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Abstract

A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-
momentum and angular-momentum tensors for any kind of nonlinear or linearized
Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which
these tensors are derived for the first time. The kinetic theories treated - which need not
be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center
theories. The Hamiltonian for the guiding center motion is taken in the form resulting
from Dirac’s constraint theory for non-standard Lagrangian systems. As an example of
the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homo-
geneous magnetized plasma is calculated with initially vanishing field perturbations. The
expression obtained is compared with the corresponding one of Maxwell-Vlasov theory.
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1. Introduction

In two previous papers /1/, /2/ different forms of generally valid expressions for the
energy of perturbations of general Maxwell-Vlasov equilibria are derived by various meth-
ods. A consequence drawn from these expressions was that all inhomogeneous equilibria
of interest allow negative-energy modes and are therefore potentially nonlinearly unstable.
The proof of this result is based on infinitely strongly localized perturbations. A ques-
tion therefore arises, to what degree is localization necessary for negative-energy waves.
Perturbations with extents smaller than typical gyroradii of the different particle species
could lead to anomalous collision terms in Fokker-Planck-like equations and might thus
contribute to anomalous transport. It would, however, also be of interest to find out which
equilibria allow negative-energy modes with wavelengths larger than the gyroradii. One
can, of course, do this kind of investigation with the energy expressions mentioned above.
A more appropriate procedure would be to use from the outset theories which have auto-
matically eliminated all perturbations with wavelengths smaller than the gyroradii. The
collisionless guiding center theories are of this type.

For the case of the nonlinear Maxwell-kinetic guiding center theory which included all
kinds of drift motions, especially polarization drift, we were able to obtain completely
general expressions for the conserved energy, and also the full energy-momentum and
angular-momentum tensors /3/, /4/. The derivations made use of the Hamilton-Jacobi
formalism for the particles. As mentioned in Ref. /1/, there are, however, some difficulties
in applying this formalism to general linearized theory. In Sec. II of this paper we present a
modified Hamilton-Jacobi formalism which is simpler than the original one and circumvents
these difficulties. It is applicable to linearized theories without restriction. For general
Hamiltonians that depend upon the electromagnetic potentials ¢(x,t) , A(x,t) , the
electric and magnetic fields E(x,t) , B(x,t) , and are arbitrary functions of extended
phase space variables, necessary for describing guiding center motion, the new method is
used to derive the energy-momentum and angular-momentum tensors. In Sec. III this is
done for the nonlinear theory, in a more formal way than in Ref. /4/, while in Sec. IV
linearized theory is treated. In Sec. V we specialize to the Maxwell-Vlasov case and obtain
for the first time the full energy-momentum tensor for the linearized theory. In Sec. VI we
introduce explicitly the Hamiltonian for the guiding center motion within the framework
of Dirac’s constraint theory for non-standard Lagrangians /5/. We use the regularized
Hamiltonian of Correa-Restrepo and Wimmel /6/ and make use of the results of Ref. /7/,
where Dirac’s constraint theory was previously applied to the nonlinear theory within the
original Hamilton-Jacobi formalism.

In Sect. VII the results of Sect. VI are used to derive for the Maxwell-kinetic guiding

2



center theory rules for obtaining the energy-momentum tensor for each special case from its
general form. We prefer to present the results in this way instead of writing out in full detail
the very complicated expressions for the general form of this tensor. At the end of this
section we give an example: the second-order energy for a perturbed homogeneous system
with non-vanishing unperturbed magnetic field but vanishing unperturbed electric field;
no initial field perturbations are assumed, i. e. all initial perturbations are perturbations
of the distribution functions with vanishing corresponding charge density. The expression
obtained is used to derive a sufficient condition for the existence of negative-energy modes.
The result is compared with a corresponding one of the Maxwell-Vlasov theory. Finally in
Sec. VIII we summarize.

II. The Modified Hamilton-Jacobi Formalism
for the Maxwell-Vlasov and Kinetic Guiding Center Theories

Let H,(pi,qi,t) be the Hamiltonian for particles of species v in a phase space
P1, + « - sPns q1, - - - gn With (q1, g2 ¢3) = (z1, z2, z3) = x and correspond-
ing (p1, p2, p3) = P , where x is the position in normal space; n=4 is needed for
describing guiding center motion. The x,t dependence of H, is given by the dependence
of H, on the electromagnetic potentials ¢(x,t) and A(x,t) and, for the kinetic guid-
ing center theory, also on the electric and magnetic fields E(x,t) and B(x,t) and their
various derivatives. The derivatives only occur, when Dirac’s constraint theory formalism
is used. They are absent in a formalism that avoids the necessity of constraint theory
by introducing inertial terms with infinitesimally small masses (see Ref. /3/). But even
with Dirac’s formalism the variation of these quantities makes vanishing contributions to
the Euler-Lagrange equations and to the energy-momentum tensor (see remark after Eq.
(122) in Sec. VII). The general formalism is therefore equivalent to that for Hamiltonians
not depending on the derivatives of E and B.

In addition to H,, we introduce a reference Hamiltonian H,SO) (P, Qs ,t)
in the phase space Py, ... ,Pn, Q1, ... @, that will later be specified to be the
equilibrium Hamiltonian and then be time-independent. Let, furthermore, S, (P;, ¢; ,t) be
a mixed-variable generating function for a canonical transformation between p;, ¢; with
corresponding Hamiltonian H,(pi, ¢; ,t) and P;, Q; with corresponding Hamiltonian
(P, Qi Lt)
The quantities p; and @Q; are obtained from S, as

as, as,




and S, must be a solution of the equation

oS, as, (0) 2SS,
v 5 9 4 = v Ly ) .
o 1 <3qz~ u ) B\ B g0t @)

The original Hamilton-Jacobi theory is obtained when H, ,(,0) = 0. If this is the case, then
for perturbation theory there is a problem of finding a solution ,So) of the unperturbed
Hamilton-Jacobi equation with BS,SO)/ dq; time-independent. This is needed for obtaining

(0)

an energy expression. In the modified Hamilton-Jacobi formalism we chose H,"/ as the
time-independent equilibrium Hamiltonian. The time-independent zero-order solution S,SO)
of Eq. (2) is then simply

L(,o) = Y. P; ¢; , which makes the new formalism applicable in a straightforward way

with full generality.

We claim that, analogously to Refs. /3/, /4/,

aSV aSy aSU
L = — /dq dP ‘pV(Pi,Qiat) <— + HU<_ y 45 t> - HL(IO) (P"- ’ t>>
zu: | ot 9q; dP;
1 [ 3 2 _n2
+ 5 d’z (E® — B?) (3)

is the Lagrangian for the Maxwell-Vlasov or kinetic guiding center theory, the criterion be-
ing that it leads to the correct “particle” contributions to the charge and current densities.
The quantities to be varied are ¢, , S, , A and ¢ . In expression (3)

dgdP = dq; ...dq, dP, ... dP, . (4)
In addition, we define d§ as
d®z d§ = dg. (5)

The variational principle is
123

5 / Ldt =0 (6)
ty
with ép = 65, = 6¢ = 6A = 0 at t,, t; and some boundaries in ¢, P space.
Gauge invariance requires that H, and, similarly, H, ,(,0) be of the following form:

A (4
Hv(pia gz, t) = Hll(p_—cx_l'Avp4---pn,q4°--qn’Ea B) + eu¢- (7)

Variation with respect to ¢, , S, , ¢ and A in Eq. (6) then yields respectively

as, 35, a5
H,| — i, L] — (0) % Y =
5 .,(aq‘_ y i s ) H (P 35, t) 0, (8)
dp, . @ (OH, g (oHY B
3t | 3g (ap,- ‘0") 3P, ( 20, “v) = (9)



R 1 0
<p,,dqu+G&oE—0, (10)

A 0 0H,
—;e,,/go,,dqu— &.;/ o

— Ze—” oH, 0, d§ dP + 1—6—2/6}[" oy dG dP
P c Ot &

¢ 0 ot OE
oH, . 1 2 1 _
+curlzl;/ 3B <p,,dqu+maE+ 4—7rcurlB—-0, (11)
with 8H, _ OH,(pirait)
v o viDis4qi,
3D = —a—-— ’ (120.)
y22 Pi pi = %%x‘l_

oH _ 8HI(P,Qu1) (125)

0Q; N 0Q; Q; = %%,_ .

In Eq. (9), and often in the following, we use the summation convention in the form
Z a,'bi = aibi and Z a,-b,- = a,'b,' .
i i

Equation (8) is Eq. (2) again. Equations (10) and (11) are the inhomogeneous Maxwell
equations with “particle”, polarization and magnetization contributions to the charge and
current density. These equations do not have contributions arising from H ,(,0) since this
quantity depends only on equilibrium field variables that are not dynamical variables.

That the “particle” contributions, which are the first terms in Egs. (10) and (11), are
correct follows from the properties of the density functions ¢, : In Appendix A we prove
that the modified Van Vleck determinant

(13)

025,
0q; 9P

D, = det

solves the mixed-variable continuity equation (9). Its general solution can then be written

as
(pV(Pi, q: t) = ‘51/ fV(Pia qi, t) ’ (14)

where, as shown in Appendix B, f,, can be represented as

a aSy

fV(Pi’ q:, t) - fl/(aqz y 4i t> ’ (15)
or 35

Fo(Piy giy t) = 0 (P,-, 37, ° t) : (16)
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and where f,(p:, gi, t) solves the “Vlasov” equation

ofy + aHu(Pia q:, t) afu 0H, df,

ot op; o0g; d¢; Op:

ofv
ot

- [Hv, fu] =0, (17)
and fo (0)(P,-, Q;:, t) solves the “Vlasov” equation for the reference system

of  8HP (P, Qi, t) 9£Y  oHD 9f
ot oP; Qi 9Q: 0P

3£
ot
The brackets [ ] are the corresponding Poisson brackets. The representation (15) yields for

/G<ais q: t) (p,,dédp
9qi
S, as, %S,
- Jo(G w1 (G o) [aeom
= /G(pn qi, t) fll <pia qi, t) dé dp ’ (19)

which shows that Egs. (10) and (11) contain the correct “particle” contributions to the

—- [HD, 9] = 0. (18)

any function G(p;, g¢i, t)

dg dP

charge and current densities. Altogether we can now replace Egs. (8-11), in agreement
with Refs. /3/ and /4/, by the following set of equations:

of,
at [Hy, fu] = 0, (20)
. BH
= Ze,,/f,, djdp + div Y dg dp , (21)
. J0H, .
J = zy:eu/—a—p—fudqdp+
oH,
atZ/ dj dp — c curl ;/ 3B fo dd dp. (22)

This section is concluded by rewriting the theory in a way that facilitates derivations to
come. We introduce the following notation:

(z*) = (% ...,2% = (ct,x), (AL = (—9¢,A), (23a)
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Fpux B~ o = Apnr — Ay, (23b)
1 1 ki
E; = 3 (Fo,' — F; ) R B; = — > e; o [ek X 91] F* (236)
where e; is the unit vector in the i-direction,
Fry = — [ex X e/ e B, (23d)
2 2 _ 1 A
E - B = — E Fy_)‘ F N (238)
2 oF ad 2
= il = 2 s (23f)
0Ax . 0A,,, 0F,, OF),
8 a8 1.8 2z
aFy;  0Fo 2 OE;’ (239)
Jd 1 a2 .
-a—H = - 5 {ek X e;] ] % N k,l :1,2,3, (23h)
(~i) = (60, "'7611) = (ct,x,q4, "'7qn)s
(~i) = (50’ e )ﬁn) = (PO, P,P4y ... ,Pn) ’
(ét) = (éo, e 3Q~n) = (Cts x aQ4a ... ,Qn) )
(P“) = (130"°"13n) = (P03p7P4,-'-9Pn)’ (231)
}(u(ﬁi’ 6:) = }(u(ﬁOa ... ’ﬁna qu IR sqn)
= Cpo + Hl/(pla c e+ 3sPny q15 - -« 34n, t) ’ (23.7)
Xéo)(ﬁia Q~1) = )(ISO)(PO) . e ’ﬁn) Q~0’ e ,én)
= H;(zo)(PI’ "'7Pna Qla -°°’Qn, t) 9 (23]6)
A; = 0 fori>3, (231)
dGdP = d§, ...dGn dP, ...dP, = dqdP, (23m)
dpy dpy
— = =0, 23
3B, 0P (23m)
Note X is a‘function of p; — Ase,/c, t=0, ...n,and F,) .

The Lagrangian for our theory is then

R s, . ~ 05, 1
L = Z / dq dP L ()(u( aqu 3 q1,> - }(50) (Pz 3 al‘s > ) - m dazFI‘A F"A (24)
” t i
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and the corresponding Euler-Lagrange equations (8)-(11) become

a5s, ) . ( as,,) |
W22, g ) = ¥O(p, =2) =0, 25
(aq{ 1 v ' oP; ( )
3 X, ) a;(,S"))
—lo =2 ) - =, ——— ) =0, 26
3a; <‘0 am) Fy2 ("° 80, (26)
CV -3 od a)(y ~ -~ a a}(y 1 aFA‘L _
2;7 /dq dP oy 5 <+ 2 zu:/dq dP (p., 6F,\,1) = 5o =0 @D

II1I. The Energy-Momentum and Angular-momentum Tensor

of the Nonlinear Theory

These tensors were already derived in Ref. /4/ on the basis of the original Hamilton-
Jacobi theory. Since the nonlinear theory is formally simpler than the linearized one, we
find it helpful to present the derivation of these tensors first for the nonlinear theory.
We shall, however, restrict ourselves here to the formalism and not give the final result
completely explicitly as in Ref. /4/.

The Lagrange density belonging to the Lagrangian (24) is
A as ~ 05 1
=_§ §dP o, | X, | =2, §;) — (0) P; i _ = .
: p /dqd © [}( (&7:' q) w ( ’ aPi)] tor Tw £ (28)

Since £ is supposed not to depend explicitly on x and t, any variation of it with

6(}2 = §P; = 0 can be written as

s ,=[6L 6L as 6L as
6L = /d”dP [—5 + — 6 — + — § =2
2,,: 1 o, ¥ T §(8S.]0G) = o4 6(8S,/9P;) AP

oL oL
— 6A — 6
+ 34, p T 3F, F, , (29)
where 6 /6p,, ... are functional derivatives with respect to the §, P space and normal

derivatives as far as x ,t is concerned. The Euler-Lagrange equations are

5L

b, = 0, (30a)
F:} 6L ;] 5L
N L A - - =0,
aq; (5(3511/8‘112)) + 3P; (5(35.,/313,-)) (306)
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oL 0 9L

94, ~ e or, O (30c)

When these relations are used in Eq. (29) 6L becomes

£ - T [ et g (o5 smam) + o7 (" smjony) |

d L
+2 55 (5A,L m) : (31)

The integration over P makes the 9 / 8P; term vanish and the § integration reduces the
sum over ¢ in the 8/9¢; term to 0,1,2,3. Hence we obtain

6L oL
= axA [Z/dqu&S,,TS———]—a——A—)+ 25A“-6177 . (32)

One can generate variations by translating the whole system in space and time by a
constant §z# , u = 0,1,2,3 . Any function F(z*) is thereby changed in such a way that
its value is the same at the same physical position or time in the translated system as that
in the original system. Thus, if F' is the function in the translated system, one has

- F(zf + 6z°) = F(z*) (33)

and therefore oF
= F(zP) — F(zP) = — §zf — .
6F F(z*) (z*) oz 307

If one applies this to £, S,, A, , one finds from Eq. (32), because 6z can be arbitrary,

(34)

Jd
with as 6L 84, AL
_ T v n A
- %:/dq aF dzP §(8S,/9z*) + 2 dzr OF,) %L (850)

where @2 is the canonical tensor. As shown below, the energy-momentum tensor T’;\ is

the corresponding gauge-invariant expression

as, e, ° 6L ar A
Z/dqdp< ——;—A,,)W+2Fppm“5p£ (36)

such that

A b A
©, =T, + N, (37)
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with

A = € 6L A, 9L
= q XA, —— —f )
? / 44 4P ~= A 555,705 T 2 9z aF (38)
Because of Eq. (7) it holds that
6L oL
/dq ab c 5(35 5(3S,/0) ~  9Ax’

and we can express N ;,\ as

oL dA, 9L
N) = —4,——= — 2%
P paA,\ OzH aF“)‘ ’ (39)
which, when the Euler-Lagrange equations (30) are applied, becomes
a oL 0A, 9L d oL
A P
No Ao ozk 2 OF), + Oz OF,) 2 oz# (Ap OF, ) (40)
From this form of N ;‘ it follows, because of Fj,, = — F), , that
aN’;\ 0 41
> (41)
and therefore also that
aT, 0 ,
arr : (4 )

In order to show that T;;\ has the symmetry required for the energy-momentum tensor,
we now generate variations by rotating the whole system infinitesimally by éz? with

szf = € P (43)

A
P

Equations (33) and (34) must hold again for any scalar quantity, whereas for a vector

P

where € = — € is infinitesimaland ¢; = 0 for p and/or A =0.

quantity such as A, Eq. (33) must be replaced in the following way:
A, , p=1,2,3 transforms like a gradient of a scalar quantity F(z*) . With

u = z* + € (44)
and
F(u*) = F(z*), (45)
it follows that \ . N
3F _ (9u aF _ A A 3F
dz¢  Bz# Sur (6“ + e")—;ﬁ' (46)



. 2 “ .
When this is solved to first order in e;\‘ for a—lg(u",,—z , one arrives at

AF(u*)  OF(zM) y OF
Ouk Az ;7 L

Hence the replacement of Eq. (33) for A, is

fiu(“'\) = Au(=*) - f;\; Ay, (48)

which yields
6A,(z") = — b F AL, — eﬁ Ay . (49)
This also holds for # = 0 , and the sum over A can formally run from O to 3 since €} =0

for A = 0 and/or g = 0. Due to the fact that

o
'a—:-c—’; 612" =0 (50)

Eq. (32) now yields

5}  k A p oL oL
2 - =
az’\ (@ @k zl + Ap aFk)‘ k an’\ 0 (51)
and, with Eq. (37), |
o a
(Bt T ) v g(m et - m)
2} oL ar
Ay —— — =0.
+ 53 (2 P oE — 2 Ak 6pr) 0 (52)
In this expression one evaluates by means of Egs. (41), (39) and (30)
a N/\ k N/\ P - Nk NP —
az* B * - e T ke T
2 oL 5} oL
— - s (2 4 o) + (2 e 5 ) - (53)
This reduces Eq. (52) to
2 ALk AP k [
%’\_ Tp r - Tk T = Tp - Tk =0 ’ k,p =1, 2, 3, (54)

which proves the required symmetry of T"f .
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The angular-momentum tensor M ;\k is then related to T} by

Ak
M = TX gk — T) z° oM, =0 k.p=1,2,3 55
P - P kx ’ axA - Jp_ 1~ . ( )

It is pointed out that the procedure for a relativistic theory would be formally the same
as described here.

With the Lagrangian (28) the energy-momentum tensor (36) becomes

a” = oS e oX ox 1
Ao Z % v _ & 9w L o v\ _ )
s> 1 g pou 56
T % Tox “om ’ (56)

where use has been made of the Euler-Lagrange equation (25). One can finally introduce
p; instead of P; by means of Egs. (1), (13), (14) and (15), which leads to the substitutions

dP Oy — > dp fy(pi, q:, t) ] (57)
and Py
v ey €y
azp—-E-Ap—>pp_—c"ApJ p¢0) (58(1)
aSy €y 1 0
oo~ = Ao —> Z(H‘(’) - (Hu(pi,qirt) — ey ¢(Qi,t))) : (580)

The contribution resulting from ,(,0) has the following property: in f T3 d3z this

contribution (before p; is introduced) is given by means of Egs. (1), (13), (14) and (16) as

/ dq dP o, H{® (P,- ‘Zf,) = f dQ dP f{)(P;, Qi) HYY (Pi, Q,-) : (59)

Since both quantities f,(,o) and H .SO) are equilibrium quantities, they are time-independent
and so is the whole expression (59). The ©) " contribution to Tp)‘ thus has vanishing
four-divergence and can therefore be dropped. This then leaves

A oX oX 1
T = — i dp f| (B — 2 A N RSy | Bl +
g ;/d" P [(p" ¢ ”)am " “”aFM)} i e ¥
L6 L g pow (60)
’ 16w ¢
with
e 1
po— %L to-> - Mlprant) - e bla) (60a)
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Expression (60) agrees with the result obtained in Ref. /4/.

IV. The Linearized Theory

The equilibria considered in this section are represented by
H,SO)(Piy Qz) ’ SO,(JO)(Pi, q‘l.) 3 SISO) (Pi, qi) ’ AL,O)(X) .
while “primary” perturbations away from these equilibria are represented by
‘PS,I)(P:',‘I;" t) ’ S;(,l)(Pi,Qz'a t) ’ A‘(LI)(X, t) )

where the superscript (1) is used since later these perturbations will only be first-
order quantities; however, this is not assumed from the outset. The primary perturba-
tions lead to first, second and higher-order expressions for the perturbed Hamiltonian
H,(8S,/9¢i , gi, t) or H, , the unperturbed Hamiltonian H,(,o)(P,-, 9S,/8F;) or }(,So),
and the Lagrangian (see egs. (23k) and (65-66) below). The variations of the variational
principle (3), (6) can then be done in terms of the quantities zpf,l) , ,(,1) , A,(,,l) .
Variation of the first-order Lagrangian yields zero, because the unperturbed quantities
are solutions to the variational principle and thus variations around them vanish. The
lowest-order perturbation of the Lagrangian that is relevant is therefore of second-order,
and one can now consider the perturbations <p,(,1), ,(,1) and Af,,l) as being of first order
only. The second-order Lagrangian in these perturbations is then the Lagrangian for the

linearized theory.

As mentioned in Sec. II, the advantage of the modified Hamilton-Jacobi formalism over
the original one is the simple and generally valid form of the time-independent zero-order
function S (P;,q;) , namely

SO Pi,q) = ) Pigi. (61)
1=1
Up to first order we have therefore
05, _ , . 957 8s, _ . 95 ©2)
g dg; '’ or;  * OP;

In the following we again use the notations of Egs. (23). In order to obtain the second-order
Lagrangian we need

1 0 0 0
yo = (850 e ) a2 oy oD oy on” (63)
v EF2 c "t ) op BA Q) T TR gp(0)
[ RAY

13



(2) 1 BS,E ) €y (1) BS,S ) €y 1) 62)1120)
i e I e )
2 aq; ¢ gk c OP;0P;

1 0 (o]
+ <as},) > A(-l)) p _EHD L e e i

5 c N) T GBarQ T 2 7 Gp) 5
68,(,1) e, (1)) i 92 ,So) 1 (1) o2 ,SO)
+ ( — — — 4 Fixn ap.am0) t 5 Fuxy ;’1,,)1_ (0) (o) ° (64)
3q; ¢ aPian,)"q 2 an.A,'y aFo-p,r
(1) ()]
y@@ _ 98 Xy (65)
v ap; 9O
Y
(1) (1) 424,(0)
NO@ = 1095, ° 98y~ 0°Hy (66)

2 9P; 08P, 0§:9G
Here )(,50) (1) and )(,SO) (2) are the first and second-order expressions in the expansion of

- S, . sy
XlSO) (P‘l ’ aﬁ ) = }(50) (Pt ’ 61‘ + Sl: ) .
i oP;

The terms containing the quantities F S\)n = JF, ‘Ef\) /0= and ch,l,,)r occur in the kinetic
guiding center theory when Dirac’s constraint theory formalism is used. Their variations
do not, however, contribute to the Euler-Lagrange equations and the energy-momentum
tensor and therefore do not influence the general formalism (see the beginning of Sec. II

and the remark after Eq. (122) in Sec. VI).

The density of the second-order Lagrangian following from eq. (24) is then

1
@ — _ 1 p) paw
L — F) F

- Z/d?j dP {gof,") (;(,52) - ){,50)(2)) + oM (}(,ﬁ” — ¥OW )} (67)

Variation with respect to <p,(,1) , M and A,(Ll) in

2
5/dt/d3xﬂ(2) =0
14}
yields the first-order equations
: (0) (0)
1) _ y@@ _ _ & 4 O (1) 9Hy M yo| _
}(u }(u ¢ At af’t + FIU\ aF‘S(;) + Su ’ }(V 0 ’ (68)
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gk aq; c 615,-613k Py 3I'~’k

94k \"** 9P oFS) ¥

(0)

1) 0
+2 9 as.! _ &40 _B_Zl\’é_)_ 00
oz* Aqx c Ok aﬁkaFg’) v

aF) FLY) ¢ ¥ TaF, azr

L 9 _pmar _ g

47 Oz

Here we have defined mixed variable Poisson brackets as

[a } da 3b da 3db
’ a‘ii 313,' 613,~ aéi ’

Equation (61) yields for &% upon making use of Eq. (13)

o) =1
and similarly the first-order contribution is

2 o(1)
(1) 0%S,

P T Ghoa
Furthermore, from Eq. (16), it follows that
(0) (1)
f£0) = fl(IO)(ﬁi’ ‘jt) ’ :(,1) = —afu aS’: .

9¢; QP;

©)
+ 2 (F(l)_¢9_2_}(,,_ S0(0)) N [wgl) , ;(50)] — o,

(0) (0) (0)

o) Pv
aFyY

3 ((asé” e A(1)> 3% ¥ (o)> ) <as,£‘) 3 ¥
' OP; 0G0k

s s ev (95 e 9? e PPIC)
Z/dq dP {(pE’O) - <—~ - Afcl)) — + 90510) — F‘E}\) ~ (0)
v c 9k c OP;0P; c apiaFu)‘

(

)

))

(69)

(72)

(73)

(74)

Note that Egs. (74) embody the fact that perturbations of f., are assumed to arise solely
from changes in the particle orbits. With the foregoing equations we obtain from Eq. (14)

0) — fO)p. g (1) — =
‘Pu fu ( 19 Qz) ’ (py aq‘ v aP‘
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The energy-momentum tensor (36) has been derived without specifying L. We can there-
fore use expression (36) for the linearized theory by simply replacing £, S, , A, and
F,, by £(*) s, AE,I) and F,S},) . The result is

(1) 2/(0)
TN = - Z/dq dp(aSV _ Ecz Agl)> {fgc’)(as—i’ - X AS’) oM

aq,, IGk c OP)\ 0P
+ O F (1)—8 . i <f(0) aSél)) a}(éO)}
7 9P, oFY T aa v P; ) 8P,

(1) 2,(0) (0)
- 2F(1)Z/ dgdP{ £ 85':, _ & AS) ?L + fO o __3__)(__
G c 3P dF (Y OF DR

A~ 1
~ 7 F{) pex o 5*[2 / dg dP f{® (}(52) -~ ;150)(2)) + oo FY F(l)"’] . (76)

In this expression one has to use the Euler-Lagrange equation (68) together with Eq. (63)
in order to eliminate BSL(,I) /Ot wherever it occurs. Specifically these equations yield the
following expression for this purpose:

8551) ey (1) (1) (0) (47} (1) BH,SO) ( ) BH( ) .
5~ Ay = - [S,, , H{ ] + Z AW — F} el (77)
I

The angular-momentum tensor corresponding to T,Sz)'\ is
M@ = T gk _ @ g (78)
Since £(?) does not depend explicitly on time, we have

oTM
oz

=0, (79)

which means that there is energy conservation. However, generally £(2) depends explicitly
on X and therefore one has

T aL?)
oz* - orr ezplicit ’

p=1,2,3. (80)

Nevertheless, for certain symmetries of the equilibrium one can use the energy-momentum
tensor to construct quantities, such as the angular-momentum tensor in the case of rota-
tional symmetry, that obey a local conservation law of the form (79).
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V. The Energy-Momentum Tensor for the

Linearized Maxwell-Vlasov Theory

In the Maxwell-Vlasov theory the extension of phase space introduced in the above
formalism is not needed, i. e. n =3, [d§ =1, and for greater clarity we now write d*P

instead of dP. Furthermore, H, does not depend on F},,. Equation (76) therefore reduces
to

35(1) e 32H(
T(2)A — /d3P{< _ & A(l)) < v _ v A(1)> (0)
P Z aqp c 4 an ¢ k aP,\@Pk f
(1 (1) (0)
L (95 _ e ) 8, (o 95 ) O  _ 1 py pwa
a4, c °* ax v apP Py am ke

s ol ([0S e, )\ [0S e, y) 82HD
oApfer mi{(F - 4) (5 - 5 ) 55
p[zu: ¢ 2 9q; c ° 3Gk c k) 3B.0B,

asiV asl a2H® 1

- = — ———— ¢ +

dP; 0P, 0494k } 167

(0) (0)
(a}(,: ) = <c, oHy > (82)
oP) aP

Equation (82) denotes a vector with four components: the time-like component A = 0
has the value ¢; the space-like components A = 1,2,3 are the components of the particle
velocity of species v.

F{Y me] (81)

with

Of special interest is of course the energy, which we can compare with results obtained

in Refs. /1/ and /2/. For p = A = 0 we have, expressed in terms of the quantities without
tilde,

17050 e s e 92 H®
(20 _ /da { (0) ( v _ & A(_1)> ( v _ &y () v
0 Z fo 9q; c ¢ aqk c Ax OP;0P;

1 0 955 asi) a2m(”  (as(M W\ @ [ o0 a8
~2f - e

v T3P, 9P, 0z'dzF at v oP
. .
= (g1)2 (1)2
+ 5 (BW? + B (83)
with (1) (0)
4S5, ey (1) _ (1) (0) &y 21y, 9Hy
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from Eq. (77). The perturbation of the energy F(®) s then
F® = / T d3z . (85)

It will be given in a form which can immediately be compared with an expression in Ref.

/2/.

To this end we add to the right-hand side of eq. (85) the vanishing expression

F:) e aH®\ a5V
3. 3p 2 _ e (0) €v 4 (1) v v o)l _
/d:z;dPaPo{( [SV ,H,,:l+ cA . 8P> % f,,}

(0) (1)
— /dsz d*P {—‘9—<— [Sé” , H,SO)} + AW, OH, ) e 250 5o

oP oP ax
+ (— [S.Sl) : H,‘,°’] + %” A, agf,,(:’)) % . (as( ) f“”)} (86)
and we write
Hy, = e, A - fci A“);agf) = e, AV +H,,, (87a)
B - LS A0 0TS ™

We then obtain

(1) (1) 2 (0) (1) (1) (0)
F2) — Z/da:z: &3P 1 85',,. asy”’ 8*Hy” 1 35,7 asy 32Hu
2 0z' 9z* OROP 2 OP; OP; 0z'dzk

as(‘) 3
— v (1) (0) (0)
+ HV2 ax aP |:S HV ])fv

+ (— {551)., H,(,O)] - H,,1> [s,ﬁl), ,(,0)} } + % /(E(l)2 + BW2)g3z . (88)

With
[Sé” : [351) : H$°’] ]

1)
1) g00) 105" 8.y go] _
I:Su ’ Hu ] + 2 9P hd ax Su ’ Hu -

s | o
ax 3P
K

[5(1) H,SO’] _

D}

sy
ox

+
| =
Q

P

(1) 5a(1) A2 (0)
[3(1) [5(1) qo] ], 108 os) o2m
v o v v 2 9xr* Ozxk aPiaPk

N =
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1950 asV a2l 1 [, . 0SM asiM
T 23P, 0P, oz'9zF | 2 [H'S ' o op ] ’ (89)
35(1) as(l)
3, 3p|g@ 95 v | f0) —
/dzdP[H,,, ax'ap]"
asit  asi!
= — / d3z d°P o [H,(P), ,SO)] =0 (90)

and
/ &z d3P[S,S” , [sé” , H,SO)} ] 8 = / &z d3p[55” , f£°)] [H.‘P’ : S,S”] (91)
one obtains with Eq. (87a)

F(2) = Z/dsz d3P {% [S;(zl) ’ fL(IO)] [HISO) ’ stl)] - ﬁul [Sl(ll) ’ fxgo)] + Hu2 fﬁo) } ’
v

(92)
Relation (92) agrees with Ref. /2/ if one identifies

(1

Phrere = PRref./2/ and — v Ref./2/ = S Lerc .

V1. Hamiltonian for the Guiding Center Motion

We start with a Lagrangian for the guiding center motion. Such a Lagrangian was
given by Littlejohn /8/ and later in somewhat modified form by Wimmel /9/. Correa-
Restrepo and Wimmel /6/ observed a difficulty with these Lagrangians, namely that they
are singular for large parallel velocities if B e curl (B/B) # 0 . This led them to propose
a simple regularization method for removing the singular behavior while retaining the
variational form of the theory. They applied this method to the non-relativistic guiding
center theory without polarization drift. Later, in Ref. /7/ the same method was employed
to derive regular kinetic guiding center theories by means of the original Hamiltonian-
Jacobi theory /7/. Here we, too, apply the regularized Lagrangian in order to avoid
possible difficulties.

The Lagrangian is defined in terms of the variables

t, x = (g1, 92, 93) and ¢4 , (93)

where ¢4 is an additional variable needed in guiding center theory. L is of non-standard
form since it is not a convex function of x ; it is given by the following linear function of
X (the index for the particle species being suppressed)
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L=§A*o>’c—e¢*, (94a)

where
mc
A* = A + —;—(‘Uo g(q4/vo) b + VE) ’ (94b)
. m.. 9 2
ed =e¢+u,B+—-2—(q4+vE), (94c)
ve = ¢ (ExB)/B?, (94d)
b = B/B, (94e)

and u is the magnetic moment of the gyrating particle .

The antisymmetric function g¢(z) with 2z = q4/vo does the regularization, where vq is
some constant velocity. The non-regularized theory is obtained for g(z) = z , in which case
the solution of Eq. (98) below for g4 resulting from the Lagrangian (94) is ¢4 = v = bex.
In the regularized theory g(z) ~ z should still hold for small |2|. For large |z|, however,
g must stay finite such that with vo >> vihermai One has

_ (eB)/(m¢)
vo g(o0) << v, = becurlb (95)
A possible choice for g(z) is
g(z) = tanh z. (96)

Upon varying with respect to x, the variational principle with L given by Eq. (94) yields

dfe . e O . a¢*
‘d‘t(zA) +25;(A "‘) e 0 (97)

and varying with respect to g4 yields

m(bex g'(gs/vo) —q4) = O, (98)

where ¢’ = dg/dz . In Eq. (97) one has

dfe,,\ edA" e . a . e 0gqq4 0A*
dt(cA ) St T A4+ c Ot dq4 (99)
Therefore, by defining
. 1 A" a¢* . . .
E* = 5 ax’ B* = curl A*, v =x (100)



we can rewrite Eq. (97) as

1
E*+vaB*—?g'Q4b=0. (101)

Crossing Eq. (101) with b yields

1 1
be*+szﬁ——c-v||B*=0, Bj = beB*. (102)
From Eq. (98) we find
bex = vy = q1/9" . (103)

When this is inserted in Eq. (102), we obtain the guiding center velocity v = v, as a
function of t, x, q4 , which will enter the Hamiltonian in Dirac’s constraint theory:

q4 * c
B* +

[} * *

g by Bj

v=vy, = E*xb. (104)

Another “velocity” that is needed is ¢4 = V4 , which follows from Eq. (101) upon

multiplication by B* :
e

1 Er.B. (105)

44 = V4 = 7
| ma A

The momenta canonical to x and g4 follow from Eq. (94):
p = OL/o% = SA*, pa = OL/3s = 0. (106)

With these momenta the “primary” Hamiltonian H, in the sense of Dirac’s constraint
theory /5a,b,c/ is

H, = XedL/0%x + ¢4 0L/0q4 — L = e¢*, (107)
and thus Dirac’s Hamiltonian is given by
* € *
H = e +ng(p—-;A)+V4p4. _ (108)

In addition to
X = BH/ap = Vg, <j4 = 8H/6p4 = V4, (109)

which are equivalent to Egs. (97) and (98), one has the equations

. 0H dg* 0 e ..
P= "% T~ & ‘(5}"’9)'(?“:‘*%
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€ 0 * 8V4
+z <-a—x-A)0Vg-—-5;p4 (110)

and
dv,

994

134=—8H/6q4=-—mq4—— 0(p—§A*) +v”mg'. (111)

By using Eqgs. (97) and (98) these two equations can be rewritten as

d € " _ d € " 6V4
E( _—EA)_ (6xvg).(p cA> ax P4 (112)

. avy e ..
p4——aq4-(p ZA)' (113)

This shows that relations (106) are possible solutions, but not the only ones, and that
P — £ A* and p4 are not constants of motion. In order to guarantee that relations
(106) are satisfied, the distribution function f(g:, ps, t) must be of the form

f = 6(ps) 6(p — SA*) h(x, g4 t) (114)

where h cannot be a constant of motion, because ps and p — £ A* are not constants of
motion. However, it holds that

§(ps) 6(p — E A*) dpy d®p = const along orbits (115)
and, of course, also that
d®z dqs d®p dpy = const and f = const along the orbits .
Hence it follows that
h(x, q4, t) d®z dgqs = const along the orbits . (116)

We therefore write
h(xa qd4, t) = h(xa 94, t) fg(xs d4, t) ’ (117)

with A being a density in (X, g4 ) space and the guiding center distribution function f
being a constant of motion.

The equation for f is

of @ (8H o (0H |\ _
ot 6—q¢(¢9pi f) - 3m<3qz’ f) -0 (118)
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Integration of this equation over the full (p, p4) space yields, with f given by eq. (114),

oh a 2]

It was found in Refs. /6/ and /7/, corresponding to a result obtained by a different method
in Ref. /3/, that

an equation for h:

h = Bﬁ 9'(g4/vo) (120)

solves this equation. This can also be proved direct by means of Egs. (104), (105), (103)
and the “Maxwell” equations for E* and B* which follow from Egs. (100) (note that
OA* /8t is a partial time derivative at constant x and constant g4). Finally we arrive at

€ ke *
f = 6(ps) 6(p — JA ) Bjj 9'(g4/v0) fo(%, a4, u, t), (121)
where f; is a solution of the drift-kinetic equation

2‘&7_ %_*_V%

at TV o TV 5,

=0. (122)
In f, a dependence on the magnetic moment x has been added, this appears in
the various expressions only as a parameter distinguishing between different “kinds” of
particles. Later, one must sum over all these kinds of particles in order to obtain the total
energy-momentum tensor, i.e. one integrates over p. In the non-regularized case, g4 is
identical to v|. Note that the form (121) of f has the consequence that in the Lagrangian
(3), any variation of vg (see Eq. (108)) is multiplied by zero. Thus, although vz also
depends on the derivatives of E and B , which is not the case with the rest of H, this
dependence is unimportant for both the variational principle and the energy-momentum
tensor.

Whereas Eq. (121) for f is sufficient in the nonlinear theory to pick out the correct
solutions, this is not the case with the linearized theory. The constraints (106), which
must hold along the orbits, mean for psy =0 that

as as®@ 95 as(®)

—_— = + = Py + = 0 along the orbits . 123
044 g4 044 ¢ dq4 I (123)

P4 =0 is guaranteed by relation (121) when used for the unperturbed distribution func-
tion. Hence S(1) must obey

as()
994

=0 along the orbits . (124)
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The constraint for p means that

as
I - EA* along the orbits (125)
or that
85() as e .. e .. _
— + = ZA O(x, q4) + ZA W(x, q4, t) along the orbits .  (126)

The equilibrium distribution function guarantees
85 (0)
ax

where P(t), Q(t) and Q4(t) refer to the unperturbed orbits. In Egs. (125) and (126)
X, g4 mean x(t), qga(t) , which refer to the perturbed orbits.

= Pt) = - A"O(Q(1), Qu(1) , (127)

Up to first order we can write
x(t) = Q(t) + xM@) aat) = Qa(t) + V(1) (128)

and then find from Eq. (126)

as® ] 3
o CRIURP I 2 S PRLCIONENG)

ox oQ R
+ %A*(l)(Q(t), Qu(t), t) . (129)
Furthermore, it holds that
as 35 as) as
Q(t) = a—P = 8P -+ 8P = X(t) + 8P ) (130@)
3s 385 as() as(1)
t) = = =
W) = 35 = 35 * ap - “OF S5 (1306)
from which it follows that
as(1) as(1)
— (1) — _ o1

We can now consider for a certain instant of time f a distribution of perturbations
x(V(f) , qil)(t) in (X, g4 ) space, which we denote by £(x, g4, £ ), €4(x, g4, £ ).
Thus Egs. (131) and (129) become

as() - asM)

oP = -¢ ) 9P, = — &, (132)
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Jx 6(]4

The latter relation is more transparent when

(1) -~ 8
a‘;x ¢ (g.—— + 64—8—>A*(°)(x, q1) + %A*(I) , (133)

ve=_1 (P - SA*(O)(x, q4)> (134)

is introduced. This implies that

as) B 85 (1) e iA*(O) as()
3 |p  Ox |y c \0x opP
as e (9 -
= S =A*©
- v+c<3xA ).g. (135)
If, in addition, we use
e OA*(0)
e oa = ™9 (aa/v0) B, (136)
as follows from Eq. (94), we can replace Eq. (133) by
() . |
05 = - 2ExB'O + g mg'(qafvo) B + Z A (137)
ox |y c c

The zero-order distribution function always selects V = P, = 0. It is therefore reasonable
to expand S(1) in powers of V and P,. Since only first-order derivatives of () occur,
explicit knowledge of S(1) up to first order in V and P4 is sufficient:

SW = §W(x, q5) — EemV — & Py + higher — order terms (138)

where the first-order terms are chosen so as to yield the relations (132) for P, =V =0.
In addition, we obtain from Eq. (138) at P, =V =0

95(1) 95(1) e [ O .
= S A0
ax |p = x| <6xA )'5 (139)
and (1) 5(1)
as _ o5t e <_3—A*(°)>o§
dq4 |p 9q4 ¢ \Jq4
a5 .
= Toq m g'(ga/vo) D@ e € = 0. (140)
4

From Eq. (137) we find, again with Eq. (138), £4 and the components of f perpendicular
to B*©) £, :

95
— - —:-A*(1)> , (141)

= *(0
€4 = “—*(O)B()°<



S(1
L. = __C__[b*(o). (‘93() _ EA*(1)> B*0) « b
€

B*(0)2 ox c
as) e
— B*) — 2 A*(1)
B*'% x ( o - A )] . (142)

The full displacement vector E is then
£ =8 .+ Ax, ¢4) B, (143)

A is found from condition (140):

1 asM) ' 3
_ (9)
A me 5O |  m g'(a/vo) BT 6“]
5(1) G (1)
= — - *(0) o5 + : +(0) b(O) .B*(O) % <as ol A*(l)) . (144)
m g’ BII dq4 e B*(0)2 B ox ¢

The last quantity needed for T,SZ)”' is A(1), It has to be in agreement with the constraints.
Since these constraints must hold along the orbits, corresponding constraints for their time
derivatives along the orbits must also be valid:

d 2§

as ei d 39S
dt x = ¢ dt

A* —— =0 a t=¢t. 145

dt aQ4 ( )
These conditions can be viewed as being equations for the new quantities g—té' and % €4
They could be solved for these quantities for any A This is, however, not necessary,
since Téz)“ does not depend on %E and/or %54 . We thus have the result that the
following quantities can be freely chosen:

AM AW W (x, g4, p) (146a)
while ¢(1) is subjected to the constraint
VeEWM = 47 p(1) (146b)

The p-dependence of S(1) has been added for the reason given after Eq. (122).

VII. The Energy-Momentum Tensor for the

Linearized Maxwell-kinetic Guiding Center Theory

In this section we use the results of the previous section to derive general rules for
obtaining in each special case the, rather complicated, energy-momentum tensor T,Sz)“
for the Maxwell-kinetic guiding center theory. This amounts to tailoring Eqs. (76) and
(77) to the case at hand. It follows from Egs. (114), (132), (139), (140) and from the
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remark after Eq. (122) that all terms which contain f,SO) undifferentiated, the following
substitutions have to be made in Eq. (76):

P-> fci A*O) Pi—> 0, (147a)
asiy a5 e, [0 asM
v ev «(0) v o_
I > x + . (8x A ) f , 90a > 0, (147b)
as{M - asiM
-> —-¢ 2, — &4 (147¢)
/dﬁf,ﬁc’)...—>/duh,(,°)..., (147d)

£ being given by Eqgs. (142)-(144) and &, by Eq. (141).

There is one term containing derivatives of flgo) , namely

sl e asivy axul®
dg dP - X A(1)> ( (0) =¥ ) L. 148
Z/ 1 (an c a‘h 1 oP; dP) (148)
This term can be written as
(1) (1) (0)
T — _ Z/dq / (BS _ Cy A(1)> f(o) asy’ OXy
9g; 3q, ¢ Y 8P, 8P,

st g (/asM e e

+ E dj ab ) 95 {( v _"A(l)) v }
/ f P aq, an c P aPA
(1) @ 1)

= - Z/d@' ° {(asf _ e A(l)) L0) 058 o }
aqt 3qp c P v aP aPA

stV a [rasi e NSO
+ dg h(® ‘i {( Ly o A(‘)> Y } , 149
Z/ ; 0G; g, c ° oP) ( )

1.

where this expression is understood again with the substitutions (147).

(1)

Whenever the quantity a—%;—-_ occurs, it is to be replaced according to Eq. (77) by

sV (1) _ 1 0 €v
0 0
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We note further that
3% ¥

AP;3P;

.= 0, (151)
and that in Eq. (65) one has

1w pay 02K
A, op,
9 TuAqy TopT aF(o) 8F§2?T

-> 0, (152)

because of the constraints built into f,So) and F,) 4 involving only v, , Vi,

We give in addition a few helpful relations:

w_9 _1lgm, 9

7]
1
Fup 9F©® 2 3E©® %0 o0 — 3 [E( ) x aB(o)} 800 (1= 6x0)
BA

1 1 d
+ 2 [B( ) % 6E(0)]p 6xo (1 - 5,,0)

1 a 1 a 1 9
m_9  _ po, L B, 2 (154)
A o) — 0 o) °
» aF;E,\) AE() dB(0)
All derivatives like 3/0E(®) have the meaning
a a
—_— = == . 155
FEO® ~ IE|p_go (155)
Of special interst are ©
o o L  lexB o]
BE(O) = ¢ 2oz (156)
2 (0 _ [E(O) X €] 2 B§0) (0)
——aB(O) Ve = ¢ gz ~ Bz VE (157)

As an illustration, we derive the second-order energy for a perturbed homogeneous
system with non-vanishing unperturbed magnetic field but vanishing unperturbed electric
field. We restrict to a case that was of special interest in the Maxwell-Vlasov theory,
namely, that no field perturbations are initially present, i.e. all initial perturbations are
perturbations of the distribution functions with vanishing corresponding charge density.
Thus

B® +£o | E®=0 |, Fl=o AW =o. (158)
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Equation (76) for To(z)0 then reduces to

. - 08 o a5y
e[S ()

+ ) / dg dP fﬁo)(x,?) - ;150)(2)) :

and Eq. (150) to

(1)
3? _ [50) H<0)]
t v I v *

Equations (65) and (66) yield
D = }O@ = o,

Furthermore, one has from

Egs. (94): A0 = A0 4 722 vo g(q4/vo) b(©) |
ev $*® = pBO 4 e g2,
Eq. (100): B*(©® = B,
Eq. (104): vs(,o) = 14 b ;
Eq. (105): Vy = 0.
As a consequence, one obtains
or” _
994
and it holds that
b9 ¢ i A©® — ¢ A b = o,
ax ’

This leads to

5(1)
9, 9] = 202

v g ox
F= - 5 _ [pOy 0501 _ 1 L 885Y
e, B(0) X my, g’ dqs ’
' 5(1)
m, g’ ox

(159)

(160)

(161)

(162a
(162b
(162¢

R .

(162d

(162€)

(163)

(164)

(165)

(166)

(167)



The second-order energy F(2) then becomes

F® = /dsx T0(2)0 _

) 3\ (g asiy
3 (0) = i W - 3 N (V)]
| zy:/d z dqy dp h (g- o TG 3q4><g’ b9 e —= (168)
and, with Egs. (117) and (120) as well as with Eqgs. (166) and (167),
B
FO® = /ds:z: dqs du (0)
V
s E asth o\ /(q gLy
et (0) ¢ v _ 2 Y [24 v
X( 0a b * + be ™ 3q4>(g’ b'% e o ) (169)
Introducing complex quantities by the rule
1
AB-> EReA*B (170)
and with

one obtains

(0 .
F® = vy Z/dq4 dy _1;_ £§9 (ga, )(k.b<°>)25‘9—<|351>|2§)

94
= -V Z/dq4

where V is a normalization volume. We note that F(2) depends on 3{" only via |.§',Sl)|2 .

A qs O
IS G g f s ), (172)

Since the first-order charge density p(1) is a g4, u-integral over an expression that is
linear in S’,(,l) , one can satisfy the assumption p(!) =0 (made at the beginning of this
example) by a proper distribution of positive and negative values of 3’,(,1) ,on which F(2)
does not depend.

Recalling that according to Eq. (98) ¢4/¢’ is the component of the velocity parallel to
B(9 , we see that expression (172) resembles the corresponding ones obtained within the
framework of the Maxwell-Vlasov theory for homogeneous equilibria with B(®) = 0 and
for infinitely strongly localized perturbations of general equilibria. The most important
difference is seen in the following respective terms:

3f(0)
ov

(kev) ke (173a)

Vliasov theory
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and

7]
(k o b(®)2 g;:_ o fg(g) . (1736)
g q4 kinetic guiding center theory

Whereas in the Maxwell-Vlasov theory any deviation of f,SO) from being a monotonic
function of |v| allows negative energy modes to exist, it is solely the v)-dependence of the
distribution function in the kinetic guiding center theory that is decisive; the u- dependence
does not matter. The condition for the existence of negative-energy modes, which in the
Maxwell-Vlasov theory is

(0)
14

av

(kev) ke > 0 for some k,v,v (174a)

is replaced in the Maxwell-kinetic guiding center theory by

0
(kob(o))2 flgi, ™ fg(g) >0 for some k, q4, V. (174b)
4

The restricted class of initial conditions for which expression (172) is valid means, however,
that the inequality (174b) is only a sufficient condition. We expect that in the kinetic
guiding center theory, initially non-vanishing field perturbations will be important.
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VIII. Summary

The introduction of a modified Hamilton-Jacobi formalism as a tool allows straightfor-
ward construction of the energy-momentum and angular momentum tensors for any kind
of nonlinear or linearized Maxwell-collisionless kinetic theories, which may be different for
different particle species in a plasma, without any restriction. Contrary to the original
Hamilton-Jacobi theory, which consists of an equation for the mixed-variable generating
function for a canonical transformation to variables with vanishing corresponding Hamilto-
nian, the modified Hamilton-Jacobi theory deals with a canonical transformation from the
perturbed to the unperturbed system or, more generally, from the system considered to
some reference system. The application to the Maxwell-Vlasov theory is possible without
any further developements. The Maxwell-kinetic guiding center theory has on the particle
side to do with a non-standard Lagrangian system. This was handled within the formalism
of Dirac’s constraint theory. The constraints led in the nonlinear theory to a special form
of the distribution function defined in an extended phase space. It contains the guiding
center distribution function defined in v, 1, x space, where p is the magnetic moment.
In the linearized theory the constraints introduce, in addition, a displacement vector in
v||, X space similar to that in X space occurring in macroscopic theories. As an exam-
ple of the Maxwell-kinetic guiding center theory the second-order energy for a perturbed
homogeneous magnetized plasma is calculated with initially vanishing field perturbations.
The expression is compared with a corresponding one of the Maxwell-Vlasov theory. So far
the possible existence of negative-energy modes follows solely from the v|-dependence of
the unperturbed guiding center distribution function, the u-dependence does not matter.
The criterion found is the same as in the Maxwell-Vlasov theory for wave propagation
parallel to B(®), The condition is of course only a sufficient condition because of the class
of initial perturbations considered. It is expected that in the kinetic guiding center theory
initially non-vanishing field perturbations will be important.
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Appendix A: Proof that ¢, given by Eq. (13) solves Eq. (9)

The proof is similar to those in Refs. /10/ and /11/ for the original Van Vleck determinant.

Let A;x be the co-factor of 8%2S,/8q; 0P, in the determinant

Y

Oy = ‘ 8%S,/8q; 0P

With this definition (under the summation convention given in Sec. II)

3%s, a%s

Aj—t = Agy—- = $, b
L PaETY '5qc 0B, = 8 (42)

and

6P, = Ajpg——m—mm .
o A"aqi 2P, (A3)

then hold. With these relations, Eq. (8), and with notation (12), we have

&, a3Ss,
v _ Ap—a v
at ot 9q; 0P

a2 as S
= Aix ———— |- H |\ —, & @ p; Y
AkaqiaPk[ (3qz"q’t)+H" (P aPi’t)]

_ Aik["‘ i(BHV 3%5s, >+ 9 (aH,£°) 925, >]
dq; \ Op1 9q; 9P 0P, \ 9Q: 0P 0g;
_ _ 9 (dH,)\, . _ 9H, 8
B 3%’(3171) i Py

8 (oHD
5171:( o0Q

__ o oH, N\ 8 (3 »
= T oa\am %) T ap\ag #) (44)

which proves the statement.

-~

opi a_mp"

oHY” 8
8Q; oPR*”

> Okt @ +
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Appendix B: Proof of relations (15) and (16)

When
O = Py fV(Pi, q:, t)

is inserted in Eq. (9), one obtains for f, with the notation (12)

8fy , 0H, 3f, _ oH” 8f, _
ot dp; 9q; 8Q; oP~;,

For

A as,
v Pia 1y = Jv\ 53— 4 ’
fo(Piy gis t) = f <8q; q t)

with a notation for f, corresponding to Eq. (12), the following relations hold:

af, _ ofy L O 95 _
) dp; 9¢; ot

_ 8fy , 8f (_9H, _ 0H, 3%s, . aH® 528,
T8t Ops dqi dp1 9q Jg; 0Q: OP; 9q;
af, _ 98f, . 9 S,
dq; dq; dp1 9q Og;

af, _ 8f, 9%S,

dP;  9p 8q OF;

Using Eqgs. (B4-B6) in Eq. (B2) yields the equation

afy 0H, 8f,  6H, 8},
ot op; O9g; dq; OF;

for fu(p:, ¢i, t) , which is Eq. (17). Relation (15) is thus proved.

For
aS,

2p; ' D

fv(Ph qi, t) = ;(/0)(Pt )
one has, with a notation for f,So) corresponding to Eq. (12),

ofy _ ar” | o o%s, _
at ot 8Q; OP; 9t

T (_ oH, &°s, . om{  oH o5,
ot 2Q; dp; 9q 9P; oP; 3Q; 0P, OF;
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af,  afl”" as,
dq; 8Q; 8P dq;

af,  asl®  afl® as,
dP; ~ 9P, 8Q, 0P, 0P;

Inserting Eqs. (B9-B11) into Eq. (B2) yields

of” | oH 85”  oHY 8f”
ot OP; 0Q; 0Q; OJOF;

for f,SO)(P,-, Qi, t) , which is Eq. (18). Relation (16) is thus proved.
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