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Abstract

A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy- 
momentum and angular-momentum tensors for any kind of nonlinear or linearized 
Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which 
these tensors are derived for the first time. The kinetic theories treated - which need not 
be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center 
theories. The Hamiltonian for the guiding center motion is taken in the form resulting 
from Dirac’s constraint theory for non-standard Lagrangian systems. As an example of 
the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homo­
geneous magnetized plasma is calculated with initially vanishing field perturbations. The 
expression obtained is compared with the corresponding one of Maxwell-Vlasov theory.
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I. Introduction

In two previous papers /!/, /2/ different forms of generally valid expressions for the 
energy of perturbations of general Maxwell-Vlasov equilibria are derived by various meth­
ods. A consequence drawn from these expressions was that all inhomogeneous equilibria 
of interest allow negative-energy modes and are therefore potentially nonlinearly unstable. 
The proof of this result is based on infinitely strongly localized perturbations. A ques­
tion therefore arises, to what degree is localization necessary for negative-energy waves. 
Perturbations with extents smaller than typical gyroradii of the different particle species 
could lead to anomalous collision terms in Fokker-Planck-like equations and might thus 
contribute to anomalous transport. It would, however, also be of interest to find out which 
equilibria allow negative-energy modes with wavelengths larger than the gyroradii. One 
can, of course, do this kind of investigation with the energy expressions mentioned above. 
A more appropriate procedure would be to use from the outset theories which have auto­
matically eliminated all perturbations with wavelengths smaller than the gyroradii. The 
collisionless guiding center theories are of this type.

For the case of the nonlinear Maxwell-kinetic guiding center theory which included all 
kinds of drift motions, especially polarization drift, we were able to obtain completely 
general expressions for the conserved energy, and also the full energy-momentum and 
angular-momentum tensors /3/, /4/. The derivations made use of the Hamilton-Jacobi 
formalism for the particles. As mentioned in Ref. /!/, there are, however, some difficulties 
in applying this formalism to general linearized theory. In Sec. II of this paper we present a 
modified Hamilton-Jacobi formalism which is simpler than the original one and circumvents 
these difficulties. It is applicable to linearized theories without restriction. For general 
Hamiltonians that depend upon the electromagnetic potentials <^(x,i) , A(x,i) , the 
electric and magnetic fields E(x,i) , B(x,t) , and are arbitrary functions of extended 
phase space variables, necessary for describing guiding center motion, the new method is 
used to derive the energy-momentum and angular-momentum tensors. In Sec. Ill this is 
done for the nonlinear theory, in a more formal way than in Ref. /4/, while in Sec. IV 
linearized theory is treated. In Sec. V we specialize to the Maxwell-Vlasov case and obtain 
for the first time the full energy-momentum tensor for the linearized theory. In Sec. VI we 
introduce explicitly the Hamiltonian for the guiding center motion within the framework 
of Dirac’s constraint theory for non-standard Lagrangians /5/. We use the regularized 
Hamiltonian of Correa-Restrepo and Wimmel /6/ and make use of the results of Ref. /7/, 
where Dirac’s constraint theory was previously applied to the nonlinear theory within the 
original Hamilton-Jacobi formalism.

In Sect. VII the results of Sect. VI are used to derive for the Maxwell-kinetic guiding
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center theory rules for obtaining the energy-momentum tensor for each special case from its 
general form. We prefer to present the results in this way instead of writing out in full detail 
the very complicated expressions for the general form of this tensor. At the end of this 
section we give an example: the second-order energy for a perturbed homogeneous system 
with non-vanishing unperturbed magnetic field but vanishing unperturbed electric field; 
no initial field perturbations are assumed, i. e. all initial perturbations are perturbations 
of the distribution functions with vanishing corresponding charge density. The expression 
obtained is used to derive a sufficient condition for the existence of negative-energy modes. 
The result is compared with a corresponding one of the Maxwell-Vlasov theory. Finally in 
Sec. VIII we summarize.

II. The Modified Hamilton-Jacobi Formalism
for the Maxwell-Vlasov and Kinetic Guiding Center Theories

Let Hu{pi,qi,i) be the Hamiltonian for particles of species 1/ in a phase space 
Pi, • ■ ■ ,Pn, qi, • • • ?n With (qi, q2 qs) = (®i, x2, x3) = x and correspond­
ing (pi, p2, pz) = p , where x is the position in normal space; n=4 is needed for 
describing guiding center motion. The x,t dependence of Hu is given by the dependence 
of Hu on the electromagnetic potentials 0(x,f) and A(x,£) and, for the kinetic guid­
ing center theory, also on the electric and magnetic fields E(x, £) and B(x, £) and their 
various derivatives. The derivatives only occur, when Dirac’s constraint theory formalism 
is used. They are absent in a formalism that avoids the necessity of constraint theory 
by introducing inertial terms with infinitesimally small masses (see Ref. /3/). But even 
with Dirac’s formalism the variation of these quantities makes vanishing contributions to 
the Euler-Lagrange equations and to the energy-momentum tensor (see remark after Eq. 
(122) in Sec. VII). The general formalism is therefore equivalent to that for Hamiltonians 
not depending on the derivatives of E and B.

In addition to Hv, we introduce a reference Hamiltonian (Pi, Qi , t) 
in the phase space Pi, . . . ,Pn, Qi, . . . Qn that will later be specified to be the 
equilibrium Hamiltonian and then be time-independent. Let, furthermore, Sl/{Pi, qi ,t) be 
a mixed-variable generating function for a canonical transformation between pi , qi with 
corresponding Hamiltonian Hu(pi, qi ,t) and P,-, Qi with corresponding Hamiltonian 
H<0)(Pi, Qi ,<) .
The quantities pi and Qi are obtained from SI/ as

Pi =
dSu
dqi Qi =

dSu
dPi

(1)

3



and Su must be a solution of the equation 
dSu
dt

(2)

The original Hamilton-Jacobi theory is obtained when = 0. If this is the case, then 
for perturbation theory there is a problem of finding a solution si°^ of the unperturbed 
Hamilton-Jacobi equation with dS^/dqi time-independent. This is needed for obtaining 
an energy expression. In the modified Hamilton-Jacobi formalism we chose Hu0^ as the 
time-independent equilibrium Hamiltonian. The time-independent zero-order solution 
of Eq. (2) is then simply

Pi Qi > which makes the new formalism applicable in a straightforward way 
with full generality.

We claim that, analogously to Refs. /3/, /4/,
L = - dqdP » <H , * j - i^Pi , , (j j

+ ^ | <i3x (E2 - B2) (3)

is the Lagrangian for the Maxwell-Vlasov or kinetic guiding center theory, the criterion be­
ing that it leads to the correct “particle” contributions to the charge and current densities. 
The quantities to be varied are <pv , Su , A. and <f> . In expression (3)

dq dP = dqi . . . dqn dP\ . . . dPn . (4)

In addition, we define dq as
d3x dq = dq . (5)

The variational principle is
*2

7 L dt = 0 (6)

with 6^? = 8S,, = 8<j> = 8A = 0 at ti , and some boundaries in 9, P space. 
Gauge invariance requires that Hv and, similarly, be of the following form:

PvijPii qi, 0 = Hv —— A , P4 . . . Pn , 94 • • • 9n » ® ^ -(- Cj/ (j) .

Variation with respect to (pv , Su , <}> and A in Eq. (6) then yields respectively
dsv
dt

d<Pv
dt

d f dHu \ d (dHj0) n
dqi \ dpi <Pl'J dPi \ dQi <Pl'J

(7)

(8) 

(9)
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-Y'trJ^dqdP - ±l.'£j^VydqdP + ±-^.11 = 0,
tJ ^ 1J **

(10)

with

( dHu 
dp

Pt, dq dP + c gtJ2 [ gB V" i1 dF

1/ j
dHv i a 1

(11)dB
<pu dq dP + -— —E + — curl B = 0 ,

47TC dt 47T

dHu
dpi

 dHu{pi,qi,t)
dPi Pt

9
— dSVatn

(12a)

dHl0) dHiQ){Pi,Qi,t)
(126)

dQi dQi

In Eq. (9), and often in the following, we use the summation convention in the form

a,-6* = at 6* and at-6t- = a, 6i .
i t

Equation (8) is Eq. (2) again. Equations (10) and (11) are the inhomogeneous Maxwell 
equations with “particle”, polarization and magnetization contributions to the charge and 
current density. These equations do not have contributions arising from since this
quantity depends only on equilibrium field variables that are not dynamical variables.

That the “particle” contributions, which are the first terms in Eqs. (10) and (ll), are 
correct follows from the properties of the density functions <pv : In Appendix A we prove 
that the modified Van Vleck determinant

d2Sv
(£>„ = det (13)

dqi dPk

solves the mixed-variable continuity equation (9). Its general solution can then be written 
as

Pvi.Pit Qii 0 = Pv 9t> 0 j (14)
A

where, as shown in Appendix B, /„ can be represented as

fu{Pi, qi, t) = > ?» > ^ > (15)

or
/,(«■, <) = fl0) (fi, Hr - ‘) > (16)
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and where fv{Pi-> t) solves the “Vlasov” equation

dfv d_Hv{pi, qi, t) dfu dHv dfv
dt dpi dqi dqi dpi

df»
dt

- [Hu , /„] = 0 , (17)

and fu°\Pi, Qi, t) solves the “Vlasov” equation for the reference system

dfl0) dHl0){Pi, Qi, t) dfi0) dHl0) dfi0)
dt + dPi dQi dQi dPi

- !40), /'0)] = 0 .

The brackets [ ] are the corresponding Poisson brackets. The representation (15) yields for 
any function G{pi, qi, t)

(18)

/ 'g< ’ *) ^dg dp

(^(dS» A , (as* A 
= J G{a^1 * • V ’ V dqi dPk

dq dP

= f G^Pi, qi, t) f*(pi, qi, tj dq dp , (19)

which shows that Eqs. (10) and (ll) contain the correct “particle” contributions to the 
charge and current densities. Altogether we can now replace Eqs. (8-11), in agreement 
with Refs. /3/ and /4/, by the following set of equations:

df*
dt [Hi/ , ft/] — 0 , (20)

(21)
p = f U dq dp + div Y2 f ~^T f* ^ dP ,

u J 1/ J
j = 5>/ fu dq dp +

d v-™' f dHi/ v—' f ^ Hi/ . .
- di I ~dE fu d<idP - c curl Xs J -QB fv dq dp ■ ^

1/ J v J

This section is concluded by rewriting the theory in a way that facilitates derivations to 
come. We introduce the following notation:

(*M) = (A • • • ,*3) = (ct,x) , (Am) = (—^,A) , (23a)
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(236)
_ dAp dA\ _

^ dxx dx» ~~ m,A X,tl ’

^ (Foi ~ Fio) , 5,- = - ^ et • [ek x ej] Fkl ,

where is the unit vector in the {-direction,

Fki = - [e* x ej] • B ,

E2 - B2 = - i ,

_5_ = = 2
dAX'p dAx,^ dFvp dFx^

d ______ d_ _ 1 d
dFoi dFio 2 dEi

d

dFki
-jle. x ei] •

d

dB
, k,l : 1,2,3 :

(Qi) = (00, • • • )Qn) = (ct, ^ > 04) • • • ) 0n) )

(Pi) = (PO, • • • ) Pn) = (Po, P )P4) • • • ,Pn) ,

(Qi) = (<?0------- 1 Qn) — (ct, x ,Q4, . . • >Qn) >

(Pi) = (Po, ■ ■ ■ ,Pn) = (Po, p ,P4, . . • ) -f*n) )

(23c)

(23d)

(23c)

(23/)

(230)

(23h)

(23{)

MviPii Qi) — MPO, • • ’ iPni QOi • • • >0n)

= C Po -h Ht/(pi, . . . ,Pn> 01) • • • )0ri7 t) )

tfHA, 4) = ^0)(Po...........h, Qo............q»)

= Ql> • • • >

>lt- = 0 for i > 3 ,

dq dP = dgi . . . dqn dP\ . . . dPn = dq dP ,

d<Pv _ d<Pv _ Q 
dP0 ~ dP0 ~ ’

Note is a'function of pi — Aie^/c , { = 0, . . . n , and Fma •
The Lagrangian for our theory is then

(23/)

(23k)

(231)

(23m)

(23n)

L = dq dP (pu s? /d3xF* (24>
7



and the corresponding Euler-Lagrange equations (8)-(ll) become

dSv „
(25)

d ( dK
dqi V ^ dpi

d ( d)60)
—z;r- tpu --- —
dPi \ dQi

= 0,

dq dP <px dMu
d?\

+ 2 <Pv
dXu

dFx*
J_ dFXil 
47r dx^

(26) 

0 . (27)

HI. The Energy-Momentum and Angular-momentum Tensor 

of the Nonlinear Theory

These tensors were already derived in Ref. /4/ on the basis of the original Hamilton- 
Jacobi theory. Since the nonlinear theory is formally simpler than the linearized one, we 
find it helpful to present the derivation of these tensors first for the nonlinear theory. 
We shall, however, restrict ourselves here to the formalism and not give the final result 
completely explicitly as in Ref. /4/.

The Lagrange density belonging to the Lagrangian (24) is

£ = ?/ dq dP <pu 1
167T

F\n FXfl . (28)

Since £ is supposed not to depend explicitly on x and t, any variation of it withA ~
6(ji = SPi = 0 can be written as

6£ 6C
8(pu 8<pv +

6£ dS^ 
6(dSu/dqi) dqi

6L dS^ '
8{dSuldPi) dPi .

+ ai; ^ + wv ^ ’ (29)

where . . . are functional derivatives with respect to the q,P space and normal
derivatives as far as x , t is concerned. The Euler-Lagrange equations are

<?£
6<Pv

= 0, (30a)

— ( 611 ) + — ( 6C \ 
dqi ySidSv/dqi)) + dp. \8(dSt,/dPi) J (306)
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(30c)
dc _ d dc

dAfj, ^ dxx dFpx

When these relations are used in Eq. (29) SC becomes

SC SSU SC
S(dS„/dqi) +

-^-(ssu
dPi\

SC
S{dS„/dPi),

+ 2 dxx
SA dC

M dF,
(31)

The integration over P makes the d/dPi term vanish and the q integration reduces the 
sum over i in the d/dqi term to 0,1,2,3. Hence we obtain

SC = dxx
dq dP SSU SC

s{dsuidxx) + 2 SAp dC
dF^x

(32)

One can generate variations by translating the whole system in space and time by a 
constant Sx*1 , /z = 0,1,2,3 . Any function ^(x^) is thereby changed in such a way that 
its value is the same at the same physical position or time in the translated system as that 
in the original system. Thus, if F is the function in the translated system, one has

• + Sxp) = F{xp) (33)

and therefore

If one applies this to

A f j M'
IF = F(xfi) - F(X') = -ix" (34)

C, Su, Ap , one finds from Eq. (32), because Sxp can be arbitrary,

A. = 0 (35a)

with

X) / 4 dp dSv St 
dxP S(dSu/dxx) + 2 dC

dxP dF^x sH, (356)

where ©x is the canonical tensor. As shown below, the energy-momentum tensor Tx is 
the corresponding gauge-invariant expression

rp\
±P

Y,JdqdP asv
dxP

SC
s{dsv/dxx)

+ 2 F,up
dC

dF^x s; c (36)

such that
© + Nxn (37)
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with
(38)Nt -= j dq dP — Ap 6C

6{dSl/ / dx^) + 2
dA0 dL
dx*1 dFpx

Because of Eq. (7) it holds that

?/ A ~ ClJ
dq dP —

6C
c 8{dSu I dxx)

dC
dAx ’

and we can express N* as

Nx — - A Np ~ ApdAx
dA0 dt
dx» dF^x ’

which, when the Euler-Lagrange equations (30) are applied, becomes

(39)

\ d dt + 2
dA0 dt
dx* dFpx

= 2
dx^

(■ dt
dF^x

(40)

From this form of Nx it follows, because of F^x = — Fxp. , that

and therefore also that

= o

< =0
dxx

(41)

(42)

In order to show that Tx has the symmetry required for the energy-momentum tensor, 
we now generate variations by rotating the whole system infinitesimally by 8xp with

8xp = epx xx , (43)

where epx = — ex is infinitesimal and = 0 for p and/or A = 0.

Equations (33) and (34) must hold again for any scalar quantity, whereas for a vector 
quantity such as Ap Eq. (33) must be replaced in the following way:
Ap, , /i = 1,2,3 transforms like a gradient of a scalar quantity F{xp') . With

+ e7 xm _A

and

it follows that
dF
dx*

F(up) = F(xM) ,

= (s* + ___
dxp dux \ M dux

A 5/

(44)

(45)

(46)
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When this is solved to first order in for dQ*P , one arrives at

dF^) _ dF{x^) A dF
du^ dx^ ^ dx^

Hence the replacement of Eq. (33) for is

^m(uA) = Ap(xx) - ex A\ ,

which yields
<5Am(xa) = - epkxk A^'p - ex A\ .

This also holds for /z = 0 , and the sum over A can formally run from 0 to 3 since = 0 
for A = 0 and/or /z = 0. Due to the fact that

Q
—- 8xp = 0 (50)dxP K ,

Eq. (32) now yields

(47)

(48)

(49)

dx^

and, with Eq. (37),

d

(&x xk - 0% xp + 2 At — 2 Afc — ) = 0
dFkX dFpX

dxx
-Ti*) -Ni*)

9 (n A d£ * A d£\ «+ 3xA (2 ^ 2 Ak dFry ) ~ ° ’

In this expression one evaluates by means of Eqs. (41), (39) and (30)

d x* - n£ *' ) = AT* - N>k =

d (n A d£ \ d A dC \ dx* ( Ap dFk\) + dx* ( dFpx) '

This reduces Eq. (52) to 

d Tx xk - Td xp )- T* - T! = 0, k,p — 1,2,3,

(51)

(52)

(53)

(54)

which proves the required symmetry of T* .
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The angular-momentum tensor Mpk is then related to T* by

M,Xk = T* xk - T£ T? ,~p dM*k
dxx

= 0 k, p — 1,2,3 (55)

It is pointed out that the procedure for a relativistic theory would be formally the same 
as described here.

With the Lagrangian (28) the energy-momentum tensor (36) becomes

dK . 2F dK_ 
dpx >xp dFpx

-j- i^P FllX +
47T

+ s! ik ^ ' (56)
where use has been made of the Euler-Lagrange equation (25). One can finally introduce 
Pi instead of Pi by means of Eqs. (1), (13), (14) and (15), which leads to the substitutions

dP <pv — > dp fu{pi, qi, t) (57)

and
A, - > pf - A,, , />/0, (58a)

^5 ~ ‘-f A0-> i(tf<°> - (Hp(puqut) - «„*(«,<))) . (586)

The contribution resulting from has the following property: in f Tq d3x this
contribution (before pt- is introduced) is given by means of Eqs. (1), (13), (14) and (16) as

J dq dP ip. Hi0' (Pi, = J dQdP fW(Pi, Qi) J7<°> (Pi, Qi') . (59)

Since both quantities fj>0^ and are equilibrium quantities, they are time-independent
and so is the whole expression (59). The contribution to Tx thus has vanishing
four-divergence and can therefore be dropped. This then leaves

= - f dp f* (pp - ~ \dHv
+ 2 FuPJ dpx "dF^x

dHu \ 
dF^x ) - 4?

+ 6 x 1
167T

F^ F^

with
Po ~ ^ Ao - > - ^^Hu(pi,qi,t) - eu <j>{qi,t)) .

(60)

(60a)

12



Expression (60) agrees with the result obtained in Ref. /4/.

IV. The Linearized Theory

The equilibria considered in this section are represented by

HpHPuQi), , spHPi.n), ^0>(x).

while “primary” perturbations away from these equilibria are represented by

*) . SW(Pi,qi, t) , 4*)(x, i) ,

where the superscript (l) is used since later these perturbations will only be first- 
order quantities; however, this is not assumed from the outset. The primary perturba­
tions lead to first, second and higher-order expressions for the perturbed Hamiltonian 
Hl/(dSl//dqi , qi, t) or Mu , the unperturbed Hamiltonian dS^/dPi) or Mu°\
and the Lagrangian (see eqs. (23k) and (65-66) below). The variations of the variational 
principle (3), (6) can then be done in terms of the quantities .

Variation of the first-order Lagrangian yields zero, because the unperturbed quantities 
axe solutions to the variational principle and thus variations around them vanish. The 
lowest-order perturbation of the Lagrangian that is relevant is therefore of second-order, 
and one can now consider the perturbations and as being of first order
only. The second-order Lagrangian in these perturbations is then the Lagrangian for the 
linearized theory.

As mentioned in Sec. II, the advantage of the modified Hamilton-Jacobi formalism over 
the original one is the simple and generally valid form of the time-independent zero-order 
function Su°\Pi,qi) , namely

S<0)(Pi.9i) = £ P. ?i. (61)
t=l

Up to first order we have therefore

dSu „ dsP dSu dsil)
d Qi d Qi dPi dPi

In the following we again use the notations of Eqs. (23). In order to obtain the second-order 
Lagrangian we need

— A (i) dMl0)

dPi
+ F.

(1) w(o)

mA l(l) dMV(o)
______ |_ EU ______
dpW mA’7 dF^0?

mA mA.T)
(63)

13



(64)

as!,l)dcjk ----- - Aa aW

+

- i (tr - t^’) (
r - ? ^") 'S'lSH 'S «?dsP

dq

+
^1} _ fu ,(i) \ FW

dqi c Ai '
d2^0)

dPidF^
+ l FiH

\ d240)
) dPidPk

d2M^0)
dF$ dF^

d2x!>0)

j/(o)(i) _ dS* ^ dUb 1 
dPi dqi ’

^(0)(2) = 1 dS^ dS^ d2xl0)

2 M-^.7 <r/>iT

r(0)

di^°) dFt.(°) 
/lA,'/ ty'1 a'P>T

(65)

(66)
2 aA- dPk dqidqk

Here and are the first and second-order expressions in the expansion of

dS^»i0) (Pi, H) = (A, & +
3Pi

The terms containing the quantities P^ = dF^/dx'1 and Pip.V occur in the kinetic 
guiding center theory when Dirac’s constraint theory formalism is used. Their variations 
do not, however, contribute to the Euler-Lagrange equations and the energy-momentum 
tensor and therefore do not influence the general formalism (see the beginning of Sec. II 
and the remark after Eq. (122) in Sec. VI).

The density of the second-order Lagrangian following from eq. (24) is then

P (2) _ _ * rf1) ipWn*
167T ^

- £14 dp {„<») (*<2) - 40)(2)) + («<1) - 40)(1))} • (67)

Variation with respect to and in

l2J dt J d3x £(2) = 0

yields the first-order equations

^(i) _ #(b)(i) = _ fL
(0)

dPi
+ F,(i)

dHl0)
+ sW , ^0) 0 (68)
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'dsP

dqk V\ d9i

d

- ^ ^
dPidh v .

d /dsil) d2^0)\ 
dPk V dPi dqidqk)

+ f(;)4^L „(«»') +
3« V ^ dPkdF$

■ell), 40) = o, (69)

E / 4 {^0) T (¥ - T ^ -(0) e. _(i) d2)tl0)0 ^ a2^ + ^(o) ^ F
aA-3Pfc ^ c dPidF$

d((as?i
+ dx* VV dqh ce" aW

a2 y (°)O Hu (o) 
k ' dPkdF^ 'P''

+ 2^(F& ^ + (p(°) <9^°)

V*(Tp ^(A0) pi?) J c ^ dPi
+ 2 dx* (S-f)}

+ ^xP(1)<A = 0.
47r ax^

Here we have defined mixed variable Poisson brackets as

da db da db
a , b

dqi dPi dPi dqi

(70)

(71)

Equation (61) yields for <p^ upon making use of Eq. (13)

^0) = 1 (72)

and similarly the first-order contribution is

W =

Furthermore, from Eq. (16), it follows that

d2sjl)
dPidqi

ll0) = li0)(Pu «), !i1) =
aii°) dsl1)

dqi dPi

(73)

(74)

A
Note that Eqs. (74) embody the fact that perturbations of /„ are assumed to arise solely 
from changes in the particle orbits. With the foregoing equations we obtain from Eq. (14)

40’ = li0){Pu ii) , rf1 = 4 (^0) fpr) (75)
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The energy-momentum tensor (36) has been derived without specifying £. We can there­
fore use expression (36) for the linearized theory by simply replacing Z , Sv , Ap and 
F^p by Z^ , Sil) , and F^p . The result is

= - £/*UP(^ ~ * A«) {/<»>(^ - ^ d2xl0)

dPxdPk

+ HO) + ± (HO) asp-) 3^1
^ r£T dPxdFrP dQi V* dPi ) dPx J 

.(i)- 2 F(1) V [ dqdp{/(°) (—____ — ___ + /(0) F(1) - ___ 1
^ vJ V1' V dqk c k J dPkdF$ u aT dF^dF^V)

- i fW jrW^ + J dqdP fl0)(>l!>2) - ^0)(,)) + ^ F& F(1)" ■ (76)

In this expression one has to use the Euler-Lagrange equation (68) together with Eq. (63) 
in order to eliminate dS^/dt wherever it occurs. Specifically these equations yield the 
following expression for this purpose:

dsjl)
dt

eJL A{1) - - c A° ~
e, (1) d_H^_

+ c A ap - F,(i) dHV(o)

3^? '
(77)

(2) AThe angular-momentum tensor corresponding to Tp is

M(2)Afc = t{2)\ xk _ t{2)X xp ' (78)

Since Z^ does not depend explicitly on time, we have

dT,(2)A

dxx = 0, (79)

which means that there is energy conservation. However, generally Z^ depends explicitly 
on x and therefore one has

dT(2)A

dxx
dZW
dx? explicit

, /) — 1, 2, 3 . (80)

Nevertheless, for certain symmetries of the equilibrium one can use the energy-momentum 
tensor to construct quantities, such as the angular-momentum tensor in the case of rota­
tional symmetry, that obey a local conservation law of the form (79).
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V. The Energy-Momentum Tensor for the 

Linearized Maxwell-Vlasov Theory

In the Maxwell-Vlasov theory the extension of phase space introduced in the above 
formalism is not needed, i. e. n — 3 , f dq = 1 , and for greater clarity we now write d3P 
instead of dP. Furthermore, does not depend on F^. Equation (76) therefore reduces 
to

'T'(2)A _ 
P

dS^

dqk

d2Hl0)

dPxdPk
f(0)

dS^

dqk

J_ F(i) +
47T

C ) dPidPk

with

asP dsP d*Hl0) \ j_ (1) w

dPi dPk dqidqk J 16)r ”

\ ( dlll0)
\ dPx ) ~ \ ' ap

(81)

(82)

Equation (82) denotes a vector with four components: the time-like component A = 0 
has the value c; the space-like components A = 1,2,3 are the components of the particle 
velocity of species ia

Of special interest is of course the energy, which we can compare with results obtained 
in Refs, /l/ and /2/. For p = A = 0 we have, expressed in terms of the quantities without 
tilde,

rp(,2)0
-Lo

dsP _ (1)\ d2H!>0)
dqk c k ) dPidPk

1 (o) dsP_ d2Hj0) _ (dS^_ _ (1)\ d_m(f{0) dsP\]
2dPi dpk dxtdx1* \ dt ^ 0 y dx v'" ap yj

+ ~ (E^1)2 + B^1)2) (83)

with
dS^ eu _
~dT A°

+ aC1) • dH”0) 
c ap (84)

17



(85)

from Eq. (77). The perturbation of the energy is then

ir(2) = J t^2)0 d3x .

It will be given in a form which can immediately be compared with an expression in Ref.

/2/-

To this end we add to the right-hand side of eq. (85) the vanishing expression

/ d3x d3P ----•a xu, jr dp

-J
+ 1 -

and we write

bp -

si" , ir<°>

{ (- [s<‘>, /f(°> «, as
c ap y ax

+ - aw . 22
c ap

P J dx J‘/ j

P J
a cC1)

. f(0)

dm(0)

+ c A()# ap 7 ap

r(°)

'dsi>(i)
ax fi0)

Hvi = Ci/ - ~ = ev Aq1^ -I- Hvi ,

TT _ 1 ^ 1(1) 1(l)a2^0)
tiv2 - 2 c2 Ai Ak .

(86)

(87a)

(876)

We then obtain

P(2) = ^2 J d3x d3P | ^ 1 dS^ dS^ d2Hi0) 1 dsll) dsil) d2Hl0)

+

With

(- sp. ,

2 dx1 dxk dPidPk 2 dPi dPk dxldxk

Sl" , H<0)])/(0)

- ff„i) Si" , /<°) } + ^ /(E(1)2 + Bf1)2)^3! . (88)

+ H- - it-ap

+ x

dsll) a 
ax * ap

i dsll) a

sll),

sw , tf£0)

1
2

5^) , \sW ,

2 ax ap

sw , 5^), fr(°)

+ xi a5i1} a
2 ap ax

1
2

1 dsP ds^ d2Hj0)
2 dxx dxk dPidPk
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1 dsP dS^ d2Hi0) 1
2 dPi dPk dxldxk 2

J d3x d3P Hl0) ,

= - [d’zd>PdJ^.dA
y dx dT

dsP dsP1
dx dP

(1) asP r
ap

dS^ B dS^ l 
dx ap

/i0) =

(89)

2rt0) , /i0) = 0

and

J d3x d3P SM , fl0) = J d3x d3P , fW

one obtains with Eq. (87a)

Hl0> , S'1)

(90)

(91)

Sil), fi0) -Hvl S™, /50) + hv2 /50) } ,
(92)

Relation (92) agrees with Ref. /2/ if one identifies

Phere — PRef./2/ and — Qy Ref./2/ here ’

VI. Hamiltonian for the Guiding Center Motion

We start with a Lagrangian for the guiding center motion. Such a Lagrangian was 
given by Littlejohn /8/ and later in somewhat modified form by Wimmel /9/. Correa- 
Restrepo and Wimmel /6/ observed a difficulty with these Lagrangians, namely that they 
are singular for large parallel velocities if B • curl (B/B) ^ 0 . This led them to propose 
a simple regularization method for removing the singular behavior while retaining the 
variational form of the theory. They applied this method to the non-relativistic guiding 
center theory without polarization drift. Later, in Ref. /7/ the same method was employed 
to derive regular kinetic guiding center theories by means of the original Hamiltonian- 
Jacobi theory /7/. Here we, too, apply the regularized Lagrangian in order to avoid 
possible difficulties.

The Lagrangian is defined in terms of the variables

t , X = (qi, q2, q3) and q4 , (93)

where q4 is an additional variable needed in guiding center theory. L is of non-standard 
form since it is not a convex function of x ; it is given by the following linear function of 
x (the index for the particle species being suppressed)

19



L = - A* • x — e <f)* , (94a)
c

where
771 C

A* = A + -----(wq g{q4/vo) b + vs) , (946)
e

e (j>* = e <f> + n B + — (94 + Us) , (94c)

vE = C (E xB)/B2 , (94d)

b = H/B , (94e)

and (j, is the magnetic moment of the gyrating particle .

The antisymmetric function g(z) with z = q^/vQ does the regularization, where uq is 
some constant velocity. The non-regularized theory is obtained for g{z) = 2 , in which case 
the solution of Eq. (98) below for <74 resulting from the Lagrangian (94) is 94 = uy = b*x . 
In the regularized theory g(z) « z should still hold for small \z\. For large \z\, however, 
g must stay finite such that with uq >> vthermai one has

Vo g{oo) « vc =
(e B) / (m c) 

b • curl b (95)

A possible choice for g(z) is
g{z) = tank z . (96)

Upon varying with respect to x, the variational principle with L given by Eq. (94) yields

and varying with respect to 94 yields

m(b»yc g,(q4/v0) - q4) = 0,

where g' = dg/dz . In Eq. (97) one has

e dAi(H ■ _____, i • 9 JL A* + 1 dA*
c dt c X dx c dt dq4

Therefore, by defining

E =-----1 dA*
c dt

d<i>* 
dx ’

B* = curl A* , V = X

(98)

(99)

(100)
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we can rewrite Eq. (97) as

1 771
E* + - v x B*-------0' 94 b = 0 . (101)

c e

Crossing Eq. (101) with b yields

b x E* + ^ vB[ - ^ t/|| B* = 0 , .Bjj = b • B* . (102)

From Eq. (98) we find
b • x = W|| = 94/9'• (103)

When this is inserted in Eq. (102), we obtain the guiding center velocity v = vff as a 
function of t, x, 94 , which will enter the Hamiltonian in Dirac’s constraint theory:

v = vs = -ii- B- + ^ E* x b . (104)
9 B\\ B\\

Another “velocity” that is needed is 
multiplication by B* :

94 = V4

94 = V4 , which follows from Eq.

----- - — E* • B* .
m g' Bn

(101) upon 

(105)

The momenta canonical to x and 94 follow from Eq. (94):

p = dL/d-k = - A* , P4 = dL/dq* = 0 . c
(106)

With these momenta the “primary” Hamiltonian in the sense of Dirac’s constraint 
theory /5a,b,c/ is

Hp = x«dL/dx + 94 dL/3q4 — L = e <f>* , (197)

and thus Dirac’s Hamiltonian is given by

= e<£* + v3 . (p - ^ A*) + V4 p4 • (108)

In addition to
x = dH/dp = vg , 94 = dH/dp^ — V4 , (109)

which are equivalent to Eqs. (97) and (98), one has the equations
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(110)+ - — A* .v«

and

5x

Pa — — dH/dqA = — m 94

dVA
dx P4

f^.(p - - A*' 
dq4 \ c y

+ v\\ m g' .

By using Eqs. (97) and (98) these two equations can be rewritten as

(111)

l(p - ^A‘) = “(^Vs)*(p - i;A‘) -P4
(112)

d\g ( e
p4 = - • p - - A

dq4 \ c ,
(113)

This shows that relations (106) are possible solutions, but not the only ones, and that 
p — | A* and p4 are not constants of motion. In order to guarantee that relations 
(106) are satisfied, the distribution function f(qi. Pi, t) must be of the form

/ = S(p4) 6{p - - A*) h(x, q4 t) , (114)

where h cannot be a constant of motion, because p4 and p — f A* are not constants of 
motion. However, it holds that

6(p4) 6(p — - A*) dp4 crp = const along orbits 
c

(115)

and, of course, also that

dzx dq4 d3p dp4 = const and f = const along the orbits

Hence it follows that

/i(x, q4, t) d3x dq4 = const along the orbits (116)

We therefore write
h{x, q4, t) = h(x, q4, t) fg{x, q4, t) , (117)

with h being a density in ( x , 94 ) space and the guiding center distribution function fg 
being a constant of motion.

The equation for / is

d£ d_(dH
dt dqi\dpi

Q . (118)
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Integration of this equation over the full (p, pi) space yields, with / given by eq. (114), 
an equation for h:

dh d
dt dx Vg k 0 . (119)

It was found in Refs. /6/ and /7/, corresponding to a result obtained by a different method 
in Ref. /3/, that

h = Bjj g'{q4/vo) (120)

solves this equation. This can also be proved direct by means of Eqs. (104), (105), (103) 
and the “Maxwell” equations for E* and B* which follow from Eqs. (100) (note that 
dA*/dt is a partial time derivative at constant x and constant 94). Finally we arrive at

/ = S(p4) S(p - - A*) Bji g,(q4/vo) fg(x, q4, fi, t) , (121)
c 11

where fg is a solution of the drift-kinetic equation

dfg
dt + V3 df* . v df* ^ + VAdT4 0 . (122)

In /3 a dependence on the magnetic moment p, has been added, this appears in 
the various expressions only as a parameter distinguishing between different “kinds” of 
particles. Later, one must sum over all these kinds of particles in order to obtain the total 
energy-momentum tensor, i.e. one integrates over p. In the non-regularized case, q4 is 
identical to U||. Note that the form (121) of / has the consequence that in the Lagrangian 
(3), any variation of vg (see Eq. (108)) is multiplied by zero. Thus, although vg also 
depends on the derivatives of E and B , which is not the case with the rest of H, this 
dependence is unimportant for both the variational principle and the energy-momentum 
tensor.

Whereas Eq. (121) for / is sufficient in the nonlinear theory to pick out the correct 
solutions, this is not the case with the linearized theory. The constraints (106), which 
must hold along the orbits, mean for p4 = 0 that

dS
dq4

dS(°) + dSW _ p + a$(1)
dq4 dq4 dq4

0 along the orbits . (123)

P4 = 0 is guaranteed by relation (121) when used for the unperturbed distribution func­
tion. Hence 5^) must obey

dSW
dq4

0 along the orbits . (124)



The constraint for p means that

dS e— = - A* along the orbits 
dx c

or that

—— + —— = - A*(°)(x, <74) + - A*^^(x, q4, t) along the orbits . 
dx dx c c

The equilibrium distribution function guarantees

(125)

(126)

^ = p(t) = - A*<°)(q((), ,
dx c

(127)

where P(t), Q(t) and Q4(t) refer to the unperturbed orbits. In Eqs. (125) and (126) 
x, 94 mean x(t), 94 (t) , which refer to the perturbed orbits.

Up to first order we can write

x(t) = Q(t) + x(1)(t) 

and then find from Eq. (126)

94(f) = <34(1) + ^(t) (128)

\ + ^1,a|: )A“0)(QW’ <34(‘))

+ «4(i), <).c
Furthermore, it holds that

QW = ^ =

Q4(t) = dP4

dSW
H- = x(t) +

dSM
dP dP dP ’

dS(°) dSW
= 94(0 +

dSW
dP4 + dP4 dP4 ’

from which it follows that

dsw
dP

= - x(1)(f) , dSW
dP4

= - ^l1^4)

(129)

(130a)

(1306)

(131)

We can now consider for a certain instant of time t a distribution of perturbations 
in ( x , 94 ) space, which we denote by £(x, 94, i ) , ^(x, 94, t ). 

Thus Eqs. (131) and (129) become

dSW
dP = - e

dSW
dP4 = — $4 , (132)
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(133)
asw _ e / - _8_

dx c l 5x
+ ^^A*(°)(x, q4) + -cA*W

The latter relation is more transparent when

V = - (p - -A*(°)(x, 94)) 
m \ c J

(134)

is introduced. This implies that

dSM
dx

dSW
dx

e ( d . dS^

dSW

If, in addition, we use
dx v 

e dA*(°)

c \dx ] dV

= rn g'{qAlvo) b(0) ,
c dq4

as follows from Eq. (94), we can replace Eq. (133) by

dSW e
cdx

+ $4 m ^(qA/vo) + - A*^1)

(135)

(136)

(137)

The zero-order distribution function always selects V = P4 = 0 . It is therefore reasonable 
to expand in powers of V and P4. Since only first-order derivatives of occur,
explicit knowledge of up to first order in V and P4 is sufficient:

SW = SW(X, q4) - (.mV - UP* + higher — order terms (138)

where the first-order terms are chosen so as to yield the relations (132) for P4 ='V = 0 . 
In addition, we obtain from Eq. (138) at P4 = V = 0

and

dsw dSM e+ -
(±A«°>

dx P dx c \dx

dSM dSW + €- ( f A*(°)
dq4 P dq4 c ^<9 74

(139)

dSW
dq4

+ rn g'(q4/vo) • f* = 0 . (140)

FromEq. (137) we find, again with Eq. (138), f4 and the components of £ perpendicular 
to B*(°) , fx* :

e. = —^ B-<°>. (*§^ 
m g’ £m(0) V dx

- A*^) 
c

)■ (141)
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f-L* = b*(°) . fdSW e
e £*(°)2

- B*(0) x

\ dx c

_ £ A*!1)' 
dx c

- A*(1) | B*(0) x b(0)

The full displacement vector £ is then

e = L* + a(x, q4) b*<°> .

A is found from condition (140):

(142)

(143)

A = -
dSW

m g' £n(0) L ^94
+ rn g'{q4lvo) b(0) •

+
m g' £*(0) 5?4 e £*(o)2 £*(°)

b<°> x (^ - i \'W\ . (144)

The last quantity needed for Tp2^ is A^1). It has to be in agreement with the constraints. 
Since these constraints must hold along the orbits, corresponding constraints for their time 
derivatives along the orbits must also be valid:

d dS _ e d dS
dt dx c dt ’ dt dq4

(145)

* —* j
These conditions can be viewed as being equations for the new quantities and ^ £4 . 
They could be solved for these quantities for any At1). This is, however, not necessary, 
since Tp2^ does not depend on ^£ and/or ^£4 . We thus have the result that the 
following quantities can be freely chosen:

A^1) , At1) , St1)(x, ^4, [/,) (146a)

while ^ti) is subjected to the constraint

V • Et1) = 47T pt1) . (146b)
The p-dependence of ^t1) has been added for the reason given after Eq. (122).

VII. The Energy-Momentum Tensor for the 

Linearized Maxwell-kinetic Guiding Center Theory

In this section we use the results of the previous section to derive general rules for 
obtaining in each special case the, rather complicated, energy-momentum tensor Tp2^ 
for the Maxwell-kinetic guiding center theory. This amounts to tailoring Eqs. (76) and 
(77) to the case at hand. It follows from Eqs. (114), (132), (139), (140) and from the
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remark after Eq. (122) that all terms which contain undifferentiated, the following
substitutions have to be made in Eq. (76):

> — A*(°) , P4-> 0 ,

(1) - > + in {-?- A-w'i. i
dx dx c \ / ’

dS},

dSl(i)

ap - > 6 ,
dsll)
dP4

- >

dS^
dq4

— £4 ,

- > 0 ,

JdP fW ...-> J . . . ,
I* being given by Eqs. (142)-(144) and £4 by Eq. (141).

There is one term containing derivatives of , namely

T
ev aW\ ^ ( ,(0) dS" ^ \ ^
c p J dqi \Ju dPi ) dh

(147a)

(1476)

(147c)

(147d)

(148)

fhis term can be written

+

vritten as

E [4 ±. [dp (?&L _ a: aw) /<“)
^ J dqi J \ dqp c P ) ^ dP. dPx

^[^.p^^dUds^ _^Aw)
dPi dqi\\ dqp c p J dpx J

■?/'*« dS^]
dqp c ~P J '**' dPi dPx

+ E [4,(0, _ & Aw) mF) , (149)

dpi dqi^ dqp c P ' dP\ ) K *

expression is understood again with the substitutions (147).

~~ the quantity - £ occurs, it is to be replaced according to Eq. (77) by

[s^ ""1

41
dsP

dPi

dPx

d^0)■(

dsP
dt

e AW - > eu > , ff<°) +^v(°).A(1)
J c ^

-
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We note further that

and that in Eq. (65) one has

g2y(°)
- . - 0 , 

dPidPk

r(0)

(151)

i *■<;> fa) ____ > o (152)

because of the constraints built into and F^x,^ involving only v3 , V4. 

We give in addition a few helpful relations:

tiXdF.
= r • JLx 6.0 6x0 ~ l

dE(°)
E(1) x dB(°) 6p0 (1 — 6x0)

1
+ 2 B(1)

aE(°) 6x0 (1 — 6,0)
J p

+ 5
a +^BW. a

dE^
______ Bw
5B(°) A QB (o)

'(1) = £<■) . + B(‘) . —
dF^nX aE(°)

| (1 - 6,0) (1 - 6x0) , (153)

(154)dB(°)

All derivatives like d/dE^ have the meaning

3E(°) dE E=E(°)

Of special interst are

dE}(0) TE
(0)Vvp; = C

[et- x B(°>]
B(°)2

dB

L VP» = , [E(0) X Oi\ _ ?A
(0) c 5(0)2

(°) , , 0
5(0)2 WE

(155)

(156)

(157)

As an illustration, we derive the second-order energy for a perturbed homogeneous 
system with non-vanishing unperturbed magnetic field but vanishing unperturbed electric 
field. We restrict to a case that was of special interest in the Maxwell-Vlasov theory, 
namely, that no field perturbations are initially present, i.e. all initial perturbations are 
perturbations of the distribution functions with vanishing corresponding charge density. 
Thus

B(0) ^ 0 , E(0) = 0 , Fj$ = 0 , = 0 . (158)
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Equation (76) for Tq^0 then reduces to

To(2,° = - E / - ~ dSS
dq dP

(1)

dt dqi
dSi>(i)
dPi

+ Y. / 4dp ,

and Eq. (150) to
dSb(i)

dt

Equations (65) and (66) yield

v(2) = ^(0)(2) = 0

Furthermore, one has from

Eqs. (94): A*(0^ = A^0) + v0 gfa/vo) b(°) ,

e.) r{0) = H ^ ;

Eq. (100) 

Eq. (104) 

Eq. (105)

B*(°) = B<°) ;

v(0) = 24 b(°) • v9 g' u ’

V4 = 0.

As a consequence, one obtains

and it holds that

dH^
dq4

= 0

b<°> • i- A(°) = 0 , 
dx

A(0).b(°) = 0.

This leads to

e = -

, HP

b<°>
e,, B(°)

^4

g'

dsl1^
dx

94 |^(o) UOy

dx ’

1 b(0)
rriis g' dq4

1 /jcC1)= 1 b(°) • dbu
mu g' dx

(159)

(160)

(161)

(162a)

(162b)

(162c)

(I62d)

(162e)

(163)

(164)

(165)

(166) 

(167)
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The second-order energy then becomes

ir(2) = J d3x T^)0 =

21 b(o).£ J d?x dq, dp. (z. + (21

and, with Eqs. (117) and (120) as well as with Eqs. (166) and (167),

B(°)

dsjl)
dx.

p(2) “?/ d^x dq4 dfj.
m.

x
/icC1)^ b(0) + b . 5l/
dq4 dx dx dq4

Introducing complex quantities by the rule

f(°) 
J gi>

b(°)
dS^

dx

AB - > - Re A* B 
2

and with

one obtains

FW = V ^

sil) ~ e

£(°)

tk*x

m.
CHu, ^(k.b(°)):

dq.
,([')|22l

(168)

(169)

(170)

(171)

= -V ^2 J dq,dn (k .b<°>)2 IS*1*!2 ~ /<?(«4> /*) . (172)

where F is a normalization volume. We note that jr(2) depends on 5^ only via jiS^1^ |2 .

Since the first-order charge density is a 94, ^-integral over an expression that is
linear in , one can satisfy the assumption pt1) = 0 (made at the beginning of this
example) by a proper distribution of positive and negative values of S^1) , on which F^2) 
does not depend.

Recalling that according to Eq. (98) 94/g' is the component of the velocity parallel to 
b(°) , we see that expression (172) resembles the corresponding ones obtained within the 
framework of the Maxwell-Vlasov theory for homogeneous equilibria with = 0 and
for infinitely strongly localized perturbations of general equilibria. The most important 
difference is seen in the following respective terms:

(k • v) k
dv Vlasov theory

(173a)
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and
(k*b(0,)27^^

kinetic guiding center theory
(173 b)

Whereas in the Maxwell-Vlasov theory any deviation of from being a monotonic
function of Jvj allows negative energy modes to exist, it is solely the U||-dependence of the 
distribution function in the kinetic guiding center theory that is decisive; the fx- dependence 
does not matter. The condition for the existence of negative-energy modes, which in the 
Maxwell-Vlasov theory is

dfv°^
(k • v) k« —— > 0 for some k , v , z/ (174a)

av

is replaced in the Maxwell-kinetic guiding center theory by

(k • b(0))2 > 0 for some k , q4 , u . (1746)

The restricted class of initial conditions for which expression (172) is valid means, however, 
that the inequality (174b) is only a sufficient condition. We expect that in the kinetic 
guiding center theory, initially non-vanishing field perturbations will be important.
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VIII. Summary

The introduction of a modified Hamilton-Jacobi formalism as a tool allows straightfor­
ward construction of the energy-momentum and angular momentum tensors for any kind 
of nonlinear or linearized Maxwell-collisionless kinetic theories, which may be different for 
different particle species in a plasma, without any restriction. Contrary to the original 
Hamilton-Jacobi theory, which consists of an equation for the mixed-variable generating 
function for a canonical transformation to variables with vanishing corresponding Hamilto­
nian, the modified Hamilton-Jacobi theory deals with a canonical transformation from the 
perturbed to the unperturbed system or, more generally, from the system considered to 
some reference system. The application to the Maxwell-Vlasov theory is possible without 
any further developements. The Maxwell-kinetic guiding center theory has on the particle 
side to do with a non-standard Lagrangian system. This was handled within the formalism 
of Dirac’s constraint theory. The constraints led in the nonlinear theory to a special form 
of the distribution function defined in an extended phase space. It contains the guiding 
center distribution function defined in V||, fx, x space, where fi is the magnetic moment. 
In the linearized theory the constraints introduce, in addition, a displacement vector in 
t/||, x space similar to that in x space occurring in macroscopic theories. As an exam­
ple of the Maxwell-kinetic guiding center theory the second-order energy for a perturbed 
homogeneous magnetized plasma is calculated with initially vanishing field perturbations. 
The expression is compared with a corresponding one of the Maxwell-Vlasov theory. So far 
the possible existence of negative-energy modes follows solely from the vy-dependence of 
the unperturbed guiding center distribution function, the //-dependence does not matter. 
The criterion found is the same as in the Maxwell-Vlasov theory for wave propagation 
parallel to B^0). The condition is of course only a sufficient condition because of the class 
of initial perturbations considered. It is expected that in the kinetic guiding center theory 
initially non-vanishing field perturbations will be important.
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Appendix A: Proof that <pu given by Eq. (13) solves Eq. (9)

The proof is similar to those in Refs. /10/ and /ll/ for the original Van Vleck determinant. 

Let Aik he the co-factor of d2Slf/dqi dPk in the determinant

<Pv = d2Su/dqi dPk

With this definition (under the summation convention given in Sec. II)

„ d2Sl/ A d2Sv ^ .
An _ „ _ — An ^ 7-. — Pi/ Oik

and

dqi dPk

S0U = Aik

dqk dPi

d26Su
dqi dPk

then hold. With these relations, Eq. (8), and with notation (12), we have

d3Sud<pv
dt = A^ dt dqi dPk

= Aik
d2

dqi dPk

= Aik ;C
- *-(6S'1)

:)1d (dHv d2Su \ . d (dHl0) d2Sv
dqi \ dpi dqi dPk J dPk \ dQl dpl dq,

d (dHv\ . . dHu d ^
dqi \ dpi ) tl {f>u dpi dqi ^

+ dPk V dQi J ^
dHl0) d
dQi dPt <Pv

(dHu .
——<o

(0)

dqi V dpi <Pv 1 +
a / dHi 

dPi V dQi <Pv

which proves the statement.

(Al)

(A2)

(A3)

(A4)
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Appendix B: Proof of relations (15) and (16)

When

For

— <Pi, fv(Pi, qi, f) (51)

(9), one obtains for f„ with the notation (12)

dU dH„ dU dHl0) dU _
dt dpi dqi dQi dPi

(52)

qi, t) — ^ ^ dq- 5 ’ (53)

with a notation for corresponding to Eq. (12), the following relations hold:

df* = df* dU d2Sv =
dt dt dpi dqi dt

_ dU (_ _ 5^: a2Si' dH"0) 92 Sv \
dt + dpi \ dqi dpi dqi dqi dQi dPi dqi J

df^ = df^ + dU_ d2Sv
dqi dqi dpi dqi dqi

dfv = djp d2Sl/
dPi dpi dqi dPi

Using Eqs. (B4-B6) in Eq. (B2) yields the equation

dfv dHu df„ dHu dfv
dt dpi dqi dqi dPi

(B4)

(■55)

(56)

(57)

for /i/(p», 9t, t) , which is Eq. (17). Relation (15) is thus proved.

For
U(Pi, V, t) = /i0)(5i > Itt . i)

one has, with a notation for corresponding to Eq. (12),

dU = dfj>0) dti0) d2Su 
dt dt dQi dPi dt

d/i0) dfi0) ( dH,, d2Sv dHl0) dHi0) d2Sl/ 
~ dt + dQi V dpi dqi dPi + dPi + dQi dPi dPi

(B8)

(59)
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du _ df!>0) d2su 
dqi dQi dPi dqi

dfv dfl0) dfi0) d2Sv
dPi ~ dPi + dQi dPi dPi ' 

Inserting Eqs. (B9-B11) into Eq. (B2) yields

df!>0) dHl0) dfl0) dHl0) dfl0)
dt + dPi dQi dQi dPi

for fj>°\Pi, Qi, t) , which is Eq. (18). Relation (16) is thus proved.

(BIO)

(511)

(512)
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