

CONF-8905183--5

DOE/ER--3072-54

DE90 008865

Report of the CPT Tests working group, Physics at the
Main Injector. 16-18 May, 1989 DOE/ER/3072-54

PHYSICS AT THE PLANCK SCALE: TESTS OF CPT INVARIANCE AT THE FERMILAB MAIN INJECTOR

G.D. Gollin, P.D. Meyers, and R. Tschirhart

Princeton University
Department of Physics
P.O. Box 708
Princeton, New Jersey 08544

Abstract

It is possible that CPT-violating amplitudes with sizes of order m_K / m_{Planck} contribute to processes involving K mesons. We describe several tests of CPT invariance that could be carried out at the Fermilab Main Injector. To our surprise we find that one experiment, a precision measurement of the CP-violating charge asymmetry in semileptonic K decays, can be performed with sufficient statistical accuracy to detect the presence of CPT-violating amplitudes of size m_K / m_{Planck} which generate a mass difference between K^0 and \bar{K}^0 .

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Introduction

In the context of field theories, reasonable assumptions such as Lorentz invariance and the connection between spin and statistics results in invariance of physical systems under the combined operations of charge conjugation, parity, and time reversal—CPT. Because the success of such theories provides the underpinnings of most of our current understanding of elementary particle physics, CPT invariance is generally held to be valid at current energy scales, and such an assumption has not been seriously contradicted by experiment.

Besides establishing various relationships among decay amplitudes, CPT invariance guarantees the equality of masses and lifetimes between particles and antiparticles, even if charge conjugation itself is violated. It is here that the most stringent tests of CPT are found. The most powerful of these is δm , the $K^0 - \bar{K}^0$ mass difference, inferred from the measured $K_L - K_S$ mass difference and other parameters of the neutral-kaon system to be $\delta m / m_K \leq 6 \times 10^{-19}$.⁽¹⁾

With its deep connections to Lorentz invariance and other cornerstones of physics, one might not expect violations of CPT at all. Such violations may in fact occur at the Planck mass scale^{(2),(3)} of $1.2 \times 10^{19} \text{ GeV}/c^2$ where conditions necessary for CPT symmetry (e.g. locality) might not hold. This scale is out of direct reach of current or currently foreseeable technology, so this might seem to be a particularly unpromising

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

line of experimental effort. However, if CPT-violating effects do occur in the K system at a scale of $m_K/m_{\text{Planck}} = 4 \times 10^{-20}$, current limits on δm are less than two orders of magnitude from this. Of course, one could argue that a search in the neutral kaon system assumes many things, notably that the CPT violation occurs in strangeness-changing interactions. It is also possible that the appropriate scale is, say, $(m_K/m_{\text{Planck}})^2$. However, the prospect of probing Planck-scale physics is certainly a tantalizing one.

CP, T, and CPT in the Neutral K System

Mixing and ϵ

CP violation has only been observed in the existence of a charge asymmetry in the semileptonic decays $K_L \rightarrow \pi \mu \nu$, $K_L \rightarrow \pi e \nu$ and in the decay $K_L \rightarrow \pi \pi$.⁽⁴⁾ The dominant source of CP violation is a T-violating asymmetry in the transition rates $K^0 \leftrightarrow \bar{K}^0$: $\Gamma(\bar{K}^0 \rightarrow K^0) > \Gamma(K^0 \rightarrow \bar{K}^0)$. This asymmetry causes both the (nonmixing) mass eigenstates, K_L and K_S , to contain slightly more K^0 than \bar{K}^0 . Neglecting normalizations,

$$|K_S\rangle \sim (1+\epsilon)|K^0\rangle + (1-\epsilon)|\bar{K}^0\rangle \quad \text{and} \quad |K_L\rangle \sim (1+\epsilon)|K^0\rangle - (1-\epsilon)|\bar{K}^0\rangle.$$

The $\Delta S = \Delta Q$ rule requires $K^0 \rightarrow \pi^- l^+ \nu$ and $\bar{K}^0 \rightarrow \pi^+ l^- \bar{\nu}$ so the observed charge asymmetry in a K_L beam is proportional to $\text{Re}(\epsilon)$. Note that the same charge asymmetry

would be observed in a pure K_S beam. The magnitude and phase of ϵ are $(2.259 \pm 0.018) \times 10^{-3}$ and $(43.67 \pm 0.13)^\circ$ respectively.⁽⁵⁾ Since $CP(|K^0\rangle) = |\bar{K}^0\rangle$ and $CP(|\bar{K}^0\rangle) = |K^0\rangle$, the mass eigenstates are not CP eigenstates. The CP eigenstates K_1 and K_2 are

$$|K_1\rangle \sim |K^0\rangle + |\bar{K}^0\rangle \text{ and } |K_2\rangle \sim |K^0\rangle - |\bar{K}^0\rangle.$$

In terms of K_1 and K_2 one may write

$$|K_S\rangle \sim |K_1\rangle + \epsilon |K_2\rangle \text{ and } |K_L\rangle \sim |K_2\rangle + \epsilon |K_1\rangle.$$

Because the $|\pi\pi\rangle$ final state from K decay must have $CP = +1$, a pure K_L beam will yield $\pi\pi$ decays from the beam's small K_1 component.

Direct CP Violation and ϵ'

A second possible source for CP violation would be the existence of a non-zero amplitude for the decay $K_2 \rightarrow \pi\pi$. It is necessary that $\text{Amp}(K^0 \rightarrow \pi\pi) \neq \text{Amp}(\bar{K}^0 \rightarrow \pi\pi)$ if the K_2 is to decay into $\pi\pi$. In particular, the quantity

$$\epsilon' \equiv \frac{1}{\sqrt{2}} \frac{A_2 - \bar{A}_2}{A_0 + \bar{A}_0} e^{i(\delta_2 - \delta_0)}$$

must be nonzero where

$$\begin{aligned} A_0 &\equiv \text{Amp}(K^0 \rightarrow \pi\pi|_{I=0}), & \bar{A}_0 &\equiv \text{Amp}(\bar{K}^0 \rightarrow \pi\pi|_{I=0}) \\ A_2 &\equiv \text{Amp}(K^0 \rightarrow \pi\pi|_{I=2}), & \bar{A}_2 &\equiv \text{Amp}(\bar{K}^0 \rightarrow \pi\pi|_{I=2}). \end{aligned}$$

δ_2 and δ_0 are final state interaction phase shifts suffered by the pions moving away from the kaon decay vertex. After defining

$$\eta_{+-} = \frac{\text{Amp}(K_L \rightarrow \pi^+ \pi^-)}{\text{Amp}(K_S \rightarrow \pi^+ \pi^-)} \quad \text{and} \quad \eta_{00} = \frac{\text{Amp}(K_L \rightarrow \pi^0 \pi^0)}{\text{Amp}(K_S \rightarrow \pi^0 \pi^0)},$$

some algebra reveals that $\eta_{+-} = \epsilon + \epsilon'$ and $\eta_{00} = \epsilon - 2\epsilon'$. A nonzero ϵ' would split the values of the two η 's by $3\epsilon'$. Searches for this "direct" CP violation through measurements of $\text{Re}(\epsilon'/\epsilon)$ are underway at Fermilab and CERN; results so far are inconclusive.⁽⁶⁾ Since CPT invariance forces $\bar{A}_I = A_I^*$ and since the $\pi\pi$ phase shifts have been well measured, the phase of ϵ' is known to be $(48 \pm 8)^\circ$. $\text{Arg}(\eta_{+-})$ has been determined to be $(44.6 \pm 1.2)^\circ$; recent results from Fermilab E731 and CERN NA31 indicate that $\text{Arg}(\eta_{00})$ is within three degrees of $\text{Arg}(\eta_{+-})$.^{(5),(6)}

CPT violation parameters

Two different avenues for CPT violation suggest themselves. The first is a CP-violating, but T-conserving mixing of K^0 and \bar{K}^0 to produce the mass eigenstates. This corresponds to a situation where the K_S contains, for example, an excess of K^0 while the K_L contains an excess of \bar{K}^0 . The CPT violating parameter Δ enters into the description of K_S and K_L like this:

$$|K_S\rangle \sim (1+\epsilon+\Delta)|K^0\rangle + (1-\epsilon-\Delta)|\bar{K}^0\rangle \quad \text{and} \quad |K_L\rangle \sim (1+\epsilon-\Delta)|K^0\rangle - (1-\epsilon+\Delta)|\bar{K}^0\rangle.$$

Note the sign switch between ϵ and Δ in the K_L expression. The component of Δ which is perpendicular to ϵ in the complex plane, Δ_{\perp} , corresponds to a $K^0 - \bar{K}^0$ mass difference, while the component parallel to ϵ corresponds to a lifetime difference.⁽¹⁾

A second possible route to CPT violation is through a CPT-violating relationship among the various $K \rightarrow \pi\pi$ decay amplitudes. Because $A_I - A_I^* = 2i \operatorname{Im}(A_I)$ and $A_I + A_I^* = 2\operatorname{Re}(A_I)$, the phase of ϵ' would be shifted from its value of $(48 \pm 8)^\circ$ by a CPT-disallowed relationship such as $\bar{A}_I \neq A_I^*$.

In terms of ϵ , ϵ' , and Δ , $\eta_{+-} = \epsilon + \epsilon' - \Delta$ and $\eta_{00} = \epsilon - 2\epsilon' - \Delta$. A nonzero value of Δ will shift both η 's in the same direction in the complex plane and will split the K_L and K_S semileptonic charge asymmetries. An unusual ϵ' phase will split the η 's apart without affecting the charge asymmetries.

Experimental investigation of CPT violation

Overview

A comparison of the semileptonic charge asymmetries for K_L and K_S decays yields information about $\operatorname{Re}(\Delta)$. $\operatorname{Arg}(\eta_{+-}) - \operatorname{Arg}(\eta_{00})$, when combined with a value of $\operatorname{Re}(\epsilon'/\epsilon)$, determines the phase of ϵ' . $\operatorname{Arg}(\eta_{+-}) - \operatorname{Arg}(\epsilon)$ and $\operatorname{Arg}(\eta_{00}) - \operatorname{Arg}(\epsilon)$ provide determinations of $\epsilon' - \Delta$ and $-2\epsilon' - \Delta$, respectively. We will discuss an experiment to

measure $\text{Re}(\Delta)$. Because of the relationship between Δ_\perp and δm , the $K^0 - \bar{K}^0$ mass difference, the semileptonic rate study is the most interesting of the possible measurements. It is conceivable that physics at the Planck scale (or string compactification scale) will give rise to processes which generate a nonzero δm , of size $\delta m/m_K \approx m_K/m_{\text{Planck}} = 4 \times 10^{-20}$. The current experimental limit is $\delta m/m_K < 6 \times 10^{-19}$, only a factor of 25 larger than m_K/m_{Planck} . Note that δm will be zero if CPT is conserved while Δm , the $K_L - K_S$ mass difference, is not [$\Delta m = (3.521 \pm 0.014) \times 10^{-6}$ eV].⁽⁵⁾

The interpretation of a precision measurement of $\text{Arg}(\eta_{+-}) - \text{Arg}(\eta_{00})$ as a CPT test is complicated by the fact that the $\eta_{+-} - \eta_{00}$ phase difference can be small, but nonzero, in a CPT-invariant universe. $\text{Arg}(\eta_{+-}) - \text{Arg}(\eta_{00})$ is known to be within three degrees of zero; Fermilab E773 will measure it to an accuracy of 1/2 degree in the near future. The utility of measurements considerably more precise than this would require improved measurements of the phase of ϵ and the value of $\text{Re}(\epsilon'/\epsilon)$.

$\text{Re}(\Delta)$ and the semileptonic charge asymmetry experiment

The semileptonic charge asymmetry is

$$\delta \equiv \frac{\Gamma(K \rightarrow \pi^- l^+ \nu) - \Gamma(K \rightarrow \pi^+ l^- \bar{\nu})}{\Gamma(K \rightarrow \pi^- l^+ \nu) + \Gamma(K \rightarrow \pi^+ l^- \bar{\nu})}.$$

Neglecting violation of the $\Delta S = \Delta Q$ rule, the behavior of δ as a function of proper time should depend only on the relative probabilities that a beam kaon be a K^0 or a \bar{K}^0 .

Allowing for CPT violation, the charge asymmetry in a pure K_L beam will be approximately $4\text{Re}(\epsilon+\Delta)$ while that in a pure K_S beam will be $4\text{Re}(\epsilon-\Delta)$. Small $\Delta S = \Delta Q$ violations will not mimic CPT violation unless the $\Delta S = \Delta Q$ amplitudes are also CP violating.

If one could produce a pure K_S beam, one could measure δ_S directly and compare it to δ_L determined by the same detector exposed to a K_L beam. Since this is not possible, it is necessary to extract Δ by studying the interference between K_S and K_L decays downstream of a target. The observed semileptonic decay downstream of a target is a function of many things: acceptance, reconstruction efficiency, magnitude and phase of ϵ , magnitude and phase of Δ , relative amounts of K^0 and \bar{K}^0 leaving the production target. We have investigated the statistical sensitivity of a possible CPT experiment at the Main Injector, leaving study of systematic difficulties for a later date. Our assumptions are naïve: our toy detector has uniform (and perfectly known) acceptance in a decay volume which is 10^{-9} seconds of proper time long. We assume there are no backgrounds to our K_{e3} signal (neglecting the copious $K_S \rightarrow \pi^+\pi^-$ mode). We assume we have a monochromatic K beam and can reconstruct the energy of the detected kaons unambiguously. We generate proper time spectra for K_{e3} decays using specific values for six parameters: $|\epsilon|$, $\text{Arg}(\epsilon)$, $|\Delta|$, $\text{Arg}(\Delta)$, the dilution factor D (defined as the difference in the K^0 and \bar{K}^0 fluxes leaving the target divided by the sum of the fluxes), and the total target K flux. We jitter the contents of each bin in the time spectrum using a Gaussian distribution with $\sigma = \sqrt{n_{\text{bin}}}$ and then use MINUIT⁽⁸⁾ to fit for the six parameters. Note that $\Delta_\perp \approx 10^{-5}$ corresponds to $\delta m/m_K \approx m_K/m_{\text{Planck}}^{(1)}$; we use a conservative value for D of 0.2.⁽⁹⁾ The K yield expected in the proposed Main Injector

high intensity neutral beam will be in excess of 10^9 kaons per second.⁽¹⁰⁾ Here is a set of results from one of the fits, assuming 10% detection efficiency and 10^{15} kaons leaving the target.

<u>Parameter</u>	<u>True value</u>	<u>Fit value</u>
Target K flux	1.0×10^{15}	$1.0 \times 10^{15} \pm 1.7 \times 10^9$
$ \Delta $	1.0×10^{-5}	$(1.05 \pm 0.20) \times 10^{-5}$
Arg(Δ)	133.6°	$(117.0 \pm 12.4)^\circ$
$ \epsilon $	2.274×10^{-3}	$(2.280 \pm 0.002) \times 10^{-3}$
Arg(ϵ)	43.6°	$(43.7 \pm 0.05)^\circ$
D	0.2	$0.2 \pm (0.2 \times 10^{-5})$

There were about 4×10^{12} (!! detected decays in this sample. These results are typical: 10^{15} target kaons give several standard deviations of sensitivity to a CPT-violating mass difference between K and \bar{K} . The results of the MINUIT fits are insensitive to initial values of the trial parameters. When the fit algorithm is given an "infinite statistics" sample, the algorithm converges to the correct parameter values.

Discussion

The K^0 beam at the Main Injector will be capable of producing 2.2×10^9 kaons per second during extraction with a 50% duty factor.⁽¹⁰⁾ Neglecting deadtime, this would yield 10^{15} target kaons in less than two weeks. Available K flux will not be a limiting factor in the ability of a semileptonic CPT violation search to reach its goals. The experiment will have to overcome problems associated with running in a very high

rate environment. The experiment trigger will need to reject nonleptonic kaon decays quickly without introducing significant bias in the K_{e3} sample. To be able to record trillions of semileptonic decays, it will be necessary to analyze data in realtime, storing only a small amount of information about each event. Even if each trigger can be processed in 1 μ sec, with one byte per event written to tape, the full event sample will require several thousand 8mm cassette tapes.

The detector will need to be designed to eliminate systematic acceptance and reconstruction efficiency differences between the $\pi^+e^- \bar{\nu}$ and $\pi^-e^+\nu$ final states. In addition, it will probably be necessary to employ tricks involving several targets at different distances from the spectrometer to remove systematic uncertainties associated with imperfect knowledge of acceptance. Fortunately, the CPT-violating signal is an unusual time evolution of the charge asymmetry, not its value at a particular proper time. This dependence on a change in the charge asymmetry should cancel many systematic effects associated with charge-dependent efficiencies. However, the need to control systematics at the required level will be a difficult challenge, and warrants further study.

Conclusions

There is a fair chance that a CPT violation experiment can be carried out at the Fermilab Main Injector with a level of statistical sensitivity sufficient to observe the existence of CPT-violating amplitudes of size m_K / m_{Planck} . Ample K flux will be

available but the data taking rates are high, the number of events to be processed and stored in realtime is large, and strict control of systematic uncertainties crucial.

However, the possible physics payoff is enormous: a first observation of the workings of the fundamental interactions at the Planck scale.

References

- (1) See, for example, Cronin, J.W., "CP Violation, Status and Prospects", XXIII Cracow School of Theoretical Physics, Zakopane, Poland, June, 1983.
- (2) E. Witten, private communication (1989).
- (3) J. Harvey, private communication (1989).
- (4) See K. Kleinknecht, "CP Violation and K^0 Decays", Ann. Rev. Nucl. Sci. 25, 1 (1976) for a review of K meson and CP phenomenology.
- (5) Particle Data Group, Phys. Lett. B 204 (1988).
- (6) Fermilab E731 collaboration and CERN NA31 collaboration. See reports from these groups in "CP Violation in Particle Physics and Astrophysics", Blois, France, 22-26 May, 1989, J. Tran Thanh Van, ed. (1989).
- (7) V.V. Barmin *et al.*, "CPT Symmetry and Neutral Kaons", Nucl. Phys. B247, 293 (1984).
- (8) MINUIT is French for midnight.
- (9) A.J. Malensek, "Empirical Formula for Thick Target Particle Production", Fermilab report FN-341 2941.000 (1981).

(10) S. Childress *et al.*, "Fermilab Fixed Target Beams from the Main Injector", Fermilab report (May, 1989) and W. Molzon *et al.*, "Letter of Intent: High Precision, High Sensitivity K^0 Physics at the Main Injector", B. Weinstein, contact person (June, 1989).