90

CT:
e

Mathematics and Computer OTTER 2.0 Users Guide

Science Division

Mathematics and Computer
Science Division

Mathematics and Computer by W. W. McCune
Science Division

nal Laboratory, As"gmm& Hlinois 60439
¢ by The University Qf Chicag
the United States Department of

O
Energy under Contract W-31-109-En¢

TS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

This report has been reproduced from the best
available copy.
Available from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springtield, VA 22161

Price: Printed Copy AO3
Microfiche AOI

Distribution Category:

Mathematics and Computer

Science (UC-405)

ANL--90/9

ANL-90/9

DE90 007978

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue
Argonne, Illinois 60439-4801

*josrayy Aousde Kue IO JUIWUIIA0D) SIARIS PANUN)
oy} jJO 3soy} 393jal JO 2)els A[LIBSSI0U J0U Op uIdIey possaxdxa sioyine jo suowuido pue
SMI1A 9y 'Joasoy) AouaBe Aue IO JUSWUIAACL $31BIS PaNu() 2y} Aq SulioAej IO ‘uonjepuaw
-WI002J ‘JUAWIASIOpU? sii A[dwil JO 9)NyISuOO A[IIBSS303U 10U S0P ISIMISYIO IO ‘JaInjoejnueul
“yIvwopel) ‘oweu apes) Aq 901a19s J0 ‘ss3001d “yonpoid [erprswwod dywads Aue 0} uRIaY 30U
-10Joy 's1Iy3u poumo Kpe1eand S3uLIjUI J0U pNOm Isn S jey) SUasaidor 10 ‘pasojIsip ssas01d
Jo ‘yonpoid ‘snjesedde ‘vonewojur ue jo ssaujnjasn I0 ‘sssusiajdwos ‘Aoeinode ayy Ioj Ajiq
-isuodsal Jo Anqiqel] [eds] Aue sawmnsse Jo ‘pardwl 10 ssardxs ‘Kjueliem Kue sayeuws ‘ssakojdurd
11943 jo Aue Jou ‘Joa1ay) Aouafe Aue JOU JUSWIUISACD $IIBIS PAIU() SY) JOYNON JUSUIUISAON)
soje1g panu) ay3 Jo Aousde ue £q pasosuods yJom jo junoode ue se paredord sem podor sigy

JANWIVIOSIA
. 5
T =
= A
0 3
Q 5
%) 3 3
mu. ﬁru, nm <
o = £ &
o S-SR~ 3 5
g 5 5
O <
O. Im, s =
o = 5
& = s
= 2
(3}
3 :
<
©

program of the Office

pplied Mathematical Sciences sub
» U.S. Department of Energy,

This work was supported by the A

of Energy Research

under Contract W-31-109-Eng-38.

[

FEd TR A
Maerowid

L

CROT S
siuidy o

MASTER

MRS I
BEAN

Contents

1 Introduction 1
1.1 Major Changes Since Version 1.0 2
2 Outline of OTTER’s Inference Process 3

3 Using OTTER 4
3.1 SYNtaX . . . e 4
311 Names v v e e e e e e e e e e e e e e e e e e 4
3.1.2 Terms and Atoms i i e e 4
3.1.3 Literalsand Clauses, 5
3.14 Formulas 5

3.2 Commands and theInput File. 5
3.2.1 ImputofOptions i inene.. 6
3.22 InputofListsofClauses v v v v v v v v v v v v .. 6
3.23 InputofListsof Formulas 7
3.2.4 Input of Lists of Weight Templates 7
3.2.5 The Commands skolem, lex, lrpo_lr_status, and lrpo_rl_status 8

4 Options 8
4.1 Flags o e e e e e e e e e e e e 8
411 MainLoopFlags 8
4.12 Inference Rules 9
4.1.3 ParamodulationFlags 9
4.1.4 Flags for Handling Generated Clauses 10
4.1.5 Demodulation and Equality Flags 11
4.1.6 Indexing Flags 12
4.1.7 Input and Output Flags 13
4.1.8 Miscellaneous Flags 13

4.2 Parameters e e 14
4.2.1 Monitoring Progress L. 14
4.2.2 Placing Limits on the Search 14

iii

4.2.3 Limits on the Size of Generated Clauses
4.2.4 Indexing Parameters
4.2.5 Miscellaneous Parameters i v i v v i v .

5 Ordering and Dynamic Demodulation

51 lexrpolIsClear i it
5.1.1 Lexical Order (lexrpoisclear)
5.1.2 Lex-dependent Demodulation (lexrpoisclear).
5.1.3 Orienting Equalities (lex_rpoisclear)
5.1.4 Determining Dynamic Demodulators (lex_rpois clear)

5.2 lexrpolsSet e
5.2.1 Lexical Order (lexrpoisset).
5.2.2 Lex-dependent Demodulation (lex_rpoisset).
5.2.3 Orienting Equalities (lex_rpoisset)
5.2.4 Determining Dynamic Demodulators (lex_rpoisset)

5.3 Completion and Termination

6 Evaluable Functions and Predicates ($SUM, $LT, ...)

7 Weighting
7.1 Weighing Clauses and Literals
7.2 Weighing Atoms and Terms

8 Answer Literals

9 Meta-experimental Features

9.1 Linked UR-Resolution
9.2 Atom (Literal) Demodulation
9.3 Conditional Demodulation,
9.4 Another Demodulation Trick
9.5 Introducing New Functions
9.6 Ancestor Subsumption L

9.7 Reducing max_weightonthe Fly

iv

15
16
16
16
17

18
18
18
18
19
19

19

22
23
23

24

10 Limits, Abnormal Ends (ABENDS), and Fixes
11 Summary of the Options and Their Defaults

References

Vv

27

27

29

OTTER 2.0 Users Guide

by

William W. McCune

Abstract

OTTER (Organized Techniques for Theorem-proving and Effective Research)
is a resolution-style theorem-proving program for first-order logic with equal-
ity. OTTER includes the inference rules binary resolution, hyperresolution, UR-
resolution, and binary paramodulation. Some of its other abilities are conversion
from first-order formulas to clauses, forward and back subsumption, factoring,
weighting, answer literals, term ordering, forward and back demodulation, evalu-
able functions and predicates, and Knuth-Bendix completion. OTTER is coded
in C, it is free, and it is portable to many different kinds of computer.

1 Introduction

OTTER (Organized Techniques for Theorem-proving and Effective Research) is a resolution-
style theorem prover, similar in scope and purpose to the AURA [12] and LMA /1TP [9] theorem
provers, which are also associated with Argonne. The primary design considerations have
been performance, portability, and compactness and simplicity of the code. The program-
ming language C is used.

OTTER features the inference rules binary resolution, hyperresolution, UR-resolution,
and binary paramodulation. These inference rules take a small set of clauses and infer a
clause; if the inferred clause is new, interesting, and useful, it is stored and may become
available for subsequent inferences.

Other features of OTTER are the following:
e Statements of the problem may be input either with first-order formulas or with

clauses (a clause is a disjunction with implicit universal quantifiers and no existential
quantifiers). If first-order formulas are input, OTTER translates them to clauses.

}

A

e Forward demodulation rewrites and simplifies newly inferred clauses with a set of
equalities, and back demodulation uses a newly inferred equality (which has been
added to the set of demodulators) to rewrite all existing clauses.

e Forward subsumption deletes an inferred clause if it is subsumed by any existing
clause, and back subsumption deletes all clauses that are subsumed by an inferred
clause.

e A variant of the Knuth-Bendix method can search for a complete set of reductions.
e Weight functions and lexical ordering decide the “goodness” of clauses and terms.
e Answer literals give information about the proofs that are found.

e Evaluable functions and predicates build in integer arithmetic, Boolean operations,
and lexical comparisons, and enable users to “program” aspects of deduction processes.

OTTER is not automatic. Even after the user has encoded a problem into first-order logic
or into clauses, the user must choose inference rules, set options to control the processing
of inferred clauses, and decide which input formulas or clauses are to be in the initial set
of support and which (if any) equalities are to be demodulators. If OTTER fails to find a
proof, the user may wish to try again with different initial conditions.

There have been two previous releases of OTTER—version 0.9 was distributed at CADE-9
in May 1988, and version 1.0 was released in January 1989. Summaries of other theorem-
proving systems can be found in the proceedings of recent CADE meetings [11, 8].

It is assumed that the reader knows the terminology of first-order logic and automated
theorem proving, including term (variable, constant, complez term), atom, literal, clause,
propositional variable, function symbol, predicate symbol, Skolem constant, Skolem function,
formula, and conjunctive normal form (CNF). See [15], [1], [7], or [14] for an introduction
to automated theorem proving, and see [13] for an overview of the field.

1.1 Major Changes Since Version 1.0

1. OTTER can now use a termination ordering (recursive path ordering with status) to
ensure that demodulation terminates. See Section 5.2.

2. Users now have the option of using Prolog-style (upper-case) variables. See Section
4.1.7.

3. New options can be used to restrict paramodulation from and/or into unit clauses and
to prevent paramodulation into subterms of Skolem expressions. See Section 4.1.3.

4. Other paramodulation options and defaults have changed. See Section 4.1.3.
5. New options control selection of the given clause. See Section 4.1.1.

6. Atoms as well as terms can be rewritten by demodulation. See Section 9.2.

/ gt B b

Py
2 Outline of OTTER’s Infer{:nce Process

Like AURA and LMA/ITP, OTTER uses the given-clause algorithm, which can be viewed as
a simple implementation of the set of support strategy. OTTER maintains three lists of
clauses: axioms, sos (set of support), and demodulators. (AURA and LMA/ITP have a list
called have-been-given; OTTER appends clauses that have been given to axioms rather than
keeping them in a separate list. The name axioms is a bit misleading, because inferred
clauses become members of axioms—the name has been retained by evolution.)

The main loop for inferring and processing clauses and searching for a refutation is

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to axioms;

3. Infer and process new clauses using the inference rules in
effect; each new clause must have the given_clause as
one of its parents and members of axioms as its other
parents; new clauses that pass the retention tests
are appended to sos;

End of while loop.

The procedure for processing a newly inferred clause new_cl is

(optional) Output new_cl.
Demodulate new_cl (including $ evaluation).
(optional) Orient equalities.
Merge identical literals (leftmost copy is kept).
(optional) Sort literals.
(optional) Discard new_cl and exit if new_cl has too many literals.
Discard new_cl and exit if new_cl is a tautology.
(optional) Discard new_cl and exit if new_cl is too ‘heavy’.
(optional) Discard new_cl and exit if new_cl is subsumed by any clause
in axioms or sos (forward subsumption).
10. (optional) Apply unit deletion.
11. Integrate new_cl and append it to sos.
12. (optional) Output kept clause.
13. If new_cl has 0 literals, a refutation has been found.
14, If new_cl has 1 literal, then search axioms and sos for
unit conflict (refutation) with new_cl.
15. (optional) Print the proof if a refutation has been found.
16. (optional) Try to make new_cl into a demodulator.

O 00N WN -

17. (optional) Back demodulate if Step 16 made new_cl into a demodulator.

18. (optional) Discard each clause in axioms and each clause in sos that
is subsumed by new_cl (back subsumption).

19. (optional) Factor new_cl and process factors.

Steps 17-19 are delayed until steps 1-16 have been applied to all clauses inferred from
the current given clause.

3 Using OTTER

OTTER is not interactive. On UNIX and on UNIX-like systems it reads from the standard
input and writes to the standard output:

otter < input_file > output_file

3.1 Syntax

Comments can be placed in the input file by using the symbol %. All characters from the
first % on a line to the end of the line are ignored. Comments can occur within terms.
Comments are not echoed to the output file.

3.1.1 Names

Names are alphanumeric strings that may contain some other characters such as $ and _.
A name may contain up to 50 characters. Names are used as constant symbols, function
symbols, predicate symbols, propositional variables, and regular variables. In general, the
type (predicate symbol, function symbol, constant, variable) of a name is determined by its
context. Since the variables in clauses are not explicitly bound by universal quantifiers, a
convention must be used to distinguish constants from variables. The rule is that in clauses,
variables start with (lower-case) u, v, w, x, y, or z. (The option prolog_style_variables
says that variables start with upper-case letters. See Section 4.1.7.) In formulas, any name
can be used as a variable, because variables are explicitly quantified.

A name usually cannot be used for two different purposes. For example, an input error
will be flagged if a symbol has different occurrences with different numbers of arguments.
(This protective feature can be overridden by the command clear(check_arity). (See
Section 4.1.7.)

Some names are special. Any binary predicate symbol that starts with EQ, Eq, or eq is
understood by demodulation and paramodulation as an equality predicate. The symbol =
can be used to write infix equality atoms. All symbols that start with $ are reserved for
special purposes. Any predicate symbol that starts with $ANS, $Ans, or $ans is understood
as an answer predicate (answer literal, Section 8). Other symbols that start with $ are
evaluable functions or predicates (Section 6).

3.1.2 Terms and Atoms

Determining whether a simple term is a constant or a variable depends on the context of
the term. If it occurs in a clause, then the name determines the type (see above). If it
occurs in a formula, it is a variable if it is bound by a quantifier. Most complex terms are
written in prefix form, for example, £(a,b,c).

Prolog-style list notation can be used to write terms that represent lists: the symbol []
is an abbreviation for $nil, [¢; 1¢;] an abbreviation for $cons(ty,13), and [t,12,%3,14] an

abbreviation for $cons(t;,$cons(t;,$cons(t3,$cons(t4,$nil)))). The notation [t;,?21¢3]
is not allowed—such an expression must be written [#; | [t21¢3]].

White space (spaces, tabs, newlines) can occur in complex terms anywhere except within
names and between a function or predicate symbol and the opening parenthesis.

Atoms are similar to complex terms, except that a name is also an atom (a propositional
variable), and equalities and negated equalities can be written in infix form as (¢; = t3)
and (t; !'= t;). White space is required around = and !=, and parentheses are required.

3.1.3 Literals and Clauses

If a is an atom, then a and -a are literals. There should be no white space between the
negation sign and the atom. A clause is a sequence of literals separated with |. White
space is optional before and after literals. A clause is always terminated with a period (but
the period is not considered to be part of the clause).

3.1.4 Formulas

1. Atoms are formulas.
If F and G are formulas, then (F <-> G) and (F -> G) are formulas.

If Fy,..., F, are formulas, then (F; | --- | F,) and (F; & --- & F,,) are formulas.

BN

The symbols all and exists are quantifiers. If Q; ...Q, are quantifiers, z, ...z, are
names, and F is a formula, then (Q; z; --- Qn z, F) is a formula.

5. If F is a nonnegated formula, then -F is a formula.

The symbols have their expected meanings: - means “not”, <-> means “if and only if”, ->
means “implies”, | means “or”, and & means “and”.

All parentheses are required, and white space is required around <->, ->, |, and &, and
after quantifiers and their associated variable occurrences.

Note that the following are not formulas: --p(a) (double negation), (p & q -> r) (not

enough parentheses), (all x p(x) & q(x)) (not enough parentheses), (p&q) (not enough
white space).

Clauses are different from formulas, both in syntax and in treatment by oTTER. The

string “p | q | r” is a clause, and “(p | q | r)” is a formula. Formulas are translated
into clauses (negation normal form, Skolemization, then CNF) when input.

3.2 Commands and the Input File

Input to OTTER consists of a small set of commands, some of which indicate that a list of
objects (clauses, formulas, or weight templates) follows the command. All lists of objects
are terminated with end_of_list. The commands are given in Table 1.

set (flag.name) . % set a flag

clear(flag_.name) . % clear a flag
assign(parameter_name, integer) . Y assign an integer to a parameter
list(axioms). % read axioms in clause form
list(sos). % read set of support in clause form
list(demodulators). % read demodulators in clause form
formula list(axioms). % read axioms in formula form
formula_list(sos). % read set of support in formula form
weight_list(weight_list_name) . % read weight templates
skolem(symbol list) . % identify skolem functions
lex(symbol list) . % assign an ordering on symbols
lrpolr_status(symbollist) . % specify RPO status
lrpo_rl_status(symbollist) . % specify RPO status

Table 1: Commands
There are a few constraints on the order of commands.

e Options that affect input and output, such as check_arity, prolog_style_variables,
simply_fol, and bird_print, should occur before any clause lists or weight lists.

e If the command set(lex_rpo) is present, it should occur before any demodulators.

3.2.1 Input of Options

OTTER recognizes two kinds of options: flags and parameters. Flags are Boolean-valued
options; they are changed with the set and the clear commands, which take the name
of the flag as the argument. Parameters are integer-valued options; they are changed with
the assign command, which takes the name of the parameter as the first argument and an
integer as the second. Examples are

set(binary_res). % switch on binary resolution
clear(back._sub). % do not use back subsumption
assign(max_seconds, 300). % stop after about 300 CPU seconds

The options are described and their default values are given in Section 4.

3.2.2 Input of Lists of Clauses

A list of clauses is specified with one of the following and is terminated with end_of_1ist.
Each clause is terminated with a period.

list(axioms).
list(sos).

list(demodulators).

Example:

list(axioms).

(x = x). % reflexivity
(f(e,x) = x). % left identity
(£(g(x),x) = o). % left inverse

(£f(£(x,y),2) = £(x,£(y,2))). 4 associativity

(£(z,x) '= £(z,y)) | (x = y). % left cancellation

(£(x,z) '= £(y,2z)) | (x = y). Y% right cancellation
end_of_list.

3.2.3 Input of Lists of Formulas

A list of formulas is specified with one of the following and is terminated with end_of 1ist.
Each formula is terminated with a period.

formula_list(axioms).
formula_list(sos).

Example (equivalent to above):

formula_list(axioms).

(all a (a = a)). % reflexivity

(all a (f(e,a) = a)). % left identity

(all a (£(g(a),a) = e)). % left inverse

(all a all b all ¢ (£(f(a,b),c) = f£(a,f(b,c)))). % associativity

(all a all b all c ((f(c,a) = £(c,b)) => (a = b))). % left cancellation

(all a all b all ¢ ((f(a,c) = £f(b,c)) -> (a = b))). Y% right cancellation
end_of_list.

3.2.4 Input of Lists of Weight Templates

A list of weight templates is specified with one of the following and is terminated with
end_of 1ist. Each weight template is terminated with a period.

weight_list(pick_given). % for picking given clauses
weight_list(purge_gen). % for discarding generated clauses
weight_list(pick_and_purge). % for both picking and purging
weight_list(terms). % for ordering terms

Example:

weight_list(pick_and_purge).

weight(a, 0). h weight of constant a is 0
weight(g(2), -50). % twice weight of argument - 50
weight(P(1,1), 100). % sum of weights of arguments + 100
weight(x, 5). % all variables have weight 5
weight(£(g(-3), 4), -300). % see Section 7

end_of_list.

See Section 7 for the syntax and use of weight templates.

3.2.5 The Commands skolem, lex, lrpo_lr_status, and lrpo_rl_status

Each of the commands skolem, lex, lrpo_1lr_status, and lrpo_rl_status takes a list of
terms as an argument. The lex command specifies an ordering on symbols, and the others
give properties to symbols. An example is

lex([a, b, £(x,x), 4, g(x), c]).

The arguments of £ and g serve as place-holders only; they identify £ and g as function or
predicate symbols and specify the arity.

skolem([...]). The skolem command identifies constant and function symbols as Skolem
symbols. (If the user inputs quantified formulas and OTTER Skolemizes, this command
is not necessary.) The Skolem property is used by the options para_skip.skolem
(Section 4.1.3) and delete_identical nested_skolem (Section 4.1.4).

lex([...]). The lex command specifies an ordering on function and constant symbols.
Lexical ordering on terms is used in three contexts: orienting equality literals (Sections
5.1.3 and 5.2.3), deciding whether to apply a lex-dependent demodulator (Sections
5.1.2 and 5.2.2), and evaluating functions/predicates that perform lexical comparisons
(Section 6).

lrpo_lr_status([...]) and lrporl_status([...]). These commands specify status with
respect to the recursive path ordering. See Section 5.2.

4 Options

Flags are Boolean-valued options, and parameters are integer-valued options. When the
user changes an option, OTTER sometimes automatically changes other options—the user
is informed when such a change occurs.

4.1 Flags
4.1.1 Main Loop Flags

A given clause is taken from sos at the beginning of each iteration of the main loop. The
default is to take the lightest clause with respect to either weight_list(pick.given) or
weight_list(pick.and _purge). If neither weight list is present, the weight of a clause is
its number of symbols. Both lists cannot be present. See Section 7.

input_sos_first — default clear. If this flag is set, the input clauses in sos are chosen (in
order) as the first given clauses; then the lightest clauses are chosen.

sos_queue — default clear. If this flag is set, the first clause in sos becomes the given
clause (the set of support list operates as a queue).

sos_stack — default clear. If this flag is set, the last clause in sos becomes the given clause
(the set of support list operates as a stack).

print_given — default set. If this flag is set, clauses are output when they become given
clauses.

4.1.2 Inference Rules

binary res — default clear. If this flag is set, use the inference rule binary resolution
(along with any other inference rules that are set) to generate new clauses.

hyper_res — default clear. If this flag is set, use the inference rule (positive) hyperresolution
(along with any other inference rules that are set) to generate new clauses.

ur_res — default clear. If this flag is set, use the inference rule UR-resolution (unit-resulting
resolution) (along with any other inference rules that are set) to generate new clauses.

para_into — default clear. If this flag is set, use the inference rule “paramodulation into
the given clause” (along with any other inference rules that are set) to generate new clauses.

para_from — default clear. If this flag is set, use the inference rule “paramodulation from
the given clause” (along with any other inference rules that are set) to generate new clauses.

demod_inf — default clear. If this flag is set, apply demodulation, as if it were an inference
rule, to the given clause. This is useful for debugging sets of demodulators. When this flag
is set, the given clause is copied, then processed just like any newly generated clause.

4.1.3 Paramodulation Flags

para.from left — default set. If this flag is set, allow paramodulation from the left sides
of equality literals. (Applies to both para_into and para_from inference rules.)

para_fromright — default set. If this flag is set, allow paramodulation from the right
sides of equality literals. (Applies to both para_into and para_from inference rules.)

para_into_left — default set. If this flag is set, then allow paramodulation into left

arguments of positive and negative equalities. (Applies to both para_into and para_from
inference rules.)

para_into.right — default set. If this flag is set, allow paramodulation into right argu-
ments of positive and negative equalities. This flag is one of the options to be cleared when

searching for a complete set of reductions. (Applies to both para_into and para_from
inference rules.)

para_from.vars — default clear. If this flag is set, allow paramodulation from variables.
(Applies to both para_into and para_from inference rules.)

para_into_vars — default clear. If this flag is set, allow paramodulation into variables.
(Applies to both para_into and para_from inference rules.)

para_fromunits_only — default clear. If this flag is set, paramodulate only if the from
clause is a unit (equality). (Applies to both para_into and para_from inference rules.)

para_into_units_only — default clear. If this flag is set, paramodulate only if the into
clause is a unit. (Applies to both para_into and para_from inference rules.)

para_skip.skolem — default clear. If this flag is set, do not paramodulate into subterms
of Skolem expressions [10]. (Applies to both para_into and para_from inference rules.)

para_ones_rule — default clear. If this flag is set, paramodulation obeys the 1’s rule. (The
1’s rule is a special-purpose strategy for problems in combinatory logic—its usefulness has
not been demonstrated elsewhere.) (Applies to both para_into and para_from inference
rules.)

para_all — default clear. If this flag is set, then replace all occurrences of the into term
with the replacement term. (Applies to both para_into and para_from inference rules.)

4.1.4 Flags for Handling Generated Clauses

(Section 4.1.5 gives additional, equality-related flags for handling generated clauses.)

very_verbose — default clear. If this flag is set, much information about the processing of
generated clauses is output.

order_eq — default clear. If this flag is set, flip equalities if the right side is heavier than
the left. See Sections 5.1.3 and 5.2.3 for the meaning of “heavier”.

sort_literals — default clear. If this flag is set, literals of newly generated clauses are
sorted: negative literals, then positive literals, then answer literals. The main purpose of
this flag is to make clauses more readable. In some cases, this flag can speed up subsumption
on non-unit clauses.

delete_identical nested_skolem — default clear. If this flag is set, delete a clause if
a Skolem expression (properly) contains an occurrence of its leading Skolem symbol. For
example, if £ is a Skolem function, delete a clause if it has a term £(f(x)) or a term

£(g(£(x))).

for_sub — default set. If this flag is set, apply forward subsumption during the processing
of newly generated clauses. (Delete the new clause if it is subsumed by any clause in axioms
or sos.)

unit_deletion — default clear. If this flag is set, apply unit deletion to newly generated
clauses. Unit deletion removes a literal from a newly generated clause if the literal is the
negation of an instance of a unit clause that occurs in axioms or sos. For example, the
second literal of p(a,x) | q(a,x) is removed by the unit -q(u,v); but it is not removed
by the unit -q(u,b), because that unification causes the instantiation of x. All such literals
are removed from the newly generated clause, even if the result is the empty clause. (Unit
deletion is not useful if units only are being generated.)

print_kept — default set. If this flag is set, output new clauses if they pass all retention
tests.

print_proofs — default set. If this flag is set, print all proofs that are found to the output
file. If this flag is clear, no proofs are printed to the output file.

back_sub — default set. If this flag is set, apply back subsumption during the processing

10

of newly kept clauses. (Delete all clauses in axioms or sos that are subsumed by the newly
kept clause.)

print_back_sub — default set. If this flag is set, output clauses when they are back sub-
sumed.

factor — default clear. If this flag is set, factor newly kept clauses. Note that unlike other
inference rules, factoring is not applied to the given clause—it is applied to a new clause as
soon as it is kept. All factors are generated in an iterative manner. Factoring is attempted
on answer literals. If factoring is enabled, a clause with n literals will never subsume a
clause with fewer than n literals.

4.1.5 Demodulation and Equality Flags

demod_history — default set. If this flag is set, then when a clause is demodulated, include
the numbers of the demodulators in the derivation history of the clause.

demod.linear — default clear. If this flag is set, disable demodulation indexing and use
a linear search of demodulators when rewriting a term. With indexing disabled, if more
than one demodulator can be applied to rewrite a term, then the one that occurs first in
the input file is applied; this flag is useful when demodulation is used to do “procedural”
things. With indexing enabled (the default), demodulation is much faster, but the order in
which demodulators is applied is not under the control of the user.

demod out_in — default clear. If this flag is set, demodulate terms outside-in, left-to-
right. In other words, the program attempts to rewrite a term before rewriting (left-to-
right) its subterms. The algorithm is “repeat {rewrite the left-most outer-most rewritable
term} until no more rewriting can be done or the limit is reached”. (The effect is like
a standard reduction in lambda-calculus or in combinatory logic.) If this flag is clear,
terms are demodulated inside-out (all subterms are fully demodulated before attempting
to rewrite a term). The one exception when inside-out demodulation is in effect is the
evaluable conditional term $IF (condition, then-value, else-value) (Section 6).

dynamic_demod — default clear. If this flag is set, attempt to make some newly kept
equalities into demodulators (Sections 5.1.4 and 5.2.4). Setting this flag automatically sets
the flag order_eq.

dynamic_demod_all — default clear. If this flag is set, attempt to make all newly kept

equalities into demodulators (Section 5.1.4). Setting this flag automatically sets the flag
dynamic_demod.

print_new.demod — default set. If this flag is set, print demodulators that are adjoined
during the search (dynamic_demod).

back_demod — default clear. If this flag is set, back demodulate demodulators, axioms,
and sos whenever a new demodulator is added. Back demodulation is delayed until the
inference rules are finished generating clauses from the current given clause (delayed until
post_process). Setting the back_demod flag automatically sets the flags order_eq and
dynamic._demod. (Warning: the order in which clauses are back demodulated is in effect
nondeterministic—it may change from run to run.)

11

print_back_demod — default set. If this flag is set, print clauses before they are back
demodulated.

symbol_elim — default set. If this flag is set, then orient new demodulators, if possible, so
that function symbols (excluding constants) are eliminated. A demodulator can eliminate all
occurrences of a function symbol if the arguments on the left side are all different variables,
and the function symbol of the left side does not occur in the right side. For example,
the demodulators g(x) = £(x,x) and h(x,y) = £(x,f(y,f(g(x),g(y)))) eliminate all
occurrences of g and h, respectively.

knuth_bendix — default clear. If this flag is set, then OTTER will approximate a ver-
sion of the Knuth-Bendix completion procedure. Setting the knuth_bendix flag automat-
ically causes the following flags to be altered, if necessary, as follows: set(para_from),
set(para_into), set(parafrom_left), clear(para from right),set(para_into_left),
clear(para.into_right), set(dynamic_demod.all), set(back_demod). See Section 5.3
for an example. The user may wish to also set(lex_rpo) (see next flag).

lex_rpo — default clear. If this flag is set, then use the lexicographic recursive path ordering
(also called RPO with status) to compare terms. If this flag is clear, weight templates and
lexicographic order are used. See Section 5.2.

dynamic_demod lex_dep — default clear. If this flag is set, dynamic demodulators may be
lex-dependent or LRPO-dependent. See Sections 5.1.4 and 5.2.4.

lex_order_vars — default clear. This flag affects lex-dependent demodulation and the
evaluable functions and predicates that perform lexical comparisons. If this flag is set, then
lexical ordering is a total order on terms; variables are lowest in the term order, with x < y
<2Z2<u<v<w<v6<v7<v8<--. If this flag is clear, then a variable is comparable
only to another occurrence of the same variable; it is not comparable to other variables or to
nonvariables. For example, $LLT(f (x) ,f(y)) evaluates to $T if and only if lex_order_vars
is set. If lex_rpo is set, lex_order_vars has no effect on demodulation. See Section 5.1.1
for more detail.

4.1.6 Indexing Flags

for_sub_fpa — default clear. If this flag is set, use FPA indexing for forward subsumption.
If this flag is clear, use discrimination tree indexing for forward subsumption. This flag can
be set to decrease the amount of memory required by OTTER. Discrimination tree indexing
can require a lot of memory, but it is much faster than FpA indexing.

no_fapl — default clear. If this flag is set, do not index positive literals for unit conflict
or back subsumption. This should be used only when no negative units will be generated
(as with hyperresolution), back subsumption is disabled, and discrimination tree indexing
is being used for forward subsumption. This option can save a little time and memory.

no_fanl — default clear. If this flag is set, do not index negative literals for unit conflict
or back subsumption. This should be used only when no positive units will be generated,
back subsumption is disabled, and discrimination tree indexing is being used for forward
subsumption. This option can save a little time and memory.

12

4.1.7 Input and Output Flags

check_arity — default set. If this flag is set, symbols must not have variable arities
(different numbers of arguments in different places in the input). For example, the term
p(a,a(b)) would not be allowed. (Constants have arity 0.) If this flag is clear, then variable
arities are permitted; in the preceding term, the two occurrences of a would be treated as
different symbols.

prolog.style_variables — default clear. If this flag is set, a name with no arguments in
a clause is a variable if and only if it starts with A through Z (upper case) or _.

process_input — default clear. If this flag is set, input axioms and sos clauses (including
clauses from formula input) are processed as if they had been generated by an inference
rule. The processing includes subsumption, demodulation, and back demodulation. (See
Section 2, “procedure for processing newly inferred clause”.)

simplify fol — default clear. If this flag is set, then attempt some simplification when
converting input first-order formulas into clauses. The simplification occurs after Skolemiza-
tion, during the CNF translation. (Future releases may attempt simplification of quantified
formulas.)

bird_print — default clear. If this flag is set, output terms constructed with the bi-
nary function a in combinatory logic notation (without the function symbol a and left
associated unless otherwise indicated). For example, the clause (a(a(a(s,x),y),z) =
a(a(x,z),a(y,z))) is output as (S x y z = x z (y 2)). At present, terms cannot be
input in combinatory logic notation.

4.1.8 Miscellaneous Flags

free_all mem — default clear. If this flag is set, then at the end of the run, return all
memory to the memory managers. (This is used to ensure that no memory is being lost.)
When this flag is set, the numbers in the “in use” column of the memory statistics should
all be close to 0. This flag is used primarily for system debugging.

atom_wt_max_args — default clear. If this flag is set, the default weight of an atom (the
weight if no template matches the atom) is 1 + the maximum of the weights of the argu-
ments. If this flag is clear, the default weight of an atom is 1 + the sum of the weights of
the arguments.

term_wt_max_args — default clear. If this flag is set, the default weight of a term (the weight
if no template matches the atom) is 1 + the maximum of the weights of the arguments. If
this flag is clear, the default weight of a term is 1 + the sum of the weights of the arguments.

print_lists_at_end — default clear. If this flag is set, then axioms, sos, and demodulators
are printed at the end of the search.

really_delete_clauses — default clear. If this flag is clear, clauses that are deleted by
back subsumption or back demodulation are not really removed from memory; they are
retained in a special place so that they can be printed if they occur in a proof. If the
job involves much back subsumption or back demodulation and if memory conservation is
important, these deleted clauses can be removed from memory by setting this flag (and any

13

proof containing such a clause will not be printed in full).

4.2 Parameters

Parameters are integer-valued options. In the descriptions that follow, n is the value of the
parameter, and MAX_INT is a large integer, usually the size of the largest normal integer on
the user’s computer.

4.2.1 Monitoring Progress

report — default 0, range [0..MAX_INT]. If n is not 0, then output statistics approximately
every n CPU seconds. The time is not exact, because statistics will be output only after the
current given clause is finished. n should not be too small; n = 30 is a good start. This
feature can be used in conjunction with UNIX programs such as grep and awk to conveniently
monitor OTTER jobs.

4.2.2 Placing Limits on the Search

max_seconds — default 0, range [0..MAX_INT). If n is not 0, then terminate the search after
about n cPU seconds. The time is not exact, because OTTER will wait until the current
given clause is finished before stopping.

max_gen — default 0, range [0..MAX_NT]. If n is not 0, then terminate the search after
about n clauses have been generated. The number is not exact, because OTTER will wait
until it is finished with the current given clause before stopping.

max_kept — default 0, range [0..MAX_INT]. If n is not 0, then terminate the search after
about n clauses have been kept. The number is not exact, because OTTER will wait until it
is finished with the current given clause before stopping.

max_given — default 0, range [0..MAX_INT]. If n is not 0, then terminate the search after
n given clauses have been used.

max_mem — default 0, range [0..MAXINT). If n is not 0, then OTTER will terminate the
search before more than n Kbytes have been dynamically allocated (malloc).

4.2.3 Limits on the Size of Generated Clauses

max.literals — default 0, range [0..MAXINT]. If n is not 0, then new clauses are discarded
if they contain more than n literals.

max.weight — default 0, range [0..MAXNT]. If n is not 0, then new clauses are discarded
if their weight is more than n. The weight list purge_gen or the weight list pick_and_purge
is used to weigh clauses (both lists cannot be present; see Section 7).

14

4.2.4 Indexing Parameters

fpa.literals — default 3, range [0..8]. n is the FPA indexing depth for literals. (FPA literal
indexing is used for resolution inference rules, back subsumption, and unit conflict. It is
also used for forward subsumption if the flag for_sub_fpa is set.) If n = 0, indexing is by
predicate symbol only; if n = 1, indexing looks at the predicate symbol and the symbols
that are arguments of the literal, and so on. Greater indexing depth requires more memory,
but it can be faster. Changing this parameter should never change the clauses that are
generated or kept.

fpa_terms — default 3, range [0..8]. n is the FPA indexing depth for terms. (FPA term
indexing is used for paramodulation inference rules and back demodulation.) If n = 0,
indexing is by function symbol only; if n = 1, indexing looks at the function symbol and the
symbols that are arguments of the literal, and so on. Greater indexing depth requires more
memory, but it can be faster. Changing this parameter should never change the clauses
that are generated or kept.

4.2.5 Miscellaneous Parameters

demod_limit — default 100, range [0..MAXJINT]). If n is not 0, then n is the maximum
number of rewrites that will be applied when demodulating a clause. The count includes
$ symbol evaluation. If n is 0, there is no limit. A warning message is printed if OTTER
attempts to exceed the limit.

max_proofs — default 1, range [0..MAXJNT]. If n = 1, oTTER will stop if it finds a proof.
If n» > 1, then OTTER will not stop when it has found the first proof; instead, it will try to
keep searching until it has found n proofs. (Some of the “different” proofs may in fact be
identical.) (Because forward subsumption occurs before unit conflict, a clause representing
a truly different proof may be discarded by forward subsumption before unit conflict detects
the proof.) If n = 0, oTTER will find as many proofs as it can.

neg weight — default 0, range [-MAX_INT..MAX_INT]. n is the additional weight (positive
or negative) that is given to negated literals. Weight templates cannot be used to do
this, because the negation sign cannot occur in weight templates. (Atoms, not literals, are
weighed with weight templates, Section 7.)

stats_level — default 2, range [0..3]. This is the level of detail of statistics printed in
reports and at the end of the search. If n = 0, no statistics are output; if n = 1, a few
important statistics are output; if n = 2, most relevant statistics are output; and if n = 3,
most relevant statistics and subsumption counts are output. This parameter does not affect
the speed of OTTER, because all statistics are always kept.

5 Ordering and Dynamic Demodulation

This section contains a more complete explanation of the options lex_order_vars, order.eq,
symbol_elim, dynamic_demod, dynamic_demod_all, lex_rpo, and dynamic_demod_lex._dep,
and it gives all the rules—built in and optional—for orienting equality literals and deter-

15

mining dynamic demodulators. In this section, @ and 3 always refer to the left and right
arguments, respectively, of the equality literal under consideration.

Through the years, we have accumulated a collection of ad hoc ordering techniques,
which are presented in Section 5.1. However, simpler and more predictable behavior can
occur if the Lexicographic Recursive Path Ordering (LrRPO, flag lex_rpo) is used. Section
5.1 applies if lex_rpo is clear, and Section 5.2 applies if lex_rpo is set.

The lex command, which applies to both sections, can be used to assign an ordering
on symbols. The command

lex{ [a, b, c, d, or{x,x)]).

specifies a < b < ¢ < d < or (or is a binary function symbol). Behavior is undefined if
relevant symbols are omitted from the lex command.

5.1 lex_rpo Is Clear
5.1.1 Lexical Order (lex_rpo is clear)

The flag lex_order_vars controls lexical ordering of terms containing variables.

lex_order_vars is set: Variables are the lowest in the symbol ordering, withx <y <z <u
<V <w<v6<v7<v8<--. Since the order on symbols is total (any two symbols
are comparable), the lexical order on terms is total (any two terms are comparable).
Note that applying a substitution to a pair of terms may change their relative order.

lex_order_vars is clear (the default): A variable is comparable only to itself; it is not com-
parable to different variables or to nonvariable terms. If ¢ < b, then f(a,x,y) <
£(b,y,x), but £(x,a,y) and £(y,b,x) are not comparable. The order on terms is
partial. Note that if t; < f,, and if o is any substitution, then t;o < ;0.

Lexical ordering on terms is used in three contexts: deciding whether to apply a lex-
dependent demodulator (Section 5.1.2), evaluating functions/predicates that perform lexi-
cal comparisons (Section 6), and orienting equality literals (Section 5.1.3). When orienting
equality literals, partial lexical ordering is used, even if the flag 1ex_order_vars is set.

5.1.2 Lex-dependent Demodulation (lex.rpo is clear)

Two terms are identical-except-variables if they are identical after replacing all occurrences of
variables with x. An input demodulator is lex-dependent if and only if o and 8 are identical-
except-variables. A dynamic demodulator is lex-dependent only if o and 3 are identical-
except-variables. (See Section 5.1.4 for determining lex-dependent dynamic demodulators.)
A lex-dependent demodulator applies to a term only if its application produces a lexically
smaller term. When checking “lexically smaller”, the flag lex_order_vars is consulted.

In the presence of the lex command and the (lex-dependent) demodulators

16

lex([a, b, ¢, d, or(x,x)]).

list(demodulators).
(or(x,y) = or(y,x)).
(or(x,or(y,z)) = or(y,or(x,z))).
end_of_list.

the term or(or(d,b),or(a,c)) will be demodulated to or(a,or(b,or(c,d))) (in several
steps).

5.1.3 Orienting Equalities (1ex_rpo is clear)

Orienting equality literals (positive and negative) except positive unit equalities.
The arguments a and 3 are weighed (Section 7) by using weight_list(terms). If wi(a) <
wt(B), the literal is flipped. If wt(a) = wt(B), then a and B are compared in the partial
lexical order (Section 5.1.1); if a < 3, the literal is flipped.

Orienting positive unit equalities. More care is taken in orienting positive unit equal-
ities, because they may become dynamic demodulators. The procedure is the following:

1. If the symbol_elim flag is set and if the equality is a symbol-eliminating type (Section
4.1.5), then orient the equality in the appropriate direction and exit.

2. If one argument is a proper subterm of the other argument, then orient the equality
so that the subterm is the right argument and exit.

3. Proceed as in the preceding paragraph “Orienting equality literals ...”. If the lexi-
cal comparison shows that the two arguments are incomparable, then if vars(a) 2
vars(B) and vars(a) C vars(3), the literal is flipped.

5.1.4 Determining Dynamic Demodulators (lex_rpo is clear)

A dynamic demodulator is a demodulator that is inferred rather than input. If either of
the flags dynamic_demod or dynamic_demod._all is set, OTTER will attempt to make some
or all inferred positive equality units into demodulators.

If either of the flags dynamic_demod or dynamic_demod_all is set, then the flag order_eq
is automatically set. (Dynamic demodulators are decided when equalities are oriented,
before forward subsumption. An equality actually becomes a dynamic demodulator after
forward subsumption.) The procedure assumes that equalities have already been oriented.

1. If the flag symbol_elim is set and if it applies, the equality becomes a demodulator.

2. If B is a proper subterm of o, the equality becomes a demodulator.

3. If o and f are comparable, in particular, if wt(a) > wt(B) or (wi(a) = wit(B) and
a >),

17

(a) if dynamic_demod_all is set, the equality becomes a demodulator;

(b) if dynamic_demod_all is clear and if wt(8) < 1, the equality becomes a demod-
ulator.

4. If dynamic_demod_lex.dep is set, if & and f# are incomparable, if they are identical-
except-variables (Section 5.1.2), and if vars(a) 2 vars(8), then the equality becomes
a lex-dependent demodulator.

5.2 lex_rpo Is Set
5.2.1 Lexical Order (lex_rpo is set)

To use lexicographic recursive path ordering (LRPO, or RPO with status) [2, 3, 5] the user
must assign an ordering on constant and function symbols. This is accomplished with the
lex command. (OTTER uses a total ordering. Other implementations of LRPO use partial
orderings or dynamically changing orderings.) If a lex command is not present, OTTER
assigns an ordering, which is usually ineffective.

The total ordering on symbols extends to a total ordering on ground terms. The
lexical aspect of LRPO is that certain specified function symbols can have their argu-
ments compared left-to-right or right-to-left. This is accomplished with the commands
lrpo_lr_status and lrpo._rl_status. For example, if associativity is a demodulator,
f(£(x,y),2z) = £(x,£(y,2)), and if expressions in £ are to be right associated, one can
use the command

lrpo.lr_status([f(x,x)]).
LRrRPO comparison is used when orienting equality literals, deciding whether an equality
should be a demodulator or an LRPO-dependent demodulator, and deciding whether to

apply an LRPO-dependent demodulator. LRPO comparison is never used when evaluating
the functions/predicates that perform lexical comparison ($LLT, $LGT, etc.).

5.2.2 Lex-dependent Demodulation (lex_rpo is set)
The notion of lex-dependent demodulator is replaced with that of LRPO-dependent de-
modulator. An input demodulator becomes LRPO-dependent if neither argument is LRPO-

less-than the other. An LrRPO-dependent demodulator is allowed to rewrite a term iff its
application results in an LRPO-less-than term.

5.2.3 Orienting Equalities (lex_rpo is set)

All equality literals (positive and negative) are oriented in the same way. If alpha is LRPO-
less-than beta, the literal is flipped.

18

5.2.4 Determining Dynamic Demodulators (lex_rpo is set)

If the flag dynamic_demod is set, OTTER attempts to make all equalities into demodulators
(dynamic_demod_all is ignored). If beta is LRPO-less-than alpha, the derived equality be-
comes a demodulator. (Alpha is not LRPO-less-than alpha, because orienting has already
occurred.) If dynamic_demod_lex_dep is set, neither argument is LRPO-less-than the other,
and every variable that occurs in beta also occurs in alpha, the derived equality becomes
an LRPO-dependent demodulator.

5.3 Completion and Termination

LRPO enables an implementation of the Knuth-Bendix completion procedure [6]. Here is
an input file that causes OTTER to search for and quickly find a complete set of reductions
for free groups. (As with any application of the Knuth-Bendix completion procedure, the
critical issue is the choice of ordering scheme and/or the specific ordering on symbols.)

set(knuth_bendix).
set(lex_rpo).
set(process_input).
set(print_lists_at_end).

lex([e,f(x,x),g(x)]).
lrpo_lr_status([f(x,x)]).

list(sos).

(x = x).

(f(e,x) = x). % left identity
(f(g(x),x) = o). % left inverse

(£(£(x,y),2) = £(x,f(y,2))). ! associativity
end_of_list.

6 Evaluable Functions and Predicates ($SUM, $LT, ...)

OTTER, like AURA and ITP, recognizes some special function and predicate symbols as evalu-
able symbols. Integer arithmetic, lexical comparison, Boolean evaluation, and conditional
expressions can be employed when a user wishes to “program” some aspect of a theorem-

proving task. (The speed of $ evaluation is not outstanding—it may be improved in future
releases.)

Evaluation occurs during demodulation and during hyperresolution. If, for example,
demodulation encounters a term $SUM(i;, i2), where i; and i, are integers, the term is
rewritten to i3, the sum of ¢{; and iy, as if the demodulator ($SUM(i;, i2) = i3) were
present. If, for example, hyperresolution encounters the negative literal =$LT(#;, t5), then
t1 and t; are demodulated; if the results are (respectively) integers ¢; and i3, with i} < iy,
then the literal is removed as if the unit clause $LT(#;, t,) were present.

19

The symbols that evaluate to type Boolean can occur as either function symbols (de-
modulation) or predicate symbols (demodulation and hyperresolution). If they are used as
function symbols, the Boolean constants are $T (true) and $F (false).

int X int — int $SUM, $PROD, $DIFF, $DIV, $MOD
int X int — bool $EQ, $NE, $LT, $LE, $GT, $GE

term x term — bool $1ID, $LNE, $LLT, $LLE, $LGT, $LGE
bool x bool — bool $AND, $0R

bool — bool $TRUE, $NOT

— bool $T, $F

term — bool $ATOMIC, $NUMBER, $VAR

— int $NEXT_CL_NUM

bool x term X term — term | $IF

Table 2: Evaluable Functions and Predicates

Table 2 contains all of the evaluable functions and predicates. Their behavior is the
following:

1. int X int — int. The term evaluates if both arguments demodulate to integers. $DIV
is integer division, and $MOD is remainder.

2. int X int — bool. The term evaluates if both arguments demodulate to integers.

3. term X term — bool. The term always evaluates. These operations are similar to the
five operations in int X int — bool, except that the comparisons are lexical instead of
arithmetic. The lexical comparison is the same as in lex-dependent demodulation; in
particular, the flag 1ex_order_vars (Sections 4.1.5 and 5.1.1) has effect.

4. bool x bool — bool. The term evaluates if both arguments demodulate to Booleans.
(This is more restrictive than need be; for example, $AND($F,bird) does not evaluate.)

5. bool — bool. The term evaluates if its argument demodulates to Boolean.

6. — bool. If hyperresolution encounters a literal -$T or a literal $F, the literal is removed.
If hyperresolution encounters a literal -$F or a literal $T, the entire hyperresolvent is
discarded (because it is a tautology).

7. term — bool. A term is $ATOMIC iff it is a constant (including integer), a term is a
$NUMBER iff it is an integer, and a term is a $VAR iff it is a (unbound) variable.

8. — int. The term $NEXT_CL_NUM (no arguments) evaluates to the next integer that will
be assigned as a clause identifier (this is useful for placing the ID of a clause within
the clause).

9. bool x term x term — term. The $IF function is the if-then-else operator. It is
described in the following paragraph.

When inside-out (the default) demodulation encounters a term $IF(condition, t;, t3),
demodulation deviates from its inside-out behavior. The term condition is demodulated
(evaluated); if the result is $T, the value of the $IF term is the result of demodulating t;;

20

if the result is $F, the value of the $IF term is the result of demodulating ?;; if the result
is neither $T nor $F, demodulation returns to its normal behavior. Note that if condition
evaluates to a Boolean value, demodulation strays from its inside-out behavior, because just
one of ¢; and %, is demodulated. If the outside-in demodulation option has been set, there
is no need to treat $IF terms differently from the norm, because outside-in demodulation
causes the $IF term to be evaluated before either t; or t,.

The evaluable functions and predicates enable the use of equalities with demodulation
as a general-purpose equational programming language. Here are some example functions.

(ged(x,y) = % greatest common divisor
$IF($EQ(x,0),
Yy,
$IF($EQ(y,0),
X,
$IF($LT(x,y),
ged(x,$DIFF(y,x)),
ged(y,$DIFF(x,y)))))).
(member(X,[]) = $F). % some list functions (prolog style_variables)
(member(X, (HIT]) = $IF($ID(X,H),

member(X,T))).

(reverse(L) = rev2(L,[])).
(rev2([l, L) = L).
(rev2([HIT],L) = rev2(T,[HIL])).

A Boolean function defined with demodulators, such as member in the preceding set of
definitions, can be used as an antecedent (negated literal) in a hyperresolution nucleus in
the following way:

—Ly | --- | -$TRUE(member(element, list)) | --- | =L, | M.

Evaluable functions and predicates are useful when using hyperresolution to perform
state-space searches. An example is the Missionaries and Cannibals puzzle:

There are 3 missionaries, 3 cannibals, and a boat on the west bank of a
river. All wish to cross, but the boat holds at most 2 people. If the cannibals
ever outnumber the missionaries on either bank of the river or in the boat, the
outnumbered missionaries will be eaten. Can they all safely cross the river? If
so, how? (The boat cannot cross empty.)

[start of input file]
%
% State(X,Y,Z) means that X missionaries, Y cannibals,

% and the boat are on the Z side of the river.

%

set (hyper_res).

21

list(axioms).

-State(xmbs,xcbs,xbp) % If we have a provable state,
-pick(xm) % missionaries to cross
-pick(xc) % cannibals to cross

I
|
| -$LE(xm, xmbs)
| -$LE(xc, xcbs)
| -$GT($SUM(xm, xc), 0) % if number in boat > O,
| -$LE($SUM(xm, xc), 2) % if number in boat <= 2,
| -$0R($GE(xm, xc),$EQ(xm,0)) % if no feast in the boat,
% if no feast after the boat leaves current side,
| -$OR($GE($DIFF(xmbs, xm), $DIFF(xcbs, xc)),$EQ($DIFF(xmbs, xm),0))

% if no feast when the boat arrives at the other side,

| -$0R($GE($SUM($DIFF(3, xmbs), xm), $SUM($DIFF(3, xcbs), xc)),
$EQ($SUM($DIFF(3, xmbs), xm),0))

% then a crossing can occur
| State($SUM($DIFF(3, xmbs), xm),$SUM($DIFF(3, xcbs), xc),0Otherside(xbp)).
pick(0).
pick(1).
pick(2).

~State(3,3,East). % goal state

end_of_list.

list(sos).

State(3,3,West). % initial state
end_of_list.

list(demodulators).
(Otherside(West) = East).
(Otherside(East) = West).

end_of_list.

[end of input file]

7 Weighting
OTTER maintains four lists of weight templates.

weight_list(pick.given). % Choose given clauses from the set of support.
weight_list(purge_gen). % Is used in conjunction with the max_weight

22

% parameter to discard undesirable generated
% clauses.
weight_list(pick_and_purge).) Plays the roles of both pick_given and
% purge_gen (if present, neither pick_given
% nor purge_gen can be present).
weight_list(terms). % Used to orient equality literals and to
% decide dynamic demodulators (lex_rpo clear).

See Section 3.2.4 for input of lists of weight templates.

7.1 Weighing Clauses and Literals

The weight of a clause is always the sum of the weights of its literals (excluding any answer
literals). The weight of a positive literal is the weight of its atom. The weight of a negative
literal is the weight of its atom plus the value of the neg_weight parameter (Section 4.2.5).

7.2 Weighing Atoms and Terms

Atoms and terms are weighed top-down. To weigh a given term, the appropriate weight
list is searched (in the order input) for the first matching template. If a match is found,
then the subterms of the given term that match the integers in the template are weighed.
The weight of the given term is the sum of the products of each integer and the weight of
its corresponding subterm, plus the second argument of the weight template. For example,
the template

weight (£(g(2),-3), -50)
matches the given term
f(g(h(a)),£f(b,x)).

The weight of the given term is (2 * (the weight of h(a))) + (-3 * (the weight of £(b,x))) +
(-50). If a matching weight template is not found, then the weight of the given term is 1 +
sum of the weights of the subterms. (See the flags atom_wt_max_args and term_wt_max_args,
Section 4.1.8 for overrides.) Note that this weighting scheme implies that if no weight
templates are present, the default weight of a term or atom is the number of variable,
constant, function, and predicate symbols (symbol count).

Variables in weight templates are generic. A variable in a weight template will match
any variable (and only variables) in the given term. As a consequence, it is never necessary
to use different variable names in a weight template. For example, weight (f(x,x),-7)
matches the term f(u,v), and weight(x,32) matches all variables.

Warning: The two occurrences of symbol £ in the term £(f,x) are treated by OTTER
as different symbols because they have different arities. The weight template weight (f,
0) applies to the second occurrence but not to the first. (This warning applies only if the
command clear(check_arity) has been issued.)

23

The default weight of an answer literal is 0, but templates can be used to assign weights
to answer literals. The parameter neg_weight never applies to answer literals.

Because of an inadequacy of the input parser, weight templates cannot contain in-
fix equality atoms—the template weight((a = b), 0) will not be accepted. Instead,
one must use the internal system name and write the atom in prefix form—the template
veight($eq-infix(a,b), O0) matches the atom (a = b).

If one wishes to have a weight template containing a Skolem function or constant that is
generated by OTTER, one must first make a short trial run to find out how the formulas are
Skolemized, then return to the input file and insert the weight list after the formula lists.

8 Answer Literals

The main use of answer literals is to record, during a search for a refutation, instantiations
of variables in input clauses. For example, if the theorem under consideration states that
an object exists, then the denial of the theorem contains a variable, and an answer literal
containing the variable can be appended to the denial. If a refutation is found, then the
empty clause has an answer literal that contains the object whose existence has just been
proved.

Any literal whose predicate symbol starts with $ans, $Ans, or $ANS is an answer literal.
Most routines—including the ones that count literals and decide whether a clause is positive
or negative—ignore any answer literals. The inference rules insert, into the children, the
appropriate instances of any answer literals in the parents. If factoring is enabled, OTTER
does attempt to factor answer literals.

9 Meta-experimental Features

This section describes some features that are new, not well tested, and/or not well docu-
mented.

9.1 Linked UR-Resolution

OTTER 2.0 has an inference rule, linked ur_res, which is an application of the linked
inference principle [16] to UR-resolution. As this manual is written, there is not yet any
documentation. The inference rule is still evolving and is highly experimental. For cur-
rent information on the status of linked UR-resolution, send e-mail to wos@mcs.anl.gov,
veroff@unmvax.cs.unm.edu, and karonis@mcs.anl.gov.

9.2 Atom (Literal) Demodulation

Atoms, as well as terms, are demodulated.
e The negation symbol cannot occur in a demodulator.

24

o Because of an inadequacy of the input parser, demodulators to rewrite infix equal-
ities must use the internal (prefix) system name $eq_infix. For example, the de-
modulator ((£(x,y) = x) = (y = 0)) must be written ($eq-infix(£f(x,y),x) =
$eq_infix(y,0))

o Things work as expected if the right side of a literal demodulator is one of the Boolean
constants $T or $F.

9.3 Conditional Demodulation

A conditional demodulator has the form
$CONDITIONAL (condition, alpha, beta).

It is read “if condition then alpha = beta”. A conditional demodulator is applied only
if the instantiated condition evaluates to $T. In other respects, it behaves as a regular
demodulator. Examples are (member and gcd are defined in Section 6)

$CONDITIONAL ($ATOMIC(x), conjunctive_normal_form(x), x).
$CONDITIONAL (member(gcd(4,x),y), £(x,y), g(y)).
$CONDITIONAL ($GT ($NEXT_CL_NUM,1000), e(x,x), junk).

9.4 Another Demodulation Trick

A new feature, activated by the set_special_unary command, allows OTTER to avoid one of
the problems caused by the lack of associative-commutative matching during demodulation.
The feature is useful when an associative-commutative function and an inverse are present,
as in rings. Without this feature, the following 1lex command and demodulators

lex([0,a,b,c,d,e,g(x),f(x,x)]).
list(demodulators).

(£f(x,y) = £(y,x)).

(£(x,£(y,2)) = £(y,f(x,2))).
(f(x,g(x)) = 0).
(f(x,£(g(x),y)) = £(0,y)).

(£(0,x) = x).
end_of_list.

will cause the expression
£(£(£(g(b),a),c),f(b,g(c)))

to be sorted into

f(a,f(b,f(c,f(g(b),glc))))).

25

One would like b and g(b) to be next to each other so that they could be canceled by one
of the inverse demodulators. The new feature accomplishes just that. The new command

set_special_unary([g(x)])

causes g to be ignored during term comparisons, and the expression would be demodulated
to a. The set.special_unary command has no effect if the flag lex_rpo is set. This is an
ezperimental feature. Its consequences have not been well analyzed.

9.5 Introducing New Functions

When searching for a complete set of reductions, one sometimes encounters an equality that
cannot be oriented, but that can be handled by introducing a new function symbol. See [4]
for more detail.

new_functions — default clear. If this flag is set, then positive equality units of a par-
ticular type cause the introduction of new function symbols and equalities. If an equality
has the property that each side has at least one variable that does not occur in the other
side, then a new function symbol and two new equalities are introduced. For example,
(d(x,d(y,d(d(x,x),x))) = d(d(z,z),y)) causes the introduction of
(d(x,d(y,d(d(x,x),x))) = ki1(y)) and (d(d(z,2),y) = k1(y)). The new function sym-
bol is k1; its argument list is the intersection of the variable sets of the two sides. The lexical
value of the new symbol is low.

9.6 Ancestor Subsumption

OTTER does not necessarily prefer short or simple proofs—it simply reports the proofs that
it finds. A new option ancestor_subsume extends the concept of subsumption to include
the derivation history, so that if two clause occurrences are logically identical, the one with
fewer ancestors is preferred. The motivation is to find short proofs.

ancestor_subsume — default clear. If this flag is set, the notion of subsumption (forward
and backward) is replaced with ancestor-subsumption. Clause C ancestor-subsumes clause
D iff C properly subsumes D or if C and D are variants and size(ancestorset(C)) <
size(ancestorset(D)).

9.7 Reducing max _weight on the Fly

In many searches, the number of kept clauses grows much faster than the number of given
clauses. In other words, the list sos is very large, and most of those clauses never participate
in the search. To save memory, one can use the max_weight parameter to discard many of
the clauses that will (probably) never become given clauses.

A few searches and proofs show a phenomenon we call the complezity hump. To get a
search started, one must use complex clauses; then one can continue the search using simpler
clauses. Analogously, the first few steps in a proof are complex, and the remaining steps
are simpler. If one needs to carefully conserve memory when a complexity hump is present,

26

one can use the parameter reduce_weight._limit to change the value of max_weight after
a specified number of given clauses.

reduce_weight limit — default 0, range [0.MAX_NT]. If n (the value) is not 0, this
parameter has effect. Two integers are packed in the parameter. The last two digits specify
the new limit, and the others specify the given clause at which to make the change. For
example, n = 3975 says to reduce max_weight to 75 after given clause number 39.

10 Limits, Abnormal Ends (ABENDS), and Fixes

OTTER has a several compile-time limits. If a limit is exceeded, a message containing the
name of the limit will appear in the output file and/or at the terminal. To raise the limit,
find the appropriate definition (#define) in a .h or .c file, increase the limit, and recompile
OTTER. (One must have his or her own copy of the source code to do this.) Some of the
limits are

MAX_NAME — Maximum number of characters in a variable, constant, function, or predicate
symbol.

MAX_BUF — Maximum number of characters in an input string (clause, formula, command,
weight template, etc.).

MAX_VARS — Maximum number of distinct variables in a clause.

MAX_FS_TERM_DEPTH — Maximum depth of terms in forward subsumption discrimination
tree.

MAX_AL_TERM_DEPTH — Maximum depth of left arguments of equalities in demodulation
discrimination tree.

If OTTER is using too much memory, one can decrease (down to 0) the value of the
fpa.literals parameter, set the for_sub_fpa flag to switch forward subsumption indexing
from discrimination tree to FPA indexing, and use weighting to discard (more) generated
clauses.

11 Summary of the Options and Their Defaults

clear(input_sos_first). clear(knuth_bendix).
clear(sos_queue). clear(lex_rpo).
clear(sos_stack). clear(dynamic_demod_lex_dep).
set(print_given). clear(lex_order_vars).
clear(binary_res). clear(for_sub_fpa).
clear(hyper_res). clear(no_fapl).

clear(ur_res). clear(no_fanl).
clear(para_into).

clear(para_from). set(check_arity).
clear(demod_inf). clear(prolog.style_variables).

27

set(para_from_left).
set (para_from_right).
set(para_into_left).
set(para_into_right).
clear(para_from_vars).
clear(para_into_vars).

clear(para_from_units_only).
clear(para_into_units_only).

clear(para_skip_skolem).
clear(para_ones_rule).
clear(para_all).

clear(very_verbose).
clear(order._eq) .
clear(sort_literals).

clear(delete_identical_nested_skolem).

set(for_sub).
clear(unit_deletion).
set(print_kept).
set(print_proofs).
set(back_sub).
set(print_back_sub).
clear(factor).

set(demod_history).
clear(demod_linear).
clear(demod_out_in).
clear(dollar_eval).
clear(dynamic_demod).
clear(dynamic_demod_all).
set(print_new_demod) .
clear(back_demod) .
set(print_back_demod).
set(symbol_elim).

Acknowledgements

clear(process_input).
clear(simplify_fol).
clear(bird_print).

clear(free_all_mem).
clear(atom_wt_max_args) .
clear(term_wt_max_args) .
clear(print_lists_at_end).
clear(really_delete_clauses).

clear(prog_synthesis).
clear (ancestor_subsume).
clear(new_functions).
clear(linked_ur_res).
clear(linked_ur_trace).

assign(report,0).
assign(max_seconds,0).
assign(max_gen,0).
assign(max_kept,0).
assign(max_given,0).
assign(max_mem,0).
assign(max_literals,0).
assign(max_weight,0).
assign(fpa_literals,3).
assign(fpa_terms,3).
assign(demod_1imit,100).
assign(max_proofs,1).
assign(neg_weight,0).
assign(stats_level,2).
assign(reduce_weight_limit,0).
assign(max_ur_depth,5).
assign(max_ur_deduction_size,20).

Ross Overbeek, being the chief designer of OTTER’s predecessors AURA and LMA/ITP, was
an important influence during the design of OTTER. I am also grateful to the users of
previous versions of OTTER who reported bugs and made many other valuable comments.

28

References

[1) C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

[2] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69-116,
1987.

[3] J.-P. Jouannaud, editor. Rewriting Techniques and Applications, Springer-Verlag Lec-
ture Notes in Computer Science, Vol. 202, New York, 1985. Springer-Verlag.

[4] D. Kapur and H. Zhang. Proving equivalence of different axiomatizations of free groups.
Journal of Automated Reasoning, 4(3):331-352, 1988.

[5] D. Kapur and H. Zhang. RRL: Rewrite rule laboratory user’s manual. Technical Report
89-03, Department of Computer Science, University of Iowa, 1989.

[6] D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebras. Pergamon Press, 1970.

[7] Donald Loveland. Automated Theorem Proving: A Logical Basis. North-Holland,
Amsterdam, 1978.

[8] E. Lusk and R. Overbeek, editors. Proceedings of the 9th International Conference on
Automated Deduction, Springer-Verlag Lecture Notes in Computer Science, Vol. 310,
New York, 1988. Springer-Verlag.

[9] Ewing Lusk and Ross Overbeek. The automated reasoning system ITP. Tech. Report
ANL-84/27, Argonne National Laboratory, Argonne, Ill., April 1984.

[10] William McCune. Skolem functions and equality in automated deduction. Preprint
MCS-P136-0290, Argonne National Laboratory, Argonne, Ill., February 1990.

[11] J. Siekmann, editor. Proceedings of the 8th International Conference on Automated

Deduction, Springer-Verlag Lecture Notes in Computer Science, Vol. 230, New York,
1986. Springer- Verlag.

[12] Brian Smith. Reference manual for the environmental theorem prover: An incarnation

of AURA. Tech. Report ANL-88-2, Argonne National Laboratory, Argonne, Ill., March
1988.

[13] L. Wos, F. Pereira, R. Boyer, J Moore, W. Bledsoe, L. Henschen, B. Buchanan,
G. Wrightson, and C. Green. An overview of automated reasoning and related fields.
Journal of Automated Reasoning, 1(1):5-48, 1985.

[14] Larry Wos. Automated Reasoning: 33 Basic Research Problems. Prentice-Hall, Engle-
wood Cliffs, N.J., 1988.

[15] Larry Wos, Ross Overbeek, Ewing Lusk, and James Boyle. Automated Reasoning:
Introduction and Applications. Prentice-Hall, Englewood Cliffs, N.J., 1984.

29

[16] Larry Wos, Robert Veroff, Brian Smith, and William McCune. The linked inference
principle II: The user’s view. In R. Shostak, editor, Proceedings of the 7th Conference

on Automated Deduction, Springer-Verlag Lecture Notes in Computer Science, Vol.
170, pages 316-332, New York, 1984. Springer-Verlag.

30

Distribution for ANL-90/9

Internal:
J. M. Beumer (150)
F. Y. Fradin
H. G. Kaper
W. W. McCune (50)
G. W. Pieper
D. Weber
C. L. Wilkinson

ANL Patent Department
ANL Contract File

ANL Libraries

TIS Files (3)

External:

DOE-0STI, for distribution per UC-405 (61)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

W. Bledsoe, The University of Texas, Austin
L. Bona, Pennsylvania State University

. Concus, Lawrence Berkeley Laboratory

. F. Infante, University of Minnesota

. B. Keller, California Institute of Technology
J. 0’Donnell, The University of Chicago
0’Leary, University of Maryland

o @Oom o g =

U0 KOT MICROFILM
THIS PAGE

31

