
Cx>tfrmki<v
SAND—89-2931C

DE90 011472
•Wile. - ,

Implementation of JAC3D on the NCUBE/ten * A.

J
Courtenay T. Vaughan

Sandia National Laboratories 
Albuquerque, NM 87185

&S0

Abstract

An implementation is presented for JAC3D on a 
massively parallel hypercube computer. JAC3D, a 
three dimensional finite element code developed at 
Sandia, uses several hundred hours of Cray time 
each year in solving structural analysis problems. 
Two major areas of investigation are discussed: (1) 
the development of general methods, data struc­
tures, and routines to communicate information be­
tween processors, and (2) the implementation and 
evaluation of four algorithms to map problems onto 
the node processors of the hypercube in a load- 
balanced fashion. The performance of JAC3D on 
the NCUBE/ten is compared with that on a Cray 
X-MP: the NCUBE/ten version presently takes 20% 
more compute time than the Cray. On a larger sim­
ulation which used more of the NCUBE’s memory, 
the NCUBE/ten would take less compute time than 
the Cray. Current activity on the newer NCUBE 
2 hypercube is summarized which should lead to an 
order of magnitude improvement in run-time perfor­
mance for the massively parallel solution of struc­
tural analysis problems.

Introduction

In this paper we discuss the implementation of 
JAC3D, a three dimensional finite element code 
which uses a nonlinear Jacobi preconditioned con­
jugate gradient method to solve large displacement, 
large strain, temperature dependent, and nonlinear 
material structural analysis problems, on a mas­
sively parallel computer, the NCUBE/ten hyper- 
cube. This code was developed at Sandia National 
Laboratories where it uses several hundred hours of 
Cray time each year. We note that the hypercube 
implementation is complete in that a user has the 
same user interface and simulation options on the 
Cray and the hypercube.

'Tliis work was partially supported by the Applied Mathe­
matical Sciences program, U.S. Department of Energy, Office 
of Energy Research, and was performed at Sandia National 
Laboratories which is operated for the U.S. Department of 
Energy under contract number DE-AC04-76DP00789.

Two major implementation issues are discussed 
below. The first is the development of routines to 
communicate information between the node proces­
sors and between the host and the node processors. 
The reason these are nontrivial is that the finite el­
ement mesh is not necessarily regular or regularly 
numbered. Routines are included that determine 
what information each processor sends or receives 
at each communication step and with which proces­
sors it is communicating. The second area is the de­
velopment of algorithms to map a problem onto the 
node processors of the hypercube in a load-balanced 
fashion. We will present and compare several map­
ping methods that, to date, have been executed on 
a SUN workstation.

Compute times are within 20% of the Cray X-MP 
for a production simulation with 89,043 equations. 
The NCUBE/ten can easily handle a problem four 
times larger; such a simulation would be faster on 
the NCUBE/ten relative to the Cray. Preliminary 
benchmarks on the NCUBE 2 indicate that the SUN 
front end reduces I/O time by at least a factor of ten 
and that NCUBE 2 processors are currently a factor 
of four faster than the first-generation processors. 
Therefore, the code should run several times faster 
on the NCUBE 2 than on the Cray X-MP. We are 
also working on parallelization of selected mapping 
methods and on a system to display JAC3D results 
from the NCUBE 2 hypercube on a Stellar graphics 
workstation.

Implementation Issues

Overview
JAC3D is a three dimensional finite element code 

which uses a nonlinear Jacobi preconditioned conju­
gate gradient (PCG) method to solve large displace­
ment, large strain, temperature dependent, and non­
linear material structural analysis problems [2]. The 
serial version of the code reads in three data files: a 
control file containing material constants and num­
bers such as the maximum number of iterations, 
an input file which contains the finite element de-

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



scription of the problem, and a file which gives the 
temperature at each node point for each load step. 
JAC3D then creates an output file and an additional 
file used for plotting the output.

In implementing JAC3D on our hypercube, an 
NCUBE/ten, we have added a third input file which 
contains the order of the hypercube being used and 
a mapping of the elements and nodes of the prob­
lem onto the node processors. The NCUBE/ten is a 
1024 node hypercube which has 0.5 MBytes of mem­
ory on each processor.

It was necessary on the NCUBE/ten to divide the 
original code into a host processor code and a node 
processor code. (This code division can be avoided 
on the newer NCUBE 2 hypercube.) The node pro­
cessor code corresponds to the call to the solver in 
the original code, while the host code handles the 
input and output. The host code begins by reading 
the input files and doing the preprocessing that is 
necessary on the data. When it is ready to call the 
solver, it allocates a hypercube of the desired dimen­
sion and starts the solver on the node processors. In 
this way, running the solver on the node processors 
is similar to calling the solver as a subroutine with 
the passed variables now being communicated be­
tween the host and node processors.

PCG and Finite Element Methods
The iteration matrix is calculated at each itera­

tion as it is needed, which avoids using the mem­
ory which would be required to store the entire ma­
trix. The matrix is calculated element by element, 
so some information about each of the elements has 
to be kept. This is done by dividing the elements 
among the processors such that each element is as­
signed to one processor. In this way, there are no 
duplicate calculations.

Each element has a list of nodes which are associ­
ated with it and allocates storage for all of these 
nodes. In this way each node may be allocated 
space in more than one processor but the node will 
be assigned to only one processor. That processor 
is responsible for maintaining the correct value of 
the variables associated with the node by collecting 
partial values of the variables associated with that 
node from other processors and providing these cor­
rect values to the other processors when needed. On 
each processor, the nodes which are assigned to it 
are numbered first, followed by the nodes for which 
the processor needs values but which are assigned to 
other processors. In this way, each processor locally 
numbers the nodes and elements that it has.

In the solution algorithm, the unknowns at the 
nodes are updated in two ways. Some calculations,

such as the calculation of the residual vector, are 
done element by element [6]. In order for the pro­
cessors to update the unknowns associated with an 
element, some values of other variables at the asso­
ciated nodes need to be communicated to that pro­
cessor. As each element is used, the unknowns at 
the nodes associated with that element are updated. 
Since each element appears in only one processor, 
several processors will generate updates to shared 
variables, which requires communication of partial 
results so these updates can be combined to form 
the final result.

The second way that unknowns at a node get up­
dated is by the processor which to which that node 
is assigned. An example of this is the calculation of 
the new direction vector from a linear combination 
of the previous direction vector and the residual vec­
tor.

Initial host-to-node Communication
The host processor communicates with the node 

processors by communicating only with node 0. Any 
data that the host sends to the node processors is 
sent to processor 0 which then broadcasts the infor­
mation to the rest of the processors by means of a 
fanout algorithm using a minimal spanning tree of 
the hypercube rooted at node processor 0 [4]. In 
the fanout algorithm, successive dimensions of the 
hypercube are used. In each stage, all of the active 
processors send information to their neighbor in that 
dimension. As those processors receive information, 
they become active and will send information in the 
next stage.

The host processor starts by sending the node 
processors a message which contains startup infor­
mation such as the total number of elements and 
nodes in the problem and the maximum number of 
iterations. The node processors then use this in­
formation to set up some temporary arrays. The 
host processor then reads in the problem mapping 
of the elements and sends that information to the 
node processors. This allows the node processors to 
determine how many elements they have and allo­
cate space for some arrays. The host processor then 
sends the list of nodes which are associated with 
each of the elements and the mapping of the nodes 
to the node processors. The node processors store 
the portion of the list of nodes which are associated 
with their elements and then use that with the map­
ping of the nodes to determine the number of nodes 
they need storage for and to set up communication 
with other nodes.



Data Structures for Interprocessor Communication 
Next, the node processors set up the communica­

tion which they do during the calculations. Using 
the list of which processor has each node, a processor 
constructs a list of nodes for which it needs values of 
variables but which are assigned to other processors. 
This receive lisi of nodes is then sorted by processor 
and the processor builds an index to this list con­
sisting of the processor to communicate with, the 
number of nodes which have to be communicated, 
and a starting index into the list. This is illustrated 
in Figure 1. When the list is sorted by processor, 
it is ordered by placing the processors in descending 
order of their distance from the processor in terms 
of message hops. In this way, messages which will 
take the longest time to be communicated will be 
sent first. In our experiments, this message order 
cut down the execution time of the algorithm.

Processor Number

Number of Nodes

to communicate

Index in .Array

Nodes to 

Communicate

Figure 1. Communication Data Structure

Each processor sends the processors which it 
needs information from the list of nodes it needs 
from that processor. Each processor uses this infor­
mation it receives to construct a list similar to its 
receive list, a send list which is used to send correct 
values of variables. The communication routines use 
this general data structure since the problems to be 
solved are generally irregular and have an irregular 
numbering of the nodes.

When the processors need to communicate the 
value of a variable, they use the send list to send 
messages to other processors and the receive list to 
receive messages from other processors. When the 
values of an array need to be communicated, each 
processor sends a message to each of the processors 
in its send list of processors. The processor numbers 
in the send list are used successively and an index 
into the node numbers being sent is maintained. For 
each processor in the list, the node numbers to be 
sent are determined by taking them from the list 
of nodes starting at the index. Since the number

of nodes to be communicated to each processor is 
stored, that many nodes numbers are used to take 
information from the array to be sent and put into 
a message array. This process uses all of the data 
structure as illustrated in Figure 1 except for the 
array of indexes into the list of nodes to be com­
municated. The message array is then sent and the 
index is incremented by the number of nodes which 
were sent.

When a processor receives a message, it looks up 
the processor number in its receive array and the 
number of nodes that are being communicated and 
the starting position in the array. It uses that in­
formation to put the values in the message into the 
variable array in the right places. Since it can be 
seen that the communication involved with the pro­
cess of communicating correct values of variables at 
a node between the processors is the inverse of the 
the process of communicating partial values of vari­
ables at a node between processors, the receive list 
is used to send partial results to other processors 
and the send list is then used to receive those re­
sults which are added to the local results to get the 
correct value. In the case of communicating partial 
values, the final result does not necessarily need to 
be sent to the other processors involved since they 
may not need this value.

The other case in which interprocessor communi­
cation has to be done is the case of inner-products. 
This is done by the standard bidirectional exchanges 
of partial information along successive dimensions of 
the hypercube with the addition of partial results af­
ter each exchange [6].

Input: Large Vectors
After the node processors have allocated space for 

the vectors that they store and have set up their 
communication schemes, the host processor can send 
them the initial vector information(e.g. temper­
atures). This information is sent to processor 0 
which then broadcasts it to the other node proces­
sors. Each processor then takes the part of the vec­
tor which it needs and stores it in its memory. The 
maximum size of a message, the size of the message 
buffers on the node processors, and the size of an ar­
ray on the host processor are each limited, so large 
messages have to be read in to the host and sent 
to the node processors in pieces. After each piece 
of the message is received by the node processors, 
node processor 0 sends a message back to the host 
to allow the host to send the next piece. This proce­
dure prevents message buffer overflow on the node 
processors.



Host Activity During Node Computation
At this point the node processors start calculating 

and the host processor waits. Since the node proces­
sors have to output results and read additional input 
such as the temperature of the nodes at the begin­
ning of each load step, the host processor has to be 
able to call the appropriate subroutine to interact 
with the node processors. It does this by waiting 
to receive a message and, based on the type of the 
message received, either calls the appropriate sub­
routine, prints out the appropriate error message, 
or deallocates the hypercube and quits. Since node 
0 has a copy of any scalar data which has to be 
communicated back to the host processor to run the 
subroutine, this information is included in the mes­
sage which tells the host processor which subroutine 
to run. In summary, execution is controlled by the 
node processors in this part of the calculation.

Output
The output from the node processors is handled 

by a fanin algorithm, in which the information to be 
output is sent to node processor 0 which, in turn, 
sends the information to the host. The fanin algo­
rithm is the inverse of the fanout algorithm. At each 
stage, half of the active processors send a message 
to the other half. The processors which receive a 
message are the active processors for the next stage. 
As with input, output of large messages is also done 
in pieces. In order to output arrays in the proper 
order, each processor has a list of the global order 
number of the nodes which are assigned to it. Each 
piece of the array is assembled in the global order 
and sent to the host processor.

Problem Mapping

In order to implement JAC3D on the hypercube, 
we had to provide for the automated mapping of 
large problems onto the hypercube. We have used 
four mapping methods. The first is a recursive bisec­
tion method developed for problems on rectangular 
grids by Berger and Bokhari [1]. In this method, the 
problem grid is divided into two rectangles along a 
line of the grid. This division is repeated recursively 
to each of the rectangles until the desired number of 
sets of unknowns is created. This method is eas­
ily adapted for three-dimensional rectangular grids 
[3]. This method has the disadvantage that it has 
the potential for load imbalance, since each set is 
divided along a line of the grid and, therefore, the 
two resulting sets may not be the same size.

From this algorithm, we have developed a second 
algorithm which uses recursive bisection for irregu­

lar regions in three dimensions. The first step is to 
sort the nodes of the grid in the x, y, and z direc­
tions. At each stage of the mapping, a direction is 
chosen and each set in the mapping is divided into 
two equal or nearly equal sets based on the index in 
the sorted list for the given direction of each node 
in the set. For example, given a set S with n nodes 
which is being divided into sets SI and S2 along the 
x direction, the first n/2 nodes of set S in the sorted 
list of nodes for the x direction are placed in set SI 
with the remainder put in set S2. In this way, the 
sets at the final stage of the mapping will have an 
approximately equal number of nodes.

The third algorithm was developed by Kernighan 
and Lin [8]. It is a iterative graph-based algorithm 
which starts with a set which has been arbitrarily 
divided into two equal sized pieces and exchanges 
nodes in order to minimize the number of edges con­
necting the two pieces of the set. At each iteration, 
it looks at all of the unmarked nodes in each of the 
two pieces of the set and marks the pair which, if ex­
changed, would minimize the number of edges con­
necting the two pieces. After all of the nodes are 
marked, then the minimum number of pairs to cre­
ate the maximum change are exchanged. The pro­
cess is repeated until nothing further can be gained 
by swapping nodes.

The fourth algorithm that we used is a graph- 
based algorithm developed by Vaughan [9]. At each 
stage, each set is divided into two equal parts by 
the use of level sets. The first step to divide a 
set into two pieces is to find a pseudo-diameter of 
the graph of the grid [5]. A rooted level structure 
is constructed from each endpoint of the pseudo- 
diameter. The nodes are divided into two sets ac­
cording to which endpoint they are closer to. Each 
rooted level structure will have a set of level sets and 
the number of the level set a node is in is a measure 
of its distance from the root of the level structure. 
Points which are equidistant from both endpoints 
are assigned to a set so that the sizes of the sets are 
equalized.

By using the endpoints of a pseudo-diameter as 
starting points, we seek to construct level structures 
with small level sets thus providing a smaller set 
of nodes on the boundary when the set is divided 
into two pieces. This is similar to the motivation 
for using level structures in reordering equations for 
solution by direct methods.

For the two graph-based algorithms, the number 
of sets at each stage of the division is doubled from 
n to 2n and the sets are divided according to their 
set number in a gray code fashion. When the first 
set, set 0, is divided into two sets, these sets are



numbered 0 and n arbitrarily. After set i is divided, 
with 0 < t < n, the two resulting sets are numbered i 
and i+n. The choice of which set is to be numbered i 
is determined by which numbering gives the smallest 
cost for communication with the sets which have 
already been divided.

For each of the algorithms, the nodes are divided 
among the processors. However, with our solution 
method, the elements also have to be mapped to 
the processors. Each of the mappings above work 
by doubling the number of processors in the map­
ping at each stage. At each stage, half of the nodes 
and half of the elements assigned to a processor are 
assigned to a new processor. Each element stays in 
its processor or moves to the new processor based on 
which of the two processors has more of its nodes. 
Ties are settled in such a way as to keep the number 
of elements assigned to the two processors even.

Results

We solved two problems with JAC3D on the hy­
percube. The first is a rectilinear block with three 
materials, 450 elements, and 810 nodes. The second 
is a solder analysis problem of a 28 pin integrated 
circuit on a PC board. It has four materials, 22932 
elements, and 29681 nodes and is very irregular (Fig­
ure 2). Since we are solving for the displacements in 
three directions, there are 89043 unknowns in this 
problem. Symmetry is used in the x and y direc­
tions to decrease problem size. Note that most of 
the elements and nodes are in the pins connecting 
the PC board to the integrated circuit.

Table 1 shows the execution times for the pro­
gram on the first problem using the four mapping 
methods as well as a mapping constructed by hand. 
The problem would not fit on one processor, or even 
two processors in the case of the Berger and Bokhari 
mapping. In the tables, hand is the hand mapping, 
graph is the graph-based method by Vaughan, kl is 
the Kernighan and Lin algorithm, bb is the Berger 
and Bokhari algorithm, and rb is the recursive bisec­
tion method based on a modification of the Berger 
and Bokhari algorithm. The execution times only 
include the node processor time and do not include 
the preprocessing time for the host. In the best case, 
we got a speedup of 41 on going from two to 256 pro­
cessors. This is encouraging considering that, on 256 
processors, each processor had two or fewer elements 
and four or fewer nodes.

Table 2 shows the time to construct the mappings 
on a SUN 3. These times are smaller by a factor of 
two or three than the time the division would take

Figure 2. Solder Analysis Problem

Table 1.
Execution time for small problem 

(seconds)
cube
dim

Division Method
hand graph kl bb rb

1 1747 1751 1751 - 1752
2 885 910 911 1003 909
3 463 473 468 562 486
4 252 254 258 313 271
5 139 141 150 192 145
6 86.8 84.1 108 117 85.3
7 - 60.9 65.5 82.9 57.8
8 - 45.9 48.0 55.8 42.9

on one node processor of the NCUBE/ten. The two 
graph-based methods are slowest while the Berger 
and Bokhari algorithm is the fastest. Note that a 
large portion of time for the Kernighan and Lin al­
gorithm is spent in the first division.

Table 3 shows the execution time for the solder 
analysis problem on the NCUBE. The time includes 
all of the node time from the time the host communi­
cates the problem to the nodes and does not include 
the host preprocessing time. The Kernighan and 
Lin algorithm produces the mapping which executes 
the fastest while the other two methods are about 
equal. As Table 4 shows, however, construction of 
the Kernighan and Lin mapping is the slowest by at 
least a factor of ten.

Table 5 compares the solder analysis problem run 
on both the NCUBE and the Cray X-MP. Here, 
compute time for the NCUBE is just the node pro-



Mapp
Table 2.

ing time for small problem 
seconds on a SUN 3)

cube
dim

Division Method
graph kl bb rb

1 3.0 30.3 2.0 2.4
2 4.3 40.8 2.0 2.5
3 6.6 46.4 2.1 2.8
4 10.4 52.5 2.1 3.1
5 14.5 58.0 2.1 4.0
6 21.5 66.3 2.2 5.4
7 29.1 74.9 2.3 7.9
8 40.0 84.0 2.4 14.3

Table 3.
Execution time for large problem 

(seconds)
cube Division Method
dim kl graph rb

8 8243 9098 9089
9 5541 6217 6331
10 4312 4602 5144

cessor time without any of the overhead of commu­
nicating with the host between load steps, while the 
total time is the time from start to finish on the 
host. The total execution time for the NCUBE/ten 
including all of the host time was 6100 seconds. This 
shows that the processing time on the NCUBE/ten 
is comparable to that on the Cray X-MP but the 
I/O time which is a result of the host processor of 
the NCUBE/ten causes the total execution time on 
the NCUBE/ten to be much larger than that of the 
Cray. When we implement this code on the NCUBE 
2 with the SUN front end, the ratio of the total time 
to compute time should improve dramatically.

Table 5.
NCUBE vs. Cray X-MP 

(seconds)
Compute Time

NCUBE/ten 2197
Cray X-MP 1661

host processor I/O). Compute times are within 20% 
of the Cray X-MP for a production simulation with 
89,043 equations. The NCUBE/ten can easily han­
dle a problem four times larger; such a simulation 
would be faster on the NCUBE/ten relative to the 
Cray. The hypercube code is complete: a user sees 
the same user interface and simulation options on 
the Cray and the hypercube.

We are now implementing this code on the 
NCUBE 2 and its SUN front end. Preliminary 
benchmarks indicate that the SUN front end reduces 
I/O time by at least a factor of ten and that NCUBE 
2 processors are currently a factor of four faster than 
the first-generation processors. Therefore, the code 
should run several times faster on the NCUBE 2 
than on the Cray X-MP. We are also working on a 
system to display JAC3D results from the NCUBE 
2 on a Stellar graphics workstation.

Several promising methods have been imple­
mented and compared for mapping general problems 
onto a hypercube. Clearly, the methods should be 
judged by both the quality of their mappings and 
the time it takes to do the mapping. We plan to 
implement selected mapping algorithms, including 
the simple graph method and the recursive bisec­
tion method, in parallel on the NCUBE 2. We ex­
pect that some of the mapping algorithms will par­
allelize well and that the time used for mapping will 
ultimately be a small part of the overall execution 
time.

Discussion and Conclusions

We have implemented a large 3D finite element 
code on the NCUBE/ten hypercube and have ob­
tained supercomputer-class performance (except for

Table 4.
Mapping time for large problem 

(seconds on a SUN 3)
cube Division Method
dim kl graph rb

8 49193 2995 684
9 50072 3751 1242
10 50775 4894 2283

References

[1] Berger, M. J. and Bokhari, S. H. (1985) “A Partitioning 
Strategy for PDEs Across Multiprocessors”, in Proceedings of 
1985 Int. Conf. Par. Proc., pp. 166-170.

[2] Biflle, J. H. (1984) “JAC - A Two-Dimensional Finite 
Element Computer Program for the Non-Linear Quasistatic 
Response of Solids with the Conjugate Gradient Method”, 
SAND81-0998, Sandia National Laboratories, Albuquerque, 
NM.

[3] DeVries, R. C. (1990) “Static Load Balancing on a Hy­
percube: Concepts, Programs, and Results”, SAND90-0338, 
Sandia National Laboratories, Albuquerque, NM.

[4] Geist, G. A. and Heath, M. T. (1986) “Matrix Factoriza­
tion on a Hypercube Multiprocessor”, in Hypercube Multi­
processors 1986 (M. T. Heath, ed.), SIAM, Philadelphia, PA,



pp. 161-180.

[5] Gibbs, N. E., Poole, W. G., and Stockmeyer, P. K. (1976) 
“An Algorithm for Reducing the Bandwidth and Profile of a 
Sparse Matrix”, SIAM J. Numer. Anal. 13, 1976, pp. 236-250.

[6] Gustafson, J. L., Montry, G. R., and Benner, R. E. (1988) 
“Development of Parallel Methods for a 1024-Processor Hy­
percube”, SIAM J. Sci. Stat. Comp. 9, 1988, pp. 609-638.

[7] Jiang, B-N. and Carey, G. F. (1984) “Subcritical Flow 
Computation Using an Element-By-Element Conjugate Gra­
dient Method”, in Proc. 5th Int’l. Symp. Finite Elements and 
Flow Problems, Univ. of Texas, Austin, Jan. 23-26, pp. 103- 
106.

[8] Kernighan, B. W. and Lin, S. (1970) “An Efficient Heuris­
tic Procedure for Partitioning Graphs”, Bell System Techni­
cal Journal, 49, pp. 291-307.

[9] Vaughan, C. T. (1989) “The SSOR Preconditioned Con­
jugate Gradient Method on Parallel Computers”, Ph.D. Dis­
sertation, University of Virginia.


