

LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

CONT-400466-24

LA-UR-90-1310

MAY 03 1990

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

LA-UR--90-1310

DE90 010596

TITLE: Ta and Nb Reinforced MoSi₂

AUTHORS: David H. Carter, MST-6
Patrick L. Martin, Rockwell Science Center

SUBMITTED TO: 1990 MRS Spring Meeting
San Francisco, CA

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher accept this article as were determined under the auspices of the U.S. Department of Energy.

Los Alamos

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

MASTER

Ta and Nb Reinforced MoSi₂ Revision 1.076, 11 April 1990

DAVID H. CARTER* AND PATRICK L. MARTIN**

*Los Alamos National Laboratory, Mail Stop G770, Los Alamos, NM 87545

**Rockwell Science Center, 1049 Camino dos Rios, Thousand Oaks, CA 91360

ABSTRACT

MoSi₂ matrix composites have been recognized lately as potential materials for structural applications at elevated temperatures. Specifically, MoSi₂ composites may exhibit useful properties at temperatures to 1400 °C. Previous work improved the yield strength of MoSi₂ at 1400 °C by a factor of five through SiC whisker reinforcement. Current research is directed towards increasing the fracture toughness of MoSi₂ through the addition of ductile phase reinforcements such as niobium and tantalum. The reaction between Nb and MoSi₂ to form (Mo,Nb)₅Si₃ proceeds with faster kinetics at hot isostatic press temperatures as low as 1100 °C when compared to the reaction between Ta and MoSi₂ to form (Mo,Ta)₅Si₃. This reaction product exhibits very poor properties, as evidenced by crack propagation through this layer during fracture. The feasibility of hot working these composites to produce tailored microstructures is examined.

INTRODUCTION

Molybdenum disilicide (MoSi₂) has been recognized as a potential material for elevated temperature structural applications. MoSi₂ is an intermetallic compound with a melting temperature of 2030 °C. It possesses excellent corrosion resistance and superb oxidation resistance, nearly equivalent to silicon carbide (SiC). This oxidation resistance is due to the formation of a silica (SiO₂) layer which acts as a protective film at high temperatures.

Mechanically, MoSi₂ behaves as a metal at elevated temperatures. It exhibits a brittle-to-ductile transition at approximately 1000 °C and above this temperature it deforms through dislocation motion. However, monolithic MoSi₂ does not have sufficient mechanical properties for most engineering applications. At room temperature it is relatively brittle, with a fracture toughness of just over 5 MPa·m^{1/2} and a strength of 300 MPa. Its yield strength drops off rapidly above 1200 °C and its creep resistance is relatively poor. All of these factors demonstrate the requirement to use MoSi₂ as a composite material.

The purpose of this paper is to report on previous work done at Los Alamos with MoSi₂-SiC composites and to describe the current research being performed on ductile phase reinforcements of MoSi₂. Finally, the approach being used for future composites will be outlined.

BACKGROUND

The purpose of reinforcing MoSi_2 in a composite is to improve its fracture toughness, strength and creep resistance. As shown in Figure 1, the creep resistance of MoSi_2 is not as good as that of other more common high temperature materials. The MoSi_2 tested, however, was not processed under optimum conditions, in that it was less than 100% dense and not phase pure. [1,2]

All previous Los Alamos studies have been on brittle phase reinforcements for MoSi_2 . The addition of 20 vol% VLS SiC whiskers doubled the strength of MoSi_2 at 1200 °C [3]. The room temperature fracture toughness also increased from 5.3 to 8.2 MPa·m^{1/2}. In later studies a much smaller VS whisker type was added to decrease the mean free path between reinforcements. This tripled the yield strength at 1200 °C and increased the yield strength at 1400 °C by 470%, as shown in Figure 2. [4,5]

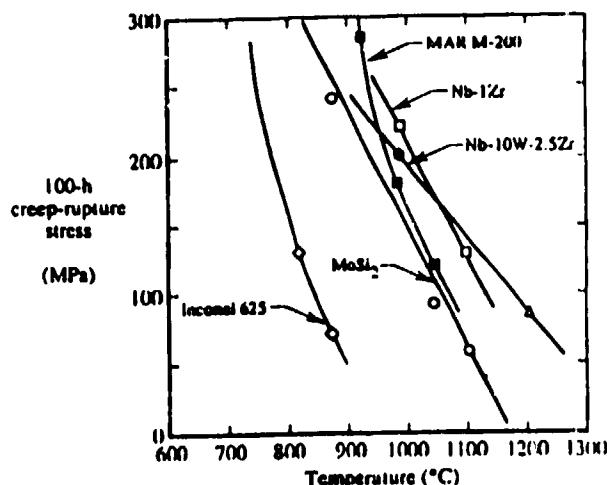


Figure 1: Creep Resistance of High Temperature Materials. (From Ref. 6.)

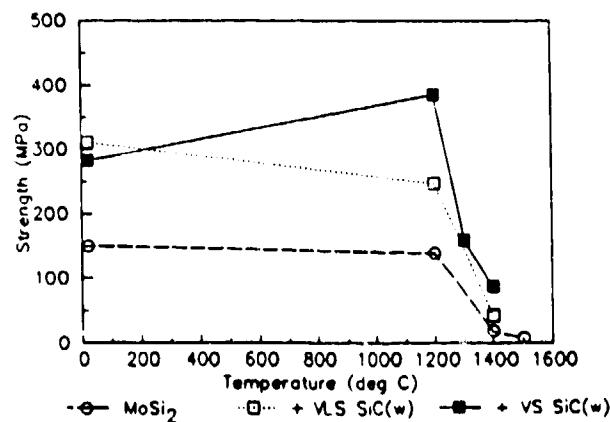


Figure 2: 0.2% yield strength as a function of temperature. (From Ref. 4,5.)

Ductile phase reinforcements may also lead to an improvement in properties. The problem with pure metallic elements used for reinforcements is that none of the refractory metal candidates (Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) are fully compatible with MoSi_2 [7]. The formation of an Me_5Si_3 interface reaction layer by silicon diffusion into the metal is detrimental to the composite's mechanical properties, since this interface layer is extremely brittle. The parabolic rate constants for growth of Me_5Si_3 between the metal (Me) and MoSi_2 are shown in Figure 3, as compiled by Fitzer and Schmidt [8].

Ductile phases, such as continuous wires, have been shown to lead to a dramatic increase in both room temperature and elevated temperature strength and fracture resistance. Early work in this area was performed in Germany where it was demonstrated that Ta and Nb are both candidates for reinforcing MoSi_2 . Fitzer and Remmeli demonstrated that additions of 40 vol% Nb wires leads to a flexural strength of 700 MPa, and an increase in impact resistance of 700%. [9] Their results are shown in Figure 4. The addition of 10-50 mol% MoGe_2 to the matrix to decrease the viscosity of the silica formed on the surface has been shown to improve the oxidation resistance, decrease the "pest" oxidation problem, and improve the thermal expansion compatibility between the oxide and the matrix. [9,10]

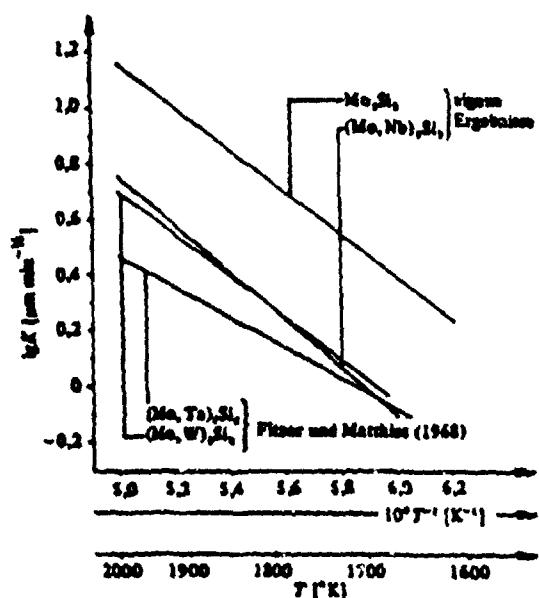


Figure 3: Growth Rate Coefficients of Mo_5Si_3 . (From Ref. 8.)

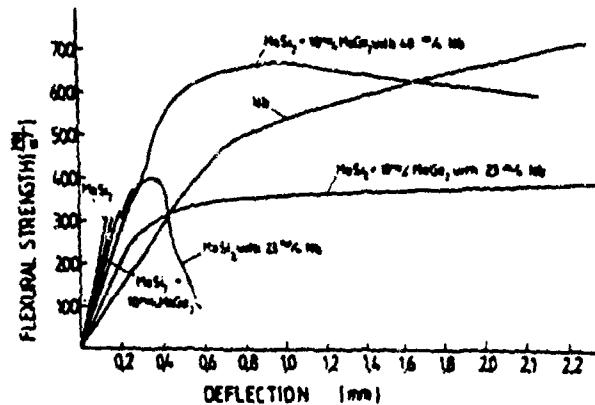
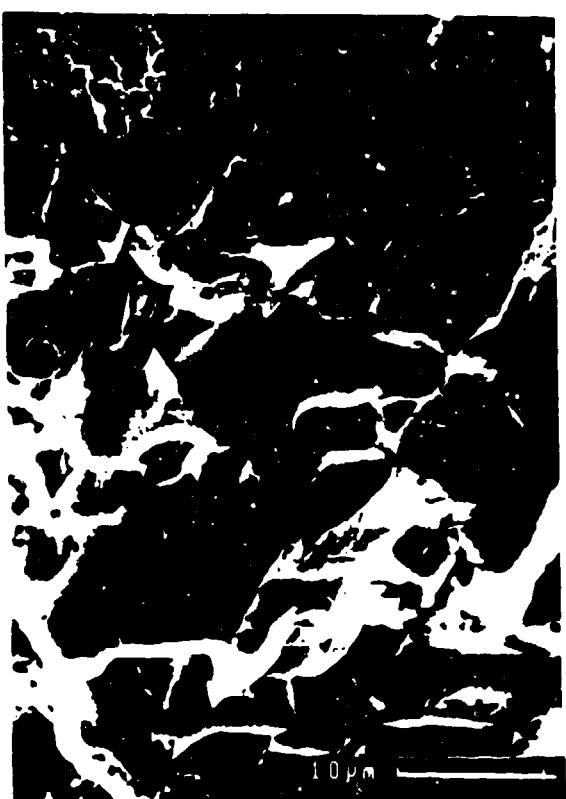


Figure 4: Stress-deflection curves of pure and Nb wire-reinforced $\text{Mo}(\text{Si},\text{Ge})_2$. (From Ref. 9.)

RESULTS AND DISCUSSION

The purpose of current research is to further improve the mechanical properties (fracture toughness, strength, and creep resistance) through the addition of ductile phase reinforcements. There are two goals of the current work. The first is to examine the compatibility of various ductile phases with MoSi_2 at elevated temperatures. The second goal is to look at hot-working these composites to further improve their properties. Hot-working has not yet been considered as a method to process MoSi_2 composites, however it may prove to be a valuable tool to fully densify the composite as well as to produce desired shapes and orientations of the reinforcement/toughening phase. Hot-working has been used in other intermetallic systems to improve their low temperature properties [11].

Thermodynamic Compatibility


The samples in Figures 5-8 were fabricated by dry blending 50 vol% of the reinforcing phase with pure (99.9%) MoSi_2 ^{*}, cold isostatically pressing the powder, and finally hot isostatically pressing the compact at 1100 °C for 1 hour at 30 ksi in a Ta can. Metallographic and semi-quantitative examination was used to reveal the reaction between the metal and the MoSi_2 powder.

Fine Nb particulate, approximately 5 μm in diameter was added to MoSi_2 powder and compacted. As shown in Figure 5, there was a strong reaction between the Nb and the MoSi_2 at 1100 °C to form a reaction layer, determined to be $(\text{Nb},\text{Mo})_5\text{Si}_3$ through

^{*}Lot # , 99.9% pure MoSi_2 powder from Alfa Products, Danvers, MA 01923.

Figure 5: $\text{MoSi}_2 + 50 \text{ vol\% fine Nb}$
particulate; HIP at $1100 \text{ }^\circ\text{C}/1 \text{ hr}/30 \text{ ksi}$

Figure 6: Fracture surface of
 $\text{MoSi}_2 + 50 \text{ vol\% fine Nb}$ particulate

Figure 7: $\text{MoSi}_2 + 50 \text{ vol\% coarse Nb}$
particulate; HIP at $1100 \text{ }^\circ\text{C}/1 \text{ hr}/30 \text{ ksi}$

Figure 8: $\text{MoSi}_2 + 50 \text{ vol\% Ta}$;
HIP at $1100 \text{ }^\circ\text{C}/1 \text{ hr}/30 \text{ ksi}$

EDS analysis. Many of the particles were completely consumed. A cylinder of this composite was compressed to fracture. The resulting fracture surface is shown in Figure 6. As expected, the crack occurred in the $(Nb,Mo)_5Si_3$ layer almost exclusively.

Figure 7 shows a composite with a coarser Nb particulate, approximately 50 μm in diameter, added to minimize the percentage of the reaction product. It is evident that there is still a substantial reaction layer, again determined to be $(Nb,Mo)_5Si_3$. A Ta particle was inadvertently introduced into the composite, and this is shown in Figure 7 as the lighter particle near the center. The surprising part of this experiment is that there appears to be no reaction layer, and under closer inspection under the SEM, no evidence of $(Ta,Mo)_5Si_3$ was found. This is contradictory to the data from Figure 3, which predicts that the formation of $(Nb,Mo)_5Si_3$ should be slower than that of $(Ta,Mo)_5Si_3$ at 1100 °C.

A composite consisting of 50 vol% Ta particulate and $MoSi_2$ was fabricated, and is shown in Figure 8. As expected from the previous experiment, no reaction layer of $(Ta,Mo)_5Si_3$ was detected.

Hot Working

The purpose of the following experiments was to look at the strain rate sensitivity of $MoSi_2$, with the eventual goal of hot working these composites. The samples were HIPed at low temperatures in order to minimize the reaction between the Ta and the $MoSi_2$; completely dense composites were not used. A composite of 20 vol% Ta particulate was added to $MoSi_2$ and HIPed at 1200 °C at 30 ksi for 1 hour. The resulting composite was approximately 65% dense. This composite was then compressed at 1300 °C in two stages; the first to 10%, and the second to a total of approximately 22% at an engineering strain rate of approximately $2 \cdot 10^{-4} \text{ sec}^{-1}$. The resulting microstructure is shown in Figure 9.

A composite of $MoSi_2$ + 20 vol% Ta was HIPed at 1300 °C at 30 ksi for 1 hour. The resulting composite was approximately 65% dense. A strain rate sensitivity test was performed on this material at 1400 °C. The material was compressed at true strain rates of 10^{-4} , 10^{-3} and 10^{-2} sec^{-1} . The resulting microstructures are shown in Figure 10.

There were a number of reasons for performing this test; i) to attain full density in the composite, ii) to determine the strain rate sensitivity of the material, and iii) to determine if the Ta particles could be deformed to platelet shapes.

From the micrographs, it appears as though the composite did not fully densify. However there is some question as to whether or not the surface is actually showing pores or pullout. Some related work has indicated that the number of these voids decreases with extended times or different techniques of polishing, indicating that these voids are indeed pullouts. Figure 10(c) shows many of these voids localized around the Ta particles. This implies that the $MoSi_2$ did not flow evenly around the Ta. It could also mean that the reaction zone $(Ta,Mo)_5Si_3$ formed around the surface of the Ta, and this very brittle phase pulled out during polishing. At higher magnification, it is evident that there are voids in the $MoSi_2$ matrix, indicating that even the matrix did not fully densify.

Figure 9: $\text{MoSi}_2 + 20 \text{ vol\% Ta}$
Hot worked 22% at 1300°C ; $\dot{\epsilon} \sim 2 \cdot 10^{-4} \text{ sec}^{-1}$

Figure 10 (a): $\text{MoSi}_2 + 20 \text{ vol\% Ta}$
Hot worked 50% at 1400°C ; variable $\dot{\epsilon}$

Figure 10 (b): $\text{MoSi}_2 + 20 \text{ vol\% Ta}$
Hot worked 50% at 1400°C ; variable $\dot{\epsilon}$

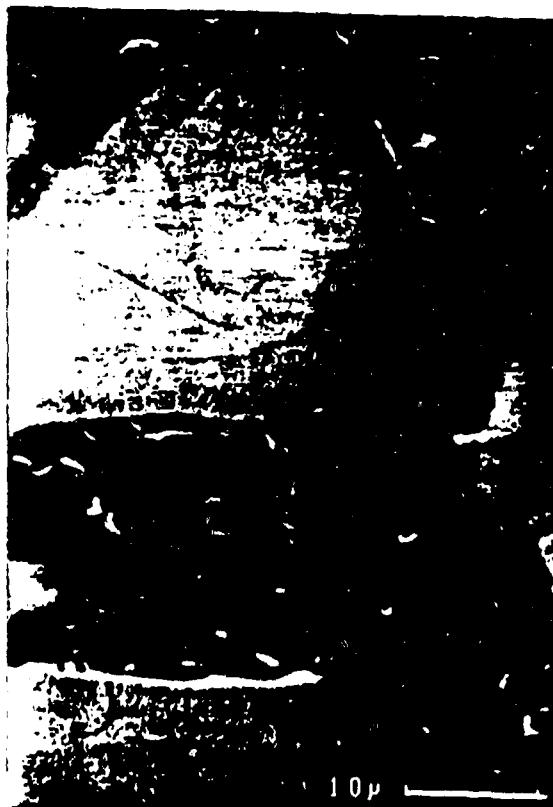


Figure 10 (c): $\text{MoSi}_2 + 20 \text{ vol\% Ta}$
Hot worked 50% at 1400°C ; variable $\dot{\epsilon}$

From this early experiment it is evident that MoSi₂ deformed under the applied strain rates, and did not crack. The initial work is encouraging since it has shown that MoSi₂ can be hot worked at rates as high as 10⁻² sec⁻¹ at 1400 °C.

The Ta particles do not appear to have been deformed in any way. The material started out at only 65% dense, and it was compressed 50%. It is possible that not enough work was put into the composite to have an effect on the Ta reinforcements.

GOALS FOR FUTURE WORK

Hot-working will be used to further improve the properties of MoSi₂ composites which have traditionally been processed through powder metallurgy techniques.

Secondly, a ductile reinforcement phase which is more stable than Ta in MoSi₂ at elevated temperatures should be introduced. One example would be a high strength Ta alloy. MoSi₂ composite components will most likely need to withstand longer times at elevated temperatures, eliminating pure Ta as a candidate for reinforcement, because of the possible formation of (Ta,Mo)₅Si₃. Research is presently being undertaken to examine the compatibility of various alloys in MoSi₂.

Thirdly, a coating for the reinforcement may be required, depending on the environmental and mechanical requirements of the application.

Finally, different morphologies of reinforcements will be introduced. Though Ta particulate composites are easy to fabricate, a laminant or wire-reinforced composite will have much better mechanical properties, including strength, fracture toughness, and creep resistance.

The optimum MoSi₂-based composite will most likely be some combination of reinforcements, including SiC particulate, for elevated temperature strength, and a ductile phase wire or laminant, for improved fracture resistance.

CONCLUDING REMARKS

Molybdenum disilicide is an attractive material for elevated temperature applications, due to its excellent oxidation resistance and high melting temperature. However, its mechanical properties still need to be improved before it can be introduced as a viable engineering component for elevated temperature applications.

It has been shown previously that fine SiC particulate and small SiC whiskers greatly improve the elevated temperature strength of MoSi₂. It has also been shown previously that Nb wires greatly improve the impact resistance of MoSi₂. The goal of this project is to further improve MoSi₂ through the addition of various ductile phase reinforcements, as well as SiC, and also to attempt to hot-work the composites.

REFERENCES

1. R. A. Long, "Fabrication and Properties of Hot-Pressed Molybdenum Disilicide," report no. *NACA RM E50F22* (1950).
2. W. A. Maxwell, "Properties of Certain Intermetallics as Related to Elevated-Temperature Applications. I - Molybdenum Disilicide," report no. *NACA RM E9G01* (1949).
3. W. S. Gibbs, J. J. Petrovic, and R. E. Honnell, "SiC Whisker-MoSi₂ Matrix Composites," *Ceramic Engineering and Science Proceedings*, 8 [7-8] 645-648 (1987).
4. David H. Carter, "SiC Whisker-Reinforced MoSi₂," Los Alamos National Laboratory report *LA-11411-T*, Master's Thesis, Massachusetts Institute of Technology (1988).
5. David H. Carter, John J. Petrovic, Richard E. Honnell, W. Scott Gibbs, "SiC-MoSi₂ Composites," Los Alamos National Laboratory report *LA-11577-MS* (1989).
6. Peter J. Meschter, private communication.
7. Peter J. Meschter and Daniel S. Schwartz, "Silicide-Matrix Materials for High-Temperature Applications," *Journal of Metals*, 41 [11] 52-55 (1989).
8. E. Fitzer and F. K. Schmidt, "Silicon Diffusion in Me₅Si₃ Phases of the Metals Niobium, Tantalum, Molybdenum, and Tungsten to 1700 °C," *High Temperatures-High Pressures*, 3 445-460 (1971).
9. E. Fitzer and W. Remmele, "Possibilities and Limits of Metal Reinforced Refractory Silicides, Especially Molybdenum Disilicide," *Fifth International Conference on Composite Materials (ICCM-5)*, 515 (1985).
10. J. Schlichting, "Molybdenum Disilicide as a Component of Modern High Temperature Composites," *High Temperatures-High Pressures*, 10 [3] 241-269 (1978).
11. H. A. Lipsitt, "Titanium Aluminides - An Overview," *High Temperature Ordered Intermetallic Alloys*, ed. C. C. Koch, C. T. Liu, and N. S. Stoloff, MRS 39 351 (1985).