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The interaction of pressure pulses with different piping components

(elbows, valves, pumps, heat exchangers, etc.) and with one another, when they

meet, can produce a variety of reflected pulses and pressures. The result is

a complex system of pressure pulses that may cause plastic deformation, and

possible structural damage to the piping system. To safely assess the

adequacy of such a piping system, one should use real ist ic methods of modeling

the hydrodynamic and structural aspects of the problem. One-dimensional

analyses, typically employed, using the methods of characteristics is limited

to using straight pipes and loss coefficients to simulate hydrodynamics in a

pipe netv/ork. Furthermore, modeling deformable pipes as a series of dis-

connected rings subjected to the radial pressure of the internal f lu id ignores

bending and shear effects as well as the flexural interaction of the system.
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The SHAPS code ' couples three-dimensional pipe elements and elbows with two-

dimensional hydrodynamics in order to account for fluid-structure interaction,

motion of f luid due to moving pipes, and deformation of the structure. Each

pipe element is formulated with eight degrees of freedom per node to consider

translation, rotation, and membrane bending and breathing modes of the struc-

ture in order to calculate the stresses arising from internal pressurization

as well as the three-dimensional flexural motion of the piping system;
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Development of transient, three-dimensional, coupled, f lu id -s t ruc tu re

interaction computational methods has led to some important formulations wi th-

in the SHAPS code. Methodology has been established to t reat global elbow

motion, internal baff le plates, and isolated flow regions. As a resu l t ,

important effects of global structural motion and changes of flow area as well

as flow direct ion can be properly included in the analysis. Elbow motion

plays an important role in the propagation of pressure transients in piping

systems. In previous analyses the global motion of the elbo.w was considered

as a body force in the hydrodynamics, similar to the manner of t reat ing the

gravitational force. Recent test calculations have shown that th is approach

tends to over-attenuate the pressure peak as i t passes through the elbow. To

improve this s i tua t ion , a new scheme has been developed to r igorously account

for the 'global elbow motion.

As the elbow moves in three-dimensional space i t carries the flowing

f l u i d along with i t . The hydrodynamic f in i te-d i f ference mesh i s , l ikewise,

assumed to be carried along with the elbow without changing i t s shape or

size. Nevertheless, the f l u i d remains free to sl ide along the elbow wa l l .

Such motion of the f in i te-d i f ference mesh must be considered in the hydro-

dynamic equations in the global coordinate system. To implement this.- these

equations are derived with respect to the moving elbow. Figure 1 show.? a

three-dimensional elbow junction and the control volumes for the derivation of

the two-dimensional mass and momentum hydrodynamic equations.

The a b i l i t y of the SHAPS code to rigorously account for three-dimensional

structural response is equalled by i t s capabil i ty for handling internal hydro-

dynamics. A sample problem is presented, schematically, in Fig. 2 as a SHAPS

model of a primary heat transport system (PHTS) in a loop-type LMFBR, complete

with varying pipe diameters, elbows, and in - l i ne components. A disrupt ion
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within containment would propagate pressure pulses in both directions around

the loop, simulated here by a 4 MPa pulse at the outlet and a 2 HPa pulse at

the inlet.

A sequence of pressure profiles of the primary loop appears in Fig. 3,

where the loop is stretched out linearly for graphical representation. Many

aspects of pressure pulse interaction with components can be observed from

this figure. Note that at 30 ms, the inlet and outlet pulses reach super-

position and the peak pressure of 6.5 MPa is recorded between the pump and

IHX.

The present form of the three-dimensional SNAPS code offers superior

methodology and advanced modeling capabilities for the analysis of reactor

piping systems.
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Fig. 1. Elbow Configuration and Control Volumes for Derivation of Hydrodynamic Equations
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Fig. 2 a) Schematic of SHAP5 Mathematical Model of LMFBR Primary Coolant
Loop; b) Detail of SHAPS Model of the Components of the Primary
Coolant Loop
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Fig. 3 Pressure Profiles at Various Times Along the Length of the SHAPS
Model of the Primary Coolant Loop
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