ocT

SANDIA REPORT

SAND98-0233 « UC—705 1ECgy),
Unlimited Release 0(:7 y
Printed January 1998 4

Development of an Immersive Environment
to Aid in Automatic Mesh Generation

LDRD Final Report

Constantine J. Pavlakos, Jake S. Jones, Scott A. Mitchell

Prepared by
Sandia National Laboratories |
Albugquerque, New Mexlco 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporaflon o . i
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04- 94AL85000

Approved for public release; furthqr,\dlssqmlpatgo:ﬁ unlim,iged.

< N - [
L E R

[1998

@’Sandia National Laboratories BT

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Awvailable to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

(2%

DISCLAIMER

- Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

SAND98-0233 Distribution
Unlimited Release Category UC-705
Printed January 1998

Development of an Immersive Environment
to aid in Automatic Mesh Generation

LLDRD Final Report

Constantine J. Pavlakos
Computer Architectures Department

Jake S. Jones
Computer Applications for Manufacturing Department

Scott A. Mitchell
Paralle] Computing Sciences Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Abstract

The purpose of this work was to explore the use of immersive technologies, such as those used in
synthetic environments (commonly referred to as virtual reality, or VR), in enhancing the mesh-
generation process for 3-dimensional (3D) engineering models. This work was motivated by the fact
that automatic mesh generation systems are still imperfect -- meshing algorithms, particularly in 3D,
are sometimes unable to construct a mesh to completion, or they may produce anomalies or undesirable
complexities in the resulting mesh. It is important that analysts and meshing code developers be able
to study their meshes effectively in order to understand the topology and quality of their meshes. We
have implemented prototype capabilities that enable such exploration of meshes in a highly visual and
intuitive manner. Since many applications are making use of increasingly large meshes, we have also
investigated approaches to handle large meshes while maintaining interactive response. Ideally, it
would also be possible to interact with the meshing process, allowing interactive feedback which
corrects problems and/or somehow enables proper completion of the meshing process. We have
implemented some functionality towards this end -- in doing so, we have explored software
architectures that support such an interactive meshing process. This work has incorporated existing
technologies developed at Sandia National Laboratories, including the CUBIT mesh generation system,
and the EIGEN/VR (previously known as MUSE) and FLIGHT systems, which allow applications to
make use of immersive technologies and advanced human computer interfaces.

Acknowledgments

Larry A. Schoof and Philip L. Stanton -- for their contributions to the initial LDRD project
proposal.

Tom Anderson -- for FLIGHT development and for his assistance in getting us started on
FLIGHT application development.

a

Introduction

Effective computational analysis is playing an ever increasing role in minimizing the total time
and cost to successful completion of a manufacturing process. An important step in
computational analysis is the creation of the computational mesh, which discretizes a
geometric representation of the three-dimensional (3D) model to be analyzed into finite
volumes. In Finite Element Analysis (FEA), which has become the analysis technique of
choice for a broad range of numerical simulations, the mesh is of an unstructured form whose
many little finite volumes are commonly in the form of hexahedral and/or tetrahedral elements.
Because the meshing step for FEA has traditionally been very tedious and time-consuming,
significant effort has been and continues to be devoted to develop tools to automate the mesh
generation procedure.

Unfortunately, current algorithms for automatic mesh generation are not perfect, in that it
cannot be guaranteed that the automatic meshing procedure will yield a quality mesh in all
cases. Sometimes, algorithms may produce anomalies and/or undesirable complexities in the
resulting mesh, and other times, an algorithm may be overwhelmed by the complexity of a
model and be unable to fully complete a mesh. It is important that analysts and meshing code
developers be able to examine results of the meshing process, in order to be able to refine the
mesh as necessary and/or the algorithm that produced it.

The goal of this project has been to explore the use of immersive technologies, such as those
used in synthetic virtual environments (commonly referred to as virtual reality, or VR), towards
development of tools, which could enhance the mesh generation process. The objectives have
been to enable interaction with meshes, either complete or under construction, in a highly
visual and intuitive manner, allowing a much greater understanding of the mesh, as well as
potentially allowing interactive feedback to the mesh generation process.

Underlying Technologies

A number of existing technologies developed at Sandia National Laboratories provided a
foundation for this work. They are described briefly below.

CUBIT

CUBIT [1,2,3] is the product of an ongoing research and development effort at Sandia in
automatic mesh generation. The CUBIT mesh generation/grid generation environment is a
two- and three-dimensional finite element mesh generation tool which is being developed to
pursue the goal of robust and unattended mesh generation -- effectively automating the
generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor
that meshes volume and surface solid models for finite element analysis. A combination of
techniques including paving, plastering, mapping, sweeping, and various other algorithms
being developed are available for discretizing the geometry into a finite element mesh.

Exodus I

Exodus II [4] defines a Finite Element (FE) data model which is used, in common, by various
FE applications at Sandia, including mesh generation codes, analysis codes, and visualization
codes. Exodus II standardizes a file format and an application programming interface (API)
for writing/reading FE data, including mesh geometries. Exodus II provided the file interface
used by this project to export data from CUBIT to our immersive visualization prototypes.

EIGEN/VR

EIGEN/VR [5] is a platform for development of synthetic environment applications, which
enables exploration of advanced human-computer interfaces. EIGEN/VR is the current
incarnation of a system that was once known as the Multi-dimensional User-oriented Synthetic
Environment (MUSE) [6]. Using a design approach based on human functionality, EIGEN/
VR provides tools for the presentation, exploration, navigation, manipulation, and examination
of data, models, and other types of information. The system provides complete device
independence and currently supports flat screen, stereo, VR operation, voice recognition,
sound synthesis, data sonification, and a variety of commercial interactive devices. Figure 1
shows some of the components of EIGEN/VR in active use for mesh visualization, including
the ability to project onto a large wall, which gives a strong sense of immersion when used with
stereo viewing.

FLIGHT

FLIGHT, like EIGEN/VR, provides a platform for application development which allows
exploration with advanced human-computer interfaces. In particular, FLIGHT integrates a
haptic input device known as the PHANToM, from SensAble Technologies, which adds a
sense of touch to the human-computer interface. FLIGHT also provides a set of three-
dimensional control widgets (in contrast to the two-dimensional widgets provided by standard
window environments) which are used to present the basic control interface to FLIGHT, as
well as other application-specific controls. Figure 2 shows the desktop FLIGHT environment
in active use for mesh visualization.

Figure’ 1. The EIGEN/VR environment.

Figure 2. The FLIGHT Environment.

Intentionally Left Blank

o

Figure 4. Two elements in the macaroni mesh which
share two faces — an anomaly.

Figure 6. Inside a global view (element block boundaries
only) of a 1.5 million element {nesh with a “sphere of in-
terest”

Figure 5.“Tethered” to a node — the elements asso-
ciated with the node are highlighted — in this case
more than 20 elements contain the same node.

P e T TR e
14313 & st R 1 I e

Figure 7. The detailed mesh extracted from the
“sphere of interest” in Figure 6.

Intentionally Left Blank

I

Flgure 8. Whisker-weaving sheet diagram displayed with
a corresponding mesh for entity association.

Figure 9. Using FLIGHT to view the external face/

edge representation extracted from a mesh.

Figure 10. A group of elements, inbiuding abad ele-
ment, in the vicinity of a “dangling edge”.

Figure 11. An aspect ratio quality met.ric visualized
together with the mesh external boundary.

Figure 12. Navigating the Inside, after filtering away
low aspect values — note the “dangling edges”.

Intentionally Left Blank

10

Project Accomplishments

The Initial Prototype

Our initial development was based on the EIGEN/VR technology. We implemented a
prototype application in a high-end VR laboratory environment, which provided high
performance visualization hardware and a rich set of interface devices. Features of the
application included:

« The ability to read in CUBIT meshes from Exodus II files.

» The ability to visually differentiate between nodes in the mesh which belong to 8 elements
or less and nodes which belong to more than 8 elements, indicating a certain amount of
relative complexity in the mesh (note: if a node exists in the interior of a hexahedral mesh,
then the ideal is that it belongs to 8 unique elements).

* The ability to turn on/off mesh edges (i.e., to see only nodes, or nodes and edges).

* The ability to display a node id with each of the nodes.

* The ability to highlight specific elements in the mesh for visual scrutiny.

* The ability to “tether” to (i.e., visually focus attention to) a specific node, which also
highlights the edges of all of the elements which contain the node for further visual
scrutiny.

* The ability to display the surface of an element in shaded mode.

* The ability to grab and move nodes in the mesh, which demonstrates a rudimentary
function which one might want to perform if editing a mesh.

» The ability to interact with all of these visual features in a fully stereoscopic environment,
supported by the advanced human-computer interface capabilities provided by EIGEN/
VR.

Some of these features are illustrated in Figures 3-5. Unfortunately, these still images cannot
convey the impact of being able to explore such objects while in full motion and in three-
dimensions. This is particularly true of Figures 3 and 5, which are very difficult to understand
as flat, two-dimensional wire-frame drawings.

Upon seeing the prototype application, CUBIT’s project leader, Tim Tautges, was quoted as
follows: “A capability like this on the desktop would increase our productivity by a factor of
Jour or five for looking at meshes.” This is corroborated by results from a recent study [7]
which measured a three-fold improvement in comprehension when head-tracking and stereo
viewing are used for data visualization.

To the Desktop

An important objective of this project, which is also conveyed in Tim Tautges’ quote above,
was to investigate capabilities for the desktop. For this reason, the project acquired a Silicon
Graphics Indigo 2 workstation with Impact hardware-assisted graphics. This was a mid-range
desktop/deskside workstation at the time, whose capabilities are rapidly becoming available on
relatively inexpensive desktop systems. In addition to the workstation, other equipment
acquired for the desktop system included Crystal Eyes stereo viewing equipment, a head-
tracking unit, and a SpaceBall for 3D navigation.

11

This part of the project, in which we migrated the initial prototype application onto the desktop
equipment, was only moderately successful. In doing the migration, we also ported the
application to the standard OpenGL 3D graphics library (versus the old SGI-proprietary GL
library) to make use of the emerging version of EIGEN/VR, which was also based on OpenGL.

Unfortunately, this new version of EIGEN/VR did not support Crystal Eyes stereo viewing as
quickly as we had hoped, and the head-tracking and SpaceBall devices were never enabled.

However, ultimately we did demonstrate the ability to run the prototype application in the
desktop environment, with stereo viewing, for modest size meshes (a few thousand elements).
Our attempts to run the desktop EIGEN/VR-based prototype on a large mesh (over one million
elements) were unsuccessful. This experience certainly contributed to a revelation that we
would need to consider other strategies to handle meshes of any significant size.

These initial efforts to develop desktop capability do not tell the whole desktop story. Some of
the shortcomings in this stage of our work eventually led us to consider FLIGHT as an
additional environment for prototype development, which we will discuss further later in this

report.

Linking to CUBIT

Another objective of this project was to investigate the possibility that the immersive
visualization system developed for this project could be coupled directly with the meshing
system, in such a way that would allow the visualization system to impact the meshing process
(“interactive meshing”), for example, by editing the mesh somehow while the mesh was still
under construction. This implies considering strategies for interfacing the two systems.

An integration which would have implemented an EIGEN/VR shell around CUBIT was
conceptually attractive, since it would enable the use of EIGEN/VR’s advanced human-
computer interface techniques to interact with CUBIT directly. However, this would have
required a complete redesign and rewrite of the graphics functionality already embedded in
CUBIT to conform to OpenGL, and this was deemed impractical when considering the
relatively short term and limited resources of our project.

Thus, for the sake of prototyping, we chose to implement an architecture that interfaces CUBIT
with an EIGEN/VR application, each running as a separate process, communicating with each
other across a bidirectional link.

We successfully implemented such a link, and have been able to demonstrate the ability to pass
a mesh directly from CUBIT to the visualization system. Also, as noted previously, we have
demonstrated the ability to edit a mesh by changing the position of a node in the mesh from
within the prototype visualization system.

However, this is the extent to which we have been able to explore interactive meshing. Any
further work in this area was relegated by the need to investigate techniques for handling of
larger meshes. Additionally, as it turns out, the link architecture we implemented does not
work well in practice (see more in “Software Architectures for Interactive Meshing” section).

12

Large Meshes

In order to provide a useful tool for exploration of meshes, that tool must accommodate meshes
that are consistent in size with requirements of day-to-day applications. While the capabilities
we developed in early stages of the project were powerful for intuitive comprehension of a
mesh, they did not readily support large meshes. During the course of the project, we came
upon the opportunity to test our prototype system against a mesh containing about one and one-
half million elements. This is certainly a significant-size mesh, although we are already
observing the need for applications to do larger, up to about ten million elements today. This
data set became a benchmark for our project.

When the initial prototype started, it would load a specified mesh and then attempt to display
the mesh in its entirety, displaying all edges and all nodes. When running the prototype against
our benchmark mesh on high-end hardware, performance was painfully slow -- much too slow
to allow interactive exploration of the mesh. Worse, when trying to run in our desktop
environment, the application would fail.

It became clear that we needed to reassess our implementation and take a whole new approach
for enabling use with large meshes. Actually, such a new approach was needed regardless of
large meshes. Even for smaller meshes, it is not very effective to throw the entire mesh up on
the display in wire-frame form. There is simply too much information to absorb. Trying to
find local areas in the mesh which may be of special interest is just too difficult when one has
no idea where to start looking, much like the proverbial needle in the haystack.

This all suggests that some sort of hierarchical approach to exploring a mesh is needed, both to
accomodate interactive graphics response and to alleviate the data overload problem. One
approach we took is illustrated in Figures 6 and 7. In Figure 6, a global spatial context for the
mesh is portrayed by displaying bounding boxes for each of the element blocks in the mesh
(where element blocks are groups of elements into which a mesh may be decomposed). A
“sphere of interest” can be arbitrarily positioned and scaled within the global context, upon
which a request can be made to extract the detailed mesh within the sphere of interest for
display and further scrutiny.

The bounding-box display can be somewhat less than satisfying in terms of visualizing the
model represented by the mesh. An alternative we have implemented allows extraction of the
external faces of the mesh, eliminating the edges in the interior of each element block. This
representation offers a more pleasing display, however, for very large meshes, this data can still
be quite large, affecting interactive response. This approach begs for a higher-level
representation which accurately represents the model’s geometry, while not showing any of the
model discretization (e.g., a large flat face would appear as a single polygon rather than
hundreds or thousands of quadrilaterals). The meshing system may have access to such a
representation, in which case using it would simply require passing this representation along
with the mesh.

In combination with higher-level representations of the global context of the mesh, there is still
the issue of how to isolate localities in the mesh for further scrutiny. One approach is to use

13

certain quality metrics which can be computed for a mesh to guide such a search -- this
approach was used within our FLIGHT prototype and is described in more detail below.

Once we isolate a place to 100k, it is possible to have the system display a few elements in that
vicinity, or to start with one element and incrementally add layers of neighboring elements (as
described in [8]). The full power of systems like our prototype can then be used to visually
explore the extracted, relatively simple geometry.

While we have implemented most of the above approaches for exploring large meshes with
some success, this work is not complete. Our implementations still lack robustness and there
are still issues regarding how to manage the large data on smaller, more memory-constrained
systems.

Sheet Diagrams for the Whisker Weaving Developer

While much of the functionality we developed during the course of this project is of general
utility to analysts as well as meshing algorithm developers, in one case we demonstrated a
capability that was specific to whisker-weaving [9] algorithm development. In whisker-
weaving, the algorithm produces a set of two-dimensional graphs, called sheet diagrams, from
which the mesh is ultimately constructed. We provided functionality that allows the user of the
visualization code to examine sheet-diagrams simultaneously with a corresponding mesh. The
user can selectively highlight an entity in the sheet-diagram, which, in turn, results in the
associated entity being displayed/highlighted in the mesh. Of course, while traversing entities
in the sheet diagram, one can make use of the full 3D visual exploration capabilities of the
visualization environment to examine the associated mesh entities. This can help greatly in
understanding the relationships between the two-dimensional graph and the three-dimensional
mesh, which can otherwise be very difficult to imagine. This capability is shown for a very
simple mesh in Figure 8 -- the element associated with the selected node in the sheet diagram
is displayed as a shaded object (the sheet diagram is in the upper right of the display).

A Prototype based on FLIGHT

During the course of our project, a new system for computer-human interface exploration was
being developed which integrated the sense of touch -- that system was FLIGHT. FLIGHT
appealed to us as an application development platform in a variety of ways:

« it is well suited to desktop applications;

» the system offers a SpaceBall navigation/control interface as an alternative to the
PHANTOM;

« the PHANTOM is intriguing as a device for navigation and control, as is the potential for
a sense of touch;

« the code itself is compact enough that we thought it would be relatively straightforward to
add features such as stereo and head tracking;

« the 3D user interface (i.e. control widgets) could still Be manipulated and viewed normally
even when stereo viewing is enabled.

The opportunity to experiment with FLIGHT presented itself in the very latter stages of our
project -- we began FLIGHT prototyping with only 2-3 months remaining, and even then, some

14

of the features we made use of were still being completed or refined. 'However, we were able
to demonstrate significant prototype capability, which, when extrapolated with certain
functionality we have demonstrated in the EIGEN/VR environment, would provide a powerful
desktop environment for mesh visualization.

Figure 9 portrays the use of FLIGHT to view the external face/edge representation extracted
from the “macaroni” mesh. The algorithm we implemented to extract external faces/edges is
conceptually simple -- if a mesh face occurs in the data only once, it is an external face, and its
edges are external edges. Interestingly enough, when this algorithm is applied to the macaroni
mesh, it leaves certain “dangling edges” (see Figure 12). These dangling edges are very easy
to observe within the FLIGHT-based application. After having observed these artifacts, we
went back to the EIGEN/VR environment, imported the same external face/edge extraction
algorithm, and used the “sphere-of-interest” capability to extract a small amount of detail in the
vicinity of a dangling edge. Sure enough, as Figure 10 shows (towards the lower right), there
is a bad element in the mesh at that location. (Note: The “macaroni” sample mesh we used
throughout the project was taken from CUBIT in the very early stages of our project -- CUBIT
is now able to mesh this object correctly.)

This example identifies only one of many ways in which one might be led to locations in a mesh
that are worthy of further scrutiny. An additional approach we implemented within the
FLIGHT application made use of certain quality metrics, which we compute for the mesh. An
example is depicted in Figure 11. An aspectratio value computed for each of the hexahedra in
the mesh is visualized as red tetrahedra -- the red tetrahedra are merely 3D icons at the center
of each hexahedra, with larger ones indicating larger aspect values and smaller ones (or
invisible ones) indicating lower aspect values. We also implemented an application control
that allows the user to easily filter away lower values, using a 3D slider to change the filter
threshold. In Figure 12, we have moved inside the macaroni mesh data, after we have filtered
away most of the Jower aspect values -- the high-aspect value locations that remain may be
areas in the mesh where the user would then like to request more mesh detail for further
scrutiny.

We were able to add stereo viewing to the FLIGHT application -- we enabled use of Crystal

Eyes. While we had fully expected the 3D graphical user interface to remain functional once
stereo was turned on, it was still very satisfying to observe this in actuality, having been
accustomed to losing normal viewing of 2D components in traditional windowing
environments when the monitor mode was changed to stereo. Due to lack of time, we have not
yet enabled head tracking.

The PHANTo0M has proven to be a real pleasure to use as a 3D navigation and control device,
and the haptic sensations already provided by the FLIGHT system when interacting with the
user interface have a way of enriching the human experience. We have not used the haptic
capability yet with regard to providing force feedback when interacting with the data itself, but
we have begun to imagine certain possibilities. For example, the device can be used to emulate
magnetic forces -- by applying magnetic forces at locations in the mesh that may be of special
interest, it may be possible to draw the user towards such locations as the mesh is being
navigated.

15

We did attempt to use the SpaceBall interface to FLIGHT. It is difficult to make any final
observations regarding the utility of this device, since the device interface has not been fully
refined. However, it is fair to say that, at this time, it is clumsy at best. Also, it provides no
haptic feedback. Finally, even when comparing to the PHANToM for 3D navigation only, we
found the PHANTOM to be superior.

Software Architectures for Interactive Meshing

We use the term “interactive meshing” to capture the notion of an interactive mesh
visualization system being used, somehow, in direct cooperation with a meshing system to
produce a resulting mesh. The role of the visualization component may be to edit a mesh when
problems have been detected during mesh construction, or, perhaps, to enable manual
decomposition of very complex models into simpler parts which can be meshed more
straightforwardly. In any case, such cooperation would require a tight coupling of the

visualization and meshing components.

As described previously, we implemented a bidirectional link between CUBIT and our EIGEN/
VR-based prototype mesh visualization system which allows passing data and other
information back and forth. The main problem with this architecture is that data is copied --
more specifically, in the case of a very large mesh, this would mean duplicating the mesh data
within the visualization system. If the visualization system performs any editing, then all or
part of the mesh would need to be sent back to the meshing system accordingly. Clearly, this
becomes inefficient for large meshes.

Automated Solid
Modeler

Data Interface

Data (Mesh,

associated
geometries, quality
metrics, ...)

Mesh
Visualization

00 and Editing

Figure 9. A data-centric approach for program module
integration and interoperability

16

This beckons for a more data-centric approach in which the meshing system and the
visualization system could both access the same data, using a standard interface. This can
certainly be accomplished by implementing a single monolithic program, embedding all of the
visualization capabilities and meshing capabilities within an integrated system. CUBIT, in its
current form, actually provides such a framework -- CUBIT is largely implemented as a set of
object-oriented, C++ class libraries.

However, embedding the visualization technology within a monolithic system such as CUBIT
ultimately limits its availability for use with other meshing systems. Regardless of the quality
of internal design, a single monolithic program environment does not encourage broad
interoperability with other independently-developed software components. An alternative to
this approach is a multi-program environment that provides access to common data via a
common data broker and/or data protocol. Shared memory could be used to provide efficient,

simultaneous access to the one copy of the data, from multiple programs. Such an architecture
is depicted in Figure 13.

Key to all of this is abstracting the data interface and making the data available to multiple,

potentially interoperating software components. It is clear that such a data interface is possible
for enabling multiple program modules to use a single instantiation of the data, in memory,

when the programs are not interacting, much like Exodus II does via files, with similar benefits.
However, interaction does complicate things -- it introduces issues such as how to coordinate
which program(s) can be modifying the data at any point in time, and whether a set of generic
events can be defined which would enable plug-and-play program modules that interact to the

desired extent. These issues are resolvable in a confined application environment -- that is, if
the program modules are implemented with full knowledge of each other, they can be made to
cooperate accordingly. Whether these issues can be resolved or not for a more wide open
component software environment is still an open question.

Future Work

We have identified certain areas where this work could be extended and/or refined. They
include:

* Integration of the functionality we have demonstrated separately in the EIGEN/VR and
FLIGHT environments into a single application. Most likely, we would be inclined to
extend the FLIGHT prototype to incorporate select features of the EIGEN/VR prototype.

* Use of other higher-level geometric representations (e.g., untesselated surface boundaries)
of the global mesh space, as possible, to improve on graphics rendering performance when
viewing the entire global context for large meshes.

* Overall improved robustness for handling of large meshes.

* Investigation of how the haptic feedback provided by the FLIGHT system might be used
to help explore meshes (e.g., by using magnetic forces to draw user towards local areas of
interest).

* Further investigation of “interactive meshing”.

17

Conclusion

This project has demonstrated an extensive set of prototype capabilities that show a great deal
of promise for helping analysts and meshing-code developers understand the quality and
topology of their 3D meshes. Indeed, it has been observed that such capabilities could improve
one’s productivity for looking at meshes by as much as five fold.

We are particularly pleased with the prototype work we have done with the FLIGHT system.
We are excited about the potential for extending the prototype we have developed into a
powerful end-user tool for exploration of meshes. Our experiences with haptics have
convinced us that touch is destined to become a common feature of computer-human interfaces

in the next few years.

While stereo viewing may have limited significance for some 3D applications, we have found
it to be very useful for mesh visualization. One important reason is that meshes, by nature, are
inherently wire-frame, and stereo helps provide important depth perception when looking at 3D
wire-frame geometries. Stereo also helps in understanding depth relationship of multiple
objects on the screen -- this is useful when, for example, one is trying to interactively specify
a region-of-interest within a global mesh space by positioning an object, such as a sphere, in
just the right place.

We have demonstrated approaches for handling large mesh data, but there is still room for
improvement. Hierarchical approaches to exploring a large mesh are needed -- it is not
practical to look at a full mesh all at once, both because of graphics performance constraints
and human data overload. Similarly, we must continue to explore approaches that guide the
user toward local areas in a mesh that are worthy of more detailed scrutiny -- one cannot expect
to find such areas using a brute-force visual search.

References
1Blacker, T.D., et al, “CUBIT Mesh Generation Environment, Volume 1: Users Manu-
al,” Sandia National Laboratories Technical Report, SAND94-1100, May 1994.

2G. D. Sjaardema, et al,” CUBIT Mesh Generation Environment, Volume 2: Developers
Manual,” Sandia National Laboratories Technical Report, SAND94-1101, 1994.

SURL: “http://sass577.endo.sandia.gov/SEACAS/CUBIT/Cubit.htm!”

4Schoof, L.A., Yarberry, VR., “Exodus II: A Finite Element Data Model,” Sandia Na-
tional Laboratories Technical Report, SAND92-2137, Sep 1994.

SURL: “http://www.cs.sandia.gov/SEL”

18

®Maples, C.C., “Multidimensional, User-Oriented Synthetic Environment, A Function-
ally Based, Human-Computer Interface,” The International Journal of Virtual Reality, Vol. 1,
Number 1, Winter 1995.

7Ware, C., Franck, G., “Evaluating Stereo and Motion Cues for Visualizing Information
Nets in Three Dimensions,” ACM Transactions on Graphics, Vol. 15, No. 2, pp. 121-140,
April 1996.

8C. S. Gitlin and C. R. Johnson, “MeshView: A Tool for Exploring 3D Unstructured Tet-

rahedral Meshes,” Proceedings of the 5th International Meshing Roundtable, pp. 333-345,
1996.

°T. I. Tautges, T. D. Blacker, and S. A. Mitchell, “Whisker Weaving: a connectivity
based method for constructing all-hexahedral finite element meshes,” International Journal of
Numerical Methods in Engineering, Vol. 39, Number 19, pp. 3327-3350, 1996.

19

DISTRIBUTION:

1 MS-0188 C. E. Meyers, 4523
MS-0188 D. Chavez, 4523

—

1 MS-0960 J. Q. Searcy, 1400

1 MS-0957 R. C. Reuter Jr., 1401
1 MS-0957 C. S. Leishman, 1401
1 MS-0151 R. D. Skocypec, 9002
1 MS-0841 P. J. Hommert, 9100
1 MS-0828 T. C. Bickel, 9101

1 MS-0828 J. H. Biffle, 9103

1 MS-0826 W. L. Hermina, 9111
1 MS-0826 M. W. Glass, 9111

1 MS-0834 A. C.Ratzel, 9112

1 MS-0835 S. N. Kempka, 9113
1 MS-0827 R. O. Griffith, 9114
1 MS-0825 W. Rutledge, 9115

1 MS-0836 C. W. Peterson, 9116
1 MS-0443 H. S. Morgan, 9117
1 MS-0443 M. L. Blanford, 9117
1 MS-0443 V. L. Porter, 9117

1 MS-0443 G. D. Sjaardema, 9117
1 MS-0443 L. A. Schoof, 9117

1 MS-0437 S. W. Attaway, 9117
1 MS-0321 W. J. Camp, 9200

1 MS-0318 G. S. Davidson, 9215
1 MS-0318 A. Breckenridge, 9215
1 MS-1109 C. F. Diegert, 9215

1 MS-0318 P. Heermann, 9215

1 MS-0318 V. Holmes, 9215

1 MS-0318 D. Zimmerer, 9215

1 MS-1111 S. S. Dosanjh, 9221
1 MS-1111 D. R. Gardner, 9221
1 MS-1111 G. Hennigan, 9221

1 MS-1111 S. Hutchinson, 9221
1 MS-1111 S. Plimpton, 9221

1 MS-1111 J. N. Shadid, 9221

1 MS-1110 D. E. Womble, 9222
1 MS-1110 D. Greenberg, 9223

1 MS-1109 A.L.Hale, 9224

1 MS-1111 G. Heffelfinger, 9225
1 MS-0441 R. W. Leland, 9226

1 MS-0441 T. Tautges, 9226

1 MS-0441 D. R. White, 9226

1 MS-0819 J. Peery, 9231

1 MS-0819 M. A. Christon, 9231
1 MS-0820 P. Yarrington, 9232

1 MS-0439 D. R. Martinez, 9234

20

D W = W

[S

MS-1110

MS-0957
MS-0441

MS-9018
MS-0899
MS-0619

MS-0161
MS-0188

C.J. Pavlakos, 9215

J. S. Jones, 1401
S. A. Mitchell, 9226

Central Technical Files, 8940-2
Technical Library, 4916

Review & Approval Desk, 12690
For DOE/OSTI :

Patent and Licensing Office, 11500
LDRD Office, 4523

21

