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Lithium was chosen as the simplest known metal for the first application of 
quantum Monte Carlo methods in order to evaluate the accuracy of conventional 
one-electron band theories.' Lithium has been extensively studied using such 
techniques. The KKR method [1], the linear muffin tin orbital method (LMTO) 
[2], the augmented spherical wave method (ASW) [3] and a linear combinations of 
gaussian type orbitals (LCGTO) method [4] agree in their predictions of the equa­
tion of state. Thesj results are also consistent with experimental data available 
at low compressions [5j [6] and agree with quantum-statistica"-models [7] [8] at 
high pressures. 

Band theory calculations have certain limitations in general and soecifieally 
in their application to lithium. Results depend on such factors as charge shape 
approximations (muffin tins), pseudopotentials (a special problem for lithium 
where the lack of p core states requires a strong pseudopotential), and the form 
and parameters chosen for the exchange potential. The calculations are all one-
electron methods in which the correlation effects are included in an ad hoc 
manner. This approximation may be particularly poor in the high compression 
regime, where the core states become delocalized. Furthermore, band theory pro­
vides only self-consistent results rather than strict limits on th'e< energies. The 
quantum Monte Carlo method is a totally different technique usin^ a many-body 
rather than a mean field approach which yields an upper bound on the energies. 

QUANTUM MANY-BODY ALGORITHM 

The SehrSdinger equation was solved for a system of M fixed lithium atoms 
and W=3Af electrons using the quantum Monte Carlo algorithm previously 
developed for the electron gas [9] [10]. This technique does not approximate the 
3N dimensional problem by reducing it to a set of equations of lower dimen­
sionality, but solves it exactly within statistical error bars. The algorithm 
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involves several phases of progressively greater accuracy - the variational, the 
diffusion and the Green's function Monte Carlo methods, which yield upper 
bounds to the ground state energy, and the released node Green's function Monte 
Carlo method, which provides exact answers within statistics. la this preliminary 
study, various trial wavefunctions were explored in ovder to determine the 
optimum form for a fixed amount of computational time using the variational 
and fixed-node schemes. The choice of the trial wavefunction is a trade off 
between a simple analytic form which is computationally fast and a more accu­
rate but complex form which is difficult to sample efficiently. 

Variational Monte-Carlo [ll]. Variationally, the total energy of a system of 
Hamiltonian H is given by the minimum with respect to the set of all possible 
trial functions *,• of 

/ • r H * r £ _ M j n i _ i L . (1 
•r / | * r | 2 

In practice, * r is a parameterized expression for which the integral (1) is com­
puted using the Metropolis Monte Carlo algorithm. The resu.: is an upper bound 
on the energy that is dependent upon the nature of the trial wave function. The 
standard form of * r consists of a Slater determinant of one-body states multi­
plied by a pair product Jastrow factor which incorporates two-body correlation 
effects. For lithium, three different forms were used for the elen: ^nts of tne deter­
minant. In the simpler cases, the localized states were taken to t - Gaussians with 
a width parameter and the delocalized states were treated as pla e waves. In the 
third case, a more complex form was generated from band theory Harge densities 
as discussed below. 

Diffusion Monte Carlo. The diffusion Monte Carlo algorithm [12] computes a 
more accurate solution of the Schrodinger equation using a trial function gen­
erated by the variational Monte Carlo technique. The 5chr3dinger equation in 
imaginary time is treated as a diffusion equation with the potential acting as a 
branching birth and death process. The solution converges exponentially to the 
ground state. The wavefunction • satisfies 

H *(£,,) = ! - E ^ V , " + V(B)-Br\iHB,t) , (2) 

where U is the 3W dimensional vector of the electronic coordinates, t is the ima­
ginary time and 

V ( * ) = £ ^ - ^ + £ ^ £ i l , (3) 

is the potential energy of the solid using standard Coulomb interactions. ET is a 
constant trial energy which is subtracted from the potential energy for computa­
tional convenience. The sums run over the electronic coordinates i ,j and the 
fixed atomic lattice sites a,0 with r,tm\r,-rt \. A finite simulation cell with 
periodic boundary conditions is used, with the potential energies evaluated by 
Ewald summation. 
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The wavefunction * can be interpreted as the density of diffusing particles as 
long as it is everywhere of one sign. This is not the the case for fermion statistics 
where the many-body wavefunction changes sign at the nodes. However, this 
difficulty can be overcome by using a trial wavefuncticu * T , whose nodes act as 
absorbing barriers to the diffusion process. The probablity density defined by 

/( i?, t) = *r(ff)*(ff.f)«pHE r-E.)M . (4) 
obeys the diffusion equation 

,*!££, . _££ v / ) v /, _ , v, „ , t r , , _ {S*^Br]J (5) 

which is derived from the Schr&dinger equation. E, is the exact ground s'.ate 
eigenvalue corresponding to the eigenfunction *. This equation is solved in each 
of the regions bounded by the trial function nodes as before, however now the 
trial function plays an important role in reducing the branching term - a process 
known as importance sampling. 

The fixed-node approximation imposes the constrairt that the wavefunction 
has the approximate nodal surface of * T leading to a upper bound criterion on 
the energy. In principle, the nodal surfaces could be varied to obtain the best 
upper bound on the energy. In general, however, it is difficult to parameterize 
• r in a systematic fashion. For the electron gas, the dependency upon the loca­
tion of the nodes of the trial wavefunction was weak [10], however for an accu­
rate upper bound # r should be chosen as close to the true ground state 
wavefunction as is feasible. 

Green's Function Monte Carlo. The SchrBdinger equation recast into integral 
form can be solved by Monte Carlo sampling of the exact Green's "unction G 
[13]. This avoids the error incurred in the diffusion Monte Carlo algorithm by 
the use of a short time step expansion approximation of G. Exact evaluation of 
G coupled with nodal release leads to the stochastically exact solution of the 
Schrodinger equation. 

Trial wavefunction. The general form for the wavefunction that has been 
used successfully in previous studies consif's of the product of a Slater deter­
minant of single particle orbitals multipled by a Jastrow factor J : 

* r = d « | * , ; | d « | * i 7 ' | J , (6) 
where the *,, are the one particle wavefunctions of the Slater determinant, with 
the superscripts * and " denoting the two possible spin states. The determinantal 
form provides the required fermion antisymmetry. The Jastrow factor 

N N.U 

j =«p(-2>,,. -£„,.„) ( 7 ) 

involves a sum of the electron-nuclear and the electron-electron pair correlation 
factors. These exactly incorporate the cusp conditions - the singularities of the 
wavefunction for zero pair separation due to the coulombic divergence of the 
potential. The Jastrow factor is computed using the random-phase approxima­
tion [11]. 
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Two forms of Slater determinant trial function were implemented. In the 
first calculation, * consisted of Gaussians with parameterized widths centered 
about the lattices sites for localized states and plane waves for the delocalized 
orbitals. At extreme compressions where the Is state was expected to be delocal­
ized, all the Slater determinant states were taken to be plane waves - a form 
which should yield a lower energy. Such simple analytical forms have been suc­
cessfully applied to molecules (12) the electron gas [lOj and molecular and metal­
lic hydrogen (with emphasis on the metallic transition) [14]. For highly 
compressed lithium, however, it was desirable to introduce a wavefunction which 
provides a continuous transition from a localized to a delocalized form. Conven­
tional band theory techniques provided such a function. Specifically, the single 
particle orbitals in the Slater determinant part of + r were taken from an aug­
mented plane wave (APW) calculation. The electron-nuclear Jastrow factor was 
suppressed as this cusp condition is correctly accounted for in the APW func­
tions. 

The APW method uses Bloch's theorem to reduce the description of a cry­
stalline solid to a calculation in the primitive cell. This results in a set of coupled 
one particle Schr6dinger equations which are solved by a discretization in recipro­
cal space. This discretization is introduced by considering only those functions 
which are periodic on the scale of a few unit cells. 

The APW method builds solutions of the Schr3dinger equation by solving 
the radial equation inside the muffin tin sphere and matching them to linear com­
binations of plane waves in the interstitial region. The APW wavefunctions are 
generated according to the formulae: 

VW7+/?,-) - S 2 «< rn(R ) «*'*' «*arC) • (8) 
R i 

where et are the standard APW coefficients [15] , R are the set of rotations leav­
ing the crystal invariant, r„ ( r ) are the matrix elements of the invariant group of 
the vector It, % — F + Rt (#,• a reciprocal lattice vector) and .?,• is a lattice site. 
The function 

*R?M = 2 o t a ( R i ; ) » , ( r ) } U r ) , (9) 

is the muffin tin solution expressed as an expansion in spherical harmonics. Out­
side the muffin tin the solution is expressed as a sum of plane waves 

R •' 

where the «,• are the matching constants from the APW functions of equation (S). 

The APW calculations were performed using the same number of points (F 
values) in the Brillouin zone as there were lattice sites in the quantum Monte 
Carlo calculation (32 for FCC, 16 for BCC). This provided the correct number of 
single particle orbitals for the quantum Monte Carlo trial function. The max­
imum angular momentum value / was taken to be 13 in the APW calculation 
and restricted to 3 in the subsequent generation of the wavefunction. The / 
values in the wavefunction could be limited to the s,p,d, and f states since this 
was sufficient to represent the charge density. The APW calculations were per­
formed for a few densities \ising an increased number of / and R values without 
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significant changes in the energy and pressure. The APW results agreed with the 
detailed band structure at normal and 10-foM compression [4] and with the ener­
gies and pressures [3] obtained from more accurate band theory calculations, to 
within the uncertainty caused by number dependence and exchange potential 
parameters. In particular, the APW results showed that the 2s-2p band is not 
free-electron-like at 10-fold compression, Indicating that a plane wave trial func­
tion is a poor choice. At higher compressions, both the Is and 2s-2p bands are 
free-electron-like and energies and pressures approximate Thomas-Fermi model 
results. 

Table 1. Quantum Monte Carlo variational and fixed-node diffusion energies 
for lithium at various densities. Energies are in Rydbergs. Densities 
are given in terms of the Wigner-Seitz radius r, and the compres­
sion. The calculations are for 16 and 32 atoms in the simulation 
box. The trial functions are Gaussian and plane wave (g-pw), all 
plane wave (pw) and APW (apw). Errors in the last digit are given 
in parentheses. 

De nsitv M = 1 6 atoms M = 3 2 atoms 
r. Comp rf P. K, tf K F,i 

3.500 0.263 g-pw -14.78(1) -14.67(1) 
3.000 0.418 g-pw -14.84(1) -15.01(1) 
2.500 0.722 g-pw -14.90(1) -15.03(1) 
2.260 0.978 g-pw -14.91(1) -15.03(1) g-pw 

apw 
-14.92(1) 
-14.87(1) 

-15.00(1) 
-15.02(1) 

2.100 1.219 g-pw -14.90(1) -15.03(1) 
2.000 1.412 g-pw -14.88(1) -15.00(1) apw -14.87(1) 
1.800 1.936 g-pw -14.85(1) -14.96(1) apw -14.84(1) 
1.600 2.757 6-pw -14.74(1) -14.88(1) apw -14.77(1) 
1.400 4.115 apw -14.66(2) 
1.250 5.783 g-pw -14.00(1) -14.39(1) apw -14.49(3) 
1.000 11.289 g-pw -13.34(1) -13.43(1) g-pw -13.60(1) -13.78(1) 

pw -11.36(1) -12.57(2) apw -13.99(1) 
0.800 22.067 g-pw -11.22(1) -11.32(1) g-pw -11.81(1) -11.93(1) 

pw -10.82(1) -11.77(1) apw -12.89(1) 
0.750 26.766 g-pw 

pw 
-10.30(1) 
-10.52(1) 

-10.38(1) 
-11.33(1) 

0.700 32.940 apw -11.26(1) 
0.650 41.115 g-pw 

pw 
-7.39(1) 
-9.45(1) 

-7.49(1) 
-10.13(1) 

0.600 52.307 apw -9.48(1) 
0.500 90.334 pw -5.13(2) -5.64(1) pw 

apw 
-3.17(1) 
-5.12(1) 

0.226 978.220 DW 61.70(41 61.50(11 
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RESULTS AND DISCUSSION 

Quantum Monte Carlo calculations were performed on a supercell with 
periodic boundary conditions, the atoms being located at fixed crystal lattice 
sites. Although fixed atomic sites are not required by the quantum Monte Carlo 
algorithm, in contrast to band theory methods, in practice regular BCC or FCC 
structures -were simulated. Present calculations are not sufficiently accurate to 
determine the type of crystal structure. Different structures were used primarily 
to determine the number dependence correction. Simulations were performed on 
cubic supercells consisting of 48 or 162 electrons (18 or 54 atoms) for the BCC 
structure and 96 electrons (32 atoms) for the FCC structure. Experimental data 
as well as band theory calculations indicate a close packing structure (HCP or 
FCC) for the o' K isotherm at low pressures [4\ [16[ [17] [18|. 

Preliminary calculations of lithium using 16 atoms per simulation box and 
simple trial functions were performed over a compression range from 0.263 to 
1000. Mixed Gaussian and plane wave trial functions were used at low to inter­
mediate densities and planes waves alone at extreme compressions. The results 
are shown in Table 1 and Figure 1. The large energy gap between the variational 
and diffusion etfergies for the plane wave trial function at intermediate compres­
sions indicates that the trial function is not of an optimal form. It is necessary to 
reintroduce the electron-nuclear Jastrow factor and multiply both Jastrow terms 

8 = t = S = « = S i 

Legend 
O »oHo»onol q-P" 
• dHlmtop q-pw 
D igrlollonel p» 
* d»-uiiowpw 

Compress ion 

Figure 1. Variational and diffusion energies vs. Compression for quantum Monte 
Carlo calculations of lithium using X6 atoms in the simulation box. 
Trial functions are Gaussian Is, plane wave 2s-2p (g-pw) and plane 
•wave Is, 2s-2p (pw) as indicated. Error bars are too small to be seen 
on this scale. 
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by a variationally optimized parameter in order to incorporate more of the pair 
correlation energies. This should reduce the difference in the variational and 
diffusion energies as well as the discontinuity in the energies of the two types of 
trial functions at the crossing of the energy curves. This crossing near 25-fold 
compression indicates the approximate location of the delocalization of the Is 
core states. The result is consistent with band theory estimates of delocalization 
in the 30-300Mbar range. 

Figure 2 shows the energies near normal density. The minimum of the curve 
gives an estimate for the equilibrium lattice constant which is consistent with the 
accepted value of 6.48 a.u. For low to intermediate densities, the difference 
between the variational and diffusion energies is on the order of O.lRydbergs (see 
Table 1). Previous quantum Monte Carlo simulations of the electron gas at com­
parable densities yielded a lowering of the energy of 0.004Rydbergs [10], indicat­
ing that the electron gas is a much simpler system than lithium. However, calcu­
lations of Li 2 shoved a variational-diffusion energy difference of about 0.04Ryd-
bergs |12). Thus the trial functions rsed here for metallic lithium are of compar­
able quality to those used in the molecular case. The number dependence correc­
tion for metallic lithium is of the same order of magnitude as the variational-
diffusion energy difference (compare the results for 16 and 32 atoms in Table 1). 
At normal compression, the size correction of .IRydbergs is the same as for the 
electron gas of the same density. 

O Yoflallorm* a-p* 
• dlNmtow Q-Pw 

Compression 

Figure 2. Variational and diffusion energies vs. Compression for quantum Monte 
Carlo calculations of lithium using 16 atoms in the simulation box 
near normal density and Gaussian Is, plane wave 2s-2p (g-pw) trial 
functions. 
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The calculations have been carried out for crystals expanded to 4 times the 
normal density using trial functions with Gaussian l» and plane wave i> orbitals. 
Additional simulations are underway using localized states (Hermann-Skillman, 
simple Gaussian, or Wannier) for all the electrons. The density at which the 
energy curves for the two kinds of trial functions cross will then locate the Mott 
transition - the derealization of the 2« states. 

In order to study the core derealization regime and for comparison with 
band theory, a 32 particle crystal was simulated using both simple and APW 
trial functions. The APW trial function was a factor of 4-5 times slower to sam­
ple than the simple Gaussian-plane wave form. This was offset by the significant 
lowering of the variational energies (see the preliminary results shown in Figure 3 
and Table 1) and should also be reflected by a more rapid convergence in the 
diffusion calculations. To compare with band theory, the energies relative to that 
at normal density are plotted in Figure 4. The variational quantum Monte Carlo 
values are in reasonable agreement with both the ASW [3] and the LMTO [2] 
results. At extreme compressions, the variational values satisfy the pvi/3 equa­
tion of state of Thomas-Fermi-Dirac models. 

More calculations are required before the quantum Monte Carlo algorithm 
can be used to assess the accuracy of band theories. The Jastrow terms for both 
the simple and the APW trial functions must be optimized and used in diffusion 
and Green's function runs at selected densities. These simulations are presently 
underway. Dependence of the results on the number of particles must be taken 
into account by extrapolation to the infinite particle number limit using a fit for 
several supercell sizes at several densities [10]. The number dependence may not 
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Figure 3. Preliminary variational energies vs. Compression for quantum Monte 
Carlo calculations of lithium using 32 atoms in the simulation box and 
Gaussian- plane wave (g-pw) or APW trial functions. 
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Figure 4. Relative Energy vs. Compression for band theory ASW [3] and LMTO 
[2] calculations and variational quantum Monte Carlo calculations 
using APW trial functions. 

be the same for different trial function forms or for different numbers of delocal-
izated electrons. Particular emphasis will be given to the delocalization regimes 
of the 2a -2p electrons at low density (Mott transition) and the l« electrons at 
high density - regions where the largest correlation effects should occur. 
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