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Abstract

An implementation is presented for JAC3D on a
massively parallel hypercube computer. JAC3D, a
three dimensional finite element code developed at
Sandia, uses several hundred hours of Cray time
each year in solving structural analysis problems.
Two major areas of investigation are discussed: (1)
the development of general methods, data struc-
tures, and routines to communicate information be-
tween processors, and (2) the implementation and
evaluation of four algorithms to map problems onto
the node processors of the hypercube in a load-
balanced fashion. The performance of JAC3D on
the NCUBE/ten is compared with that on a Cray
X-MP: the NCUBE/ten version presently takes 20%
more compute time than the Cray. On a larger sim-
ulation which used more of the NCUBE’s memory,
the NCUBE/ten would take less compute time than
the Cray. Current activity on the newer NCUBE
2 hypercube is summarized which should lead to an
order of magnitude improvement in run-time perfor-
mance for the massively parallel solution of struc-
tural analysis problems.

Introduction

In this paper we discuss the implementation of
JAC3D, a three dimensional finite clement code
which uses a nonlinear Jacobi preconditioned con-
jugate gradient method to solve large displacement,
large strain, temperature dependent, and nonlinear
material structural analysis problems, on a mas-
sively parallel computer, the NCUBE/ten hyper-
cube. This code was developed at Sandia National
Laboratories where it uses several hundred hours of
Cray time each year. We note that the hypercube
implementation is complete in that a user has the
same user interface and simulation options on the
Cray and the hypercube.

'Tliis work was partially supported by the Applied Mathe-
matical Sciences program, U.S. Department of Energy, Office
of Energy Research, and was performed at Sandia National
Laboratories which is operated for the U.S. Department of
Energy under contract number DE-AC04-76DP00789.

Two major implementation issues are discussed
below. The first is the development of routines to
communicate information between the node proces-
sors and between the host and the node processors.
The reason these are nontrivial is that the finite el-
ement mesh is not necessarily regular or regularly
numbered. Routines are included that determine
what information each processor sends or receives
at each communication step and with which proces-
sors it is communicating. The second area is the de-
velopment of algorithms to map a problem onto the
node processors of the hypercube in a load-balanced
fashion. We will present and compare several map-
ping methods that, to date, have been executed on
a SUN workstation.

Compute times are within 20% of the Cray X-MP
for a production simulation with 89,043 equations.
The NCUBE/ten can easily handle a problem four
times larger; such a simulation would be faster on
the NCUBE/ten relative to the Cray. Preliminary
benchmarks on the NCUBE 2 indicate that the SUN
front end reduces 1I/O time by at least a factor of ten
and that NCUBE 2 processors are currently a factor
of four faster than the first-generation processors.
Therefore, the code should run several times faster
on the NCUBE 2 than on the Cray X-MP. We are
also working on parallelization of selected mapping
methods and on a system to display JAC3D results
from the NCUBE 2 hypercube on a Stellar graphics
workstation.

Implementation Issues

Overview

JAC3D is a three dimensional finite element code
which uses a nonlinear Jacobi preconditioned conju-
gate gradient (PCG) method to solve large displace-
ment, large strain, temperature dependent, and non-
linear material structural analysis problems [2]. The
serial version of the code reads in three data files: a
control file containing material constants and num-
bers such as the maximum number of iterations,
an input file which contains the finite element de-
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scription of the problem, and a file which gives the
temperature at each node point for each load step.
JAC3D then creates an output file and an additional
file used for plotting the output.

In implementing JAC3D on our hypercube, an
NCUBE/ten, we have added a third input file which
contains the order of the hypercube being used and
a mapping of the elements and nodes of the prob-
lem onto the node processors. The NCUBE/ten is a
1024 node hypercube which has 0.5 MBytes of mem-
ory on each processor.

It was necessary on the NCUBE/ten to divide the
original code into a host processor code and a node
processor code. (This code division can be avoided
on the newer NCUBE 2 hypercube.) The node pro-
cessor code corresponds to the call to the solver in
the original code, while the host code handles the
input and output. The host code begins by reading
the input files and doing the preprocessing that is
necessary on the data. When it is ready to call the
solver, it allocates a hypercube ofthe desired dimen-
sion and starts the solver on the node processors. In
this way, running the solver on the node processors
is similar to calling the solver as a subroutine with
the passed variables now being communicated be-
tween the host and node processors.

PCG and Finite Element Methods

The iteration matrix is calculated at each itera-
tion as it is needed, which avoids using the mem-
ory which would be required to store the entire ma-
trix. The matrix is calculated element by element,
so some information about each of the elements has
to be kept. This is done by dividing the elements
among the processors such that each element is as-
signed to one processor. In this way, there are no
duplicate calculations.

Each element has a list of nodes which are associ-
ated with it and allocates storage for all of these
nodes. In this way each node may be allocated
space in more than one processor but the node will
be assigned to only one processor. That processor
is responsible for maintaining the correct value of
the variables associated with the node by collecting
partial values of the variables associated with that
node from other processors and providing these cor-
rect values to the other processors when needed. On
each processor, the nodes which are assigned to it
are numbered first, followed by the nodes for which
the processor needs values but which are assigned to
other processors. In this way, each processor locally
numbers the nodes and elements that it has.

In the solution algorithm, the unknowns at the
nodes are updated in two ways. Some calculations,

such as the calculation of the residual vector, are
done element by element [6]. In order for the pro-
cessors to update the unknowns associated with an
element, some values of other variables at the asso-
ciated nodes need to be communicated to that pro-
cessor. As cach element is used, the unknowns at
the nodes associated with that element are updated.
Since each element appears in only one processor,
several processors will generate updates to shared
variables, which requires communication of partial
results so these updates can be combined to form
the final result.

The second way that unknowns at a node get up-
dated is by the processor which to which that node
is assigned. An example of this is the calculation of
the new direction vector from a linear combination
of'the previous direction vector and the residual vec-
tor.

Initial host-to-node Communication

The host processor communicates with the node
processors by communicating only with node 0. Any
data that the host sends to the node processors is
sent to processor (0 which then broadcasts the infor-
mation to the rest of the processors by means of a
fanout algorithm using a minimal spanning tree of
the hypercube rooted at node processor 0 [4]. In
the fanout algorithm, successive dimensions of the
hypercube are used. In each stage, all of the active
processors send information to their neighbor in that
dimension. As those processors receive information,
they become active and will send information in the
next stage.

The host processor starts by sending the node
processors a message which contains startup infor-
mation such as the total number of elements and
nodes in the problem and the maximum number of
iterations. The node processors then use this in-
formation to set up some temporary arrays. The
host processor then reads in the problem mapping
of the elements and sends that information to the
node processors. This allows the node processors to
determine how many elements they have and allo-
cate space for some arrays. The host processor then
sends the list of nodes which are associated with
each of the elements and the mapping of the nodes
to the node processors. The node processors store
the portion of the list of nodes which are associated
with their elements and then use that with the map-
ping of the nodes to determine the number of nodes
they need storage for and to set up communication
with other nodes.



Data Structures for Interprocessor Communication

Next, the node processors set up the communica-
tion which they do during the calculations. Using
the list of which processor has each node, a processor
constructs a list ofnodes for which it needs values of
variables but which are assigned to other processors.
This receive lisi of nodes is then sorted by processor
and the processor builds an index to this list con-
sisting of the processor to communicate with, the
number of nodes which have to be communicated,
and a starting index into the list. This is illustrated
in Figure 1. When the list is sorted by processor,
it is ordered by placing the processors in descending
order of their distance from the processor in terms
of message hops. In this way, messages which will
take the longest time to be communicated will be
sent first. In our experiments, this message order
cut down the execution time of the algorithm.

Processor Number

Number of Nodes

to communicate

Index in .Array

Nodes to

Communicate

Figure 1. Communication Data Structure

Each processor sends the processors which it
needs information from the list of nodes it needs
from that processor. Each processor uses this infor-
mation it receives to construct a list similar to its
receive list, a send list which is used to send correct
values of variables. The communication routines use
this general data structure since the problems to be
solved are generally irregular and have an irregular
numbering of the nodes.

When the processors need to communicate the
value of a variable, they use the send list to send
messages to other processors and the receive list to
receive messages from other processors. When the
values of an array need to be communicated, each
processor sends a message to each of the processors
in its send list of processors. The processor numbers
in the send list are used successively and an index
into the node numbers being sent is maintained. For
each processor in the list, the node numbers to be
sent are determined by taking them from the list
of nodes starting at the index. Since the number

of nodes to be communicated to each processor is
stored, that many nodes numbers are used to take
information from the array to be sent and put into
a message array. This process uses all of the data
structure as illustrated in Figure | except for the
array of indexes into the list of nodes to be com-
municated. The message array is then sent and the
index is incremented by the number of nodes which
were sent.

When a processor receives a message, it looks up
the processor number in its receive array and the
number of nodes that are being communicated and
the starting position in the array. It uses that in-
formation to put the values in the message into the
variable array in the right places. Since it can be
seen that the communication involved with the pro-
cess of communicating correct values of variables at
a node between the processors is the inverse of the
the process of communicating partial values of vari-
ables at a node between processors, the receive list
is used to send partial results to other processors
and the send list is then used to receive those re-
sults which are added to the local results to get the
correct value. In the case of communicating partial
values, the final result does not necessarily need to
be sent to the other processors involved since they
may not need this value.

The other case in which interprocessor communi-
cation has to be done is the case of inner-products.
This is done by the standard bidirectional exchanges
of partial information along successive dimensions of
the hypercube with the addition of partial results af-
ter each exchange [6].

Input: Large Vectors

After the node processors have allocated space for
the vectors that they store and have set up their
communication schemes, the host processor can send
them the initial vector information(e.g. temper-
atures). This information is sent to processor (
which then broadcasts it to the other node proces-
sors. Each processor then takes the part of the vec-
tor which it needs and stores it in its memory. The
maximum size of a message, the size of the message
buffers on the node processors, and the size of an ar-
ray on the host processor are each limited, so large
messages have to be read in to the host and sent
to the node processors in pieces. After each piece
of the message is received by the node processors,
node processor 0 sends a message back to the host
to allow the host to send the next piece. This proce-
dure prevents message buffer overflow on the node
processors.



Host Activity During Node Computation

At this point the node processors start calculating
and the host processor waits. Since the node proces-
sors have to output results and read additional input
such as the temperature of the nodes at the begin-
ning of each load step, the host processor has to be
able to call the appropriate subroutine to interact
with the node processors. It does this by waiting
to receive a message and, based on the type of the
message received, either calls the appropriate sub-
routine, prints out the appropriate error message,
or deallocates the hypercube and quits. Since node
0 has a copy of any scalar data which has to be
communicated back to the host processor to run the
subroutine, this information is included in the mes-
sage which tells the host processor which subroutine
to run. In summary, execution is controlled by the
node processors in this part of the calculation.

Output

The output from the node processors is handled
by a fanin algorithm, in which the information to be
output is sent to node processor 0 which, in turn,
sends the information to the host. The fanin algo-
rithm is the inverse of the fanout algorithm. At each
stage, half of the active processors send a message
to the other half. The processors which receive a
message are the active processors for the next stage.
As with input, output of large messages is also done
in pieces. In order to output arrays in the proper
order, each processor has a list of the global order
number of the nodes which are assigned to it. Each
piece of the array is assembled in the global order
and sent to the host processor.

Problem Mapping

In order to implement JAC3D on the hypercube,
we had to provide for the automated mapping of
large problems onto the hypercube. We have used
four mapping methods. The first is a recursive bisec-
tion method developed for problems on rectangular
grids by Berger and Bokhari [1]. In this method, the
problem grid is divided into two rectangles along a
line of the grid. This division is repeated recursively
to each of the rectangles until the desired number of
sets of unknowns is created. This method is eas-
ily adapted for three-dimensional rectangular grids
[3]. This method has the disadvantage that it has
the potential for load imbalance, since each set is
divided along a line of the grid and, therefore, the
two resulting sets may not be the same size.

From this algorithm, we have developed a second
algorithm which uses recursive bisection for irregu-

lar regions in three dimensions. The first step is to
sort the nodes of the grid in the x, y, and z direc-
tions. At each stage of the mapping, a direction is
chosen and each set in the mapping is divided into
two equal or nearly equal sets based on the index in
the sorted list for the given direction of each node
in the set. For example, given a set S with n nodes
which is being divided into sets SI and S2 along the
x direction, the first n/2 nodes ofset S in the sorted
list of nodes for the x direction are placed in set SI
with the remainder put in set S2. In this way, the
sets at the final stage of the mapping will have an
approximately equal number of nodes.

The third algorithm was developed by Kernighan
and Lin [8]. It is a iterative graph-based algorithm
which starts with a set which has been arbitrarily
divided into two equal sized pieces and exchanges
nodes in order to minimize the number of edges con-
necting the two pieces of the set. At each iteration,
it looks at all of the unmarked nodes in each of the
two pieces of the set and marks the pair which, ifex-
changed, would minimize the number of edges con-
necting the two pieces. After all of the nodes are
marked, then the minimum number of pairs to cre-
ate the maximum change are exchanged. The pro-
cess is repeated until nothing further can be gained
by swapping nodes.

The fourth algorithm that we used is a graph-
based algorithm developed by Vaughan [9]. At each
stage, each set is divided into two equal parts by
the use of level sets. The first step to divide a
set into two pieces is to find a pseudo-diameter of
the graph of the grid [5]. A rooted level structure
is constructed from each endpoint of the pseudo-
diameter. The nodes are divided into two sets ac-
cording to which endpoint they are closer to. Each
rooted level structure will have a set of level sets and
the number of the level set a node is in is a measure
of its distance from the root of the level structure.
Points which are equidistant from both endpoints
are assigned to a set so that the sizes of the sets are
equalized.

By using the endpoints of a pseudo-diameter as
starting points, we seek to construct level structures
with small level sets thus providing a smaller set
of nodes on the boundary when the set is divided
into two pieces. This is similar to the motivation
for using level structures in reordering equations for
solution by direct methods.

For the two graph-based algorithms, the number
of sets at each stage of the division is doubled from
n to 2n and the sets are divided according to their
set number in a gray code fashion. When the first
set, set 0, is divided into two sets, these sets are



numbered 0 and » arbitrarily. After set 7 is divided,
with 0 < t < n, the two resulting sets are numbered i
and i+n. The choice of which set is to be numbered i
is determined by which numbering gives the smallest
cost for communication with the sets which have
already been divided.

For each of the algorithms, the nodes are divided
among the processors. However, with our solution
method, the elements also have to be mapped to
the processors. Each of the mappings above work
by doubling the number of processors in the map-
ping at each stage. At each stage, half of the nodes
and half of the elements assigned to a processor are
assigned to a new processor. Each element stays in
its processor or moves to the new processor based on
which of the two processors has more of its nodes.
Ties are settled in such a way as to keep the number
of elements assigned to the two processors even.

Results

We solved two problems with JAC3D on the hy-
percube. The first is a rectilinear block with three
materials, 450 elements, and 810 nodes. The second
is a solder analysis problem of a 28 pin integrated
circuit on a PC board. It has four materials, 22932
elements, and 29681 nodes and is very irregular (Fig-
ure 2). Since we are solving for the displacements in
three directions, there are 89043 unknowns in this
problem. Symmetry is used in the x and y direc-
tions to decrease problem size. Note that most of
the elements and nodes are in the pins connecting
the PC board to the integrated circuit.

Table | shows the execution times for the pro-
gram on the first problem using the four mapping
methods as well as a mapping constructed by hand.
The problem would not fit on one processor, or even
two processors in the case of the Berger and Bokhari
mapping. In the tables, hand is the hand mapping,
graph is the graph-based method by Vaughan, ki is
the Kernighan and Lin algorithm, bb is the Berger
and Bokhari algorithm, and rb is the recursive bisec-
tion method based on a modification of the Berger
and Bokhari algorithm. The execution times only
include the node processor time and do not include
the preprocessing time for the host. In the best case,
we got a speedup of41l on going from two to 256 pro-
cessors. This is encouraging considering that, on 256
processors, each processor had two or fewer elements
and four or fewer nodes.

Table 2 shows the time to construct the mappings
on a SUN 3. These times are smaller by a factor of
two or three than the time the division would take

Figure 2. Solder Analysis Problem

Table 1.
Execution time for small problem
(seconds)
cube Division Method
dim hand graph kl bb b
1 1747 1751 1751 - 1752
2 885 910 911 1003 909
3 463 473 468 562 486
4 252 254 258 313 271
5 139 141 150 192 145
6 86.8 84.1 108 117 853
7 - 609 655 829 578
8 - 459  48.0 558 429

on one node processor of the NCUBE/ten. The two
graph-based methods are slowest while the Berger
and Bokhari algorithm is the fastest. Note that a
large portion of time for the Kernighan and Lin al-
gorithm is spent in the first division.

Table 3 shows the execution time for the solder
analysis problem on the NCUBE. The time includes
all ofthe node time from the time the host communi-
cates the problem to the nodes and does not include
the host preprocessing time. The Kernighan and
Lin algorithm produces the mapping which executes
the fastest while the other two methods are about
equal. As Table 4 shows, however, construction of
the Kernighan and Lin mapping is the slowest by at
least a factor of ten.

Table 5 compares the solder analysis problem run
on both the NCUBE and the Cray X-MP. Here,
compute time for the NCUBE is just the node pro-



Table 2.
Mapp ing time for small problem
seconds on a SUN 3)

cube Division Method
dim graph kI bb b
1 3.0 303 20 24
2 4.3 40.8 2.0 25
3 6.6 464 21 28
4 104 525 21 31
5 145 580 21 4.0
6 21,5 663 22 54
7 291 749 23 79
8 40.0 84.0 24 143
Table 3.
Execution time for large problem
(seconds)
cube Division Method
dim kl graph b
8 8243 9098 9089
9 5541 6217 6331
10 4312 4602 5144

cessor time without any of the overhead of commu-
nicating with the host between load steps, while the
total time is the time from start to finish on the
host. The total execution time for the NCUBE/ten
including all of the host time was 6100 seconds. This
shows that the processing time on the NCUBE/ten
is comparable to that on the Cray X-MP but the
I/O time which is a result of the host processor of
the NCUBE/ten causes the total execution time on
the NCUBE/ten to be much larger than that of the
Cray. When we implement this code on the NCUBE
2 with the SUN front end, the ratio of the total time
to compute time should improve dramatically.

Discussion and Conclusions

We have implemented a large 3D finite element
code on the NCUBE/ten hypercube and have ob-
tained supercomputer-class performance (except for

Table 4.
Mapping time for large problem
(seconds on a SUN 3)

cube Division Method

dim kl graph b
8 49193 2995 684
9 50072 3751 1242
10 50775 4894 2283

Table 5.
NCUBE vs. Cray X-MP

(seconds)
Compute Time
NCUBE/ten 2197
Cray X-MP 1661

host processor 1/0). Compute times are within 20%
of the Cray X-MP for a production simulation with
89,043 equations. The NCUBE/ten can easily han-
dle a problem four times larger; such a simulation
would be faster on the NCUBE/ten relative to the
Cray. The hypercube code is complete: a user sees
the same user interface and simulation options on
the Cray and the hypercube.

We are now implementing this code on the
NCUBE 2 and its SUN front end. Preliminary
benchmarks indicate that the SUN front end reduces
I/O time by at least a factor of ten and that NCUBE
2 processors are currently a factor of four faster than
the first-generation processors. Therefore, the code
should run several times faster on the NCUBE 2
than on the Cray X-MP. We are also working on a
system to display JAC3D results from the NCUBE
2 on a Stellar graphics workstation.

Several promising methods have been imple-
mented and compared for mapping general problems
onto a hypercube. Clearly, the methods should be
judged by both the quality of their mappings and
the time it takes to do the mapping. We plan to
implement selected mapping algorithms, including
the simple graph method and the recursive bisec-
tion method, in parallel on the NCUBE 2. We ex-
pect that some of the mapping algorithms will par-
allelize well and that the time used for mapping will
ultimately be a small part of the overall execution
time.
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