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MESIC INTERACTIONS AND THINUZLEAR PHYSICS

o* A. Picklesimer!
Physies Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545
USA

Because some simple technical aspects of the Faddeev equations are needed
to fully appreciate the topics to be discussec, and since everyone here is probably
not intimately familiar with the nuclear three-body problem or the Faddeev
equetions, I want to begin with a brief review. The structure of the bound state
Faddeev equation can be inferred fromn somne simple manipulations. Consider

the nonrelativistic Schrodinger equ-tion:

Gs' =Y wld ¥, =0 (1)

! J

where the potential V = ¥ v,,i=1-3, is given as a sum of two-body forces and
we have used the “odd man out” notation where, e.g., v; denotes the interaction
between particles 2and 3. In (1), G,~! = E - H, where H, is the free three-body
Hamiltonian, i.e. the sum of the kinetic energy operators of the three particles
H, = ¥ K,, and we have anticipated an expansion of the bound state ¥ in

components, ¥ = ¥ y,. Equation (1) can be rewritten as

YIGT e =Y Yy (2)

1 il

and by equating components as suggested by (2)

Gl =v Y v, (3)
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where G,7! = G,~! - v;. Equation (3) characterizes the decomposition ¥ =
Y ¢ as one in which y; is that part of *P in which the i** pair interacts last.
Now since G;v; = G,T;, where T; = v, + v, G, T, is a free iwo-body t-matrix

embedded in the three-body space, the bound state equation becomes just
. ¥i = Go(Ey) T(E, - K,) Py, (4)

where we have denoted the boun.: state (triton) energy as E, and have made
explicit the energy argument of G, and the two-body t-matrix T,. In writing
(4) we have also made use of the overall antisymmetry of ¥, and the symmetric
nature of the interpretation of the ¥, to infer that the ¥, satisfy y; = -E,; ¥,
where E,; is the exchange operator for particles ‘i’ and ‘j’, so that P denotes!
the sum of the three-particle cyclic and acyclic permutation operators (v, is
antisymmetric in the pair ‘i’ since T; is).

Equation (4) exhibits all of the technical aspects of the problem: we need
to consider explicitly!. First, in the three-body center of mess ¥; = ¥,(p, ¢)
is & function of two momenta, the momentum q of the spectator particle ‘i’ and
the relative momentum 7 of the interacting pair. The operator T, is simply a
two-particle t-matrix whose “energy” happens to be the operator (E—K;) rather
than just E. Making explicit the dependence on K; and the pair center of mass
energy in momentum space, T;{(E-K;) — t,(E-3q?/4m), where t; is now just
the familiar two-body t-matrix evaluated at the energy (E-3q?/4m). Thus

o Because P is nondiagonal in the spectator momentum 7, the triton equa-
tion scans over the two-body t-matrix for all E < E, as E—3q?/4m varies
over the range of q. Thus, the triton binding energy is determined by the
behavior of the two-body t-matrix at energies below about -8.5 MeV, i.e.
below the physical range where it is parameterized.

o Because P couples different angular momentum states, the intecaction ker-
nel ;P in (4) couples together a number of basis states in any represen-
tation chosen. The iriton equation (4) is generally expressed as a coupled
rhannel problem, where a specitic channel correponds to the coupling of

a specific angular momentum (LSJ) of the interacting psir to a specific



angular momentum state of the spectator (lsj) to form the spin 1,2 triton.

Equation (4) is then solved for a finite set of channels.

The choice of which channels to include and which to omit is somewhat
arbitrary, but certain choices have become standard. Typically, one specifies a
maximum value of J and whether or not to include odd parity (=) pair states.
For example, the choices (J<1; m=+), (J<2; r=+), (J<2: 7=1), and (J<4;
m=1%), involves 53 9, 18, and 34 channels, respectively. Five channel results
are of interest because most of the binding energy effects are already found at
this level. T~hle I lists the channels which comprise the five-channel case.

TABLE I. The three-body five-channel basis.

CHANNEL L S J ¢ s j
1 0 o0 0 0 1/2 1/2
2 0 1 1 0 1/2 1/2
3 0 1 1 ? 1/2 3/2
4 2 1 1 0 1/2 1/2
5 2 1 1 2 1/2 3/2

P —
——

Of special interest in this talk will be the two-channel case which consists of
the first two entries listed in Table I. This case is of particular interest because
most of the binding energy is already present for this coupling, and because it
also turns out to contain most of the interesting physics at issue for the triton
binding energy defect. For the two channel case, L=0 and the tensor-force-
like term of the t-matrix does not contribute to the triton calculation of (4).
This is not to say that the NN tensor force does not contribute since the full
triplet potential is used to generate the NN t-matrix. However, this is a major
simplification which we will later exploit. Now let’s assess the status of triton
binding energy predictions from nonrelativistic potential models. For nearly two
decades, and until very recently,?® attempts to reconcile nonrelativistic poten-
tial theory with the experimental value of the triton binding energy consistently

4—-8

met with failure This pattern persisted despite the introduction of a host

of independent “realistic” potential models® ~'* which differed in detail, yet pro-

vided accurate descriptions of two-body hound state and nucleon-nucleon (NN)

15

scattering data'®>. The basic features common to these attempts included:



Use of the nonrelativistic Schrodinger equation.

Unretarded, static (energy-independent) potent.als.

o Potentials with (varying) nonlocalities (velocity dependences).

e NN forces only, i.e., no three- or many-body forces.
Thus it appeared that the strictures of this theoretical framework were perhaps
incompatible with the triton binding and that strong three-body forces were

required to understand the triton*57:,

However, it has long been known that
an approximately linear relationship exists between predictions for E, and for
the deuteron % D state (Pp) for a given model, and that the nhysical binding lies
roughly on the line formed by plotting the predictions for E, vs. the prediction

for Pp made by various models®:!?

. Just what drives this relationship has been
poorly understood, but we'll get to that shortly.

The status quo changed recently when it was found that the :nergy-
independent (static) potential approximations to the full Bonn interaction!’
predict a triton binding energy which is in good agreement with tnhe exper-
imental value of 8.48 MeV, well within a reasonable uncertainty?®. Ta-
ble II shows representative predictions for E; from a variety of models, de-

composed according to the number of channels included in the calculation.

TABLE II. Channel decomposition of the predictions made for the

triton binding energy (in MeV) by various realistic forces.

POTENTIAL Pp 2 5 9 18 34
RSC 6.47 6.59 7.04 7.21 7.23 7.35
PARIS 5.77 7.30 . 7.38 7.64
SSC 5.45 7.46 7.52 7.49 7.53
V14 B 6.08 7.44 7.57 7.57 7.67
TRS 5.92 7.49 7.56 7.52 7.56
BONN 4.38 8.i6 8.36 8.44 8.32 8.35

Several remarks should be made in regard to Table II:



o Excepting the Bonn results, the static potentials display a consistent defect
in underpredicting the triton binding.
e Excepting the Bonn and V14 potentials which are fitted to np 'S, data, all
of the other potentials shown in Table II are fitted to pp 'S, data. Thus
all of the “other” potentials in Table II will gain in binding energy when
charge symtetry breaking is taken into account, whereas the Bonn and
V14 potentials will lose some ' inding!®.
e Potential models with larger Pp tend to get more binding energy contri-
bution from higher partial waves than do models with lower Pp.
3 Tke static Bonn prediction breaks the trend of persistent failure to predict
the triton binding. Just how this results as a direct consequence of the
low Pp of the static Bonn mode] is considered shortly.
o The essence of the binding energy results for the various potentials is al-
ready present at the five channel level, moreover, the essential distinction
between the predictions of the other realistic forces and the Bonn potential
is already present at the two channel level.
Thus from this point on we can concentrate o~ attention on the !S, and *S;
partial waves which comprise the two-channel case. Since the only input to
the two channel calculation are the !S, and 3S; two-body t-matrices, the major
differences between the predictions of the static Bonn model and those of the
other potentials evidently arises froimn differences in these S-wave t-matrices.
The !S, part of the interaction can be characterized by the scattering length
it produces and the *S; part by its Pp prediction. It turns out that realistic
variations in the singlet scattering length (and effective range), in the context of
charge symmetry breaking effects, lead to vaiiations in the prediction of E; on
the order of 200 KeV. Thus, apart from such significant, but relatively minor,
variations induced by the !S, channel, we can focus on the 3S; NN partial wave
from here on®1®. The principal source of the distinction between the Bonn and
other models, apparently the result of differing tensor/central force admixtures,
evidently resides therein.

To clarify the mechanism through which this obtains, we note that both

the central and tensor forces are attractive in the even parity J=1 state, and that
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different realistic forces achieve the ame ~ 2.2 Mev deuteron binding through
different relative strengths of their tensor and central components. A stronger
tensor force implies a weaker central force, and vice versa, in order to achieve the
observed deuteron binding. In the triton, the tensor force apparently contributes
relatively less to the binding than does the central force in order to produce the
observed correlation: that a lower Pp yields a more strongly bound triton.
In order to examine more closely the mechanism by which, all other things
being equal, a stronger tensor force implies a weaker triton binding, we found
it useful to generate variants of the static Bonn OBEPQ potential which were
as alike as possible, differ mainly in their Pp prediction, and fit all other low-
energy parameters with high accuracy. This approach is intended to ensure
that extraneous off-shell variations among these models is minimal. Table III

lists the Pp and the two- and five-channel E, predictinns associated with these
models, as compared to the OBEPQ and the RSC potential®.

TABLE II1. Predictions for E; vs. potential model.

POTENTIAL Pp 2-CH 5-CH
A(OBEPQ) 4.38 8.16 8.36
B 5.03 7.87 8.14
C 5.60 7.62 7.94
RSC 6.47 6.59 7.04

Armed with our variable-tensor models we now exploit, in two ways, the
fact that we are able to restrict ourselves to the 3S; channel®. Firs:, the two-

body t-matrix T(E) satisfies the equation

T(E) = V + VGo(E)T(E) (5)

so that, with V = Vo + Vr, where V¢ denotes the central and V7 the tensor

force, we have for the coupled S and D partial waves:

TS(E) = VE + VEGL(E)TS(E) + VPG (E)TP3(E) (6a)



TPS(E) = VP + VPSGL(E)T®(E) + VPG, (E)TPS(E) (6b)

where V5 = VS etc. Thus, the *S; t-matrix TS(E) is given by
TS(E) = U®(E)+ US(E)Go(E)T5(E) (Ta)
for the energy-dgpendent effective central potential

US(E) = V¢ - . £PIGTHE) = VP|TIVps (7b)

o

which, in first order is just
US(E)V = V3 + VEPG(E)WPS . (7c)

Equations (7) express the characteristic mechanism by which tensor force at-
traction is reduced below threshold, namely by the energy dependence explicit
in (7c) and, more precisely, in (7b). Given the solution of (6) for T*(E), it is a
simple matter in momentum-space to turn off the tensor term in (6a), and solve
for the potential, thus obtaining the unique effective central potential US(E)
which yields TS(E) via (7a). The advantage of US(E) over the tensor force is
simply that we have traded the latter for a simple parametric dependence.
Given US(E), we now exploit the second special advantage of the *S, chan-
nel. There exists a nuclear bound state at energy 8 (=~ -2.2 MeV) in this channel
called the deuteron. Because realistic interactions correctly “predict” 3, the ef-
fective potential US(3) must alsc yield this bound state. More generally, we
can gauge the strength of the potential US(E) for arbitrary values of E simply
by treating E as a parameter, fixing its value arbitrarily, and determining what
“deut >ron” binding energy | 3| resulis. The results of such calculations are shown
in Figure 1 for the effective potentials generated by the Bonn OBEPQ poten-
tial and for the variable tensor models B and C described above. The striking
features of Fig. 1 are twofold. First for each of the models, for energies below
the devt=ron energy, the strength of the effective interaction decreases monoton-
ically with E. Thus T5(E) corresponds to an ever weakening potential US(E)
as the parametric energy E = E, — 3¢g?/4m decreases over the range of values

relevant to the triton. This implies that as the momentum of the spectator



nucleon increases, the contribution to the triton binding weakens. The decrease
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FIGURE 1 The binding energy of the "deuteron” calculated from the effective
central potential US(E) plotted as # function of E. The solid, dotted, and dashed lines
represent, respectively, potentials A (OBEPQ), B, and C [See text|].

in potential strength as E moves from 3 down to about -100 MeV is about 1.5 to
2.0 MeV for the range of models (Pp = 4-7%) considered here. Second, as the
Pp associated with the various static potentials increases, the effective strength
of the interaction decreases universally for all E below 3, i.e., the curves do
not cross. We note that these results depend upon the full character of US(E)
as expreegsed in ('Tb), the first order approximation US(E)!! of (7c) displays
erratic behavior even at energy 3. Thus, the picture which emerges from Fig.
1 is a delicate consequence of the full dynamics entailed in the effective central
potential US(E).

Thus in the calculation of the triton binding energy, as TS(E) is sam-

pled over its parametric dependence on E, the stronger the tensor force of the



model, the weaker the effective potential associated with TS(E) for all relevant
E. Hence, we are justified in making the following statements:

e The (attractive) strength of U®(E) decreases monotonically with E.

e Stronger tensor forces imply universally weaker US(E) for all E < E,.

e More generally, the effective potentials associated with stronger tensor
forces are sdeaker; the triton 3S; channel everywhere “sees” weaker at-
traction for models with stronger tensor forces.

Thus the “reconciliation” of the triton binding energy and nuclear potential
theory observed with the static OBEPQ potential essentially results from the
fact that this Bonn potential differs from the other realistic potentials in having
a much weaker tensor force, typified by a deuteron D-state percentage (Pp) of
only 4.4%, versus a minimum of about 5.5% for the others?:3.

Although the success of the static Bonn potentials is gratifying from the
poirt of view of nonrelativistic potential theory, the foregoing raises an issue
of central importance. We have just seen that the implicit energy-dependence
associated with the unique Bonn tensor potential strength is crucial to the suc-
cess of the static Bonn potentials. But the successful triton predictions derive
from these static, potential-model approximations to the full, retarded, energy-
dependent Bonn interaction rather than from the full interaction itself. Thus,
one is led to inquire whether or not the static potential-model results straight-
forwardly reflect the physical content of the full meson-theoretic Bonn model.

As far as the two-body data is concerned, all of the Bonn interactions agree
very well in their predictions in the important low-energy regime, including Pp.
One regime where both the momentum-space (k-cpace) OBEPQ potential and
the simpler coordinate-space (r-space) approximations differ from the full in-
teraction is in their predictions for NN ¢ > 0 scattering phase shifts above ~
100 MeV!". However, the phase shift predictions of the two static potentials
deviate as much from one another as they do from the full interaction in this
regio., and yet the static potentials produce nearly identical predictions for the
triton binding energy?. Just how the high-energy phase shifts are reflected

in the triton binding energy is not clear, but there seems to be no reason to



believe, on the basis of the phase shift behavior alone, that the full Bonn inter-
action would deviate greatly from the two static potentials in its triton binding
energy predictions. While the static potentials’ close agreement for (positive-
energy) scattering observables may reasonably be taken to be indicative of their
substantial agreement for energies relevant to the triton binding as well, one
cannot similarly:thfer that the same is true of the full interaction. The reason
for this is the triton predictions’ "~pendence on the NN t-matrix for negative
values of the parametric energy, E = E,-3q%>/4m. Simply put, one expects some
differences in the negative-energy behavior of the t-matrix corresponding to the
energy-dependent interaction relative to the behavior of its energy-independent
counterparts.

Other indications of the relevance to the three-body problem of dispersive
energy-dependent terms in the two-body interaction come from studies of virtual
isobar (A-resonance) contributions. For example, an extensive consideration of
isobar effects correlated in the two- and three-body systems is detailed in Refs.
19 and 20. In this model only one A is allowed at a time, there is no diagonal A-
nucleon interaction, and the coupled-channel approach employed permits only a
subset of the time-ordered diagrams of interest!?. Within this context energy-
dependent effects are studied by adding to a static potential (in this case the
Paris potential'*) the difference between nonstatic single-isobar diagraimns and a
limiting static value, vielding an energy-dependent interaction. This simiplified
model differs trom a realistic meson-theoretic int+raction such as the Bonn in-
teraction in that energy-dependent effects from one boson exchange, double-A
diagrams, and irreducible multi-meson exchange are not represented and only a
small subset of the single-A time-ordered diagrams can be considered. Neverthe-
less, the model of Refs. 19 and 20 allows one to treat not only two-body energy
dependence in the three-body problem but also the coupled-channel approach
allows a considerable consistency between the model of the two- and three-body
forces and the inclusion of nucleon self-energy modifications to the two-body
force. One can easily infer the repulsive nature of the energy-dependent effects
in the model of Ref. 19 from the structure of second-order perturbation the-

ory; the net repulsive effect from the two-body energy-dependence is found to
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be large, reducing the predicted triton binding energy by .58 MeV. For later
reference, we note that it also turns out in Ref. 19 that three-body force and
coupled-channel'effects more than compensate this repulsion to yield a net at-
tractive contribution < f 300 KeV tc the triton binding. Perturbative methods,
partly justified on the basis of Ref. 19, were then developed in Ref. 20 to obtain
a similar estimadé for the role of double-A diagrains. The result was a large
1.3 MeV reduction in the triton binding which in this case is not compensated
by three-body effects. Although Ref. 20 emphasizes the uncertain, exploratory
nature of this result the implication is clear: energy- dependent effects must be
taken seriously.

Because its semi-relztivistic context!” is not consistent with the use of
nonrelativistic three-body equations, direct use of the full Bonn interaction in
Faddeev calculations is inappropriate. However, an energy-dependent one boson
exchange potential (OBEP) representation of the full interaction exists and this
can be easily (but only approximately) corrected for its use in a nonrelativistic
context, as described below. This approximation to the full interaction, the
“OBEPT?” interaction of Ref. 17, provides a much more accurate representation
of the fuil interaction than its energy-independent counterparts since it retains
the exact form of the one-meson exchange diagrams and higher-order (isobar
and multi-meson) diagrams are also well-described by such a parameterization!’.
Becz.use no static imit is imposed, W(E) incorporates to some degree the energy-
dependence of the full interaction. Like the fuil interaction, W(E) is constructed
for use in a scattering equation of the Lippmann-Schwinger form which employs
a relativistic Schrodinger propagator,’! wherein nonrelativistic kinetic energies
are replaced by relativistic ones. It therefore yields a two-body t-matrix which
is suited for uase in the corresponding relativistic extension of the nonrelativistic
three-body equations, obtained by applying the Bonn Lagrangian, time-ordered
perturbation theory, and the Bonn truncation schemes!” to the three-nucleon
system. However, the {ree three-body propagator of such an approach is the
relativistic Schroding.r propagator. Thus, we can not immediately apply W(E)

in our nonrelativistic study of the triton binding energy.
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To adapt the quasipotential OBEPT to our purposes we insert W(E), E =
'2[k2-i-1112]1/2, into the nonrelativistic (E = k?/m) Lippmann-Schwinger equation
in tl.a center of mass, rather than into thie corresponding relativistic Schrodinger
equation. and then readjust the parameters of W(E) to recover the prediciions
for two-body observables®?. Ouly slight adjustments are needed, and in fact,
this correction had little real effect on the predicted triton binding energy. At
any rate, the process above yields an energy-dependent quasi-potential, W'(E),
adapted for use in ncnrelativistic momentum-space three-hody calculations. We
note that W'(E) is, like W(E), a more faithful representation of the full interac-
tion than are the static Bonn potentials; only a very minor approximation has
been introduced in obtaining W'(E) from W(X), as compared to the substantial
modifications which result from the additiona) requirement of complete energy-
independence. It would require very delicate interplay between the propagators
internal to W(E) and those of the relativistic Schrodinger equation tu invalidate
this approximation.

One can now us= the energy-dependent Schrédinger quasi-potential W'(E)
to gauge the extent to which the triton prediztions of the full Bonn interaction
can be expected to mirror those of its energy-independent approximations. The
result is remarkable;2? the five-chunnel triton binding energy predicted on the
basis of W'(E) is oniy 6.73 MeV. This is to be comiprred to a five-channel result
based on OBEPQ of 8.36 MeV. Thus the actual repulsive retardation effect
found bLere to characterize a full meson-theoretic interaction, namely the Bonn
interaction, is a full three times the effect observed in the model studied in Ref.
19. That this result has nothing to do with the distinction between W(E) and
W'(E) is already seen at the two-channel level where W'(E) yields 6.65 MeV,
W(E) [uncorrected for its use in nonrelativistic three-body equations| 6.48 MeV,
and OBEPQ 8.16 MeV.

To understand this result we proceed as before and study the strength of
the effective central potentials US(E) associated with W'(E) and W(E). The
results of such calculations?? are shown in Figure 2 along with the corresponding
results for the US(E) based un OBEPQ and the two other static potentials used

in obtaining Fig. 1. Here we see a qualitatively different behavior from that of



Fig. 1. Although W(E) and W’(E) correspond to low Pp (Pp = 4.24% and Pp

= 3.95%, respectively), i.e. to weaker tensor forces, the fall-off of their effective
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FIGURE 2 The birding energy of the “deuteron”, calculated from the effective
potentials US(E) as a function of E, for a variety of underlying realistic potential
models (See text). The dotted curves represert the static potentials shown in Fig. 1;
from top to bottom taey correspond to Pp = 4.38%, 5.03% and 5.60%, respectively.
The solid curve corresponds to the Reid potential, Pp = 6.48%. The dashed curves
correspond to the energy-dependent ‘nteractions W(E) and W'(E) described in the
text. The short-dash curve represents the OBEPT interaction of Ref. 17, Pp =
4.24%, the long-dash curve our adaptation of GBEPT, W'(E), Pp = 3.95%.
attraction in Fig. 2 as (~E) increases breaks the pattern established in Fig. 1
for the static potentials and does not resemble that corresponding to OBEPQ
at all. In fact it more nearly reseinbles that of the Reid potential, also shown
in Fig. 2, for which Pp = 6.48%. Evidently the explicit energy dependence of
W(E) [or W'(E)] adds to the energy dependence induced by the tensor force so
that the net result roughly corresponds to that of the large Pp “realistic” forces.

From Fig. 2it is also evide:t that (he enhanced attractiveness of the static Bonn
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potentials, which results in their successful triton predictions, is due to the fact
that they reflect only the implicit energy dependence (low Pp) of W(E) and
not the explicit energy dependence. Thus, the successful triton predictions of
the static Bonn interactions rest on the fact that they do not reproduce the
negative-energy behavior of the full interaction!

If the triton’ predictions of the nourelativistic static Bonn potentials are
to retain any significance with regard to their meson-theoretic origins, it is nec-
essary to reconcile the triton prediction made by W’(E) [or W(E)] with the
experimental value. The only way to do this is to appeal to the meson theory
which prescribed the energy dependence in the first place. Thus, the resolution
of this issue must lie with the set of three-nucleon equations which consistently
incorporate the energy dependence of the full interaction. The interaction W(E)
(and for that matter W'(E)) which enters into the three-body calculation is just
(an approximation to) a collection of meson exchange and virtual-A diagrams.
Although this set of diagrams possesses a high degree of self-consistency in the
two-body problem, this is NOQT the case when the two nucleons are embedded
in a three- or many-body problem.

The reason for this is that the meson-theoretic framework implies the ex-
istence of additional diagrams in, e.g., the three-body circumstance, which are
required to retain theoretical consistency and which arise from the retarded na-
t:  of the two-body diagrams. The basic A three-body-force diagram was
found in the model of Ref. 19 to provide an additional attractive contribution
to E, of .8 MeV. During the time two of the fermions interact, either or both
of them may interact, perhaps repeatedly, with the third fermion. Inclusion
of such self-energy diagrams can be viewed as effectively modifying the energy
dependence of the set of two-body diagrams which coxﬁprise W(E) in the three-
body space. If this results in a net attraction then this will tend to offset
the (3q?/4m) kinetic term in the potential W(E-3q?/4m) and thus effectively
reduce the energy dependence of W(E) and W'(E) by biasing the range of im-
portant energies E in Fig. 2 closer to E;. This would move the corresponding

triton predictions back toward those obtained using the static potentials. A
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small attractive contribution to E, associated with such self-energy modifica-
tions has been observed in the model of Ref. 19. One can speculate from
Fig. 2 that the requisite three-body forces would have to supply a shift in the
parametric energy of ~ 5 MeV or more. If this turns out to be the case, then
the appropriate two-body static potential theory limit would be understood to
result from a candellation between energv-dependent meson-theoretic two-body
effects and the associated three-bo v forces'®. In this event, we will have ob-
tained a much d.eper understanding of nuclear dynamics. If this picture does
not obtain, then the successful triton predictions of the static Bonn potentials
are disconnected from the meson-theoretic framework and their fundamental
significance is greatly diminished. The issue of the triton binding energy has
progressed to the point where two-body and three-body forces need to be treated
in a unified and consistent manner. Although one can certainly “fit” the tri-
ton using either a three-body force or an energy-dependent phenomenology, this
has little theoretical significance. What is required to resolve this issue is a
consistent three-body treatment based upon the physical model which underlies
meson-theoretic interactions. An understanding of trinuclear binding can never
be attained on the basis of ad-hoc static potential models alone, but must in-
clude an elaboration and understanding of energy-dependent effects present or
neglected in the two-body force and this must be done in conjunction with the
relevant associated three-body mechanisms. Thus the successful prediction of
the triton binding energy by the static Bonn potentials, which called into ques-
tion the need for three-body forces in describing the triton, has led full circle
back to an appeal to three-body fcrces.

! The work upon which this talk is based was performed in collaborution
with R. A. Brandenburg, G. S. Chulick, R. Machleidt, and R. M. Thaler.
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