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MESIC INTERACTIONS AND TFdNUCLEAR PHYSICS

●h

A. Picklesinlert

Physics Division

Loo Alamos National Laboratory

Los Alamos, New Mexico 87545

USA

Because some simple technical aapccts of the Faddeev ●quations are needed

to fully appreciate the topics to be discussed, and since everyone here ie probably

not intimately familiar with the nuclear three-body problem or the Faddeev

cquttions, I want to ‘begin with a brief review. The structure of the bound state

Faddeev ●quation can be inferred from some simple manipulations. Consider

the nonrelativistic Schr6dinger ●qu*.tion:

where the potential V = ~ v,, i=l-o, is given u a sum of two-body forces and

we have used the ‘odd man out” notation wher~, ●.g., V1 denotes the interaction

between particles 2 and 3, In ( 1), GO-l = E - H. where HOis the free three-body

Hamiltonian, i.e. the sum of the kinetic energy operators of the three particles

H. = ~ K,, and we have anticipated an expansion of the bound state V in

components, W = ~ #i Equation (1) can be rewritten as

and by ●quating components M sugg~stecl by (2)

(3)
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where G,-l = GO-l - v,. Equation [3) cl~aractmizes the deconlposition W =

~ vi as one in which ?J*~is that part of W in which the i“ pair interacts last.

NOW since Givi = GOT,, where T, = v, + v, G. T, is a free two-body t-matrix

embedded in th~ three-body space, the bound state equatio:~ becomes just

Vi =G.(Et) T’,(E, -Ii-, ) P *, (4)

where we have denoted the boun, t state ( t riton ) energy as Et and have made

explicit the energy argument of GO and the two-body t-matrix T,, In writing

(4) we have also made use of the overall antisymmetry of W, and the symmetric

nature of the interpretation of th- Vi, to infer that the vi satisfy $i = -Elj #j,

where Eij is the exchange operator for particles ‘i’ and ‘j’, so that P denotesl

the sum of the three-particle cyclic and acyclic permutation operators (~~i is

antisymmetric in the pair ‘i’ since Ti is).

Equation (4) exhibits all of the technical aspects of the problem we need

to consider explicitly. First, in the three-body center of mass #i = WE a

is a function of two momenta, the momentum ~of the spectator particle ‘i’ and -

the relative momentum ~of the interacting pair. The operator Ti is simply a

two-particle t-matrix whose “energy” happens to be the oper~tor (E- Ki ) rather

than just E, Making explicit the dependence on Ki and the pair center of mass

energy in momentum space, Ti(E– Ki ) + tl( E–3q2/4m), where t, is now just

the familiar two-body t-matrix evaluated at the energy ( E–3q2 /4m ). Thus

● Becaume P is noncliagonai in the spectator momentum ~, the triton equa-

tion scans over the two-body t-matrix for al! E < Et as E–3q2/4m varies

over the range of q, Thus, the triton binding energy is determined by the

behavior of the two-body t-matrix at energies below about -8.!5 MeV, i.e.

below the physical range where it is pararneterized.

● Becauae P couples different angular momentum states, t.h? int~i’act ian ker-

nel ti,P in (4) couples together a number of basis states in any r~prescn-

tation chosen, The triton equation (4) is generally expressed as a coupled

!’hanne’l problem, where a specitic channel correponcts to the coupling of

a specific angular momentum ( LSJ ) of the intvractilig pair to a specific
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angular momentum state of the spectator ( lsj) to form the spin 1~2 t riton.

Equation (4) is then scdvccl for a finite set of channels.

The choice of which channels to inclu(lc and which to olnit is somewhat
arbitrary, but certain choices have become standard. Typically, one specifies a
maximum value of J and whether or not to i]lclude odd parity ( m) pair states.
For example, the choices (Jsl; m=+), (Js2; m=+), (Js2: T=*), and (Js4;
T=* ), involves ~~ 9, 18, and 34 channels, respectively. Five channel results
are of interest because most of the binding energy ●ffects are already found at
this level. T> I’Ic I lists the channels which comprise the five-channel case.

TABLE I. The three-body five-channel basis.

CHANNEL LSJ ts j

1 000 0 1/2 1/2
2 011 0 1/2 1/2
3 011 2 1/2 3/2
4 211 0 1/2 1/2

5 211 2 1/2 /32

Of special interest in this talk will be the two-channel case which consists of

the first two entries listed in Table 1, This case is of particular interest because

most of the binding enmgy is already present for this coupling, and because it

also turns out to contain most of the interesting physics at issue for the tritou

binding ●nergy defect. For the two channel case, L=O and the tensor-force-

like term of the t-matrix does not contribute to the triton calculation of (4).

This is not to say that the NN tensor force does not contribute since the full

triplet potential is used to generate the NN t-matrix. However, this is a major

simplification which we will later exploit, Now let’s assess the status of triton

binding energy predictions from nonrelativistic potentia! models, For nearly two

decades, and until vwy rec?ntly, 2’s atternptsl to reconcile nonrclativistic pofmt-

tial theory with the experimental value of the triton binding energy consistently

met with failure’ -a. This pattern persisted despite the introduction of a host

of itlct-penclent “realistic” potential moclelsg– 14 which differed in detail, yet pro-

vided accurate descriptions of two-body bound state and nucleon-nucleon (NN )

scattering data*5, The basic features common to these attempts included:
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Use of the nonrelativistic Schrodinger equation.

Unretarded, static (energy-independent ) potentials.

Potentials with (varying) nonlocalities (velocity ckpendences ).

NN forces only, i.e., no three- or many-body forces.

Thus it appeared that the strictures of this theoretical framework were perhaps

incompatible with the triton binding and that strong three-body forces were

required to understand the triton”s”!s. However, it has long been known that

an approximately linear relationship exists between predictions for Et and for

the deuteron 70 D state (PD ) for a given model, and that the physical binding lies

roughly on the line formed by plotting the predictions for Et vs. the prediction

for PD made by various modelse’le. Just what drives this relationship has been

poorly understood, but we’ll get to that shortly.

The status quo changed recently when it was found that the cnergy-

independent (static ) potential approximations to the full Bonn inte~:act ionl 7

predict a triton binding ●nergy which is in good agreement with the exper-

imental value of 8.48 MeV, well within a reasonable uncertainty2’3. Ta-

ble II shows representative predictions for Ef from a variety of modeIs, de-

composed according to the number of channels included in the calculation.

TABLE 11. C’hannel decomposition of the predictions m~de for the

triton binding energy (in MeV ) by variouo realistic forces.

POTENTIAL PD 2 !5 9 18 34

RSC 6.47 6.59 7.04 7.21 7.23 7.35

PARIS 5.77 7.30 ~ 7.38 7.64

Ssc 5.45 7.46 7.52 7.49 7,53

V14 - 6.08 7.44 7.!57 7,457 7.67

TRS 5.92 7.49 7.56 7.52 7,56

BONN 4.38 8.16 8.36 8.44 8.32 8.35

Several remarks should be made in regard to Table II:
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● Excepting the Bonn results, the static potentials display a consistent defect

in underpredicting the triton binding.

● Excepting the Bonn and V14 potentials which are fittecl to np 1SO data, all

of the other potentials shown in Table II are fitted to pp 1SO data. Thus

all of the “other” potentials in Table II will gain in binding energy when

charge syrm’hetry breaking is taken into account, whereas the Bonn and

V14 potentials will lose somp ‘ ;nding18.

● Potential models with larger PD tend to get more binding energy contri-

bution from higher partial waves than do models with lower PD.

a The static Bonn prediction breaks the trend of persistent failure to predict

the triton binding, Just how this results as a direct consequence of the

low PD of the static Bonn model is considered shortly.

● The essence of the binding energy results for the various potentials is al-

ready present at the five channel level, moreover, the ●soential distinction

between tlw predictions of the other realistic forces and the Bonn potential

is already present at the two channel level.

Thus from this point on we can concentrate 011Pattention on the 1SO and s S1

partial waves which comprise the two-channel case. Since the only input to

the two channel calculation are the 1So and 3S1 two-body t-matrices, the major

differences between the predictions of the static Bonn model and those of the

other potentials ●videntIy arises from differences in these S-wave t-matrices.

The 1S0 part of the interaction can be characterized by the scattering length

it produces and the 3S1 part by its PD prediction. It turns out that realistic

variations in the singlet scattering length (and effective range), in the cent ext of

charge symmetry breaking effects, lead to validations in the prediction of Et on

the order of 200 KeV. Thus, apart from such significant, but relatively minor,

variations induced by the 1SO channd, we can focns on the 3S: NN partial wave

from here ons 110. The principal source of the distinction between the Bonn and

other models, apparently the result of differing tensor/central force admixtures,

evident 1y resides therein,

To clarify the mechanism through which this obtains, we note that both

the central and tensor forces are attractive in the even parity J =1 state, and that



different realistic forces achieve the ~ame -- 2.2 hlev deuteron binding through

different relative strengths of their tensor and central components. A stronger

tensor force implies a weaker central force. and vice versa. in order to achieve the

observed deuteron binding. In the triton, the tensor force apparently contributes

relatively less to the binding than does the central force in order to produce the

observed correladon: that a lower PD yields a more strongly bouncl triton.

In order to examine more closely the mechanism by which, all other things

being equal, a stronger tensor force implies a weaker triton binding, we found

it useful to generate variants of the static Bonn OBEPQ potential which were

as alike as possible, differ mainly in their PD prediction, and fit all other low-

energy parameters with high accuracy. This approach is intended to ensure

that extraneous off-shell variations among these models is minimal. Table III

lists the PD and the two- and five-channel Et predictions associated with these

models, as compared to the OBEPQ and the RSC potentia13.

TABLE III. Predictions for Et vs. potentird model.

POTENTIAL PD 2-CH 5-CH

A(OBEPQ) 4.38 8.16 8.36

B 5.03 7.87 8.14

c 5.60 7.62 7.94

RSC 6.47 6.59 7.04

Armed with our variable-tensor models we now exploit, in two ways, the

fact that we are able to restrict ourselves to the 3S1 channe13. First, the two-

body t-matrix T(E) satisfies the equation

?’(E) = v + J“G’O(E)T(E) (15)

so that, with V = Vc + VT, where Vc denotes the central and VT the tensor

force, we have for the coupled S and D partial waves:

TS(E) = V:.+@&( E) Ts(E) + }$DGO(E)TDS(E) (6a)
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P(E) = JTDS+

where Vss = Vs, etc. Thus,

TS(E) =

}:% O(E)P(E)+ P-qqp’s(q (6b)

the 3S1 t-matrix TS(E) is given by

(is)US(E) + [’S(E) G.(E) TS(E)

for the energy-dependent effective central potential

US(E) = v: - #’[G;l(E) – VD]-l V..S (7b)

which, in first order is just

[Ts(@l) = Vs + V;DGo (E)v-:s . (7C)

Equations (7) express the characteristic mechanism by which tensor force at-

traction is reduced below threshold, namely by the energy dependence explicit

in ( 7c) and, more precisely, in (7b). Given the solution of (6) for Ts( E), it is a

simple matter in momentum-space to turn off the tensor term in (6a), and solve

for the potential, thus obtaining the unique efTective central potential US(E) -

which yields Ts( E) via (7a). The advantage of US(E) over the tensor force is

simply that we have traded the latter for a sunple parametric dependence,

Given Us(E), we now exploit the second special advantage of the sS1 chan-

nel. There ●xists a nuclear bound state at energy@ ( ~ -2.2 MeV) in this channel

called the deuteron, Because realistic interactions correctly “predict” ~, the ef-

fective potential Us(@) must also yield this bound state. More generally, we

can gauge the strength of the potential Us(E) for arbitrary values of E simply

by treating E aa a parameter, fixing its value arbitrarily, and determining what

“deut xon” binding energy [$1 results. The results of such calculations are shown

in Figure 1 for the effective potentials generated by the Bonn OBEPQ poten-

tial and for the variable tensor models B and C described above. The striking

feat ures of Fig, 1 are twofold, First for each of the models, for energies below

the deute:on energy, the strengt!l of the effective interaction decreases monoton-

ically with E, Thus Ts( E) corresponds to an ever weakening potential Us(E)

as the parametric energy E = Et – 3q2/4m decreases over the range of values

relevant to the triton, This implies that as the momentum of the spectator
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nucleon increases, the contribution to the triton binding weakens. l’lle decrease
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FIGUR.E 1 The binding energy of the “deuteron” calculated from the effective

central potential US(E) plotted M ● function of E. The solid, dotted, and dashed lines

represent, respect ively, potent ids A (OBEP~ ), B, and C [See text].

in potential strength as E moves from ~ down to about -100 MeV is about 1.5 to

2,0 MeV for the range of models (PD = 4-7%) considered here. Second, as the

PD associated with the various static potentials increases, the effective strength

of the interaction decreases universally for all E below f?, i.e., the curves do

not cross. We note that these results depend upon the full character of Us(E)

as cxprewsed irn~(7 b), the first order approximate ion (ls( E)( 1) of (7c) displays

●rratic behavior even at energy ~. Thus, the picture which emerges from Fig,

1 is a delicate consequence of the full dynamics entailed in the effective central

potential Us(E).

Thus in the calculation of the triton binding energy, as ‘I’S(E) is sanl-

pled over its parametric depmdence on E, the stronger the tensor force of the
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model+ the weaker the effective potential associated with Ts( E) for all relevant

E. Hence, we are justified in makiug the following statements:

● The (attractive) strength of US(E) decreases monotonically with E.

. Stronger tensor forces imply universally weaker Us(E) for a21E < Et.

● More generally, the effective potentials associated with stronger tensor

forces are deaker; the triton 3S1 channel everywhere “sees” weaker at-

traction for models with stronger tensor forces.

Thus the “reconciliation” of the triton binding energy and nuclear potential

theory observed with the static OBEPQ potential essentially results from the

fact that this Bonn potential differs from the other realistic potentials in having

a much weaker tensor force, typified by a deuteron D-state percentage (PD ) of

only 4.470, versus a minimum of about 5.5’XOfor the others2’3.

Although the success of the static Bonn potentials is gratifying from the

poir.t of view of nonrelativistic potential theory, the foregoing raises an issue

of central importance. We have just seen that the implicit energy-dependence

associated with the unique Bonn tensor potential strength is crucial to the suc-

cess of the static Bonn potentials. But the successful triton predictions derive

from these static, potential-model approximations to the full, retarded, energy-

deperded Bonn interaction rather than from the full interaction itself. Thus,

one is led to inquire whether or not the static potential-model results straight-

forwardly reflect the physical content of the full meson-theoretic Bonn model.

As far as the two-body data is concerned, all of the Bonn interactions agree

very well in their predictions in the important low-energy regime, including PD.

One regime where both ihe momentum-space (k-rpace) OBEPQ potential and

the simpler coordinate-space (r-space) approximations differ Irom the full in-

teraction is in their predictions for NN t’ > 0 scattering phase shifts above ~

100 MeV17. However, the phase shift predictions of the two static potentials

deviate as much fkom one another as they do from the full interaction in this

regio,i, and yet the static potentials produce nearly identical predictions for the

t riton binding energy2, Just how the high-energy phase shifts are reflected

in the triton binding energy is not clear, but there seems to be no reason to
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believe, on the basis of the phase shift. behavior alone, that the full Bonn inter-

action would ckviate greatly from the two static potentials in its t.riton binding

energy predictions. While the static potentials’ close agreelnent for (positive-

energy ) scattering observable may reasonably be taken to be indicative of their

substantial agreement for energies relevant to the triton binding as well, one

cannot similarly aibfer that the same is true of the full interaction. The reason

for this is the triton predictions’ ~”~pendcnce on the NN t-matrix for ilegative

values of the parametric energy, E = Et-3q2/4n~. Simply put, one expects some

differences in the negative-energy behavior of the t-matrix corresponding to the

energy-dependent interaction relative to the behavior of its energy-independent

counterparts.

Other indications of the relevance to the three-body problem of dispersive

energy-dependent terms in the two-body interaction come from studies of virtual

isobar (A-resonance) contributions. For example, an extensive consideration of

isobar effects correlated in the two- and three-body systems is detailed in Refs.

19 and 20. In this model only one A is .dlowed at a time, there is no diagonal A-

nucleon interaction, and the coupled-channel approach employed permits only a

subset of the time-ordered diagrams of interest 1g. Within this context energy-

dependent effects are studied by adding to a static potential (in this case the

Paris potentially ) the difference between nonstatic single-isobar diagrams and a

limiting static value, yielding an energy-dependent interaction. This siniplified

model differs trom a realistic meson-theoretic int *raction such as the Bonn in-

teraction in that energy-dependent effects from one boson exchange, double-~

diagrams, and irreducible multi-meson exchange are not represented and only a

small subset of the single-A time-ordered diagrams can be considered. Neverthe-

less, the model of Refs. 19 and 20 allows one to treat not only two-body energy

dependence in the t hree-1.)ody problem but. also the coupled-channel approach

allows a considerable consistency between the model of the two- and three-body

forces and the inclusion of nucleon self-energy modifications to the two-body

force. One can easily infer the repulsive nature of the energy-dependent effects

in the model of Ref. 19 from the structure of second-order pert urbatioe the-

ory; the net repulsive effect from the two-body energy-dependence is found to
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be large, reducing the predicted triton binciing ●nergy by .58 hfeV. For later

reference, we note that it also turns out, in Ref. 19 that three-body force and

coupled-channel eflects more than compensate this repulsion to yield a net at-

tract;vc contribution t f 300 KeV tc the triton binding. Perturbative methods,

partly justified on the basis of Ref. 19, were then clevelopecl in Ref. 20 to obtain

a similar est imati for the role of double-A diagrams. The result was a large

1.3 Me-y reduction in the tritou binding which in this case is not compensated

by three-body effects. Although Ref. 20 emphasizes the uncertain, exploratory

nature of this result the implication is clear: energy. dependent effects muot be

taken seriously.

Because its semi .rel~tivistic context 1’ is not consistent with the use of

nonrelativistic three-body equations, direct use oi the full Bonn interaction in

Fadcleev calculations is inappropriate. However, an energy-dependent one boson

exchange potential (OBEP ) representation of the full interaction exists and this

can be easily (but only approximately) corrected for its use in a nonrelativistic

context, as described below. This approximation to the full interaction, the

“OBEPT” interaction of Ref. 1i, provides a much more accurate representation

of the fuil interaction than its energy-independent counterparts since it retains

the exact form of the one-meson ●xchange diagrams and higher-order (isobar

and multi- meson) diagrams are also well-described by such a parametrization 17.

Becsms~ no static hit is imposed, W(E) incorporates to some degree the energy-

dependence of the full interaction. Like the fuil interaction, W(E) is constructed

for use in a scattering equation of the Lipprnann-Schwinger form which employs

a relativistic Schr6dinger propagator,zl wherein nonrelativistic kinetic energies

are replaced by relativistic ones. It therefore yields a two-body t-matrix which

is suited for uae in the corresponding relativistic extension ot’ the nonrelativistic

three-body equations, obtained by applying the Bonn Lagrangian, time-ordered

perturbation theory, and the Bonn truncation schemesl’ to the three-nucleon

system. However, the free three-body propagator of such an approach is the

relativistic Schroding.r propagator. Thus, we can not immediately apply W(E)

in our nonrelativistic study of the triton binding energy.
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To adapt the quasipotential 013EPT to otir purposes we insert W( E), E =

2{k2-Fn~2]~~2, into the nonrelativistic (E = k2/nl) Lipp&~~al~~l-Scllwingerequation

in ti,s center of mass, rather than into t~ie corresponding relativistic Schrodinger

eauation. and then readjust the parameters of W(E) to recover the predictions

for two-body observables2z. O:dy slight adjustments are needed, and in fact,

this correction ha% lit tle real effect on the pr~dicted t riton binding energy. At

any rate, the process above yields an energy-dependent quasi-potent is], W‘( E ),

adapted for use in ncnrelativistic l~~ollle~~tul~~-spacethree-body calculations. We

note that W’(E) is, like IV(E), a more faithful representation of the full interac-

tion than are the static Bonn potentials; only a very minor approximation has

been introduced in obtaining W’(E) from W( !3), as compared to the substantial

modifications which result from the adclitionaJ requirement of complete energy-

independence. It would require very delicate interplay between the propagators

internal to W(E) and those of the relativistic Schrodinger eq~ation to invalidate

this approximation.

One can now use the energy-dependent Schroclinger quasi-potential W ‘(E)

to gauge the extent to which the triton pred:etions of the full Bonn interaction

can be expected to mirror those of its ●nergy-independent approximations, The

result is remarkable;2a the five-channel triton binding energy predicted on the

basis of W’( E) is oniy 6.73 MeV, This is to be compr,red to a five-channel result

based on OBEPQ of 8,36 MeV. Thus the actual repulsive retardation rflect

found here to characterize a full meson-theoretic interaction, namely the Bonn

interaction, is a full three times the effect observed in the model studied in Ref.

19. That this result has nothing to do with the distinction between W(E) and

W‘( E ) is already seen at

W(E) [uncorrected for its

and OBEPQ 8,16 MeV.

To understand this

the t we-channel level where ,W’(E) yields 6,65 MeV,

use in nonrelativistic three-body equations] 6,48 MeV,

result we proceed as before and stucly the strength of

the effective central potentials US(E) associated with W’(E) and W(E). The

results of such calculations22 are shown in Figure 2 along with the corresponding

results for the US(E) based on OBEPQ and the two other static potentials used

in obtaining Fig. 1. Here we see a qualitatively different behavior from that of



Fig. 1. Although W(E) and W’(E) correspond to low PD (PD = 4,24% and pD

= 3.s)570, respectively), i.e. to weaker tensor forces, the fall-off of their effective

l--

1 1 1 1 1 I

-70 -60 -5(2 -40 –30 -20 -10 0
E(MeV)

FIGURE 2 The Linding en~rsy of the “cteuteron”, calculated from the effective

potential- 115(E) m a functioi, of L’, for a variety of underlying realistic potential

models (See text ). The dotted curves represer,t the st~tic potentials ohown in Fig, 1;
from top to bottom they correspond to PD = 4,38%, 5,03% and 5,60%, rempectively,
The solid curve corresponds to the Reid potential, PD = 6.48%, The dashed curves

correspond to the ●nergy-dependent ;ntermctions W( E) and W‘(E) deecribed in the
text, The ehort-daah curve repreoente the OBEPT interaction of Ref. 17, PD =
4.24%, the long-dash curve our adaptation of GBEPT, W’(E), PD = 3.96%,

attraction in Fig, 2 as ( -E) increaeea breaks the pattern estabhshed in Fig, 1

for the static po+entiuls and does not resemble that corresponding to OBEPQ

at all. In fact it more nearly resembles that of the Reid potential, also shown

in Fig. 2, for which PD = 6.48%. Evidently the explicit energy dependence of

W(E) [or W‘( E)] adds to the enmgy dependence induced by the tensor force so

that the net result roughly corresponds to that of the large PD “realhtic” forces,

From Fig, 2 it is also evide;!t that the enhanced attractiveness of the static Bonn
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potentials, which results in their successful triton prmlictions, is Au? to the fact

that they reflect only the implicit energy dependence (low PD ) of W(E) and

not the explicit energy dependence, Thus, the successful triton predictions of

the static Bonn interactions rest on the fact that they do not reproduce the

negative-energy behavior of the full interaction!

If the trittia predictions of the nourelativistic static Bonn potentials are

to retain any significance with regard to their meson-theoretic origins, it is nec-

essary to reconcile the triton prediction made by W‘( E) [or W(E)] with the

experimental value. The only way to do this is to appeal to the meson theory

which prescribed the energy dependence in the first place. Thus, the resolution

of this issue must lie with the set of three-nucleon equations which consistently

incorporate the energy dependence oft he full interaction. The interaction W(E)

(and for that matter W’(E)) which ●nters into the three-body calculation is just

(an approximation to) a collection of meson exchange and virtual-A diagrams.

Although this set of diagrams possesses a high degree of self-consistency in the

two-body problem, this il~~0~ the case when the two nucleons are embedded

in a three- or many-body problem,

The reason for this is that the meson-theoretic framework implies the ex-

istence of additional diagrams in, r,g,, the three-body circumstance, which are

required to retain theoretical consistency and which arise from the retarded na-

tl of the two-body diagrams. The basic A three-body-force diagram was

found in the model of Ref. 19 to provide an additional attractive contribution

to Et of ,8 MeV. During the time two of the fermions interact, either or both

of them may interact, perhaps repeatedly, with the third fermion. Inclusion

of such self-energy diagrams can be viewed as effectively modifying the energy

dependence of the set of two-body diagrams which comprise W(E) in the three-

bocly space. If this results in a net attraction then this will tend to offset

the (3qz /4m) kinetic term in the potential W( E~-3qa /4nl ) and thus effectively

reduce the energy dependence of W(E) and W’(E) by biasing the range of im-

portant energiee E in Fig. 2 closer to Et. Thiu would move the corresponding

triton predictions back toward those obtained using the static potentials. A
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small attractive contribution to Et associated with such self-energy nloclifica-

tions has been observed in the model of Ref. 19. One can speculate from

Fig. 2 that the requisite three-body forces would have to supply a shift in the

parametric energy of --5 MeV or more. If this turns out to be the case, then

the appropriate two-body static potential theory limit would be understood to

result from a cancellation between energy-dependent meson-theoretic two-body

effects and the associated three -lm’:v forces le. In this event, we will have ob-

tained a much d~eper understanding of nuclear dynamics. If this picture does

not obtain, then the successful triton predictions of the static Bonn potentials

are disconnected from the meson-theoretic framework and their fundamental

significance is greatly diminished. The issue of the triton binding energy haa

progressed to the point where t we-body and three-body forces need to be treated

in a unified and consistent manner. Although one can certainly “fit” the tri-

ton using ●it her a three-body force or an energy-dependent phenomenology, t his

has little theoretical significance. What is required to resolve this issue is a

consistent three- body t rest ment based upon the physical model which underlies

meson-theoretic interactions, An understanding of trin~clear binding can never

be attained on the basis of ad-hoc static potential models alone, but must in-

clude an ●laboration and understanding of energy-dependent effects present or

neglected in the two-body force and this must be done in conjunction with the

relevant associated three- body mechanisms. Thus the successful prediction of

the triton binding energy by the static Bonn potentials, which called into ques-

tion the need for three-body forces in describing the triton, has led full circle

back to an appeal to three-body fmces.

t The ~or& ~Wn ~hieh th:8 ta/k i~ ~~ed wad performed in col!aborution

with R, A. Brandenburg, C, S, C’hulick, R, Machleidt, and R. M, Tha!er.
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