxes, cones, etc. The current library of bodies in SAM-CE hds about
two dozen types. In addition, a region may include other (previously
defined) regions in its descriptive definition. The realizations of
the bodies are defined by specific geometric parameters, e.g., for a
sphere, the location of the center and the radius. Since each region
is defined individually, the requirement that all of space be defined
and the avoidance of double definition, are user responsibilities.

Complex Combinatorial Geometry

In its representation capability, CCG is a superset of CG. Speci-
fically, regions - defined by the method described above - are arranged
in an hierarchical structure, with additional geometric attributes,
such as lattice repetition and translation. Thus, a specified region
may be used to define more than ore volume of space.

To establish the hierarchical structure, the concept of complex
regions is used. A complex region consists of a collection of compon-
ents, which can be ordinary regions or lattices. A lattice component
is actually a repeated geometric pattern of components, which are not
necessarily physically identical. Furthermore, any component may, in
turn, be a complex.

For example, a reactor core can be defined as a lattice of assem-—
blies, with different properties, e.g., age, and further, each assembly
(as a complex) can be modeled as a lattice of rods, allowing variations
such as different enrichments, water holes, control rods, etc.

As in the case of CG, the space filling and overlap avoidance re-—
sponsibility are the user's,

Special Reactor Geometry

This geometry (independent of the others) is designed to represent
parts of light water reactor cores. Specifically, an assembly, in-
cluding a cruciform control rod for BWRs may be modeled. The assembly
is defined as a square array of rods, where each rod consists of three
concentric cylinders (fuel, gap and clad). The radii may vary from
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rod to rod. In general the geometry is three dimensional, but when the
cruciform is omitted, it becomes two dimensional.

Since the geometric structure is precisely defined, the space fill-
ing and overlap avoidance problems are not present. ‘

3. 'TRACKING

For all three geometries, the logic is set up so that a sequence
of calls to the tracking routines can be made [or a given ray (defined
by a starting position and a direction), where at each call, the dis-
tance to the current region boundary and the identity of the reginn
beyond it is returned. If the ray has a predetermined end point {e.g.,
to a point detector when estimating flux at a point), as a time saving
feature, the next region identity is not determined. Unless terminated
by other means (e.g., Russian Roulette), the tracking proceeds until a
specially designated region, called the 'escape'" region, is encountered,
except in case of SRG, where a reflecting surface is used. In CG and
CCG, rays hitting the "escape" region can be treated as either true
escapes or reflections, depending on input.

Combinatorial Geometry

As an aid to the tracking logie, each (user) region, whenever the
union operator is used, is defined to be a combination (union) of (in-
ternal) regions, which are described by means of intersections and dif-
ferences only. The two track items (distance and neighbor identity)
are obtained for the given internal region, and if the neighboring in-
ternal region is part of the same user region, the process simply pro-
ceeds without returning to the calling routine. The internal region
tracking has two main components, initial and continuing.

The initial portion, used at the beginning of a ray, consists first
of the calculation of the distance to the boundary for the known inter-
nal region. For an internal region, this is the minimum of the exiting
distance for all bodies defined as positive (i.e., intersection) and
entering distance (infinite for miss) for all bodies defined as nega-
tive (i.e., difference). The identities of the particular body and
surface determining the distance are obtained also.

The continuing portion of the code, which uses the cumulative dis- «
tance traversed, checks all candidate regions for the possibility that
at the current position, the ray is about to enter, while at the same
time, the distance to the next boundary is obtained. Specifically, the
cumulative distance is compared to the entering and exiting distances
along the ray for each body defining the region. This cumulative dis-
tance should be between the body intersections for a positive and out-
side the body intersection interval for a negative. If the body is not
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convex more than one interval may have to be checked. If the cumulative
distance satisfies all the necessary inequalities, the region is con-
sidered to be the neighbor, with the distance to the next boundary being
obtained in the process, with the defining body and surface.

The logic of this process is such that the geometry code is one
step ahead of the calling routine in the determination of distance to
the boundary, permitting a simple return with no further calculation,
when the next region identity is not needed.

To control the computer time required for tracking, the number of
candidate regions examined during the continuing portion must be kept
to a minimum. In CG a learning process is used. 1Initially the complete
region list is used as the candidate list for neighbor determination;
with processing terminating at the first success. The identity of this
neighbor is saved in the region description, associated with the body.
Subsequently, when a ray leaves a region through a surface determined
by that body, the saved region is checked first. If the saved region
is not the nedighbor, the full list is then checked and the newly ascer-
tained neighbor is added to the save list for future priority checking.
Thus, the number of times the full region list must be checked {(a very
time consuming task) is kept to a minimum.

Complex Combinatorial Geometry

The arithmetic aspect (distance calculation) of CCG is identical to
that of CG. However, the logical aspects, i.e., which regions to check,
memory features, etc., are quite different, because of the complex hier-
archical structure. In addition, arithmetic and logical analyses are
needed when tracking through lattice structures. There is one addition-
al similarity to CG in that the neighbor i1dentity and distance to the
(neighbor) region boundary are determined together, while the data furn-
ished to the calling program are the neighbor identity and distance to
the current region boundary.

The tracking logic is built around the hierarchical structure, i.e.,
the logical placement of a point in space requires the definition of a
sequence of regions, each of which is a component of the previous com-
plex region, terminating in a region that is not a complex*. Furthermore,
when a component is a lattice, the specific cell indices are required.

The tracking consists of an initialization and a continuation. Dur-
ing the initialization phase, the hierarchical sequence is determined,
starting with the "real world", and for each region, the distance to
the boundary is determined. The minimum of all such distances is the
one returned to the calling program.

et

The system al1g$; the p0551b111ty that the last two regions in the chain
are not compLexes, when '"virtual" and "subordinate'" regions are used.
In practice, this option is seldom used.
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The continuation along the track requires first the determination
of the level where 'the region boundary is further than the minimum. If
there is none, tracking proceeds in the real world. Otherwise tracking =«
proceeds among the components of the complex at the determined level.
Here, there are two possibilities, depending on whether or not the next
lower level component was a lattice. If it was, then the logic will go
to the next cell along the track, unless exiting from the entire lattice.
In that case, or when the component was not a lattice, the remaining
components are checked for entry. If-the region entered is a complex,
then the chain must be extended by examining its components to determine
which one is belng entered, with the process continuing until a component
which is not a complex is encountered.

In order to control the amount of checking required to ascertain
neighbor identity, two learning processes, one similar to that in CG,
are used. The CG process is used for "“real world" regions and components
where the union operator is used. For the latter case, the eligible in-
ternal regions are only those which belong to the same user region. For
components of complexes, the order of checking is determined by the order
of initial encounter.

&

Special Reactor Geometry

t

SRG deals with a special case which can be handled by CCG. As indi-
cated previously, it is restricted to typical BWR and PWR, and specific-
ally to infinite reactors consisting of identical assemblies exhibiting
four-fold symmetry.

The tracking logic is similar to that of CCG, but much stronger use
is made of analytic tracking. The improvement in running time.efficiency
results from the fact that a substantial part of the information needed
during tracking is assumed rather than either retrieved from input data,
or obtained by logical tests. A detailed description is given in o
Appendix A. )

4. CONCLUSION

SAM-CE has available three different geometry packages, where the =«
choice of a particular package depends on the application.
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APPENDIX A

Special Reactor Geometry

The tracking logic SRG is similar to that of CCG, but, as SRG deals
with a special geometrical case, many logical tests and data retrieved
tasks are bypassed.

As in the case of CCG, physical regions are defined by a chain of
simpler geometrical definitions. SRG deals with chains of length up to
four.

The first level (Figure 1) deals with the vertical range of the re-
actor. The region between two given horizontal planes is a complex re-
gion containing the entire configuration. The two planes are reflection
surfaces. This level is bypassed in the case of absence of cruciform
control rod, as the geometry becomes effectively two dimensional.

The second level consists of four nested squares (see Figure 2).
The entire configuration is within the outermost square. The outermost
square itself is a reflection surface. Let the interior of the inner
square be region 1, and let regions 2, 3, 4 be the regions defined by
the next square annuli, in the outward order. Region 1 is complex. Re-
gions 2 and 3 are physical regions containing moderator, and can mater-—
ial, respectively. Region 4 is complex if and only if it contains a
cruciform control rod.

The third level in region 4 (see Figure 3) consists of the cruci-
form and of the coolant cutside the cruciform. Each of these two re-
gions are physical regions.

The third level in region 1 consists of an array of square cells
(see Figure 4) completely filling region 1. Each cell is a complex
region.

Finally, the fourth level in each cell is defined by three coaxial
cylinders. The inner cylinder, the two cylindrical shells, and the re-
gion in the cell outside the largest cylinder are all four physical
regions. (Figure 5).

The method of tracking through the array departs somewhat from the
CCG method and is as follows. The tracking in level 1 is trivial.

Both level 2 and level 4 involve two dimensional tracking through
convex, nested, non-intersecting curves (nested squares and nested
circles). Assume the surfaces are numbered 1, 2, ..., n starting from
the innermost one, in the outward direction. If the track starts in the
shell between surfaces i and i+l, first test whether it intersects surface
i. If it does not, mark the track as outgoing. If the track originates
inside, surface 1, mark it as outgoing.

1
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For non-outgoing tracks, calculate the distance of entry and exit
to surface i. The track enters the region inside surface i and outside
surface i-1, if any.

Once labeled outgoing, the track remains outgoing. The case of a
track originating outside surface n is impossible in level 2 (level n
is the reflection region) and treated as explained below in the case of
circles.

Tracking in level 3 of region 1 (array) is done as follows. The
tracking from cell to cell is performed internally, and terminates as
soon as the first of the following conditions is met: the track enters
the outermost cylinder of a cell, or a distance limit is reached. This
distance limit is preset as the minimum of the distance to leave the
array (as calculated in tracking through the previous levelg) and a
limit (which may be infinite) communicated by the caliing program (e.g.,
distance to point detector).

Finally, tracking in level 3 of region 4 (cruciform) is dome ex-
actly as din CG.
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NUCLEAR DATA TREATMENT FOR SAM-CE MONTE CARLO CALCULATIONS
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A%STRACT ’

The treatment of nuclear data by the SAM-CE Monte Carlo
code system is presented. The retrieval of neutron, gamma
production, and photon data from the ENDF/B files is described.
Integral cross sections as well as differential data are util-
ized in the Monte Carlo calculatious, and the processing pro-
cedures for the requisite data arefgummarized.

1. INTRODUCTION

The SAM-CE! Monte Carlo code system uses ENDF/B?2 as its nuclear °
data source. The SAM-X component of SAM-CE serves as the principal
nuclear data processor, which, together with several auxiliary code
modules, extracts the data required for the Monte Carlo analyses.

These data include neutron, gamma production, and photon cross sections,
as well as differential data, such as angular distributions and second-
ary energy distributions.

The SAM-X code evolved from ENDTS3, which itself was an adaptation
of ENDT*. This evolutionary process, whose duration has already ex-
ceeded a decade, has paralleled the development of ENDF/B to its cur-
rent version V. Aside from keeping pace with ENDF/B format changes,
SAM-X has been expanded to include the treatment of thermal neutron
scattering data, and, most recently, fission neutron spectra. In addi-
tion, as the sheer volume of data included in ENDF/B grew, the SAM-X
algorithms have been redesigned to provide increasingly accurate pro-
cessed data sets. The goal of these developments has been to provide '
the Monte Carlo component of SAM-CE, SAM-F, nuclear data derived from
ENDF/B with virtually no degradation of accuracy. Since most of the
nuclear data is linearly interpolated in the Monte Carlo stage (for
speed), and ENDF/B can, and often is, tabulated using non-linear in-
terpolation rules, our goal for SAM-X can only be approached within a
user specified tolerance. Nevertheless, these tolerances can be quite 4
small (i.e., 0.1%), and certain data (such as fission neutron spectra)
are utilized with no degradation of accuracy from the ENDF/B source.

This paper describes the treatment and utilization of the major
categories of nuclear data by SAM~CE. Since details of the processing

e



138

2.3 Resonance Parameters ;

o For nuclides with cross section resonances, ENDF/B provides re-
solved and unresolved resonance parameters. These data are to be com-
bined with the corresponding smooth cross sections to yield the com—
plete cross section representation in the resonance energy range.

These data can be treated by SAM-X in several ways. The origin-
ally developed approach uses the resonance parameters to generate
point values (distribution-averaged values in the unresolved range);
these are subsequently combined with the smooth background wvalue.
These originally implemented algorlthms have been superseded by an :
adaptation of the RESEND code®. These algorithms process ENDF/B re-
sonance parameters (both resolved and unresolved) and combine the re-
sultlng point values with the smooth background to produce a complete
pointwise tabulation in the resonance range (dlstrlbutlon-averageddl
values in the unresolved range). All the formalisms invoked by ENDF/B
to represent the resolved resonances (i.e., single level and multi-
level Breit-Wigner, Reich-Moore, and Adler-Adler) are treated.

An alternative treatment for the unresolved range has been pro-
vided by an adaptation of the U3R code’ These algorithms generate
probability tables (uniform in probablllty) for the total cross section,
and average value partials tabulated as a function of total cross
section. This choice of treatment for the unresolved range is optional;
the user's decision should be based on a judgment, weighing the in-
vestment of an additional processing step versus the gain in accuracy
of representation. “

2.4 Angular Distributions

Angular distribution data are retrieved for elastic and discrete
inelastic scattering. Probability tables (uniform in probablllty), for
cosine of scattering angle in the center—-of-mass, are tabulated. ‘The
transformation to the lab system is performed analytically in the colli-
sion treatment algorithms of the Monte Carlo code. ,

2.5 Secondary Energy Selection for Inelastic Scattering

The selection of the secondary neutron energy for inelastic
scattering is based on the partial cross sectlons for the discrete
levels, and probability distributions for the cofftinuum. The SAM-CE
treatment for the discrete levels is analogous o the hierarchical
procedure for choosing, first between scattering and absorption, then,
if scattering, between elastic and inelastic. Thus, the partial cross
sections for the levels are accumulated, such thaq, for each level,
the cumulative values of the partials up to that level number (ordered
by 1ncreas1ng threshold) are tabulated on the croés section energy
mesh.

T,
o
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and utilization algorithms are amply provided in the SAM-CE user's
manual’, a narrative style will be assumed herein. b

2. NEUTRON DATA /

.

i

2.1 Preliminary‘ﬁémarks

An ENDF/B data set for one nuclide is subdivided into principal
sections, termed "files'. The first few files deal primarily with
neutron data; for convenience, these may be termed the "neutron files'.
These files may include the following types of dqgg: Ny

19
.7

(1) smooth cross sections; (total and partials);

12 ”

)
(2) resonance parameters (resolved and unresolved);

(3) angular distributions (elastic and discrete
' inelastic);

r1

{(4) secondary energy disfributions;b
(5) fission spectra (prompt and delayed);

(6) thermal neutron scattering data, termed S(a,RB)
data.

Although‘other types of neutron data are sometimes available also, the
foregoing are the principal types utilized by SAM-CE.
W :

| 2.2 Smooth Neutron Data

A SAM-CE neutron data set for a specific nuclide will contain
tabulations of integral cross sections on an "appropriate" energy mesh.
The appropriateness of the energy mesh is defined in terms of the re-
quirement that linear interpolation between mesh points yield cross
section values which do not deviate from the implied ENDF/B value by
more than a user specified tolerance. The tabulations include total,
total scattering, inelastic, and fission cross sections (where rele-
vant). In addition, neutron multiplicities of inelastic scattering,
stemming from "(n,2n)-like" reactions, are tabulated on the same energy
mesh.

These meshes vary in length for different nuclides, for obvious
reasons. For example, a hydrogen data set may be tabulated on an
energy mesh of several hundred entries, whereas a data set for 238U may
require tens of thousands of energy mesh points to preserve the same
degree of accuracy for linear interpolation. This approach of gengfating
unique energy meshes for each nuclide data set offers substantial sav-
ings in memory for the Monte Carlo stage, where many nuclides may be
present in the pro@}em description. - !

- s
-
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The choice between levels and continuum is based' on the fraction
of inelastic cross section which exceeds the cumulative value tabulated
for the highest explicit level. Thus the continuum event is initially
treated as an implicit highest level.

Given that a continuum inelastic event is selected in the Monte
Carlo, the secondary energy is sampled from cumulative probaﬁility
tables (uniform in probability), which are also tabulated on the same
energy mesh used for the integral cross sections. These tabulated
secondary energy values are given by ENDF/B as angle decoupled values
in the lab system. To introduce an energy-angle coupling, these values
are interpreted by SAM-CE as average values, from which an excitation
energy, Q, is computed using the relation

Q= (D @B o W

where E is the incident neutron energy, E is the sampled average, and A
is the mass of the nuclide. Thus, the treatment of the continuum re-
duces to the treatment of a discrete level, with a "sampled" excitation,

Q.

2.6 Thermal Scattering Data

17

For certain evaluations (such as hydrogen bound-in-water), ENDF/B
provides thermal scattering data to account for molecular binding effects.
These data, usually referred to as S(a,B), are utilized by~SAM-CE to
generate two dimensional sampling tables, coupling the momentum (o) and ..
energy (B) transfer of a thermal scattering event. Through numerical
integration and interpolation, SAM-CE allows the sampling of all physi-
cal points in the (o,B)-domain.

Since the numerical integration bdcomes a substantial fraction/of
the Monte Carlo computing time for problems characterized by thermal
molecular scattering, the S{(a,B) processing and sampling algorithms in
SAM-CE will be completely overhauled in the near future. An order of
magnitude improvement in speed is anticipated by a judicious change of
variables (from o and B), which will obviate numerical integration in
the Monte Carlo sampling stage.

@ 2.7 iFisEion Spectra
N i

The most recent additions to the collection of ENDF/B neutron data
utilized by SAM-CE are fission spectra, both prompt and delayed. The
data is retrieved from ENDF/B with no degradation of accuracy. This is
accomplished via a departure from the normal requirement for linear in-
terpolation in the Monte Carlo sampling. The sampling algorithms in-
corporate all valid ENDF/B interpolation schemes, and are cognizant of
all defined formalisms (the tabulations, as well as the analytic prob-
ability functions). The inclusion of a treatment for the delayed neu-
tron spectra is“believed to be unique among the foremost neutronics
codes in the field. ”

U
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3. GAMMA PRODUCTION DATA

The ENDF/B "gamma production" files are, essentially, tabulations
of photon yields for various non-elastic rneutron interactions, and
corresponding photon angular distributions. These data are processed
by SAM-X in a manner analogous to the treatment for smooth neutron cross
sections, as described above. The algorithms have not changed signifi- %
cantly from those described in Reference 3.

}

4l

4

4. PHOTON INTERACTION CROSS SECTIONS

Point value cross sections are generated from ENDF/B file 23.
These data govern photon transport and interactions, as well as the
generation of secondary electrons. Once the energy.mesh is established,
using criteria for linear interpolation, astﬁor smooth neutron cross
sections, the Compton cross section is computed analytically, and the
pair production and photoelectric partials are retrieved from ENDF/B.

. 5. MISCELLANEOUS
Several auxiliary data processing utilities and procedures deserve

mention. These include: ‘(1) BCDEAN, ‘a utility for transfering pro-

cessed libraries (which are utilized in binary form) betweer’; possibly,

different computer architectures; (2) an adapration of the PLOTEF® code,

to enable graphic display of SAM-X processed neutron cross sections;

(3) the a'priori energy mesh enrichment algorithms necessitate some

a posteriori "weeding', which is’provided for neutron, photon, and gampa

production data; (4) Doppler broadening of neutron cross sections is

performed by initially producing a "cold" data set from the ENDF/B, and

then "heating" up the processed data to any requested temperature; (5)

the approximate treatment of electron transport (straight ahead/con- #

tinuous~slowing-down) in SAM-F utilizes the pbhoton interaction cross ’

sections as electron production data, and uses built in range-energy

relations; (6) the secondary photon producing processes of Bremsstrahlung

and electron-positron annihilation are tredted in the photon transport.

o

Al
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MONTE CARLO METHODOLOGY AS TMPLEMENTED IN SAM-F

E. S. Troubetzkoy and H. A. Steinberg
Mathematical Applications Group, Inc.
3 Westchester Plaza
Elmsford, New Yerk 10523

ABS 'RACT

The variance reduction techniques implemented in SAM-F are

discussed. This includes importance sampling as a function
of position, direction, energy and time, and judicious use

of quota sampling.

I. INTRODUCTION

The quantities estimated by SAM-Fl include flux and reaction rates
at specified points, or averaged over specified geometrical regions,
averaged over specified energy and time ranges. In eigenvalue problems,
several (biased) estimators of the eigenvalue are also available.

~“As indicated by its acronym, SAM-F, (Stochastic-Aleatory Method,
Forward Mode) the code utilizes the Monte Carlo method. The source is
sampled. Collision points are sampled from the transport kernel and,
at these points, the collision kernel is sampled. Estimation is per-
formed when tracks reach point detectors or cross detector regions.
The sampling is importance-biased, with bias removed by weight adjust-
ment, and features a judicious use of generalized-quota sampling.

IT. ESTIMATION

Consider a track originating gither at the source or at a colli-
sion point. If the semi-infinite track enters a convex detector re-
gion a distance r from its origin, and leaves that region a distance
r' from its origin, the analytical expression for the flux contribution

of that track to the region average is:

log H(r'-T) f

y (L)

']
s R
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where p is the total cross section in the region, V is the volume of

the region, and
:/;r v (s)ds
A=VWe (2)

where W is a weight carried by the particle, adjusting for importance
sampling.

The familiar "track length" and '"collision' estimators, as well
as their "minimum variance' linear combination, are all valid estima-
tors of (1). All three have a finite variance. In SAM-F, the zero
variance “exponential" estimator is implemented: expression (1) is
evaluated numerically. Russian roulette on the track is played, how-
ever, when the value of A falls below a pre-determined, importance-
dependent, cutoff value AO' This introduces a finite variance for
finite A..

0

For a point detector a distance r away from the track origin, the

estimator is

I

B = A/r? (3)

This is also calculated numerically. As mentioned below, the biasing
is such that the estimator (3) is bounded: W removes the 1/r? singu~-
larity.

1

e III. IMPORTANCE SAMPLING

All sampling distributions are importance biased by a user speci-
fied importance function, which may be a function of space, time,
energy, and direction, with no restriction on separability. The di-
rection-dependence is restricted to be a function of the angle between
the directf@% of flight and a specified '"aiming vector'" which may be
itself a function of space, time, and energy. The dependence of the
importance function on each of its wvariables is restricted to be piece-
wise constant,

In the presence of point detectors, an additional importance func-
tion? is internally defined. It has a 1/x2 singularity, where r is the
distance to the point detector.

We are going to describe our method of importance sampling. To
introduce our notation, we write the Boltzmann equation as

© v(P") = S(P") +ﬁ((P"+P')T(P'+P)1J1(P)dP (4)

¢
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where Yy 1s the density of particles coming out of collisions, S is the
source, K is the collision kernel, and T is the transport kernel. To

avoid a cumbersome notation, we consider a time-independent problem
and define:

> -
{xX,9,E}

+d
"

p' = {X",8,E} (5)

> >
Py = {XII’QH,E"}

- >
where X is the position, § the direction, and E is the energy.

Finally, let

Importance function = I(P) (6)

I1I.1 Importance Sampling of the Source

The source term of Equation (4) is normalized. We rewrite it in
the form: )

: S(P") = W-S(P™) (7)

Y]
where S(P") is the importance-biased source:

%’(Pn) - I(P") S(P")/SO (8)
W= S,/I(P") (9)
5, =[I(P") s(p")dp” (10)

The calculation of the normalization (10) and of the sampling,
tables for S is performed once at input time.

" n,

At the start of each history, one samples S for P", and calculates
W from Equation (9). According to Equation (7) the sample P" weighed
by W is a valid sample of S{P").

o
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IT1I.2 Importance Sampling of the Transport Kernel

The transport kernel

—fos u(5')ds’
T(P'«P) = e v, 1

where
i S = (_))éll_—}?). E')Z., (12)

is normalized. The biased sampling of the transport kernel, conceptu-
ally, could be treated exactly as the sampling of the source term. A
difficulty arises, however, in the evaluation of the normalization

ﬁ(P')T(P’<-P)dP', (13)

which requires tracking to infinity. That calculation cannot be carried
out exactly in infinite lattices, for instance.

Instead of defining a normalized biased kernel, we define an un-
normalized one.

Let D
T(P'«P) = wT-%(PH-P) (14)
where
T(P'«P) = 1(P')T(P'<P)/I(P) (15)
Wy = L(e)/I1(P") , (16)

Equation (15) can be more clearly written in terms of the variable
S (Equation (12)):
-_/Su(S')ds'

0

T(s) = 1(S)-e /(1-1(0)) (17)

A method to sample such unnormalized kernels has been devised?.
The problem of obtaining a single sample of a normalized distribution
with a weight proportional to the normalization is replaced by obtain-
ing N samples, the expected value of N being the normalization. A com-
pletely stratified sampling reduces the fluctuation of N to a minimum.
The necessity to track to infinity is eliminated by introducing Russian
roulette, preserving completely the exact nature of the calculation.

- The N samples P!, i=1,N, carry transport weight factors given by
Equation (16):

WTi = I(P)/I(Pi) » i=1,N (18)
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S

and total weights

wi = w-wTi , 1= 1,N (19)

T
!

The N samplea and their total weights are stored into a "latent"
list. The samples represent the density of particles going into colli-

sion. :

ITII.3 Importance Sampling of the Collision Kernel

The samples of particle going into collision are picked up, one at
a time. Consider particle i. Let P' = Pi and W = W, .

As in the,case of the source distribution, we define a normalized
biased kernel K through:

K(P"<P') = Wy ?{'(P"«-P‘) (20)
where

k(p'_'qﬂ) = T(MRE"P')/K, (21)

W = KO/I(P") (22)

KO =_/}(P")K(P"+P')dP" (23)

The calculation of the normalization (23), which is P'-dependent,
is performed at sampling time. The method does not depend on K being
normalized: the normalization of K itself is correctly taken into account
through Equation (23) and (22): the presence of reactions like n2n is
treated by sampling a single outgoing neutron, but with a high weight.

A single outgoing particle P" is sampled from K. . The weight W, is
calculated. As shown by Equation (20) the sample P" weighted by W, re-
presents an unweighted sample of K. -

The total weight W is set equal to w-wK. The set (W,P") represents
a contribution to the density of particles coming out of collision.

Several treatments of absorption are available, with option speci-
fied on input. The normal treatment is to consider absorption as a
reaction which, when sampled, terminates the history branch.

Another option (which we recommend only in special situations) is
to exclude absorption as a reaction: the normalization of K is reduced,
leading to reduced values of the collision weight factor W,. In this
option, neutrons never die, but rather, like old soldiers, they just
fade away* as the total weight eventually becomes vanishingly small.

*and, with apologies to MacArthur, undergo Russian roulette.

Al
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Finally, the option exists to treat schizophrenic neutrons, with
absorption both allowed and suppressed. The use of that option will
become apparant in Section IV.1l below.

IV. Generalized Quota Sampling

Generalized Quota Sampling“ (GQS) is a powerful variance reduction
technique when applied judiciously.

When running a Monte Carlo calculation consisting of N histories,
the histories are combined into n statistical aggregates, or batches,
of n histories each, so that N=m-n.

Each history of an aggregate is a random sample of variables in
phase space. GQS preserves that property but its ultimate goal is that
each of the n histories of the same aggregate, sample an independent
but equally probable region of phase space. This reduces the variance
by making the variance for N histories less than 1/N times the variance
for one. The degree of success of GQS depends on how that subdivision
is defined in the sampling scheme.

- IV.1 GQS of the Source

In the case o?;fixed (input-specified) source problems, the posi-
tion, direction, edergy, and time variables of the source term are al-
ways sampled using GQS.

The case d@neigenvalue problems is different. The source term is
the eigenfunction. Our general approach to the problem is to perform
Monte Carlo calculations generation by generation, with:fission neutrons
produced in one generation playing the role of source neutrons in the
next generation. A more detailed discussion follows.

In the course of processing the histories of a generation, in addi-
tion to performing all requested estimates of flux and reaction rate,
we store, at each collision entered, the parameters P', and the weight
W multiplied by vuf/u , togeilher with the identifier of a fissionable
nuclide appropriately sampled from the ones-~locally present. When com-
pleted, the list, together with fission spectral information, completely
specifies the next generation source. The size, and therefore, the
statistical quality of the list can be improved by using the option of
absorption suppression. In fact, as mentioned in Section III.3 above,
we can suppress absorptions just for the purpose of creating this list,
and still allow absorptions for the purpose of scoring reaction rates.

Let us now return to the subject of this subsection, and discuss
source sampling given such a list produced in the preceding generation.
To utilize GQS, the user subdivides all of space into simple geometrical

@
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regions (e.g., cylindrical annuli). If the size of the statistical ag- “
gregate is n, n samples will be drawn from the list, satisfying (up to
the undivided remainder) the quotas in each region, with weight inverse-
ly proportional to the fixed, input specified importance at the sampled
position. All welgnts are equal to 1 in the usual case of unit import-
ance everywhere. Finally, the energy is sampled from the appropriate
fission spectrum (in most cases by random sampling), and an isotropic
direction is sampled using GQS.

IV.2 GQS of Absorptions

The technique of stratified absorption5 has been made compatible

with GQS. The technique is simple both to grasp and to implement in
the absence of any importance biasing. & R
Consider a history corresponding to an analog Monte Carlo technique:
A particle is sampled from the source, and is transported to collision,
and then from collision to collision until an absorption occurs. This
can be simulated by sampling, at each collision, a reaction type: a
scattering with probability u./H, or an absorption with probability
u_/u.,. The same game of chance can be played differently. At the y
be§31n1ng of the history, let W=1, and sample a random number §. Sup-
press absorptlon at collision, but decrease the survival weight by
setting W=W-n Stop the history at the first collision for which
W<E and call %he last event absorption. The game of chance is identi-
cal, but the technique offers the possibility of useful stratification.
If n is the size of the statistical aggregate, n stratified random
numbers can be presampled at the start of the aggregate, satisfying
(1-1)/qj§i<1/n. GQS delivers a random permutation of such numbers.

The usefulness of the technique is most apparent for thermal re-
actor calculations. The technique drastically reduces the fluctuation [}
of the number of neutrons degrading into the thermal energy range, and -
therefore of all estimates of interest, including criticality.

/o
V. Biased Estimators

The flux and reaction rate estimators presented in Section ITI are
completely unbiased in the case of fixed source calculations.

Eigenvalue problems are treated generation by generation. Each
generation is treated as a fixed source calculation, with the source
obtained from the previous iteration. The method leads to a bias of
all estimates. This bias cannot be removed. The only bias reduction
technique implemented in SAM-F is the option to initiate estimation
only after a certain number of generations have been completed.

»
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V.1 Estimation of Eigenvalue

Several estimators are available for the eigenvalue. The one which
falls into the category of Section II is the exponential flux estimator
times v(E)uf(E). In addition, a collision estimator and an absorption
estimator are available.

In addition to all other reaction rates requested on input, the
following quantities are also estimated: absorption, excess neutron due
to (n,2n), (n,3n) reaction, and leakage. The quantity: absorption plus
leakage minus excess neutron has nnity for expected value. A fourth,
definitely biased eigenvalue estimate is obtained by dividing, at the
end of each generation, this quantity into the exponential vu_ estimate.

We observe that, for thermal reactors, the fluctuations of that ratio
" are much smaller than those of the numerator. We also observe that
the bias is small, in the sense that the average of the ratio is well
within the standard deviation of the numerator.

Finally, a fifth biased estimate is evaluated. It is that linear
combination of the first four which minimizes the variance. This es::;
mate becomes meaningful only for well converged runs. - Hre

We observe that the minimum variance estimate is usually extremely
close to the absorption eigenvalue cstimate if stratified absorption is
used. The minimum variance itseli is usually only slightly smaller than
the variance of the absorption eigenvalue estimates.

References
1. E. 8. Troubetzkoy, H. Lichtenstein, H. A. Steinberg, M. 0. Cohen,
M. Beer, '"The SAM-CE Monte Carlo System (Rev. 7.60)", MAGI report,
EPRI-CCM~-8 (January 1980).

2. H. A. Steinberg and M. Kalos, "Bounded Estimation of Flux at a
Point", Nucl. Sci. & Eng. 44, 406 (1971).

Fl

3. E. S. Troubetzkoy, UNC-SAM-2, UNC-5157 (September 1966).

4, H. A. Steinberg, Generalized Quota Sampling, Nucl. Sci. Eng.
15, 142 (1963).

5. E. S. Troubetzkoy, "Monte Carlo Calculation of Resonance Escape

Probability in Uranium and Uranium Oxide Lattices'", Trans. Am. Nucl.

Soc. 11, 163 '(1968).
o
{4

4

N



151

RADIATION STREAMING WITH SAM-CE
it

N. De Gangi, M. O. Cohen, E. Waluschka and H. A. Steinberg
Mathematical Applications Group, Inc.
Elmsford, New York U.S.A.

ABSTRACT ' o

The SAM-CE Monte Carle code has been employed to calculate
doses, due to neutron streaming, on the operating floor and
other locations of the Millstone Unit II Nuclear Power Faci-
lity. Calculated results were compared against measured doses.

A problem of significant interest to the Nuclear Power industry.
is the prediction of dose levels due to radiaton which emerges from
the pressure vessel of an operating reactor. These predictions should
not require excessive costs either in setting up the calculations or f
in running the problems, but should, at the same time, be accurate
enough so that costly retro-fitting will not be required.

Locations of most interest are those where personnel may be found
during operation (e.g., on the operating floor) and where radiation
reaches the site primarily by neutron streaming (e.g., through the re-
actor cavity).

Mathematical Applications Group, Inc. (MAGI) has performed a set
of calculations to demonstrate that:

(1) with the SAM-CE Monte Carlo! radiation transport code,

(2) with a reasonably detailed geometric model (omitting,
however, considerable fine detail),

e

(3) and with affordable computer running times,
adequate prediction of the radiation dose levels can be achieved.

The calculations were performed with the SAM-CE (ENDF/B-based,
point energy cross sections) Monte Carlo code using the experimental
results obtained at the Millstone II power plant?, as a means of com-
parison. The Millstone II configuration was simulated, in SAM-CE,
by the Combinatorial Geometry technique3 with 130 identifiable and
selected geometrdc regions. For importance sampling purposes (see be-
low) these simulated geometric regions were, in many cases, subdivided
so that the final computer model had 190 regions.

7]
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Simulated detectors were placed at several locations which corres-
ponded to measurement pcints at Millstone. Specifically, we examined
selected locations on the operating floqr, on the missile shield, and
looking down into the refueling cavity. Both neutron and secondary
gamma ray doses were obtained, but since the neutron dose levels signi-
ficantly exceed the gamma ray levels, heaviest concentration of effort
was placed on the neutron results. In addition, we calculated the dose
levels on the operating floor that would be present with an additional
shield (water tank) at the top of the cavity.

A pressure vessel current surface source was used to start Monte
Carlo calculation. Neutron energy—angular distribution were determined
with ANISNY. The axial distribution was obtained from the Millstone
Unit II Final Safety Analysis Report. 4

Those familiar with Monte Carlo techniques know that proper im-
portance sampling is required to speed the convergence of the solutions.
SAM-CE offers the user the opportunities to importance sample in-all
aspects of phase space, that is, in space, direction, energy and time.
Of these options, the first three were used in this effort.

e

Of particular interest is SAM~CE's capability of biasing transport
with respect to the direction of the radiation particle. This angular
biasing can be with respect to either a point in space, a line in space,
or a fixed direction; with free choice of option being available for
each geometric region. The proper use of angular biasing enabled us to
"force' radiation back into the cavity without the need for albedo
data sets.

The "transmission" region option provided another tool to enhance
the speed of the Monte Carlo calculation. This option eliminated time
consuming point detector estimates when sampling was occurring at lo-
cations that do not contribute significantly to the point detectors.
Further, geometric perturbations were permitted without recalculating
the complete problem.

f
Figu%és 1 and 2, from the Millstone reports, identify the measure-
ment locations. Encircled sites represent points considered by our cal-
culational program.

Measured and calculated data are presented in Table 1. The mea-
surements were reported to be uncertain by up to a factor of twobB.
The uncertainties in the computed results (percent) are provided in
parentheses. The computed results were those provided directly from
SAM~CE. The ratios of these results to the measurements are given. We
have also considered normalizing all computed results so that the flux-
es predicted at the mid-core level in the cavity (slight variation from
run to run), which are highly dependent upon the source terms agree W
with the measured data at this location. These '"normalized'" doses lead:
to the "normalized ratios", also given in Table 1, and are the best 1n—

dicators of the ability of SAM-CE to predict radiation streaming.
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TABLE 1
Millstone II - Radiation Levels

Radiation Dose (rem/hr) Ratio Normalized
Locatic Detector Type Calculated Measured ﬁgiﬂl Bﬂiiﬁ.@&t&.
*
OF-CAV 5 neucron 62.1 (1) 65 =M .96 .90
gamma ray 3.8 (20) 10 .38 .34
tocal 65.9 20) @ 75 .88 .83
- Iy
oF 6 neucron 3,71 (1) 4 .93 183
gamma tay 0.64 (32) 045 .42 1.32
roral 4.35 (15) 4,45 .98 .88
OF 7 neutron 1.36 (18) 1.5 .91 .81
gamma ray 0.13 (32) 0.23 .57 .53
total 1,49 (17) 1.73 .86 .18
OF~CAV 11 neutron 29,5 (26) 10 2,95 2.79
gamd ray 1.6 (19) 2.5 . 6L .33
total 31.1 (25) 12.5 2,48 2.34
OF-Ms" 12 neucron 8.44  (19) 6 1.41 1.26
gamma ray 1.18 (27) 1.5 .79 .66
toral 9.62 (17) 7.5 .1.28 1.14
OF 25 neurron 3.32 (18) 3 Lolles .99
gamma ray 0.86 (33) 0.45 1,91\ 1.80
total T4.18  (10) 3.45 1,21 1,09
sec™” 9 neutron 50.18 (27) 30 1.67 1.22
SGC 10 neutron 6.37 (23) 1.5 4,24 3.10
AAK
OFW 6 neutron 0.035 (29) 0.04 .88 .70
orw 7 neucron 0.020 (27) 0.01 2,00 1.60
OFW-¥S 12 neucron 0.296 (79) N.A. - --
s}3 25 neutron 0.059 (24) 0.04 1.6{; 1.23
NQTES N

* OF = operating floor, CAV = overlooking cavity, M5 = on missile shield

4} SCC = sream generator cubical R

{

k% OFW = operating floor with water tank in place

sl
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It is seen in Table 1 that some of the ca}culéted—to—measured
ratios are less than unity whereas others adre greater. 1In all cases
agreement for the normalized ratios is within a factor of about three
and in most cases the agreement is much closer than that.

The entire program required about 10 hours (CP) of CDC 6600 com-
puter time. However, one-third of this time was spent establishing pro-
per importance sampling techniques and need not be required for similar
reactor configurations.

¢
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ey ABSTRACT

= A set of thermal reactor benchmark calculations with
SAM-CE which have been conducted at both MAGL and at BNL
are described. Their purpose was both validation of the
SAM-CE reactor eigenvalue capability developed by MAGI and
a substantial contribution to the data testing of both
ENDF/B-IV and ENDF/B-V libraries. This experience also
resulted in increased calculational efficiency of the code
and an example is given.

o The benchmark analysis included the TRX~1 infinite cell
using both ENDF/B-IV and ENDF/B-V cross section sets and
calculations using ENDF/B-IV of the TRX~1 full core and
TRX-2 cell. BAPL~U02-1 calculations were conducted for
the cell using both ENDF/B-IV and ENDF/B-V and for the full
core with ENDF/B-V. 1In these calculations the modeling of
the full core lattices was accomplished by use of Complex
Combinatorial Geometry. Edgenvalues, reaction rates and re-
action rate ratios are given for these cases and the results
discussed.

1. INTRODUCTION

This paper describes a set of Monte Carlo calculations with SAM-CE
involving thermal reactor benchmarks. The calculations were performed
recently at MAGI and at Brookhaven National Laboratory (BNL). They in-
volved both full core and infinite cell cases, utilizing both the
ENDF/B-IV and the ENDF/B-V libraries. «

0

The dual major purpose of the calculations was the validation of
the SAM-CE reactor capabilities that are described in other papers at

. this session and a contribution to the testlng of data pertaining to re-
‘ actors in the ENDF/B libraries.
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Efforts were also made to utilize the experience gained in running
problems with SAM-CE to improve the overall efficiency of the Monte
Carlo calculatiomns.

It is useful to briefly mention one example of improved efficiency
before turning to the major considerations of this paper - the calcu-
lations and results. We refer to variance reduction by application of
a posterjiori statistical methods to several estimators of the same para-
meter. In particular, SAM-CE estimates ke in four ways, utilizing
track length and collision type estimators.” In the course' of these
calculations, the maximum likelihood-minimum variance procedure was
first applied to the case of several eigenvalue estimators! and later
implemented within SAM-CE directlyz. The method was also applied to the
case of two estimators of the same reaction rate in some of the later
benchmark calculations.

2. CALCULATIONS AND METHODOLOGY

We now turn to consideration of the calculations. These involved
the TRX-1, TRX-2 and BAPL-UO02-1 benchmarks. Results were obtained for
the cases shown in Table 1. Note that calculations of TRX-1 and TRX-2
cells and the TRX-1 full core were conducted utilizing an available
SAM-X processed library of ENDF/B-IV elements3. These calculations
proved very wvseful in the code validation. "

The BAPL-UO2-1 calculations for the cell were performed with both
the ENDF/B-1IV.library and a recently processed ENDF/B-V SAM-CE library“.
A full core ENDF/B-V calculation has also been performed. These SAM~CE
benchmarks offered useful comparison of results involving both ENDF/B-IV
and ENDF/B-V.

It should be noted that calculations involving the ENDF/B-V library
utilize the fission spectra specified for the individual isotopes by .
ENDF/B-V at a particular neutron energy. The ENDF/B-IV calculations
assumed fission spectra to be represented by that for 235U thermal neu-
trons.

Geometry and composition for the problems are as specified in the
"CSEWG Benchmark Specifications™®. Reflective boundary conditions were
used for the cell combinatorial geometry. Full core calculations util-
ized complex combinatorial geometry.

All the benchmarks were run on CDC 7600 computers. The BAPL-
U02-1 ENDF/B-V benchmark was also run on a PDP-10 computer*. The BAPL-
U02-1 full core calculation was conducted at MAGI, the remainder at BNL.

* .
The results given herein for this benchmark are those obtained on the
PDP-10.
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TABLE 1

Benchmark Criticality Calculations
Conducted with SAM-CE

Cell Calculation Full Core
ENDF/B~TV ENDF/B-V ENDF/B-1IV ENDF/B-V
Yes No Yes No
Yes No No No
Yes Yes No Yes
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3. RESULTS

The TRX-1 and TRX-2 cell eigenvalue and reaction rate ratios are
given in Table 2 for SAM-CE calculations as well as comparison results
obtained from the RECAP and VIM Monte Carlo codes®*. Generally good
agreement is found between the codes. ,Table 3 gives 4 group** reaction
rates for 235U and 238y obtained for both the TRX-1 and TRX-2 cells.

We now turn to the TRX-1 full core results. Table 4 gives k and
inner core reaction rate ratios for SAM~CE and comparison BNL results
for RECAP® and Hardy's RCPOL results’. The SAM~CE inner core was chosen
to conform to the largest region shown by Hardy7 to yield reaction rate
ratios imperceptibly different from core center results.

The important deviations of calculated and experimental values
occur for kef and 928 for which all three codes agree fairly well with
each other. {he effécr is better seen in Figure 1 in which the SAM-CE
and RECAP points have been added to the other points plotted previously
by Hardy®. The deviations of k and Pog from experiment clearly are

artifacts of the ENDF/B-IV data‘.aff

The BAPL-U02-1 calculations allow comparisons to be made between
ENDF/B-IV and ENDF/B-V results. Table 5 contains values for keff and
reaction rate ratios for the 3 cases considered. (Inner core reaction
rates are given for the full core results.) Note first the good agree-
ment obtained between the full core ENDF/B-V values and experiment. On
the other hand, comparison of the cell results indicates a seemingly
significant increase in the ke' value from ENDF/B-IV to ENDF/B-V
(v.6%) in conformity with the %ﬁx results (low keff for ENDF/B-1V
full core).

Turning to the reaction rates, Table 6 gives reaction rates for
ENDF/B-1V and ENDF/B-V cell calculations in the CSEWG group structure.
The significant changes in this case involve a decrease in 238y fast
capture and an increase in fast 238U fission from ENDF/B-IV to ENDF/B-V.
Reaction rates for ENDF/B~V results were also obtained in a second four
group structure specified by EPRI*¥**, These were divided by the group
fluxes to obtain the EPRI group cross sections given in Table 7 for
ENDF/B~-V cell and full core calculations. Good agreement is obtained
between full core inner core and cell results for all cases.

w
Uncertainties in all the tables are either standard deviations or
percent standard deviations when indicated.

*%Upper energy boundaries of the four groups are 10 MeV, 67.379 keV,
3.355 keV, 0.625 eV. These will be referred to as the CSEWG group

structure.

#%%Upper energy boundaries of the four groups are 10 MeV, 821 keV,
. 5.53 keV and 0.625 eV, “

Py

[}
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TABLE 2

Eigenvaluesg and Reaction Rate Ratios
for TRX-1 and TRX-2 Cell Calculations

LATTICE TRX-1 a IR%-2

PARAMETERS RECAP SAM-CE v RECAP SAM-CE VI
k 1.1721 + .0019 1.1751 + .C016 1.1721 + .0030 1.1578 + .0026 1.1605 + .0015 1.1613 + .0032
P18 1.33 + .46% 1.326 + .8%  1.328 +1.2% (8244 + .75%  .B139 +1.1% .B344 +1.0%
5,5 L0963 + .52%  .09526+ .7% .09693+ 877  .05843%,.82%  .0585 + .9% .05917+ .86Z
5,8 .08903+ .56%  .09206+ .7% .08866+ .81%  .06473+ .80%  .06450+ .7% .06487+ .75%
c* L7910 + .31% L7882 + .4% L7899 + .78%7  .635L + .43%  .6314 + .5% .6391 + ,58%

It

191
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TABLE 3

CSEWG 4 Group Reaction Rates for TRX-1 and TRX-2 Cells

For ENDF/B-1V

U-235 U-238
Neutron Neutron
Capture Fission Production Capture Fission Production
TRX-1 Cell SAM-CE
4.059-4  3.3806-3 8.8013-3 1.9124-2  4.0174-2 .11312
(.4%) (.3%) (.3%) (.3%) (.6%)
5.8811-4 1.5780-3 3.8208-3 2.3463-2 3.0653~7  7.1361-7
(.7%) L.77) (.7%) (.7%) (1.6%) (1.42)
1.5904-2/ .032998 7.9818-2 .15338 0 0
(.9%) (. 6%) (.6%) (.8%) s
6.8756~2  .39846 .96381 . 14799 0 0
(.4%) (. 4%) (.4%) (.67%)
TRX~2 Cell SAM-CE
2.5792-4 2,2535-3 5.8910-3 1.2370-2  2.8790-2 8.1126-2
(.52) (.46%) (.42) (.5%) (. 61) (.6%)
3.5808-4 9.5908-4 2.3221-3 1.4222-2 1.7960-7 4.1812-7
(.9%) (.9%) (.8%) (1.0%) (.23%2) (2.3%)
1.0504-2 2.1486-2 5,1973-2 9.9864~2 [ 0
(1.2%)  (.8%) /( .82) (1.12)
7.2275-2 42167 l 0199 h .15537 0 0
(.42) (. 4/) ( 42) (.4%)
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PARAMETER

keff

P28
3

o

25

528

c*
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T
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TABLE 4

TRX-1 Full Core keff and Reaction Rate Ratios
For the Inner Core Region

EXPERIMENT RCPOL RECAP
1 .9837 + .0008 .9827 + .0013
1.320 + .021 1.396 + .004 EEWIT + .021
.0987+ .0010 .1009 + .0005 .1015 + .0016
. 0946+ .0041 .0972 + .0003 .09707+ .0016
.797 + .008 .809 + .001 .8167 + .0095

Q -

T

g

SAM-CE
.9839 + 0026
1.390 + .018
.09989+ .0013
.09939+ 0012

.8070 + .0056

€9T
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TABLE 5

BAPL-UO02-1 values for keff and Reaction Rate Ratios
I\/
for FNDF/B~IV and ENDF/B-V Data

Full Core
Parameters Cell ENDF/B-1V Cell ENDF/B-V ENDF/B-V Experiment
k 1.137 + .0017 1 1433 + .0019 0.9958 + .0032 1
Prg 47 1.385 + ©1.392 & .011  1.429 + .062 1.39 + .01
625 0.0801 + .0006 0.0806 + .0005 0 080l + .0024 0Q.084 + .002
628 0.0710 + .0004 0.0727 + .0006 0.0764 + .0027 0.078 + .004
C* 0.8022 + .0041 0.8058 + .0038 0 B19 + .020 -
14
TABLE 6
BAPL-UO2-1 ENDF/B-IV and ENDF/B-V CSEWG Four Group Cell Reactlon Rates
B ENDF/B-1V ENDF/B-V__ PDP-10
235y 238y 235y 238y
Group .Capture Fission Capture Fisgion Capture Fisgilon Capture Fission
1 3.186~4 2.628-3 1.467-2 3.086-2 3.177-~4 2.643-3 1.430-2 3.1410~2
(.34%) (.30%) (.32%) (.48%) (.37%) (.35%) (.37%) (.71%)
2 4.946-4 1.322-3 ¢ 2.024-2 <1l.-6 5.000-~4 1.312-3 1.996-2 <1.-6
(.57%) (.57%) (.66%) (.55%) (.58%) (.75%)
3 1.394-2 2.825-2 1672 Q 1.421-2 2,831-2 .16841 2.152-6
(.74%) (.61%) (. 73%) (.83%) (.71%) (.42%) a22x
I r
_ 4 6.932-2 4027 L1463 0 6.895-2 .4003 . 1457 0
(.36%) (.367%) (.35%) (.25%) (.25%) (.25%)

iy

“

%
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TABLE 7

EPRI Four Group Cross Sections (barns)
for BAPL-U02-1 Cell and Full Core
Using the EXDF/B-V Library

Cell Full Core (Inner) Full Core - Cell
U235 Abcorption 4, 1.2920 -— -
1+ o010
oy 2.0750 —_— -
+ .0039
oy 36.478 - —_—
+ .233 .
o, 453.76 - —
+ 1.47
U235 Fission a 1.2302 1.227 -.0032
+ .0008 + .001564 +.00173
o, 1.6188 1.612 -.0068
+ .0024 + .0064 +.0068
oq 25.644 24.63 -1.014
+ .152 + .387 +.419
o, 387.09 386.6 N —-.49
+ 1.25 + 2.98 +3.25
U238 Absorption o -43333 L4295 ~.00383
+ .00163 + .00292 +.00334
o, -2422 L2427 .0005
+ .00097 + .0060 +.0061
o0y 2.0842 2.075 ~.0092
+ .0174 + .0504 +.0533
o 9, 1.8959 1.894 -.0019
‘ + .0060 + .0597 +,0600
U238 Fission oy -37870 L3746 ~-.0041
+ .00171 + .0035 +.0039
0, 4.56-4 4.55-4 -.01-4
+ .032-4 + 1244 +.126-4
oy 2.6303-5 2.335 -.35
+ .339-5 + 1.03-5 +1.08-5

014 —_ _— .
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Figure 1 - k .. vs Rho 28 for TRX-1 Full Core
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The agreement is a result of interest. We have given a direct com—
parison of group cross sections obtained from cell and full core calcu-
lations and have found the two sets to be fully consistent.

In conclusion, it can be stated that the value of SAM-CE for re-
actor calculations has been demonstrated and valuable data has been ob-

tained for testing the accuracy of ENDF/B-IV and ENDF/B-V libraries for
reactor calculations.

o
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) ”ABSTRACT ' .
The Recursive Monte Car]o (RC) method developed for
estimating impdrtance function distributions in deep- !
penetration provlems s described. Un1qu0 features of
the method, including the ability to 1nfer the 1mportancn
function distribution pertaining %o many detectors from,
. essentially, a single M.C. run and the ability’ to use the
, history tape created for a representative region to @
calculate the importance function in identical regions,
are illustrated. The RMC method is applied to the
solution of two realistic deep- penetratlon provlems - 3
concrete shield problem and a Tokamak major penetration <
problem. It is found that the RMC method can provide the
importance Function distributions, requ1red for impor-
tance sampling, with accuracy which is suitable for an ¢
) efficient solution of the decp-penetration problems o
considered. The use of the RMC method: improved, by one "to
three orders of magnitude, the solution efficiency of theo
two deep-penetration problems considered: a concrete
sniald proo]em and a Tokamak major penctration problem. v
e o

e e e e e o e e e i = s
i i

] @ 0

1. INTRODUCTION: « .

fi
0 ?

The Recursive Monte Carlo {RMC) method is being developed for the
estimation of adjoint functions distributions in general three-dimensional
geometr1es, thése adjoint distributions are aimed for 1mportance sampling
in the course of solution of deep-penetration problems using Monte-Carlo
(M C )\xPchn1ques The idea for a RMC method to calculate adjoint
functions was first proposed by Steinberg, Kalos and Troubetzkoy1 who
also looked at its feasibility tor the solution of a simple one-
dimensional (slab geometry) problem. Their effort was focused on an !
attempt to develop an automatic algorithm for the generation of equi-

u
4] 0
3

*0a Teave from Nuclear Research Center-Nedev and Dept. of Nuclear =
Engineering, Ben-Gurion University, Beer-Sheva, -Israel.
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importance gurfaces in general 3-D problems - a task which was found to be
inefficient?. Our approach is to divide the system, intuitively, into
regions of convenient geometry, and estimate the value of the importance
function on the surfaces separatinj these regions. More on the background
of the RMC method, its theoretical foundation and strateqy for implemen-
tation can be found in Ref. 3. That reference considers monoenergetic
examples only. The primary purpose of this work is to illustrate the
app11§ab111ty of the RMC method for the solution of realistic multi-group
deep- penutrat1on problems. o

For the convenience of the reader we start with a brief review of the
theoretical foundation of the EMC method (Section 2) and the strategy for
its application (Section 3). The RMC method is then applied for the solu-
tion of two deep-penetration problems having streaming ducts the right
circular concrete shield problem studied by Tang et al. 4 (section 4) and
a blanket-shield problem with a major penetration as encountered in
Tokamak reactor designs® and proposed as a benchmark problem® (Section 5).

A1l of the RMC calculations reported on are performel using the
recently dgvp1oped REMOP code.’ The detectors' responses are calculated
with MORSE® (using the RMC results for importance samp11ng) The
computer times quoted are of a CYBER-73 computer.

N
g 2. THEORETICAL FOUNDATION

Consider radiation transport problems the objective of which is to
find the value of a performance parameter {or a detector response, or
system characteristics) that can be expressed as

= [x(p)f(p)dp (1)

where x(p) is the neutron birt -rate density distribution - the density of
neutrons coming out from collisions per unit phase space volume, dp, at
p E(E;E,Q), per unit time; it is the solution of the Boltzmann equation

x(p) = S(p) + [x(p")K(p'>p)dp' o (2)

€

in which S(p) is the source density distribution, K(p' p) is the Boltzmann
kernel which can be expressed as

~

K(p'»p) = T(r'>r E'Q")C(E'Q'>EQ|r) (3)

where T(r'>r|E'Q"') is the transport kernel and C(E'Q'-EQ|r) is the
collision kerneT. Finally

f(p) = T(ror,|€Q) n(E,Q) (4)

where n(E,R) is the response function (or efficiency) of the detector and
rd denotes ‘a position vector in the active volume of the detector.

&l

& Id
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The optimum biasing function
for the solution of Eq. (2) for
the purpose of calculating the
performance parameter of Eq. (1)
is (see, for example, Ref. 9-11)
the importance function - the
solution of the adjoint equation

I

X*{p) = f(p) + ‘
fK(p+p')x*(p')dp' (5)

In terms of this importance
function the performance parameter
of Eq. (1) can be expressed as

R= [x*(p)sipddp . (6)

Suppose the importance function
distribution is known on a surface
A {in the configuration space)

; T s = e
YT 2 775 "" P
7Y LLZ 77 AAN
e e
/"",“;""" LLZ 7 FAA L

CLAT7S

which separates the detector from
Fig. 1. A schematic illustra- the volume V (represented by the
tion of the division of the config- radius vector r; see Fig. 1).
uration space to 'subregions. The Dividing the spatial integration
importance function on surface A in Eq. (5) into the two regions V
dividing V and V' is known. and V' we find

X*(r,E,8) = $*(r,E,02;r") +‘fd_r_"de'fdQ'T(_r:->_r:'lEg)C(EQ»E'g' [r') o
| ' XPLER)  (7)

where the first term on the right side of Eq. (7) is obtained as follows:

Jar' T(rort |Eg) [dE* fdo'C(EQE"g! [r' )xXX(r'E',0") + F(r,E,Q)

UCrar® [Eg) fdr'T(r"si" [EQ) fdE' [ do'ClEQSE g [r* Ix*(r',E',0") + F(r,E,g)

U(_r_-»_r:"[Eg)v [X*(r",E,Q) - f(r",E,Q)1+ f(r,E,Q) = U(rr"|EQ)X*(r",E,Q)

S*(r,E,Q;r") (8)

u

i

and -
Ulror"[EQ) = T(rr"[ER)/2 (r",E) . (9)

The adjoint source term S*(r,E,Q;r") is the importance of neutrons coming
out at (r,E,2) which reach the reference surface A uncollided.

Consider now the importance function at phase space point pyeV’
expressed as a-detector response [the equivalent of Eq. (6)],

X*(po) =Vf><*(p)6(p-po)dp . (10)
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We can express it using the distribution function formulation [the
equivalent of Eq. (1)] getting

X*(p )= X*(rJE L8, =V|fdgdefd_m(L,E,ﬁ;Do)S*(I_,E,g_;r_") (11)

where J is the solution of the equation for the distribution function due
to the point source at pg,

J(psp,) = alp-p,) \T'fdp'd(p')x(p;p) : (12)

In other words, Eqs. (11), (12), (7) and (10) are the equivalent of,
respectively, Egs. (1), (2), (5) and (6). F£qgs. (11) and (12) imply that
the value of the importance function at phase space point p, can be
calculated by solving the forward (or distribution function? equation in
subregion V' subjected to a source &(p-py), and weight the flux of
neutrons which reach, uncollided, the reference surface A with the value
of the importance function on that surface (assumed known),

The value of the importance function averaged over a phase space
region &p = (Lr,AE,AQ), (with AreV'),

\r i r i3

can similarly be calculated from the expression
* = ¢ * ot
X Vlfdﬁdef@_,JAp(j_‘,E,g_)S (r,E,q;r") (14)
is the solution of the forward equation
!

Ip(P) = Sy (p) + , fdp'd, (p"IK(p"p) (15)

subjected to an external source of neutrons uniformly distributed in Ap,

4o

where JAp

[ar) (aE)a)) ! . , (16)

n

%m(p)s 1/hp
3. THE RMC METHOD

The RMC method consists3 of the following ingredients: (1) The
system is divided into relatively small geometrical regions, typically one
mean-free-path (mfp) in thickness. (2) The forward transport equation is
solved for each region subjected to an isotropic source of neutrons
distributed uniformly on the surface of the region farthest from the
detector. The histories of the source neutrons are followed throughout
the volume of the region and a buffer zone adjacent to it (from the other
side of the source surface). (3) The average importance of the source
neutrons is calculated by summing the probabilities of the neutrons coming
out of collisions in the region (and the buffer zone) to cross,
uncoliided, the preceeding surface (obtained from forward Monte Carlo
calculations) weighted with the value of the importance function at the
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crossing point, which is known from the previous step. The result is the
average importance function of the source neutrons; it is assigned to the
source surface which provides the "reference" surface for the next step.
(4) This procedure is repeated recursively, starting with the closest-to-
detector region and continuing towards the external source. The surface
averaged values of the importance functions are then used for importance

sampling in the course of the M.C. calculation (forward) of the detector
response.

i

In the following subsections we shall discuss a number of issues
related to the practical application of the RMC method.

3.1 Region Geometry

Consider the system illustrated schematically in Fig. 2a. The ‘
problem is to estimate the adjoint Function distribution corresponding to
the detector throughout the system (up to the external source surface).
Towards this end the system is divided (fictitiously) by surfaces, as
illustrated in Fig. 2b. Let us suppose that the importance function is
known on surface A3 and examine the procedure to be used for calculat--g
twe average importance function on surface A.

DETECTOR DETECTOR

N

Ay

Ag
BUFFER ZONE _

L

/ |
L \
L |
XK KX KR K K XX * oKk KK X K X XK
SOURCE SOURCE
(c) (b} (a)

Figure 2. A schematic illustration of the division of the system ia)
}n?o regions (h) and of the subsystem considered in each ‘recursion step
c).

Following the forumulation of-Sec. 2 we are"to assign a uniform
isotropic source of neutrons to surface Ag and solve the forward
Boltzmann equation subjected to that fictitious source throughout L'~
volume of the system excluding that part between reference surface A3
and the d- '»~tn», Such an undertaking is both impractical and



174

unnecessary. Remembering that the solution looked for is the value of
the importance function on A4, and realizing that neutrons reaching a
few mean-free-path from Ay (away from the detector) have a very low

probability to reach reference surface A3 (and hence, to contribute to

surfaceyAq importance function) it is apparent that it is sufficient to
considejj a truncated V', as illustrated in Fig. 2c. This truncated V'
cons1st

5 of the geometrical region (between Aq and A3) and a buffer
zone (from the other side of Ag).

The larger the thickness of the geometrical region the longer it will
take to get the lmportance function on A4 with a given level of accuracy
but the smaller number of recursion steps will be necessary for the
solution of a given problem. S1m11ar1y, the thicker the buffer zone the
ionger it will take to follow the histories of a given number of source
neutrons; bheyond a certain thickness the added accuracy resulting from a
further increase in the buffer zone thickness becomes negligible.

Investigating the effect of the region and buffer zone thickness on
the accuracy and efficiency of the RMC method (considering monoenergetic
problems) we found3 that region and buffer zone thicknesses of the order
of one mean-free-path appear to be near the optimum. Recently we got an
indication that for certain problems it might be possible (and efficient)

©to do without a buffer zone. Further investigation is neceded before the
optimal thickness of the region and buffer zone for different problems
could be identified.

3.2 Sample Size and Statistical Accuracy

A question of primary concern to the practicality of the RMC method
is that of the propagation of statistical errors in problems having a
large number of recursion steps. Figure 3 compares the importance
function calculated with the RMC method for a simple one-dimensional deep-
penetration problem with the results from deterministic calculations
obtained with ANISN. The system consists of a homogeneous sphere having a
central spherical detector surrounded by a 22 mfp thick shield (extending
from a radijus of 28 cm to 200 cm). The problem is monoenergetic with
isotropic scattering. An Sg (symmetric) angular quadrature was used for
the ANISN calculations. For the purpose of the RMC calculations the
system is divided into 50-1/2 mfp thick regions. The solid angle is
divided into the eight quadratures used for the ANISN calculations thus
enabling a direct comparison between the RMC and the ANISN results. A
buffer zone, 1 mfp in thickness, is attached to each region. The detector
response function was taken to be unity. The importance function on the
closest-to-detector reference surface was obtained from a simple ANISN
run. (It can also be calculated, straightforwardly, by hand; note that
only angular components of the importance function pointing towdrds the
detector need to be known.) The sample size of the neutron source
assigned to each surface for the RMC calculations was 3000. Figure 3
shows_a_very good agreement between the RMC and the ANISN results
throughoub~+he _system, with no indication for propagation of errors. It
ought to be mentioned, though, that we did observe propagation of errors

Lo
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when using, for the same problem, a
sample size of 1500 neutrons and
volumetric (rather than surface)
sources .3

The efficiency of the impor-
tance sampling technique (judged by
the computer time required for the
estimation of the detector response
at a given degree' of accuracy)
depends on the accuracy of the
importance function used for
biasing. The higher the accuracy
required, the more time is needed,
however, for the adjoint calcula-
tion. #The efficiency and useful-
ness of the RMC method should
therefore be judged by the overall
computation time needed for the two
phases of the solution - the RMC
calculation ¢f the importance
function distribution, and the
calculation of the detector
response; (using importance

“—Sampling). We shall refer to the
overall pgocedure as the "RMC
procedure' The first phase will
be referred to as the "adjoint cal-
culation" whereas the second phase
as the "detector calculation.”

To examine the sensitivity of
the efficiency of the RMC procedure
to the accuracy of the importance
function distribution we define a
figure of merit,

Y =621 (17)
where 02 is the variance'of the
final result for the detector
response, and T is the overall

. computation time, such that

; T=T f Td (18)

{ 3
W W

importance function calculated by
the RMC method (broken lines) with
ANISN results (solid lines).
Sample size for the RMC calcula-
tions is 3000 neutrons.

where T4 and T4 are the time '
required for the calculation of,
respectively, the importance

function and the detector response.
In conventional applications of
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M.C. techniques, in which T stands for the time it takes to perform the
M.C. calculations (the ‘equivalent of Tq in the RMC procedure), Y is
constant. The figure-of-merit was calculated as a function of two
parameters: the batch size of source neutrons used for the RMC
calculation (S,) and for the detector response (S4). -

The parametric study was performed for a shielding problem similar to
{although smaller than) that considered by Tang, et ald  The shield,
illustrated in Fig. 4, is a right circular cylinder of a uniform
homogeneous composition having a central duct along its axis. A plane
isotropic source is located at the base of the shield, from the other side
of the detector. The problem was treated as monoenergetic with isotropic
scattering. The cross sections were taken to be Iy = 1.0 cm ~* and
te = 0.9 cnl, .

Detector
— For the purposec of the
/ recursive solution, the shield is-

{ divided into 28 hal f-mfp thick

i A regions, by planes perpendicular to
the cylinder -axis (see Fig. 4).

Each plane is partitioned, somewhat

Az intuitively, into five sections, a

thru e, as illustrated in Fig. 4.

| In setting this partition we have
taken into account the anticipation

l that most of the contribution to

‘ the flux in both detectors is

|

9

10 cm

i

i
»
»

14 cm
172 A

Azl cm

- likely to come through the axial
“A duct and through regions adjacent
= 26 to it. The distinction between the
right and left sides of the system
\ is to enable accounting for the
IFig. 4. The geometry of the asymnetry of the prodlem in the
2-D shield problem of Ref. 4. » case of the side detector (consi-
deréd in Ref. 3, but not in the
present examp1e) The First sten in the solution is to calculate the
importance “function distribution on spher1ca1 surface A] centered in
the axial detector (see Fig. 4). This is done with a simple ANISN run.

)
.4 ,) :_i

lcm 3cm 8 cm

The 1mportdnce function in the five sections of surface Ap is then
calculated using A1 as the referen'e surface. A one mfp thick buff er, =
zone is attached to the region for the adjoint calculations. The comnuta—
tion time for the average importance of the five sections of syrface Ao
was 1 min. 8 sec., when using a source of 1500 neutrons per sect1on.
Geometrical imagingS3 (see also Sec. 3.3.2) was applied to the next 27
regions which are identical to the first one. The time per recursion step
(just for weighting a given histories tape with the appropriate adjoint
function) was 4.18 sec. for the 1500 n/section source. The last two
regions are different from the reference region by the thickness of their
buffer zone. We could still apply, nevertheless, the histories tape of
the reference region to the edge region, by ignoring the contribution to
the importance function, of neutrons coliiding in the missing sections of

il £
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the buffer zone. The total computation time necded for the calculation of
the importance function was 2 min. 53 sec. for the 1500 n/section source
case. Without geometrical imaging the solution would have taken 11 times
longer. The importance function distribution thus calculated is used for
hiasing of the oxtprna1 neutron source, for the Russian roulette, sp11t-
ting, as well as for the generalized exponential transform.!3 For ;
this purpose, the average importance function ca1cu1ated for a surface is
assigned to the volume cxtendrag U 4 mfp in both sides of the surface.

7 T T | 1 The results obtained for the
central detector are summarized in
1ig. 5. The Ffigure of merit is found
5000 ~——— (Fig. 5) to have a clear minimum; to
be strongly correlated with Sz; and

4000 === almost independent of S4q. The Y-
Sa plane of Fig. 5 is divided into
two distinct domains: in the high
Sy domain [S5>(S3)gpt] the o
improvement in the accuracy of the
ymportance function distribution does
not improve the efficiency of the
importance sampling so that T and
therefore Y, increase essentially
linearly w1th Sa In the S5 <
(5a)opt domain, %on the other
nand, the accuracy of the importance
function distribution degrades
significantly with the decrease in
Sa» causing a dramatic loss in the
accuracy of the calculated detector
response. At the optimum, correspon-
] ding in the problem considered to

[N | | S3¥1500, the time required for the %
500 1000 1500 2000 2500 adjoint calculation is smaller than
BATCH SIZE (Sg) © t1e time required for the calculation

9f the detector response.

L

~ 102

Ll

e

|

FIGURE OF MERIT (¥)

T TTTTIT]
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(o)

]
I

50
"

Fig. 5. Effect of hatch L
size in the adjoint calculation * An ‘important question associated
on the figure of merit for the with the practical application of the
RMC procedure. RMC method is how to determine, a

&t

) priori, the optimal source batch size
v " for the adjoint calculation. This

hath size is expected to be prodblem dependent. In all. the problems we r

have solved so far with the RMC procedure, we found that a bath size of

1500 neutrons was adequate. Much more numerical experimentations,

covering a wide variety of problems, is necessary,.nevertheless, :before a
reliable recipe could be determined.

Ny
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3.3 Special Features of the RMC Method

0

3.3.1 Simultaneous Solution of Mu]tiUDetectors Problems

i

"To each detector in a given system there corresponds avdifferent
importance function distribution. Conquuent1y, to find the lmportanue
function pertaining to N different detectors in a given system, it is
necessary to repeat the solution N times. The RMC method,, on the other
hand, enables gettlng the solution for all N detectors from, essentially,

a 51ng1e run {(provided these detectors can be enclosed by the first v
reference surface).

In the RMC method the adjoint calculations consist of two pnases:
(1) the calculation of the probability of the source neutrons to reach the
reference surface (as a function of location on that surface and of
direction of arrival), and (2) weighting this "arrival probabi]ity" with
the corresponding value of the importance function. The first phase is
detector independent; once we know the arrival probabilities” perta1n1ng to
a given detector, we know these probab111t|es for all other detectors in
the same system (prov1ded the system is divided the same way for all
different detectors). The importance function distribution pertaining to
each of the detectors can then be calculated just by weighting these
arrival probabilities with the appropriate importance functions. The
detector dependency comes only through the assignment of the importance
function to the first reference surface. 13

3.3.2. Geometrical Imaging \ o

When two regions are identical in geometry and composition (i.e.,”.
they are the image of each other), the histories of the source neutrons
pertaining to each region (i.e., the arrival probability) are the same.
Consequently, the histories generated for a representative region are
directly applicable for all the images of that region. The application of

cthis procedure will be referred to as geometrical imaging.

Geometrical ihaging can significantly reduce the computation time for
the solution of deep-penetration problems using the RMC method. The
solution of the adjoint equation in certain deep-penetration problems can
be transformed, with this feature, to the order of difficulty required for
the solution of simple one mean-free-path type transport problems.’

t;3.3.3. Estimation of the Importance Function in Low Importance hegions

In solving the adjoint equation for deep penetr&tion problems using
the adjoint (conventional) M.C. method it is difficult to get a reliable
estimate of the importance function in regions in which this fuhction has
relatively low values {usually the regions farthest away from the
detector). Importance sampling applications require proper knowledge of
the importance function throughout the (system; too much a distortion in
the adjoint d1str1b%t1on may lead to a significant error in the calculated
detector response, (See also Sec. &) The accuracy of the estima-
tion of the detector response becomes more sensitive to the value of the

s
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importance function in low-importance regions the higher is the re1ativg
flux of neutrons in these regions. (More details on this issue along with
an illustrative example can be found in Ref. 12). |

As the RMC method involves the solution of the forward equation
corresponding to a source of neutrons assigned to each region (of phase
space), this method "picks up" the value of the importance function in low
importance region as reliably as it does in high importance regions. This
feature is particularly important for problems charaﬁ}erized by relatively
high fluxes in regions of relatively low importance.

4. A CONCRETE SHIFLD PROBLEM

So far we have considered mono- z
energetic problems only. As the first  ayql detector Side deiector
illustration for the application of the
RMC method to realistic multigroup
problems, we apply it to the solution of (50 cm
the concrete shield problem of Tang et
ald (Fig. 6). The problem is to find
the total neutron fluence at the two
point detectors. The 14 energy group
structure along with the group constants
library of Ref. 4 are used for the "
present study. The scattering anisot-
ropy is described using the Pj3
approximation.

304.4cm

|524cm—qctga-w0cm

152.2 cm

the estimation of the importance -~

|
|
!
|
The first phase of the solution is P T
| |
4

pd
o

function distribution throughout the -
shield. Towards this end we divide the
shield into 100 equally thick regions by 4
planes perpendicular to the cylinder Isotropic source

axis (as in Fig. 4). This gives a

region thickness of 1.52 cm, which is Fig. 6. The geometry of -
smaller than the mfp pertaining to any the concrete shield problem.
of the energy groups (ranging from 2.36 v o

cm to 8.37 cm). A buffer zone, 8.37 cm . °
thick (i.e., equal to the largest mfp in this problem), is attached to
each region for the purpose of the adjoint calculations (see Fig. 7).
Each surface is partitioned into five sections (following the rationale
described in Sec.”3.2) as follows (see also Fig. 7):

section a: 0 <R <7.62 cm
sections b and ¢: 7.62 < R <16 cm ¢
sections d and e: 16 <R <150 cm

The solution starts with the calculation, using ANISN, of the impor-
tance function distribution on the spherical surface Aj centered at the

)
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Axial side axial detector (see Fig. 7)
degdctor detector using an adjoint source term
A of unity at the detector
/’/
&

A, " poinq, for fach of the 14

N\fb ‘L
T .
Q

A S energy groups. Then we

9 calculate the importance
) function in the five
sections of surface Ap
with Aj=serying as the
Surface Ajp reference §mrface (Fig. 7).
/ In order.}ﬁVSave Lime
following neutrons in
relatively low importance
P regions of relatively thick
buffer zones (which can be,
in this problem, as large as
4 mfp) the buffer zone is
“ divided into four subregions
"ig. 7. The geomet-y of the effective onto which splitting and
geometrical region used for the first RMC Russian roulette is applied.
calculation step of the concrete shield An isotropic source is
problem. uniformly distributed on the
¢ surface of each section in
each of the energy groups.
The sample size of the source neutrons was 21000 per section, correspon-
ding to 1500 neutrons for each energy group. The time for calculating tne
average importance function on the first five sections (surface Ap) was
6 min 28 sec. Without Russian roulette and splitting, this computation
time was longer by a factor of 2.6.

| 522 cm

8.368 ¢cm

o

Capitalizing on the similarity of all the regions the system is
divided to, we used the geometrical imaging procedure (see Sec. 3.3.2) for
calculating the importance function in the rest of the regions. The last
six regions (95-100) have a,thinner than nominal buffer zone. We applied
geometrical imaging to these regions as well, accounting for the
difference in the buffer zone thickness by ignoring the histories in the
"excessive zones" (see Sec. 3.1). The computation time for a single
recursion step was approximately 12 sec, making the total time nceded for
estimating the importance function distribution pertaining to the central
detector 26 min 18 sec.

The calculation of the importance function distribution pertaining to
the side detector followed the same procedure, with only two small
modifications: the first reference surface was A' rather than A; (Fig.

7) and there was no need to calculate a new neutron histories tape for the
first region - the tape created for that region during the calculation of
the central detector importance function was used. Also notice that the
importance functioncdistribution on the reference surface Af is identical
to that on A7 (remember that we are interested in the forward directions
only). Using geometrical imaging, the total computation time needed for
the estimation of the importance function distribution pertaining to the
side detector was 20 min 3 sec. -

< <
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The importance function distributions obtained for each of the
detectors were then used during the calculation of the corresponding
detector's reading for biasing of the external source, Russian roulette,
splitting and for the generalized exponential transform.d3 For this
purpose, the value of the average importance function at a gi{en surface
is assigned to a region centered around this surface. To examine the
sensitivity of the RMC procedure to the accuracy of the importance
function distribution used for importance sampling, we also calculated the
side detector response using the jmportance function distribution pertain-
ing to the axia) detector. Fifty batches of 400 source neutrons were used
for .the M.C. calculations of the response of each detector. MNo attempt
was made to optimize the batcn size used for the RMC procedure.

£

Table 1 compares the results obtained with the RMC procedure with
"exact" results ohtained 3 from deterministic calculations (using the
two-dimensional S, code DOT) and with the M.C. results of Ref. 4
obtained using the importance function distribution for the central
detector calculated4with DOT. The results Ffrom the RMC ‘procedure are
seen to agree well with those from DOT, when the appropriate importance
function distribution is used for importance sampling. ioreover, the RMC
calculated standard deviations for the ceiitral and the side detectors are,
respectively, 1.8 and 9.3 times smaller than those obtained in Ref. 4
using the DOT importance function, while the overall effective computation
time appears to be smaller.f 0

Table L. Comparison of the Results from the RMC falrylations With Those Obtained
With Other M.C. and D1 screte-Ord(mates Methods
}

i3

Computation Method Response of Response of = Computation Time (min)
Axial Detector Side Detector Importance Detector
Function Response Total
5,* (0OT) 2.453x107° 1.408x107H - 50%+ 50%+
M.C. + Adjornt S, 3.003x107%(+4.83)  1.062x1071} (+433) 5o 60 112+
(DOT) -
M.C. + RMC (for the 2.540x10'9(:2.6%) - 26.3 19.3 45.6

axia) detector)

M.C. + RMC (for the - 1.560x107 ¢+ 4.63)0  20.1 23.6 43.6
s1de detector) -

M.C. + RMC (for the - 0.910x10"1 (+50%) 26.3 31.8 58.1
axial detector) - !

*Data from Ref. 4 14
**CPy-time of IBMg; 360/91

i o N
)

tTo the best of\ouffknow1edge, the CPU speed of the IBM 360/91 used in
Ref. 4 is.about a factor of ‘4.5 faster than that of the CYBER-73.

1
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With the axial detector importance function used for importance
sampling, the PMC standard deviation of the side detector response was a
factor of 10.8 greatar than when the side detector importance function is
employed for importance sanp11ng A similar standard deviation for the
side detector was obtained in Ref. 4. It is thus seen that, in the_
problem under consideration, the use of an 1mportance funct1on distribu-
tion from 2-D calculations for importance, sampling in a 3-D problem (which,
differ from the 2-D prodlem in the location of the detector only) leads to
a reduction in the overall efficiency of the i1.C. calculation of the
side-detector response, by about two orders of magnitude. This example
indicates to the sensit1v1ty of the i1.C. method efficiency to distortions
in the importance function used for importance sampling. oo

[

5. A TOKAMAK MAJOR PENETRATION PROBLEM

As a second test of the efficiency of the RMC metihod for the solutIOn
of realistic deep-penetration prob]ems we ‘applied it to a three-
dimensional Tokamak blanket-shield major penetration prodlem recently
studied by Jung and Abdou® and proposed for a benchmark.® A cut
through the: system considered is shown in Fig. 8 and the thickness and
couposition of the different zones are swanarized in Table 2.

Table 2. Dimensions and Comositions of the a1 geonatry b approxinated by 2
Tokamak glanket/s*ne]d Major .g P Y pp_ y.
Penetration Problem cylindirical one, with the X-axis

designating the centerline. The

. first wvall, blanket, shield and

Outer Radius  Thickness Material Toroidal Field Coils (TFC) are of

Zone o o Composition cylindrical cross section in the
Y-Z plane (see Fig. 8), and the
; %io 2;8 Plasma © vacuum duct cross section is in
3 24(1) & Stain¥g§:ugtee1 the X-Y plane. This duct, 20 cm
4 256 15 Stainless Steel in diameter, is lined with a 1 cm
5 261 # 5 Boron Carbide thick stainiess steel tube. A 5
¢73 g;tl; 12 S’Eainleés g;;gel cm thick stainless steel disc
oron Larbide provides an end-cap to the duct
e o o horen Gararse,  (Zone 25, Fig. 8)." The TFC are
10 i 10 Stainless Steel divided into concentric rings, 5
11 321 10 Boron Carbide ' cm thick each (Zones 18, 19, 20
12 331 10 Stainless Steel etc.), bounded (following Ref.5)
13 340 I Boron Carbide by the y = +100 cm planes (with
14 351 1 Stainless Steel th be i’
15 361 10 Boron Carbide e centerline of the duct beifg
16 n 10 Stainless Steel ~ at y=0). The problem is to
17 430 59 Vacuum calculate the total flux “in the
18 490 60 50% S + 50% Cu  end-cap (Zone 25) and in the two

inner zones (Zones 18 and 19} of
the TFC due to a uniform isotro-
pic shell source of 14 MeV neutrons com1ng from the surface of the plasma

region.

O
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1

-
TO VACUUM PUMP 2q group structure for which is summar-
. 10 em oig ized in Table 3), P3 scattering
gg &8 anisotropy and Sg azgu]a;‘ quadra;_
olz — A5cm ture are used for the solution o
-EEE j‘Lfn: | ] the Tokamak problem. : The 22 group
:;;'} | F;}c constants were generated by collap-
s | R sing, with ANISM, the 100 gr$up] .
VAzuuM pucTll 41 . NLC-2 Tibrary using ANISN calculaté
;zgo ” | }g§ flux {for a representative 1-D
‘ | mozkup of the problem) for the
" 2+ werghting spectrum. The boundaries
. | of the angular quadratures used are
| o cos = 0.0, +.41555, +.69105, +.8934
s & | and +1.0. o
[ ©»
Bec 14 i - For the purpose of the adjoint
e I Sap— calculations (in the RMC procedure)
8s T - | ( SHIELD ] we neglected the curvature around
BeS - the X-axis. This approximation
ss . | enables using geometrical imaging
. 7 i =8LANKET={ *  (and thus improve the efficiency of
- » the RMC procedure) and is not
L2 SCRARE-OFF REGION T expected to significantly distort
the importance function distribu-
< ! PLASMA REGION ~ tion* (due to the relatively large
2y #Y  oROIDAL MAGNETIC_AXIS radius of curvature of the problem).
ST T T T T T T The division of the system into ,
245 em “smal1" regions poses a more diffi-
cult prob]em than in the previous
Fig. 8. The geometry of the example (Sec. 4) not only because of
Tokamak blanket/shield deep- the heterogeneous structure of the
penetration problem. blanket/shield but also due to the

large spread in the value of the mfp
pertaining to the different compositions and energy groups used (see Table,

3); the smaliest mfp (0.004 cm) is less’ than one thousandths of the
largest mfp (5.8 cm). Anticipating that most of the contribution to the

detectors reading will come from the MeV and upper KeV energy ranget (the
first 13 energy groups), we divided the blanket/shield (by p]anes parallel "
to the first wall) into 2.5 cm thick regions (or 1/2 to I mfp in thickness

~ for the first 13 energy grolps). No buffer zones were used in this
problem. # Ja ‘
., . e

Each surface {used for the PMC calculations) is divided into three
sections (similar to the division in Sec. 4, except that now we do not
have a distinction between left and right): ¢

s 1r

*There 1s no difficulty 1n app1y1ng the RMC method to curved geometry.
tAn indication which we also got from the 1-D ANISN run.

#The buffer zones appeared to have only very small.effect on the results
of this problem. The buffer zone issue deserves additional examination.

fx

p
Twenty-two energy groups (the,

IV
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< 11 cm

31 cm
systom boundaries in the X-Y plane.

Table 3. Energy Boundaries and fdean-free-
Paths of the 22 Group Structure
Used for the Tokamak Problem

Group  Upper

Mean-Free-Path (cm)

Number Boundary (eV) B,C 35 TFC
1 1.4918 + 7 5.38 4.59 4.28
2 1.3499 + 7 5.36  4.19 3.76
3 1.0000 + 7 5.54 3.63 3.45
4 8.1873 + b6 5.23 3.33 3.20
5 6.0653 + 6 5.80 3.21 3.14
6 4.,9659 + 6 4.46 3.20 3.19
7 4.0657 + 6 4.05 3.36 3.39
8 3.0119 + 6 3.36 3.42 3.55
9 2.4660 + 6 3.92 3.63 3.72

10 2.2313 + 6 3.62 3.72 3.79
11 1.8268 + 6 3.35 3.9 3.82
12 1.1080 + 6 2.22 3.98 3.48
13 5.5023 + 5 1.60 2.91 2.54
14 1.1109 + 5 1.35 1.26 1.23
15 3.3546 + 3 0.49 0.97 1.26
16 5.8295 + 2 0.23 0.76 0.85
17 1.0130 + 2 0.11 1.07 1.23
18 2.9023 + 1 0.063 1.11 1.23
19 1.0677 + 1 0.037 1.10 1.21
20 3.0590 0.021 1.09 1.19
21 1.1254 0.013 1.07 1.16
22 4.1399 - 1 0.004 0.97 1.03

"ne adjoint calculations proceed as
follows: rirst, the collision
tapes pertaining to the three
regions which can represent the
system - a stainless steel region
(Zones 4, 6 etc., including the
portion of the vacuum duct in these
zones, see Fig. 8), a B4C region
(Zones 9, 11, etc.) and vacuum
space (Zone 17), are generated
{using the RMC approach). Fifteen
hundred source neutrons per surface
section, energy group and angular
bin are used for these calcula-
tions. Then the importance
function pertaining to the end-cap
detector is found on the first
reference surface, taken to be the
plane passing through the basis of
this cap (parallel to the first
wall). Geometrical imaging is then
used to find, recursively, the
average importance function (per
group and angular bin) on each of
the reference surfaces down to the
fusion neutron source plane. The
total computation (CPU) time until
this phase was 80 min. Starting
with the first reference surface

for the TFC detector (regions 18 and 19, see Fig. 8), located at the outer
surface of Zones 18 and 19, the importance function pertaining to this
detector was then calcuiated with the RMC method, using the collision

tapes already available.

was 48 min.

The CPU time required for this phase of the work

The importance finctions thus obtained are used, in the detectors
calculation (using MORSE), for biasing of the external neutron source,
Russian roulette, splitting and for the generalized exponential transform.
The detectors response (i.e., total neutron flux in the detector region)
were calculated using a track length estimator. Six thousand source
neutrons were used for the calculation of each detector's response,
requiring 53 min and 75 min of CPU time for, respectively, the end-cap

and TFC detectors.

Table 4 summarizes the results for the detectors response, as ob-
tained using the RMC procedure described ahove, and compares them with the
corresponding resuits obtained by Jung and'Abdou® (J & A), using 50,000
source neutrons for each detector (or region). It is seen that even
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The Total Neutron Fluxes at the Fnd-
Cap and TFC Dectectors as Calculated
With the RMC Method, in Comparison
With the M.C. Results of Ref. 5

though J & A followed about one
order of magnitude more source
neutrons per detector than used
for the RMC calculations, the
results from the latter method

exhibit substantially lower
standard deviation. FEven when
the time required for the adjoint
calculations (which is of the
same order as the time for the
direct calculations) is taken
into account, the efficiency of

Total Neutron Flux* (n/cmzsec)

Region
RMC Procedure Ref. 5

25 10.87x10M! (4719)  s.35x10'0 (+100%)

18 5.60x10° (+13%)  1.10x10'C (+56%) the RMC procedure is found to be
9 significantly higher than that of
19 3.52x10° (+15%)  8.04x10° (+70%) a "brute-force" M.C. calculation;

for the J & A wmethod of calcula-
tion to provide a standard
deviation of 7% for region 25,
for example, it had to process
ahout 1600 times more source neutrons than in the RMC procedure (the
detector calculation phase).

*normalized to a neutron wall loading of 1 Mw/m2

The differences in the average value of the detectors response
obtained between the RMC and J & A methods, even though within the
statistical uncertainty, may be due, in part, to some differences in the
representation of the problem. The isotropic shell source used for the
RMC calculations, for example, ought to be replaced by a more realistic
angular distribution. In addition, the presence of the TFC (and neutron
interactions with them) should also be taken into account Ffor the RMC
calculations. These and other {such as accounting for the curvature in
the poloidal direction) refinements are not expected, however, to affect
substantially the applicability and accuracy of the RMC method.

6. CONCLUDING REMARKS

The experience gained so far with the RMC method confirms the need
for importance sampling for efficient solution, using M.C. techniques, of
deep penetration problems (see, for example, Ref.10). It also confirms
the need for accurate enough knowledge of the importance function
distributions used for importance sampling; using an importance function
from two-dimensional calculations for importance sampling in a three-
dimensional problem (different from the 2-D one only in the location of
the detector) led to a reduction in the efficiency of the M.C. solution of
the concrete shield problem (considered in Sec. 4) by about two orders of
magni tude.

The RMC method appears practical and efficient for the estimation of
the importance function distributions in realistic deep-penetration
problems with an accuracy suitable for importance sampling applications
(and it ought to be realized that the solutions, with the RMC procedure,
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of the deep-penetration problems described in Secs. 4 and 5 were not
optimized). It thus might enable applying the M.C. technique to the
solution of realistic complicated deep-penetration problems otherwise
found very difficult to solve (see, for example, Refs. 5 and 6).

Many more numerical experimentations are, nevertheless, required
before the practicality and efficiency of the RMC procedure could reliably
be assessed, and in order to devise recipes fcr the optimal application of
this procedure to a wide range of problems.

The recursive approach developed for the RMC calculations could, in
principle, also be applied with deterministic methods for the solution of
the transport equation. The deterministic methods are expected to have
not ony a limited range of applicability (usually to 2-D regions) but may
also be less efficient than the RMC method; they require a solution of
GxSxA equations per region (i.e., recursive step) where G is the number of
energy groups, S is the number of sections a reference surface is divided
into and A is the number of angular bins used.

The RMC procedure has been incorporated within the MORSE Monte Carlo
syslem. The resulting code, named REMOP, is to become available through
the Radiation Shielding Information Center of the 0ak Ridge National
Laboratory.
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THE MONTE CARLO LATTICE PROGRAM KIM

.

E. Cupini, A. De Matteis, and R. Simonini
Comitato Nazionale Energia Nucleare
b Bologna, Italy
~y  ABSTRACT {
' N ’ /
The Monte Carlo program KIM solves, the steady—‘tate
linear neutron transport equation for a fixed-source prab-
lem or, by successive [ixed-source runs, for the eigenvalue!
problem, in a two-dimensional thermal reactor lattice. Flu—
xes and reaction rates are the main quantities computed by
the program, from which power distribution and few-group av-
eraged cross sections are derived. The simulation rvanges
from 10 MeV to zero and includes anisotropic and inelastic
scattering in the fast energy region, the epirpermal Dop-
pler brogdening of the resonances of some nuclides, and the .
thermallzatlon phenomenon by taking into account the thermal
veloc1ty distribution of some molecules. Besides the well
known "combinatorial"” geometry, the program allows complex
conflguratlons to be GCroscnted by a discrete set of points,
an approach greatly improving calculation speed.

’
M

oy
“ Ve

1. INTRODUCT1ON

)
v

KIM (k-infinite-Monte Carlo) is a program which solves the steady—
state linear neutron transport equation for a fixed source problem or,
by successive fixed-source runs, for the eigenvalue problem, in a two-
dimensional infinite thermal reactor lattice using the Monte Carlo method
A characteristic feature of the program 1s its approach to the lattice
geometry. In fact, besides the usual continuous treatment of the geome-—
try, using the well-known 'combinatorial" description of domains, the
program allows complex configurations to be represented by a discrete
set of points wh:ireby the calculation speed is greatly improved.

, This code includes in its body much of the programming work devel-
oped at the CNEN's Computing Centre in the field of Monte Carlo .reactor
calculations. This work has alsc allowed preparation and checking of lar-
ge parts of the nuclear data library accompanying the program. The pro-
gram has been widely used-for BWR's and PWR's and also for heavy~water
moderated, light-water cooled reactors.

The coding language is essentially Fortran-IV for IBM computers of
the series 360, 370, exploiting the half-word addressability. Computer
memory requirement is problem-dependent, through dynamic core allocation

i
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at running time for the most critically-sized arrays (as, for example,
thermalization kernels and the map of’ the discretized domain). However,
most cases run in about 1000 kbytes. The time needed on the IBM 370/168
to obtain the infinite multiplication factor with precision of about
0.3%, for a typical 8x8 rod element of a BWR, is about 40', corresponding
to 40,000 histories. This time refers co geomet-.y treated in the discrete
mode; the continuous mode requires almost double the time.

I3

2. SIMULATION OF THE PHYSICAL EVENTS , t

2.1 The Physical Model

o1

L\

The problem of time evolution of, the neutron distribution towards
an equilibrium, defined as an invariance of the distribution shape, can
be reduced to a sequence of stationary problems. The process simulated
to reach the equilibrium is iterative and can be summarized as follows:
starting from a First—generation neutron source, that is, from a given
neutron distribution, one computes the distribution of neutrons born by
fission, this being then considered as the second-generation source:
fission is the only reaction which separates generations of neutrons
and, together with radiative capture, determines the exhaustion of a ge-
neration. Iterations stop when the shape of the fission source distri-
butions of successive generations are statistically invariant within a
required accuracy. This invariance will point out that equiiibrium has
been reached. The multiplication factor is then computed as the ratio
of the number of neutrons born in two successive generations. One itera-
tion has normally been found sufficient when starting from a uniform
source in the fuel.

The tracing of the neutron history takes into accdﬁpt both the slo—
wing down and the thermalization phenomenon. Partly due to its develop-
ment in time, and.partly for reasons of memory saving, the program is
organized in three sections for fast, epithermal and thermal simulation.
'Each section implements a particular model: inderd, both numerical tech-
niques and cross-section representation vary with the energy section.

The total energy interval, from 10 MeV to zero, is divided into the three
ranges of Tab.l. In the same table the approximations used fgf cross
[

, <, ‘
Table 1. Cross section represcntatlcn?4

9]

Range Bounds Approximation
1. Fast 10 MeV-46 KeV | 16 groups
2. Epithermal| 46 KeV-5 eV 64 groups and continuous treatment for
some resonance nuclei
3. Thermal 5 eV—9 eV 256 points and scattering kernels (55x55
' energy points:x 9 cosine points)
. with interpolatioq
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section representation are given. The upper bound of the epithermal

range has been chosen so as to confine within the first energy range the
simulation of anelastic and anisotropic elastic scattering from stationa-
ry nuclei. In the thermal range a cross section interpolation, linear o
above 1 eV and bilogarithmic below, is performed.

In the fast energy range 10 MeV-46 keV, cross sections are averaged
in 16 groups, although energy varies continuously during the simulation.
Nuclear reactions considered in this range are: i) radiative capture;
i1) elastic scattering. For each group of incoming energy the anisotropy
is described by a table of 17 values of the cosine u, of the scattering
angle in the center of mass system (CMS) corresponding to 16 equiproba-—
ble intervals. A value of pu_ is obtained from this table through a random
access and a linear 1nterpo§ation, i1i) inelastic scattering, treated ac-
cording to three different mouels. excitation of known discrete energy
levels, evaporation model, tran51t10n matrices., Isotropy in CMS is assumed;
iv) fission. The energy of a fission neutron is assumed to be independent
of the incoming energy and of the nucleus hit and is selected according ,
to the Watt spectrum. The yield for each fissile nucleus is described by
a linear law with parameters assumed constant within three energy ranges.

In the epithermal range 46 keV-5 eV it is possible at running time
to take into account the Doppler broadening of the resonances of some
nuclides with spacing between resonances much greater than the resonance
widths (in the present library Pu-240, U-238, Th-232, In-115, Ag-109,
Ag-107). Cross sections of all other nuclides are described by 64 energy
groups. The reactions considered are elastic scattering isotropic in CMS,
fission with a constant yield, and capture. For the resonance nucleus in
thermal motion we assume a maxwellian distribution of its ve10c1ty as a
function of the temperature. Only s-—wave resonances are taken-into ac-
count, assuming that resonances can be described'by the single-level
Breit-Wigner formula. Cross sections are computed at the current energy
by adding the contributions of the nearest left and right resonances.
Parameters of up to 100 resolved resonances are stored for, each reconan-
ce nucleus in the library. For higher energies, the neutron width is
randomly geqerated during the simulation, and it is assumed that the
unresolvedyaesonances are equ1spaced and have a constant capture width.

7

. The “thermal energy range, 5 ev-0, is divided into 256 energy points
to represent scattering, fission and capture cross sections. At the cur
rent neutron energy,cross sections are computed through linear interpo--
lation above 1 eV and bilogarithmic interpolation below. Between 5 and
1 eV all nuclel are considered as free. Below 1 eV we consider the
thermal motion of some molecules which are particularly important for
the thermalization process such as, light or heavy water and oxygen. The
scattering kernel .of a‘thermalizing nuclide is described pointwise. In
the present library, thermalization kernmels at several temperatures are
given for water, heavy water and oxigen. The energy kernel is described
through a® 55x55 matrix between 1 eV and zero; for each energy transition
the angular distribution is described by 8 values.-.

AN
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2.2 Numerical Techniques

fr ’ . .
The generator of the pseudo-random numbers v is Lehmer's multipli-
cative congruential scheme:

™

= - 28 4
v, 2V, 41475527 {mod2<®), i

¢

whose multiplier has been divised and tested by Ahrens et al.z. Although

the period of the generated sequence, 226 is rather small, its good sta-
tistigal properties have been confirmed both theoretically and experimen-
tally™.

Simulation of the history of a particle begins at an energy random-
ly chosen from the fission spectrum with an initial unitary statistical
weight. The index of the starting region r 1s assigned by a semi-strati-
fied sampling as follows: if F(r) is the mean numbet/ of particles to be
started from region v, then the program deterministically assigns the re-
gion index r to [F(rﬁ starting particles, while the remaining particles
are randomly distributed among the regions with pdf proportional to
{F(r)}, where [-] and {:} denote the integral and the fractlonal part,
respectively.

f

- Position of the starting point within a chosen region is selected

uniformly according to standard techniques, except in a speéial case:
if the geometric domain is discretized and the source is not on rods, a

. rejection technique using Halton's "quasi-random" numbers3 {s used. For
Halton's generator, unlike Lehmer's, the following important property
holds: as the number of tosses increases, the probability that no point
falls in a given small (but machine-representable) area vanishes. This
property also ensures that the rejection process surely ends, however
small the source region whose index is imposed by the stratified sampling.

When a particle exhausts its path the types of both the collided nu-
clide and rhe reaction undergone are to be determined. To better descri-
be how thi.'is performed by the program it is convenient to separate the
fast and the epithermal interval from the thermal one:

a) 'Fast and epithermal interval. If o and 0 are the macroscopic scat-
tering and total cross section of the material at the collision point,
the fraction OS/O of the particle undergoes scattering with the i-th nu-
clide which is chosen on the basis of the probability o 1) /s , with
z.0(i) =5 . In the fast range the type of scattering (elastic or ine-
18s8ic) fof the selected nuclide is subsequently decided. If the weight
falls below a certain cut—off threshold ﬁp the fast interval, the history
terminates. In the epithermal interval,iﬂhtead, a Russian roulétte game

decides on history termination. o
b) Thermal interval. The weight of the particle is never changed in this "
section: a game based on absorption probability of the mixture decides N

at each collision whether a particle is absorbed. The nuclide hit is che-
sen as above. We have chosen this analog history termination because of
the usuaily large number of collision in this energy interval; however,
fluxes and reaction rates are estimated through expected-value techniques.

o
F o
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To improve statistics in regions either important or seldom
visited by particles, it is possible to split up histories according to
a number of branches given for each region. Besides,to allow:a different
number of histories to be run in each of the three energy ranges of the
program, thinning of the source’ particles in each of the three parts is
foreseen. This is performed by a Russian-roulette game just at birth in
each range on the b#sis of decimation ratios given in input.

» Flux computation in KIM implements a known expected-value technique:
the flux estimator T in a given region is the product of the mean free
path by the expected number of collisions in that region. Scoring of T
is performed at birth, at emersion from reactions and on entering a new
region. Some quantities which are linear transformations of the flux
are directly computable through the flux estimator T . TFor example,
reaction rate of the i-type reaction is estimated by scoring the product’
9T . In this way also reaction rates of nuclides present in very small
concentratlons are evaluated. In a similar way, cross sections averaged
over regions and energy intervals are obtained.Where anisotropic elastic
and/or inelastic scattering are present, removal cross sections between
the three energy parts of the program (and between other input-given
intervals) are computed by scoring the statistical weight of the parti-
cle removed (by scattering) from thal interval. Where scattering is in-
stead only elastic isotropic in CMS, the removal probability from an
energy interval is computed analytically.

At the end of the life cycle simulation, the fission map is given,
i.e. the ratio between fissions in a region and average fissions over
fissile regions. Besides the fission map the power map is also given,
taking account of the different energy released by fission from the dif-
ferent fissile nuclides.

3. TREATMENT OF THE GEOMETRY

<

3.1 Continuous and Discrete Approach

In the usual (or "continuous" as it will often be called here) ap-
proach to geometry in Monte Carlo, a particle walk is simulated by compu-
ting the intersection of the flight line with the nearest boundary. In
terms of computer time the cost of the algorithms solving this problem
1ncrease5 with the geometric complexity. In KIM, besides the continuous
approach a new one has been introduced. Planar regions can in fact be
represented by a finite (and, therefore, approximating) set of area-points
obtained by overlaying a square lattice upon the given configuration; a
"discretization algorithm" decides which region index is to be assigned
to each grid point. The transport is simulated by moving the particle
from one grid point to another, keeping as close as possible to the actual
trajectory. The algorithm performing this functiéon and detecting the re-=
gion boundary crossing is the "scanning algorithm'". By this "discrete"

L
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approach, the tracing of particle flights becomes independent of the
geometric complexity of the configuration since it essentially reduces
to simple checking operations to verify whether a point belongs to a sub-
set. Although only a few bits are necessary to code information about
the nature of the region (i.e. the region index), a large number of co-
re memories is needed to represent the configuration with sufficient ap-
proximation, dependent on the lattice pitch compared to the ‘mean free
path. In our IBM version of the program this information is stored in a
half word.

i

The question of the approximation error has not been considered
theoretically. However, it is partially answered by the internal agree-
ment of computations carried out with and without discretization by our
program. ' ’

"Combinatorial"” geometry description is used for the continuous ap-
proach . The subroutines used in the program are gdapted from those de-
veloped for the shielding Monte Carlo code SAM~-CE . Modifications include
reduction from three to two dimensions with the lmplgyentatlon of some
fundamental elemeuntary figures, implementation of boundary conditions,
speqdlng up of the initial learning process concerning neighbouring re-
gions, dynamic allocation, squeezirg of data. ‘ \

< \

The program can handle an infinite array of planar elements with a
largely arbitrary internal configuration. Tq§be elements can be either
rectangles with periodicity or reflection boundary condltlons, or hexa-
gons withl the periodicity condition alone.

3.2 The Scanning Algorithm

The particle tramsport in the discrete domain is simulated by the
scanning algorithm which determines the grid points visited in succes-
sion. Let the mesh-size h be the unit of*“the length, xg, yp the integer
coordinates of the starting point, & the free-flight, x_., y,. the integer
coordinates of the end point, 8 the dlrtLthn of motion between these
two points. In the case OgBs7w/4, the scéﬁnlng procedure along the path
from (xg,yg) to (x Y ) may be essentially described as follows. Denoting
by qj the integraf part of q, the point visited at the n-th step is

X =X +1=1x5 +n

n n—-1

vo +[ntge + 0.5]

i

“n

, The scanning goes on until (x ,yf) is reached, unless a grid point”
with a region index different from that of (xq,yp) is encountered. In
this\last case the control passes to the physical treatment subroutines

o'determine the length of the free path in the new region, unless the el-
ement boundary is met. The y_ coordinate is the grid coordinate nearest

to=yp+(x —xo)tge ; the grid po%nts scanned are thus the nearest to the 5

segment linking (Xg,yg) to (xf,yf)-

RS
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Two types of direct transition from one grid point to another are
thus possible: along one of the coordinate directions and along the dia-
gonal of a grid cell. Therefore (for OgBgwn/4), for x = X only one
point is scanned: thus, paths with the same projection on the x-axis
need scanning of the same number of points. This invariance shows that
the scanning time is proportional to the square root of the number of
lattice points.

' 3!
3.3 Distance Travelled and “Boundary Crossing

'

I

Along with the discrete (integer) coordinates, another pair of real
coordinates in the contlnuum is assoclated to the moving particle, from
birth on. The birth-place 1tse1f (x ,97'), is first selected in the con-—
tinuum and then the nearest grid p01nt ? »V,) 1s determined. ¥f a parti-
cle flight, starting from (x' 0¥ '0) eﬂds in (x!,y!) without reglon boun-
dary crossings, the distance travelled is the actual distance in the
continuum and not the rounded one between the two nearest corresponding
grid points (xg,yp) and (x.,y ). In this way also those displacements so

small as to leave the integer coordinates unchanged are recorded; in other

words, particle migration in homogeneous media is not biased from the
discrete approximation. i

The dlscretlzatlon biases instead the‘aetectlon of region boundary
crossing: bn%eed this event is detected by the scannlng algorithm,
which does nob\generally know the actual continuous region boundaries.
The crossing point is then conventionally assumed in the program at.the
middle of the last two scanned points. When appliedsto fuel rods in en-
ergy ranges with very small mean free path, this approximate approach to
crossing has sometimes shown itself to be inadequate: for instance,
systematic errors of the order of some tenths per cent have been observed
for fuel rodsflin the epithermal resonance energy range. To overcome
these errors,circular (or annular) regions can also be trez zed in a spe-—
cial way. The program memorises the true physical boundarles of these
regions, which are still discretized but only for crossing detection.
When an entry in one of these regions is deté€cted by the scanning algo-—
rithm, the true entry point is computed and the path*is simulated in
the continuum until the particle leaves this reglon.

- — i
1

This last approach is actually a "mixed" continuous—discrete mode
of simulation and, together with the introduction of the continuous co-
ordinates accompanying the discrete ones, is the main improvement to.an
earlier algorithm”.

I
3 . 4%

3.4 Geometry-Routine Performance

{
To evaluate the efficiency of the discrete approach, the case of

an 8x8 rod BWR element has been analyzed. To this end, a 40,000~history
computation for this element has been carried out in both discrete and
combinatorial geometry. The domain has been discretized with 100,000

ir .

—
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points, the mesh size being approximately 0.05 cm , while in the combi-
natorial description each rod has been embedded in a square of a chess-—

board covering the element, in order to speed up boundary crossing iden-—
tification.

The time needed for the geometry simulation alone has been separate-
ly evaluated as follows. We assumed that in the discrete tracing the bulk
of the geometric computation is the map scanning; since the scanning
time is, as already said, proportional to the square root of the number
of points, the proportionality constant has been obtained by carrying
out the discrete computation twice, with different mesh sizes. A third
computation, with a different mesh size, confirmed the validity of the
hypothesis on the tracing time.

2

For the map with 100,000 points the geometric tracing has been found
to require 5' out of the total running time, 42'. The time for the non-geo-
metric simulation thus being known, the time needed by the combinatorial-
geometry tracing has then been estimated as 47' out of 84'. The conclu-
sions for this reference computation are the following:

1) the discrete geometry tracing is about. one order of magnitude faster
than the combinatorial one; ’
ii) the whole running time with a discrete approach is half the other.

Similar conclusions hold also for cluster configurations of CANDU-
like heavy water reactors. The use of the '"mixed" approach does not es-—
sentially alter the above conclusions.
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AN ANALYSIS OF EXCORE DETECTOR RESPONSE TO CORE WATER LEVEL
USING MONTE CARLC TECHNIQUES

R. D. Lucier, R. J. Cacciapouti
Yankee Atomic Electric Company

D. R. Harris, D. Napolitano
Rensselaer Polytechnic Institute

ABSTRACT

In response to U. S. Nuclear Regulatory Commission
requirements, each commercial reactor must have a method of
indicating core water level. This paper presents a
calculation of excore neutron detector response using Monte
Carlo techniques to determine core water level. An
increase in excore detector response of a factor of about 3
has been calculated for a half voided core. Using this
approach the operating staff at a Nuclear Power Station can
determine core water level in the event of an incident
_causing voids in the primary loop.

INTRODUCTION

In the interim since TMI, the U.S. NRC has made several rules to
mitigate ?ossible problems observed at TMI. One of the "Lessons
Learned" (1) requirements is that every pressurized water reactor
must have a method of determining reactor vessel water level.

Boiling water reactors already have this capability incorporated in
their design.

This paper presents the methodology to determine reactor vessel
water level in the Yankee Nuclear Power Station. The Yankee Nuclear
Power Station is a 600 MWth Westinghouse pressurized water reactor.
Yankee Rowe is located in the Northwest corner of Massachusetts. The
plant was completed in July 1960 and achieved initial criticality in
August 1960.
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MEASUREMENT METHQODS

There are at least three methods that can be used to measure
water level. They are:

1) Differential pressure cells (DP)
2) Incore thermocouples
3) Radiation measurement (neutron or gamma)

The differential pressure cell system requires penetrations into
the top and bottom of the vessel as well as into the outlet pipes.
The DP cell system measures a differential pressure between two or
three points within the vessel. This information is correlated to
known temperature and pressures in the system to determine the void
content of the water near the detector. This is further correlated
to a water level in the vessel. The expected accuracy is + 20%.

The DP cell system has been ruled out for Yankee Rowe. The main
reason is that penetrations must be available in the bottom of the
vessel. Unlike current Westinghouse designs, there are no available
penetrations in the bottom of the vessel and there is no access to
this area.

The second method, incore thermocouples, would measure local
temperatures axially and radially throughout the core. These
measurments would be coupled with pressure information to provide an
indication of voiding.

A thermocouple system, in the event of an accident similar to
TMI, would undergo tremendous thermal shock and possible mechanical
damage. Therefore, the reliability of this system is suspect. Also,
for an application to Yankee Rowe, installation may require a
redesign of the fuel elements. Furthermore, more penetrations may
have to be made in the vessel head.

The third method, radiation measurements, can be accomplished
without any penetrations in the reactor vessel. As observed at
™I(3 , the excore neutron detectors measured a count rate of 3-10
times more than the expected count rate. These readings have been
correlated to the times of most probable core uncovery.

Predicting the detector response to core water level can be done
experimentally and through computation. Experimentally dropping the
reactor vessel water level could be hazardous. Computationally
determining the response can be very expensive and yield poor
accuracy. However, for an application at Yankee Rowe, this appears
to be the better method. There are currently three excore source
range neutron detectors in place. Therefore, additional equipment is
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not required. Consequently, greater emphasis can be placed on the
computational methodology.

All of these methods assume that there is a defined water level
to measure. This, most probably, is not the case. If the reactor
coolant pumps are not operating, there may be a transition region
from water to steam. If the pumps are operating, there may be a
circulating void with no defined water level. According to
NUREG-0578, each pressurized water reactor should have a saturation
meter on its control board by 1/1/80. This meter indicates pressure
or temperature above or below the saturation point. This meter is
used as the primary indicator of voids in the system. If voids are
present, the operating staff will consult the information provided to
him from this project to obtain an approximate water level.

CALCULATIONAL METHODOLOGY

As Vhis situation closely resembles a shielding problem, the two
obvious culculational methods were discrete ordinates and Monte
Carlo. Due to the.physical size of the problem and the desire to
have three-dimensional effects included, Monte Carlo was chosen. A
two- or three-dimensional discrete ordinates calculation of this
magnitude was beyond the computer limits (CDC-CYBER175) and beycnd
resonable costs.

To perform this calculation, ANDYMG3(“) was chosen for two
reasons,- First, ANDYMG3 was available in house. Secondly, it has
the ability to treat neutrons and photons.

ANDYMG3 is a three-dimensional mulii group neutron-photon
transport Monte Carlo code. It has a generalized geometry routine
which handles any topologically sound combination of planes,
cylinders, ellipsoids, congs, and spheres. Cross sections are read
in Sn format with scatteri lg pattern components up to P-3. A flux at
a point estimator routlne/las added to obtain the detector response.
Importance splitting and\Ru551an roullette were also added to improve
efficiency by splitting partlcles travelling towards the detector and
killing particles travellwnéytowards the core.

THE MONTE CARLO MODEL OF YANKEE ROWE

The first step in modelling a system is to define all surfaces
necessary to bound all regions. The second step is to define surface
segments which are cut from the surfaces. The surface segments are
used in defining regions. A region is a spatial domain in which
macroscopic cross sections are uniform.
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The Yankee Rowe geometry contains 32 surfaces: 18 concentric
eylinders and 14 planes. From these surfaces, 64 surface segments
are cut in order to describe 27 regions. The concentric cylinders
are also used as splitting planes.

A uniform s rce with a fission spectrum was used within the
core.

For cross sections, the cask(5) data set was used. CASK is a
40 group (22 neutron, 18 gamma) coupled P-3 cross section library.,
CASK was chosen for two reasons., First, gamma-n reactions with
deuterium mey be a significant source of neutrons after
shutdown.(6) Secondly, if gamma detectors are desired, the data
necessary to calculate a response will have been calculated.

4
ASSUMPTIONS
In the calculation, four assumptions were made:
1) The reactor core was at beginning of life
2) The reactor was just scram@ed

3) There was an instantaneaﬁ; change in water level

. s 14 . .
) A fission source spectfun existed in core.

RESULTS(/ AND APPLICATION

The detector response in the calculation is an average of four
symnetrically positioned detectors. For rayctracing purposes, a
collision within 115 cm of the detector causes a response. This
choice of 115 em is arbitrary.

The calculations to date are preliminary but are useful for
discussion purposes. From Table 1, even though the deviation is
high, an increase of factor of almost 3 in the response can be seen
when the core is half voided.

TABLE 1
Case Response Deviation No. of Neutron Starters
Full System .69370E-9 .27349E-9 5,000

Top Half
Voided 1.8008E~-9 LUUT92E-9 5,000
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This type of information will be used in the event of an
indication of voids in the primary system. For example, a typical
source range detector count rate reads 70 c¢ps at 6 hours after shut
down. If at this time, voids are indicated in the system and the
count rate increases to 190 cps, the operating staff will consult
information provided by this project. The ratio of count rates in
this example is 2.7, i.e., 190/70. This indicates a core that is
almost half voided. With further calculations, a more complete and
accurate set of data will be provided.

CONCLUSTONS

Even though the results provided are not yet complete, the use
of Monte Carlo techniques appear to be a reasonable approach to solve
the water level indication problem in the core.

’

As this work is still preliminary, further effort must be
concentratad on:

1) A better model of the source both spatially and spectrally.
2) A correlation of void fraction and water level height.

3) Larger samples to improve statistiecs.
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. ADJOINT MONTE CARLO TECENIQUES AND CODES
FOR ORGAN DOSE CALCULATIONS
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7
ABSTRACT

" Adjoint Monte Carlo simulations can be effec-
tively used for the estimation of doses in small
targets when the sources are extended in large
volumes or surfaces. The main features of two com-
puter codes for calculating doses at free points
or 1n organs of an antropomorphic phantcm are de-
scribed here. In the first program /REBEL-%/ natu-
ral gamma emitting sources are contained in the
walls of a dwelling room, in the second one
/POKER-CAMP/ the user can specify arbitrary gamma
sources with different spacial distributions in
the enviromment: in /or on the surface of/ the
ground and in the air.

t \))

INTRODUCTION

The determination of the.doses absorbed in various parts
of the human body is one of the main tasks of health physics.
Whether measurements or calculations are carried out for such
purposes, first a model of the human body, i.e. an antropo-
morphic phantom, has to be selected. For photon dose calcu-
lations W. Snyder and his co-workers defined a heterogeneous
phantom in the 60’sh 2 that was later slightly modified?® and
ze will refer to this 1974 version hereafter as the ORNL phan-

om.

The ORNL phantom has a relatively simple geometrical
shape. The external surfaces and the boundaries of the more
than 20 organs are defined by secondary order equations. Each
organ is considered to be homogeneous although different ele-
mental compositions and densities are used for the skeleton,
the lungs and the remainder of the phantom.

There are many gamma and X-ray dose studies carried out
using this phantom for the determination of organ doses from
internal or external gamma or X-ray sources /e.g. Refs 2, 3,
4, 5, 6, 7/ and all the calculations known by us are based
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i

For several years we have been facing the problem of the
determination of organ doses and shielding factors /i.e. ra-
t10s8 of organ doses to doses measured by point-like detectors/
- in 1" ~,fields of different environmental sources. In these
conf tions the targets are small /or even zero-volume
poin 1n comparison with the spacially extended sources,
therefore the adjoint Monte Carlo method was chosen which is
more efficient in such cases.

on direct Monte Carlo simulations.

THE PHYSICATL MODELS

Two types of geometries are discussed here. In the first
case the point detector or the ORNL phantom is placed into a
“\,dwelling room /Fig. 1/. The room is a rectangular block with
doorless and windowless homogeneous walls. The gamma emitters
- the “%K, and the elements of the U/Ra/-series and the Th-
series ~ are assumed to be distributed in the walls uniformly.

o
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Fig. 1. The phantom in the room.
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In the REBEL-3 /Radiation Emitted by Building ELements
- 3rd version/ code written for the calculation of doses in
dwellings the geometrical data of the room and the material
of the walls are the main input data. Any number of neigh-
pouring rooms can also be specified.

From these input data specific dose rates are calculated
- (pGy/h)/(Ba/kg) - so the doses can be predicted if the
specific activities of the building materials are known. The
ratios of the organ doses to the point detector dose can well
be used in the interpretation of data measured in existing
rooms. !
" In the second problem the environment is modelled by
three regions. The air and the ground regions are seii-infin-
ite and a layer with arbitrary thickness can be placed onto
the ground. This layer can be used for modelling grass, snow
etc., or simply to take into account afichange in the composi-
tion of the soil. The phantom stands on the soil region/s/
or a point detector is placed to any height in the air oxr
even into the earth.

The radioactive sources are assumed to be distributed ,
uniformly or exponential}y in any of the three regions or
plane sources can be placed on the dbulk or layer surface or
into the air /Fig. 2/. The natural radioactive sources have
generally uniform spacial distribution, isotgpes of the fall-
out are deposited as plane sources on the ground surface and
e.g. isotopes of the fall-out washed in by rains can have

specific activities decreasing approximately exponentially
by depth.

In the POKER-CAMP /Point or Organ Kermas from Environ-
mental Radiations - Code by Adjoint Monte Carlo Processes/
code the following quantities are the most important input
data:

. = layer thickness,

- elemental compositions and densities,

-~ source geometry /any combinations of the above men-
tioned possibilities/,

- source energies and line intensities /for the most
important isotopes and decay series there is a built
in catalogue/,

- specific activities.

The output of POKER-CAMP is the dose rate, first given
separately for each source, then the total sum is also
printed.

Results obtained by this code can well be used e.g. for
determination of doses in the vicinity of nuclear power
stations.
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In both programs the doses absorbed in the whole body,
in the testicles, ovaries, red /active/ or yellow marrow or Iy
in the lungs of the CRNL phantom, or in the air at the de-
tector site can be calculated.

The fluxes and energy spectra areﬁaﬁso determined, if
needed. These quantities have special importance when the
calculated values are compared with measured data.

THE ADJOINT MONTE CARLO METHOD

Several types of derivation of the adjoint transport
equations are known from the literature therefore only a
brief summary is given here. The formallsm applied is vexry
similar to that used by D.C. Irving3, so those who are inter-
ested i1n details should see his original review. To simplify
the notation the symbol B is,used instead of (E W) : the
energy and the unit vector of the direction of motlon

#

Let us denote the demnsity of photons enterlng a collision
at T with incoming velocity E by ¥, E), and the source den-
sity by S(r, E) then the integral equatlon for the collision
density is =

W(F,E)=SJF,E)+ [[dE a7 " T(F,FIE) CELEIF ) w (F,E)
where
Se(rEl=[dr T (7>, FIE) S(7,E),
is the first collision source.

In the transport kernel:

— -7
= _ “ w == —1
T(r’,Y‘IE)= /{L(P,E)eXP( j /u.<—-)) )d.'i) J( ‘ lr- ] )
p(r, E] is the total linear attenuation coefficient of the
material at T for photon energies E.
The collision kermel is
-_ = — !
E"_ -~ (EE—’E) ¢ o
CELEIF) = #(HE,)
1 _ —’; — ! o lk
where /us\r E—=F) is the differential’ .linear scattering .,

coefficient. In our calculations only one type of scattering
effects: the Compton scattering, as described by the Kleln—

r ‘?),’: ' ©
«

wl
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Nishina formula, is taken into account where the angle of
scattering is determined by thq)energy change, i.e.

_ . — {¢ >

C(BE| Fl=ce (L elr) d [&'® - q(E,E)] # &

and
(2, E)= 15,

" where £ = mec2 = 0.511 MeV.

Physical’ quantities ofvinterest (A) can be calculated as /
functionals of the collision density: ’

A= Md? dE PY”(F)E )?y(F yE)
where Pq,is the pay-off functicn.

[~
In our case, when we calculate the flux at a point:
~4y(x'), then by teking into account the

7]
A iF

- =37 L =
v(FE)=u(F,E) (7, E) wr//
Q ’
relation, ,
ol '

[ / /

Py (rE) ,u.(wg) J;(r Fo).

[

For the derivation of the ad301nt equations let us define
a new function \f%r, E) to be the value.for a partlcle just
entering a collision at'r with energy B. The value is a sum of
two terms: the immediate pay-off and the. pay-off expected to
result from all future collisions:

v¥(7,E) =Py (F, E)+jjdﬁ’df’c(§,ﬁ’lF)T(F,F’\E‘)qf*(F’,E’ : (1)

Now the physical quantity can be determined as:

I3}

A=|[dF dE v¥(7,E) S (7, E)

A more comfortable integral-equation can be obtained by
the following transformations:

G (7 E)= w(FE) v¥(F,E),
Py (F,E)=u (F,E)Py (F,-B)

s
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At =yl = =0 | ﬁ(F)E) I
c(EEIF)=CE,E’|F) ey
/ 3
By these new quantaties:

Q/(F,E)=§Y(F,E)+ﬂcl?d#’€ EE R TE,FIENGESLE) (2)
and -
A=[] dF dE (7 F) SelEE . (3)
) ' /U-(F)E)

7o
Tor the, calculation of the flux at.a point:

A ' i B

::.J«_,_.'—'o . ) ’
Py (f o) (4)

Equations like (1) or (2) are generélly /but not strictly
-correctly/ called as adjoint equations and their solutions by
Monte Carlo method are called adjoint Monte Carlo procedures.

In our MontejiCarlo simulations pseudo-photons start from
the point r = r_,[with random direction and with an energy
E'<[Ey; By], whre By is the low energy threshold of the cal-
culation and Ey I's the maximum energy of interest /the maximum
source ensrgy/. Thus the pseudo-photons start with a weight
of 4w (Ey - E+). In the consequent steps thecnew collision
sites /?7 are chosen from the

T(F’F\Eﬁ
[dFT(F FIE’)

prodability density function and new energies /E/ from

Ce (5, E|F)
[dECe(EEIR) - 5)

The new direction 1s always selected with the condition
ww'= g(E, E'). The statistical weight is multiplied by

far TP, FIE™)
and then by ‘
[dECele,e’IF), ©)

after the above mentioned steps, respectively.

e

’I
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Biasing of the adjoint collision kernel

The simulation procedure mentioned above is theoretically
correct but the denominator of formula (5) becomes infinite
if the energy of the pseudo-photon before the collision /E?/
exceeds 1/2& /~0.255 MeV/. For such cases we developed a
biasing technique , where the collision kernel

r~ ~ E)/\ _
CE(E,E’\r)=’E‘CE (5,€'lF)
replaces the original one. Now, the
jdE CE(E) E)] F)
normalizing factor is finite for all E’-s.
For the selection of the new energy from 6} a quite simple
and fast algorithm is developed and if the statistical weight

is multiplied by E/E’ after each collision, the final esti-

mation will be unbiased.
£

. SCORING

it

In the subsequent steps of the Monte Carlo simulation
of Eq.(2) a Neumann series of-& is generated: ’

$ (7, E)= 4 (7, E) v 2 ¥ (7,E) = 4.(RE) + y(F, E)
L=
where the first term is
v, (FE)=by FE).

Accordingly, the physical quantity (3) - the flux at a
point in our case - is also a sum of two terms:

A=A+ A
where the source contribution is
— A — — — —
Az |[araE B, (7E) A7 (7D Sc(F,-E), (7)

and the contribution of the scattered particles is

No{[dFEy’ (FE) 7 (FLE) Sc(Fy-E). (8)

u(:;,
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Source contribution

In the case of uniform monoenergetic source distributions:
scf% d (E~Eo) if Fe Vs,
0 ¢ rE Ve,
where vy 1s the source volume, Eq(7) leads to:

4

A=5o[dm o= [dP A (R, B) T(F, &K, &),

s(F,E) = {

i.e. if an initial direction w _ is selected from the uniform
distribution, then the score is:

LR o 48, )= 5, [ aF W RED T (R 7 B0, &), 0 (9)
Vs

So times the expected value of the track length in the source
region.

If the source density 1s exponentially decreasing along,
say, the z direction:

“ S(F) ’VSDQ,Xp(—z/g))

thenvin the source region m have to be replaced by m- wz/3
and S5 by S,exp (—zo/;), where wyis the gz direction component
of the W, véector and Zo is the z coordinate where the path
enters the source region, and the path length type score (9)
holds.

Similarly, it can be derived that for plane sources the
expected path length is replacedﬁpy the probability that the
pseudo-particle crosses the sourte surface, divided by the
cosine of the angle betireen ) and the surface normal,

Contribution of scattered particles

Since in the adjoint simulation T, E) is the collision
density of the pseudo-photons just leaving a collision at r
W;ﬁh energy and direction E, we can define its counterpart
%(r, E) as the collision density of the pseudo-photons
entering a collision at r with energy and direction E:

LEE)= [P TERIE) § (7F) (10)
From Egqs (2), (8) and (10):

o
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A‘=Hdm§i(?,§ﬁ4}“ Ce (Eo,EVF) fdr L (FE. &), (12)

where I(T, Fo,®') is the track length type quantity defined
by Eq.(9) for uniform source distribution and has to be
modified for the other two source types as described at the
source contribution. The directions & has to be chosen in
accordance to the

W =qlE,,E)

relation. This condition determines the angle of scattering
only, therefore L has to be integrated over all azimuths (7).
This integration for v can be carried out by an inner Monte
Carlo estimation: a single azimuth is chosen randomly from
the uniform distribution on (Q, 2m),

Briefly summarizing the evaluation of (11): the score
is calculated before each pseudo-collision event by a product
ol a quantity 7Ce7 proportional to the probability that the
pseudo-particle’s energy will be scattered to Ep and a track
length type quantity /L/ belonging to a such scattered
pseudo-photon.

SPECTAL TECHNIQUES USED IN THE CODES

Calculation of the track length type gquantities

The integrals describing the expected values of the
track length type quantities of the scores are evaluable
analytically but, in practice, 1f a path crosses the inhomo-
geneous phantom, then because c¢f the necessary determination
of the boundaries where the attenuation coefficient is
changing /i.e. the determination of crossing points of the
path with the second order surfaces separating the phantom
regions/, the analytical calculation becomes extremely com-
plicated and time consuming.

In view of this, the expected path scores are used if
the point detectors are considered., If the phantom is standing
in the room, then, in the REBEL-3 code, actual lengths of
selected pathsreplace the expected values. /In other words,
the expected paths are determined by an internal Monte Carlo
procedure - consisting of just a single sampling/.

In the POKER-CAMP code the type of estimation is selected
in every case /Fig. 3/. If the actual path does not cross the
phantom, then the expected values are calculated analytically.
For paths crossing the phantom expected values are calculated
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Fig. 3. A sketch of the track length type score calculations.
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for the path before the phantom /if there is such a section/,
then a random selection decides whether the path continues
over the phantom,and if so, the calculation goes on again by
analytical determination of the expected values.

Transport Ingside the Phantom

The transport within the phantom is always simulated by
the maximum cross section technique?®, i.e. potential sites
are selected by using the maximum attenuation coefficient
(Mmox)in our case the coefficient of the bone. Then the ratio
P = Mpot /Mwmax 1S calculated /meot denotes the attenuation
coefficient at the selected potential site/ and with proba-
bility of p the site is regarded as a real collision point,
while with the probability 1-p a new path, starting from the
previous potential site, is selected.

Calculations for More than One Sources

In the REBEL-3 code there are three types of sources:
the *9K /with a single gamma line/, the U/Ra/ and the Th
series /their gammas are represented by 24 and 20 lines,
respectively/, while in the POKER-CAMP the user can specify
maximum 10 sources with not more than 250 lines altogether.

The fluxes are calculated separately for the different
sources and also for the source and collided parts, but the
random walk of the pseudo-particles is simulated commonly,
i.e. the scores are calculated to all the lines before each
collision.

Dose Calculations

As in most low energy photon dose calculations only
interactions of the photons are followed, i.e. the energies
of the secondary charged particles are assumed to be deposited
at the sites of their creation. In other words it means that
we approximate the absorbed dose by the kerma. This approxi-
mation is quite reasonable for energies below about 3 MeV.

The connection between the fluence rate and dose rate
is given by

15z;<=#—;9w,

therefore the initial statistical weight of the pseudo-par-
ticles is multiplied by
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for the dose rate calculation.

We have only one problematic point with the ORNL phantom:
that relating to the bone marrow, since there is no geomet-
rically separated marrow region in the phantom. The marrow
dose in the original Monte Carlo calculations with this phan-
tom was estimated simply by taking the weight proportional .
fraction of the bone doses. Now, in our adjoint model this
method has been modified in such a way that while the bone is
still considered to be a homogeneous medium during the random
walk simulation of the pseudo-particles, at the fluence to
kerma conversions the mass energy transfer coefficients
(Mx/¢) are calculated for the real bone marrow material
- taken after the "reference man" of ICRPM.

In the phantom dose calculations the physical target
organ is assumed to be homogeneous, i.e. in the adjoint simu-
lation the pseudo-photons start from all points with equal
probability. "

The skeleton of the phantom is divided into 13 segments
/bones and bone parts/ having different marrow contents, and
the distribution of the marrow tissues is uniforin within each
segment. Thus, in the case of the marrow dose calculation
first a bone segment is selected /with 'a probability propor-
tional to its marrow content/, and then the starting point
is chosen from its volume.

The whole body of the phantom is inhomogeneous, the den-
sities of the three types of tissues are different from each
other. In principle, starting points should be selected with
higher probabilities from the denser part but for sake of
easy computation uniform random selection is carried out for
the whole phantom volume but the initial statistical weight
is multiplied by the density of the region where the selected
point lies.

For the actual selection direct samplings /inverting
the c.d.f./ or rejection techniques are used.

- L -

Finally we should like to mention here that the REBEL-3
code is deposited at the Radiation Shielding Information
Center /ORNL/ and several representative results calculated
by it are published *>45 , The development of the POKER-CAMP
code is Jjust in the final stage, full documentation of it
together with the publication of the first results may be
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expected in the near future.

10.

11.

12.
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CALCULATIONAL PROBLEM FOR DEEP PENETRATION OF NEUTRONS
THROUGH A ONE-BEND SODIUM DUCT

Enrico Sartori®*
Nuclear Energy Agency Data Bank, Saclay
Gif sur Yvette, France

ABSTRACT

This problem features a two-dimensional geometry
representing a sodium duct surrounded by concrete that
can easily be modeled with both Monte Carlo and two-
dimensional S, codes. The neutron source is 'placed on
an external duct surface, has a uniform spectrum over the
energy range of 5-2 MeV and is forward peaked with a cosine
distribution. The average distance covered by a neutron
leaving the duct surface at the exit is about 360 cm.

The importance sampling method of the Monte Carlo
code TRIPOLI-2 is used. Fluxes and detector responses
are tabulated for several surfaces defined along the neutron
path in the sodium. A population of approximately 5000
neutrons undergoes about one million collisions giving
flux and current at the duct exit with a standard error
of 7.5 per cent.

INTRODUCTION

"An important part of the activity of computer code centers is the
implementation, verification and packaging of computer programs.
Verification ensures that a program runs for selected problems in the
same way as in the originating author's computer installation.

A further validation of a program can be made by comparison with e
other programs for a set of standard problems. Such benchmark tests
and standard problem exercises are of particular interest to the N.E.A.
Committees on Safety of Nuclear Installations (CSNI) and Reactor Physics

S
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*Staff member of the IAEA, Vienna, on detachmen.~at the NEA Data Bank.
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(NEACRP), and can also help the NEA Data Bank to improve the computer
program service. Computer programs and standard problems suitable for
such comparatiyg calculations are selected after consultation with
members of these committees, with preference given to the benchmark
problem collection of the ANS Standards Committee.

Results are presented here for the program TRIPOLI-2, applied to

a two~dimensional geometry shielding problem. Other Monte Carlo codes,
and eventually an SN code, will also be run on the same problem.

DESCRIPTION OF THE PROBLEM
/o

Geometry and Compositions

The geometry of the problem is depicted in Fig. 1. It is character-
ized by a two-dimensional one-bend sodium duct, 80 cm wide, surrounded by
concrete walls, 40 cm thick. The length of the short leg is 160 cm, the

-1length of che long leg 250 cm. The external boundary conditions are of
no incoming flux. An infinite third dimension is simulated by prescribiﬁg
reflective boundary conditions at two surfaces, normal to the third
direction, two meters distance from each other. The densities and components
of the materials are shown in Table I.

Source-Detectors

A boundary neutron source is placed at the external sodium surface
of the short leg. Its surface density is of 1 neutron/cm? sec. The
spectrum is uniform over the energy range of 5-2 MeV. Its angular
distribution is an inwards directed cosine, normal to the boundary surface
(Fig. 1.).

Table I. Material Compositions (293.6€K)

Material ?;;2;§¥ Component &ass percentage
Sodium 0.9700 23Na 100
Concrete 2.380 ‘S1 27.518
160 53.949
RS & 0.722
o o . Ca 17.810
E ' 10g 0.00153

“{
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The detectors' characteristics are éiven in Table VI. Microscopic
cross-section data are used. ©°8Ni and 103Rh are used to detect fast
neutrons down to 1 MeV and 50 keV, respectlvely. Thermal and epithermal
neutrons are detected by means of the S5Mn and 9°Mn/Cd detectors.

[

‘CALCULATIONAL METHODS AND RESULTS

Cross-Section Data

Group cross-section data,1 based on the UKNDL evaluation, are used.
The 269 groups have an equal lethargyi width of 0.0575 from 15 MeV to 1
keV, with the exception of the intervhl of 32-20 keV, where half width
is used. TFrom 1 keV to thermal this width is doubled. A constant
weighting was used when generating the group cross sections. Neutron
slowing down and the cross-section anisotropy are treated in a continuous
way. In the simulation, individual target nuclei are chosen with which

the neutron will collide.

Biasing

In deep penetration problems, variance reduction techniques have to
be used if realistic computing times are to be achieved.

The importance sampling method!»2 of TRIPOLI-2 is used.

The biased Monte Carlo game consist of’ the following:

- A continuous weighting function (inversely proportional to
the importance) is defined, taking into account the geometry,
the materials, and the source-detector configuration and

characteristics of the problem. i

- The neutron population emitted at the source is transported
together with its changing weight from the source to the
detector region. Its size is kept under control in order to
achieve effectiveness.

Uy 7 s . . . .
~ The collision process is biased in such a way as to give
birth to uncorrelated neutron histories. v

The weighting function is of the following form:
-+ > -> >
M(xr,Q,E)=M (r) N5 (Q) N3 (E)
where

My @)=, F,)e 8 Er0-
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>
@, is a unit vector specifying the preferred direction in which one wants
the neutrons Lo move; k is the logarithmic slope of the spatial weights
in direction .
My (E)=f+E 0
G
where f is a normalizing factor and o is an energy dependent function. j%,
->
Mo (2) is selected by the program in such a way that the weight of the
neutrons before each collision is independent of the direction and point

of departure of the neutron.

The parameters used for Hl(?) and T3 (E) are given in Tables II and
ITI. The isoweight contour lines of I} (r) are shown together with the
preferred directions in Fig. 2. These parameters were obtained by
trial and error on a small sample of the neutron population.

The following considerations were made during the parameter tuning
process:

- The number of collisions in the concrete should be limited
as these will lead to insignificant contributions to the
final tallies; the neutron population should migrate from the
source to the detectors in the sodium around the bend.

- In order to have good statistics, a sufficient number of
.collisions should occur in the target area. In this specific
problem the chosen target area is the duct outlet and the
last 150 cm of the duct.

- The construction of a continuous weighting function reduces the
need for splitting and russian roulette to a minimum, thus
avoiding correlated and useless histories which lead to higher
variance and lower efficiency.

By applying the exponential transform a biased total cross section
is utilized,

u

> -

% = ¥ k(e

R Zt Lt kQ-Q

where § is the flight direction of the neutron.

Neutrons traveling in the preferred direction see a smaller cross
section than those moving in the opposite direction. Successive collisions
thus make the neutron population migrate toward regions of higher importance.
The higher k compared to I, the faster the population grows during the
migration and slowing down process. TM3(E), however, is chosen in such a
way as to cancel this population increase. In fact, higher importance is
assigned to fast neutrons when compared to intermediate and epithermal
neutrons. “ ’

—

“~The exponential transform causes more neutrons to be transported
in the preferred than in the opposite direction. The biasing of the
collision! forces neutrons to be transported independently of their
direction after collision, thus increasing the independency of the
histories and decreasing the variance. During the simulation the population
size is controlled inside regrouped enexgy intervals called weighting
groups.
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An appropriate tuning of H1(¥) and N3(E) minimizes this control
thus avoiding russian roulette and splitting (see Table III).

Results

The calculation was carriéed out for ten batches, each of a popula-
tion of about 500 neutrons which undergoes on the average 10° collisions.
The current at the duct outlet, for neutrons with energies from 5 MeV to
thermal is 5.8 10 ° + 7.5% n/cm? sec and the flux 9.7 10 3 £ 7.6% n/cm? sec.

The 269-group spectrum, averaged over the last mesh (16cm), and the
standard errors in per cent’ for each energy ‘decade are shown in Fig. 3.

The surface flux, obtained by summing up the weights of the neutrons
hitting the surface, the average mesh flux calculated by the track length
estimator, and the absorption at different surfacequarallellgither to the
source or to the duct outlet surface are given in Table IV. Table V shows
the detector responses at the same surfaces. In order to demonstrate
the effect of tuning of the importance parameters, the responses over
the whole duct length are presented. The chosen target area, however,
is delimited by the last 150 cm of the long leg. The variance of the
tallies is less than 10 per cent in this area. Whereas the fast neutron
tallies have a low variance over the whole length of the duct, the
corresponding epithermal and thermal variance decreases as the duct outlet
is approached.

it

The computing time necessary for this calculation was 28 minutes on
an IBM 3033. About 20 per cent of this time was spent in the thermal.
group.

v CONCLUSION

v
TRIPOLI-2 is a flexible tool for solving deep penetration problems

by the Monte Carlo method. With its importance sampling technique,
complicated shielding problems can be calculated with efficiency.

{
{
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\t Table II. Space dependent weighting function ‘Wq(?)
B
direction of unit ‘ectors
. k 5 :
Region -1 (relative to x-axis) geometry
(cm™4)
(degrees)
position dependent
Sodium 1 0.044 focus on cylinder axis cylindrical
(140, 140)
Sodium 2 0.044 0. planar
Concrete 1 0.0792 20. rlanar
Concrete 2 0.0792 0. planar
Concrete 3 0.0792 304. planar
Concrete 4 0.088 60. planar
Concrete 5 0.0812 55. planar
Concrete 6 0.0924 152. planar
Table III. Welghting groups and energy dependent

welghting function’ﬂ}(g)z{.g-d

Upper Energy limit

imposed

(MeV) o ’ﬁ%(E) neutron population
14.8 1.0 1.00 500
4.217 1.0 3.41 500
1.0 0.25 14.4 1000
0.1995 0.25 27.9 750
4.467E-2 0.25 40.7 500
1.0E-2 0.1 59.2 500
1.995E-3 0.05 69.8 500
4.467E-4 0.05 75.3 500
1.0E-4 0.05 81.0 500
1.995E-5 ~0.1 87.9 500
3.990E-7 ~-0.1 83.7 500
8.966E-8 0.0 57.3 500




Table IV. Neutron flux and absorbtion as a function of positicn

. X G
toeattor® i toney e e s SONE gt s

® K (n/cm* sec) 3

+28 3.7E-2 61 2.4 18 2.5 7
+51 3.7E-2 35 1.6 11 2.0 12
+74 5.2E-2 31 1.1 10 1.4 10
+97 3.2E-2 29 0.70 12 0.90 10
+120 2.3E-2 30 0.40 12 0.56 11
+140 3.3E-3 30 0.28 17 0.29 12
=177 5.1E-3 15 6.3E-2 10 8.8E-2 11
—-154 2.7E-3 12 3.1E-2 9 4.7E-2 10
-131 1.5E-3 9 1.7E=2 5 2.3E-2 9
-108 8.2E-4 8 8.5E-3 7 1.2E-2 8
-85 4.4E-4 11 4.2E~3 10 6.1E-3 9
-62 2.5E-4 7 2.1E-3 4 3.1E-3 9
-39 1.2E-4 8 9.6E~4 7 1.5E-3 8
-16 4.6E-5 8 3.7E-4 7 6.3E-4 7
-0 1.1E-5 9 9.8E-5 7 2.4E-4 8

+ distance from the inlet

- distance from the outlet

9¢e



Table V.

_Detector responses
o 43 /n/sec 10’2§/

location®) detector standard detector standard detector standard detector standard

(cm) 1 error 5 error 3 error 4 error

% % % %

- +28 1.1 58 0.944 3.5 0.68 67 0.13% 2.3
+51 1.2 32 0.403 2.8 0.58 37 4.78E-2 2.0

+74 1.9 31 0.190 8.1 0.86 44 1.76E-2 4.4

+97 1.6 24 7.84E-2 3.8 0.96 35 6.94E-3 5.4
+120 0.71 28 3.23E-2 3.7 0.27 19 2.43E-3 4.6
+140 0.38 28 1.42E-2 4.5 .28 44 5.88e-¢ rn
-177 0.17 13 1.70E-3 4.7 6.85-2 11 =.10E-5 4.8
~154 8.5E-2 ] 6.22E-4 3.0 3.0E-2 14 2.70E-5 4.9
~131 4.8E-2 8 2.178~4 4.0 1.6E-2 10 8.59E-6 6.1
-108 2.7E-2 10 8.00E-5 5.5 1.1E-2 15 2 .B6E-6 4.3
-85 1.48-2 10 2.97E-5 5.4 4 .8E-3 11 1.03E-6 4.3

-62 7.6E-3 8 1.10E-5 6.0 2.4E-3 10 3.70E-7 4.8

-39 3.5e-3 8 4.07E-6 4.7 1.1E-3 9 1.35E-7 6.9

-16 1.4E-3 8 1.38E-6 6.2 4.5E-4 10 4.92E-8 9.0

-0 3.5E-4 8 4.13E-7 5.6 1.2E-4 7 1.80E-8 7.7

¥, distance from the inlet - distance from the outlet
Table VI . Detector Characteristics
Detector identification no. Characteristics

1

2
3
4

S5Mn (n, ¥)

58N1 (n, p)

UKNDL 70 /thickness=0/6th=13.4 barns/
103Rh(n,n!) UKNDL 70; equivalent fission flux /e£=0.720 barns/
Mn/Cd(n,y) UKNDL 70 /thickness=0/ resonance integral I=15.44 barns

perkin data /6F%=0.1119 barns/

Leze,

fre
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THE STATUS OF MONTE CARLO AT LOS ALAMOS

'

William L. Thompson and Edmond D. Cashwell
Group X-6
Monte Carlo, Applications, and Transport Data Group
Theoretical Applications Division
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

At Los Alamos the early work of Fermi, von Neumann,
and Ulam has been developed and supplemented by many
followers, notably Cashwell and Everett, and the main
product today 1s the continuous-energy, general-purpose,
generalized-geometry, time—dependent, coupled
neutron-photon transport code called MCNP. The Los Alamos
Monte Carlo research and development effort 1s concentrated
in Group X-6.

MCNP treats an arbltrary three—dimeunsional
configuration of arbitrary materials in geometric cells
bounded by first- and second-degree surfaces and some
fourth—degree surfaces (elliptical tori). MCNP has its own
cross-section libraries plus it allows twc thermal neutron
models: the free-gas and S(u,B) treatments. There is a
wide variety of standard sources plus a very easy-to-use
and extensive tally structure. MCNP is quite rich in
variance-reduction schemes, including three different
techniques for estimating flux at a point. Other feaqﬁfes
include being able to calculate eigenvalues for both sub-
and super—critical systems, an elaborate plotter for
checking geometry setups, calculation of cell volumes and
surface areas, and good documentation. N

Monte Carlo has evolved into perhaps the main metbﬁd
for radiation transport calculations at Los Alamos. MCNP
is used in every technical division at the Laboratory by
over 130 users about 600 times a month accounting for
nearly 200 hours of CDC-7600 time. However, MCNP is just
the parent code. In addition to MCNP, major variants
supported by Group X-6 include a multigroup forward and )
adjoint code, a code allowing geometrical perturbations, %
and a code that allows cell boundaries to change as a /
function of time. In addition, Group X-6 is involved in N
elect¥on and high-energy nucleon/meson transport by Monte
Carlo. e
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INTRODUCTION

We are happ} to report that Monte Carlo 1s alive and well at Los
Alamos. OQOur main code, MCNP,1 is used by about 130 users in virtually
every technical division at the Laboratory over 600 times a month,
accounting for nearly 200 hours of CDC~7600 computer time. Monte Carlo,
and in particular MCNP, is possibly the main method for radiation transport
calculations at Los Alamos today. MCNP is also actively supported by Group
X-6 on the Magnetic Fusion Energy computer network where it is used by a
number of people throughout the country. Although Monte Carlo has
widespread use at Los Alamos, the main research, code development and
mailntenance, user support, documentation, and nonroutine applications are
concentrated in Group X—6 in the Theoretical Applications Division
(X-Division). The purpose of this paper is to tell you a little about X-6
and its codes, with emphasis on MCNP. r

o GROUP X-6

Group X-6, presently consisting of 22 members, has as its title "Monte
Carlo, Applications, and Transport Data.” From this title, it is clear we
have three areas of concern: (1) Monte Carlo methods and code .,
development, (2) applications requiring particle transport by Monite Carlo,
and (3) cross—-section data. A strength of the group lies in the
interaction of these three areas and their support of one another. To a
very large extent, all the people in X-6 are conversant in each of these
areas and appreciate the requirements and problems of each. The magnitude
of the Monte Carlo expertise that resides 1n X-6 is likely unrivaled.

Activities in each of these areas will be discussed, but to help
clarify the role of Group X-6 relative to some other activities at Los
Alamos that you may be familiar with, the role of two groups from the
Theoretical Division will be briefly mentioned. Group T-1, headed by
D. J. Dudziak, 1s where the Laboratory's S, expertise is concentrated.

They are responsible for codes like ONETRAN2 and TRIDENT.3 Like X-6 they

also are involved in applications but specialize in S, and occasionally use

the X-6"Monte Carlo codes as we in X-6 occasionally use their S, codes.

- Basically though, we in X-6 solve transport problems randomly and T-1
solves transport problems discreggly. Group T-2, headed by P. G. Young, is
the Laboratory's nuclear data group. Among other activities, T-2 evaluates
cross sections and processes data sets with their codes such as NJOY;4 X-6
does not evaluate cross sections but extensively tests them and then makes

- them available in proper form for direct use by many of the major transport
codes at LASL.

Monte Carlo Methods and Code Development

X-6 responds to requests from throughout the Laboratory for new
methods and techniques to help solve individual problems. The requests are
. - *ﬁ‘
L T ’
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frequently very specific and limited in scope (such as how to sample from
some exotic distribution), but the requests may lead to a new feature that
becomes a permanent part of our codes. Furthermore, X-6 originates many
new methods and code improvements based on its knowledge of Monte Carlo and
applications.

Some of the recent accomplishments include an S(u,F) thermal
treatment, a more general analytical volume and surface-area calculator,5 a
very general tally structure, a once-more-collided point detector routine
with a bounded variance, the addition of the union and complement operators
for geometry specification, new standard sources with improved directional
biasing into a fixed cone or in a4 coutinuous manner by means of an
exponential function, a way to deterministically tramsport particles during
their random walk (DXTRAN), many more user-orliented features and
safeguards, plus a long list of miscellaneous items. A major
accomplishment has been in the area of code documentation with the
publishing of the 411-page MCNP manuall that contains over a hundred pages
each of theory, cookbook exqﬁples, and details of the coding.

v

In the area of Monte Carlo theory, the theory of errors is a
significant topic in X—6,6‘9 and a major work on relativistic effects has
just been published.10

A new area of code development and physics for X-6 is the transport of
high—energy (GeV range) protons, plons, mesons and the complete cascade of
secondary particles down to the thermal-energy range. Applications will
include energy deposition calculations in tissue in conjunction with the
Los Alamos Meson Physics Facility research in cancer treatment plus
shielding and materials damage studies. Our work is basedﬁgn a
modification to the HETC!l code with an interface to MCNP. “

In addition to the parent code MCNP, other X-6 codes include MeMGL2
which 1Is a multigroup version of MCNP that also has an adjoint capability,
MCNPPER that allows geometrical perturbations for calculating derivative
information, MCGE which is a coupled electron-photon code that addresses
the complete electron-photon cascade in the energy range from 20 MeV to 100
keV, a code that allows geometrical boundaries to change as a function of '
time, and numerous special versions of MCNP with which we evaluate new
techniques and solve specialized problems.

About 407% of our effort 1s spent in this area.

Applications

X-6 serves two roles in the area of applicatioms: (1) we work closely
with MCNP users to help them with their applications, and (2) we do many
applications ourselves that require our expertise and experience. Both
these roles are .valuable because they give us feedback on the use of MCNP
and how best to improve it, and they broaden our own experience with a
variety of applications.
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Many applications are related to data verification and will be
mentioned in that coatext.

An ongoing responsibility that we have for the Laboratory is
calculating the biological dose from the intrinsic radiation (from the
various natural decay modes of plutonium and uranium isotopes) emitted
from the nuclear material used in nuclear weapons. This 1is of concern when
military persounel are required to be in the proximity of the weapons for
extended periods of time as is the case on a submarine. We also perform
many calculations related to the vulnerability and effects of nuclear
weapons.

X-6 has done extensive neutronics calculations for magnetic fusion
reactor designs such as the Elmo Bumpy Torus (EBT),13 Linus,14 Reversed
Field Pinch Reactor (RFPR)15 and Fast-Liner Reactorl® concepts.
Furthermore, studies were made on Tokamak designs to evaluate the effect of
geometrical simplifications in calculations.l? Figure 1 is a Tokamak
reactor geometry set up for MCNP; the surfaces marked by’ﬂéterisks are
tori. We would like to increase our role in the magnetic” fusion area.

Figure 1. Tokamak Geometry.
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The shielding designs for new facilities to be built at Los Alamos are
frequently done by X—-6. Recent examples include shielding from
bremsstrahlung for a new electron accelerator to be bulilt by the Physics
Division and for the Antares Laser Fusion facility being built by the Laser
Division. The Monte Carlo bulk-shielding calculations were done for
Antares during the early design of the facil'ity.18 The basic building has
been coustrycted, and we are now doing a radiation mapping inside the
Target Building to ascertain material and instrumentation damage plus
activation analysis of. the target—chamber components. Figure 2 is the MCNP
representation of the Antares target—insertion mechanism. &

An activation analysis code, using the LASL GAMMON library,19 is
coupled with MCNP and calculates gas production (H,D,T, and He), material
activation, and photon sources. The phoﬁdﬁ sources can be qéed in MCNP to
calculate dose rates at points of interest.

!

Figure 2. Antares Target~Insertion Mechanism.

1

Many interesting calculations have been done for the Health Division
that involve instrument designzos21 and radiation safety. One project
involved the design of the gloveboxes at the new Plutonium Facility at Los
Alamos, and another project just completed was a criticality study for the
Slagging Pyrolysils incinerator Facility (SPI) to be bullt at Idaho Falls.22

.
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A recent series of calculations was completed as part of the review of
the design of the Fusion Material Irradiation Test Facility (FMIT) to be
built at Hanford.

X-6 works closely with the Nuclear Safeguards (assay and
accountability) groups at Los Alamos in the designing of instrumentation,
helping to understand the physics and Monte Carlo simulation of their
experiments, and providing special versions of MCNP to account for delayed
neutrons and to simulate coincidence counters.?3 Calculations in this area
are invaluable to optimize an instrument design and to understand or
extrapolate a calibration curve in the assay of unknowns.

About 357% of X-6's effort is spent in the area of applications.

Transport Data

X-6 is responsible for the X-Division nuclear cross sections and does
partial processing of cross—section data provided by Group T-2. This
includes continuous—-energy, multigroup, and radiochemistry data used not
only in the ¥-6 Monte Carlo codes but also in other transport codes used in
X~Division and throughout the Laboratory. )

The major effort in this third area of X-6 work is the testing of
cross—-section data.2* The data are verified by two methods:
(1) differential testing involving spectra, and (2) integral testing
involving critical mass calculations of Los Alamos assemblies like Godiva
and Jezebel. As part of this cross-section work, X-6 has been calculating
and .analyzing the latest experiment designed to'‘measure the neutron
spectrum and tritium production, and to check specific cross sections at
various locations in a system consisting of a 93.5% enriched uranium sphere
surrounded by 6LiD. The Livermore pulsed-sphere experiments are also
calculated for integral testing of cross-~section data.

Extensive thermal benchmark calculations have recengly been comgleted
to test the integrity of MCNP, its thermal treatments, and its data. 5

MCNP calculations are now making significant contributions to the thermal
data—-testing program.

We have recently completed the monumental task of thinning, testing,
and assembling in suitable form the ENDF/B-V and Livermore ENDL79 data.
These data are now being used at Los Alamos.26-28

1 '

This final areé’acﬁounts for about 25% of the group's effort. We find
having this cross-section effort an integral part of X-6'to be a very
valuable arrangement. It gives those of us dolng applications a greater
appreciation and awareness of the data. Furthermore, great resources can
be immediately brought to bear on questions of transport data - as
illustrated in the following paper on deep-penetration q9lculations by
Thompson, Deutsch, and Booth.
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MCNP

As mentioned earlier, Group X-6 is the author of MCNP, and MCNP is the
backbone and main product’ of X-6.

MCNP is a very mature and reliable Monte Carlo code. It represents
over two hundred man-years of effort and is ‘the culmination of the or%ginal
Monte Carlo work at Los Alamos by Fermi, von Neumann, and Ulam. Cashwell
and Everett, over a period of alwmost thirty years, have contributed most to
the development of MCNP. The first book on Momte Carlo was written by
Cashwell and Everett.2?

MCNP is a general-purpose, continuous-energy, generalized-geonmetry,
time—dependent, coupled neutron—photon Monte Carlo transport code. It may
be used in any of three modes: (1) neutron transport only, (2) combined
neutron—photon transport, or (3) photon transport only. The capability to
calculate eigenvalues for critical systems is also a standard feature of
MCNP. )

The following few sectlons will point out the main features of MCNP
but will not go into detail. The MCNP manual, in addition to explaining
how to use the code, contains the details of the physics, mathematics, and
nuclear data aspects of MCNP. Another short publication,30 which 1s just a ”
reprint of the first part of the manual, summarizes the code. Tinally,
Carter and Cashwell's book3l is not only a good (eneral reference cn
radiation transport by Monte Carlo, but it is based upon MCNP in many
aspects.

For most applications of MCNP, the user has to supply no more than an
input file describing a problem. All of the input to MCNP is in free
format. There is a variety of standard sources to choose from, and the
tally structure is very general and elaborate. There is no need for a user
to compile cross-section libraries for problems; X-6 maintains and provides
all the data needed by MCNP.

Nuclear-Data and Reactions

MCNP is a continuous—energy Monte Carlo code that makes no gross
approximations regarding data. Linear interpolation is used between energy
points with a few hundred to several thousand points typically required to
reproduce the original data within a specified tolerance (in fact, usually
within 0.1 to 0.5%). The only significant difference between the MCNP data
libraries and the ENDF/B library (from which it is derived with the NJOY
processing code) is that resonance data are represented in MCNP as linearly
interpolated pointwise data that are Doppler broadened to a specific
temperature. All reactions given in a particular neutron cross—section
evaluation are accounted for in the energy range from 20 MeV to 1073 eV.
Users can choose from data with prompt or .total fission v's as well as
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having the option to use a set of discrete-reaction cross sections in which
the reaction cross sections have been collapsed into 240 eanergy groups to
save computer memory. Users have the choice of data from the ENDF/B,
British AWRE, Livermore ENDL, or special LASL libraries.

There are two thermal treatments in MCNP. One is the free-gas model
in which, for elastic collisilons, light atoms (Z = 1 through 8) are assumed
to be in a Maxwellian distribution with some thermal temperature that may
be a function of time. Secondly, the S(u,B) scattering model is available
which accounts for chemical binding and crystalline effects at very low
energies. Typically, when going down to room temperature, the free-gas
model is used from around 10 eV to 4 eV, and then the $(Q,E) model is used
below that.

Photon interactions are accounted for in the range of 100 MeV to
1 KeV. MCNP accounts for both incoherent and coherent scattering,
fluorescent euission following photoelectric absorption, and pair
production.

Geometry .

The geometry of MCNP treats a general three-dimensional configuration
of arbitrarily-defined materials in geometric cells bounded by first— and
second-degree surfaces and some special fourth-degree surfaces (elliptical
tori). The cells are defined by the intersections, unions, and complements
of regions bounded by the surfaces.

Surfaces are easily defined by supplying coefficients to the analytic
surface equations or by indicating known points located on the surfaces.
For example, the surface y - D = O is represeanted in MCNP by the mnemonic
PY with the single entry D. Therefore, a plane normal to the y—axis at
y = 4 Is defined by the simple input line of

PY 4
MCNP has 26 such mnemonics available.

AN

Figure 3 is a geometry set up to test the analytical volume calculator
in MCNP (the volume was calculated analytically and also stochastically by
uslng a track-length estimator). This geometry of a fancy fish with a
weird sup-.is actually only three cells in the MCNP problem: (1) the
disjoinq&§E§ions of the fish plus the sun (which appears as four regions),
(2) everythi&g else inside the sphere, and (3) everything outside the
sphere. The geometry was specified by portions of twenty-three surfaces
consisting of six tori, two hyperboloids, two ellipsoids, seven cones, one
cylinder, two spheres, and three planes.

-
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Vi

Figure 3. Example of MCNP Geometry.

Figure 4 is another example of MCNP geometry. This geometry consists
of two cells and fifteen surfaces. The numbers in the figure refer to
surface numbers: surface 1 i1s a cylinder; 3 is a cone; 12 and 13 are
.planes; 6, 7, 14 and 15 are ellipsoids; and 2, 5, 9, 10, and 11 are planes
of two sheets.
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Figure 4. Example of “MCNP Geometry.
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More details about the MCNP geometry are given in the following paper
by Godfrey. The significant additions of the union and complement
operators to our geometry vocabulary are products of Godfrey's work. Cells
that are now routinely specified with the union operator that are
illegitimate when using intersections only are now in fact called "Godfrey
cells" by us.

Variance Reduction

This one area alone makes MCNP a superb Monte Carlo code; MCNP is rich
in variance-reduction techniques. The following two papers by Cashwell and
Schrandt and by Thompson, Deutsch, and Booth will illustrate some of these
techniques. WMore details are available in Refs. 1 and 31.

In addition to obvious ways to save computer time like using energy
and time cutoffs, MCNP offers geometry splitting with Russian roulette,
analog capture or survival blasing with weight cutoff and Russian roulette,
correlated sampling, the exponential transformation, energy splitting,
forced collisions, flux estimates at polnts by three methods (next-event
estimator, ring detector, and once-more-collided estimator), track-length
estimators, source biasing in direction and energy, and a combination
random walk/deterministic scheme called DXTRAN. Furthermore, a Russian
roulette game can be played with detector or DXTRAN contributions as a
function of mean free path that can save substantial computer time.

X-6 is always evaluating new variance-reduction techniques and
improving existing ones. Examples are (1) angle biasing which we look at
from time to time but to date have not found a scheme that has anything
substantial to offer over other methods already in MCNP, and (2) a weight
window that looks quite promising (see paper by Thompson, Deutsch, and
Booth). Furthermore, we are looking at generalized phase-space splitting.

Tallies

An important part of the MCNP output that the user has little control
over (except for all of it or a fixed subset of it) is summary and
diagnostic information. This information 1s valuable for determining the
characteristics of a problem and the effect of variance-reduction
techniques. Examples are (1) a complete breakdown of all energy and weight
creation and loss mechanisms averaged over the entire problem and also
individually by cell, (2) the number of tracks entering a cell and the
track population in a cell, (3) the average energy, weight, number of
collisions, and mean free path in a cell, (4) the volume, mass, and surface
area of a cell, and (5) the activity (i.e., collisions, collisions times
weight, and weight lost to capture) of each nuclide in each cell.

In addition to this summary information, MCNP has an elaborate and
easy~to—use tally structure that allows the user to tally almost anything
conceivable. Choices include, as a function of energy and time,
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(1) current as a function of direction across a surface, (2) £lux actoss a
surface, (3) flux at a point, (4) average flux in a cell, and (5) energy
deposition (or heating) in a cell by neutrons, photons, and products of
neutron reactions. Surfaces or cells may be subdivided into segments for
tallying purposes. In addition, particles may be flagged when they cross
specified surfaces or enter designated cells, and the contributions of
these flagged particles to the tallies are listed separately. The user has
available a special subroutine by which the standard tallies can be
modified in almost any desired way.

Reactions such as fission, absorption, tritium production, or any
product of the flux times the approximately one hundred standard ENDF/B
reactions plus several nonstandard ones may be tallied very simply.

Printed out with each tally is also its estimated relative error
corresponding to one standard deviation of the mean.

Other Features

MCNP has the capability to calculate eigenvalues for critical
systems. Three estimators {in various combinations) are used to calculate
kegg: absorption, collision, and track-length estimators.

For debugging input and gecometries, MCNP makes extensive and elaborate
checks for consistency. A plotting capability is in MCNP that provides an
arbitrary cross—sectional view of the input geometry on several output
devices (all figures in this paper plus slides used in the oral
presentation were generated by the plotter). If a track gets lost during
its transport, diagnostics are automatically printed for that track which
include an event log. The event log is a print of the complete life of the
track from event to event (birth, collisions, surface crossing, etc.).

A feature is available to allow the user to translate and/or rotate
surfaces from one coordinate system to another. For example, it is a
nontrivial task to determine the coefficients for the general quadratic
equation needed to define an ellipse with its origin off somewhere in space
and its axes at some skewed angle. However, an ellipse can be easily
defined centered about the coordinate-system origin with axes parallel to
the coordinate axes. It 1is then an easy procedure to move the simple
ellipse to another place with another orientation.

For tallying purposes, cell volumes and surface areas are analytically
calculated for polyhedral cells and for any cell bounded by surfaces of
revolution (regardless of axis of symmetry). Surfaces of revolution
generally account for the majority of cells, but irregular volumes and
surface areas can also be easily calculated stochastically.

A convenient mechanism is provided to specify information to be
written to a file for post-processing, such as for plotting results or to
generate a source for a subsequent problem.
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Full restart capabilities are available that are used for machine
failure or coantinuing a run to obtain better statistics.

Future Work
Lo te ROre Y
We are the first to recognize that MCNP does not do everything for
everybody. We are cautious about what goes into the code and put something

in only for a good reason and after it has been carefully evaluated.
However, X-6 frequently creates special versions of MCNP for the one-~time
requirements of special calculations or Eor the special requirements of a
limited number of users.

The two most obvious shortcomings for use outside of Los Alamos are a
lattice geometry specification and a better treatment of unresolved
resonances. The lattice capability has not been of overriding importance
to us at Los Alamos, but if others are interested in this feature we could
be persuaded to increase the priority of it.

As mentioned earlier, we are always ﬁmproving the existing variance-
reduction techniques and devising new ones. We are interested in
photo-neutron transport, but this 1is mainly a problem of data. Work is
presently in progress on a three-dimensional plotter; our geometries have
become so complicated it is hard to comprehend them with two-dimensional
slices. Graphical techniques are being explored for post-processing of
output data and for visual aids to help understand the characteristics of a
problem (i.e., where are the particles going and how does a variance~
reduction technique influence them). Studies of Monte Carlo vectorization
are underway to see how we can take advantage of modern computer
architecture (such as the CRAY-1l) or future computers with parallel,
independent processors.

MCNP is not a static code. 1t is under constant scrutiny and
development by X—-6. We release a new version about once a year with the
current code being Version 2A. 1If MCNP ever becomes static, it will be so
because there 1s no further use for it. We do not anticipate this
happening; rather, the opposite seems to be the case.

MCMG

The multigroup code MCMG has basically the same features as the
continuous—-energy code MCNP, but it’ relies on the same user-supplied
multigroup, multitable cross-section data that are used in discrete
ordinates codes. Unlike the data for MCNP, the multigroup data treatment
results in problem—dependenﬁ cross sections that can place a burden on the

user to assemble and undergtand. MCMG can be applied to standard shielding

A
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o
problems, to problems in reactor physics including the use of thermal
upscatter matrices, to problems in accelerator or cosmic—ray shielding at
very high energies, to problems in neutral atom transport in plasmas, and
to any other problem in linear transport for which multigroup data have
been developed.

An added feature of MCMG is that it is also an adjoint code. A cell-
and energy-dependent scalar flux is automatically generated during a
forward-mode calculation, and this information is used for importance
sampling of adjoint collisions and for an energy-dependent geometric
splitting and Russian roulette game in the adjoint tracking.

The distribution of scattering angles for group-to-group transfer is
represented by either continuous, equiprobable cosine bins or by MORSE-type
discrete-scattering angles, both of which preserve all of the moments of
the truncated Legendre representation.

MCMG has an advantage over discrete ordinates codes in that it does
not suffer from geometrical restrictions. Like discrete ordinates codes,
however, it can be limited by the approximations that are inherent in the
multigroup data that can, for example, result in masking the existence of
self-shielding effects.

CONCLUSION

In our opinion (admittedly biased in the true nature of Monte Carlo),
Group X-6 is a very strong, experienced, and versatile Monte Carlo group.
Our code MCNP is a leading Monte Carlo code because of its maturity,
generality, ease of use, reliability, richness of variance-reduction
techniques, documentation, cross—-section libraries, and active support and
development by the expertise of X-6.
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GEOMETRY IN MCNP

Thomas N.K. Godfrey
Group X-6
Monte Carlo, Applications aund Transport Data Group
Los Alamos Scientific Laboratory
Los Alamos, Wew Mexico, USA

St

ABSTRACT

MCNP is a general-purpose uneutron and photon Monte Carlo
code developed by group X-6 at LASL. The geometry cells in
MCNP are defined as regions of space bounded by
user—specified second-degree surfaces and certain tori.
Until recently cells had to have only convex edges. DNow the
geometry description is entirely general: cells may have
concave edges and any sort of connectivity. The new general
geometry description is a substantial improvement over the
surface list and combinatorial geometry methods and includes
the best features of both. Tt makes a big difference in the
ease of setting up problems that contain features such as
nested boxes, roouws with ells, and irregular slabs.

Another recent addition to the geometry description
capability of MCNP is that certain kiunds of surfaces of
revolution can be defined by a few poiats on the surface
rather than by the coefficients of the equation of the
surface.

MCNP has long automatically calculated the volumes of
rotationally symmetric cells. It now also calculates the ©
volumes of polyhedral cells.

e

I

I will start with an example of how geometry is described in the setup

of a problem for MCNP. I will then explain the vocabulary and syntax of
the setup and show how tracking is done in the code. Finally, I will
describe some of the other geometry features of MCNP and our plans for
future improvements.

EXAMPLE OF GEOMETRY DESCRIPTION

In Fig. 1, cell 1 is a room with thick walls. The walls, including

the columns, are collectively cell 2. There are other cells in the system
that are not shown in the figure. The origin of coordinates is inside the
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lower left column. The background grid consists of l-meter squares. The

portions of the problem input file for MCNP that describe cells 1 and 2 are
shown in Table 1.

— " 1 . 17
- + +
5
8| [a
+ t 4 -4 + }
12 S floor: surface 14’
) 1T ceiling: surface 15
+ + + + + +
")
-
8
3 —+ * t -+ + + ~> X

Fig. 1. Example of MCNP Geometry

Table 1. Input File for Geometry of Fig. 1

cells
1 6 -5 -8 7 (12:-9) 16 17 18 14 -15
2 (2 -1 -4 3 :~16:-17:-18) #1 #(13 -12 -8) #(-11 10) 14 -15

surfaces

1 PY 300

2 PX O

3 PY O

4 PX 690

5 PY 280

6 PX 30

7 PY 30

8 PX 660

9 P 2 -1 0 540
10 P 2 -1 0 600
11 PY 140

12 PY 170

13 PX 580 “
14 PZ O

15 PZ 310

16 C/Z 15 290 40

17 C/Z 675 290 40
18 C/z 15 15 42.7

‘)
Each surface in the system is assigned a number. The specification of
each surface is written on the line after the surface number. The
specification of a surface comsists of a symbol for the kind of surface
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followed by the coefficients for the surface. ¥or example, surface 1 is
specified to be a plane perpendicular to the Y—axis (PY) at ¥=300 cm.
Surface 9 is a plane satisfying the equation

E(X,Y,Z) = Ax + By + Cz - D = O
with A= 2, B= -1, C= 0, and D = 540. (1)

Every polnt in space has a positive or negative sense with respect to
each surface, unless it is actually someplace on the surface. The sense
arises from the way the surfaces are required to be specified. Each “ind
of surface is described by an equation which is built inte the code,

E(X,Y,Z) = 0. . (2)

All points (X,Y,Z) for which the expression E(X,Y,Z) is greater than zero
have a positive sense with respect to that surface. For example, the
equat ion of surface 4 is

E(X,Y¥,Z) = X~ D=0 where D = 690. (3)

So points to the right (large X) of surface 4 are positive with respect to
surface 4, and points to the left of the surface are negative.

Cell 1 is specified as consisting of the intersection of the spaces to
the right of surface 6, below surface 5, to the left of surface 8, above
surface 7, and either above surface 12 or above and to the left of surface
9. The spaces where the columns encroach are excluded, and the cell is
further limited by the floor and ceiling, surfaces 14 and 15. Cell 2 is
the space enclosed by surfaces 2, 1, 4 and 3, plus the three columns, but
excluding cell 1 and excluding the space enclosed by surfaces 13, 12, aad
8. The space below surface 11 and to the right of surface 10 is excluded
and it is limited by the floor and ceiling.

VOCABULARY AND SYNTAX *

The scheme used here is the combinatorial geometry of regions which
are defined by simple surfaces. The regions are in most cases infianite,
but in combination they define finite cells. The union operator is
represented by the colon, the intersection operator is fmplicit, and the
complement operator is represented by #. Where the complement operator is
followed immediately by a number, the number is interpreted as a cell
number. Otherwise all of the numbers are surface numbers. The reglon of
space whose points have positive sense with respect to a surface is
represented by the surface number. The region on the negative side is
represented by the negative of the surface number. Parentheses are used

n

;ﬁ
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where unecessary to change the order of execution of the operators. TUnless
dictated otherwise by parentheses, complementation is done first, then
intersection, and union is last, which is the conventional hierarchy for
operators of this %ind.

The surfaces available in MCNP include all of the surfaces of second
degree in three dimensions plus certaln tori. The general second degree
sucface is avzilable. Its symbol is GQ and its equation is

E(X,Y,2) = Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx + Gx + Hy + Jz + K =0 (4)
A user specifies Lt by an input line like this:

surface no. GQ ABCDEFGHJK
=l
Special simpler expressions wilh fewer coefficients are available for
certain simple, frequently-used {2cond degree isurfaces. These include
planes aand cylinders, as shown in Fig. 1 and Table 1, and also spheres and
cones.

The tori available are ones with elliptical cross section and with the
axlls parallel to one of the coordinate axes. They are rather handy in
‘problems with inherently toroidal shapes, such as magnetically-confined-
fusion machines.

TRACKING

When a particle comes out of the source or out of a collision, it is
necessary to find the point where its track first intersects the boundary
of the cell it is in. 1In ¥ig. 2, the collision: is at ¥, and the track
intersects the surfaces of the cell at A, B, C, and D. Intersection C is
the required intersection with the cell boundary. MCNP calculates the
intersections A, B, C and D by solving equations and accepting positive
real roots. 1Tt then examines each intersection in increasing order of
distance from the collision to €ind the cell boundary intersection. The
algorithm used is shown by example in Fig. 2. A logical expression is set
up parallel to the cell description but with the surface numbers replaced
by true or False, depending on whether the collision polnt is on the
designated side of the surface. At the collision point K, the value of the
logical expression is, of course, true. As each intersection is examinéd,
the logical values corresponding to the surface at the intersection are
flipped and the expression is evaluated. As long as the intersections are
still inside the cell, the value of the expression remains true. When it
turns false, the cell boundary intersection has been found.

el
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Logical expressions:

geometrical description of the cell: (-1 : -2 ) -3 4
at collision point K: (T : F) T T=T
across surface 2 at A: (T : T) T T=T
across surface 1 at B: (F: T) T T=T
across surface 3 at ¢: (F : T) F T=F

Fig. 2. Tracking

COMPARISON WITH OTHER GEOMETRY SéHEMES

o gy

'

The geometry scheme that MCNP once had was like the one described
above except that it had no union or complement operators. T call it the
surface list scheme since if the only operator is intersection, the
specification of a cell is just a list of its bounding surfaces. The
complement operator does not add a new capability, but it is a signiflcant v
convenience. The union operator makes it possible to describe cells with
concave edges and cells that consist of disconnected regions. Without the
union operator, the two cells in Fig. 1 would have had to be eleven cells.
A larger number of cells is not only more trouble to set up, which leads to
setup errors, but in some cases complicates the tallying and the

interpretation of the tallies.
' o

14

In comparison with the other combinatorial geometry scheme with which
I am familiar, the MCNP scheme differs mainly in the nature of the btasic
building blocks. In MCNP they are at once simpler and more general. I
imagine that the scheme that turns out to be better for setting up a
problem depends on the specific nature of the problem. The greater
generality of the MCNP surfaces is a help in some cases. Also it must
often happen that a body in combinatorial geometry is used for the sake of

only one or two of its surfaces. The other surfaces then become parasites
in tracking. “

3
T

[}
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iy OTHER FEATURES

¢
i

In some problems the ge%metry, or a)significant part of it, is
rotationally symmetric aboutVsome axis. 1In such cases the MCNP user may
specify surfaces by giving the R and Z coordinates of a few points. Two
points specify a cylinder or cone. Three points specify spheres, and
ellipsoids, hyperboloids, and paraboloids of circular cross section.

MCNP may be used to rotate and translate surfaces from one coordlnate
system to another. Sometimes it 1is convenient to specify some of the
surfaces in one coordinate system, such as by the point definition scheme
described in the preceding paragraph. Then the code can be used to i
generate the coefficients that describe the surfaces in the main coordinate
system of the problem.

Volumes of cells and areas of the portions of surfaces that bound
cells are needed for normalizing tallies. MCNP has long been able to
calculate these for cells rotationally symmetric about any axis. For other
cells the user must enter the volumes and areas by hand. The code can, of
course, be used in a separate run to calculate volumes by Monte Carlo in
cases where it is hard to do it by hand. Recently the ability to calculate
diregtly the volumes of polyhedral cells has been added to the code.

The code may also be used to plot pictures of the geometry on various
computer graphics devices. The'pictures are naturally very valuable to the
users who are trying to check out their setups.

FUTURE IMPROVEMENTS
We intend to build a lattice capability into MCNP for better
representation of geometries with repeated features.
We want to improve the plotting capability to show lines that are

beyond the view plane, perhaps with perspective, instead of just pure cross
sections of the geometry which is what we have now.
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FLUX AT A POINT IN MCNP

E. D. Cashwell and R. G. Schrandt
Group X-6
Monte Carlo, Applications and Transport Data Group
Theoretical Applications Division
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

ABSTRACT

The current state of the art of calculating flux at a
point with MCNP is discussed. Various techniques are touched
upon, but the main emphasis is on the fast improved version
of the once-more-collided flux estimator, which has been
modified to treat neutrons thermalized by the free gas
model. The method is tested on several problems of interest

and the results are preseanted.
i}

INTRODUCTION

The next-event estimator (NEE) used in a normal Monte Carlo game
for the flux at a detector embedded in a scattering medium suffers from
a (l/rz)-singularity. Consedhently, the variance of the estimator is
infinite even though the mean is finite.

In 1977, Kalli and Cashwelll proposed and evaluated three
estimation schemes for flux at a point. A new, once-more-collided flux
estimator (OMCFE) was proposed, which differed from those proposed by
Kalos in his original paper.2 The scheme has a (l/r)-singularity,
leading to finite variance and (l//ﬁ)—convergence. It 1is based on a
very simple p.d.f. of the path lengths in the sampling of the
intermediate collision points. In addition, this simple p.d.f. for the
path length was used in two schemes with bounded estimators similar to
those proposed by Steinberg and Kalos3 and by Stetnberg.4 The three
schemes were evaluated in a realistic problem using the continuous
energy Los Alamos Monte Carlo code MCNG, the forerunner of MCNP .2

i

Once-More Collided Flux Estimator (OMCFE)

In the present discussion we wish to focus on the OMCFE referred to

above. This scheme has been incorporated into MCNP and, although some
work still remains to be done, we wish to discuss this method in
conjunction with other techniques available in MCNP.
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The details of the OMCFE as it exists in MCNP are, for the most
part, gziven in Ref. (1l). Without repeating the treatment given there,
we wish to touch on the main points of the method, as well as mention
generalizations of the method to a wider class of problems. The OMCFE
is superimposed on the particle history without affecting it. At each
collision (or source polint), a nonanalog game is played whereby a next
collision point A is chosen, from which a contribution to the detector
is made. That 1s, from every real collision point of the particle
history, a once-more-collided coatribution is made to the detectort.

The two main features in determining the intermediate point A of
the once-more-collided scheme are:

1. A directional reselection procedure based on the reselection
technique of Steinberg and Kalos;3 and

2. A nonanalog p.d.f. p*(s) which was used by Kalli® in 1972.

In Fig. 1, _consider a collision at S with the resulting scattered
direction 50 la the cone described. Suppose that a new direction ] is
chosen by sampling a new angle 31 uniformly in (0,B,) and a ¢; uniformly
in (9,2n). The result is a conceuntration of scattered directions closer
to the line from S to the detector D than would normally occur. Of
course, an adjustment factor must be applied to the weight of the
particle due to the reselection. u

Once the directionlﬁl is chosen, suppose the intermediate point A
is selected along this direction from the p.d.f. p*(s), where

b
(r/2 - al)r

p*(s) =

(cf. Fig. 2). (1)

This density Eunction corresponds to @ being chosen uniformly in
(01,m/2). Use of p*(s) leads to another weight adjustment p(s)/p*(s), G
where p(s) 1is the analog p.d.f. for sampling distance to collision.

In the normal OMCFE, the point A is not a real collision point of
the particle history. When these calculations involve reselection of
direction and the distance to A using p*(S), as well as the normal
next—event estimator, they tend to be time—consuming. In order to speed
up calculations using the OMCFE:

1. Draw an imaginary sphere around the detector;

2. 1f the collision point S; is outside the sphere but the
direction after the collision is within the cone defined by S; and the
sphere, calculate the once-more-collided flux contribution by performing
the directional reselection in the cone and calculate the intermediate
point A by using p*(s);
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dcw’
s Cone
» N\P
S
Fig. 2. Geometry in the selec-
Fig. 1. Geomelry in the re- tion of the intermediate col-
selection of a direction. lision point A.

3. 1If the collision point S; is in the sphere and the direction do
after collision 1s in a 2m-cone (i.e., B, < m/2) about the line from Sy
to D, the once-more-collided point 1is calculated by reselection of
and using p*(s) to determine the intermediate polnt A; if the direction

after collision is such that Bo > T/2, no reselection is performed
but the Intermediate point A i{s chosen from p*(s); and

4. Otherwise, calculate the normal next—event contribution from
the following collision point Sj4i- N

The recipe as outlined above works very well in most problems
containing ordinary materials. However, in non—-thermal problems
contalning H, the forward scattering off H in the laboraiory system of
coordinates lead to some modification of the recipe because of the
directional reselection procedure. Furthermore, the random motion of
the target atoms comblned with the motion of the neutron in the thermal
routine using the free gas model in MCNP leads to rather extensive
modifications for the same reason. The imaginary sphere around the
detector may have to be reduced iIn size in the course of the
calculation, as a result of using the reselection procedure.

With the necessary modifications, MCNP is able to treat problems of
the types mentioned above, as illustrated by the sample calculations
below. Several considerations led to the implementation of the OMCFE
rather than one of the schemes leading to a bounded estimator in Ref.
(1). First of all, the OMCFE was judged to be the simplest to Ilnsert
into MCNP. Furthermore, the estimation of flux simultanecusly at
several points causes no problems in the OMCFE scheme. Finally, since
the OMCFE does not alter the particle histories, its use has no effect
on other tallies which may be required in a particular problem.
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DXTRAN

Let us describe briefly a subroutine, DXTRAN, which has been used
in Los Alamos for some years and is an option available in MCNP.° e
shall indicate its usefulness in our examples below. DXTRAN is of value
in sampling regions of a problem which may be insufficiently visited by
particle histories to yield adequate statistical accuracy in a given
tally. To explain how the scheme works, let us consider the
neighborhood of interest to be a spherical region surrounding a
designated point P, in space. 1In fact, we consider two spheres of
arbitrary radii about the point Py(x%,,y,,2,). We assume that the
particle having direction (u,v,w) collides at the point (x,y,z), as
shown in Fig. 3. The quantitigﬁ L, 81, 64> N> Ng» Ry, and R, are
clear from the figure. TLet us somehow choose a point Py on the outer
sphere and assume that a scattered particle (let us call it a
"pseudo-particle” for the moment) is placed there. We give this pseudo-
particle a weight equal to the weight of the incoming particle at P;
multiplied by the ratio of the p.d.f. for scattering from Py to P  with
no collision to the p.d.f. for choosing the point Py in the first place.

If we sample directions isotropically in the cone defined by Py and
the outer sphere, the number of directions falling inside the inner cone
and the number falling in the outer cone will be proportional to 1-ng
and ny-n,, respectively. Let Q be a factor which measures the weight
or importance which one assigns to scattering in the inner cone relative
to scattering in the outer cone. We now proceed by the following steps:

line of flight of . Q
1ncoming particle (u,v,w) )
0NY RO
- - ”
- “ng © cos ®
- T
/ - RI
P, (x,y,2) - '
1 X2 L PO(XO.)’O,ZO)

Fig. 3. The geometry of DXTRAN.
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1. Sample n uniformly in (ny, 1) with probability Q(1l-n;)/[Q(1-ny)
+ ny-Ny,l; and with probability (ny—ngy)/[Q(1-ny) + ni-nyl sample n
uniformly in (ng,ny);

2. Having chosen 8 from n = cos 6, we use the scattering formulas
in the code to scatter through an angle 6 (and an azimuthal angle ¢

L > L * L
determining a new direction (u',v',w'). Advance the pseudo-particle in

the direction (u',v',w') to the point Py on the surface of the outer
sphere. The new coordinates are saved;

X ~Xy -y 2z -
chosen uniformly in (0,2w)) from the initial direction §-2 °o -2 )

3. The welght attached to the pseudo-particle is the welght of the
particle at collision multiplied by

P

s
Py {1 - nl) +np - no} expd- f V,L(s) ds

"

v ) " TNp < <1
and
PS
v e Pa{Q - np) + 0y = ngl exp -f L () dsp, ng<m<np
Py
where
U = uu' + vv' + we" .
P(U) = p.d.f. for scattering through the angle cos™ly in thefi;b
system for the eveat sampled at (x,y,z). °
V = number of neutrons emitted from the event.

Since ‘a collision supplies a particle (let us now drop the term
pseudo-particle - these particles are as real as any others) to the
outer DXTRAN sphere, the particles from the collision at P; are picked
up and followed further, but they are killed if they attempt to enter
the sphere. It is apparent from the discussion above that this routine
has certain features in common with a point detector routine.

This routine is used in a couple of the problems discussed below.
In one problem, it 1s used to obtain the average flux in a small volume
as a check agalnst the result obtained from the OMCFE. In another, it
is used to help get particles in the viEinity of a detector. While
DXTRAN can be useful in many problems, it must be pointed out that the
method is time-consuming, being similar in nature to a point detector
routine. Further, attention must be paid to the problem of obtaining a

sufficient number of histories in the wvicinity of the DXTRAN sphere, not
just inside the sphere.



~

258
CALCULATIONS

The problems discussed below were chosen to demonstrate the
behavior of the OMCFE in a variety of settings, with some emphasis on
the treatment of H and, in particular, its behavior in the presence of
neutrons thermalized according to the free gas model. TIllustrations of
how DXTRAN can be useful, either as an aid to the OMCFE or as an aid in
computing the average flux in a region with a track-length estimator,
occur in two of the problems.

The geometries displayed in our problems are deliberately kept
simple, partly so that we can display the so—called "exact flux", which
is calculated very accurately (to a fraction of a percent) using a
surface crossing estimator in the spherical geometry. In the schematics
showing the geometry used, not every surface appears. Frequently,
additional surfaces were added for the purposes of splitting and Russian
roulette, or for the purpose of obtaining average flux in a region, but
few surfaces were added in any one calculation.

In each problem, the source at the center of thg sphere was chosen
to be monoenergetic and isotropic in direction. As easily anticipated,
it was found useful to use an exponential biasing to direct more
particles toward the detectors. The latter wete always placed on a
radius of the sphere - say the positive x—axis. The initial flight of a
neutron was chosen by sampling iy, the cosine of the angle the starting
direction makes with the x-axis, from a p.d.f. ™ ekU, with k a Eixed
parameter. The value of k used in each problem is listed on the
schematic For that problem.

A feature of MCNP which was used in these calculations has to do
with contributions to the detector D from collisions several free paths
Erom the detector. E.g., when collisions occur more than x free paths
from D, by playing Russian roulette one can permit, say, only one in ten
collisions on the average to contribute to D, with weight enhanced by a
factor of ten. The number x is set by the user and in these
calculations was usually set to four. This feature of the code can save
appreciable amounts of machine time in large systems.

Other information on the schematic which is of interest include the
number density of atoms in the material used; the thermal temperature of
the problem (if any); the average m.f.p. A , computed by MCNP over the
course of the problem ; the source energy and energy cut—off (if any);
the time on the CDC-7600 for a given sample of starting neutrons; and
the imaginary sphere radii used in the OMCFE and in DXTRAN.

Figs. 4-12 display the geometries and graphs of the results for
four problems. Table 1 gives a comparison of the final flux values at
the end of each run with the "exact values". The errors in the final
fluxes also appear.
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H

No. atoms/cm® = 0025 x 10%

Thermal temp. = 25 x 10° MeV
A ~ 16 cm

e

0 20 40 a8

Isotropic source at (00,0) Detectors
Energy = 40 x 1077 MeV
Exponentially biased toward _
detectors, with k = 05

Fig 4 Geometry for Thermal Hydrogen Px'oly}fljem.
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Fig. 5 Flux at Two Detectors in -
Thermal H with the OMCFE.
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CH,
No. atoms/cm?® = 0.118 x 10
Thermal temp. = 25 x 107° MeV
A ~ 043 cm

Fig. 6
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020

016

012

0.08

0.04

Isotropic source at (0,00) Detectors
Energy = 40 x 1077 MeV
Exponentially biased toward radius = 0
detectors, wath k = 09

0 10 20 30/ cm

OMC sphere
cm

Geometry for Thermal CH; Problem.
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Fig. 7 Flux at Two Detectors in

Thermal CH., with the OMCFE.
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BeO-1
No. atoms/cm® = 0.144 x 10*#
A ~ 175 cm

/0 B0 jcm

Isotropic source
Energy = 10 MeV

particles
particles

Tim

XTRAN — 57 min for

Fig. 8 Geometry for BeO—1 Problem

0018 _

oor7r }\I LL Tr =
=]

0018 { N 1 —_ i n ] A 1 N 1

0 20000 40000 60000 80000 100000 120000

Fig 9 Flux at a Detector in BeO—1

with the OMCFE. y
0018

w

oor SEEN RS
_//lT’lillH*H’T‘H

0016 1 1 " { n i " i 1 1 I "
0 L2000 4000 6000 8000 10000 12000 14000 18000
Sample Size

Fig. 10 Average Flux in the Vicinity
of a Detector in BeO—-1 Using DXTRAN.
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BeO—-2
No. atoms/cm?® = 0.144 x 10*#
A~ 175 cm

/0 /‘185 14d cm
;:SOLTOPii Sogr;ev Detector
nergy = 10 Me DXTRAN spher¢ radu
B utory = 01 MeV = 35, 70 ¢

ponentially biased toward
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Fig. 11 Geometry for BeO-2 Problem
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Fig. 12 Flux at a Detector in BeO-2
with the OMCFE and DXTRAN
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TABLE T
Comparison of Calculated Flux with Exact Flux

Flux

(n/cmz/source particle)

Exact OMCFE Ave. Flux Error

(Surface Crossing (Track Length|(l Standard

Estimator) Estimator) |Deviation)

Thermal H: Detector 3.462 x 1072 3.486 x 1072 .056 x 1072
Detector 1.230 x 10~2 1.231 x 1072 .032 x 10™2

Thermal CH2: Detector 2.086 x 10-1 2.122 x 10°1 .053 x 107!
: Detector 6.259 x 10~2 6.378 x 1072 .357 x 1072
BeO - 1: Detector 1.703 x 10™ 1.697 x 1072 .015 x 10~2
Detector 1.703 x 10~2 1.687 x 1072|022 x 10-2

Be0 - 2: Detector 7.207 x 1074 7,412 x 1074 .185 x 1074

\\\

£9¢
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In Problem 1 the fluxes at two detpctor points in thermal H are
calciplated using. the OMCFE. Problem 2)is d similar calculation in
thermal CHy. 1In Problem 3, the flux 1s%calcu1ated at a single detector
in a sphere of Bed (non—thermal) for a soérru‘of 1 MeV neutrons at the
center. The flux is first obtained u51ng.¢@e OMCFE, and this is
compared with an estimate of the averagn me in a sphereuabout the
detector of 1 em radius. The 1atte1x sttworn is obtained with the help
of DXTRAN. Problem 4 finds the flux® at~= yozqt,in a Beowsphere situated
approximately 6 Eree paths from the qourv ‘bing the OHCFE "but with the
aid of a large DXTRAN sphere which” enclo%rf;the detector. The

O
errocr-bars (one stansard devxatlon) on e "o 1nts plotted indicate the

statistical accuracy of the calculatton,»ukﬁnogress ‘as’ printed out by
A,

tr’:/

the code. The Ffinal results are, in EVeT;ﬂt.Je, within a few percentrof "
the value of the "exact flux" - iﬂjfact rthe agreement appears somewhat
better than expected in at least one case. For example, in the Be0-1
calculation the agreement between the exact flux and that optained from .
the average flux in a sphere of l-cm radius using DXTRAN is“surpriisingly
good. Perhaps that is fortuitous - experience does not,6K lead one to

expect it in the avzrage problem. The amount of computing time used>
could have been reduced in some cases without altering the results
_apprecially, but in dealing with estimates of flux at a point, it pays
"to be reasonably cautious. Quite frequently, the calculation is

sensitive to the various parameters set in a problem - the sizegof the
imaginary sphere in the OMCFE, the source bias, etc. Some care is .
essential in setting up a problem and a few short runs can be invaluable
in making the necessary decisiouns, partlcularly in the case of a

difficult problem.

h
4
XS

v s

Concluding Remarks

A very important method of estlmating Elux at a point in a problem
with axial symmetry is through the use of a ring detector. MCNP
contains a ring detector option and, although we did not use it ’'in the
present calculations, it should 'be mentioned as one of the tools

<available. '
(€]

While the OMCFE in MCNP can deal with neufrons thermalized
according to the free gas model, there remains the, task of modifying the
flux estimator to be compatible with neutrons thermalized\with the ‘
S(o,B) treatment. It is hoped that this ‘defect ‘can be rectified in the
not too distant future. '

“ . .
"o ! = ¢

5

o

“ '
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ABSTRACT

Several Monte Carlo techniques are compared in the
traasport of neutroas of different source encrgies through
two different deep-penetration problems edach with two parts.
The first problep .involves transmission through a 200-cm
concrete slab. The! second problem is a 90° bent pipe
jacketed by concréﬁé. In one case the pipe is void, and in
the other it is €illed with liquid sodium.

., Calculations are made with two different Los Alamos
Monte Carlo codes: the continuous-encrgy code MCNP and the
multigroup code MCMG. With MCNP, several techaiques and
comhinations are evaluated: analog Monte Carlo, geometty
splitting with Russian roulette, the exponential
transformation, a weight window (constrailaing the upper and
lower particle weights to be within certain 1limits), and
usiag a combination of random walk/deterministic schemes.
With MCMG, a comparison is made betweean continuous-ecnergy and
multigroup Monte Carlo and also betweea different multigroup
scattering models (including the one used by the MORSE code).

Several unexpected results were found in the comparisons
of the various calculations. For example, compared to
continuous—-energy calculatioas, multigroup calculations with
standard cross—-section weighting (for both Monte Carlo and
Sn) underpredict the neutron leakage transmitted through the
200-cm concrete slab by 1 factor of four.

i

When consideriag different techni{hes for reducing the
product of variance and computing time with regard to ease of
use, reliability, and effectiveness, we find geometric
splitting with Russian roulette to be a superior techaique.
The weight window, however, appears to be more effective than
originally anticipated.
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INTRODUCT LON

Several Monte Carlo techniques are compared in the transport of
neutrons of different source encrgies in two different deep-penetrakion
problems. The first problem involves transmission through a 200-cum-thick
concrete slah. The second problem is a 909 bent pipe jacketed by
concrete. In one case the pipe is filled with liquid sodium, and In
another case it is void.

In actual shielding applications, one might need to account for photon
production and transport, streaming paths, the exact compositions of the
shielding material including rebar, and other factors depending on the
problem. TFor example, for 14-MeV neutrons incident on 200 cm of concrete,
Oak Ridge concrete reduces the transmitted dose by a factor of ten better
than does Los Alamos coucrete. All the above considerations, however, are
beyond the scope of this paper.

Rather than addressing particular and detailed shielding problems, the
purpose of this papé; is to apply different Monte Carlo techniques to
problems of general interest to the shielding community and to compare the
merits of the techniques. The problems considered here have nountrivial
attenuations, and an attempt has been made to select representative
features of real shielding problems without incorporating arbitrary or ™\
extrancous detail. 1In addition to a comparison of methods, results such as
leakage, flux, and dose rate are presented, and we believe these results to
be reliable. Doses throughout this paper refer to biological dose and were
obtained with the ANSI! flux-to-dose conversion factors. By providing
these benchmark—type results, others may wish to compare results (rom the
same problems using different calculational tools. Interesting comparisons
could be then made in terms of accuracy and efficiency between MCNP and
other Monte Carlo codes (such as MORSE, TRIPOLI, or SAM-CE) and other
calculational techniques such as S, or hand calculations using buildup
factors., '

Basically, several techniques such as the exponential transformation
and geometrical splitting with Russian roulette will be compared using the
continuous-energy code MCNP2 with virtually no approximations, MCNP with a N
pseudo—multigroup set of cross sections, and a true multigroup version of
MCNP called MCMG.3 All calculations doune with MCMG are with 30 neutron
energy groups. MCMG has the option to represent the distribution of
scatt%ring angles for group-to-group transfers by equiprobable cosine bins
or by MORSE-type discrete scattering angles.4 The pseudo—multigroup
cross—section set in which the reaction cross sections have been collapsed
into 240 energy groups for use with MCNP is referred to as the
discrete-reaction data (DRXS). More details can be obtained about MCNP and
MCMG in another paper by Thompson and Cashwell given at this seminar.

The amount of computer memory required for cross-section data for the
ten constituents of ordinary Portland concrete (is given in Table 1 as a
function of calculational method, data set, and energy range.
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About six hours of CDC-7600 computer time were used Ffor the
calculations reported in this paper. The multigroup calculations were done
by Deutsch, Booth did the calculations with the exponential transformation
and the weight window, and the rest of the calculations were done by
Thompson.

Table 1. Neutron Cross-Section Storage
for Portland Concrete

Mode Wordsj o
MCNP, ENDF/B-V 297462

20 MeV < E € 0.00912 MeV

MCNP, ENDF/B~IV 133091
20 MeV < E < 9.00912 MeV

MCNP, DRXS (ENDF/B-IV) 42952
20 MeVv < E < 0.00912 MeV

MCMG, 30 group 23000
20 MeV < E < 1074 ev

]

MCNP, ENDF/B-v 310621
20 MeV < E < 1079 eV

MCNP, ENDF/B—IV 139316
20 MeV < E < 1075 ov

MCNP, DRXS (ENDF/B-IV) 45852
20 MeV < E < 1070 eV

MCNP, ENDF/B-V 56161
184 keV < E < 8.32 eV

All calculations for this paper were done with ordinary Portland
concrete as found in Schaeffer's book.” One calculation (the pencil-beanm
fission spectrum incident on a 100-cm-radius, 200-cm-thick councrete disk)
was also done with the 04 concrete from the ANSI standard.® The
compositions of these two concretes are listed in Table 2. The transmitted
dose through the 04 concrete is 4.7 times higher than through the ordinary
Portland councrete, while the transmitted leakage and flux are each about
5.2 times higher (these results are within 5%). All following reported
results will be with ordinary Portland concrete.
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Table 2. Councrete Compositions

04 Portland
Element Wt.% Wt.%
H N.56 1.00
0 49.81 52.9
Si 31.51 33.7
Ca 8.29 4.4
C - 0.1
Na 1.71 1.6
Mg 0.26 0.2
Al 4.57 3.4
S 0.13 -
K 1.92 1.3
i \ Fe 1.24 1.4
\;\\\ ———
N P=2.339 g/cc

p=2.30 g/cc

All continuous-energy calculations were done with ENDF/B-V cross
sections. tHowever, the Ffirst problem that will be discussed, the
pencil-beam fission spectrum incident on 100-cm-radius by 200-cm-thick
concrete, wasalso done with ENDF/B-IV cross sections. There were no
perceivable differences in any of the results. The Monte Carlo multigroup
calculations were done with ENDF-IV cross sections. 1If calculations had
been made involving heating or photon production, this conclusion of
equality between IV and V may not have been true. Again, vit is not the
purpose of this pager to compare cross sections; this has been extensively
done at Los Alamos’»8 and elsewhere by others.

With regard to the use of different Monte Carlo techniques on a
variety of applications, there@are no universally valid prescriptions. The
only truly effective rule of thumb is to always make two or three short,
experimental runs (say of half a minute each) to help discover the
characteristics of the particular problem and the effect of varying a
parameter or two in a particular variance-reduction technique. There is no
substitute for practical experience to guide the approach to a particular
problem. What works in one situation in no way guarantees success in
anopher situation and may even be harmful. A good Monte Carlo code should
proViide a variety of standard summary and diagnostic information to help
undérstand what is happening in a given problem. In doing the calculations
for this paper, we encountered some surprises to our intunition. However,
short, preliminary runs provided the unecessary ins%ght for the final runs.

W

[t

Finally, before getting down to business, comparisons between the
various technlques will be done on the basis of a relative figure of merit,
FOM = 1/(02t) where o is the standard error assoclated with a result of the
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calculation and t is the computer time required. For example, if it took
30 minutes to get a 47% error, 20.8 is the figure of merit. WNote that to
compare your FOM to the ones reported in this paper, you will also need to
factor in the speed of your computer system relative to ours. All
calculations reported by us were done on a CDC-7600 computer. All reported
errors represent one standard deviation. Note that there is also an error
associated with the figure of merit, a variance of the variance. Tn the
following calculations, we attach no significance to small differences in
the TOM such as between 62 and 55.

The factor 02t 1is directly related to the dollar cost of running'a
job. 1t is important to note that the cost depeands both on 02 and t; for
example, you may reduce o2 but only at a greater expense in t or vice
versa; the product of the two{must be reduced to be beneficial. Not
explicit in this relation for the total cost of a job is the cost in human
time to set a job up and the cost of “che preliminary experimental runs to
set the parameters. If you spend three days with an elaborate setup and
five hours of computer time refining and optimizing the parameters in the
best possible way so that your job runs in 10 minutes rather than 20, you
have lost. 1In all the following calculations, we usually made two or three
preliminary runs for about a half minute each. We make nn claim that our
setups and figures of merit are the best, but they are acceptable as being
cost-effective. Undoubtedly, someone can make improvements but probably
not without diminishing returns.

VARIANCE-REDUCTION TECHNIQUES

The successful application of the Monte Carlo method to any deep—
penetration problem generally requires the use of one or more
variance-reduction techniques. 1In general, one can expect that some
techniques or combinations of techniques will be more effective than others
in terms of range of applicability, ease of use, reliability, and
performance. We measure performance in terms of the figure of merit
1/(o2t). By reliability, we refer to the possibility of injudicious
selection of the parameters of a technique resulting in erroneous answers
because an important part of phase space may not have been sampled
adequately, if at all. Finally, ease of use refers to the degree of
difficulty in determining the parameters of a technique jand to the
censitivity of performance to precise selectlon of the Optlmal parameters.

Based on many years of experience and observations of users at Los
Alamos, the most frequently-used techniques at Los Alamos are geometry
splitting with Russian roulette, directional source biasing, survival
biasing, and a weight—~cutoff game incorporating Russian roulette. These
techniques are frequently used in combination. Tt is assumed that if
nenrgy and/or time cutoffs are appropriate for a problem, then they have
been used also. The expenential transformation is infrequently used, and”
in fact, we have discouraged its use. We note all too frequently that the ~
less experience a user has, thg*more any of the variance reduction

o
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techniques are abused by using the techniques inappropriately, or with
several techniques in conjunctionleading to conflicts, or most commounly by
biasing too heavily. Any of these problems can result in a wroang answer.
It cannot be overemphasized that any variance-reduction technique must be
used with caution and understanding. EE

In the following calculations, several differeunt techniqués are tried
and compared. TFor all problems, we compare geometry splitting with Russian
roulette, the expoanential transformation, a weight window, and DXTRAN. The
effect of running the problems in a purely analog fashlon will also be
illustrated. O0Other techniques will also be tried but not for all cases. A
short description will be given for the main techniques used in these
calculations.

A more detailed description can be found in Ref. 2.

Ocometry Splitting with Russian Roulette

MCNP does not split particle tracks upon collision but a4s a function
of spatial location. The geometry is subdivided into several cells, and
each cell is assigned an importance. When a track of weight W passes from
a cell of importance I to a cell of higher importance 1', the track is
split into I'/I tracks, each of weight WI/I'. (Non-integer splitting is
allowed, but we will consider only integral importance ratios for
simplicity.) If a track passes from a cell of importance I' to a cell of
lower importance 1, Russian roulette is played; a track surv1ves with
frequency I/I1' and is assigned a new weight of WI'/I if it survives.
Generally, the source cell has importance of unity, and the importances
increase in the direction of the tally. The importances are chosrn to keep
the track population roughly constant between the source aund the tally.

Weight Cutoff with Russian Roulette

i

The weight cutoff is made relative to the ratio of the importance of
-the source cell to the importance of the cell where weight-cutoff is about
to take place. This keeps the geometry-splitting and weight—cutoff games -
from interfering. 1If a track's weight falls below quantity WC2 (usually_,
from survival biasing), Russian roulette is played. A track survives with
frequency WC2/WCl and is assigned the welght WCl if it survives. WC1l and
WC2 are generally chosen to be O‘g and 0.25, respectively, for a starting
weight of unity butgﬁfe problem~dependent. =

N

4

Exponential Transformation u

© This” technique allows a track to move in a preferred direction by
artificially reducing the macroscopic total cross section in the preferred
direction and increasing the cross section in the opposite direction
according to

-
v

' Zex = Zt:(l - p]J) ’ (1)

Rl
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where
L,y = transformed total cross section,

L, = true total cross section,
G p = parameter used to vary degree,
of biasing, 0 < p < 1, and
u = cosine of angle betwcen preferred

direction and track's velocity.

Upon collision, the track weight is multiplied by
oo e—pZtus
e T l-opu

where s is the distance to collision. WNote this can lead to a dispersioun
of weight, and.that it is possible for some weights to become very large if
the tracks are traveling opposite to the preferred direction.

" We have found the exponential transformation by itself to be of
limited use. The dispersion of weights that it creates can result in an
unreliable sample mean while the sample variance may etroneously indicate.
an acceptable precision. TFurthermore, it is not clear how to choose the
biasing pﬁrameter P, but we note that it is generally chosen too high -
especially by novice users. For the calculations of this paper, the
parameter was selected by observing the sample variance as a function of
the parameter on a few short ruuns.

0 When combined with a weight window to place a bound on the upper and
lower weights of tracks, we have found that the exponential transformation
can be useful. However, choosing parameters for the welight window can
further complicate the problem setup, especially For the inexperienced
user.

B Weight Window N

A weight window consists of an upper and a lower bound €or a, a
particle's weight. If the track weight iIs less than the lower weight

bound, Russian roulette is played and the weight is increased to lie inside
the window or the track is killed. If the track weight is above the upper
bound then the track is split so that the resulting tracks have thelr
welghts within the window. The bounds of the window can be set as a
function of energy and spatial position.

This we1ght—w1ndow capability is presently not a permanent Feature of
MCNP. Tt is available as a modification and is uader evaluation by Group
X-6. Among other things, we are trying to learn how to use it. It
appears that this technique has merit not only when used with the
exponential transformation but in conjunction with other techniques. The
bane of any variance-~reduction technique is creating a dispersion of
weights and especially creating a few tracks with very large weights. The
welght window appears to reduce thesg problems effectively. g
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DXTRAN

1t
In a geometry region which is difficult tc sample adequately, the
DXTRAN scheme of MCNP can be of value. At each collision, contributions of
scattered particles are deterministically transported to a spherical
neighborhood of interest. These contributions, or pseudo-particles, are
placed on a sphere surrounding the neighborhood of interest and then
transported in the ordinary random-walk manner. The parent particle giving
rise to the pseudo-particle at a collision continues its random walk, but
it is killed if it tries to enter the neighborhood during its random walk.
8
There are actually two DXTRAN spheres. The pseudo-particles ;re
placed on an outer sphere. An inner sphere concentric to the outer one is
used to bias the placement of pseudo—-particles within the cone defined by .,
the inner sphere and the point of collision.

DXTRAN has certain features in common with a point detector. TIt also
has the disadvantages of a detector: it can significantly increase
computation time, aund it is susceptible to large—weighted countributions.
For Lhese and other reasons, success is not guaranteed when using DXTRAN,
and it (like a detector) should be used selectively and carefully.

A useful feature of MCNP is the DD input card. This provides
dlawnostxcs'perLdlnlng to NXTRAN or point detectors such as the
accumulative fraction of tle numbher of contributions, the f{ractional
contribution, and the accu&ulatlée fraction of the total 96%tr1but10n - all
as a function of mean free path aWway from the DXTRAN sphefé or detector.
Having this information from a short run, Russian roulette,can be played on
contributions a selected number of mean free paths away. This can save
substantial computer time.

‘
3

Angle Biasing

Angle biasing for the problems of this paper was not applied for- two
reasons: (1) our experience with angle—biasing techniques is both limited
and discouraging, and (2) angle biasing 1s not a standard MCNP option. We
have experience with sampling two different (fictitious) exit densities,

namely

p1(R) = ;—%EEX = probability of sampling a unit solid (3)
angle about u,v,w |b] <1
and bebV 1 . 2
pa(Q) = 5 b 27 - probability of sampling a unit solid  (4)
e - e angle about u,v,w b > 0.

f

N
Both o% these schemes seem to introduce a large variation In particle
weights which is reflected;in a poor variance of the sample mean. Use of
weight window improves the variance, but only to the point where the
variance matches that of &pe weight window alone.

it

=

e}
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It is entirely possible that other_ aégle-blaSLng schemes may perform
much better. In particular, angle b¢dsing schemes in discrete-angle Monte
Carlo codes (such as TRIPOLI) can/be easily fabricated to avoid large
variations in particle weights. \ths does not appear to be the case in
continuous—angle Monte Carlo codes (such as MCNP).

CONCRETE-SLAB PROBLEMS

A major advantage of Monte Carlo is the ability to calculate with no '
compromise in geometrical reality. Since the purpose of this paper is to
illustrate some variance-reduction techniques, this advantage plays no role
in this particular problem. S, is more appropriate for this problem ~ but
at the possible expense of getting the wrong answer because of the
multigroup approximation (as will be seen later in this paper).

This problem consists of two parts. Both parts consist of a 200-cm-
long homogeneous cylinder of ordinary Portland concrete with a pencil-beam
source of fission-spectrum neutrons incident along the axis. 1In one case
the radius of the cylinder is 100 cm, and in the other the radius of the
cylinder is 20 cm. The object is to tally the net neutron leakage (or
current) across the face opposite the source for comparison of all the
methods. However, the transmitted flux and biclogical dose were also
calculated by MCNP. The geometry of both cases is illustrated in Fig. 1.

l‘—ZOOcm———’I

j—————
100cm . l 200¢cM——e
20cm{ —
B [— o,
{
=
——

o
Figure 1. Councrete Slab Problems. “
0
The source energy spectrum is defined according to the Maxwellian
representation of the fission spectrum:

0

2 JE -E/T

f(E) = —N\r e , (5)
/ET\JT o "

where we have chosen the parameter T = 1.30 MeV that produces an average
source energy of 1.95 MeV. ~A prescription that was used to sample from

; ., £7
)
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{

this spectrum for MCNP is in the Appendix. For the multigroup calculations
with MCMG, the spectrum was analytically integrated to determine the group

sources:
E
2 E E -E /T
£(E) dE =i[\) LT* e iﬂfl ‘,—T& e B ]
V1
By
E 3
- ) AR

The group sources are listed in the Appendix.

(6)

A short adjoint run with MCMG plus an S, calculation indicated that
source particles below 3.68 MeV (this corresponds to one of the multigroup
boundaries) made few tally contributions. More precisely, about 107 of the
transmitted leakage results from source neutrons below 3.68 MeV.

Therefore, the source spectrum was sampled for energies only above 3.68
MeV. These high—-energy-source particles account for 12.929% of the total
source particles in the unaltered spectrum. Therefore, all results were
multiplied by 0.12929 to normalize to one total source neutron. By blasing
the source in this manner, the figure of merit for MCNP calculations
increased by a factor of two.

For the 3.68-MeV truncated fission spectrum, 200 cm of concrete is
about 25 mean free paths thick; for the full, unaltered spectrum, the 200-
cm—slab is about 28 mean free paths. 1In the first 10 cm, the average mean
free path is about 6 cm. After only a few more centimeters intoc the
concrete though the average mean free path becomes about 4.5 cm and
remains very close to this throughout the 200-cm thickness. The energy
cutoff for the calculations was set at (0.00912 MeV (again this corresponds
to one of the group boundaries) because only a couple of percent of the
transmitted neutron dose comes from transmitted neutrons with an energy
less than this. Using this cutoff increases the figure of merit by a
factor of about three. There are 18 groups in the multigroup data above
0.00912 MeV. Furthermore, this energy cutoff requires a smaller
computer—-memory requlrement.

p =R

To illustrate the effect of the above energy cutoffs and photon
production and that the simplification for this academic paper may not be
valid for actual shielding problems, MCNP was used for a l0-minute
calculation with none of the above cutoffs and also accounted for photon
production for a 100-cm radius by only a 100-cm-thick concrete slab. The
figure of merit for the total neutron dose is 8.6 using splitting, and the
totdl neutron dose is 8.1 x 10713 + 8.5% mrem/source neutron. The dose
from transmitted neutrons above 0.0l MeV is 7.5 x 10~ 13,and the total
photon dose is 1.7 x 10713 + 8.5% mrem per source neutron.About 49% of the
photons were started in the energy range 2-5 MeV, 2.7 MeV of photon energy
were started on the average per neutron, and the ayerage weight of photons
started was 0.87 per neutron- Another run was made but with the neutron
energy cutoff at 0.0l MevV. The flgure of merit increased to about 56, the
total neutron dose became 7.2 x 10713 * 6%, and the photon dose dropped to
2.6 x 10”15 + 18%. Now about 14% of the photons start between 2 and 5 MeV,

=3

<
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0.24 MeV of photon energy were started per neutron, and the average weight
of photons started was 0.l4 per neutron. For l4-MeV neutrons incident on
100 cm of concrete and using no cutoffs or approximations, about 8% of the
total dose comes from photons.

100-cm-Radius Problem

With the pencil-beam source, the axially penetrating leakage is
8.2 x 1079 * 4.4%, the transverse leakage is 1.9 x 1073, and the
backscatter leakage is about 35%. Because of the negligible transverse
leakage, the problem geometry is equivalent to a homogeneous, semi-infinite
slab. About 9.5% of the neutron weight is lost to capture.

In a purely analog case (no splitting, survival biasing, or anything
else), except for source energies greater than 3.68 MeV, 21484 source
neutrons were started in two minutes of computer time. At 50 cm there were
5409 (25%Z) neutrons, 83 weré at 100 cm, and none were at 150 cm. This is a
very clear example of why variance-reduction techniques are necessary.

Adding survival biasing and weight cutoff with WCl = 0.5 and
WC2 = 0.25 to the above example; a slight improvement is noticed in the
same two minutes of time: 19336 source particles were reduced to 5477

(28%) at 50 cm, to 102 at 100 cm, and to none at 150 cm. Only three tracks’

were lost to the Russian roulette part of the weight cutoff ganme. W1Ph WCl
and WC2 increased to 1.0 and 0.5 respectively, 19432 source particles were
reduced to 5461 (28%) at 50 cm, to 106 at 100 cm, and to none at 180 cm.
Only 121 tracks were lost to Russian roulette. TIn this problem survival
biasing and weight cutoff help a little but not a significant amount. It
is a generally accepted practice, “however, to use these two techniques
routinely (naturally there are exceptions).

To add geometry splitting with Russian roulette, the concrete cylinder
was subdivided axially into cells 10-cm—-thick by adding plane splitting
surfaces; 10 cm was chosen because it is a convenient number and because it
allows a couple of mean free paths between splitting surfaces (based on an
average of 4.5 cm for a mean free path averaged over collisions). Cell
thicknesses of 15 cm worked equally well. [{The problem was run for half a
minute with the importances of all cells set to unity. Part of the
standard summary output of MCNP is the track population in each cell, and
wherever the population dropped by a Eactor of two, the importance of that
cell was doubled relative to the adjacent cell in the direction of the
source. In some places the two-for-one splitting was not enough, so
four-for—one splitting was occasionally used. If an incremental cell
thickness less than 10 cm had been chosen, two—for-one splitting could have
been used throughout. Conversely, greater than 10-cm increments would have
led to a more consistent use of four-for-one splitting. A goal is to try
to keep the population roughly coustant, say within 50%.

ror this particular problem, there appears to be little difference in
comput:r efficiency between two—~for—one and four-for-one splitting. Other
ratios can also be used as necessary. Two-for-one splitting makes it

BAY
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easier to level the population, but it requires the user to add more cells
and surfaces to the problem setup. Four-for—one splitting requires less
input from the user and less arithmetic for the computer, but it is harder
to level out the population. Going beyond four—-for-one splitting
introduces greater risk because that implies a fairly large reduction in
the population -before it is built back up. The danger is that once a
sample population detecriorates to a small size, source information
associated with the sample can be lost. Once information is lost, it can
never be regained. For example, in the analog problem mentioned earlier,
at 170 cm we could have introduced the first splitting surface and split
21484-for—one. The track population would be back to its original size,.
but then the true energy spectrum would be represented by one discrete
energy. The old saying about squeezing blood out of a turnip is very
appropriate here.

Three iterations of half a minute each were used to set the
importances. The ratio of importances between cells, the actual importance
assigned to a cell, and the track population in each cell are shown in
Tabtle 3 for 91440 source neutrons. In this final run, weight cutoff was
pfﬁyed with WCl1 = 0.5 and WC2 = 0.25 (both times the starting weight of rhe
neutrons), resulting in 4233 tracks lost to Russian roulette. 1In the
splitting game, 1118990 tracks were created, but 460729 were lost to
Russian roulette. Note that in cell 18 the population is too high.

Table 3. Splitting in the 100-ecm—-Radius by
ZQO—cm—Thick Concrete Problem

Importance Track
Cell Ratio Lmportance Population
(Source) 1 1 1 94215 74

2 1 1 69498

3 2 2 86168

4 2 4 86972

5 2 8 82441

6 “ 2 16 78332

7 4 64 140593

8 2 128 118175

9 2 256 101254

10 2 512 86628

11 2 1024 75750
12 4 4096 127292 )

13 2 8192 102290

14 2 16384 8915

15 4 65536 151848

16 2 131072 123118

17 2 262144 107322

18 4 1048576 180848
19 2 2097152 142741 ‘

(Tally) 20« 2 4194304 109876
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For, this problem the transmitted leakage is 8.21 x 10"9,t 4.47% for
neutron leakage, the transmitted dose is 1.22 x 10717 + 4.5% mrem per
source neutron, the transmitted flux is 4.10 x 10713 & 4.3% neutrons/cmz,
the leakage escaping through the curved cylindrical surface is 1.91 x 107
t 167% neutrouns, the backscattered leakage is 4.51 x 1072 £ 0.4%, and 6.7 is
the figure of merit.

Other splitting games can also be played. The most obvious is a
combination of ﬁxialwand radial splitting. With radial splitting, one
could set up a cone as a splitting surface with its vertex at the source
‘point and then intersecting the edge of the exit face. Secondly, rather
than a cone, a concentric cylinder could be used with its radius hall that
of the outer cylinder. Tt turns out that neither of these approaches -
results in much (if any) gain'in this problem. What small amount is gained™
in reducing a2 is lost by an increase in t because of the added arithmetic
for the computer. " t

There is a frequently-heard rule of thumb for geomeltry splitting that
says split two-for-one every mean free path, but you do not hear if this
means a mean f{ree path based on source energy or average ecnergy of the Q
particles in the geometry. In this problem, a mean free path based on a
source energy is about 8 cm and about 4.5 cm averaged over,collisions.
Splitting two—for-one every 4.5 cm in only a 100-cm-thick slab of concrete,
1 soutce neutron had been split into a population of 440 at 50 cm and 12740
at 100 cm and required 0.96 minutes of computer time. Splitting two-for-
one every 3 cm in a similar 100-cm-thick slab of concrete was better; 335
source neutrons required 0.52 minutes of computer time and were split into
a population of 1597 at 50 cm and 1904 at 75 cm. Obviously, this rule of
thumb qpplied by either method leads to oversplitting.

Using the weight window with only survival biasing and nothing else, -
the transmitted leakage is 8.26 x 1077 & 9.3% with 6.3 for a figure of
merit. The lower weight bound in the source cell was chosen to be 50%
lower than the particles' source weight. The lower weight bound for the
rest of the cells was chosen to be a factor o less than the”previous cell's
lower weight bound where O for cell i was chosen as

(starting weight)al = rransmission obtained (7)
by previous short run. !

The uﬁger welght, bound was chosen to be five times the lower weight bound.

" Using the exponential transform wiﬁh survival biasing, no weight-
cutoff game, and a transform-biasing pArameter of 0.7, only a very short
run was required to see a poor performance. The figure of merit was 1.5,
and the transmitted leakage was 4.86 x 1078 + 397 which is too high by a
factor of six - in other words, completely unreliable.

Adding to the exponential transformation a weight—cutoff game (but not

the weight window) that is dependent on cell importances had the result
that after 4.6 minu%ps of computer time the transmitted leakage was

3
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5.22 x 1079 + 19.2% with a figure of merit of 4.2; after 10 minutes,

8.22 x 10~2 * 26.7%; and after 17.6 minutes the leakage was 8.06 x 10™9

+ 18.4 with 1.7 as the figure of merit. This example demonstrates the
value in watching the behavior of a sample mean and its variance during the
progress of a calculation. 1If either is unstable, the sample mean is
unreliable. By not watching this behavior, a result (such as the leakage
of 5.22 x 10'9) may be incorrectly accepted as satisfactory based on an
apparently low variance.

Applying the welght window and exponeuntial transformation together
produced the best of all results with a figure of merit of 22.6 aund a
transmitted leakage of 8.49 x 10™2 % 3.0%.

The multigroup code MCMG using 30 groups and geometry'splitting
determined in the same manner as for MCNP was used on this problem. The
figure of merit was 11.9, but the transmitted leakage was 2.17 x 102 %
5.6%Z which is low by a factor of four. Both the continuous-scattering
angle and MORSE discrete—~scattering angle treatments were used. No
difference between the two was observed. For optically thin transmissions,
however, the continuous treatment is superior.

MCNP itself can be used in a pseudo-multigroup fashion by usingigpr
discrete reaction cross-section set DRXS. These cross sections are
equivalent to the regular continuous-energy cross sections used by MCNP
except that the reaction cross sections have been collapsed into 240
energy groups. Using MCNP and these discrete cross sections along with
geometry splitting on this problem, the transmitted leakage is 5.08 x 1079
+ 6.8% with 8.0 for the figure of merit.

All of these results are summarized in Table 4.

To our surprise, the performance of the weight window may be
relatively insensitive to the size of the window. This problem was tried
with the ratio of the upper to lower bound set at 400 to compare with the
ratio of 5 used throughout this paper. The factor of 400 is consistent
with a similar scheme used in MORSE. The results were virtually unchanged;
the figure of merit was 19.5 and the leakage was 7.89 x 10™9 + 10.6%. This
implies that it 1s a very few tracks with very large weights that cause
tallying problems. The problems caused by a weight dispersion have long
been recognized, but the true nature of the dispersion may not have been
fully appreciated.

The dramatic improvement in the performance of the exponential
transform when it is used in conjunction with splitting at an upper weight
limit seems to 1indicate that a substantial fraction of the tally variance
is assoclated with very high-weight particles. Particles can accumulate a
high welght by traveling agailnst the transform vector for part of their
trajectory. With splitting at the upper weight limit, the distribution of
tally scores per source particle for each high-weight particle is shifted
from a binary distribution of scoring or not scoring in one lump to a
superposition of binary distributionsé with smaller components. The net
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result is to reduce the variance while leaving the tally mean unchanged.
The computational time involved 1s relatively small because the high-weight
particles are relatively infrequent, and so a net gain is achieved in the
figure of wmerit.

The biggest surprise we had in doing the calculations for this paper
was the disagreement between the continuous—energy and multigroup results.
We see from Table 4 that the MCMG multigroup results underpredict the
continuous-energy results by a Factor of almost 4. The group cross
sections consist of 30 neutron groups from the ENDF/B-IV evaluation with a
weighting spectrum which is a fissiou spectrum matching a 1/E spectrum for
the energy range of interest.? In Table 5 we compare the partial leakage
J* in the direction of penetration at 15-cm intervals through the concrete
for continddus-energy and multigroup-collision treatments. It can be seen
that the discrepancy appears to grow systematically. The column labeled
"DRXS" is a calculation with the 240-group discrete-reaction cross sections
using MCNP. The results of the DRXS calculations fall in between the
continuous—energy and the 30-group MCMG results. One may conclude that an
energy self-shielding effect introduces a discrepancy into the multigroup
results and that the magnitude of the discrepancy may be quite significant
for deep-penetration applications using standard cross—-section sets.
Although this effect has been reported in transport through pure materials
(most notably in thick iron shields), it might not be expected in mixtures
such as concrete with significant masking of cross—-section windows and the
presence of hydrogen to lessen the importance of windows.

Table 4. Summary of Results for 100-cm-Radius
by 200-cm-Thick Concrete Cylinder

Transmitted " Computer

Method Leakage 7% Error FOM Minutes
MCNP, splitting 8.21 x 1079 4.4 6.7 77
MCNP, weight 8.26 x 1072 9.3 6.3 18.4
window

1

MCNP, exponential 4.86 x 10~8 39 1.5 A
transformation
MCNP, exponential 8.06 x 10~2 18 1.7 17.6
transformation and
weight cutoff
MCNP, exponential 8.49 x 10™9 3.0 22.6 49.2
transformation and
weight window
MCMG, splitting 2.17 x 1079 5.6 11.9 26.8
MCNP, discrete 5.08 x 1079 6.8 8.0 27.0

reactions, splitting

It
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1

Given the discrepancy between continuous-energy and multigroup Monte
Carlo, an obvious question becomes what is the result of an 5,
calculation. Therefore, we made an S, calculation with the one~dimensional
S, code ONETRAN. 10  The geometry was assumed to be a 200-cm Portland
concrete slab of infinite lateral extent. An infinite extent is a very
good approximation since the Monte Carlo calculations indicated the
transverse leakage to be about 2 x 1073, Using the truncated fission
spectrum (i.e., source energies greater than 3.68 MeV) and the same 30
group ENDF/B-1IV cross-section set as used with MCMG, good convergence was
achieved with ONETRAN u51n5 Ar of 1.66 cm and an S-8 Lobatto quadrature;
the leakage was 2.45 x 107 Using the full fission spectrum source, the
leakage was 2.71 x 1079. Good convergence with a Gauss quadrature was not
achieved until an S5-16 or greater quadrature was used.” There are a couple
of conclusions: (1) S, agrees with the MCMG result of 2.17 x 1072 £ 5.6%
within two standard deviations, and (2) S, requires a Lobatto or high-order
Gauss guadrature for good convergeuce in deep-penetration problems.

To verify that the transverse leakage was truly negligible aund that
the one-dimensional S, and MCMG results were comparable, an MCMG
calculation was performed with infinite radial exteant €for the 200-cm-long
concrete cylinder. The results were essentially identical to those with
the 100-cm radius.

To further complete the picture (but not belabor the point), ONETRAN
was also used with a 30-group ENDF/B-V multigroup cross-section set. The
transmitted leakage was virtually identical with the ENDF/B-IV results from
ONETRAN and MCMG. Finally, MCNP calculatlons were made with modified
240~-group discrete-reaction cross”sections based on ENDF/B-V. The ‘cross
sections for both silicon and oxygen were modified to accurately represent
the large window in the total cross section for each nuclide, at 0.145 MeV
for silicon and 2.35 MeV for oxygen. The result was theusame as with the
regular discrete cross sections in which the windows arl averaged out.

This indicates the difference between continuous energy and multigroup
treatments is due to a self-shielding effect.

Another potential method to improve the results at the exit surface is
to surround the surface with a DXTRAN sphere. DXTRAN however, is
generally only useful in situations where it is difficult to get tracks by
a random walk to a particular place in the geometry in order to make a
tally. This 1s not the case here since by geometric splitting an abundance
of tracks gets to the surface tallies. 1In this case DXTRAN makes the
problem more inefficient by adding additional arithmetic complexity for the
computer to handle. However, if one is interested in calculating the flux
at a point in the center 'of the exit surface, relatively few tracks are in

{t

the vicinity of any given point on the surface. A surface tally therefores

is useless, and a point detector is requirad. Placing a DXTRAN sphere
around a detector can improve the efficiency of a detector calculation
significantly. .



283

/‘

Table 5. Comparison of Partial Leakage

Vi
as a Function of Method and Thickness .

MCNP MCNP
Surface JtMene JTDRXS JHMCMG DRXS MCMG
15 em  7.44E-2 7.38E-2 7.35E-2 1.01 1.01
(.68%) (.62%) (- 46%)
30 2.66E-2 2.58E-2 2.48E-2 1.03 1.07
(6.6%) (1.0%) (.74%)
45 8.07E-3 7.65E-3 7.00E-3 1.05 1.15
(1.5%) (1.4%) (1.0%)
60 2.26E-3 2.14E-3 1.79E-3 1.06 1.26 ' .
(1.9%) (1.8%) ©(1.3%) L "
75 6 .14E~4 5.69E-4 4.40E-4 7 1.08 1.40
(2.4%) (2.2%) (1.7%) 7
90 1.61E~4 1.48E-4 1.06E-4 1.09 1.52
(2.9%) (2.7%) (2.12)
- e
105 4 .25E~5 3.81E-5 2.55E-5  1.12 1.67
(3.5%) 3.2%) (2.5%)
120 1.14E~5 9.62E-6 5.89E-6 1.19 1.94
(4.1%) (3.7%) . (3.0%) N
135 3.09E-6 2.41E~6 1.40E-6 1.28 2.21 -
(4.7%) C4.4%) (3.4%) -
150 7.99E-7 _ 6.18E~7 ‘ 3.31E~7 1.29 2.41
(5.3%) (5.0% (3.9%) -
165 2.138-7  1.59E~7 7.776-8 1.34 .74 -
: (6.0%) (5.7%2) (4.4%)
180 5.63E-8 " 3.91E-8 1.81E-8 1.44 3.11
(6.8%) 1 (6.1%) (4.9%) 3
&;
, \ P
. 200 8.20E-9 5.08E-9 2.17E-9 1.61  3.78
(7.9%) (6.8%) (5.6%)
o 20-cm-Radius Problem

This problem 1s identical to the 100-cm-radius problem in ever§ aspect
except fdp the radius. The smaller radius now makes the transverse and
+ backscattered leakages almost identical, 3.84 x 10~2 + 0.4%. This probiem
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runs ouly slightly less efficiently than the 100-cm~radius problem. The
reason i1s that although it is harder to get particles through the cylinder,
less time 1is spent on particles wandering around radially. They are killed
by escaping:

This problem was done in only two modes: splitting with MCNP and MCNP
with a combination of the weight window and exponential transformation.
The exponential transformation by itself on this problem performs very
poorly. The importances for splitting were set using the same technique as
before, and another (but different) combination of two-for-one and
four-for-one splitting resulted. The importance in the last cell was
21233664 as compared to 4194304 for the 100-cm-radius problem. For the
case of splitting, the transmitted leakage is 7.50 x 10"10\t 5% with 6.0 as
a figure of merit. The weight window and transformation (‘biasing parameter
is again 0.7) result is 8.17 x 10710 £ 4.9% with 21.5 as a figure of merit.

i

From the calculation with splitting, the transmitted neutron dose is
2.74 x 10717 + 7.0% mrem/per neutron, and the transmitted flux is
8.06 x 10713 + 6.9% neutron/cm?.

DXTRAN is also inappropriate for this case as it was for the 100—§m-
radius case; the figure of merit is reduced by its use.

BENT-PIPE PROBLEM

1

'

" This problem is also divided into two parts, both of which are much
less demanding than the previous 200-cm-concrete problem. 1In both cases a
20-cm-radius pipe that 1is 240-cm long along the axis has 37900 bend 1in the
center and is jacketed concentrically by a 20-ecm—thick regidh‘of ordinary
Portland concrete. In the first case, the pipe is filled with liquid
sodium, and in the second case the pipe is void. The geometry is shown in
Figure 2. With the sodium, the attenuation from one end to the other is
about 10% and with the void about 103.
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Figure 2. Bent Pipe Jacketed by Concrete,
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The source for both cases is the same. It’is a1 area source incident
on one end of the pipe (but not including the jacket) with the energy and
angular distribution given by

const, (®)
S(E,Y) = —F (1/E spectrum)
= 0 otherwise , ﬂ;;

where 1 = 41 _is the cosine of the coaxial direction at the entrance plane.
The procedufa used to sample this distribution’is given‘'in the Appendix at
the end of this paper. Constraints on the source are 8.32 eV < E < 184 kev
and 0.8 < u < 1. e
1y

The tally used to compare the varlous methods®is the leakage
transmitted out the opposite end of the pipe (pipe only and not including
the jacket) within the direction 0.8 < ¥ < 1.0 where ! = +1 is the cosine
of the coaxial directlon at the exit plane. Results of other tallies will

be reperted, however. The energy cutoff dn all cases is 8.32 eV.
1}

v

[~

¢ Sodium—-Pipe Problem

The sodium density used is 0.705 g/C}n3 which is appropriate for sodium
temperatures of approuximately 1000°C. This problem is representative of
design features in fast breeder coolant loops and possibly in fusion
reactor coolant loo»ns. '

[

e

With only survival-biasing and a weight~cutoff game, in two minutes of
computer time, no tallies were made. In fact, out of 33878 source
neutrons, only nine had made it around the 90° bend. No particle got
within 40 cm of the pipe exit. .

In this problem, the mean free path averaged over collisions for

sodium is about 16 cm and about 2 cm in the concrete. Therefore, plane
splitting surfaces were placed across the axis of the pipe at 20-cm
intervals. A 45° plane was also added where the two legs of the pipe
intersect. Radial splitting was used in this problem by adding two
concentric cylinders within the concrete jacket to be used as splitting
surfaces. The first cylindrical splitting surface was placed 2 cm Iaside
the concrete jacket, and the second was placed outward in the radial
direction another 2 cm.

i+ To ser the importances, two runs of half a minute each were made to
level the track population in the pipe between the source plane and the
tally plane. Relative to the corresponding axial importance in the
plpe, the radial importances were decreased by a factor of two for each of
the first two sleeves and then a factor of four for the outer sleeve. To
show that this elaborate radial setup 1is really not necessary, another run
was made with only one radial-splitting surface in the middle of the’
concrete jacket. The importances of the inner radial cells were reduced b}{7

2
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a factor of two and by another factor of four for the cuter radial cells.
The figure of merit was 62 with the two, concentric splitting surfaces and
58 with only one in the ceater of the jacket. The two surfaces‘are more
effective in killing outward-bound tracks and maximizing backscattered
tracks, but the extra cells and surfaces required more computation time.
/ [

In applying the weight window to the sodlum pipe, the lower weight
bound was derived from the set of importances used in the run with
splitting. The lower bound was taken to be 3/I;, where Ij is the
importance for cell i. The factcr three was chosen so that the source 4
particles would start within the weight window. The upper weight bound was
takenuto be five times the lower weight bound based on previous with the
welght window, it was used with the blasing parameter p set to 0.4 in one
case and to 0.7 in another. 0

A multigroup run was made with MCMG using geometry splitting with
different axial-splitting planes and with one concentric splitting surface
midway between the inner and ocuter surface of the concrete jacket;

L

1
Results of the above cases are summarized in Table 6.

Table 6. Results of Bent Sodium Pibe

Transmitted
‘ " Leakage Computer
Method (.8 <u <1) % Error FOM Minutes
MCNP, splitting 5.83 x 1077 4.1 62 9.6
MCNP, .weight 6.38 x 107/ 6.4 54 4.6
window 4
¢ " ‘Jﬁ'\.:‘}
MCNP, weight window, 5.70 x 10~/ 5.7 67 46
expo. trans.(.4) ) G
MCNP weight window, 5.93 x 1077 6.3 55 4.6
expo. trans.(.7)
f lg;’;" P
MCMG, splitting 5.19 x 1077 5.0 46 8.7
e
[ ";’ (4]
MCNP, splitting, 5.92 x 1077 9.9 v 22 4.6

DXTRAN

t ¢
™ g

DXTRAN in conjunction with geometry splitting was tried for a couple *
of runs with MCNP. The DXTRAN sphere was placed around the sodium at the
exit tally plane. A game wa§ played with DXTRAN sSuch that all
contributions to the DXTRAN sphere were accepted within four mean free
paths, and a Russian roulette game was played with contributiono beyond
four (a short run indicated about 907 of the contributions were being made
withir four mean free paths). In one case DXTRAN was tried with the setup
with axial-splitting surfaces every 20 cm and with two concentric-splittilng

o v
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gt

(4]
surfaces in the concrete jacket; the figure of merit dropped from 62 to
22. Secondly, DXTRAN was tried with a very simple setup using one
axial-splitting surface (four-for-one) at the 45° intersection of the
cylinders and a second splitting surface (one-for—twa) at the
sodium-concrete interface; 0.7 was the figure of merit.

“
'

Results other than the transmitted leakage may be of interest. Using
MCNP with geometry splitting, 56.5% of the starting weight was lost to
energy cutoff, 0.8%7 to escape through the curved jacket, 0.9% to capture,
and 41.27 to backscatter from the source plane. The transmitted leakage "
out’ of the sodium was 3.11 x 10~/ + 4.3% between 37° and 90° relative to
the axis of the pipe at the exit and 5.83 x 10~/ * 4.1% between 0° and
37°. The leakage transmitted through the exit plane bounding the concrete
jacket (an annular disk excluding the sodium in, the center) was 6.27 x 1078
t 7.5% between 37° and 909 and 5.05 x 10~3 + 8.3% between 0° and 37°. The
neutron dose transmitted/through the sodium exit 'plane was 1.28 x 10715 ¢
4.47% mrem per neutron, and the dose transmitted through only the concrete
at the exit plane was 6.39 x 10“17 + 8.6% mrem per neutron. The flux
transmitted through qpe sodium exit plane was 1.0l x 1079 £ 4:.1%
neutrons/cm? and 5. 02 x 10711 + 7.3% neutrons/cm2 through the concrete' exit
plane. /

o /

/ Void-Pipe, Problem ' g

/ T

This nroblem/ls identical to the sodium-pipe problem except that the

H

, sodium is replaced by a void. Two surprises came from this problem:

Ly 1ntuition led to preliminary problems with geometry splitting, and
(2) DXTRAN peiformed very 1mpre851velx
0
“Teying this problem wi thout any variance-reduction techniques, in two
minutes of computec time 31448 neutrons started but only 358 got past the
90O bend, and 20 actually got to the exit tally plane.
114
g The sp#xtting surfaces were very similar to the sodium-pipe setup:
anlal planes every 20 cu and two interior concéatric cylinders (one 4 cm
into the: concrete jacket from the v01d and the other another 4 cm into the
jacket). THe final axial 1mportance before the exit was 4096 where it was
?519424 with the sodium. The attenuation from, the source to the exit is on
/the order of 103. .
Initlally the radial importances were set as with the sodium:

relative to a given axial cell in the v01d the first radial cell had an
importance a factor of two less, the middledradlal cell importance another
factor of two less, and the outer radial cell a factor of four less than
the middle cell.’ This ‘setup led to a figure of merit of 16 which was,
surprising sjince the attentuation is three orders of magnitude less than
with sodium where the figure of merit was 62.

& .
Looking at the MCNP summary information, it was noted that each
neutron created about 7 tracks, and each neutron had about 6.6 collisions.

This says that on the average every time a track had a collision, it was

X
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split. This was the clue to the problem: the importance of the inner
sleeve of the concrete jacket was a factor of two less than the adjacent
void region which meant that a track entering the concrete from the void
underwent Russian roulette with 50% survival. If the track backscattered
into the void, it was split two-for—one but then immediately went to the
other side of the void where Russian roulette was played again, etec.
Obviously this is very inefficient. "
t

The next step was to set the importaunce of the inner slee%e equal to
the importance of the adjacent void. The middle-sleeve importance was then
reduced by a factor of two relative to the ianer sleeve, and the
outer—-sleeve importance was reduced by a factor of four relative to the
middle sleeve.

Playing other splitting games such as changing the thickness of the
concrete sleeves and reducing the number of radial sleeves from three to
two had relatively little effect.

The weight window by irself was used successfully in the problem; the
exponential transformation is not applicable. The boun?s of the windows
were set based on experience and“by experimenting with a couple of short
runs and watching the behavior of the sample variance.

MCMG was used with geometry splitting incorporating one concentric
splitting surface in the center of the concrete jacket., Furthermore, two
scattering kernels were tried: (1) with a coutinuous—scattering angie and
(2) with the MORSE discrete-scattering angle. ,

i
n
iz

Results of these runs are summarized in Table 7.

Table 7. Results of Bent-Void Pipe

Transmitted -
™, Leakage Camputer
Method (.8 < <1) Z Error FOM Minutes
MCNP, splitting 1.08 x 1073 5.6 "33 9.6
MCNP, weight 1.10 x 103 4.2 53 10.7
window
MCMG, splitting, 1.11, % 10-3 3.7 60 12.2
cont. angle §\
MCMG, splitting, 1.07 x 103 3.8 57 12.1

discrete angle
Ay

The MCNP-with-splitting figure of merit is less than the others by
about a factor of two and less than the sodium-pipe figure of merit also by

s
&
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a factor of two. The reason for both of these observations is unclear at
this point. It can be argued that the void pipe should take longer than
the sodium pipe because with the void all scores at the tally come from
time-consuming backscattering. With the sodium, a large number of tracks
"can get to the tally plane without having to backscatter.

DXTRAN with MCNP was tried on this problem in four cases: (1) with
the above splitting setup that gave the 33 figure of merit, (2) with the
same geometrical setup (all the cells and surfaces set up for splitting)
but with importances set to unity, (3) no splitting and all internal cells
and surfaces removed that were required for the earlier splitting, and
(4) all the extra cells and surfaces still removed but split two-for-—one
axially where the two legs of the geometry intersect at 45° and reduce the
importance of the adjacent concrete jacket by a factor of two relative to
the void. The impressive results are shown in Table 8. The weight window
was not used for any of these calculations, and there is a potential for
further DXTRAN improvements by using it. All runs were for 4.6 minutes of
computer time.  Russian roulette was played for &sll contributions to the
DXTRAN sphere beyond four mean free paths. 1In all cases the radius of the
outer sphere was 30 cm, and the radius of the inner sphere was 20 cm.

{

Table 8. DXTRAN Results v

Transmitted
Leakage
Case " (.8 <u < 1) % Error FOM
fr o
1 splitting, '1.07 x 1073 3.8 148
complex geometry
2 no splitting, 1.06 x 1073 , 4.0 134
complex geometry ) ' i
3 'no splitting, 1.08 x 1073 3.3 195 ",
simple geometry
s ¢
4 mild splitting, 1.04 x 1073 3.0 243 "

simple geometry

Some conclusions may be drawn from these DXTRAN calculations. The,
improvement from case 2 to case 3 points out the obvious: more cells and
surfaces require more arithmetic by the computer; they don't come free.
Comparing case 1 and case 2 suggests that when you are already doing a
pretty good job by one other technique, an' additional technique adds little
more and may even hurt (this was observed in the other problems).

Comparing cases 3 and 4 suggests that there is usually profit in adding a

little obvious help to the random walk. Cases 1 and 4 suggest that a very

complex, elaborate setup may be overkill; not only does it,take a person

longer to set up and debug a complicated geometry, it takes the computer a
| long time to get through it too.

/ W
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Other results associated with this bent-void pipe include about 1% of
the starting weight lost to escape through the curved jacket, 8% lost to
backscatter, about 92% lost to energy cutoff, and 0.47 lost to capture.

The leakage transmitted from the void at the exit plane between 37° and 90°
is 1.65 x 10~4% £ 5.7%, the leakage transmitted from the concrete at the
exit plane between 0° and 37° is 7.67 x 10~> + 12% and 5.46 x 1072 * 7.7%
between 37° and 90°. The neutron dose through the void at the exit is

1.65 x 10712 + 5.8% mrem per neutron and 6.64 x 10~14 + 9.0% through the
concrete. The flux through the void at the exit is 1.16 x 1076 + 4.7%
neutrons/cm? and 5.25 x 10~S * 8.4% neutrons/cm? through the concrete.

CONCLUSIONS

It is virtually impossible to be able to say when to use one variance-
reduction technique or another. One needs to have many techniques at his
disposal. Furthermore, it is also virtually, K impossible to be able to
prescribe how to use a particular technique. Experience in these matters «
has no substitute. . G

Despite the above disclaimer, we will attempt some general
conclusions.

It appears the weight-window concept has merit when used in
conjunction with other techniques that produce a large weight dispersion.
It keeps from wasting time on low-weighted particles and keeps a tally and
its variance from belng overpowered by a few large-weighted scores.
However, we at Los Alamos have not had en0ugh experience with this tool to
putnit into MCNP permanently. We know relatively little about how to set
the bounds of the window - especially if energy dependence is required..
TRy

The exponential transformation has very limited use by itself. It
should not be used alone but Ao conjunction with something like the weight
window. The performance and especially the reliability of the
transformation are sensitivq_to the biasing parameter which, in our
opinion, makes this technique dangerous to use except for the experienced
Monte Carlo practitioner. We sometimes’ refer to the exponential
transformation as the "dial-an-answer" technique, because the result of a
calculation frequently appears to be a function of the biasing parameter.

Geometry’splitting with Russian roulette is our most frgquently—used
technique. Although other schemes may buy more in particular situations,
geometry splitting will V1rtua11y always give good returns. Furthermore,
it is easy to understand “and reliable. An important aspect that is .,
apparent from theqcalculations in this paper is that performance is fairly
insensitive within a” broad range to how the splitting is implemented
(two-for-one, four-for-—one, where the surfaces are located, etc.)

Furthermore, 1t is not just enough to look at a figure omeerit and a
final sample error. You must also look at the sample mean and %Fs error at

. b
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frequent iantervals to make sure they have bettled down and converged on a
reliable result. In other words, look at the variance of the variance.
Tor example, after a relatively few hlstorles,,a point-detector Flux may
have an indicated error of 10%Z but be in actual error by several factors.
After a few more histories, both the flux and/its error could be perturbed
significantly. This procedure was not emphasized, ‘earlier in the paper, but
it was used. It is simply wise practice - becausp it may give the only
clue of an unreliable result. / s

/ // I

Group X—-6 is experimenting with analytlcally call ulatigg the variancel
of the variance (or error of the error) and most of the MCNP calculations
'for this paper were done with, a modlfication to MCNP for this purpose.

We recognize that there is very little quantltatlve information ia the
fourth moment, but qualitatively it appears tnat whenever the error of the
error is of the same order as the error (both about 5 or 10%, for example)
then the sample mean is reliable. But if the error is\about 10% and the
error of the error i< 50%, the mean is unrel%able. ’

One valid rule of thumb is to always make a few 'short, experimental
runs to get a feel for the problem and Lo see the effect for differept
techniques and parameters. The code you are using should automatically
provide you with enough basic information to allow> you to evaluate and -
understand the run and its attribates.' It%has been our observation that
the more experience a person has, the}morelreliance is put on, preliminary .
runs. The less experience a person has, the more likely a job will be set
up as quickly as possible, a long run attempted and whatever comes out”
belleved. o

£ / //
{ / i ¢

Finally, this paper has probably generated more questlons than it has
answered - especially in the area of murtigroup calculations. Also, as
applications become iancreasingly moré compllcated there are other
important and ianteresting topics such as the effect-of representing a
c0mplex three~dimensional geometry; by a lower-dimensional model. We look
forward to addressing these and other questions'ﬂ‘~the future. i

" " , /f
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Appendix

Fission~Spectrum Groups for MCMG

The source fraction per group, §

g’

is determined “from

2 \L% e E/T g5, T = 1.30 Mev
/T

-

s
Lower Bound, MeV

Group Sg
1 15.0 3.0380E-5
2 13.5 7.8639E-5
3 12.0 2.3568E-4
4 10.0 1.1626E-3
5 7.79 5.9203E-3
6 6.07 1.7678E-2
7 3.68 1.0418E-1
o 8" 2.865 9.1383E-2
9 2.232 1.0877E-1
10 1.738 1.1525E~1
11 1.353 1.1097E~-1
12 0.823 1.8153E-1
13 0.50 1.1963E-1
14 0.303 6.9450E-2
15 0.184 3.6918E-2
16 @ 0.0676 2.8169E-2
17 0.0248 6.6880E-3
18 0.00912 1.5188E-3

0.99955

Sample Energy E from Fission bpectgum

f£(E)

I
E

Let £ be a random number

a
E

2 E -E/T
/T
1.30 MeV

[

3T/2 = 1.95 MeV
(0,1),

(~Zn Eo)coszﬁg £1> and
T(-£fn £3 +a) .

i

it
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3. Sample 1/E Energy Distribution, Angular Distribution, and Spatial
Distribution

Let £ be a random number (0,1),

(a) Energy: f£(E) = (.10)/E 8.32 eV < E < 184 keV
E = 0.184e~10g
(b) Angular: £(u) = counst. 0.8 <u <1
=0 otherwise
P o= 0.8 + 0.2
U = +1 is along y-axis

The direction cosines (u,v,w) = (0,1,0) must be rotated through the
polar angle cos"HJ and through an azimuthal angle sampled: uniformly from
(0,2m).

(c) Spatial: y =20 Y

x2 + 22 ¢ 202 .

s

e
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EXPERIENCE WITH TRIPOLI AT ORNL

S. N. Cramer and R. W. Roussin
Oak Ridge National Laboratory
Oak Ridge,Tennessee 37830

ABSTRACT

/

Initial use of the TRIPOLL code at Oak Ridge National
Laboratory (ORNL) involves calculation of sample problems for
both neutron and gamma-rays. Comparison with existing MORSE
results indicates that the computing efficiency of TRIPOLI is
somewhat better for the problems studied. Calculation of a
thick (90cm) concrete and steel integral experiment with
TRIPOLI gives good agreement with the experimental results.
This calculation involved the neutron count rate and unfolded
energy spectra as measured in an NE213 detector behind the
sample. It was necessary to expand the standard TRIPOLI cross
section energy structure near the 2.3 MeV minimum in the total
crcss section of oxygen (a major constitutent of concrete) to
coriectly calculate the count rate near this energy. A draw-
back of the TRIPOLL code is the lack of .arn automated method of
performing .coupled neutron and gamma-ray production calculations.

INTRODUCTION

As a part of the preparation for the Monte Carlo seminar-workshop the
Radiation Shielding Information Center (RSIC) has sponsored a limited
calculational program involving the TRIPOLI code. This code has been in
use at ORNL for the past year follnwing the visit to RSIC of personnel
from the CEA/CEN SERMA Shielding Laboratory, Saclay, France for the
purpose of connecting ENDF/B to TRIPOLI. The TRIPOLI code is a very large
and versatile Monte Carlo code system undergoing continuous development on
an IBM computer system similar to that used at ORNL.

During the past year various problems of interest were analyzed using
TRIPOLI, and results of three types of calculations are reported in this
paper.

PROBLEMS CALCULATED WITH TRIPOLI

Three different problems were run to test some of the capabilities of
TRIPOLI. These include a point fission neutron source in air, a point
monoenergetic gamma-ray source in air, and an integral experiment measur-~
ing the time and energy spectra of neutrons penetrating through a re-
inforced concrete shield.
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Neutron Fission Scurce in Air 7

Calculation of a neutron sample problem as described in the MORSE
report are given in Table 1. These are flux calculations at various radii
from a point fission source in infinite
air. Two types of TRIPOLI results are
given: those for no biasing and those

fible 1 Results of the Seutron Source In ar Sample Problem

e st (w0 o 1) vinsin  With adjustments to the spatial, energy,
otodw oy o) ofr wife e o 4mle o) ot gpd angular biasing input parameters in

01 1720 1o o017 180 87 02 181 so o1z Order to obtain comparable statistics

02 1979 ws n2 1ea 72 019 2003 sa o1 2t all radii. The v.lues in the table

o3 1e8 79 o019 1723 91 ok 183 37 oo @Y€ the standard deviation, given in

06 oveoe 74 o020 oeso 128 057 e 53 ow PEr cent, and the figure of merit, the

07 04s1 86 022 D452 149 078 0 419’ 4.7 o1 Square of fractional standard deviation

s our w1 oz 1% 1o 1 o1 <4 oo CiMes the IBM 360/91.computation time
Ny oma ms 1w ovom s 313 oow ss op (L) in seconds. No attempt was made to
improve the efficiency for the reported
MORSE results. Ten TRIPOLI calculations
were made for this problem with different combinations of biasing input
parameters. An average value of the flux was obtained for each radii, and
it was observed that for the seventy fluxes 68.6% were within T o, 94.3%
were within ¥ 2g,and 100% were within f 30 of their respective average
values.

Moncenergetic Gamma-Ray Source in Air

A
The results of a sample gamma-ray problem are given in Fig. 1. The }

flux spectrum at 1000 meters is shown resulting from a point 10 MeV gamma-
ray source in air. The TRIPOLI boundary crossing estimator and the newly
implemented MORSE! Klein-Nishina next event estimator were used. The
differences in the calculation can be attributed to differences in the
basic data (TRIPOLI library vs. ENDF/B) and also differences in the cross
section processing (continuous energy vs. multigroup). The ¢2T for the
MORSE total flux was a factor of 4 greater than that for TRIPOLI; however,
MORSE boundary crossing estimator results gave a figure of merit compar-

able to that for TRIPOLI. i J%¢%¢9

Concrete Integral Experiment

B {
A final calculation with TRIPOLI involves a large scale integral

experiment performed at IRT. 2 Figure 2 shows a schematic of the entire
experimental set-up, and Fig. 3 shows the details of the sample problem
geometry used to simulate a reinforced concrete shield. The incident
neutron energy range is from 20 MeV to 10 eV.

At the time these calculations were performed, several TRIPOLI
modules had not yet been fully implemented at ORNL. These features in-

clude the generation of secondary gamma rays from neutron interactions,
the next event estimator, and the ENDF/B library. As a result, the
calculations presented here are for neutrons only using a detector bound-
ary crossing estimator and the standard TRIPOLI library based on UK data
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Time Dependent Count Rate Results

The calculated and experimental count rates are shown in Fig. 4. The
incident zource energy ranges corresponding to the time taken for the
neutrons to traverse the 50 meter flight path are indicated on the figure.
These count rate comparisons are absolute, each being normalized to the
number of neutrons incident on the leading edge, of the sample for the
individual time (energy) intervals. In order to calculate the 2.5 usec
peak, due to the 2.3 MeV minimum in the oxygen cross section in the con-
crete, about 20 narrow energy intervals were used in the cross section
structure in the vicinity of this minimum. With only two intervals to
describe this minimum, the calculated count rate was about half that shown
in Fig. 4. For penetration studies, the TRIPOLI cross section structure
is continuous in energy but with constant values over specified energy
intervals.

CONCRETE INTEGRAL EXPERIMENT

5
3 107 ¢
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~ 5 1210987 & 5 4 3 2
° -
S TR
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o~ 4
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|y - ‘ !
=z
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]03 1 ] ol !
05 1 1.5 2 25 3

TIME AFTER LINAC PULSE (isec)

~Fig. 4. Count Rate Comparisons
for the Concrete Integral Experiment.

Neutron Energy Spectral Results

The secondary energy flux spectra, averaged over the incident energy
intervals from Fig. 4 are given in Figs. 5 through 14. The spread between
the experimental curves represents two standard deviations in the unfolded
data. The same quantity is represented by the error bars on the cal-
culated histograms. The flux spectra comparisons are generally in good
agreeﬁent, the only consistent discrepancy being in the lowest (1-2 MeV)
interval for which experimental data were reported. The histograms repre-
sent values which have been smeared with a Gaussian resolution function
provided in the experimental results following the TRIPOLI calculation.

ok
1
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For a variety of reasons, this smearing is the probable cause of the low K
,energy discrepancy, and it is still under investigation. The detector
resolution below 1 MeV was not provided and was extrapolated in order to
smear the very large fluxes below 1 MeV into the higher energy intervals.

The coarseness of the smearing grid or any error or inconsistency in the

low energy extrapolation or smearing procedure could easily cause the
differences in the 1-2 MeV interval.

Comments on the-Spectral Results
i

1t was found necessary to modify the calculated spectra by an un-
explained normalization factor, due to an inconsistency in the experi-
mentally reported data, in order to obtain the comparisons shown. This
factor of 15.7 was determined by comparing the total experimental counts
integrated between 2 and 15 MeV from Fig. 4 (Fig. 22 in Ref. 2) with that
obtained by folding the detector efficiency (Fig. 13, Ref. 2) into and
integrating the experimental spectra between 2 and 15 MevV (Fig. 25, Ref.
2). This anomaly is also still under investigation in consultation with
the experimentors.

CONCLUSIONS

The neutron fission source in air problem allowed a limited, but
successful, application of some of the biasing techniques available in
TRIPOLI. The spectral results calculated for the monoenergetic gamma-ray
source problem were encouraging in that good precision was obtained fpr 9
the entire energy range in a small amount of computer time.

The calculation of the integral experiment did not test many of the
features of the TRIPOLI code, especially the intricate biasing procedures,
next event estimator, gamma-ray production, etc.; however, it did demonstrate
the capability to accurately analyze an experimental benchmark problem of
significant importance for shielding applications. (

* 2
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Lo MORSE: CURRENT STATUS OF THE TWO,OAK RIDGE VERSIONS
! 3
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: Oak Ridge, Tennessee, USA ' ‘

¢ N
1 }

ABSTRACT

' AV]

4 ‘

There, are two versions of the MORSE Monte Carlo radiation
transport computer code system at Oak Ridge Natlonal Labora%ory.
MORSE-CG is the most well-known and has undergone extensive use
for many years. Development,.of MORSE-SGC was originally begun
in order to restructure the cross section handling and thereby
save storage, but the more recent goal has besn to incorporate
some of the KENOgability to handle multiple arrays in the geo-
metry and to improve on 3-D plotting capabilities. New
capabilities recently added to MORSE-CG include a generalized
form for a Klein Nishina estimator, a new version of BREESE,
the albedo package, which now allovs multiple albedo materials

and a revised DOMINO which handles DOT-IV tapes. “ %,

MORSE-CG

- i
1 N "o

3
MOXSE-CG! is almost continuously undergoing development. Among

the recent changes or additions are a more generalized Klein Nishina
estimator, a new version of the BREESE 2,3 albedo package, a version of

DOMINO that handles DOT-IV type tapes and free—form input for the
SAMBO analysis data.

. The Klein Nishina estimator that is now being used takes pair pro-
duction and Compton scattering cross sections directly from ENDF cross
section libraries. The cross section routines have been altered to
allow processing of these cross sections. The estimator itself is
built into a version of RELCOL which uses the Klein Nishina estimator
for gamma ray groups and the 'standard' point detector next-flight
estimator for neutron groups. Several tests of this have been made.
One such test was a comparison with DOT runs both with and without the
standard source fixup which deletes negative fluxes and removes enough
small positive values to restore particle conservation. MORSE was run
both with and without the Klein Nishina estimator. A comparison of
these results is shown in Figure 1 and a more detailed description of
the test was given at the 1979 Winter ANS meeting®.

i
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BREESE-II allows multiple albedo materials in a single MORSE run.
It also allows the number of outgoing polar angles to be dependent on
the value of the incoming polar angle and the number of outgoing azi-
muthal angles to be a function of the value of both the incoming and
outgoing polar angles. The CARP code which prepares albedo tapes for
BREESE usually collapses the group structure of the albedo data so that
a reasonable amount of core is used. One method used to test this
BREESE was to run the same problem in three ways: with materials only,
with albedo only and with some material adjacent to albedo. Satisfac-—
tory results were obtained in this way. At present, albedo data is
available for four materials: 12-inch water, l2-inch ordinary concrete,
9~inch carbon steel and 1/2-inch steel over concrete. Both the data
and the two computer codes are available from RSIC.

DOMINO, the interface code between discrete ordinates (DOT) and
Monte Carlo calculations has been modified to allow use of DOT-IVE
boundary source tapes since most DOT users now run DOT-IV.

Another change to MORSE-CG allows use of both specular reflection
media and actual albedo media in a run. This is done by using a media
number greater than 1000 for the specular reflection media.

The use of free-form input data in the SAMBO analysis package has
been implemented in subroutine SCORIN through a call to a new routine,
RFRE. 01d input decks are compatible only if there are no spaces with-
in a number and no blanks used for zerces and if a card containing

either a $% or an %% in Columns 2 and 3 is placed in front of the array
to indicate integer or floating point.

The above is a brief summary of the current status of MORSE-CG at
Oak Ridge. Now the status of MORSE-SGC will be presented.

MORSE-SGC

MORSE-SGC® is a supergroup version of the MORSE family of Monte
Carlo codes. It has the ability to supergroup the cross section storage
and particle tracking to allow fine group problems to be run on medium
to small computer systems. This technique is especially beneficial on
CDC computers. The combinatorial geometry system in MORSE-SGC has
undergone extensive revision. The new geometry system, based on com-
binatorial geometry, is called MARS, an acronym for a Multiple ArRay

System. This is a powerful tool for modeling either lattice geometry
or complex geometry having repetitive features.

The MARS geometry system allows the user to describe many rectan-
gular cells of arbitrary content, called "universes'. These universes
can be arbitrarily combined to describe arrays. Arrays may contain

sub—-arrays, universes, and vacancies. There exist three methods of
nesting arrays inside of arrays in the MARS geometry system. There is

no limit to the depth of geometric nesting. Geometry may be optionally
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modeled around an array or arrays and repeated in its entirety. Further-
more, the position of an array is arbitrary, thereby allowing rotation
as well as translation, when al.array is repeated. Vacancies in an
array may occur either on an array periphery or internal to an array.
MARS allows the user to exit or enter an array from any cell in the
array, providing the geometry surrounding the array is well defined.
This feature was demonstrated recently in modeling the Three Mile Island
Core for the Kemeny Commission. The core was modeled first as it was
designed and then later modeled in a hypothetical disrupted configuration.
This work was reported in ORNL-TM-1067. In both models no material
homogenization was needed. The proper material composition and geometry
description was achieved for the entire core taking into account three
different fuel enrichments, two types of control rods, three types of
burnable poison rods, orifice rods, and instrument channels. The design
core required 6000 words of memory and the disrupted core required 9000
words of memory. The design core modeled about 40,000 pins and the
disrupted core modeled about 241,000 pins. In both models the core
periphery shape was described and in the disrupted core model a three
step conical hole was modeled in the top center of the core. Inside
this hole other material regions were modeled. Criticality studies

were performed on both models. The work was performed in three weeks.

The development of the MARS system in MORSE-SGC was sponsored by
the NRC Transportation Division. It is operational in the SCALE system
(Standard Computer Analysis for Licensing Evaluation) in the SAS3 and
SAS3X sequences. This system uses simple input and automatic cross
section processing for quick efficient problem setup and execution.
MORSE-SGC has been used in this system for both shielding and criticality
analysis of several different shipping casks. A typical PWR Shipping
Cask is shown with 7 PWR assemblies in Figure 2. This drawing was gen-
erated with the JUNEBUG Graphics code which was developed to allow three-
dimensional display of the MORSE/MARS geometry. The geometry for this
model required 1805 words of memory, and 74 cards of input. Figure 3
shows the array nesting for this model. Notice most of the arrays are
very small arrays, such as 3 by 1 by 1, 2 by 6 by 1, 5 by 1 by 1, etc.
By modeling small arrays, nesting other arrays inside these arrays, and
repeating arrays, very efficient memory utilization is achieved. Figure
4 shows the different "Levels" of geometry nesting used in this model.

The MORSE-SGC code will be available from RSIC during the summer
of 1980, along with the JUNEBUG graphics code, and the CDC version of
SCALE.10It is hoped that the features of MORSE-SGC will complement the
existing MORSE-CG capability and aid the criticality and shielding
analyst in providing quick and efficient computer analysis.
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Figure 2. Typical PWR Shipping Cask
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ABSTRACT

We present in this paper the tridimensional Mcnte Carlo code TRIPOLI 2
wich solve transport problems for neutrons or gamma rays. This code
is used either for shielding calculations with deep penetration or for
core calculations with fixed sources or for critical or subcritical
problems. The principal block diagram of the system is given.
We discribe successiv%iy the geometry characteristics, the cross
sections utilization,ktge weighting, the source distribution and the

results obtained by the code. i

INTRODUCTION

TRIPOLI solves the transport equation® for neutrons or gamma rays
in tridimensional geometrical configurations. TRIPOLI uses the Monte
Carlo method. This method allows to treet exactly the geometrical

configurations, the energy losses and the scattering laws.

TRIPOLI 2 allows to treat the following problems

& e
et
T

- gamma transport problems
- neutron transport problems with fixed source, the problems can be
time dependent or not

critical problems without fixed source and research of multiplication

o

factor due to fissions

- subcritical problems with fixed source and with multiplication by

fission.
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These problems can be separate in two types
- first type, shielding problems essentially with deep penetration
and streaming through voids. Biasing technics are used to reduce

the computing time

- second type, core problems for cell calculations or for small core
calculations. In this case, it is necessary to have a fine repre-
sentation of the cross sections. The thermalization is also treated

1

exactly.

In Saclay both types of application are used.

W

The starting of the conception of TRIPOLItq) was in nineteen sixty

five and the first version of the code was operational in sixty eight.
The code was written for I8M 360.50 and used 270 kilo bytes only. It

was essentialy devoted to shielding applications. The first applications
we made, concerned fast breeder reaclor and irradiation loops. We studied
in particular the fast neutron facility HARMONIE and the fast breeder
reactor PHENIX : flux on ionisation chambers and activation of the
secondary sadium. We calculaled alsc spectra and dammage rates for
irradiation reactors such as PEGASE, RAPSODIE, 0SIRIS, DIDO. Some

shield design were made using TRIPOLI calculations.

In seventy four we added to TRIPOLI the thermalization and the
fine treatment of the resonances between 6 keV and 5 eV. This addiiion
allowed to treat cell calculations and small core calculations. The
self shielding of the cross sections is now treated exactly. The cross

sections were coming from UKNDL.

In seventy)five we added the time to the pgrticle parameters. We
treat now time dependent problems essentialy for physical applications.
The biasing was developped and we make still improvements in the biasing

field. -

A
Y
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In seventy six we added the fission and we treated the first
critical problems. We made essentially benchmark for «cell calculations
and for instance we calculated the control rods efficiency for the
reactor ORPHEE. In seventy six also, we modified IRIPDLﬁgand its cross

section file to treat gamma problems.

Finally in seventy nine, the code used ENDF/B cross sections and

it was allowed to treat suberitical problems i.e. problems with external -

sources and multiplication per fission.

Actually we are still developping biasing technics and differential

effect calculations by correlated sampling method.

It is planned to put in TRIPOLI a combinatory geometry with
several level of heterogeneity. This will simplify the input data

essentialy for core calculations.

TRIPDLI 2 system contains now sixty four thousand cards and

forty five thousand cards for the cross section processing from ENDF/B.

THE TRIPOLI SYSTEM

Let us examine now the TRIPOLI system: The TRIPOLI system contains
the code TRIPOLI itself, which solves the transport problem completely
and some auxiliary codes. These auxiliary codes are facilities given to

the user, but are not essential to solve a transport problem.

It has been made possible to divide the total ‘jah intg‘égparate
stages. Thus the user has the option of eitﬁér executing all or only
a portion of the total calculation. The transfer of information from one
stage to the ?gilowing one is done by;'f&g such as magnetic tape or disk.
This capability gives greater flexib£i¢gy§and security to the programm.

N
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There are two types of stages in the TRIPOLI system : the task

}

and the phase.
{1
The task consists to execute TRIPOLI itself or one auxiliary code.
Some very important'tasks, as LINDA and TRIPOLI sre divided in phases.

For example, TRIPOLI is divided in six phases : i

SECTA or MACROS, SECTP, GEOM, TEST GEOM, SOURCE, MONTEC. These phases

are written in the lower part of the picture 1.

Let us examine now the tasks. There are in the upper part of the picture
1.

COLLFI uses one or several collision tapes produced by TRIPOLI. These
tapes contain the characteristics of all events occured in the history

of each particle. From this information COLLFI computes fluxes, spectra,
reaction rates in several energy groups or time intervals and for several

volumes in space.

MIXER carries out the management of the results from several TRIPOLI
calculations (lainear combination or addition of several results, conca-
tenation of results).

ANALYSE prints and plots on a BENSON or on listing the total cross
sections of the materials and tﬁe response fpnctions used in calculating
the activities. In option, ANALYSE print out the details of the table of

nuclear interactions.

(&)
i
SPECTRE makes the plotting on a BENSON of the spectra calculated by
TRIPOLI with optionally any reduction in the number of energy groups.

0

VISPAR visualizes histories or collisions undergone by certain particles
selected from the population in accordance with certain criteria. The

collisdion points Qf the particles of interest are projected on to any
Y

o0

<

plane given by\the user.

o o = -
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Among the selection criteria let us cite

1) identification of particles which contribute to a given result in one

portion of the geometry. Thus it ‘is possible to retrace the history

of these particles which makes possible to visualize the preferred

passage ways of the particles contributing to the result.

v/

2) detection of the assembly of points in phase space which correspond

to a bad choice of the importance function.

VISPAR
LINDA

BIBLIO

TRIPOLI

FLUXPT

'

helps to choose the weighting. VISPAR uses a collision tape.

makes the management and the production of cross sections from

ENDF/B. Jean GONNORD will talk to you about this program.

this program combines or reduces several LINDA libraries and
products, if necessary, partial LINDA libraries for a given
category of problems. BIBLIO prepares also the gamma rays

production cross sections.

makes the preparation of all data (cross section, weighting,
geometry, source) used for the calculation. TRIPOLI Tealizes
the simulation of the particle histories and prints the

results : fluxes, spectra, reaction rates with their standard

deviation.

computes the uncollided flux after each collision using the
collision tape as COLLFI. From this flux, FLUXPT calculates
spectra and reaction rates in several energy groups or several

time intervals. FLUXPT can be use only for shielding problems.

RETRAITEMENT RETRAITEMENT is a program whose constants are analytic

instructions involving results, spectra, reaction rates, from
one or several TRIPOLI calculé%ions. It makes it possible to
avold all manual calculations when the results are used. The

language used in RETRAITEMENT is called FORTRI for FORMULATION
TRIPOLI. o
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’

We return now to the task TRIPOLI. As we have said, this task

is divided in six phases.

i i)
1) SECTA, MACROS the purpose of the phases SECTA and MACROS is to create

a file of the nuclear constants required for the problem to be treéﬁ“jl
torny

7) SECTP the phase SECTP has as its purpose the storage on a file of all

the constants which provide for the description of the weighting.

3) GEOM the purpose of the phase GEOM consists in creating a file which
contains the geometric input with a maximum of precalculation in the
same format as the fast memory.

4) TEST GEOM this phase testes the geometry.

/

5) SOURCE the purpose of the phase SOURCE is to generate the charac-

teristics of a collecticn of particles.

6) MONTEC this phase carries out the simulation of the particle histories
and calculates the corresponding scores. MONTEC edits the Gutput

fluxes, currents, reaction rates and spectra.

-
i

In option, the phase MONTEC gives : (see picture 2]

- some informations concerning the choice of the weighting

- a file containing all results used by RETRAITEMENT and SPECTRE

- a file containing all collision characteristics necessary F%r the
{brograms COLLFI, FLUXPT, VISPARJ It is the collision tape. I recall
you that COLLFI computes reaction rates and spectra, in volumes or on
surfaces, FLUXPT calculates reaction rates and spectra at any point and

VISPAR visualizes histories of particles.

B Let us examine now the most important characteristics of the
TRIPOLI task itself.

“
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GEDOMETRY

First the geometry. The geometry is tridimensional, it 1s composed
by an assembly of volumes. These volumes are bounded by first and second

degree surfaces. The arrangement in space is quite arbitrary.

We have nine types of boundary surfaces for a volume

- the general planes

- the three planes perpendicular to the axis x, y, z

- ‘the general quadratic for instance cone or ellipsoild
- the sphere . &

- the three cylinders with axis parallel to the axis x, y, z.

7,
Ty
I B

v

o

The volume consists of &,_.single, chemically homogeneous sub<tance,
RN [
ey g.‘( :-f

and has the same weighting charactéﬁ%atics at every point. 3

St
We make a special treatment ol geometry containing .
parallelipipeds whose faces are perpendicular to the principal directions
Ox, Oy, 0z. L
"
Some boundary conditions are available. These conditions are given
on the external surfaces of the geometry. A particle which reaches such a

P
surface may undergo : P

P

- optical reflexion

- albedo

- rotation about the z axis

- translation of given components

- escape with or without recording of the characteristics of the particle.

These special conditions make it possible to treat repetitive

geometries by symmetry, rotation and translation.
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The picture n® 3 shows an example of geometry discribed in
TRIPOLI. It is the PEGASE reactor. A special phase, called TEST GEOM,

allows to test the geometry. The purpose of this phase is

- farst, to test the logic of the geometry
- second, to give the distances traversed in each region along a straight

linpe. Thais possibilaity allows to verify the equation

- third to give a graphic print out for one cut through the geome%%y¢j;¢

NUCLEAR DATA

Let us examine rnow how TRIPOLI use the nuclear data.
]

! .
Two tynes of tress gectlion representation are available
;)
- the fine mulligroup represantation

- the pointwive represenitation.

We have said in introdustion that there are two types of problems:
I\
the shielding calculations and the core calculations.

For the core calculations we use pointwise cross section below
& keV and above 5 eV with forty five thousand points in this range. Above
6 keV or below 2 eV, we use a {ine muliigroup representation. This allows

to treat exactly the self shielding of the cross section.

For shielding calculations, we use only a fine multigroup
representcetion of the cross sections with, for neutrons, two hundred
seventy groups from fifteen MeV to the thermal region. For gamma rays

€

we use sixty groups from 10 MeV to 10 keV.

For neutraon, the data are cumin%r?rom UKNDL or ENDF/B ; for
rom
gamma rays they are coming from UKNDL of* Los Alamos Laboratory (Storm

et Isra8l LA 3753].
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For neutrons the following interactions are treated : ;ﬁy W
- elastic scattering with exact anisotropy discribed by equai pruégpgiity
- inelastic reaction with discrete levels S
-~ inelastic reaction and (n, 2 n) isotropic in the center of mass sy%tem
- absorption /
- fission
- thermalization with free gas model or using the frequency spectra of

the molecule.

For shielding problems we can also use one group of thermal
neutrons with isotropic scattering in the laboratory system. A transport

correction is available.

The following interactions are treated for gamma rays

- photoelectric effect
- pair praoduction

- comptéh scattering.

The picture n°® 4 shows the total neutron cross section for iron
used in TRIPCLI.

The picture n°® 5 shows the multigroup gémma ray production also

for iran and far neutron. 4

WETGHTING »

I present you now the weighting in TRIPOLI. For deep penetration
it is necessary to bias the game. If we consider a reactor core surrounded
by a shield, the attenuation of the flux between the core and the outside
boundary of the shigld can be 1013. If we want only thousand particles
at this boundary we should have to simulate 1018 histories of particles.
This is not possible : the caomputatien time would be too expensive.

These considerations introduce the biased game for the deep penetration

For core problems, there is no difficulty : we don't need any biasing.



322

In TRIPOLI 2 & weaght is assigned at each point X of the phase
space. This weight is given by the relation (1) for one volume of

the geometry
( TURY = 0 T, (F) 1, (B)
for a given volume -+

FliGﬁls the spatial component of the weight
I1,(¥)depends on the direction 12

1, (Edepends on the energy E

We define in TRIPOLI equiweight surfaces : there are surfaces

where the spatial weight Fliﬁij is constant. It is the relation (2)

(2} eguaweight surfaces S, IY_1C32',’).—= N it =2 E 5%

The equiweight surfaces are composed by an assembly of portions of
planes, spheres, cylinders and cones. These eguiweight surfaces are con-

~tinuous or almost continuous.

According to thas assigned weight, biasing are made to reduce the

variance. The following biasing are used in TRIPOLI 2 : 0

- path biasing using the exponential transformation

- collision biesing for homogeneous or heterogenecus media.

The reduction of the variance is obtained by the following way :

each particle has about the same contribution to the result.
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SOURCE DISTRIBUTION

Let us examine now the source distribution. The source density

in space energy and direction is given by the relation (3) where
i

(3) S(ZE ) ——Z Hs(E) Cr S, (%) Gr (%)

ﬁ Hy CE) //6 ()T

S position
E energy

S direction

HJ 15 a spectrum, GJ an angular distribution and the product CJ SJ
is a spatial density. This expression (3) allows Lo treat any distri-

bution of sources.
The particles are emitted according to the assigned weight.
THE RESULTS

To conclude thais short presentation, I give you some explanations
concerning the results. The user defines some regions. Each region
contains one or several volumes defined in the geometry phase. The
results are averaged values or integrated values on regions or on
boundary surfaces of region. The results are spectra, fluxes and

reaction rates with their standard deviation.

7
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VARIANCE REDUCTION TECHNIQES USING ADJOINT MONTE CARIO METHOD
AND MONTE CARLO-MONTE CARLO COUPLING IN DEEP PENETRARION PROBLEM
. - N .T

Kohtaro UEKI
Ship Research Institute
Mitaca, Tokyo 181, JAPAN !

ABSTRACT ‘

The event value Wg(T, fi) has been derived in a form
which can be obtained directry from existing adjoint Monte
Carlo computer codes. It is demonstrated that the event value
and the point value functions obtained from the adjoint Monte
Carlo can be used as the path-length biasing and the angular
biasing in the forward Monte Carlo calculation, respectively.
The iterative foérward-adjoint Monte Carlo method using the
source biasing is employed to reduce the standard deviation.
In addition, the Monte Carlo-Monte Carlo coupling technique
is investigated to calculate effectively neutron streaming
through the two-legged duct. Significant improvements are
obtained on the collision density and on the efficiency in the
duct problem.

¢

INTRODUCTION

0"
v

‘The Monte Carlo method igja very useful tool for solving a large
class of radiation transport problem. In contrast with determistic
method, geometric complexity is a much less significant problem for Monte
Carlo calculations. The accuracy of Monte Carlo calculations is of
course, limited by the statistical deviation of the quantity to be
estimated. Especially, for the deep penetration problem where probability
of contribution from a particle to the quantity of interest is small,
importance sampling is indispensable to reduce ‘the standard deviation.

It has been pointed out]'that the adjoint solution is central to
the problem of variance reduction, and the value function is always a
good choice as the importance function for density biasing in the Monte
Carlo caluculation. -The event value and the point value functions
obtained from the discrete ordinates code DOT were used as importance
functions for biasing the path length and thé scatterin’ angle, respec-
t1vely, of gorward Monte Carlo calculations in the deep penetration
problem »3:8 " The iterative forward-adjoint Monte Carlo was applied as
a way of variance reduction for a geometrically simple problem of the
ajr cylinderA. The iterative calculations produced an improvement in

[N
Bl ol
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the variance reduction.

In this study, an adjoint function —event value- is derived in a
focrm which can be obtained from existing adjoint Monte Carlo codes by a
minor modification. It is demonstrated that the adjoint functions -
the event value and the point value functions- can e used as the
Path-length biasing and the angular biasing, respectively in the forward
Monte Carlo,calculation. The iterative forward-adjoint Monte Carlo
method is employed to reduce the standard deviation in the duct problem.
In addition, the Monte Carlo-Monte Carlo coupling technique is investigated
to calculate neutron streaming through the two-legged ammular duct
installed in the JRR-4 swimming pool reactor. These calculations are
performed with the Monte Carlo code MORSE, therefor the coupling technique
can be entitlled as the MORSE-MORSE coupling tequnique.

A

i

4
i

e
MULTIGROUP BOLTZMAN TRANSPORT EQUATION

Multigroup Transport Equation for Forward Monte Carlo Method

The time-independent intepgral emergent particle density equation
is written as :

3~
- = ~, IPHE Sbm) By (TR, EY)

Ko(T, L) = By(T, SJ ; SA ¥ ery Q) ¢
3 ) T ) Ze Xy (e,
where Sg (T, IL) = distribution of source particles for g-th group,

ﬁg(r R,S1)= optical thickness,
Iﬂy(r) = energy averaged total cross section for g~th group

Zi?%- 8-8)= group g to group g scattering cross section (em ~st€ 1y,
)%.C‘ 8. ) = density of particles leaving a source or emerging
from a real collision with phase space coordinates
(group g, T, Q).
The integral equation can be expressed in a kernel form. To do this,
introduce the transport operator

and the collision operator

ﬂ”r§4§>

— = | &
C%’—)g.(?: 9.-?9_ = %:}S Z?* 3 ) (3)
' Zs(r) zm(r R-3)
’ 4
.3%5 GG )
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where ZZ(f) = SAQ Zs 3(Y,D—’_Q)
s, s‘z’»g) - =Z§ qF R “

f}ﬁ%(r) =f£-th Legendre coefficient for group g to g transfer;,

n = maximum order’ of truncation,
P =8.0, cosine of scattering angle.

Using the transport operator and the collision operator, the integral
event density equation can be written as:

}[g/(;-: Q) =S§(T’ f)_)—%—Tg(F Q)Cgag(}‘ _Q"’_Q)\U%(l' 9) ), (5)

Tg('r—ar‘ QIS 8) -
number of collision events per unit volume at space

point T experienced by particles having energies
with g-th group and direction & . .

where Sg(? D)
£, &)

1

Using the relatiormship VYq(¥, Q)“z&(r)%@ ), Eq.(5) can be transformed
into the integral flux den51ty equation:

N 53(\'52) '2'_3( )

where 43(r,51 ) = time-independent group angular flux (n/cm“st).

Also, the integral emergent particle density equation is obtained with
the transport and the collision operator:

S b (F ), )

2

X(T, ) = 5307, 9+ Cyag (F, B D) Ty(FLT, Ty (F )M

Equation (7) is actually employed for the forward mode random walk in the
MORSE code.
¢
Multigroup Transport Equation for Adjoint Monte Carlo Method QS

It has been pointed out4 that“the derivation of the emergent adjuncton
density equation described in Ref. (5) has several obscurities in termi-
nology. Although the derivation in Ref. (4) is different from Ref. (5),
it has still complexity. An easily understable procedure for the emergent
adjuncton density equation is proposed in this chapter.

The point value *('i:, Q) is defind?:7>8to be the contribution to the
effect of interest of a particle that emerges from a collision or from a
source at p01nt T with energg §roup g and direction £ , and the event
value Wg(r D) is deflned ’ to be the present and future contribution
to the effect of interest of a particle that enters into a collision at
point T with energy group g and direction 4. o

The integral point-value equationd modified by defining the dire-
tion8 =- & and considering the change in phase space coordinates to

1

-~ xr)\

)
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occur in the reverse sense can be written as:
X;(F ﬁ) = Fx(? ﬁ) Z%_)%’(_l/\ /\')
3 (F.R, B> 2D o L (Hhr%

ik PR B 20 Sy

where P;’(—f,ﬂ) = response function of effect of interest due to a
particle which emerges from a collision having
phase space coordinates (group g, T, Q0).

}x’; (F8)

Equation (8) is designated to descrlbe the tra;]ectory of adjoint perticles
which are called adjunctons5 from T to T along the %) direction. The
transport integral operator describing the ¥ -7 transport is modified to
produce the following simple relationship:

TP, Q) = Ty (FeT, DY I/ . (1)

— -— P
The new transport operator Tq (¥—T, Ll ) is identical to the integral
transport operator Ty (¥>7T, 3%_ ) used in the forward integral equations.
Further, the numerical value associated with the collision integral operator

in Eq. (8) » gﬁ«}(r Q _Q) ,
;‘:,S‘i Z3(F)

cab be interpreted as describing the (g->g, .Q-’Q-) phase space change
experlenced by t:he adjuncton. This term identified as a new collision
operator C«s..,% T,&~>&d ) is identical to the collision integral operator “
used in the forward integral equation:

’ Z:—,%(r S)-—) Sl) —t - R
C}_,Q(r 9-%) = SJQ TICE) = Cyy(F, 02 0)-

i

The point-value defining equation modified for the Monte Carlo analysis of
adjunctons can be written as: /) “

— ~x ~ - - A (:\:" —_ A~ t PR
X; (F, 0) = Fg(F'QNTS(HY'Q)z}i( )) 343“' _()_—>SI)X3'(Y,9-). (10)
Equation (10) could provide a reasonable basis for a Monte éarlo analysis
of the adjoint problem. However the adjoint random walk would require the
additional weight correction Zs (r')/Za (F) which would be applied”after
selection of the next COlllSlOn site. To avoid the additional weigth
correction ‘“1 the following quantities are defined:

H&(?Jﬁ),, = Zt(?)xg,(?,f)), g (1)
Hy (F. Q) = Ty(F-1, BIGT, Q) "

Equation (12) may be written in “Yorrespondence with the relation of the
event value and the point value”:
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X - = - — = - =
X3 8) = (F-F, D)W(F 8) . . y
i
Since X¢O: SI) is a flux-like wvariable, the new variable Hg (T, € ) can be
regarded as an’event demsity and Gg4(7, 8) likes an, emergent particle
density. The defining equation for the ad301nt event density Hgq(%, 8)
is obtained by considering the follow1ng equation:
o

X5 (F, B) —jARzg(r) fBR m[?‘( '31)+E(F§fi—>ﬁ)7(§f(7,'fiﬂ, (3)

LN
where ?W (r,Sl ) response function of effect of interest due to
3 a partlcle which experiences an event at group g,
T and 8,
Pg (v, ﬁ)/zt(r)
responce function of effect of interest due to an
unit angular group flux.

non

P‘g @, 8)

Multiply Eq. (13) by Zj(f) and arrange as follows: ‘ a
3‘ - * _— A 8— byl - (?, R,ﬁ oy —_—t SN
ZUOXGE Q) = SRIIR T D P T 5)

+ Cyag (T S5 D) g,(_,) Z’(?’)Xj(r' )l W

-*p

Since H = Z*)L and P 24}5* Eq. (14) can be rewitten as :

HylT Q) =T (F->T &) P%(Ff 8)+Cy.y(F, B~ ﬁ)Hg(?f &) O

where et A A ,~ ,ﬁi, 2& r)
Coog (T80 =y (RO Q) ey
— “"ﬁ >
| ' Zt(F )
A comparision of Eq. (15) with Eq. (12) reveals that oo
G,(F ) - PI(F, )+ CyagCF, B QMg (7 ), a0
ty

and subsequent substitution of Eq. (12) into Eq. (17) yields the following
density equation for the emergent adjuncton density:

Gy (F.0) =PY(F 8)4Cy,q (7 B DWET, DGR X))
p oo

<

A comparision of Eq. (18) with Eq. (7) o ﬁ;

®

oo
e
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X3 (7,80 = Sy(F )+ Cpg(R H- W Tp(7Fo7, g (7,85, v

reveals that the two equations are identical in all respects and that the
Monte Carlo realization of Eq. (18) could be accomplished by the same
procedures used to simulate the integral emergent particle demsity equation,

Eq. (7). Equation (18) is actually employed for the adjoint random walk
in the MORSE code.

Derivation of Event Value Function

Divide Eq. (17) by L2 (®

Gy (F, ) PRFED) Cra(rO-%)
—————t e et == , 1
£3 (P iy Z3(F) He () o)

4)
According to Eqs. (11) and (16), and using the relationship Fﬁb(F ji) _
. R 3 ’ -
Z?(V)Py(Y'fl) »Eq. (19) can be rewitten as:
Gxgcwr D)
Zt(Y)

"

PYer ©) 4 Z‘;‘(? Cog (7 S0 (7, T,

P37, 8) + Ty (F, D00 (7, ). (20)

A comparision of Eq. (20) with the govering equation of the event value?

Wy(F,$) =PY (7,80 + Coy (F BT (7, ),

it reveals that o

z, Wy (F, 8) =6,(F Q)/52 (1), @)

G (T, 20) = Wy(F, D X3(F), (2)

because the probabilities associated with (g—,g,fi—afi) change in the phase
space coordinates during the ad301nt random walk correspond to the prob-
abilities associated with the (g-»g; j&—éil) change in phase space coordinate
that would have been experienced by the particle transportation in the
forward mode. Equation (20) has a form which can be obtained directly

from existing adjoint Monte Carlo computer codes by a minor modificationm.

D
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DESCRIPTION OF STANDARD PROBLEM AND BIASING TECHNIQUES

Standard Problem

The standard problem is almost the same as the Tang’sgexcept the
height of the cylinder, which is shown in Fig. 1. The shield configulation
consists of a right circular concrete cylinder with an axial duct (void) of
15.24 cm in diameter. An isotropic monoenergecic (the first energy group)
neutron source is uniformly distributed over the bottom surface. One
detector is located at a point just on the z-axis which is 50.0 em beyond
the top surface. 'The first 14 energy groups of the 22 group structure
are analized on the neutron transport. The cross section set for the
concrete is taken from Ref. (8), in which the maximum order of the Legendre
coefficient is truncated by P3.

Forward detector, V4

Adjoint source I

i

Radius=7.62

——

100

- fea .-

Concrete

-

”~
4
4

i
1
[
|

. p

1
|

,‘--..-
Iy
N

Isotropic | farst energy group
source uniformly distributed
on the bottom surface

Fig. 1 Geometry of concrete cy&gnder with axial
duct, source, detector, and adjoint source.

Ol
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Source Location Biasing, Source Direction Biasing

and Source Energy Biasing

It was observed by Coveyou et al; ,that the source biasing using a
reasonable a good estimate of the importance function would, in general,
yield substaintial saving in variance with relatively low cost.

A particle random walk starts off with the selection of energy group,
spatial position and direction from a source distribution function. The
source energy is of the first group in the forward mode and the energies
are from first to fourteenth group in the adjoint mode because the analysis
on the neutron transport is performed only through the first 14 energy
groups of the 22 group structure. Although the source is isotropic, only
the upward source particles can contribute to the answer in the forward
mode and only the source particles entered into the glaring angle spreded
to the top of the cylinder can contribute to the answer in the adjoint mode.
As for the source spatial location in the forward mode, particles which
originate inside and around the duct may be more important and as for the
source direction in the adjoint mode, particles which enter into inside
and around the duct may be more important because they may penetrate deeper
into the shield by streaming through the duct. Thus, the source location
biasing and the source direction biasing were employed in this study.

Since the energy flux at a detector depends on geometry and materials of
the shield, the selection of energy group using the altered distribution
function obtained from the forward mode calculation is more proper than
the flat distribution in the adjoint mode. Russian roulette and splitting
were employed routinely in all the calculations performed.

Angular Probability Biasing

The subroutine COLISN in the MORSE code is called at each collision
site to determine the outgoing energy group and the outgoing direction.
To carry out the angular probability biasing, the subroutine COLISN was
modified to use the region averaged point value from the cards prepared by
the adjoint mode calculation of the MORSE code. In the modified COLISN
subroutine, the outgoing energy is still selected from the down scattering
matrix, but the outgoing direction is selected from the biased angular
distribution function given by the followings~?".

- ’ —_ o~ ¥ - o N * - A
Y‘3 YF, 8-8) =P;X3/U‘,Q,-)/’,25_ FiXsc?, 8,y i=1, N, (23)

where YTu(E,f}*EY) = biased angular distribution function,

49 _ A A %_,t}'__/\ ~, ’
2s (7, 0-8) x LIATO-0) ¢ =
= [ ] - 7 Y,S?. AQ
IICF) 7‘3“"9’/& FEvEy D

P; = probability that polar angle cosp; will selected.
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Then the statistical weight of the emergent particles are corrected by the
following :

N
WTC = % Fi X‘;'(F) Sll)/x;(—r-, ﬁ,‘l) ) (24)

where the direction j has been selected from the biased distribution
function given by Eg. (23).

Path Length Biasing

The path length biasing technique utilizes the event value as an
importance function to select particle flight paths. To implement the
path length biasing in the MORSE code, the subroutine NXTCOL was rewritten.
When a particle emerges from a collision site with a given energy group
and direction, its flight trajectory is determined by the subroutine REGION
which calculates the regions that this particle may go through and corre-
sponding track lengths within the regions, then returns to NXTCOL. Then
the event value corresponding to the direction closest to the particle’s
direction can be determined for each region. Now that the event values
and these regions are known, the selection of the path length (or the next
collision site) can be ach%eged from the biased path length distribution
function by the followings®*"™:

o

¢

i

T;C V> T+RIDIIR = (e W,/NF)AV[ 0£1<,

)

(e_q Wz/NF)rg"[ 14 1<%,

P
-

= e™Mdy Mel M<90 | (25)

The statistical weights of the biased particles are corrected by the
followings:

_v‘[ _
€ NF
WTe = w: (& - B )
i i ..ylA e Wi
NF € 9y 1 (26)
e e = dn
i q n
where NF = normalization factor: —-—‘—_—q—:—-[j e"lw|<lq+---~ +J é"wﬂclv‘)
l - e [ T ’
W; = event value of region i.
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IMPLEMENTATION, RESULTS AND DISCUSSIONS

Application of Event-Value Path-Length Biasing
and Point-Value Angular Biasing

The event value and the point value were calculated by summing all
the particle’s weight going into a collision and emerging from a collision,
respectively, in the calculation of the standard shielding problem by the
adjoint Monte Carlo method. These procedures were used in the modified
subroutine named MORSE in the MORSE code. Actual forms of the event value
and the point value which can be obtained from an adjoint Monte Carlo
calculation are described in Ref. (10).

A comparision of three MORSE calculations is shown in Table 1. The
first is with the exponential transform, the secound with the angular
biasing and the exponential transform, and the last with the path-length
biasing. It is noted that when employing the event-value path-length
biasing or the point-value angular biasing, the fractional 'standard devia-
tion (f.s.d.) of the total fast-neutron flux at the detector is reduced
approximately 157 as compared with the f.s.d. using only the exponential
transport, however the f.s.d. of the uncollided fast-neutron flux is reduced
by a factor of 6.5 in comparision with the f.s.d. obtained from the calcu-
lation using only the exponential transform. The total fast-neutron flux
obtained from the calculation using only the exponential transform is
regarded as underestimate as compared with the results in Table 2. On the
other hand, the total flux obtained from the calculation using the event-
value path-length biasing or point-value angular biasing is recognized as
reasonable in comparision with the results given in Table 2.

Table 1 I ast-neutron flun® of forward Monte Carlo calculations
with event value and poimnt value of duct problem
Detector
Biasing schemes

Uncollided flux Total flux a7
Laponential transform with RATIL 05 10365 8 (0 59317)'v 1 6800 7 (0. 16669y  0.2058
Point-value angular biasing, source
focatton biasing and PALTH =0.5 23299 8 (0 09016) 23793 7 (0 14121) 0 1672
Cvent-value path-tength hasing R
and source location bhasing 2 5880 8 (0 09091) 2 4082-7 (0 13810) 0 2033

t Unit a/und pa soutce ieution

¢ Read as 1 0300 <10-8, with fracnonal standard deviation of 0 #9317

(h) 027 Ikthcwney (@ Fraction d standdard deswation m peeaents, 70 Potal computation tamc i angutes?
1"or cach caleulation, L soutce puticdes seore senceated

a

Iterative Forward-Adjoint Monte Carlo Calculation

The iterative forward-adjoint Monte Carlo calculations were started
off with the 1F forward mode calculation. The forward obtained from the
1F calculation was used as the source energy distribution function of the
1A adjoint mode calculation, and then the adjoint flux obtained from the
1A adjoint mode calculation was likewise used as the source -location
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distribution function of the following 2F forward mode calculation. The
source direction biasing was employed independently in the adjoint mode

of the iterative adjoint-forward Monte Carle calculations. These proce-
dures were applied till the 5A adjoint mode calculations. The exponential
transport. PATH=0.5 in the MORSE code was employed in all calculations.
Table 2 shows the fluxes obtained from the iterative forward-adjoint Monte
Carlo calculations at the detector.

'

Table 2 Tast-neutron flun® of 1terative torward-aasoint Monte Carloe calculations with
adjo:nt flun and energ) spectrum for source bias'ng of duct problem

Detectar
Iteratine B
ing schemes
mode 1a5INg

Uncoll.ded flux Total Jun g T

1F Source location biasing with the
Tang's ¢ step function and 2 5985-8 (0 033818 2.2546-7 (0.27271) v 5662
exponential transform with PATH=0.5

1A Source direction bizsing, source
energyv biasing with energv 2..1975-8 (0.17160)
spectrum of the IF and PATH=05 v

2F Source location asing with adjoint
flux of the 1A and PATH=0.5 2 7038-8 (0 (8945) 2 5014-7 (0.14960) © 1829

2A  Source direction biasing. source
energv biasing with energy
spectrum aof the 2F and PATH=0 5

3F Source location biasing with ad)omt
fu of the 2A and PATH=0.5 6684-8 (0. 06731 2 1488-7 «0Q 127160 0 1274

3A  Source direction biasing, source !
energv biasing with energy 5760-8 (0. 1261 2 4839-7 (0.11139) 0. 0884
spectrum of the 3I' and PATH=05

4F  Sopurce location iasing with adjoint "
fiux of the 3A and PATH=0.5 2.7137-8 (0 08407) 1. 9947-7 (0. 13785 0. 13501

44A Source direction biasing, source

energy biasing with energy
spectrum of the 4F and PATH=05

o
[7%}
K98
[#7]
r.
i
-1

(0 18345; 0 2379

(&1
o]
[
je]]
('f.i
w

(0. 16878) 1.9338-7 (0 12900) 0.1116

o3

to

t3

7539-8 (0.13601) 2 4153-7 (Q 114903 0.0891

5F Source Jocation biasing with adjoint *

flux of the 4A and PATH=0.5 2.5391-8 (0 08577) 2 1499-7 (0 09640 0.0788
54  Source direction biasing, source

energy biasing with energy ¢ 2.2911-8 (0 18650) 2 3047-7 10.12792) 0 1214

specirum of the 5F and PATH=05

F Forward mode A Adsoint mode
t Lmit=n cm? pe- spulce neutron
w1 Read ae 2 5985 » 10-8, with fractional standard des wation of 0 03251

(o) 02T EMciency (o Fractional standarc aeviduwon sn percens, 77 Tota) compuiation time tn minutes)
‘c; ORNL TM 34y

1 (0 source pariicles were generated for forward mode and 2,000 source partscles were generated for adwoint mode.

The f.s.d.’s of the 5F and 5A calculations are a factor of 2.8 better
than the 1F calculation and a factor of 1.7 better than the 1A calculation
in Table 2, respectively. In addition, the efficiencies”, a%T’s of the
5F and 35A calculations are approximately a factor of 7 better than the 1F
calculation and that of 3 better gyan the 1A calculation in Table 2,
respectively. It is estimated that the iterative number of 3 (i.e. 3F or
3A) is proper to obtain the sufficiently 1mproved distribution function and

the f.s.d. because there is no remarkable improvement after the successive
iteration in Table 2.
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MONTE CARLO-MONTE CARLO COUPLING TECHNIQUE

Two-Legged Annular Duct Problem

The experiment on radiation streaming was performed with the two-
legged annular duct installed in the JRR-4 swimming pool reactor. Fig.2
shows the calculated configuration for the experiment. The dimensions of
the two-legged annular duct are 180 cm height in the first-leg and 140 cm
height in the second-leg, and 20 cm in outer-radius and 10 cm in inner-
radius. The inside of the annular duct is filled with air in the Case-I
experiment and with water in the Case~II experiment. The outside of the
annular duct is filled with air in both the Case-I1 and the Case-II experi-
ment. The distance from the center of the JRR-4 core to the entrance of
the annular duct is 69 cm. The cross section set for the calculation is
taken from the ENDF-B/IV libraly and corrupted to 15 groups with the ANISN
code, in which the maximun order of the Legendre coefficient is truncated
by Pg. The first 14 energy groups of the 15 group structure are analyzed
on the neutron transport.

Monte Carlo-Monte Carlo Coupling Technique;
MORSE-MORSE Coupling Technique

It is expected that the probability of contribution of neutrons
originated in the JRR-4 core is small for the streaming through the annular
duct shown in Fig. 2. Therefor, the Monte Carlo-Monte Carlo coupling
technique is investigated to improve the standard deviation and the effi-
ciency due to the increasing of collision density in and around the
annular duct. In the first Monte Carlo calculation, a pseudodisk is placed
as a disk detector at 5 cm distance in front of the entrance of the annular
duct, as shown in Fig. 2. The disk serves as the source plane in the
secound Monte Catrlo calculation. The angular flux ¢ (¥, ) at the pseudo
disk is reserved in the first calculation, then the réserved flux is
employed as the source distribution S&(?,Zi ) of the source plane in the
secound calculation. Therefor, this coupling technique may be called as
Monte Carlo-Monte Carlo coupling technique. All the calculations were
performed with the Monte Carlo code MORSE in this study, thus the technique
can be entitlled as MORSE-MORSE coupling technique. The subroutine NESXE(
N) is developed as a estimator of the disk detector in the first calcula-
tion and the subroutines SOURCE and SDATA are modified as the pseudo disk
can be used as the source plane in the secound calculation.

Fig. 3 shows the comparision of measured6and calculated Ni(n,p)
reaction rates to the experiment shown in Fig. 2. Fairly good agreements
are obtained over all the detector locations. Especially the standard
deviations of the detectors located cutside of the first-leg of the annular
duct ( filled with air ) are less than approximately(.l. Computation time
to each detector is less than 5 minutes for 8000 histories by FACOM M-200
computer.

x
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CONCLUSIONS
,’J t

) A

The event valle Wg(E,Sl ) is derived in a form which can be obtained
directly by a minor modification from existing adjoint Monte Carlo codes.
It is demonstrated that the event value and the point value functions can
be employed as importance functions for the path-length biasing and the
angular biasing in the forward Monte Carlo calculation, respectively.
These value functions obtained from the ad301nt Monte Carlo calculation
can be applied directly as importance functions in the1forward Monte Carlo
calculation.

The iterative forward-adjoint Monte Carlo method using the source
biasing is effective to reduce the f.s.d. and to obtain the improved
distribution functions by a relatively low cost. The source location
biasing and the source direction biasing are substantially effective to
reduce the f.s.d. in the standard problem.

It is revealed that the Monte Carlo-Monte Carlo coupling technique
is effective to reduce the f.s.d. especially in a radlatlon streaming
problem in which the entrance of the duct is apart/from the source of
particles.
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APPLICABILITY OF MONTE CARLO CODE KENO-1IV

i

H. Yamakoshi
Ship Research Institute, Ministry of Transport of JAPAN
6-38-1. Shinkawa, Mitska-Shi, Tokyo, JAPAN

g

ABSTRACT

Experimental data on criticality of a subceritical asse-
mbly was analyzed by Monte Carlo code KENO-IV for the purpose
of verifying applicability of the code in the calculation of
multiplication factor Kgff for hetorogeneous systems consist
ing of fuel rods about two hundreds.

Analysis was focused on studying influence of difference
in adopted lattice constants upon calculated Keff. Two sets
of lattice constants were generated from group constants
calculated by a transport code WIMS-D; One was generated with
transport approximation. The other was , on the other hand,
without the transport approximation, i.e. diffusion approxi-
mation

Following conclusioas are obtained. (1) The transport
approximation is inevitable for generating lattice constants
for KENO-IV calculation. (2) Applicability of KENO-IV is
dependent much on lattice constants used.

INTRODUCTION

In general speaking, Monte Carlo code KENO-IV is thought to be
powerful for criticality analysis of neutron multiplication systems
with strong heterogeneity. In the case of system consisting of few
numbers of fuel rods, detailed geometry of each fuel rod is described by
input data fed to the code KENO-IV. However, as the number of fuel rods
increases, one can not give detailed description of gecmetry for each
fuel rod to the input data because of limited machine memory. In such
case, one is obliged to homogenize the system by assigning lattice cons-
tants for fuel rods on each position of fuel rod as is usual procedure.

Aim of this report is to show influence of adopted lattice constants
upon Kgff calculated by the code KENO-IV. As a result, applicability of
this code will be discuused. 1

In what follows, experimental data™ will be shown at first. Next
will be explanation of procedure for genarating lattice constants. The
procedure for performing transport approximation will also be shown. ©
Calculated K, .. will be shown in the 3rd section with discussion on

applicability of the code KENO-IV. Concluding remarks come at the last
section. !
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EXPERTMENTAL DATA
Low enriched 225 fuel rods are soakedlin light water making squared
array of 15x15. Table 1 shows lattice structure of effective unit cell.

Table 1. Lattice Structure

4

a
Lattice |Fuel Inner Radius|Outer Radius |Effective [Vyater
Pitch Radius |of Cladding |of Cladding |Radius —

Viuel

(cm) (cm) (cm) (cm) (cm)
2.293 0.625 0.6325 0.7085 1.2937 3.0
) -
>

a . :1‘\
Water to fuel volume ratio 1

Criticality is attained for water level of 90.65 cm at 15.6°C and of 90.
56 ecm at 16°C. Their avaraged value is 90.6 cm.

Reflector savings for axial direction z and horizontal direction r
are 11.1 ¥ 0.5 (cm) and 14.0 ¥ 0.8 (em), respectively. Buckling B, for
axial direction is given by:

BZ = [7/(90.6 T 11.1)]12 L

- Pl

Buckling B, for horizontal direction is given by:
B2 = [2.405/(R + 14.2/2)72 (2,

where R = (2.293x15)2/7

LATTICE CONSTANTS

A transport code WIMS-D was used to calculate neutron flux for, 69~
group structures with attached cross section data library. Obtained
neutron flux was used to calculate group constants'for neutrons in 10-
group structures. Finally, region averaged 3-group constants were obtained,
for each region. Table 2 shows meshing scheme for each region in an unit
cell. Tables 3 and 4 show group structures for the 10- and 3- groups,
respectively. Table 5 shows lattice constants as output from the code
WIMS-D. Table 6 shows lattice constants in transport approximation.

In the transport approximation, transport cross section L., was defined
as follows in terms of diffusion coefficient D -

pX D/3 ; (3)
. tr o

1t

o



347

As a result of definition of the transport cross section by equation 3,
values of cross sections were slightly changed; These changes were compen-
sated by a sort of scattering cross section Ly defined by following rela-
tions:

1

; Ztr= Za+ Zé
(4)
2. = L +1
tot a S "
£}

. eiwi . . [ .
As a result, cross section X obtained by following substitution was
adopted as scattering cross section from group i to group i itself. §

iri i i ii ())J

X - - —_— :
s ( tot tr) s ‘s*d W, )

1 $}
Where the leftest scattering cross section is just output from WIMS-D code.

Table 2. Meshing Scheme of Unit Cell

Region|Material |[Radius(cm)|Meshes [Mesh Width(cm)| Temp.

L Pellet 0.6250 5 0.125 p 20°C
2 Air Gap 0.6325 1 0.0075 20°¢C
3 Aluminum|{0.7085 3 0.02533 20°C
4 L. Water|1.2937 6 0.09753 ‘ 20°.C

. CALCULATED Keff

o

H
Table 7 shows results of criticality analysis. In the present
analysis, the quantity K f was also calculated by CITATION code, as well
as KENO-IV code. LatticC constants without transport approximation was
used for CITACION calculation. Hansen-Roach 16-group constants were used
for calculation of K by the KENO-IV code ,too.

. It should be noticed that application of lattice constants in trans-
port approxiﬁation gives very ‘good explanation of experiment, while lattice
constants in diffusion approximation, i.e. without transport approx1mat10n,
fails in explanation of experiment by KENO-IV calculation.

CITAION code and KENO-IV code with Hansen-Roach 16-group library give
fairly good result.

Qg

L

Conclusion

Transport approximation is inevitable for generation of lattice
constants for KENO-IV. code. Applicability of KENO-IV code depends much
on lattice constants adopted.

L >
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Table 3

1

10-Energy Group Structure

GN | Lower Energy Limit
1 821.0 KeV
2 5.53 KeV Table 4
3 3.3 eV "
4 0.625 eV”® 3-Energy Group Structure
3 0.350 eV GN'| Lower Energy Limit |
61 /}0-220 eV 1 5'53 Kev
7 0.100 eV y 0 e25 eV
8 0.050 eV | | % 0.0 e
9 0.010 eV - . ;
10 0.0 eV
o
- Table 5
Lattice Constants Obtained by WIMS-D y
( For Fuel Region ) '
GN D La VZ g, Ly
1] 1.3233+0 { 2.6007-3 | 3.8732-3 | 4.8815-1
2| 6.8094-111.5921-2 | 8.3484-3 | 1L.1585+0
312.3323-1]7.6489-2 | 1.1314-1|2.3565+0
GN pot PO 523
1 4. 3280-115.2746-2 | 5.0982-0
2 10.0 1.0460+0 | 9.6610-2
310.0 3.3365-4 | 2.2797+0 Y
GN stands for Group Number -
( For Water Reflector Region )
GN D La V2 f L
1 1 1.590440 [ 2.5594-4 { 0.0 |5.6588-1
2 | 6.0454-1 1 9.0793-4 { 0.0 | 1.4794+40
3 ]1.6042-1 | 1.8894-2 { 0.0 |3.075640
GN gl s vg3
T 14,931 -1177.246 -2 8.845 -6
2 /0.0 1.327 +0 | 1.516 -1 | Py
3]0.0 - 7.821 -5 1 3.0566+0
113
GN nst 5e” Is>
T [6.690 -1 | 4.411 -2 |16.086 -8
2 (0.0 2.535 +0 |1.881 -1 | P
310.0 6.024 -4 |1 3.057 +0
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Table 6.

Lattice Constants Used in KENO-VI
( For Fuel Region )

GN D Ta VZf Ztr
i 1.3233+0 12.6007-3 [3.8732-3 1 2.5190-1
2 6.8094-1 |{1.5921-2 |8.3484-3| 4.8952-1
3 2.3323-1 |7.6489-2 |1.1314-11 1.4292+0
GN sl rs 2 5s3
1 1.9655-1 |5.2746-2 |5.0982-6
2 0.0 3.7697-1 |9.6610-2
7 3 0.0 3.3365-4 | 1.352440
( For Water Reflector Region )
GN D Ta UL F Ttr
I 1.5904+0 Z.55094=-4 0.0 2.0959-1
2 6.0454-1 [9.0793-4 0.0 5.5139-1
3 1.6042-1 11.8894-2 0.0 2,0779+0
[Gn £s” se” Is”
1 1.3681-1 | 7.246 -2 [ 8.845 -6
2 0.0 3.960 -1 }1.516 -1
3 0.0 7.821 -5 | 2.0590+0
Table 7. Calculated Keff qﬁkjgtf
Code Name|Group Comnstants K,ce Comments
Hansen-Roach +
- .03230 T 0.006
KENO-TV (16-Energy Groups) !
Output from + Without
KENO-IV WIMS-D Code 1.13507 = 0.007 Transport
Approximation
Output Irom + With Transport
RENO-IV 1 y1Ms-D code 1.01686 - 0.006 | 4pproximation
Output from
CITATION |y1Ms-D Code 1.00448
¢ —
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