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INTRODUCTION 

The nuclear matter incompressibility A'oo (usually called the "compressibility" 
for some reason lost in antiquity) has been receiving an increasing amount of atten­
tion lately. Quite a spirited discussion is underway between groups who favor rather 
low values for use in simulations of supernova explosions, those who favor much 
higher values for the explanation of certain measurements in high-energy nuclear 
collisions, and many others who favor various intermediate values1'. The purpose of 
this paper is to present some preliminary results concerning the value of K^ arising 
from a statistical model of macroscopic nuclear properties that is currently under 
development by Wladek Swiatecki and myself. 

This model, which is described in the next section, is meant to serve as a replace­
ment for the traditional Liquid Drop Model and Droplet Model and their various 
extensions. It is itself an extension of the Thomas-Fermi approach of Seyler and 
Blanchard. However, it is important to note that we do not regard this approach 
as a poor approximaticu to Hartree-Fock, but rather as a vast improvement over 
the traditional LDM type approaches with their obvious limitations for light nuclei, 
at the drip lines, for large deformations, and other extreme situations such as large 
amounts of angular momentum or electric charge. 

THE THOMAS-FERMI METHOD AND THE 
SEYLER-BLANCHARD FORCE 

The phenomenological, momentum-dependent, two-body force of Seyler and 
Blanchard3) has been employed in genera] studies of saturating two component 
systems3^, for predicting nuclear masses and sizes4), for studying nuclei at finite tem­
peratures in equilibrium with their associated vapor5), and for a detailed study of the 
behavior of the surface energy of a two-component system6). The nuclear properties 
are obtained by minimizing the energy of a system of particles whose kinetic energy 
distribution is obtained from the density by the Thomas-Fermi assumption and 
whose potential energy is calculated with the phenomenological Seyler-Blanchard 
force. The Euler equation that results is solved by computer iteration. 

'This work was supported by the Director, Office of Energy Research, Office of High Energy 
and Nuclear Physics, Nucjear Physics Division of the US Department of Energy under Contract 
DE - AC03 - 76SF00098. 
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nuclear radius constant r 0 = 1.13 fm, 
volume energy «i = 16.527 MeV, 
symmetry energy J = 31.375 MeV, 
surface energy a7 = 20.268 MeV, 
compressibility A' = 301.27 MeV. 

We found that it was necessary to generalize the original Seyler-Blanchard force 
slightly in order to obtain the best possible agreement with the measured charge 
distributions while retaining agreement with measured values of the nuclear masses.* 
The interaction that was used for two like (/), or unlike (u), nucleons with separation 

r and relative momentum of magnitude p (where p is in units of the Fermi momentum 
of standard nuclear matter) was 

V ( r , p ) = " i ^ ^ 7 o " K u " <*'*v2 H • • M ' ( 1 ) 

The parameters of the model were determined by a fit to nuclear masses7' and 
constrained by comparing our calculated charge distributions with those obtained 
from electron scattering experiments'). This led to the following nuclear properties: 

(2) 

If in addition the properties of pure neutron matter are adjusted to agree with 
Friedman & Pandharipande9' the following parameter values result: 

C = 455.46 MeV fm3 , a = 0.59542 fm 
aj = 0.74597 , a . = 2.86331 ,„> 
A = 0.25255 , fl, = 1.23740 { i ) 

fi = 0.21329 , 7 U = 0.0 . 

THE SURFACE ENERGY AND THE COMPRESSIBILITY 
The surface energy and the compressibility are closely related since, after all, the 

surface energy arises in part from the fact that there is a loss of binding associated 
with reduced density, and the compressibility coefficient A'K, is the quantity that 
governs th's enect for small density deviations. In fact, we find in our work that the 
value of A'oc is determined by the requirement that the surface diffuseness correspond 
to the one measured in electron scattering and the surface energy is the one that 
corresponds to a fit of the model to nuclear masses. The effect on the surface energy 
of varying the diffuseness 6 or the compressibility Aoo can be seen in fig. 1. 

Even though A'oo has been determined, the effective value of the compressibility 
Kea for a finite nucleus can be quite a bit smaller because the resistance of the 
nucleus to changes in scale consists not only of a bulk effect but depends also on 
surface, curvature and higher order effects. See fig. 2. 

*We are currently engaged in an extension of the Seyler-Blanchard, Thomas-Fermi approach to 
the calculation of fission barriers as a function of angular momentum. One of the consequences of 
this project will be a more precisely determined set of force parameters. 
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Fig. 1 The value of the surface energy coefficient a 2 is plotted against A'<„ 
for three different values of the nuclear difTuseness 6. The point corresponding 
to our choice of parameters (given in eq. (3)) is in the circle in the center of 
the figure. 
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Fig. 2 A plot of the energy per particle E/A versus J 4 - 1 / 3 for finite JV = 
Z nuclei (without Coulomb energy) is compared with a similar plot for the 
quantity Ktg. 
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PREDICTED GMR ENERGIES 

The effective compressibility depends not only on the size of the nucleus but 
also on its composition. In fig. 3 the effect of the neutron excess and the Coulomb 
repulsion can be clearly seen. In addition, in fig. 4 we show our prediction for the 
energy of the Giant Monopole Resonance based on these values of Ketr and the 
simple hydrodynamical expression J,0' EQMR = fc^j£./A'eo/£, where B = m{r2), 
<r2) = *R* + 362, R = 1.13 vt'/'fm and b = 1 fm">. 
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Fig. 3 The effective value of the compressibility A'e«for a, number of nuclei 
is plotted versus their mass numbeM. The triangles correspond to N = Z 
and have the same values as in fig. 2. The circles show the reduction that 
occurs when the N, Z ratio is changed to correspond to 0 stability. The effect 
of adding the Coulomb repulsion is indicated by the square symbols. 
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Fig. A The solid line corresponds to our estimate of the energy of the Giant 
Monopole Resonance using the hydrodynamical expression above. The circles 
correspond to measured values1' whose errors are claimed to be smaller than 
the size of the symbols. 
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CONCLUSION 
A Thomas-Fermi nuclear model has been used to display the relationship between 

the compressibility and the surface energy. In addition it has been used to display the 
effect of finite size, the effect of neutron excess and the effect of Coulomb repulsion 
on the effective value of the compressibility. A comparison is also made between 
measured values of the Giant Monopole Resonance and the results of a simple scaling 
model. 

The author wishes to acknowledge discussions with W.J. Swiatecki who was 
responsible for a number of the idea., presented here. He also wants to acknowledge 
the important contribution made by P. Moller. 
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