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A new method of calculating total energies of solids using non-local 
pseudopotentials in conjunction with the variational quantum Monte 
Carlo approach is presented. By using pseudopotentials, the large fluc­
tuations of the energies in the core region of the atoms which occur in 
quantum Monte Carlo all-electron schemes are avoided. The method 
is applied to calculate the cohesive energy and structural properties 
of diamond and the first ionization energy and electron affinity of the 
carbon atom. The results are in excellent agreement with experiment. 

A natural first step towards a full many-body theory of both strongly 
and weakly correlated electronic systems is the variational quantum Monte Carlo 
(QMC) approach. However, a straightforward application of the method to the 
electronic properties of real materials containing heavier atoms has been severely 
hampered by the very rapid growth in the required computation time with in­
creasing atomic number'1'. The growth is caused primarily by the fluctuations 
in the energies of electrons in the core region. This problem has prompted our 
development of a quantum Monte Carlo pseudopotential approach'3', which in­
corporates the effects of the core electrons in an ionic potential. The ionic pseu­
dopotentials used are those generated'3' for local density-functional (LDA) cal­
culations. The integral operator which arises in the non-local pseudopotential'3' 
makes the present problem different from previously considered QMC problems. 
However, this operator can be evaluated statistically within the variational QMC 
method with a computational effort comparable to that for the kinetic energy'2'. 

In the present approach, we choose a correlated trial wavefunction for the 
valence electrons of the form: 

^i - l »<><)<JV J 
* ( r , , . . . , r w ) = e x p ^ E x f r . ) - E uf,ri))\ D(ri r " ) . (1) 

where D is a Slater determinant of single-particle wavefunctions. We will use 
the LDA single-particle wavefunctions'4'. For this wavefunction we evaluate the 
expectation value of the exact many-body Hamiltonian for the valence electrons 
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in an external potential due to the ions. In the present calculation, the kinetic and 
electron-electron energies are evaluated as in Ref. 5. The external potential is the 
sum of the ionic pseudopotentials which have a local and a (short-ranged) non­
local part. The many-body integrals are evaluated using the Metropolis Monte 
Carlo algorithm'*' for importance sampling. 

The two-body correlation term, u(r 1 3), in the Jastrow factor lowers the 
energy by reducing the probability of two electrons coming close together. In 
the Bolid, u(r,j) is chosen to be of the standard form'7', u(r) = A(l — c~'/F)/r. 
In the atom, u(r) = — ar/( l + br). The variational parameters, A and F in 
solids and a in atoms may be fixed by physical constraints'2'. We set x(r) = 
alog|px, u=o(r)/px=o(r)|/2, w ' i e r e P(r) '" t n e charge density and a is a variational 
parameter. The optimum value of a is close to 1, as expected, since the LDA 
charge density is generally quite good. 

We have applied the method to study the cohesive energy and equilibrium 
lattice constant of diamond. A simulation supercell containing 16 atoms (or 64 
electrons) in the diamond structure with periodic boundary conditions was used. 
For some calculations, a larger region containing 54 atoms (or 216 electrons) was 
used to determine finite size effects. The size dependence for larger simulations 
is determined almost entirely by the convergence of the one-body terms, as given 
within band theory by the k-point sampling of the Brillouin zone. 

We have performed calculations for C{3P), C+^P), and C~[*P). In each 
case, the b,a parameter space was searched to determine the optimal parameters. 
Since the atoms are spin-polarized, we have used different x-functions for different 
spin types, although for reasons of simplicity we have kept a single variational 
parameter a. The calculation was repeated for C and C+ using the same form 
of u as in the solid. Both forms of u give essentially the same total energies for 
each system. 

The correlation energies for the valence electrons in the atom and the solid 
are found to be 2.4 ± 0.1 eV and 4.1 ± 0.2 eV/atom, respectively. This is in 
reasonable agreement with recent calculations of Stollhoff and Bohnen'8' for the 
valence electrons in an all-electron calculation using a similar ansatz for the many-
body wavefunction but evaluating the energy by perturbation techniques. The 
value of the Hartrce-Fock cohesive energy obtained using LDA wavefunctions in 
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a single Slater determinant is 5.85 ±0.25 eV/atom, in agreement with the results 
of Ref. 8. 

The calculated correlation en-
Table I. Correlation energy contributions . ., .. . , . . , » „. 
to electron affinity and first ionization po- " « * ^"'"but.ons to the electron aff-
tential (in eV). Statistical error in the last inity and the first ionization poten-
digits is in parentheses. 

LDA 
QMC 
Expt. 

E. A. 

C~ unbound 
0.157(5) 
0.72 

1st I. P. 

0.97 
0.57(5) 
0.47 

Carbon Atom Diamond Cohesive 

Theory: 
(a) -146.79 
(b) 
W 

Expt. 

•145.55(7) 
•147.93(3) 

•155.42 
• 151.3(2) 
-155.38(6) 

8.63 
5.85(25) 
7.45(7) 
7.37 

tial of carbon, together with LDA 
results and experimental values, are 
presented in Table I. The improve­
ment over LDA results is very sizable 
and the agreement with experiment 

is good. (The LDA result quoted is 
Table II. Total energies (in eV/atom) for ., ..a- ,_ » i L e L • . TI->A n . i w » n i -»L. • i a *. the difference between the first lon-l&j LDA, (b) Monte Carlo with single Slater 
determinant, (c) with Jastrow function and ization potential obtained from LDA 
a Slater determinant, and for experiment. ^ t h a t f r o m Hartree-Fock.) 

The final results for the cohe­
sive energy of diamond in the present 
approach are shown in Table II and 
compared with the LDA results. The 
QMC value for the cohesive energy 
is in excellent agreement with exper­
iment, in contrast to the overbinding 
of 1.26 eV/atom in LDA. The results 
obtained from the QMC calculations 
of the energy as a function of lattice 
constant are fitted to a Murnaghan 
equation of state, as shown in Fig. 1. 
We obtain a fitted equilibrium lattice 
constant of 3.54 ± 0.03 A and bulk 
modulus of 420 ± 50 GPa, compared 

„. „ _ , , , , , ,. with experimental values of 3.567 A 
Figure 1: Calculated total energy of dia­
mond as a function of the ratio of the lattice and 443 GPa. respectively I4'. 
constant to the measured lattice constant. . . . , , 
The error bar. indicate the standard devia- ^ c o n < : l u s ' ° n . w e h a v e P«f°r-
tion of the mean in each QMC calculation, med variational quantum Monte Ca-

-163.3 

-155.4 -H / • 

-155.6 p 
-1S5.B 

1.30 

a/a„ 
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rlo calculations of the cohesive energy, lattice constant, and bulk modulus of a 
solid and the first ionization potential and electron affinity of an atom, using 
non-local pseudopotentials. We demonstrated the computational feasibility of 
the method and obtained results in excellent agreement with experiment for di­
amond and for atomic carbon. The method opens the possibility of performing 
variational quantum Monte Carlo calculations for the valence electrons of solids 
and atoms involving elements beyond the first row of the Periodic Table. 
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