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METALLIC LITHIUM BY QUANTUM MONTE CARLO
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Lithium was chosen as the simplest known metal for the frst application of
quantum Monte Carlo methods in order to evaluate the accuracy of conventional
one-electron band theories. Lithium has been extensively studied using such
techniques. The KIKR method [1], the linear muffia tin orbital method (LMTO)
[2], the augmented spherical wave method (ASW) {3] and a linear combinations of
paussian type orbitals (LCGTO) method [4) agree in their predictions of the equa-
tion of state. Thesz results are also consistent with experimental data available
at low compressions (5] {6] and agree with quanium-statistica’-models (7] [8] at
high pressures.

Band theory czlculations have certain limitations in general and svecifically
in their application to lithium. Results depend on such fzciors as charge shape
approximations (muffin tins), pseudopotentials (a special problem for lithium
where the lack of p core states requires a strong pseudopotential), and the form
and parameters chosen for the exchange potential. The galculations are all one-
electron methods in which the correlation effects are included in an ad hoc
manper. This approximation may be particularly poor in the high compression
regime, where the core states become delocalized. Furthermore, band theory pro-
vides only self-consistent results rather than strict limits on the: energies. The
quzntum Monte Carlo method is a totally different technique using a many-body
rather than a mean field approach which yields an upper bound on the energies.

QUANTUM MANY-BODY ALGORITHM

The Schrddinger equation was solved for a system of M fixed lithium atoms
and N=3M electrons using the quantum Monte Carlo algorithm previously
developed for the electron gas {9] {10]. This technique does not approximate the
aN dimensional problem by reducing it to a set of equations of lower dimen-
sionality, but solves it exactly within statistical error bars. The algorithm
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involves several phases of progressively greater accuracy - the variatioral, the
diffusion and the Green's function Monte Carlo methods, which yield upper
bounds to the grouad state energy, and the released node Green’s function Monte
Carlo method, which provides exact answers within statistics. Ia this preliminary
study, various trial wavefunctions were explored in ovder to determine the
optimum form for a fixed amount of computational time using the variational
and fixed-node schemes. The choice of the trial wavefunciion is a trade off
between 2 simple analytic form which is computationally fast and a more accu-
rate but complex form which is difficuit to sample efficiently.

Variational Monte-Carlo [11]. Variationally, the total energy of a system of
Hamiltonian H is given by the minimum with respect to the set of all possible
trial functions ¥ of
E =Mia ——IWTHWT
o[l )?
In practice, ¥y is a parameterized expression for which the integral (1) is com-
puted using the Metropolis Mnnte Carlo algorithm. The resu.: is an upper bound
on the energy that is dependent upvan the nature of the trial wave function. The
standard form of ¥y consists of a Slater determinant of one-body states multi-
plied by a pair product Jastrow factor which incorporates two-body correlation
effects. For lithium, three different forms were used for the elen: »nts of tne deter-
minant. In the simpler cases, the localized states were taken to t- Gaussians with
a width parameter and the delocalized states were treated as pla-:e waves. In the
third case, a more complex form was generated from band theory harge densities
as discussed below.

(1)

Diffusion Monte Carlo. The diffusion Monte Carlo algorithm [12] computes 2
more accurate solution of the Schrddinger equation using a trial function gen-
erated by the variational Monte Carlo technique. The Schrddinger equation in
imaginary time is treated as a diffusion equation with the potential acting as a
branching birth and death process. The solution converges exponentially to the
ground state. The wavefunction ¥ satisfies
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where R is the 3N dimensional vector of the electronic coordinates, t is the ima-
ginary time and
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is the potential energy of the solid using standard Coulomb interactions. Er is a
constant trial energy which is subtcacted from the potential energy for computa-
tional convenience. The sums run over the electronic coordinates ¢,; and the
fixed atomic lattice sites a,8 with r,==[r,-r, |. A finite simulation cell with
periodic boundary conditions is used, with the potential energies evaluated by
Ewald summatinn.

-2-



The wavefunction ¥ can be interpreted as the density of diffusing particles as
long as it is everywhere of one sign. This is not the the case for fermion statistics
where the many-body wavefunction changes sign at the nodes. However, this
difficulty can be overcome by using a trial wavefunctica ¥z, whose nodes act as
absorbing barriers to the diffusion process. The probablity density defined by

f (R t)= Wy (R W(R t)expiAEr-E, )] , @

obeys the diffusion equation
7RG B HY )
hafg.l),=—iz_:‘-,‘,—:7vjlv;j N E-72 R TR WTT PRy )

which is derived from the Schrddinger equation. £, is the exact ground s.ate
eigenvalue corresponding to the eigenfunction . This equation is solved in each
of the regions bounded by the trial function nodes as before, however now the
trial function plays an important role in reducing the branching term - a process
known as importance sampling.

The fixed-node approximation imposes the constrairt that the wavefunction
has the approximate nodal surface of ¥, leading to 2 upper bound criterion on
the energy. In principle, the nodal surfaces could be varied to obtain the best
upper bound on the energy. In general, however, it is difficult to porameterize
¥y in a systematic fashion. For the electron gas, the dependency upon the loca-
tion of the nodes of the trial wavefunction was weak [10], however for an accu-
rate upper bound ¥y should be chosen as close to the true ground state
wavefuncticn as is feasible.

Green’s Function Monte Carlo. The Schrddinger equation recast into integral
form can be solved by Moute Carlo sampling of the exact Green's [unction G
[13]. This avoids the error incurred in the diffusion Monte Carlo algorithm by
the use of a short time step expausion approximatica of G. Exact evaluation of
G coupled with nodal release leads to the stochastically exact solution of the
Schrddinger equation.

Trial wavefunction. The general form for the wavefunction that has been
used successfully in previous studies consiz‘s of the product of a Slater deter-
minant of single particle orbitals multipled by a Jastrow factor J:

Vr=der|®; |der|d; ] I , {6}

where the &;; are the one particle wavefunctions of the Slater determinant, with
the superseripts * and - dencting the two possible spin states. The determinantal
form provides the required fermion antisymmetry. The Jastrow factor
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involves a sum of the electron-nuclear and the electron-electron pair correlation
factors. These exactly incorporate the cusp conditions - the singularities of the
wavefunction for zero pair separation due to the coulombic divergence of the
potential. The Jastrow factor is computed using the random-phase approxima-
tien [11).
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Two forms of Slater determinant trial function were implemented. In the
first caleulation, ¥ consisted of Gaussians with parameterized widths centered
about the lattices sites for localized states and plane waves for the delocalized
orbitals. At extreme compressions where the 1s state was expected to be delocal-
ized, all the Slater determinant states were taken to be plane waves - a form
which should yield & lower energy. Such simple analytical forms have been suc-
cessfully applied to molecules [12] the electron gas {10} and molecular and metal-
lic hydrogen (with emphasis on the metallic trensition) [14]. For highly
compressed lithium, however, it was desirable to introduce a wavefunction which
provides a continuous transition from a localized to a delocalized form. Conven-
tional band theory techniques provided such a function. Specifically, the single
particle orbitals in the Slater determinant part of ¥, were taken from an aug-
mented plane wave (APW) calculation, The electron-nuclear Jastrow factor was
suppressed as this cusp condition is correctly accounted for in the APW func-
tions.

The APW method uses Bloch’s theorem to reduce the description of a cry-
stalline solid to a calculation in the primitive cell. This results in 2 set of coupled
one particle Schrddinger equations which are solved by a discretization in recipro-
cal space. This discretization is introduced by considering only those functions
which are periodic on the scale of a few unit cells.

The APW method builds solutions of the Schrddinger equation by solving
the radial equation inside the muffin tin sphere and matcbing them to linear com-
binations of plane waves in the interstitial region. The APW wavefunetions are
generated according to the formulae:

) = BT e TuR) 5 ez @) ®)

where ¢; are the standard APW ccefficients [15] , R are the set of rotations leav-
ing the crystal invariant, T'y(r ) are the matrix elements of the invariant group of
the vector k, E =F + K; (R: a reciprocal lattice vector) and X; is a lattice site.
The function

¢R}‘I(7)=lzﬂm(n Elw(r) V(7)) | (9}
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is the muffin tin solutiou expressed as an expansion in spherical harmogics. Out-
side the muffin tin the solution is expressed as a sum of plane waves

IRT:
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where the ¢, are the matching constants from the APW functions of equation {(3).

The APW calculations were performed using the same number of points (F
values) ip the Brillouin zone as there were lattice sites in the quaptum Monte
Carlo calculation (32 for FCC, 16 for BCC). This provided the correct number of
single particle orbitals for the quantum Monte Carlo trial function. The max-
imum angular momeptum value ! was taken to be 13 in the APW calculation
and restricted to 3 in the subsequent gemeration of the wavefuaction. The {
values in the wavelupetion could be limited to the s,p,d, and I states since this
was sufficient to represent the charge density. The APW calculations were per-
formed for a few densities using an increased number of / and X values without
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significant changes in the energy and pressure. The APW resuits agreed with the
detailed band structure at normal and 10-fold compression [4} and with the ener-
gies and pressures [3] obtained from more accurate band theory calculations, to
within the uncertainty caused by number dependence and exchange potential
parameters. In particular, the APW results showed that the 2s-2p band is not
free-electron-like at 10-fold compression, indicating that a plane wave trial func-
tion is a poor choice. At higher compressions, both the 1s and 2s-2p bands are
free-electron-like and energies and pressures approximate Thomas-Fermi model

results.

Table 1. Quantum Monte Carlo variational and fixed-node diffusion energies
for lithium at various densities. Energies are in Rydbergs. Deansities
are given in terms of the Wigner-Seitz radius r, and the compres-
sion. The calculations are for 16 and 32 atoms in the simulation
box. The trial functions are Gaussian and plane wave (g-pw), all
plane wave (pw) and APW (apw). Errors in the last digit are given
in parentheses.

Densitv M=16 atoms M==32 atoms
I, Comp tf E, B, tf E, By
3.500 0263 || g-pw | -1478(1) -14.97Q1)
3.000 0418 ||g-pw | -14.84(1) -15.01(1)
2,500 0.722 ! g-pw | -14.90(1) -15.03(1)
2.260 0.978 | g-pw | -14.91(1) -15.03(1) |[g-pw | -14.92(1) -15.00(1)
apw | -14.87(1)  -15.02(1)
2.100 1.219 g-pw | -14.80(1) -15.03(1]
2.000 1.412 [|g-pw | -14.88(1) -15.00(1) || apw | -14.87(1)
1.800 1.936 |({g-pw | -14.85(1) -14.96(1) || apw | -14.84(1)
1.600 2757 g-pw | -14.74(1) -14.88(1) apw | -14.77(1)
1.400 4.115 apw | -14.66(2)
1.250 5783 || g-pw | -14.00(1) -14.39(1) || apw | -14.49(3)
1.000 | 11.280 [l g-pw | -13.34(1) -13.43(1) |[g-pw | -13.60(1) -13.78(1)
pw | -11.38{1) -12.57(2) |} apw | -13.99(1)
0800 | 22.087 ||g-pw | -11.22(1) -11.32(1) {|g-pw | -11.81(1) -11.83(1)
pw [ -10.82(1) -11.77(1) || apw | -12.89(1)
0730 | 26766 ||g-pw | -10.30(1) -10.38(1)
pw | -10.52(1) -11.33(1)
0.700 | 32.940 : apw | -11.26(1)
0650 | 41.115 [jg-pw | -7.30(1)  -7.40(1)
pw -9.45(1)  -10.13(1)
0.600 | 52.307 apw | -0.46(1)
0.500 90.334 pw -5.13(2)  -5.64(1) PW -3.17(1)
apw | -5.12(1)
0.226 | 978.220 pw 61.70(4)  61.50(1) L




RESULTS AND DISCUSSION

Quantum Monte Carlo calculations were performed on a supercell with
periodic boundary conditions, the atoms being located at fixed crystal lattice
sites. Although fixed atomic sites are not required by the quantum Monte Carlo
algorithm, in contrast to band theory methods, in practice regular BCC or FCC
structures were simulated. Present calculations are not sufficiently accurate to
determine the type of crystal structure. Different structures were used primarily
to determine the number dependence correction. Simulations were performed on
cubic supercells consisting of 48 or 182 electrons (18 or 54 atoms) for the BCC
structure and 96 electrons {32 atoms) for the FCC structure. Experimental data
as well as band theory calculations indicate a close packing structure (HCP or
FCC) for the 0° K isotherm at low pressures {4] [16] [17] [18].

Preliminary calculations of lithium using 16 atoms per simulation box and
simple trial functions were performed over a compression range from 0.263 to
1000. Mixed Gaussian and plane wave trial funcetions were used at low to inter-
mediate densities and planes waves alone at extreme compressions. The results
are shown in Table 1 and Figure 1. The large energy gap between the variational
and diffusion energies for the plane wave trial function at intermediate compres-
sions indicates that the trial function is oot of an optimal form. It is necessary to
reintroduce the electron-nuclear Jastrow factor and multiply both Jastrow terms
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Figure 1. Variational and diffusion energies vs. Compression for quantum Monte
Carlo calculations of lithium using 16 atoms in the simulation box.
Trial functions are Gaussian 1s, plane wave 2s-2p (g-pw) and plane
wave 1s, 25-2p (pw) as indicated. Error bars are too small to be seen
on this scale. )
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by a variationally optimized parameter in order to incorporate more of the pair
correlation energies. This should reduce the difference in the variational and
diffusion energies as well as the discontinuity in the energies of the two types of
trial functions at the crossing of the energy curves. This crossing near 25-fold
compression indicates the approximate location of the delocalization of the 1s
core states. The result is consistent with band theory estimates of delocalization
in the 30-300Mbar range.

Figure 2 shows the energies near normal density. The minimum of the curve
gives an estimate for the equilibrium lattice constant which is consistent with the
secepted value of 6.48 a.u. For low to intermediate densities, the difference
between the variational and diffusion energies is on the order of 0.1Rydbergs (see
Table 1). Previous quantum Monte Carlo simulations of the electron gas at com-
parable densities yielded a lowering of the energy of 0.004Rydbergs (10], indicat-
ing that the electron gas is a much simpler system than lithium. However, calcu-
lations of Li. showwed a variational-diffusion energy difference of about 0.04Ryd-
bergs [12]. Thus the trial functions vsed here for metallic lithium are of compar-
able quality to those used in the molecular case. The number dependence correc-
tion for metallic lithium is of the same order of magnitude as the variational-
diffusion energy difference (compare the results for 16 and 32 atoms in Table 1),
At normal compression, the size correction of .1IRydbergs is the same as for the
electron gas of the same density.
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Figure 2. Variational and diffusion energies vs. Compression for quantum Monte
Carlo calculations of lithium using 16 atoms in the simulation box
near normal density and Gaussian ls, plane wave 2s-2p (g-pw) trial
functions.



The calculations have been carried out for crystals expanded to 4 times the
normal density using trial functions with Gaussian 1s and plane wave 2s orbitals.
Additional simulations are underway using localized states (Hermann-Skillman,
simple Gaussian, or Wannier) for all the electrons. The density at which the
energy curves for the two kinds of trial functions cross will then locate the Mott
transition - the delocalization of the 2a states.

In order to study the core delocalization regime and for comparison with
band theory, a 32 particle erystal was simulated using both simple and APW
trial functions. The APW trial function was a factor of 4-5 times slower to sam-
ple than the simple Gaussian-plane wave form. This was offset by the significant
lowering of the variational energies (see the preliminary results shown in Figure 3
and Table 1) and should also be reflected by a more rapid convergence in the
diffusion calculations. To compare with band theory, the energies relative to that
at normal density are plotted in Figure 4. The variational quantum Moente Carlo
values are in reasonable agreement with both the ASW [3] and the LMTO [2]
results. At extreme compressions, the variational values satisfy the PV®? equa-
tion of state of Thomas-Fermi-Dirac models.

More calculations are required before the quantum Monte Carlo algorithm
can be used to assess the accuracy of band theories, The Jastrow terms for both
the simple and the APW trial functions must be optimized and used in Jdiffusion
and Green's function runs at selected densities. These simulations are presently
underway. Dependence of the results on the number of particles must e taken
into account by extrapolation to the infinite particle number limit using a fit for
several supercell sizes at several densities {10]. The number dependence may not
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Figure 3. Preliminary variational energies vs. Compression for quantum Monte
Carlo calculations of lithium using 32 atoms in the simnlation box and
Gaussian- plane wave (g-pw) or APW trial functions.
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Figure 4. Relative Energy vs. Compression for band theory ASW (3] and LMTO
[2) calcuiations and variational quantum Monte Carlo calculations
using APW trial functions.

be the same for different trial function forms or for different numbers of delocal-
izated electrons. Particular emphasis will be given to the delocalization regimes
of the 2s-2p electrons at low density (Mott transition) and the 1s electrons at
high density - regions where the largest correlation effects should occur.
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